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Abstract

Going Live in Micro-Architecture Simulation

by

Sina Hassani

Computer architects rely on simulators in order to explore their design space and evaluate in-

novations. However, the state-of-art cycle-accurate simulators are several orders of magnitude

slower than the hardware they simulate. Long simulation times can result in a great decrease in

productivity. We have developed LiveSim, a novel microarchitectural simulation methodology

that provides simulation results within seconds, making it suitable for interactive use. LiveSim

is able to report simulation results on the fly by incorporating a web interface. It is a scalable

framework which efficiently takes advantage of resources to provide fast simulation results in

an order of seconds.

LiveSim works by creating in-memory checkpoints of application state, and then ex-

ecuting randomly selected samples from these checkpoints in parallel to produce simulation

results. The initial results, which we call LiveSample, are reported less than one second af-

ter starting the simulation. As more samples are simulated the results become more accurate

and are updated in real-time. Once enough random samples are gathered, LiveSim provides

confidence intervals for the reported values and continues simulation until it reaches the target

confidence level. We call simulation towards a target interval LiveCI.

We evaluated LiveSim using SPEC CPU 2006 benchmarks and found that within 5

seconds after starting simulation, LiveSample results reached an average error of 3.51% com-

vii



pared to full simulation, and the LiveCI results were available within 41 seconds on average.
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Chapter 1

Introduction

Computer architects are constrained by the fact that system design is a slow, expen-

sive, and time-consuming process. To ameliorate this architects use a variety of techniques to

prototype ideas and perform design space exploration. One of the most important techniques is

architectural simulation where a software model of the simulated system is developed to eval-

uate its performance using realistic benchmarks. Unfortunately, software simulation is many

orders of magnitude slower than the real systems being designed. This limits the length of

the benchmarks that can be executed, and also forces architects to wait for long periods (from

minutes to days) until new simulation results are ready.

Many techniques have been developed to reduce simulation time including: bench-

marks workload reduction [19], specialized hardware [30], phase-based sampling [27], and

statistical sampling [32]. Of these techniques, the sampling based approaches typically provide

the best trade-off between simulation fidelity, speed, and flexibility.

The state of the art simulation techniques have reduced simulation time from weeks
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to days or hours, but in many ways microarchitectural simulation still uses the methodology of

the era of punched cards and batch queues. An architect typically first develops and configures

the simulation parameters. Then the simulation is submitted to a batch queue and runs for hours

or days while the architect works on something else. After the simulation finishes execution the

architect must recall what she was working on, interpret the results and then repeat the cycle

with new experiments.

This methodology contrasts with the rapid development techniques popular in many

types of software engineering. We expect the productivity of computer architects to improve

with an interactive development environment. To support this development model we propose

LiveSim, a simulation framework that provides simulation results in near real-time. In this work

we define our near real-time goal as within 5 seconds and we use the terms live and interactive1

interchangeably. LiveSim provides initial results as soon as the first sample finishes simulation,

and it provides a confidence interval to bound the expected error after a minimum number

of samples have executed (which is typically within 5 seconds on our system). If necessary

LiveSim continues simulating more samples until reaching a user defined threshold for the

confidence interval. We call the results that are updated in real-time LiveSample, and the result

that is within the desired confidence interval LiveCI.

LiveSim works by first running a setup phase that executes the applications in em-

ulation only mode and creates in-memory checkpoints with architectural state. This step is

completely independent of simulated microarchitecture. Next the microarchitecture simulator

is loaded as a dynamic library, which allows it to be easily modified without rerunning the costly
1The simulator is used interactively, not the benchmark that is simulated
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Figure 1.1: LiveSim timeline showing how the user is presented with LiveSample results from
the beginning, how accurate the results get within a few seconds, and how the simulation con-
tinues running until the confidence interval reaches the threshold for the LiveCI results.

setup phase. Then a calibration phase runs which executes a sample from each checkpoint using

the current simulator configuration. The samples are used to characterize the checkpoint and

allow for clustering. Although the measured performance depends somewhat on the simulated

microarchitecture, in practice the clustering tends to be associated with program phases, and

as a result the calibration phase tends not to need to be repeated even if the simulated microar-

chitecture has radical changes. At this point LiveSim is ready for interactive use allowing the

user to experiment with changes to the simulated microarchitecture. After making a change to

the simulator the user requests new simulation results. LiveSim randomly selects the minimum

number of checkpoints and begins simulating samples from the selected checkpoints in parallel

and reporting the LiveSample results to the user. After meeting the cutoff for the LiveCI results

the simulation halts and reports the final results.

Figure 1.1 illustrates an example of how LiveSim works by showing the simulation
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result of running Namd benchmark from SPEC2006 for approximately 10 seconds in a Haswell

CPU and simulating a similar CPU with LiveSim. Unlike traditional simulators, LiveSim starts

to produce results as each simulation sample finishes (LiveSample). As the evaluation will show,

after 5 seconds it is able to provide results that are within 4% of the correct result. The correct

result is a full simulation of the 10 seconds without sampling shown as No Sampling Simulation

in the figure. Once enough samples are gathered, it is possible to start reporting the confidence

interval for the simulation. As more samples are added, the confidence interval decreases and

stops the simulation when enough samples are processed. While LiveSample provides accurate

results in a very short time, it cannot guarantee them. Live Confidence Interval (LiveCI) bounds

the error according to the user requested acceptable error.

In this work we make the following novel contributions:

• Introduce LiveSim, a new architectural simulation methodology that enables interactive

microarchitecture design space exploration.

• Demonstrate that LiveSim is able to provide very accurate LiveSample simulation results

within 5 seconds. These results are independent of the length of the simulated benchmark

and simulating more instructions does not increase the time it takes for LiveSim to provide

the LiveSample results.

• Demonstrate that LiveSim is able to produce LiveCI results that bound the simulation

error within 10% within 41 seconds on average.

The rest of this thesis is organized as follows: Chapter 2 provides some background

about existing techniques to speed up simulation; Chapter 3 explains how LiveSim works;

4



Chapter 7 details the setup of our evaluation framework; Chapter 8 describes our results; Chap-

ter 9 provides a comparison with related work; and Chapter 10 concludes.
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Chapter 2

Background

2.1 Sampling in Micro-Architecture Simulation

Most architectural simulators are implemented as discrete event simulators where the

simulator models the changes to microarchitectural state that occur each clock cycle while the

simulated processor executes an instruction. Simulating a single instruction can require the host

to execute thousands of instructions to update all of the simulated microarchitectural state for

an advanced out-of-order processor, and even fast simulators are thousands of times slower than

native execution.

There are a variety of ways to cope with the slow simulation speed. One is to simulate

benchmarks that execute very small numbers of instructions; however, it is difficult to ensure

that these results are comparable to those obtained with standard benchmark inputs [16, 19].

Another approach is to accelerate the timing simulation using FPGAs [6,7,30], but this requires

custom hardware, increases simulator development complexity, and is not widely used in prac-
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tice. The most popular approach is to use sampling to reduce the number of instructions that

need to be simulated, and this is the technique we use for LiveSim.

Many simulators have a variety of levels of simulation detail ranging from the most

detailed mode which models all microarchitectural details, to modes that only simulate struc-

tures with long lived state (such as caches or branch predictor), to emulation-only mode, or

even modes that run parts of the simulated benchmark directly on the host system [33]. As

the level of detail decreases, the speed of the simulation increases. Most sampling techniques

take advantage of this difference in simulation speed by executing the majority of instructions

in a faster simulation mode, and extrapolating statistics collected from a small percentage of

instructions executed using full detailed simulation mode. The two main sampling techniques

are profile based sampling and statistical sampling.

Profile based sampling attempts to identify a few regions of a benchmark that are

representative of the behavior of the full benchmark execution. Sherwood et al. [27] devel-

oped SimPoint, which works by profiling a benchmark and collecting information about the

distribution of basic blocks executed during benchmark execution. This information is used to

find phases in program execution and then select representative samples for each phase. The

statistics that are that are collected from these samples can be used to extrapolate results that

tend to be very close to those from full benchmark execution. The effectiveness of the original

SimPoint proposal was purely heuristic based, but Perelman et al. [24] extended SimPoint to

provide statistical confidence measures.

Wunderlich, et al. [32] developed the SMARTS framework, which applies statistical

sampling theory to computer architecture simulation. The main drawback with SMARTS is that
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it requires continuous updates to the simulated cache and branch predictor microarchitectural

state between sampling units. The simulation mode that updates this state is called functional

warming, and while it is faster than detailed simulation, it is still much slower than native

execution. Although SMARTS is the de facto reference for applying statistical sampling to

microarchitecture simulation, earlier work from Conte et al. [8,9] also explored using statistical

sampling with microarchitecture simulation.

Since functional warming of the cache dominates simulation time there have been

a variety of proposals to reduce the amount of warmup that is needed and to speed up the

emulation mode. One technique is to save some of the simulation state in a checkpoint and then

load this checkpoint during future simulation runs [31]. Another technique is to forgo detailed

cache modeling during the functional warmup phase and simply record the sequence of memory

operations. This information can then be used to quickly rebuild the cache state prior to detailed

simulation of a sampling unit [1].

LiveSim builds on existing work that uses sampling to accelerate microarchitecture

simulation, but rather than simply trying to make the simulation faster, LiveSim is designed

to be suitable for interactive use. LiveSim uses statistical sampling, in-memory checkpoints,

checkpoint clustering, parallel checkpoint execution, and a fast cache warmup technique in

order to support interactive simulation.
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2.2 Statistical Sampling Theory

Statistical sampling can be applied to any situation when we are trying to make esti-

mation without evaluating an entire population for reasons like cost, time, etc. The same case

applies in micro-architecture simulation: it is very time-taking to fully simulate and evaluate

applications. In the previous chapter, we discussed how this time-taking process can possibly

affect productivity and the benefits of making it live.

In statistical sampling, we rely on a number of randomly drawn elements from the

original population. The drawn elements form our sample distribution. The sample distribution

parameters (m for mean, s for standard deviation, ...) are referred to as point estimates. If our

sample distribution is large and representative enough, we can generalize the point estimates to

represent the parameters of the original population.

How to make sure representative-ness of samples depends on the characteristics of

the population and the way we take samples from it. A general rule of thumb is that taking

one sample should not have any effect on taking another (no correlation between samples). In

addition, samples should be taken completely randomly and be equal in size/weight. In the case

of micro-architecture simulation, samples are chunks of the application code (e.g. 100K in-

structions) randomly picked from the whole application code (e.g. 50B instructions). To ensure

representative-ness, we have to make sure our sampling mechanism gives any possible sample

the same chance of being selected (randomness) and each sampling trial must be independent.

More specific to micro-architecture simulation, each sample must have the same behavior as it

had in the original population. In other words, the way that samples are executed and evaluated

9



should ensure that produced sample results are the same as when that chunk of code is evaluated

in the whole application execution.

How many samples to take is a question of how precise we would like the point esti-

mates to be and how much error we can tolerate. A good way of measuring the possible error

amount is calculating confidence interval around the point estimates. In micro-architecture sim-

ulation we are interested in average results. Therefore in this context, we focus on calculating

mean and confidence interval around the mean.

Confidence interval around mean is defined as: In a large number of sampling trials

(1 − α) proportion of the mean results fall into a ±ε interval of the original population mean.

This interval is defined as confidence interval and α is the probability of having a sample mean

outside of it. In theory, confidence interval can be calculated using the following equation:

CI = µ± z σ√
n

Where z is the 100[1− (α/2)] percentile of the standard normal distribution, µ is the

population average, σ is the standard deviation of the population and n is the number of samples

in each trial.

In one sampling trial, we have a (1 − α) probability of being in the calculated ±ε of

the true population mean. This is equivalent of saying that we have (1− α) probability that the

actual population mean lies within a ±ε interval around the sample (estimated) mean. Using

this theory with user defined α, we are able to present the confidence interval that the actual

result lies at any point.
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The theory of confidence interval supports any population when having large enough

number of samples (e.g. 30) where the sampling distribution (the distribution of sample means

in a large number of trials) is normal. Having such population, it is safe to use the sampling

population parameters (point estimates) instead of the original population parameters that we

do not have access to. As a result, we are able to calculate the confidence interval as follows:

CI = mean± z S√
n

Knowing our target confidence level ((1 − α)) and confidence interval (ε), we can

start with a minimum number of samples (e.g. 30) that allows calculating confidence interval.

Then we can add more samples and re-calculate confidence interval until we reach the desired

level.
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Chapter 3

LiveSim Methodology

The previous section provided some background about the sampling techniques that

LiveSim leverages to enable interactive or Live simulation. In this section we explain in detail

exactly how we implemented LiveSim. The basic outline for how LiveSim works is as follows:

• Setup: Run simulated benchmark in emulation only mode and periodically create in-

memory checkpoints that contain architecturally visible state. Information about the se-

quence of memory accesses is also recorded during checkpoint creation and used later for

cache warmup. The state contained in the checkpoints is independent of the simulated

microarchitecture.

• Calibration: Execute a sample from each of the checkpoints and use the recorded statis-

tics to group the checkpoints into clusters.

• LiveSample: When the user requests new simulation results LiveSim begins executing

the minimum number of checkpoints in parallel. As soon as simulation results are ready

12



they are reported visually to the user.

• LiveCI: After the minimum number of checkpoints complete execution LiveSim mon-

itors the calculated confidence interval. If it is not within the user specified limit then

LiveSim randomly selects more checkpoints to run. Eventually the confidence interval

reaches the selected limit and the simulation halts.

In LiveSim checkpoints contain all of the architecturally visible state necessary to

start simulation from a specific point in the benchmark and can be reused multiple times with

many different simulator configurations, whereas samples represent the result of simulating a

specific microarchitecture for a specific checkpoint. Samples are created by first copying the

checkpoint state, next loading the simulator library and configuration for the microarchitecture

that is being simulated, next warming up the microarchitecture state, and finally collecting

statistics for the sample.

In the rest of this section we explain in detail how each of the steps in LiveSim works.

3.1 Sampling Setup

The field of inferential statistics provides well known techniques for inferring statis-

tics about a population given a sample of that population. SMARTS [32] demonstrated that

systematic sampling can be used to approximate random sampling when used with microarchi-

tectural simulation. LiveSim also uses systematic sampling to approximate random sampling

during the setup phase.

During the setup phase LiveSim runs a fast emulation-only process that periodically

13



fork

wait

Figure 3.1: During setup the benchmark is emulated and checkpoints are created by periodically
forking new processes. Each checkpoint process enters a waiting mode. Once LiveSim starts it
loads the simulation dynamic library and configurations, then it starts simulation.

forks copies of itself to create an in-memory set of checkpoints that contain all the architec-

turally visible state necessary to continue benchmark execution. Figure 3.1 illustrates how

these newly created checkpoints enter a wait mode listening for commands to start microarchi-

tectural simulation. Since forking a process uses copy-on-write, the checkpoint creation step is

relatively cheap during the setup phase. However, in our implementation each checkpoint uses

up to 100 MB phase starts, and if LiveSim has to go to swap then it tends to run too slowly to

meet our desired time targets. In Section 8.4 we evaluate how to determine the optimal number

of checkpoints and checkpoint size.

In addition to the architecturally visible state, a checkpoint also needs a way to warm

up the microarchitectural state before collecting statistics from a sample. In our experiments we

found LiveSim was able to warm up most of the microarchitectural state, including an advanced

O-GHEL branch predictor, with only 1 million instructions of warmup. However, effectively

warming up the cache required more than 60 million instructions on average, and research
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indicates larger caches may require even more warmup [23]. Executing this many instructions

to warm up a sample would make the simulation too slow to meet the 5 second near real-time

targets for LiveSim.

To solve the cache warmup problem we adapted the memory timestamp record (MTR)

technique proposed by Barr et al. [1], and we call our adapted cache warmup technique Live-

Cache. LiveCache is implemented as a very large and highly associative cache that is larger

than the largest cache that will ever be simulated. Each cache line in LiveCache has a counter

field which stores a timestamp of the most recent access to this line. Each memory operation

increases this timestamp and stores it in the counter field of the cache line it is accessing. These

counters provides an ordering of all locations that could possibly be in the cache. Maintaining

this state is has a low overhead and does not slowdown the LiveSim setup process very much,

it will automatically be made available to the newly spawned checkpoint when they are forked,

and it is independent of the microarchitecture that will be simulated later.

When LiveSim starts simulating a sample from a checkpoint it first loads the sim-

ulator’s dynamic libraries and configuration information. Next LiveSim executes all memory

operations saved in the checkpoint’s LiveCache in least recently used order without advancing

the clock or collecting any statistics. This warms up the sample’s microarchitectural cache state.

After all of the LiveCache memory operations are executed the real simulation starts. This is

similar to the technique proposed by Barr et al. [1] with some slight changes to simplify the

integration with the LiveSim simulation infrastructure.
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3.2 Calibration

The central limit theorem is the underlying foundation for the statistics theory which

allows us to approximate the distribution of sample averages as though it were normally dis-

tributed. A typical rule of thumb is that 30 samples are enough to apply the central limit theorem

when the population that is sampled from is not highly skewed. But if the population is highly

skewed then more samples are required.

Figure 3.2 shows a trace of CPI values for the Astar benchmark plotted over time

for the first 30 billion instructions of the benchmark execution. This distribution is highly

skewed for two reasons. First the minimum CPI in the simulated 4-wide system is 0.25, but the

maximum CPI is effectively unbounded and we can see spikes as high as 10 for this benchmark.

Second the spikes are relatively rare and most of the samples have a CPI much closer to 1.

Simply using random sampling can require hundreds of samples for a distribution that is this

highly skewed. Furthermore, while we can calculate the number of samples needed if we are

given the population distribution, this information is not known a priori. Thus random sampling

alone is unable to meet the execution time constraints of LiveSim.

However, LiveSim is able to take advantage of the correlation between code signa-

tures and performance [20] and use this information to cluster the checkpoints. When the results

for LiveSample are calculated, LiveSim ensures that each cluster has at least 1 sample that is

selected, and it also weights the results from each cluster based on the cluster size. This tech-

nique has some similarities to what Perelman et al. [24] do to statistically bound the error for

results obtained using SimPoint.
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Figure 3.2: The CPI trace of Astar benchmark in SPEC 2006. The infrequent but extremely
large spikes will have a considerable affect on the average CPI. Missing these spikes in random
sampling will result in an unreliable sample mean

LiveSim groups the checkpoints based on the performance statistics that are obtained

with the baseline simulator configuration. Since performance statistics correlate with code sig-

natures this grouping tends to cluster the checkpoints together in a way where even radical

changes in the simulated microarchitecture still causes the checkpoints to be clustered in a

similar way. The clustering does not need to be exactly the same for different simulated mi-

croarchitectures, just close enough to avoid problems with extreme outliers that may otherwise

skew the results.

After all of the checkpoints are spawned during setup LiveSim begins calibration.

For each checkpoint LiveSim loads the baseline simulator configuration and simulates a sample

from the checkpoint. After all of the checkpoint samples are collected LiveSim uses a clustering

algorithm to group the checkpoints into clusters.
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For clustering LiveSim uses K-means algorithm where K ranges from K = 1 to

K = numcheckpoints/2 and LiveSim attempts to find the value ofK that provides the optimal

trade-off between variation of samples in clusters and the number of clusters (with the goal of

minimizing both of these values). For each iteration of K LiveSim finds the best possible

grouping of checkpoints to minimize the total variation of the metric of interest (typically CPI)

across all K clusters. As LiveSim iterates through different values of K it keeps track of the

value ofK (and the associated configuration) seen thus far that minimizes total variation. When

the algorithm finishes LiveSim uses the value ofK that minimized total variation as the selected

configuration for clustering checkpoints.

The final step in calibration is to assign weights to each cluster. This is done based on

the number of checkpoints that are assigned to each cluster. For example if there were 2 cluster,

and the first cluster had 900 checkpoints, while the second cluster had 100 checkpoints, then

the first cluster would have a weight of 0.9 and the second cluster would have a weight of 0.1.

These weights are used when averaging results obtained from simulating samples from these

checkpoints and reporting LiveSample results.

3.3 LiveSample

Once the setup and calibration phases are complete LiveSim is ready for interactive

use. The usage scenarios that we envision is that the setup and calibration phases can be com-

pleted when the architect is not actively using the simulator (similar to how simulation batch

jobs are run today). The LiveSample and LiveCI results are what the architect would be inter-
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ested in seeing while using LiveSim for Live simulation. An architect may make a configuration

change and then request results from LiveSim.

At this point LiveSim randomly selects the first batch of checkpoints to simulate.

The selection algorithm depends on the number of clusters and the computation resources of

the system used for running the simulation and is shown in Algorithm 1. The reason that we

used spawn at least twice as many checkpoints as cores is that it provided the highest sample

execution throughput on our system. Too many running samples will overload the computation

resources of the system, while too few limit opportunities for overlapping computation with I/O.

This part of the initial checkpoint selection algorithm could be tuned differently for different

systems, but it is important to ensure at least one checkpoint is executed from each cluster,

regardless of the amount of samples that the system can execute in parallel.

for all clusters do
randomly select 1 checkpoint from the chosen cluster;

end
while num selected checkpoints ¡ num cores * 2 do

randomly select 1 checkpoint from any cluster
end

Algorithm 1: Initial checkpoint selection algorithm

The selected checkpoints are contacted by the LiveSim controller process and each

selected checkpoint forks another copy of itself to run the simulation, while the parent check-

point process goes back to its waiting mode. The child processes that will execute a sample

loads the simulator library, initializes the cache state using the LiveCache data, warms up the

rest of the microarchitectural state using detailed warmup, and finally collects statistics for its

sample and the reports them to the LiveSim controller process.

19



LiveSim begins reporting simulation statistics to the user as soon as the first check-

point finishes execution. These statistics are calculated by computing the arithmetic mean of

the sample values, after weighting each sample by its cluster weight. These results are what we

call the LiveSample results and in our experiments they typically reached a steady state value

within 5 seconds of starting the simulation.

3.4 LiveCI

Figure 1.1 shows an example of how LiveSim produces LiveSample and LiveCI re-

sults for a users. The LiveSample result is provided as soon as the first checkpoint is simulated,

and it typically reaches a steady state value very quickly (at roughly 3 seconds in Figure 1.1).

However, the initial LiveCI results take slightly longer before they are available and the simu-

lation continues running until the LiveCI result reaches the users specified threshold.

When LiveSim selects checkpoints to take samples from for the LiveSample results

it first ensures that at least 1 sample is selected from each cluster. Afterwards it begins select-

ing checkpoints completely randomly. However, for calculating the confidence interval these

samples that were initially selected from clusters cannot be used. The reason is that the confi-

dence interval calculation requires samples to be chosen randomly from the population, and the

clustering violates this requirement.

Consequently when LiveSim selects checkpoints for the LiveCI results it starts by

selecting 30 completely random checkpoints to take samples from. If any of the checkpoints

happen to have already been simulated then the earlier sample results can be used directly.
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Otherwise the LiveCI results have to wait until at least 30 completely random samples have

been simulated. LiveSim requires a minimum of 30 samples before calculating the confidence

interval because 30 is a generally accepted heuristic as the minimum cutoff value for applying

the central limit theorem to assume that the sample mean distribution is normally distributed.

And a normal distribution is required in order to calculate the confidence interval.

However, the minimum value of 30 is simply a heuristic, and in a highly skewed

distribution it may not be enough. In some of our initial experiments we observed that this

could result in the confidence interval being reported as more precise than it really was. This

happened in cases with a population that was mostly homogeneous, but had a few large spikes

(such as the Astar example shown in Figure 3.2). If the initial set of samples did not contain

one of the spikes the samples variance could be very small which would lead to a very tight

confidence interval being calculated for a sample mean that did not match the true sample

mean of the population. On the other hand if the initial set of samples did contain a spike the

confidence interval would be very large and outside of the user defined range. In this case the

simulation would continue running and eventually enough samples would be collected so that

an accurate sample mean and confidence interval was calculated.

So the only problem with the 30 sample minimum heuristic was that sometimes the

simulation could end earlier than it should have because LiveSim missed one of the infrequent

spikes. To solve this problem we developed a heuristic where we inserted a synthetic sample

in the sample set when calculating the confidence interval. The synthetic sample was created

by computing the average of the samples collected thus far and multiplying this average by 10.

Then the confidence interval was calculated using the true samples as well as the synthetic one.
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This heuristic solved the problem of ending the simulation too early due to missing extreme out-

lier values and it works well in practice for the SPEC CPU 2006 benchmarks that we simulated.

In the event that a users was simulating a workload with even more extreme variation in sample

metric then a different heuristic might be required, but we expect that adding a synthetic point

that is 10 times the sample average should work well enough for most workloads that computer

architects simulate.

Figure 3.3 shows the high level sampling mechanism of LiveSim. As discussed be-

fore, LiveSim starts presenting the LiveSample results to the user from the beginning and as

soon as enough samples are simulated, it starts reporting confidence intervals and continues

simulation towards a higher accuracy.

3.5 Delta Sampling

A majority of micro-architecture simulations are performed to evaluate the effects of

a change in the architecture. For example if a change in L2 associativity will result in a speedup.

If the two simulations (before and after the change) use the same random samples, we are able

to form a sample population of ratios which provides an accurate sample mean (the overall

ratio) and a relatively smaller confidence interval around it. In other words, if we are trying

to simulate a change, we might not be interested in having a precise estimate for the absolute

metric results, rather we would like to ensure the estimated speedup/slowdown is bounded by a

small error range. In such cases, delta simulation will provide higher accuracy while increasing

the simulation speed.
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Figure 3.3: The high level sampling mechanism in LiveSim. LiveSim tries to use as much
resources as possible to report accurate LiveSample and mathematically bounded LiveCI results
in the shortest possible amount of time.

The algorithm explained in the previous section is used for any simulation. When

a user decides to simulate a change in the architecture, he/she has to select a baseline. The

detailed baseline results will be stored in memory upon such selection. In delta, since we plan
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to simulate the same samples as the baseline, we use the same random sequence as used to

simulate baseline. Since ratio results across samples form a distribution with relatively less

standard deviation, probably a subset of the random samples in baseline will be enough to reach

the user defined confidence level.

3.6 Parameter Sweep

Plotting effects of a parameter change over a wide domain will provide architects with

a great perspective as well as finding out optimal points in the design. For example, trying to

decide what ROB size is optimal for an out-of-order core, if we have a plot for changes in CPI

over changes in ROB size from a minimum to maximum value, we can easily find the optimal

point and evaluate the trade-off.

Having a fast delta simulation enables LiveSim to incorporate this feature. We call

this feature parameter sweep as the user is able to select an architecture parameter (e.g. ROB

Size) and simulate different possible values in a domain, plotting different metrics (e.g. CPI)

over the changes. In order to do this, first the simulator does a baseline simulation for a selected

(usually the median of the domain). For all other possible values in the selected domain, delta

simulation will run (in or out of order depending on resources). Having the absolute results for

the baseline and delta results for each point in the domain, absolute results for all points will be

calculated and plotted.
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3.7 Power Setup

Typical architecture simulators estimate the power consumption per structure based

on the architecture configuration. This can be a slow process, mostly because of using CACTI.

Obviously, this delay multiplies by the number of times a simulation is done which in the case

of LiveSim, it is as many spawned checkpoints.

In order to address this issue, in every checkpoint, before CACTI begins to do power

estimation, we check if the same estimation for the same SRAM configuration has been done

before. If not, we allow CACTI to do the estimation and store the results indexed by a hash of

the configuration struct. Later on, if any other checkpoint needs to do CACTI power estimation

for the same SRAM, it can simply load the dumped results. If the CACTI code is changed, then

all the previously stored dumps will be wiped.
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Chapter 4

Other Explored Options

While creating LiveSim, we explored a few design options that showed good prospect

at the time however proved to be insufficient in the end. These features are implemented in

LiveSim but they are not currently active. However, it is still worthy to mention them as they

bring us a better perspective for LiveSim design as well as making the audience aware of the

options we tried and failed.

4.1 Range Detection Warmup

In the previous chapter we talked about how LiveSim uses LiveCache to eliminate the

effect of cold state in architecture. We also discussed that still a small amount of warmup period

is required for other elements. Before designing LiveCache, we spent a considerable effort on

designing an adaptive and heuristic warmup methodology. The basic idea of this method is to

use early results of checkpoints and try to find data trends which can be caused by a cold state.

If such trends are found, the data points will be discarded until the trend disappears.
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When a checkpoint starts simulation, we can form a time-line of the incremental

simulation results. Going from a cold to warm state results in decreasing or in some cases

increasing systematic trend in CPI. The reason is that over time, we get more data stored in

memory hierarchy and less cold-misses. In addition, cold branch predictors produce more miss-

predictions hence more cycles for the code to be executed. As the architecture modules are filled

with more data, these misses decrease and CPI stabilizes as well. This trend continues until all

modules are warmed up and the systematic trend disappears.

Although such trend is expected to be observed in any part of the application code we

start simulation from, changes in the application phase will make it hard to distinguish. In other

words, application phase and performance changes especially in small scales can be a great

noise to the warm-up trend. In order to minimize this effect, LiveSim uses Theil-Sen noise-free

trend estimation which produces an overall slope given a series:

slope = median(i<j−m)(
IPCav(j)− IPCav(i)

j − i
)

Using the above equation, we are able to evaluate different regions in checkpoint

results and decide what regions have a warm-up trend and need to be discarded and what regions

can be considered stable enough to form the sample results. To be safe, we assume only a series

of samples with no significant increasing or decreasing trend as reliable. Figure 4.1 shows a

very short CPI trace of one checkpoint and the selected reliable region.

Once trend detection selects the reliable region, we can use the simulation result of

that region to average and find sample (checkpoint) results. Having trend detection results in
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Figure 4.1: The CPI trace of a random checkpoint in Bzip2 benchmark in SPEC 2006. We can
notice a systematic decreasing trend in CPI as different modules are getting warmed-up. The
noise-free trend detection mechanism is able to detect the part that reflects unreliable results.

variable sample sizes in one simulation. However, each sample will be given equal weight in

calculating the final results since they are randomly selected.

In spite of spending a great amount of time and energy on utilizing trend detection

warmup, the results were not quite as ideal. One reason for such results was the larger higher

level caches in some CPU configurations (e.g. L3 in Haswell architecture). Such caches require

millions of instructions to get warmed-up and also the effect of cold miss in that level of cache

is not so great on CPI. As a result, although cold misses on L3 may happen in the checkpoint, it

does not appear in a relatively short trend of results.

Once we noticed sub-optimal results from range detection, we started utilizing Live-

Cache which eliminated the need for any warmup as far as memory hierarchy was concerned.

We however still needed warmup for other modules (e.g. branch predictor) so we decided to

use a combination of trend detection and LiveCache. This results and our later evaluations with

static amount of warmup showed that the needed warmup after LiveCache was so little that the
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trend detection overhead exceeded the processing time it could save. As a result, we decided to

disable this function and instead do a static amount of warmup in combination with LiveCache

for all checkpoints and applications.

4.2 Turbo-Charging

In LiveSim we are trying to be minimalistic on the number of samples taken and the

size of samples to push the speed into its bounds. The minimum required number of samples is

determined by the confidence interval around mean. The samples size by default is set in a way

to the minimum that can maximize simulation performance (explained more in the following

chapter). While having smaller sample size results in shorter simulation time for that sample,

in some benchmarks it significantly increases variability across samples. Larger sample sizes

capture larger portions of the application behavior which results in less variability among them.

Figure 4.2 show the CPI trace of the first 10 seconds native run in Perlbench. This

benchmark has a great number of significant (high frequency high amplitude) changes in per-

formance due to its nature. Small samples taken from this benchmark can randomly capture any

part of the wave-like trend. As a result we will have samples varying from CPI 2 to 15 which

result in a large confidence interval which requires us to simulate a great number of samples.

However, if sample size is increased, a sample would not only include a short period in the

wave-like trend, but probably even one whole cycle. Since each sample CPI is the average CPI

over the sampling period, all most samples will have CPIs close to each other which results in

a smaller confidence interval and could probably lead into earlier convergence.

29



Figure 4.2: CPI trace of Perlbench in SPEC CPU 2006. Some applications have high frequency
and high altitude changes in performance which makes them respond better to larger sample
sizes.

Although turbo-charging is a good approach for simulating some applications, it does

not scale out well for all SPEC benchmarks as not too many of them have phase changes in short

time ranges. In fact, further evaluations in this work show that it is always good to increase the

number of samples to be able to produce more accurate results as opposed to increasing sample

size. While increasing sample size is harm-less and can potentially lead to better results, it is

time and resource consuming. In the evaluation chapter we talk more about how to optimize the

used sample size.
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Chapter 5

Implementing LiveSim

In the previous chapter we learned that LiveSim is highly scalable and parallel by

its nature. The more computing resources available, the more checkpoints can run in parallel

which results in less simulation time. Implementing a scalable solution always introduces new

challenges which we would like to discuss in this chapter. Moreover, the live nature of LiveSim

requires certain platform setup which is interesting to look at.

LiveSim is implemented based on LiveOS which is a web based collaborative devel-

opment and research framework. LiveOS includes many features or what we would like to call

applications each bringing certain functionality to the platform. Examples are a collaborative

code editor, LATEX, Markdown compiler, code search, chat, file manager and Linux terminal.

The front-end of LiveSim is another app in LiveOS which makes it easy to access and use along

with the other tools.

LiveSim uses ESESC [18] as the simulation engine. ESESC is a fast micro-architecture

simulator that can model a micro-architecture at the software level and produce performance,
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power and thermal results running different benchmarks. ESESC has a few built-in sampling

methods which are often recommended to use for speed purposes. However, since LiveSim

has its own sampling mechanism, it uses only the timing (full simulation and gathering results)

mode in ESESC.

5.1 Code Base

LiveSim is coded partly in C++ and partly in JavaScript. It uses object oriented design

and is optimized for high throughput. We can divide LiveSim to the following sections:

• Simulator Side: This part of code is the new libraries and some patches for ESESC in

order to integrate it with the rest of LiveSim as well as implementing some features like

LiveCache. This code is in C++.

• Back-end: This part of code implements the actual LiveSim sampling method. It is a

NodeJS server (coded in JavaScript) which gets service from the simulator side code and

sends its results to the front-end.

• Front-end: This part of code is responsible for getting and presenting the results as well

as setting configurations, etc. It is mostly coded in JavaScript and uses Epoch and D3

libraries for data visualization.

• Transporter: Transporter is a cross-platform application layer library for communication

between different parts of the code base. It is developed in C++ and JavaScript as a part

of the LiveSim project.
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5.2 Architecture

Before we begin to explain how LiveSim works, let us define some widely used terms

in this context:

• Web Server is a NodeJS process in charge of receiving simulation commands from the

user, communicating with controllers and simulation nodes and publishing results back

to the user. It is also in charge of some other logistics including settings, saving, etc.

• Compute Machine is a machine that runs the simulation jobs. It is good to have multiple

compute machines with high number of cores and high enough memory. Storage is not a

big constraint but it is best if it low latency (not NFS mounted).

• Controller is a NodeJS daemon residing in each compute machine for launching the

simulation nodes, making proper introductions and terminations.

• Simulation Servers are created in the web server per application to do sampling and

generate reliable results. Simulation server is the sampling core of LiveSim.

• Simulation Node is an instance of the micro-architecture simulator launching a specific

benchmark/application.

• Checkpoints are processes in compute machines that hold equally distributed points in

terms of instruction count in an application code. During setup, simulation node starts

emulating the benchmark and checkpoint processes are forked at their specified locations

in the application code.

33



• Sample is a small but representative part of the application code by randomly selecting

one checkpoint and simulating it. In this context we refer to checkpoint as the process

and the sample as the result we get from a checkpoint.

• Simulation metric is the main metric we are interested in simulating. All sampling

decisions are based on this metric (chosen by the user) while other metric results will

also be calculated. In this context, we assume simulation metric to be CPI.

Figure 5.1 shows the topology of LiveSim. Clients connect to the web-server who

talks to the simulation nodes. In the simulation server we connect to the simulation nodes

which are responsible for simulating one application and they can be on any compute machine.

Each simulation node has a great number of checkpoints which are processes that each can

start simulation on a specific part of the application. Checkpoints might be located in any

host machine and are all tied to their simulation nodes through a connection serviced by the

Transporter library.

The first process to launch is the web server. Once launched, each compute machine

controller introduces itself to the web server. Once the machines are registered, the web server

has enough information about the resources available.

The next step is setup which happens as soon as the first simulation request is re-

ceived from any client (the LiveSim app). In setup, simulation server decides how to distribute

the benchmarks across compute machines based on their resources and sends setup commands

to the controller daemons. Controller daemons start the simulation nodes that introduces them-

selves to the web server. Upon this introduction, web server creates simulation server instances
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Figure 5.1: LiveSim setup. The web server talks to web clients and simulation servers. Each
simulation server talks to its simulation node and spawned checkpoints.

one per application. Each simulation server asks its corresponding simulation node to prepare

its checkpoints and register them back. Once all checkpoints are registered, setup is done and

we are ready to start the next step which is calibration.

In calibration, all checkpoints for all applications are asked to run simulation and

send their results back so that we are able to do clustering. Once calibration is done, the actual

simulation can happen in which only a subset of checkpoints are selected and simulated. In the

previous chapter we discussed how this selection mechanism works in theory and how calibra-

tion and normal simulation are the same except for the number of checkpoints they simulate.
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It is worthy to mention that all the steps so far need to happen only once in lifetime

for each application. It is only the live simulation that will be repeated upon any code or

configuration change.

When each checkpoint is asked to be simulated by its corresponding simulation server,

it forks a new copy of itself, loads the simulation libraries and starts the work. Upon simulating

a specific number of instructions (smaller or equal to the sample size), it sends the results back

to the server and continues until it reaches the sample size. The reason for these incremental

results is live updates in the client side.

The client (LiveSim app) includes a plotting tool which can be adjusted to present

different types of live updating plots for selected metrics and benchmarks. Within certain inter-

vals, the client asks the web server to send updated results and updates itself. D3 library enables

updating graphical elements without need to reload the object which enables us to have live

updating plots in the client side.

In the front-end, user has the ability to change simulator source code and configura-

tions and trigger a new simulation. In such condition, the source code will be re-compiled in

the machine hosting the web server. Then the compiled simulation dynamic library along with

a copy of all modified configuration files will be transferred to the compute machines replacing

the existing files. Finally, checkpoints on compute machines will start simulation using the new

library and configuration files.

One challenge in LiveSim is data transfer among simulation servers and checkpoints.

Each incremental result consists of a large set of simulation statistics that need to get transferred

accurately and instantly to the server. The text output of a single result dump occupies around
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40KB. Considering the number of checkpoints running at the same time (hundreds) and sending

this amount of data multiple times per second, we understand that network can easily become a

bottle-neck for LiveSim performance.

Transporter is designed to address the performance issue in LiveSim as well as making

socket coding easier and cleaner. This library can be used independently for any program-to-

program communication over the network or even the same machine. In the next chapter, we

will discuss Transporter in more details.
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Chapter 6

Transporter

Transporter is created to provide a fast, reliable, secure and convenient mean of com-

munication and data transfer in distributed systems. It is built based on TCP connections and

in a sense can be considered an application layer protocol which has an interface to connect to

TCP.

We can divide the functionality of Transporter to three layers as shown in Figure 6.1.

The data is encoded depending on its structure and sent to the next layer to be encapsulated as

a message. Then the message is encrypted with AES-128 and sent to the TCP connection to

be streamed to the receiver. The receiver buffers the stream and once it has received the whole

encrypted message, it starts the process of decryption, decapsulation and decoding.

In the next few sections, we will overview the steps that the library takes to send and

receive data. First, we will discuss connection establishment. Then we will explain encoding

methodology in details. After discussing encapsulation and the necessary overhead data, we

will overview the encryption method.
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Figure 6.1: Layer-based structure of Transporter. Each layer is responsible for specific functions
and is interchangeable without affecting its neighbors.

6.1 Connection Establishment

In Transporter connections as well as TCP and SocketIO connections, there is always

a server and one or more clients. Each server will listen to a specific port on a host and other

instances can try connecting to it having the host address and port number. The following

example shows the JavaScript code for creating the server and C++ code for connecting to it.

Using TCP sockets directly will require the developer to take many more additional steps to set

up a reliable connection which Transporter eliminates.

1 / / NodeJS s e r v e r code

2 v a r i o = new t r a n s p o r t e r s e r v e r ( 1 1 1 1 , f u n c t i o n ( s o c k e t ) {

3 / / on each s o c k e t c o n n e c t i o n t h i s code i s e x e c u t e d

4 } ) ;

5

6 / / C++ c l i e n t code
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7 T r a n s p o r t e r ∗ t = new T r a n s p o r t e r ( ” mada1 . c s e . uc sc . edu ” , 1111) ;

Looking inside transporter connect function, once the client sends a connection request to the

server, after receiving server acknowledgment, it will send its passkey encoded with a default

AES key. The default AES key is static and both parties have it in the beginning. The server

evaluates the passkey and in case of success, it will send the success message to the client. In

case of failure, server shuts down the connection and sends a fail message to the client. Client

can retry to connect with the correct passkey.

6.2 Encoding

In distributed applications, data is usually not in simple formats. Most times, devel-

opers need to transfer complex data structures across nodes and platforms. While TCP provides

us with a byte stream connection, we will need to have a generalizable method of encoding data

structures to an array of bytes.

The first method implemented for encoding is JSON. JSON encodes JavaScript ob-

jects to strings and is able to parse them back to objects. While JavaScript has JSON encoding

built-in, C++ does not provide these methods hence we created a JSON encoding/parsing library

to be used in Transporter. This feature supports recursion meaning that if we have a structure

than includes other structures as fields, we can still easily encode and decode JSON as long as

all structs have their fields introduced to a JSON object.

JSON has two problems: 1. For complex and large data, parsing JSON data will

become a time-taking task and results in great delay overhead. 2. We send the structure along
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with the data every time which can result in data overhead. In many applications we are sending

data of the same structure over and over which makes one think, if we can send the structure

once and send the data in a compact format every time, we will save some overhead.

For this reason, we created the LightSON encoding format. In LightSON, we use

schema to introduce fields and their types. The fields can be complex data structures themselves.

Each schema is generated and sent to the other party assigned with a unique schema ID. At any

point that one party sends data encoded in LightSON, it has to send the schema ID along with

it so that the receiver knows how to decode it.

Since we have a known schema for each structure, the actual data is a serialized byte

stream of all the fields in the order that schema defines. Knowing the schema, the decoder can

accumulate the correct bytes and convert them to the correct types.

LightSON was implemented and evaluated in two versions in this project: string-

based (v1) and Binary-based (v2). The string-based LightSON is more compact when working

with small amounts of data. Version 2 however is more compact when working with large

amounts of data and is easier to process. The parsing and encoding mechanisms for each are

different. In version 1, we used std::string functions and for version 2, we used Bytes arrays in

C++ and Buffer in NodeJS.

Here is an example of C++ struct converted into all three formats:

1 / / C++ s t r u c t

2 s t r u c t i n n e r t e s t {

3 i n t a ;

4 i n t b ;
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5 }

6 s t r u c t t e s t {

7 i n t a ;

8 double b ;

9 s t r i n g c ;

10 i n n e r t e s t d ;

11 }

12

13 / / JSON da ta

14 {” a ” : 10 ,

15 ” b ” : 15 ,

16 ” c ” : ” foo ” ,

17 ” i n n e r t e s t ” : {” a ” : 2 0 , ” b ” : c}

18 }

19

20 / / LightSONv1 schema

21 0a , 1 b , 5 c ,{0 a , 0 b}d

22

23 / / LightSONv1 encoded da ta

24 10 ,15 , ” foo ” ,20 ,30

25

26 / / LightSONv2 schema

27 {” a ” : 4 , ” b ” : 8 , ” c ” : 9 , ” i n n e r t e s t ” :{ ” a ” : 4 , ” b ” :4}}

28

29 / / LightSONv2 encoded da ta ( p r i n t e d i n ASCII )

30 1015 foo2030
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In the schema, the first byte, ensure the type of data and the rest is the field name in string

format. In case of inner structures, the schema of that structured will be printed within curly

brackets as the type. Encoded data is always depth-first serialized values of the struct and the

inner structs.

/sectionEncapsulation TCP provides us with a stream of bytes but we want to send

data and signals as objects. In other words, it will be very convenient for programmers to have

a way of interrupting the code upon receipt of specific signals that carry data. As a standardized

format, we define each message as an entity that carries a title and a data object. This way, we

can easily emit and listen to signal-data pairs as follows:

1 / / E m i t t i n g i n C++

2 t r a n s p o r t e r −>s e n d d a t a (

3 ” h e l l o ” , d a t a o b j−>g e t d a t a ( ) , s c h e m a i d ) ;

4

5 / / L i s t e n i n g i n J a v a S c r i p t

6 s o c k e t . on ( ” h e l l o ” , f u n c t i o n ( o b j ) {

7 / / o b j c a r r i e s t h e da ta

8 } ) ;

9

10 / / E m i t t i n g i n J a v a S c r i p t

11 s o c k e t . s e n d d a t a ( ” h e l l o ” , da t a , s c h e m a i d ) ;

12

13 / / L i s t e n i n g i n C++

14 d a t a o b j−>s e t d a t a (

15 t r a n s p o r t e r −>r e c e i v e d a t a ( ” h e l l o ” ) ) ;
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Please note that in this example we are sending a C++ struct and receiving a JavaScript

object.

Looking inside, each message has the following elements as bytes in order:

• message type (1 byte)

• message title (20 bytes)

• schema id (20 bytes)

• data length (4 bytes)

• data (variable length)

This is the most complete list of things a message can include. Data messages use all

the fields but system and control messages may not use one or two fields. The decapsulation

mechanism in the receiver will extract and trim each field deciding to take the necessary actions

(e.g. parsing LightSON) based on message type. Figure 6.2 shows the encapsulated data frame

format.

Figure 6.2: Encapsulation adds 45 bytes of overhead to the data. However, the 20 bytes for
indicating message cannot be really considered an overhead. Another 20 bytes that show the
schema ID are meant for avoiding a greater overhead: data structure
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6.3 Encryption

Security is an important concern as soon as we begin to transfer data across hosts in

a network. There are two concerns to be addressed: 1. Authentication: who to allow to connect

and do data transfer. 2. Encryption: The transferred data should not be readable by other nodes

in the network.

Authentication will be done using static passkeys that are stored in the server and the

client. In the beginning of each connection, the passkey is encoded and submitted to the server.

Server evaluates the passkey and decides if the client should be allowed to transfer data or not.

For encryption, we use AES-128 with dynamic keys. In the beginning, both client

and server start using a static default key to connect. Once connection is set up, the client sends

a key renewal request to the server and server generates a new random key sending it back to

the client. Both parties will start using the new key right away. Each new key is encoded with

its predecessor.

Each node has a timer for key usage, after a specific number of transmissions or a

certain time has passed, the client will request a key renewal from the server and follows the

same renewal procedure.

While doing the new key negotiation, there might be some data stored in the buffer

or in the middle of transfer that is encrypted with the old key. This requires us to always be

able to decode data that is encoded with the previous key. As a result both server and client

always remember the previous key. In addition, along with each key, there comes a single bit

flag in order to differentiate old and new keys. On each key renewal he flag is toggled in each
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node. Therefore, if the node flag is equal to the data flag, it should use the new key to decode it,

otherwise, it should use the old key.

TCP does not include a concept of object. It simply provides us with a stream of bytes

that will be transferred in order. At any point, we can read and write to TCP buffers. In order

to be able to figure out the start and end of each encrypted data chunk, we need to send the size

and the flag prior to sending the data itself. Figure 6.3 shows the frame format that is written to

TCP buffers.

Figure 6.3: Encryption adds from 5 to 20 bytes of overhead. 5 bytes are consumed to indicate
the data size to be decoded and what key to be used. An additional overhead might be caused
since AES-128 encrypted data is blocked into 16 byte chunks.
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Chapter 7

Measurement Setup

We evaluated LiveSim using the 24 of the 30 SPEC CPU 2006 benchmarks that we

were able to run with our simulator (listed in Table 7.1). Our simulation infrastructure uses the

MIPS64r6 ISA and it was missing support for some Fortran libraries which prevented us from

running 6 of the CPU 2006 benchmarks.

We ran all of the benchmarks on an x86 system with Haswell microarchitecture for

10 seconds using the first reference input set and used performance counters to determine how

many instructions the benchmark executed during this time. We then rounded this up to the

nearest 5 billion instructions and used this as the number of instructions to simulate during our

evaluation. This ranged from 30 billion to 90 billion instructions depending on the benchmark.

SPEC CPU 2006
perlbench, bzip2, gcc, mcf, milc, zeusmp, gromacs, namd, gobmk,
dealII, soplex, povray, calculix, hmmer, sjeng, gemsfdtd, libquan-
tum, h264ref, tono, lbm, omnetpp, astar, sphinx3, xalancbmk

Table 7.1: List of benchmarks used for evaluations in this paper.

We implemented LiveSim using a modified version of ESESC [18] as the timing
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simulator and a modified version of QEMU [2] as the emulation engine.

We compared 3 different simulated microarchitectures: a high performance (HP) con-

figuration that was modeled on Intel’s Haswell microarchitecture, a medium performance (MP)

configuration modeled on the ARM A72 microarchitecture, and a low performance (LP) config-

uration modeled after MIPS Apache microarchitecture. Table 7.2 provides more details about

the simulated microarchitecture configurations. The confidence level for all evaluations was set

to 95% and the target confidence interval was 10% of the reported values.

Parameter HP MP LP
Freq 3.5 GHz 2.5 GHz 1.7 GHz
I$ 32KB 8w 2cyc 32KB 2w 2cyc 32KB 4w 2cyc
D$ 32KB 8w 4cyc 32KB 4w 4cyc 32KB 4w 4cyc
L2 256KB 8w 11cyc 2 MB 16w 16cyc 1MB 8w 26cyc

L3 (shared) 8MB 16w 20cyc N/A 2MB 32w 14cyc
Mem. 110 cyc 100 cyc 60 cyc
BPred. ogehl 10*2K Hybrid 16K 2level 2K
Issue 4 3 2
ROB 192 128 64
IWin. 60 72 64
LSQ 72/42 32/32 24/24

Reg(I/F) 168/168 128/128 40/40
Table 7.2: The three different architectures used to evaluate LiveSim

Our host system had 2 Intel Xeon CPU E5-2689 CPUs and 192 GB of main memory.

Each CPU had 8 cores with 2 SMT threads per core, giving a total of 32 OS visible logical

processors. When running the benchmarks we executed them one at a time on the host system,

which allowed the host to use all its resources for running a single benchmark.
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Chapter 8

Evaluating LiveSim

Our evaluation of LiveSim focused on four different areas: speed, accuracy, warmup,

and sample size and number characterization. For speed and accuracy we compared LiveSim

with no sampling simulation and with a sampling mode that was very similar to SMARTS [32].

8.1 Speed

Our primary goal for LiveSim is to enable interactive design space exploration using

a microarchitectural simulator. To evaluate this we ran all 24 benchmarks for each of the 3 dif-

ferent configurations using both no sampling and recorded a time varying trace of the LiveSim

results. We calculated the time varying CPI error percentage for each benchmark by comparing

the benchmark CPI reported by LiveSim with the CPI simulated without sampling. Figure 8.1

shows a graphical representation of this data. The import thing to note is that although the

many of the initially reported values have a large CPI error, this quickly stabilizes and within 5

seconds the average error has dropped to 3.51%. Furthermore this error stays roughly the same
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Figure 8.1: LiveSim CPI error for all 3 configurations and all 24 benchmarks (black line shows
average error). LiveSim achieves an average of 3.51% CPI error within 5 seconds.

over the next 5 seconds. As a result we believe that the LiveSample results reported after 5 sec-

onds of simulation make LiveSim suitable for interactive microarchitectural simulation. This is

even more impressive considering that the portion of the benchmark simulated is equivalent to

10 seconds of execution on a high performance system with a Haswell microarchitecture. This

means that LiveSim enable simulation that is even faster than native execution.

With LiveSim we define LiveSample as the initial results that are produced using a

weighted average of samples from the checkpoint clusters created during the calibration step.

The results in Figure 8.1 indicate that the LiveSample results are usable within 5 seconds. How-

ever, the LiveCI results take longer because they require true random selection of a larger num-

ber of samples. Figure 8.2 shows a comparison of average runtime for all of the different con-

figurations for LiveSample, LiveCI, SMARTS, and running the simulation without sampling.

One thing that is important to note is that the execution time of SMARTS and no sampling is
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Figure 8.2: Average simulation time of all benchmarks and configurations. LiveSample results
are ready within 5 seconds, LiveCI takes tens of seconds, SMARTS takes tens of minutes, and
running without sampling takes many hours.

proportional to the length of the benchmark. While the execution time for LiveSample is nearly

constant and for LiveCI it is proportional to the variability of the samples. Simulating a longer

benchmark won’t necessarily increase the simulation time for either LiveSample or LiveCI.

Table 8.1 provides additional insight about the execution time of LiveSample and

LiveCI and how it varies per benchmark using the HP configuration. The execution time of

LiveCI is proportional to the number of samples that need to be simulated, and this is typically

proportional to the variability of the benchmarks. For LiveSample we don’t show a specific

time since this is not determined algorithmically. But as was illustrated earlier it is typically

stable within 5 seconds. The execution time of LiveCI is determined algorithmically and it

varies quite a bit from one benchmark to another. However, for most benchmarks it finishes
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Benchmark LiveSample LiveCI LiveCI Time (s)
astar 10 433 67.163
bzip2 10 496 64.021
calculix 6 398 48.227
dealII 1 178 17.937
gcc 14 490 80.032
gemsfdtd 6 328 45.724
gobmk 4 360 56.75
gromacs 2 246 30.327
h264ref 1 178 24.756
hmmer 1 177 21.247
lbm 3 239 32.679
libquantum 1 194 33.36
mcf 13 321 64.381
milc 13 500 74.741
namd 1 180 22.842
omnetpp 4 185 33.932
perlbench 6 183 33.197
povray 1 177 21.083
sjeng 2 899 137.47
soplex 9 427 61.676
sphinx3 8 213 27.493
tono 4 190 21.105
xalancbmk 1 177 31.461
zeusmp 8 412 54.872
Average 5.37 412 54.78

Table 8.1: Number of checkpoints needed for LiveSample and LiveCI for each benchmark for
the HP configuration as well as the execution time for LiveCI.

within a minute or less. The MP and LP configurations typically finish running more quickly

than the HP configuration, which is why the overall average execution time for LiveCI of all

benchmarks and all configurations is 41 seconds.

8.2 Accuracy

In the previous section we demonstrated that LiveSim is fast enough to be used for

interactive simulator use. However, fast results are only useful if they are reasonably accurate.
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Figure 8.3: CPI error distribution across benchmarks in LiveSim. Each box label shows cali-
bration and live simulation configurations respectively.

When evaluating accuracy there are two things to consider: how close is the point estimate to

the true value, and how often often is the true value within the confidence interval. For our

evaluation we selected a confidence interval of 10% and a confidence level of 95%. This means

that we expect at most 5% of the simulation results to vary by more than 10% from the true

value.

To evaluate this we ran 9 different experiments for each of the 24 benchmarks where

we first ran calibration with one configuration (HP, MP, or LP) and then ran LiveCI with another

configuration (we tested all possible combination, so the calibration and LiveCI configuration

were the same in some cases). Of the 216 experiments there were 9 instances where the true CPI

value was outside of the range reported by LiveCI. This is 4.16% of the time, which is within
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the expected range for a 95% confidence level. Figure 8.3 shows the distribution of CPI error

for this set of experiments. Although the target confidence interval was set to 10% in most cases

the actual CPI error was much less, and the overall average error was 3.39%. These results also

support our contention that the calibration step is microarchitecture independent. The overall

error is roughly the same regardless of whether calibration is done with the same configuration

as LiveCI or if the configuration used for LiveCI is very different from that used for calibration.

Finally for evaluating accuracy we included Figures 8.4,8.5 and 8.6 which compare

the CPI from LiveCI and full simulation when using the same configuration for calibration and

LiveCI. In this case all of the benchmarks are within the configured confidence interval.
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Figure 8.4: LiveCI results of SPEC benchmarks simulating the LP architecture compared to
no-sampling simulation. The reported CPI results have 3.32% error and CI estimation is 100%
accurate.
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Figure 8.5: LiveCI results of SPEC benchmarks simulating the MP architecture compared to
no-sampling simulation. The reported CPI results have 3.32% error and CI estimation is 100%
accurate.
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Figure 8.6: LiveCI results of SPEC benchmarks simulating the HP architecture compared to
no-sampling simulation. The reported CPI results have 3.33% error and CI estimation is 100%
accurate.

8.3 Warmup

Earlier we described how microarchitectural state warmup is a critical part of sam-

pling. In this section we evaluate the effectiveness of LiveCache as well as the number of

instructions for detailed warmup for other parts of microarchitectural state. All of these exper-

iments were performed using the HP configuration since this has the largest and most complex

microarchitectural structure that will need the most warmup.

To start with we varied the number of warmup instructions per checkpoint with and
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Figure 8.7: Comparison of average AMAT error for LiveCache and traditional cache warmup.

without LiveCache. Figure 8.7 shows the impact of LiveCache and warmup per checkpoint on

AMAT error. When using LiveCache the error is nearly constant at less than 5% regardless

of number of warmup instructions. But without LiveCache each checkpoint requires approxi-

mately 60 million warmup instructions before the AMAT error drops to the level of LiveCache

attained with LiveCache. There is no further drop in the AMAT error because the remaining

error is caused by sampling rather than inaccuracy in warmup. We also measured the overhead

associated with LiveCache per checkpoint and it was less than 0.6 seconds on average. This is a

relatively small overhead compared to the sample execution time, and is less significant because

samples are executed in parallel.

Although LiveCache eliminates the need for cache warmup, there is other microar-

chitectural state that needs to be warmed up. The remaining structure that requires the most
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Figure 8.8: Average error of branch prediction statistics based on amount of detailed warmup
at the start of a checkpoint.

warmup is the branch predictor. Figure 8.8 shows how the error rate decreases as the amount of

warmup increases. It hits a pleteua around 900K instructions, and we found that in practice 1

million instructions was a good value for warmup.

8.4 Checkpoint Characterization

Although the number of samples that LiveSim uses is determined on-the-fly, the max-

imum value is limited by the number of available checkpoints. As a result we need to make

sure to create enough checkpoints for any possible combination of configuration and bench-

mark that might be simulated. There are also two reasons why we want to limit the number of

checkpoints, although we think these problems are more significant in simulator development
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than they would be if LiveSim were used in practice. The first reason to limit the number of

checkpoints is that each checkpoint needs to be run during the calibration phase, and so adding

more checkpoints makes calibration take longer. However, if LiveSim were used in practice

we expect that calibration would be done infrequently relative to how often the user collected

LiveSim and LiveSample results, and longer calibration times would not be a problem. During

the development and evaluation of LiveSim we experimented with many different parameters

and frequently rerun calibration thus we were motivated to limit its execution time. The second

reason is that our current implementation potentially uses a large amount of memory for each

checkpoint, and if LiveSim has to use swap it has a dramatic performance drop. We believe that

this is mostly an implementation issue rather than something that is intrinsic to the LiveSim sys-

tem, and that memory use per checkpoint could be reduced if more time were spent optimizing

this bottleneck.

We provisioned a system with 256 GB of DRAM when we were developing LiveSim,

but one of our DIMMs failed when we were preparing to collect final experimental results,

limiting us to 192 GB of main memory. This limited us to a maximum of 1000 checkpoints that

we could create to guarantee that they were all in main memory. However, this was sufficient to

guarantee a 10% confidence interval, but we would need more checkpoints to guarantee that we

could meet a 5% confidence interval (even though even with a 10% confidence interval target

most of the benchmarks we ran were within 5% CI).

To determine the maximum number of checkpoints that might be needed for various

confidence interval and confidence level targets we ran the simulations without sampling and

collected samples for every possible checkpoint candidate. This gave us a pool of tens of thou-
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Figure 8.9: Maximum number of samples needed for a given confidence interval and confidence
level in LiveSim, estimated using Monte Carlo simulation.

sands of potential samples to pick from. Next we ran a Monte Carlo simulation to randomly

select from the pool of samples. For each benchmark and configuration pair, we calculated the

confidence interval from the set of samples, and saved the maximum confidence interval calcu-

lated for that number of samples. We did this for the three most common confidence levels, and

Figure 8.9 shows a plot of the results. The plot indicates that for our target of 10% confidence

interval at a 95% confidence level we need roughly 500 checkpoints. However, this is simply a

heuristic and we recommend doubling the number shown here when picking how many check-

points to actually use to be safe, because if LiveSim does not have enough checkpoints it may

be unable to meet the confidence interval target for LiveCI results.

We also evaluated how many instructions each sample should contain and the impact

of sample size on simulation error and runtime. In general larger samples tend to improve accu-
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Figure 8.10: The effect of sample size on CPI error. Each box shows the error rate distribution
for SPEC benchmarks and the line shows the average error across benchmarks.

racy, but decrease simulation speed. We determined that there is a sweet spot where increasing

sample size does not improve accuracy but does decrease speed. Furthermore in our implemen-

tation we did not get any speedup for samples that were smaller than 100K instructions because

of communication overhead between the simulation server and the client. We experimented

with sample sizes ranging from 100K instructions to 20 times that amount. Figure 8.10 shows

that the average error does not decrease with larger samples sizes.

Although Figure 8.10 indicates that the minimum sample size is best in terms of

speed and accuracy trade-off, this is not necessarily the case because smaller samples can have

more variation, and more variation across samples increases the number of samples needed for

LiveCI. Figure 8.11 shows the effect of sample size on simulation time (LiveCI). This figure
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Figure 8.11: The effect of sample size on LiveCI time. The line shows the average LiveCI time
across benchmarks and the area is where the actual distribution lies

.

shows that 200K instruction samples have the minimum execution time. Since the error rate is

nearly the same for all samples sizes this is the sample size we used for LiveSim.

8.5 More Insight on Setup and Calibration

In the previous sections we discussed and evaluated LiveSample and LiveCI which

can be quite often used to run many simulations very fast one after each other. However, ini-

tially there are two steps to be taken so that LiveSim becomes ready to use. We would like

to emphasize that these steps are only to be taken once per benchmark and do not need to be

repeated in any situation except the host machine is rebooted.

The first preparation step is setup in which checkpoints get created and LiveCache is
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updated. LiveSim setup in our evaluations was done in average 18 minutes. Setup time is highly

dependent on the benchmark, compute machine and the target simulation length. Once setup

is finished, calibration needs to run once and only once which takes an average of 3 minutes in

which all checkpoints are simulated.

8.6 Using LiveSim

Before we discussed how LiveSim is integrated with LiveOS to enable very efficient

usage. In this section, we would like to depict how LiveSim can be used.

There are a few steps to be taken for installing LiveOS and LiveSim which are fully

documented in their code repositories (will be released on github). Once set up, one can start

running simulations by using the LiveSim app in LiveOS. The app itself allows the following:

• Starting and stopping simulation

• Choosing metric

• Choosing from different plot types

• Filtering benchmarks

• Saving and comparing results

• Changing different LiveSim settings

In order to make changes in the simulated architecture, one can modify ESESC code

or configuration files and the re-run simulation. The files can also be hooked to LiveSim auto-
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Figure 8.12: LiveSim app in the LiveOS environment. One can use the code editor and the
options in the app to run live simulations and receive instant results on web.

run so that simulation results are updated as soon as the file is changes. Compilation and con-

figuration errors will also appear in LiveSim app and the code editor. Figure 8.12 shows this

flow.
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Chapter 9

Related Work

Researchers have been working on ways to speed up simulation for decades and we

surveyed some of the seminal work related to profile based sampling [24, 27] and statistical

sampling [8, 9, 32] for microarchitecture simulation in Section 2. To the best of our knowledge

no one has proposed simulation techniques that are suitable for interactive use (providing results

in 5 seconds or less). LiveSim achieves fast simulation by combining three main techniques:

random sampling of checkpoints, parallel simulation of checkpoints, and fast warmup of check-

point state using LiveCache. There is a variety of related work in these various areas, but none

of them attempt to achieve the goals of LiveSim.

The most closely related work to LiveSim is from Sandberg et al. [25, 26]. Like us,

they use copy on write to fork multiple checkpoints and execute the checkpoints in parallel to

speed up simulation. However, their proposal focuses on accelerating a single simulation run

and only executes at 25% of native execution speed when simulating a system with an 8MB L2

cache. While this is an impressive result, our LiveSim system is able to execute at faster than na-
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tive speed. After the initial setup step, LiveSim is able to provide simulation results in 5 seconds

or less, even though we simulated 10 seconds of native execution. Sandberg et al. essentially

use the SMARTS methodology, while using virtualization and parallel checkpoint execution

to accelerate the function warming (which is the most time consuming part of SMARTS). In

contrast we randomly select checkpoints in LiveSim and are able to report initial results within

5 seconds, and we choose how many total checkpoints to execute based on characteristics of

the benchmark that we are simulating, whereas Sandberg et al. simulate all checkpoints as

SMARTS would. Parallel execution of forked copies of an application has also been used by

others to speed up analysis performed using dynamic binary instrumentation [22, 29].

SMARTS is effective at minimizing the number of instructions that need detailed

simulation; however, its conservative always-on cache and branch predictor warmup makes

warmup the simulation bottleneck (over 99% of simulation time). Many researchers have ob-

served that always-on warmup of caches may be unnecessary and have looked for ways to

accelerate warmup. For LiveSim we developed LiveCache by adapting a technique developed

by Barr et al. [1] which keeps track of the sequence of memory operations during functional

warmup and uses this information to rebuild the cache state before beginning detailed simula-

tion of a sampling unit. We found that LiveCache technique works very well with LiveSim and

helps us meet our goal of getting accurate simulation results in 5 seconds or less. However,

there are a variety of other techniques that have been proposed for accelerating warmup.

Haskins and Skadron [14, 15] demonstrated that continuous cache and branch pre-

dictor warmup was unnecessary, and they proposed ways to determine when to begin warmup

prior to simulating a sample. Eeckhout et al. [11] proposed a similar technique that further
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reduced the amount of warmup required. Luo [21] proposed a method to monitor when a cache

was warmed up and used that information to decide when to switch to full simulation. Recent

work from Nikoleris et al. [23] shows that some workloads may require up-to 100 million in-

structions of cache warmup for caches larger than 64 MB. They propose a technique that uses

native execution to capture a sample of memory accesses and uses this to reduce the amount of

warmup for large caches. All of these techniques are effective for the types of simulation they

evaluate, but they would not help with LiveSim because we still need to execute the application

once during the setup phase, and so LiveCache is easily integrated with LiveSim’s setup phase

as a low overhead and relatively simple way to do cache warmup.

For LiveSim we have focused on developing a simulator that supports interactive use

when evaluating new architecture proposals. Our work focuses on fast performance simulation

for a single thread of execution because this is the baseline for microarchitecture simulation,

and it must work correctly before considering more complex scenarios. Other researchers have

looked for ways to speed up thermal simulation [10, 17], multithreaded simulation [3, 5, 18],

and simulation of soft-errors in caches [28]. As future work we may extend LiveSim to support

these additional simulation modes, but first we want to establish the usefulness of LiveSim using

performance simulation only.

There are also proposals to accelerate simulation by varying the level of simulation

detail depending on the region of code that is being simulated [4,12,13]. While these techniques

work well for accelerating simulation they fall short of our goal of supporting simulation speeds

that are suitable for interactive use.
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Chapter 10

Conclusion and Future Work

We developed LiveSim, a novel simulation methodology that can be used for inter-

active microarchitectural design space exploration. Although analytical modeling can also be

used for early design space exploration, eventually architects typically use simulation based

methods to evaluate the usefulness of proposed ideas. LiveSim makes simulation fast enough

for interactive use and allow an architect to quickly change parameters and get immediate feed-

back the impact on real benchmarks. LiveSim leverages many advances of the past two decades

in applying statistical sampling to microarchitectural simulation. However, previous work on

sampling has simply tried to make simulation faster. LiveSim is the first to demonstrates how

sampling can be used to support interactive microarchitectural simulation.

As future work we hope to accelerate other parts of microarchitecture development

including synthesis and simulator development. But microarchitectural simulation is one of the

slowest parts of design space exploration for computer architects and we think the results in this

paper are significant on their own.
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Our LiveSim prototype demonstrates the feasibility of the LiveSim methodology and

obtains accurate results within 5 seconds and bounds the possible error within 41 seconds on

average for the benchmarks we evaluated. We evaluated the LiveSim methodology using a

prototype we developed, but the concepts are general and can be adopted for use with other

simulators. We also plan to release our implementation of LiveSim as an open source project to

facilitate future research on live programming for microarchitecture development.
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