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Abstract

Precision Measurements of CMB Secondary Anisotropies with the South Pole Telescope

by

Nicholas Huang

Doctor of Philosophy in Physics

University of California, Berkeley

Professor William Holzapfel, Chair

Observations of the sky at millimeter wavelengths are of critical importance to modern
cosmology. Measurements of the primary cosmic microwave background (CMB) anisotropies,
its secondary anisotropies, and foreground objects all contribute to our understanding the
universe. As the oldest light in the universe, the CMB contains imprints from much of cosmic
history. Measurements of these secondary anisotropies provides a window into the evolution
of the universe, including the growth of the largest structures in the universe, and the process
of reionization by early stars and galaxies.

These measurements are only possible with a high-resolution telescope and extremely precise
calibration. This dissertation is primarily concerned with the design and calibration of the
SPT-3G camera on the South Pole Telescope. In particular, the calibration of the raw
detector data, and the measurement of the telescope beams are described in detail. These
pieces are essential for making a precise measurement of the mm-wave sky, and properly
accounting for the effects of the telescope optics. In the last chapter, we show how all of
this comes together to produce a catalog of galaxy clusters discovered through the thermal
Sunyaev Zel’dovich effect. We report 89 candidates, with 81 confirmed by optical and infrared
follow-up observations. 29 are reported for the first time. This provides a mass-limited
catalog of galaxy clusters over 100 square degrees.
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Chapter 1

The Cosmic Microwave Background

Measurements of the cosmic microwave background (CMB) have been a workhorse of
modern cosmology. They have been instrumental in building a simple model of the universe
that explains everything from the abundance of helium in the universe, to the distribution
of dark matter and galaxies. In this dissertation, we will describe our understanding of
the universe, and how the CMB fits into it. From there, we can begin to see how CMB
measurements made (and continue to make) significant contributions to that understanding.
We will also describe measurements of the CMB using the South Pole Telescope, including
the current camera that makes those measurements possible. We will detail how the raw
data are calibrated and transformed into an image of the sky, and finally show one of the
scientific results that comes from these measurements.

1.1 Big Bang Cosmology and the History of the Universe
Figure 1.1 depicts the entire history of our universe. Three major eras are immediately

evident. The first is the very early universe (on the far left), which is extremely hot and
dense, and nearly homogeneous. Then come the dark ages, which ended with the ignition of
the first stars in the “cosmic dawn.” From there, we get the evolution of galaxies and clusters
of galaxies until we get to the highly structured universe we observe today.

In Figure 1.1, the vertical scale indicates the relative size of the universe. We parametrize
this by the scale factor a. The scale factor relates the proper distance1 d to the comoving
distance dc at time t:

d = a(t)dc (1.1)

By definition, the a = 1 today, and a→ 0 at the Big Bang. The rate of the expansion is the
Hubble parameter H:

H(t) ≡ ȧ

a
(1.2)

1Proper distance is the physical distance that can be measured with e.g. a ruler.
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Figure 1.1: A schematic history of the universe. Time increases from the Big Bang at the left
to today at the right. Figure from (WMAP Science Team).

This expansion leads to the famous Hubble diagram, in which distant galaxies all appear to
be receding from the observer, with more distant galaxies receding faster (Hubble, 1929).
Since H(t) > 0 for all t (i.e. a(t) is monotonically increasing), it is common to use a, or the
redshift z, as a proxy for time. The redshift is given by a = (1 + z)−1.

Expansion plays a critical role in the very early universe. Immediately after the Big Bang,
the universe underwent a period of exponential expansion called inflation. The expansion
was superluminal, and enlarged quantum fluctuations of the matter density into macroscopic
density variations that source all of the structure in the universe. After inflation, the universe
was still extremely hot, and filled with a plasma of fundamental particles. These extreme
temperatures exceeded the chemical potential of fundamental particles. Particle-antiparticle
pairs were continuously created and annihilated. However, expansion caused the universe to
adiabatically cool, and the particle densities to decrease. Once the temperature drops below
the chemical potential µi of a particle species i, it can no longer be created in any significant
number.

As the density decreased, particle interactions became less frequent. At some point, the
interaction rate Γi for a particle species dropped below H. This means that a given particle
was not expected to have an interaction in the time it took the universe to double in size.
Once both of these conditions are met (T < µi, and Γi < H), the universe can no longer
create or destroy a significant number of these particles, so their comoving density is fixed.
This is called “freeze out” or decoupling, and we cover the case of photon decoupling in §1.1.2.
The equilibrium density of particles at the time of decoupling is responsible for determining
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their (comoving) density for the rest of history. For the formation of light atomic nuclei, it is
called “Big Bang nucleosynthesis” (BBN), and for the decoupling of photons from matter, it
is called “recombination.” BBN occurs at 3 minutes after the Big Bang (Zyla et al., 2020),
and recombination happens 380,000 years later (Planck Collaboration et al., 2018).

At the end of recombination, the universe consisted primarily of a photon background,
and nearly homogeneous matter. Those photons are still observable at mm wavelengths, and
form the CMB. The matter is mostly dark matter with a small fraction of baryons. The
baryons themselves were primarily neutral hydrogen, with an even smaller fraction of other
light elements. As time passes, the overdense regions of the dark matter gravitationally
attract more matter, becoming even more dense. These eventually form distinct high density
halos, which are the seeds of galaxies and (much later) galaxy clusters. The baryonic matter
is also gathered into these halos. After O(108) years, some of the overdensities of hydrogen
have grown massive enough to begin fusion, and the first stars ignite.

The light from these first stars begins the final phase change of the universe. They emit
ultraviolet photons that are capable of ionizing the surrounding hydrogen gas. Initially, only
small bubbles around the first stars and galaxies are ionized. However, these bubbles slowly
grow to encompass the entire universe, in a process called “reioinization.” Observations of
the Gunn-Peterson trough (Gunn and Peterson, 1965) indicate that reionization is complete
∼1 billion years after the Big Bang (z = 5.5-6) (Becker et al., 2001, 2015; Zhu et al., 2022).

The physics of each of these eras leaves observable tracers. The goal of modern cosmology
is to measure those tracers, and reconstruct the history of the universe with great precision.

1.1.1 ΛCDM

ΛCDM is a 6-parameter model that formalizes our understanding of the Big Bang model
and the history of the universe (the parameters are defined in Table 1.1). It is built on three
major components:

1. Λ, the cosmological constant associated with dark energy

2. Cold dark matter (CDM)

3. Ordinary matter

By modeling these components using general relativity and the Boltzmann equation (see
§1.1.2), ΛCDM successfully incorporates the major observations in cosmology. In particular, it
is able to predict the photon background that decouples during recombination, the accelerating
expansion of the universe, and the large scale distribution of matter into galaxies and galaxy
clusters.

The free and derived parameters shown in Table 1.1 represent only one possible con-
figuration. It is possible to refactor the model to exchange derived parameters for fixed
parameters, or to fit different combinations of parameters. For example, galaxy surveys
are maximally sensitive to S8 = σ8

√
Ωm/0.3. There are also a variety of extensions to the
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Parameter Value Description
ln (1010As) 3.043± 0.014 Amplitude of the primordial density power spectrum

ns 0.9652± 0.0042
Power law index of the primordial density power spec-
trum

Ωbh
2 0.02233± 0.00015 Baryon energy density times the expansion rate.

Ωmh
2 0.1198± 0.0012 Dark matter energy density times the expansion rate.
τ 0.0540± 0.0074 Optical depth to recombination
θ 0.01041± 3.1× 10−5 Sound horizon at recombination

H0 67.37± 0.54 Expansion rate today
σ8 0.8101± 0.0061 Amplitude of the matter power spectrum
ΩΛ 0.6847± 0.0073 Energy density of dark energy
zrec 1089± 0.25 The redshift of recombination

Table 1.1: Parameters of the ΛCDM model. The first six parameters are typically free, while
others (including those below the second horizontal line in this table) are derived. Parameter
values are from Planck Collaboration et al. (2018).

base ΛCDM model, which account for additional physics. Including inflation in the model
(typically) introduces the parameter r, which quantifies the ratio of energy in tensor modes
(gravitational waves) to energy in scalar modes (density perturbations) before recombination.
Other extensions include the sum of the neutrino masses as a free parameter, or allow dark
energy to evolve through its equation of state.

1.1.2 Recombination and the Boltzmann Equation

We now return to the details of particle freeze out, particularly as it applies to photons.
Let’s assume a reaction of the form 1 + 2 ⇌ 3 + 4, where each number labels a particle
type, and ⇌ indicates that the reaction goes in either direction. For example, the reaction
for recombination/reionization is e + p ⇌ H + γ. For any particular particle species, we
can estimate when it freezes out using the Boltzmann equation2, which describes the time
evolution of its number density. The Boltzmann equation for such a reaction is (Dodelson,
2003)

a−3d(n1a
3)

dt
= neq

1 n
eq
2 ⟨σv⟩

(
n3n4

neq
3 n

eq
4

− n1n2

neq
1 n

eq
2

)
(1.3)

2For a derivation in the context of an expanding universe see Dodelson (2003)
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where ⟨σv⟩ is the thermally averaged cross section, ni is the number density of species i, and
neq
i is the equilibrium number density of a species:

neq
i =

{
fi
(
miT
2π

)3/2
exp −mi

T
mi ≫ T

gi
T 3

π2 mi≪ T
(1.4)

where gi is the degeneracy of the species. Γ1 = neq
1 n

eq
2 ⟨σv⟩ is the rate at which the reaction

occurs, and the term in parentheses in equation 1.3 is a measure of how far the current
number densities are from equilibrium. In broad strokes, the Boltzmann equation states that
the number of a given species moves towards equilibrium at a rate that is proportional to the
interaction rate and how far from equilibrium it is. For a species that is still coupled (i.e. Γi
is large), the only way to keep the number density constant is for the terms in parentheses to
cancel. This leads to the Saha equation (Saha, 1920):

n3n4

neq
3 n

eq
4

=
n1n2

neq
1 n

eq
2

(1.5)

Note that the Saha equation only holds when the reaction rate is large. If the reaction rate
becomes negligible, the species can fall out of equilibrium (this is the mathematical definition
of freeze out). We typically consider a species frozen out if the reaction rate falls below the
Hubble rate, i.e.

H ≈ neq
1 n

eq
2 ⟨σv⟩ . (1.6)

Let us now consider the case of recombination, when photons decouple from matter.
Naively, we would expect recombination to occur at a temperature of T = 13.6 eV (∼160, 000
K), which is the ionization energy of a ground state electron in hydrogen. However, any time a
free electron is captured by a proton, and goes directly to the ground state, it releases another
ionizing photon. As long as the reaction rate is large, that photon will immediately ionize
another hydrogen atom, conserving the number of free electrons. To find the temperature at
which photons actually decouple, we start with the Saha equation (equation 1.5).

nenp
nH

=

(
meT

2π

)−3/2

exp

(
Q

T

)
(1.7)

where ne, np and nH are the number densities of electrons, protons and neutral hydrogen,
respectively; me is the electron mass; T is the temperature; and Q = 13.6 eV is the ionization
potential of hydrogen3. The Saha equation is only valid near equilibrium, so this will not
allow us to derive the full time evolution of ne through recombination, but it does allow us to
estimate when most of the free electrons and protons have combined into hydrogen.

Since the universe has no net electrical charge, ne = np. We define the ionization fraction

X ≡ ne
ne + nH

=
ne
nb

=
np
nb

(1.8)

3We are ignoring the contribution from heavier elements (such as helium) since they exist only in negligible
quantities in the early universe.
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where nb is the baryon number density. Substituting this into equation 1.5 gives

1−X

X2
= nb

(
meT

2π

)−3/2

exp

(
Q

T

)
. (1.9)

Finally, we express nb in terms of the number density of photons, nγ: nb ≈ 6 × 10−10nγ
(Dodelson, 2003). The ratio of photons to baryons is derived from Ωb, the energy density of
baryons, one of the ΛCDM parameters (see §1.1.1). From equation 1.4, nγ = 2T 3/π2, so

1−X

X2
≈ 1.2× 10−9T 3

(
meT

2π

)−3/2

exp

(
Q

T

)
(1.10)

= 1.2× 10−9
( me

2πT

)−3/2

exp

(
Q

T

)
(1.11)

When T ≈ Q, the right hand side of equation 1.11 is ∼10−15, and X ≈ 1 (i.e. the universe
is completely ionized). If we define Trec as the temperature at which X = 0.5, we find
Trec ≈ 0.3 eV ≈ 3000K.

After recombination, this leaves us with a population of photons at ∼3000 K. Since they
are decoupled, they will free stream through the universe, with a very low probability of
interacting with anything else. As expansion proceeds, the temperature of the photons drops,
and today they are observable as a 2.726 K background (Fixsen, 2009). This puts their
peak intensity in the mm range (∼150 GHz), so the photon background is called the cosmic
microwave background. Recombination happens over a (cosmologically) short period of time,
so it is often sufficient to approximate recombination as a spherical shell4 (which we call the
surface of last scattering, since it is the last scattering event for the vast majority of CMB
photons).

In this section, we have treated the plasma before recombination as homogeneous. In
practice it has small density variations that were sourced by inflation. The density variations
also lead to temperature variations in the plasma, which slightly vary the temperature of
CMB. So, the CMB is a near-uniform blackbody that gives us an image of the surface of last
scattering. It has very small temperature variations which map onto density variations at the
surface of last scattering.

1.2 CMB Observables
The Wilkinson Microwave Anisotropy Probe (WMAP) made all-sky observations at mm-

wavelengths, and produced a map of the CMB (Figure 1.2a). This shows the very small
4One case where we cannot ignore it is when predicting the small-scale variations in the CMB. On scales

approximately equal to the duration of recombination times the speed of light, the photons are still able to
bring disparate regions into thermal equilibrium. This erases variations at those scales and smaller, in a
process called Silk damping (Silk, 1968).
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(a) The map of the CMB produced by WMAP. (b) The power spectrum of the map in panel a

Figure 1.2: The CMB as measured by WMAP. The all-sky map is shown in panel a, and its
power spectrum is shown in panel b. The y-axis of panel b is ℓ(ℓ+ 1)/2π times the power
spectrum. This factor makes a scale-invariant power spectrum constant.

deviations from the mean blackbody temperature, which reflect very small temperature
differences at the surface of last scattering. The temperature differences are a Gaussian
random field, so we are only concerned with the statistics of the map, rather than the map
itself.

For a Gaussian random field, the most natural5 metric to use is the power spectrum. The
power spectrum measures the level of correlation between two points on the map as a function
of the distance between those points. Due to the curvature of the sky, we write the power
spectrum in terms of the spherical harmonic decomposition of the sky. For a map M(θ, ϕ),

M(θ, ϕ) =
∞∑
ℓ=1

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ) (1.12)

where Yℓm represents the spherical harmonics. Larger ℓ corresponds to smaller angular scales.
The power spectrum is

Cℓ =
〈
aℓma

†
ℓ′m′

〉
(1.13)

where † indicates the complex conjugate. Due to the orthogonality of the spherical harmonics,〈
aℓma

†
ℓ′m′

〉
∝ δℓℓ′δmm′ , so the average is taken over different values of m. The WMAP power

spectrum is shown in Figure 1.2b.
Over a small region, we can approximate the curved sky as a flat plane. In this case,

the power spectrum becomes the regular autocorrelation of the map. Specifically, for a map
5For a Gaussian random field, the power spectrum contains all of the information. All higher order

statistics are zero.
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M(x, y), its power spectrum is

Cℓ =
1

2πℓf 2
sky

∫
ℓ2x+ℓ

2
y=ℓ

2

M̃(ℓx, ℓy)M̃
†(ℓx, ℓy)dℓxdℓy (1.14)

=
1

2πℓf 2
sky

∫
ℓ2x+ℓ

2
y=ℓ

2

∣∣∣M̃(ℓx, ℓy)
∣∣∣2 dℓxdℓy (1.15)

where M̃ is the Fourier transform of M , and (ℓx, ℓy) is the Fourier transform pair of (x, y).
fsky is the fraction of the full sky that our small region covers. Its presence in the power
spectrum compensates for the reduced variance in a small area, assuming the small patch is
statistically identical to the remainder of the sky.

Using the Boltzmann equation and the ΛCDM model, we can make accurate predictions
of the CMB power spectrum (Blas et al., 2011; Lewis et al., 2000). We can turn this around,
and use measurements of the CMB power spectrum to determine the free parameters of the
ΛCDM model (e.g. (Balkenhol et al., 2023; Planck Collaboration et al., 2018; Aiola et al.,
2020)).

1.3 CMB Foregrounds and Secondary Anisotropies
When we observe the sky at mm wavelengths, we do not observe only the CMB, nor do

we observe a pristine copy of the surface of last scattering. Various sources in the foreground
contribute their own mm-wave emission, and a small fraction of CMB photons are perturbed
by matter between us and the surface of last scattering. These are referred to as foregrounds
and and secondary anisotropies, respectively. Figure 1.3 shows the mm-wave sky at three
different resolutions. The CMB completely dominates the large scales (≳ 4′). However, at
small scales, we can see both bright point sources and the thermal Sunyaev-Zel’dovich effect
from galaxy clusters (see §1.3.3).

Figure 1.4 shows a series of power spectra that go to much smaller scales (higher ℓ) than
the WMAP power spectrum. The red dots are the measured power spectra, and the lines all
show different components that contribute to the total. On large angular scales (ℓ ≲ 3000 or
θ ≳ 4′), the CMB dominates the power spectra. However, at smaller scales, foregrounds and
secondary anisotropies are brighter than the CMB.

1.3.1 Foregrounds

The most prominent mm-wave foregrounds fall into one of three categories: thermal
emission from galactic or extragalactic dust, and synchrotron emission from active galactic
nuclei (AGN). The thermal emission from dust mostly comes from star forming regions in our
galaxy, or galaxies undergoing significant star formation. The dust is heated to several tens of
Kelvin, so dusty sources typically have a rising spectrum (intensity increasing with frequency).
The extragalactic dusty sources are also the source of the cosmic infrared background (CIB),
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WMAP
W-band
30 deg2

(a) WMAP

Planck
143 GHz
30 deg2

(b) Planck

SPTpol
150 GHz
30 deg2

(c) SPTPol

Figure 1.3: Three maps of the same region of the sky at ∼150 GHz. They come from
WMAP(panel a), Planck (panel b), and SPTPol (panel c) data with approximate resolutions
of 13, 7, and 1.5 arcminutes, respectively. In panel c, there are several bright point sources
(small white spots) and a few massive galaxy clusters (small black spots) visible. These
foreground objects are only visible with higher spatial resolution. Figure adapted from
(Benson, 2018).
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Figure 1.4: Power spectra (auto and cross) from SPTPol and SPT-SZ maps. These power spec-
tra show the estimated contribution from a variety of foregrounds and secondary anisotropies.
These components of the mm-wave sky only dominate above the CMB on smaller angular
scales (ℓ ≳ 3000 or θ ≲ 4′).

so we often refer to them as CIB sources. The synchrotron emission from AGN has a falling
spectrum. With a sufficiently high resolution observation, the bright individual sources are
detectable (see Figure 1.3c). However, the majority of the sources are dim and blend together
to form an additional background, which is detectable in the power spectrum (e.g. the orange
and green lines if Figure 1.4).

1.3.2 Secondary Anisotropies

Secondary anisotropies are caused by a variety of interactions between CMB photons and
matter. There are two gravitational effects: lensing, the bending of light by gravitational
potentials; and the integrated Sachs-Wolf effect (ISW), which is caused by the time evolution
of gravitational potentials over the time it takes a CMB photon to pass through them.
Gravitational lensing operates perpendicular to the line of sight, and tends to smooth out the
peaks in the CMB power spectrum. The ISW acts along the line of sight, and changes the
temperature of the CMB on very large scales. In this section, we will focus on two different
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Figure 1.5: A schematic representation of several possible lines of sight to the CMB. The
CMB is emitted on the left, and passes through a variety of galaxies. Black galaxies are
mostly neutral, while red galaxies are fully reionized. The change in the color of the line
indicates ∆TkSZ, the temperature shift induced by the kSZ effect. The top line of sight
interacts with a neutral galaxy, and a galaxy with no peculiar velocity (v∥ = 0), so ∆TkSZ = 0.
In the next line of sight, the kSZ effect from two galaxies cancels. In the third, we have added
one additional galaxy that imparts a net kSZ effect. On the final line of sight, all the ionized
galaxies have a bulk motion towards the observer, which makes the largest ∆TkSZ. This is a
very large scale velocity mode.

effects caused by scattering of CMB photons off of free electrons.

The Kinematic Sunyaev-Zel’dovich Effect

In the first, CMB photons scatter off free electrons with a bulk motion relative to the
CMB rest frame. This is known as the kinematic Sunyaev-Zel’dovich effect (kSZ) (Sunyaev
and Zel’dovich, 1972) This typically happens when CMB photons pass through a galaxy. In
the reference frame of that galaxy, the CMB is Doppler shifted, and observed as a dipole.
The observed temperature T ′

obs is

T ′
obs = TCMB(1− v cos θ) (1.16)

where v is the galaxy’s velocity relative to the CMB rest frame (in units where c = 1), and θ
is the angle of the observation relative to the galaxy’s velocity. Since Thomson scattering
is isotropic, the scattered radiation has an average temperature of T ′

scatter = T ′
obs, where the

average is taken over θ. This actually gives the scattered radiation the same temperature as
the rest frame CMB (i.e. T ′

scatter = TCMB). However, this is in the rest frame of the galaxy.
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When we transform back to the CMB rest frame, we find

Tscatter = T ′
scatter(1− v cos θ) (1.17)

= TCMB(1− v cos θ). (1.18)
(1.19)

The fraction of CMB photons that scatter off free electrons in the galaxy is the optical depth
τ ,

τ =

∫
LOS

neσTdl (1.20)

where the integral is over an external observer’s line of sight, and σT is the cross section for
Thomson scattering. Now, we can put this all together to express the magnitude of the kSZ
effect (due to a single galaxy):

∆TkSZ
TCMB

= v cos θτ (1.21)

= σT

∫
LOS

nev∥dl (1.22)

Two things are immediately notable about this equation. First, the kSZ appears as a change
in the CMB temperature, so it is indistinguishable from a true change in the temperature at
the surface of last scattering. Second, v∥ can be either positive or negative. These both have
significant impacts on any attempt to measure the total kSZ from many galaxies.

In order to find the total kSZ effect along a line of sight, we simply integrate the effect
over all free electrons along a line of sight. Several possible lines of sight are shown in Figure
1.5. In equation 1.22, this simply means allowing ne and and v∥ to vary with l (the distance
along the line of sight). In the late time universe (z ≲ 5.5), we can treat the universe as fully
ionized. This is referred to as the homogeneous kSZ, since it is sourced by a homogeneously
ionized universe. In that case ne ∝ 1 + δ, where δ is the matter density contrast. This gives
an integral with two terms:

∆TkSZ
TCMB

∝
∫
LOS

v∥ + δv∥dl (1.23)

If we consider the Fourier transform of v∥, it becomes clear that modes shorter than the line
of sight cancel in the first term. Those modes have approximately equal positive and negative
contributions along the line of sight, and only the extremely slowly varying modes survive.
These are firmly in the linear regime, so v⃗ ∝ k⃗δ(k⃗). The density fluctuations at the scale of
the line of sight (which reaches back to z ≈ 5.5) are negligible, so we can safely ignore the first
term. The second term is the correlation of velocity and density modes. This is referred to as
the Ostriker-Vishniac effect, and has been explored under various approximations (Ostriker
and Vishniac, 1986; Hu and White, 1996; Jaffe and Kamionkowski, 1998). The kSZ effect is
undetectable along a single line of sight, with the exception of very extreme objects (Sayers
et al., 2013; Adam et al., 2017). Therefore, the primary kSZ observable is the power spectrum.
Several possible power spectra for the Ostriker-Vishniac effect are shown in Figure 1.6.
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Figure 1.6: Power spectra for the Ostriker-Vishniac effect and primary CMB under different
reionization scenarios. As the redshift of reionization (zri) increases, the optical depth to the
CMB increases as well. This decreases the amplitude of the primary CMB, and increases
the Ostriker-Vishniac power spectrum. Regardless of the reionization scenario, the Ostriker-
Vishniac effect dominates over the primary fluctuations at ℓ ≳ 3000. Figure from Hu and
White (1996).

During reionization, the situation becomes even more complicated. We can no longer
assume ne ∝ 1 + δ; in principle, we need to know the ionization state along the line of sight.
While this can be handled analytically (Hu and White (1996); Jaffe and Kamionkowski (1998)
both use analytic visibility functions), it has become common to simulate the dynamics
of reionization, and reduce the results to the mm-wave power spectrum (Mesinger et al.,
2012; Trac et al., 2022; Gorce et al., 2020). The simulations can account for the various
processes that drive reionization in more detail than any completely analytic treatment. For
example, Figure 1.7 shows three different reionization scenarios, and their power spectra.
The kSZ effect due to reionization is referred to as the patchy kSZ, after the patchy nature of
reionization.

1.3.3 Thermal Sunyaev-Zel’dovich Effect

The thermal Sunyaev-Zel’dovich effect (tSZ) is due to inverse Compton scattering of CMB
photons off of high-energy elections. Inverse Compton scattering arises from the interaction of
a photon with a relativistic electron. In the rest frame of the electron, the photon is Doppler
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Figure 1.7: Three simulations of reionization. White regions are neutral, and black regions
are fully ionized. z = 0 (today) is on the left, and z = 20 is on the right. The middle history
varies the ionization efficiency of galaxies over cosmic history, leading to longer reionization.
The bottom panel decreases the mean free path of ionizing photons, resulting in both longer
reionization, and smaller bubbles. Figure adapted from Mesinger et al. (2012)

shifted to a different energy

E ′
γ = Eγ

1− v cos θ√
1− v2

(1.24)

where v is the electron velocity, and θ is the angle between the photon’s velocity and the
electron’s velocity in the rest frame of the CMB. If the scattering angle in the electron’s rest
frame is ϕ′, then the photon’s energy after scattering is given by the standard formulation of
Compton scattering:

E ′
γ,f = E ′

γ

(
1 +

E ′
γ

me

(1− cosϕ′)

)−1

(1.25)

Transforming back to the CMB rest frame gives us the final photon energy:

Eγ,f = E ′
γ,f

√
1− v2

1 + v cos θf
(1.26)

where θf ≡ ϕ+ θ is the angle between the photon’s final velocity and the electron’s velocity.
Let’s examine this in the limit where Eγ ≪ me. In that case the Compton scattering in the
electron’s rest frame becomes regular Thomson scattering, and E ′

γ ≈ E ′
γ,f . The change in the
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Figure 1.8: The spectrum of the tSZ f(x) (top panel) and the apparent change in temperature
after passing through a cluster with y = 10−4 (bottom). Below ν ≈ 220 GHz, the apparent
change in temperature is negative. The dashed gray lines show the approximate center of the
SPT-3G observing bands (see Chapter 2).

photon’s energy only comes from the two Doppler shifts at different angles:

Eγ,f ≈ Eγ
1− v cos θ

1 + v cos θf
. (1.27)

So, for θ = π (a head on collision), Eγ,f ≥ Eγ. In other words, the photon can gain energy
from inverse Compton scattering. Averaging over both θ and θf gives

⟨Eγ,f⟩ =
4

3

Eγ
1− v2

(1.28)

Since v ≤ 1, the average inverse Compton scattering event increases the photon energy. In
the low-velocity limit (v2 ≪ 1), ⟨Eγ,f⟩ − Eγ ∝ v2. So, we can view the kSZ and tSZ as first
and second order expansions in v. Usually, we would be less concerned about the v2 term,
however the universe does contain a source of relativistic electrons: galaxy clusters.

Galaxy clusters consist of 102-104 galaxies bound together through mutual gravitational
interactions. The space between them (the intracluster medium, or ICM) is filled with a
diffuse but extremely hot plasma at T = 106-108 K. This gives the electrons typical velocities
of O(0.01)c, so these are well into the regime of inverse Compton scattering we have derived.
Galaxy clusters are heated by gravitational infall; that is, the gravitational potential their
constituents initially have is converted into heat as those constituents fall towards the center
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of mass and virialize. In fact, the temperature of the ICM scales with the total mass of a
galaxy cluster (Kaiser, 1986; Navarro et al., 1995):

T ∝M2/3(1 + z). (1.29)

The redshift scaling simply accounts for the fact that the mean density scales as a−3, so an
otherwise identical galaxy cluster is denser and hotter earlier in the universe.

In order to calculate the magnitude of the tSZ from a cluster, we must average over the
electron velocities and directions. This was originally derived in Sunyaev and Zel’dovich
(1970, 1972), and has been reviewed by Rephaeli (1995); Birkinshaw (1999); Sunyaev and
Zel’dovich (1980). We skip straight to the result:

∆TtSZ
TCMB

= f(x)

∫
neσT

Te
me

dl (1.30)

where x ≡ ν
TCMB

is the dimensionless frequency, and the f(x) contains all the frequency
dependence:

f(x) =

(
x
ex + 1

ex − 1
− 4

)
(1 + δrc) (1.31)

where δrc is a relativistic correction applicable to the most massive clusters, where Te ≳ 5×107

K (Nozawa et al., 2000). The integral in equation 1.30 is the Comptonization, or Compton
y parameter. y depends on sky position through either variations in ne and Te within the
galaxy cluster, or simply because its depth along the line of sight changes. Y ≡

∫
ydΩ is the

integrated Comptonization over an entire galaxy cluster. Y is proportional to
∫
TenedΩ, and

hence the integrated electron pressure in a galaxy cluster, which is, in turn, proportional to
the total thermal energy in the cluster. Given that T ∝M2/3,

Y ∝M5/3(1 + z). (1.32)

f(x) is a relatively complicated function, but we know that inverse Compton scattering
imparts energy to the CMB photons, so we can sketch out what it should look like. At
frequencies above the peak, there are more photons at lower energies. When the photons
are shifted to higher energies, the intensity at each frequency is increased (compared to the
original blackbody spectrum). At frequencies below the peak of the CMB blackbody, the
situation is reversed: there are fewer photons at lower energy. Therefore, the intensity is lower
after passing through a galaxy cluster. The full calculation of equation 1.31 is shown in Figure
1.8. As expected f(x) < 0 at low frequencies, with a null at ν ≈ 220 GHz. This is quite an
important fact: no other effect increases the intensity of the CMB at some frequencies, and
decreases it at others. By combining maps at different frequencies, we can find clusters of
galaxies using mm-wave data. Since the tSZ is a spectral distortion, it does not suffer from
cosmological dimming. That is to say, ∆TtSZ has no (explicit) dependence on redshift, so two
clusters with the same y will have the same tSZ signal, whether they are at z = 0 or z = 2.
See Chapter 5 for an example of a catalog of galaxy clusters generated from mm-wave maps.
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Constraints on Cosmology from Galaxy Clusters

However, this begs the question, what use is a catalog of galaxy clusters? This has been
covered in multiple reviews (e.g. Carlstrom et al. (2002); Allen et al. (2011)), so we will
merely summarize the cosmological utility of galaxy clusters. Galaxy clusters are the most
massive gravitationally bound objects in the universe. Therefore, they are highly sensitive to
anything that affects the growth of structure on cosmological time scales. Under the Big Bang
model, large scale structure is initially sourced by the expansion of quantum fluctuations
in the density that are expanded to macroscopic size by inflation. These fluctuations grow
over time: the overdensities become more dense as they pull in surrounding matter. Each
of these overdensities can be described as a “halo” of matter, with a mass and size. The
population of halos can be summarized by the halo mass function dN

dMdZ
. The halo mass

function predicts the number of halos in the mass range (M,M + dm) and the redshift range
(z, z + dz). Clusters form in the most massive of these halos. The halo mass function is a
function of a wide variety of effects, including:

Initial conditions The distribution of the density perturbations from inflation is the starting
point for the formation of the halos. The halo mass function depends on the primordial
density fluctuations particularly through ns, the spectral index of the primordial density
power spectrum.

Astrophysical processes The baryonic physics occurring in the halos can effect their
growth by either injecting heat (through shocks, AGN feedback, star formation, etc.),
or remove it (via radiative cooling). This changes the pressure of the baryons, and
therefore how the halos grow.

Massive neutrinos When they freeze out of the early universe, neutrinos are initially
relativistic. Under these conditions, they cannot be gravitationally captured by the
halos, and suppress their growth. However, as they cool, they act like a dark matter
component, and enhance the growth of halos.

Galaxy clusters form in the most massive halos, so a catalog of galaxy clusters (with their
masses and redshifts) is a measure of the high-mass end of the halo mass function. Therefore,
we can use galaxy clusters to help constrain the physics of the growth of structure in the
universe.

The constraining power of galaxy clusters is predicated on our ability to measure their
mass. The scalings presented here are a significant oversimplification. There are several
important assumptions built into Y ∝M5/3(1 + z). First, this assumes that the temperature
of the ICM is entirely determined by gravitational infall. If astrophysical processes (e.g. AGN
feedback, shocks from mergers, etc.) contribute to the ICM temperature, this relationship
breaks down. Second, this assumes the only evolution of galaxy clusters with cosmological
time is to track the density (through ρ ∝ a−3). To measure cluster mass from the tSZ, we
typically assume a scaling relation of the form

TtSZ ∝MBSZE(z)CSZ (1.33)
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where E(z) encodes the expansion history of the universe, and BSZ and CSZ are free
parameters that determine the scaling between TtSZ and halo mass. There is a significant
body of literature devoted to calibrating these scaling relations and extracting cosmological
information from cluster catalogs. Various works use simulations (e.g. (da Silva et al., 2004)),
gravitational lensing (e.g. (Mantz et al., 2016; Bocquet et al., 2023)), and X-ray observations
(e.g. (Benson et al., 2013)).

We can only detect the most massive galaxy clusters through the SZ effect. In fact, such
samples are usually mass-limited, since ∆TSZ ∝ MBSZ . However, the tSZ signal from all
clusters (and any other source of relativistic electrons) is in the maps of the mm-wave sky. We
can extract information about these lower-mass halos from the properties of the maps, even
if they aren’t individually detectable. We can construct a map of the Comptonization (Bleem
et al., 2022; Coulton et al., 2024) by combining maps at different frequencies. The same signal
can also be extracted from auto- and cross-spectra between maps at different frequencies
(Reichardt et al., 2021). Finally, the tSZ injects a significant non-Gaussian component into
the maps, which can be measured with higher order statistics (Crawford et al., 2014; Wilson
et al., 2012). Measurements of the mm-wave sky give us a window into all of this physics and
more.

1.4 Conclusion
The CMB is a powerful probe of cosmology. It provides constraints on the ΛCDM model

through the power spectrum. CMB photons have also passed through all of cosmic history
since recombination. Even though interactions with matter are rare, we can detect the
small changes imprinted on the CMB by intervening matter. However, this requires a highly
sensitive camera. The rest of this work describes the South Pole Telescope and the SPT-3G
camera, which are used to observe the sky at mm wavelengths. In Chapter 2 we describe
the South Pole Telescope and SPT-3G camera. Chapter 3 explains how we calibrate the raw
data and turn it into maps of the sky. Chapter 4 presents the measurement of the SPT-3G
angular response function (or beam), which is a critical component for understanding the
maps. Finally, we present a catalog of galaxy clusters discovered using the SPTPol camera
(the predecessor to SPT-3G).
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Chapter 2

The South Pole Telescope and SPT-3G
Camera

The South Pole Telescope (SPT) is a 10-m off-axis Gregorian telescope located at the
Amundsen-Scott South Pole Station (Carlstrom et al., 2011). Since its construction in 2006,
the SPT has been home to three mm-wave cameras: SPT-SZ (Chang et al., 2009), SPTPol
(Austermann et al., 2012), and, SPT-3G. With a 10-m primary mirror, these cameras have
achieved arcminute-scale resolution at 80-280 GHz. The high resolution of the SPT provides
access to the small-scale secondary anisotropies and foregrounds that would otherwise be lost
to a lower resolution instrument. This chapter describes the SPT-3G camera at a high level.
For a more detailed description, see Sobrin et al. (2022) (S22, hereafter).

2.1 SPT-3G Camera Overview

2.1.1 Optics

The SPT has three aluminum mirrors at ambient temperature, as seen in Figure 2.1a.
The first optical element is the 10-m diameter primary mirror (shown in light blue). This
reflects light into the comoving receiver cabin, which is a heated space that contains the
remainder of the optics, the SPT-3G camera, and all the associated electronics. The 1.7-m
secondary mirror redirects incident light to a flat tertiary mirror, which sends the light into
the camera. The tertiary mirror is only necessary because of space constraints in the receiver
cabin.

Figure 2.1b shows a cross section of the camera. The colored lines show rays incident on
three different detectors as they pass through the vacuum window, two infrared (IR) filters,
the three alumina lenses (beige), the Lyot stop, and the lenslet array directly on top of the
detectors. The entire camera is maintained at cryogenic temperatures. This is necessary
for the operation of the detectors, and to cool the lenses (which significantly decreases their
absorption of mm-wave radiation (Nadolski et al., 2020)).
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Figure 2.1: A cross section of the SPT and the SPT-3G camera. Panel a shows the optical
path of light coming from the right, and incident on the primary mirror, which is then
reflected to the secondary and tertiary mirrors before entering the camera on the bottom
right. Panel b shows a detailed view of the camera itself, with 3 alumina cold lenses, the
Lyot stop, and the detectors. Both figures are from S22.

2.1.2 Detectors

SPT-3G contains ∼16000 polarization sensitive detectors across three bands, which are
centered at 951, 150, and 220 GHz (see Figure 2.2). The detectors are coupled to the sky
through broadband sinuous antennae (O’Brient et al., 2010; Suzuki et al., 2014). The sinuous
antenna couples mm-wave radiation from the sky (in orthogonal polarizations) onto microstrip
transmission lines which carry the signal to a set of three band-defining filters. Each filter
allows the frequencies for the relevant band to to pass through to a single detector. This
yields six detectors per pixel (3 bands in two polarizations). The bandpasses are designed
to avoid emission/absorption lines from water vapor and oxygen in the atmosphere (seen in

1The lowest observing band is centered ∼95 GHz. However, we refer to it as “90 GHz” throughout this
work.
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Figure 2.2: The bandpass functions for the three SPT-3G observing bands. The colored lines
show the bandpass of each wafer, while the black dashed line shows the average. The gray
region shows the typical atmospheric transmission at the South Pole. Figure from S22.

gray in Figure 2.2).
The detectors themselves are transition edge sensors (TESes), a form of bolometer (see

Figure 2.3). In general, a bolometer consists of an absorber (the light green rectangle)
connected to a thermal bath with a weak thermal link. When the radiation incident on the
absorber increases, its temperature increases. In the SPT-3G camera, the sinuous antenna
converts incident radiation to a current, which is then thermalized on the absorber through a
resistor. The TES is effectively a highly sensitive thermistor, which allows us to measure the
temperature of the absorber (and therefore the power coming from the sky). Each TES is
made of a superconducting material. The transition from normal metal to superconductor
occurs over a very small range in temperature, so a small change in temperature results in a
large change in resistance (see Figure 2.4). We apply a voltage bias across the TES, which,
when combined with the optical power, heats the absorber enough to keep the TES in the
transition between normal metal and superconductor.

When operated under a voltage bias, the TES has a natural negative feedback loop
that tends to keep it near the same temperature (Benson, 2022). The electrical power is
Pelec = V 2/R(T ), where R(T ) is the resistance of the TES at temperature T . The change in
electrical power with TES temperature is then

dPelec

dT
= V 2 d

dT
R(T )−1 (2.1)

=
−V 2

R(T )

dR

dT
. (2.2)

For a superconductor dR
dT
> 0 in its transition, so dPelec

dT
< 0. In other words, as the temperature

increases (due to an increase in the power coming from the sky), the electrical power dissipated
in the TES decreases. This works to limit the change in total power on the absorber. We call
this effect “electro-thermal feedback”. Its strength is given by the “loop gain” L = −dPelec

dP
,
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Figure 2.3: A schematic representation of a bolometer. In the SPT-3G camera, the absorber
is a resistor that thermalizes the current from the sinuous antenna, and the thermistor is a
TES. Figure from (Benson, 2022).

Figure 2.4: The resistance as a function of temperature of a typical TES. The transition from
normal metal to superconductor is very steep, and nonlinear. Figure from (Benson, 2022).
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where P is the total power (electrical and optical) on the absorber. We can express P in
terms of G, the thermal conductivity of the link connecting the absorber to the thermal bath,
and the temperature differential across that link:

P = G(T − Tbath). (2.3)

Since the thermal bath is assumed to be at a constant temperature, we can calculate the
loop gain

L = −dPelec

dP
(2.4)

=
Pelec

RG

dR

dT
(2.5)

=
Pelecα

GT
(2.6)

where
α ≡ T

R

dR

dT
. (2.7)

Note that dR
dT

(and therefore L) depends on T , since the transition is nonlinear (see Figure
2.4).

We can now calculate the TES sensitivity SP = dPelec

dPopt
, where Popt is the power from the

sky2. We want this in terms of loop gain, so we transform variables to R and T .

dPelec =
−Pelec

R
dR (2.8)

and

Popt = G(T − Tbath)− Pelec (2.9)

dPopt = GdT +
Pelec

R
dR. (2.10)

So,

SP =
−Pelec

R
dR

GdT + Pelec

R
dR

(2.11)

=
−Pelec

R
dR
dT

G+ Pelec

R
dR
dT

(2.12)

=
−L
1 + L

. (2.13)

2TES sensitivity is usually defined in terms of the current S ≡ dI
dPopt

. We use SP (in terms of the electrical
power) here, because our TESes are biased with a constant voltage, and our calibration pipeline (discussed in
Chapter 3) is also based on Pelec. In the case of a constant bias voltage Vbias, S = SPVbias.
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In the limit of high loop gain (L ≫ 1), SP = −1, and the electrical power exactly trades off
with optical power, keeping the total power on the absorber constant. Hence, the TES is
held at the same temperature.

However, the achieved loop gain of the SPT-3G detectors is ∼5− 10, and SP > −1. So,
as Popt varies, Pelec changes by a smaller amount, and the total power varies. This, in turn,
varies the temperature of the TES. As long as the temperature stays in a region where dR

dT

is approximately constant, the sensitivity (and hence calibration) remains approximately
constant. However, if Popt varies enough, the overall calibration of the detector changes. The
required change in Popt to make a significant change in SP is much larger than the variations
in the CMB. But, the atmospheric load does vary enough with observing elevation to make
this non-linearity a significant effect. We deal with this by re-calibrating the detectors at
different elevations, and limiting the elevation range of a single observation (see Chapter
3, and §2.3). Extremely bright astrophysical sources can also cause non-linearity (or even
saturation, when the TES temperature rises so much that it leaves the superconducting
transition entirely).

2.1.3 Cryogenic Design

Maintaining the operating temperatures required by the detectors demands a significant
cryogenic system. The detectors must be held under vacuum, and shielded from blackbody
radiation at higher temperatures. This is accomplished with a multi-stage cooling system.
The first stage is the vacuum shell (shown in gray in Figure 2.1b). It sits at room temperature,
and is only responsible for maintaining a vacuum around the cooled portions of the camera.
While most of it is made of aluminum, the vacuum window (at the top of Figure 2.1b) is
made out of high density polyethylene (HDPE) to allow light to reach the detectors. The
vacuum window is discussed in detail in §2.2. The next two cooling stages are at ∼30 K and
∼4 K (shown in brown and turquoise, respectively). The cooling for these stages is provided
by two PT415 pulse tube coolers (PTCs). These are closed-cycle helium coolers, and provide
∼30 W and ∼1 W of cooling power, respectively. The warmer stage is only used to block
radiative power from the ∼300 K vacuum shell. The 4 K stage both provides the baseline
cooling for the detectors, and cools the lenses.

Focal Plane

The detectors are mounted on a four-stage focal plane, shown in Figure 2.5. Starting with
the “ultra cold” (UC) stage, each stage is progressively hotter, and has more cooling power.
The UC stage operates at 315 mK, with only a few µW of cooling power; the “intercold” (IC)
stage operates at 500 mK, and provides ∼30 µW of cooling power; the “buffer cooler” (1K)
stage is at 1 K, and can provide ∼100 µW of cooling power; the final stage on the focal plane
is the 4 K stage, and is connected to the PTC. The stages are mechanically separated by a
carbon fiber truss structure. Carbon fiber provides both high mechanical strength (the UC
stage weighs 22 kg), and low thermal conductivity (Runyan and Jones, 2008).
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Figure 2.5: The SPT-3G focal plane. The detectors are housed in the hexagonal structures in
the center. The four temperature stages are visible (4 K, 1 K, IC, and UC). Figure from S22.

The three coldest stages (UC, IC and 1K) are cooled by a helium-filled sorption refrigerator
from Chase Research Cryogenics (Bhatia et al., 2000). This refrigerator operates by vacuum
pumping (using an activated charcoal adsorber) on a bath of liquid helium (the IC and UC
stages use He3, while the 1K stage uses regular He4). Once the helium has completely boiled
off, the refrigerator is no longer able to maintain its temperature. We recover the helium
by heating the adsorbers. The He4 in the 1K stage is condensed using the cooling power
from the 4 K stage. We then being pumping on the He4 to condense the He3, which has a
boiling point below 4 K. We refer to this process (which takes about 4 hours) as “cycling” or
“recycling” the refrigerator. The rate at which the helium boils depends on the heat load on
each stage, so decreasing the heat load leads to longer times between cycles. The total load
on the UC stage is 4.0 µW, which allows us ∼16 hours between cycles.

2.1.4 Readout

To minimize the thermal load on the focal plane from wiring, we use a 68× frequency-
multiplexed biasing and readout scheme (Bender et al., 2014, 2016). Under this scheme, each
detector is biased with an AC voltage at a different frequency. The detectors are connected
in series with a LC filter, that selects only one of the AC voltages. This all occurs on the
UC stage, so we are able to reduce the number of conductors between temperature stages by
68×. Without a multiplexing system, each detector would require one pair of wires, which
would conduct heat between all the different temperature stages.

Pelec is typically O(1) pW, and the TES resistances are O(1) Ohm, so the typical current
in the detectors is O(1) µA. To measure such a small current, we first amplify it with a
SQUID series array (Irwin and Huber, 2001). The SQUIDs are mounted at the 4 K stage
of the camera. The amplified current from the SQUIDs is digitized at room temperature
with dedicated single-board computers. The digitized signals from each board are sent over a
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Figure 2.6: A schematic of the vacuum window and IR filtering portions of the camera.

network to the control computer, which merges the data from all the boards, and writes it
to disk. Once an observation is complete, the data from the detectors is merged with the
remaining metadata (telescope position, cryogenic temperatures, etc.). This data is both
stored locally at the South Pole, and transferred back to North America using a satellite
internet link. There is a 24-48 hour delay between initially recording the raw detector data
and receiving the full observation in North America.

2.2 Vacuum Window and IR Filtering
The vacuum window and IR filtering are at the nexus of the cryogenic, mechanical,

and optical design of the camera. The vacuum window must maintain the integrity of the
vacuum shell, and allow mm-wave photons to pass through. The IR filter stack prevents room
temperature radiation from heating the colder stages. Without filtering the IR radiation,
we would not have enough cooling power to keep the detectors in their operating range. A
schematic of this portion of the camera is shown in Figure 2.6. The vacuum window is shown
in its approximate deformed shape at the top. The IR filtering occurs in two steps. The first
is through a series of thin Zotefoam sheets; the second is via a thick alumina plate, which is
connected to the first cold stage.

2.2.1 Vacuum Window

The vacuum window has two primary design constraints. It must have a 680 mm clear
aperture to allow the detectors a clear view out to the mirrors. This requires that the window
support a load of ∼8000 pounds of atmospheric pressure. It must also allow as much mm-wave
radiation to pass through as possible. There was not a formal specification, but we aimed to
allow ≳ 90% transmission. This target ensures that the vacuum window contributes a small
fraction of the total loss in the optical path (see Table 2 in S22 for a full accounting of the
losses in the optical path). These constraints make HDPE a natural choice: it is mechanically
strong, and has low absorption at mm wavelengths (Lamb, 1996).
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Figure 2.7: One antireflection surface cut into a HDPE test piece.

(a) The theoretical transmission spectra for one
antireflection surface

(b) The measured transmission spectrum
through both surfaces of a 30 mm thick win-
dow.

Figure 2.8: The theoretical transmission for one grooved antireflection surface (panel b),
and the measured transmission through two surfaces, and 30 mm of HDPE (panel b). Note
that the theoretical transmission spectra indicate different transmission depending on the
polarization state of the incoming radiation. The grooves on the top and bottom surfaces of
our vacuum window are orthogonal, so this differential transmission cancels after passing
through both surfaces. The measured spectra were taken at four different locations on the
window. The dashed lines in panel a show the centers of the SPT-3G bands.
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This leaves us with the problem of reflections at either surface, due to the sudden change
in index of refraction. A common solution to this problem is the use of a “metamaterial”
antireflection coating. These are features at scales smaller than the minimum observed
wavelength that are either added or machined into the the surface of the optical element.
Since they are smaller than the wavelength, incoming radiation “sees” only the mean density
of the material. If the fill factor of the material is smoothly varied along the optical path,
the incoming radiation experiences a smooth transition of the index of refraction. Typically,
this manifests as a triangular, conical, or pyramidal shape, depending on the material, and
the geometry of the optical element. Metamaterial anti-reflection coatings or layers have seen
use in many mm-wave cameras (e.g. Datta et al. (2013); Matsumura et al. (2016); Takaku
et al. (2020); Golec et al. (2020, 2022); Beckman (2023)).

We experimented with several ways of machining a metamaterial antireflection layer into
a HDPE sheet. Any method involving a traditional spinning cutting tool (e.g. an end mill)
resulted in poor definition of the features, and truncated the points of both triangular grooves
and pyramids. Eventually, we developed a method for cutting linear triangular grooves with
the UC Berkeley Physics Department machine shop. Gordon Long proposed and built a
non-spinning cutter made from tool steel. The cutter matches the profile of the desired
groove, and is sharpened on the edges so that it acts like a knife when pulled through the
HDPE. To cut many parallel grooves, we mounted the HDPE in a CNC machine, and put the
cutting tool in the spindle. We then use the CNC machine to pull the cutting tool through
the surface of the HDPE, then step over to the next groove, and repeat this process over
the entire vacuum window surface. This takes ∼12− 15 hours per side. Figure 2.7 shows a
picture of a test piece with grooves cut into it.

Raguin and Morris (1993) provides a framework for calculating the transmission of a
repeated groove. They provide analytic equations that drive the period and height of our
grooves. The period is chosen eliminate diffraction spikes at the highest observed frequency
(∼280 GHz); the height is chosen to have low reflectance all the way to the minimum observed
frequency (∼60 GHz). Intuitively, the constraint on the period ensures that we are in the limit
that the features are smaller than the minimum observed wavelength, while the constraint
on the height ensures that the transition from one index to the other is longer than one
wavelength. Using the results in Raguin and Morris (1993), we calculate the transmission
spectra for one surface shown in Figure 2.8a, which far exceeds our 90% goal. We negate any
birefringence or polarization-dependent transmission by cutting the grooves orthogonally on
each side (Schroder et al., 2016). We measured the transmission spectrum of the window
with a Fourier transform spectrometer, and found that transmission was ≳ 95% across all
three bands. The measured transmission spectrum is shown in Figure 2.8b

The vacuum window is made from a 30 mm (not including the AR grooves) thick sheet of
annealed HDPE. The annealing process relieves internal stresses, and results in a stronger
sheet at a given thickness. We installed the window in a test fixture and held it under vacuum
for several weeks to ensure it, and the supporting structures, were strong enough to withstand
the atmospheric pressure load. Over the first three days, the window deformed by 30 mm.
After that, there was no measurable increase in deformation. Because of the difference in
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Figure 2.9: A schematic representation of our model for the multi-layer IR filter.

atmospheric pressure between Berkeley and the South Pole, this test exceeds the required
strength of the window by ∼30%.

2.2.2 IR Filtering

As discussed above, the PTC coolers provide ∼30 W of cooling power on the warmest
stage, and only 1 W on the 4 K stage. Assuming the window is, or looks out onto, a 273 K
blackbody (which is a good approximation above a few hundred GHz), the total radiative
power coming through the window is > 100 W. Therefore, we need to block a significant
amount of that radiation before it hits the first cold stage. We implemented a very simple filter
using 8 thin layers of expanded HDPE foam (specifically, HD30 from Zotefoam). HD30 has a
long history in mm-wave observations. It has been used as a vacuum window in the ACBAR,
APEX-SZ, SPT-SZ, SPTPol, the BICEP family of telescopes, and POLARBEAR family of
telescopes (Runyan et al., 2003; Schwan et al., 2011; Carlstrom et al., 2011; Austermann
et al., 2012; Keating et al., 2003; Nguyen et al., 2008; Tomaru et al., 2012; Suzuki et al.,
2016).

This type of multi-layer IR filter was initially investigated by Choi et al. (2013) for radio
telescopes. A similar filter was implemented in the POLARBEAR-2 experiment in 2015,
using polystyrene foam (Inoue et al., 2016). The POLARBEAR-2 implementation has the
multi-layer insulation mounted on the first cold stage. The version described in this work
(using HD30, and mounted to the vacuum shell) and was simultaneously implemented by
BICEP3 (Kang et al., 2018) and SPT-3G in 2017.
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(a) Transmission spectra of several Zotefoam products in the far
IR range

(b) Transmission spectra of several Zotefoam products in the
mid-IR range

Figure 2.10: The transmission spectra of several different polyethylene foams at two thicknesses
in the far (panel a), and mid-IR (panel b). HD foams are made of high density polyethylene,
while LD foams are made of low density polyethylene. The numbers after the dash indicate
the mean density of the foam, in kg / m3, and the final number indicates the thickness of the
foam layer, in inches. Measurements and plots by Ki Won Yoon (Yoon, 2016).
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HD30 is approximately transparent at mm wavelengths, but opaque in the IR range. This
is a function of the cell size and density of the foam. HD30 has a density of 30 kg/m3, whereas
solid HDPE is ∼1000 kg/m3. The cells (empty spaces between solid HDPE) are ∼0.4 mm in
HD30. Therefore, at mm wavelengths, the radiation sees only the mean density of HDPE,
which is extremely small. However, at wavelengths smaller than the cell size, the radiation
sees the edge of each cell as a rapid change in the index of refraction. Therefore, it reflects
off of each cell, and has many scatterings inside the foam. This brings the radiation into
equilibrium with the foam temperature, which makes the foam an IR absorber. Transmission
spectra for several different polyethylene foams are shown in Figure 2.10. ∼98% of the power
from a 300 K blackbody is at frequencies greater than 5 THz, so any of these foams would
block the majority of the radiative power coming through the window.

Modeling this multi-layer insulation is relatively easy. We assume each layer is a perfect
absorber, and that it is very thin (so that the surface area is dominated by the top and
bottom surfaces). We define Pi as the power emitted by one surface of the ith layer (so that
the total power emitted by the ith layer is 2Pi). The incident power from the vacuum window
is P0, and the final power emitted by the last layer of stack of n layers is Pn. This is shown
graphically in Figure 2.9. If the layers are all in equilibrium, then the total power each layer
emits is equal to the power it absorbs from the layer above it and below it:

2Pi = Pi−1 + Pi+1. (2.14)

This is a recurrence relation with characteristic equation

x2 − 2x+ 1 = 0. (2.15)

So, the solution is of the form
Pi = α + βi. (2.16)

In order to solve this, we make one final assumption: we assume that Pn+1 = 0. In other
words, the power emitted by the alumina backing plate onto the final layer in the stack is
negligible. Since the alumina backing plate is actively cooled, and sits at ∼40 K, this should
be a good assumption. Under this assumption, α = −β(n+ 1). This allows us to find the
fraction of the incident power (P0) that passes through the filter stack:

Pn
P0

=
α + βn

α
(2.17)

=
−β(n+ 1) + βn

−β(n+ 1)
(2.18)

=
1

n+ 1
. (2.19)

Assuming the incident power through the window comes from a 273 K blackbody, P0 =
AσT 4 ≈ 115 W, where A is the window area, σ is the Stefan-Boltzmann constant, and T
is the ambient temperature outside the camera. We estimate that the total power on the
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alumina backing plate is P8 = 8.8 W. This gives P8/P0 ≈ 0.077, which is slightly better than
our expectation of 0.11. The total load on the PTC is 33.4 W, with the window loading
second to radiative load from the rest of the vacuum shell (at 18.1 W). These loads are
estimated from load curves measured in the laboratory at each stage.

We can now quantitatively evaluate the assumption that P9 ≪ P8 (the power emitted by
the alumina backing plate is much smaller than the power emitted by the final Zotefoam filter).
The window backing plate is 720 mm in diameter and approximately 40 K, so P9 ≈ 0.06 W,
which is much less than the 8 W emitted by the final Zotefoam layer.

The alumina backing plate operates in a similar mode: it is highly transmissive to mm-
wave radiation, but effectively opaque to IR. However, it is actively cooled, so there is no
need to add multiple layers (as long as the first cooling stage can absorb the power coming
from the Zotefoam filter stack). This also assumes that the thermal conductivity of the
alumina filter is sufficient to remove the heat from the center of the filter without allowing
its temperature to rise. To ensure this, we use a 7.5 mm thick alumina plate. Alumina is
extremely difficult to machine, so instead of cutting grooves into the backing plate, we add
layers of PTFE-based dielectrics to smoothly transition the index of refraction (Nadolski
et al., 2020).

With these filters in place, we estimate the load on the first lens (at ∼4 K) is approximately
60 mW (of 800 mW total on the entire 4K stage). The radiative load from the lenses onto
the UC stage is 0.16 µW (compared to a total of 4.0 µW). The radiative load on the 1K and
IC stages is negligible, since their area is very small.

2.3 Scan Strategy
The SPT operates in a continuous scanning mode (as opposed to a “stop-and-stare” mode).

Observations are a sequence of scan pairs. In each scan, the telescope moves across the sky at
a constant speed in azimuth, while maintaining a constant elevation. Since the SPT is at the
geographic South Pole, elevation (in ground coordinates) is almost exactly the opposite of
declination (in sky coordinates), so the scans are at nearly constant declination. Each pair of
scans is a right-going (increasing in azimuth) and a left-going scan3. After the left-going scan,
we increase the elevation by a small amount (0.′5 - 15.′0). Over the course of an observation
(typically ≲ 2 hours), the telescope tracks the rotation of the sky, so that the scans all cover
the same range in Right Ascension (R.A.). We only use the portion of the scan where the
telescope is moving at a constant velocity in azimuth, and is fixed in elevation. We discard
the small sections where the telescope is accelerating (either to turn around, or stepping in
elevation).

We primarily observe a ∼1500 deg2 region of the sky given by 20h40m < R.A. < 3h20m
and −41 > decl. > −71. We observe this field in 4 subfields, each of which spans the full R.A.

3Left-going is decreasing in azimuth. Due to the inversion of the local coordinates relative to sky
coordinates, left-going scans increase in azimuth. Therefore, left-going scans go from left-to-right in standard
map projections.
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range, but only 7.5 deg in declination. With the limited declination range, the atmospheric
loading does not vary enough between the top and the bottom of the field to cause significant
non-linearity in the detectors. The subfields are named by the positions of their centers, so
we have ra0hdec-44.75, ra0hdec-52.25, ra0hdec-59.75, and ra0hdec-67.25.

2.4 Conclusion
The SPT-3G camera consists of ∼16000 polarization sensitive detectors in 3 wide bands,

configured around the peak of the CMB blackbody and the maximum transmission of the
atmosphere. It is currently in its seventh season of observations, with the a primary science
field of 1500 deg2. The telescope optics provide arcminute-scale resolution, which allows
us to observe the The detectors are TESes, which are read out with a frequency-domain
multiplexing system. The raw data consists of the current running through the detectors, as
well as the direction the telescope is pointing. We now need to calibrate the data into units
referenced to the CMB blackbody, and convert the 1d time-ordered data into a 2d map of
the sky. This is the subject of the next chapter.
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Chapter 3

Calibration and Mapmaking

In order to extract cosmological information from our data, we must convert it into an
image of the sky (a “map”). To do so, we first need to calibrate the raw detector time ordered
data (TOD). We reference each detector to a source on the sky of known brightness, to
measure the detector’s instantaneous sensitivity. From there, we use an internal calibration
source to track any changes in the detector’s sensitivity. Along with the detector TOD, we
have TOD for each detector’s pointing (the position on the sky that each detector observes).
We use the pointing to determine the location of each TOD sample in the map. This
chapter describes the calibration pipeline and mapmaking process. Section §3.1 describes
the calibration pipeline in detail. In section §3.2, we describe how we determine where each
detector is pointing, and in section §3.3 we briefly describe the mapmaking process.

3.1 Calibration
We make maps in units of the implied change in the CMB temperature at a given location

on the sky. This is a first order expansion of the CMB blackbody:

∆I(ν, θ⃗) = B(ν, TCMB)−B(ν, T (θ⃗)) ≈ ∆TCMB(θ⃗)
dB

dT

∣∣∣∣
T=TCMB

(3.1)

where θ⃗ is the position on the sky, B(ν, T ) is the blackbody spectrum at temperature T ,
TCMB ≈ 2.726 K is the CMB monopole temperature today (Fixsen, 2009), and ∆TCMB is the
implied change from the monopole temperature that we store in our maps. By definition,
CMB anisotropies have the same magnitude at all frequencies.

For each detector, we record the constant bias voltage and the resultant current (hence
we can trivially convert to electrical power). As shown in §2.1.2, the electrical power is
proportional to the optical power from the sky. So, the goal of detector calibration is to find
the multiplicative factor that converts its TOD from electrical power to ∆TCMB. Under ideal
conditions, we could use the sensitivity SP = −L

1+L , along with the measured bandpasses and
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the blackbody function to directly calculate the conversion factor. However, there are several
factors we do not know well enough to directly calculate the conversion to ∆TCMB:

Loop gain The loop gain (see §2.1.2) is a function of the temperature of the TES, which
can vary for several reasons. When we recycle the Chase refrigerator, the entire focal
plane rises above the superconducting transition temperature for the TESes. When
we re-cool the focal plane, we also re-tune the bias voltage on each TES. Day-to-day
variations in loading and bath temperature at the time of tuning can lead to different
bias voltages and TES temperatures. Due to the finite loop gain of the detectors, their
calibration is also sensitive to changes in loading after tuning. We expect changes in
the optical loading from two sources: variations in weather conditions may change
the column depth of water vapor in the sky above the telescope, which increases the
loading (especially at 150 and 220 GHz); in addition, changing the elevation at which
we are observing modulates the load by a small amount. The latter effect comes from
changing the line-of-sight distance through the atmosphere. It is minimized at zenith,
and maximized at the equator.

Atmospheric Opacity In addition to changing the loading on the detectors, variable
weather conditions also change the overall transmission of the atmosphere at mm
wavelengths.

Optical Efficiency The total optical efficiency of the telescope optics and detectors is not
known a priori. The optical efficiency is defined as the ratio of the power incident on
the aperture to the power deposited on the detectors (Popt). A variety of factors can
decrease the optical efficiency, such as absorption in the lenses and vacuum window,
the stop efficiency, and the quantum efficiency of the detectors themselves. While many
of these quantities can be measured in the lab, we choose to measure them in situ.

We do not attempt to measure each of these components separately, and instead determine the
calibration using a mix of bright sources on the sky and an internal calibration source. The
calibration factors are re-measured for every science observation, to track the time-dependent
changes.

3.1.1 Calibration Observations

This starts with an observation of a bright, steady source on the sky. In practice, we
primarily use two Hii regions, MAT 5a and RCW 38 (see Figure 3.1. These are large star
forming regions in our galaxy, so they are very bright. Their emitting region is also very
large, which makes it impossible for their brightness to vary significantly over the lifetime of
the SPT-3G camera1. We describe how these maps are made in §3.3.5.

1Compare this to AGN, which are also very bright (although much farther away), but can change their
emission by 10s of percent on week-to-month timescales. Basic causality arguments require that the emission
regions be ≲ O(10) light-days. For reference, the emitting region of RCW 38 is > 1 lightyear.
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(a) RCW 38

(b) MAT 5a

Figure 3.1: Maps of RCW 38 (panel a) and MAT 5a (panel b). The maps are shown with a
logarithmic color axis to show the extended emission. These maps are in “source relative”
units (see §3.1.1), so each map peaks at approximately 1.0. The dark strips on either sides of
bright features are “filtering wings” from the mapmaking process (see §3.3).

We do long observations (∼2 hours) of these Hii regions roughly once per week. We also
do much shorter observations2 (∼10 minutes) before every observation of the science fields.
The final observation in the calibration chain is of an internal calibration source mounted on
the secondary mirror, which we refer to as the “calibrator.”

The calibrator is used to track the detector sensitivity SP (see equation 2.13), which we
refer to as the detector “gain.” It chops between a ∼1000 K blackbody and a blackbody
at ambient temperature (∼280 K). Radiation from either source is coupled to a light pipe
that leads to a 0.5-inch aperture in the center of the secondary mirror. This injects a square

2Internally, we refer to the long Hii region observations as “fast points” or “pixelrasters.” The latter is
intended to indicate that every pixel in the focal plane makes a complete map of the target source. We call
the short Hii region observations “very fast points.”
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wave signal into the detectors, at a commandable frequency. Since the detector beams are
not centered on the secondary mirror, we do not expect every detector to receive the same
signal amplitude from the calibrator (we call this variation the “illumination pattern” of the
calibrator, even though it is a property of the telescope optics, not the calibrator). Therefore
it is only used for relative calibration.

The sequence of calibration observations looks like this:

1. Once per week:

a) Observe the calibrator

b) Long observation of a Hii region

2. Once per science observation:

a) Observe the calibrator

b) Short observation of the same Hii region

c) Slew the telescope to the science field

d) Observe the calibrator

Step 1b allows us to calibrate every detector to the known brightness of the Hii region.
We use the previous calibrator observation (1a) to measure the illumination pattern of the
calibrator on the focal plane. Then, for every observation of the science fields (which may be
days later, and after multiple retunings of the detectors), we once again observe the calibrator.
Since we now know the illumination pattern, this allows us to remove per-detector calibration
variations. Next, we perform a short observation of the same Hii region. This allows us to
account for changes in the atmospheric opacity since the the long observation, or a change in
the temperature of the calibrator thermal source. This correction is applied to all detectors
in a band. Finally, we point the telescope to the center of the science field, and do one final
calibrator observation. This allows us to compensate for any calibration changes due to the
change in atmospheric loading between the elevation of the Hii region and the science field.

Calibrator Observations

For each calibrator observation, we point the telescope at an empty part of the sky (i.e.
without a detectable source in the field of view). We then chop the thermal source at 4 Hz for
1 minute. This injects a 4 Hz square wave into the detectors (see Figure 3.2). The chopper
itself outputs a synchronization signal, indicating when the source is exposed to the detectors,
and when it is covered. We analyze the detector TOD to extract the strength of the response
each detector has to the calibrator signal.

We first subtract a 4th order polynomial from each detector’s TOD. This gets rid of slow
drifts (most likely from atmospheric water vapor fluctuations passing through the field of
view in the wind), and removes the mean. The means of the detector TOD are purely a
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Figure 3.2: TOD from one detector while observing the calibrator. This detector measures
the calibrator the signal with SNR = 83 over the full 1-minute observation.

property of the tuning, and contain no further information. We then apply a software lock-in
amplifier, using the sync signal, and record the mean response to each detector in electrical
power. To estimate the noise in each detector, we break the 1-minute-long TOD into six
chunks, and measure the variation in calibrator response. We store both the mean response
and the mean response divided by the variation in the six chunks (i.e. SNR).

The calibrator’s non-uniform illumination pattern and the slow variation3 of the source
temperature mean that the detectors’ response to the calibrator in any single observation
is meaningless. Fortunately, the illumination pattern is determined by the telescope optics,
which are fixed, so we can use the change in response to track relative changes between the
detector gains.

We use the change in the calibrator response between short and long observations of the
Hii regions to track relative changes in the detector gain. Any common-mode change, or
variation in the temperature of the thermal source, is accounted for by tracking the apparent
change in brightness of the Hii region. We also use the change in calibrator response between
the short Hii region observation and the following observation of the science field. These
calibrator observations are separated by only ∼15 minutes, so we can use them to track
relative and absolute changes in gain.

Long Hii Region Observations

The long observations are designed such that each detector makes a complete map of the
source. Figure 3.3 shows a typical single-detector map of both MAT 5a and RCW 38 at 90
GHz. These maps will have a variety of peak amplitudes and sub-pixel offsets (due to the
limited coverage in the vertical direction, see §3.2). The Hii regions are a few times larger

3The temperature of the thermal source varies by ≲ 1% on hour timescales. This means it is only useful
for tracking a focal plane wide variation in calibration factors on scales of a few hours, but less than half a
day.
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(a) RCW 38 at 90 GHz. (b) MAT 5a at 90 GHz.

Figure 3.3: Typical maps of the Hii regions RCW 38 (panel a) and MAT 5a (panel b) at 90
GHz. These maps are made using the TOD from a single detector. We show these maps on
a linear scale to emphasize the very high SNR we achieve, even with a single detector.

than the beam, and have a complicated internal structure. Therefore, we can’t fit them to a
simple analytic function, and adopt a template-based iterative fitter.

We start by making an initial guess at the calibration factor for each detector, and its
position. This only needs to be somewhat close, so we take the position of the source as the
location of the brightest pixel. For the calibration, we use the inverse of the maximum pixel
value in a 4′ × 4′ box centered on the nominal source position. We then rank the detectors
by their SNR in the previous calibration observation, and use the top 60 detectors to form a
template.

To make the template, we first multiply each map by our initial guess at the calibration.
This will set the brightest pixel in each map to 1 (in arbitrary power units). We then
interpolate each map so that the brightest pixel is at the center of the map, and coadd the
60 we have selected. Next, we fit the original single-detector maps to the template, with
three free parameters: the amplitude, and two position offsets. These fit values then begin
the next iteration: we rebuild the template with the updated values, and re-fit them. We run
a total of three iterations (after three iterations, the changes are no longer meaningful).

This produces a template with arbitrary normalization (although the brightest pixel in
the template is expected to be near 1.0), and an amplitude for each detector that makes
its map match the template. The best-fit amplitudes are the calibration factors for each
detector to an arbitrary unit, defined by the amplitude of the template. We also calculate
the integrated flux in a 4′ × 4′ box at the center of the final template map. These values are
stored for later use.
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Short Hii Region Observations

In the short observations, no single detector makes a complete map of the source. In fact,
not every detector even sees the source. We observe the source with three narrow strips (in
azimuth) across the focal plane. This is sufficient to make a high SNR measurement of the
source when all the detectors in a band are coadded into a single map.

We make these maps in “source relative” units. This is a unit system that matches the
arbitrary units of the template in the previous long Hii region observation. To construct the
source relative calibration, we first multiply each detector TOD by the ratio of its calibrator
response before this observation, and before the previous long Hii region observation. This
accounts for changes in the relative calibration between detectors. Then we multiply each
TOD by the best-fit amplitude calculated from the long Hii region observation. This applies
the original calibration derived from the long Hii region.

We use the maps to measure the integrated flux in the same 4′ × 4′ box centered on the
source. If the calibration has not changed since the last long Hii region observation, the
integrated flux in this map will be the same as the integrated flux measured in the long Hii
region observation. Any difference is indicative of a change to the calibration.

3.1.2 Final Calibration

The calibrator observations, long Hii region observations, and short Hii region observations
give us enough information to assemble the final calibration for the science observations. Let
us first define some terms:

Flong,ν Fshort,ν

The integrated flux of a Hii region from a long or short observation, per band. This
has dimensions of electrical power × solid angle.

AHii,i,ν

The best-fit amplitude for the ith bolometer in band ν from the long Hii region
observation, per detector. This quantity is dimensionless.

Rcal,long,i,ν Rcal,short,i,ν Rcal,field,i,ν

The calibrator response of the ith bolometer in band ν, before a long, or short Hii
region observation, or before an observation of the science field. Rcal,,i,ν has dimensions
of electrical power.

FHii,ν,true

The known integrated flux of the Hii region in band ν. These are measured from
SPT-SZ maps that were calibrated to Planck. FHii,ν,true has dimensions of ∆TCMB ×
solid angle.
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Finally, we introduce one derived quantity: the illumination pattern of the calibrator over
the focal plane.

Ical,i,ν ≡
Rcal,long,i,ν

AHii,i,ν
(3.2)

Under these definitions, the conversion factor applied to get the source relative units for
the short Hii region observation is Ical,i,ν/Rcal,short,i,ν . The estimated integrated flux in each
single detector map of the Hii region is AHii,i,νFlong,ν . Combining this with FHii,ν,true gives
the conversion factor for that detector from electrical power to ∆TCMB. However, that is the
instantaneous conversion, which is only valid for the time and elevation of the long Hii region
observation. We need to use the remaining values to build up the more robust calibration
chain.

We account for changes in detector gains by dividing Ical,i,ν by the calibrator response
(i.e. Ical,i,ν/Rcal,field,i,ν). We also need to account for the variation in atmospheric opacity.
For this, we simply use the ratio of Hii region integrated fluxes between the short and long
observations. And finally, we need to convert this quantity to ∆TCMB. Everything so far is
referenced back to Flong,ν , so we use the ratio of FHii,ν,true and Flong,ν . This gives us the final
calibration factor in dimensions of ∆TCMB per electrical power:

Ci,ν ≡
Ical,i,ν

Rcal,field,i,ν

Flong,ν

Fshort,ν

FHii,ν,true

Flong,ν

(3.3)

=
Ical,i,ν

Rcal,field,i,ν

FHii,ν,true

Fshort,ν

. (3.4)

The first term in equation 3.3 tracks the change in detector gains, although it may also
incorporate a change in the temperature of the calibrator thermal source; the second term
tracks changes in atmospheric opacity, and removes any variation in the temperature of the
thermal source; the final term applies the absolute calibration to ∆TCMB. On the second line,
we have canceled the two Flong,νterms.

Upon closer examination, it becomes evident that the weekly long Hii region observations
are unnecessary. As a reminder, we expect the Ical,i,ν is fixed, since it is purely a property
of the relative locations of the secondary mirror and the focal plane. Flong,ν completely
disappears from the final equation (which is not surprising– we can use the integrated flux
in the short Hii region observation to convert to ∆TCMB and to track atmospheric opacity
simultaneously). The calibration only needs to track the change in opacity from some arbitrary
point. Therefore, we could use any one long Hii region observation, or a coadd of several and
get equivalent results. However, the amount of time we spend on long Hii region observations
is already a small fraction of the total observation time, so the value of getting rid of them is
minimal.

Comparison with Bright Sources in the Field

Our observations do not include any other sources that are bright enough to act as
a consistency check on the per-detector calibration. However, we can check the overall
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(a) Mean source variability in RCW-38-calibrated
subfields. ra0hdec-44.75 on top, and ra0hdec-
52.25 below.

(b) Mean source variability in MAT-5a-calibrated
subfields. ra0hdec-59.75 on top, and ra0hdec-
67.25 below.

Figure 3.4: The mean lightcurves, which we use to estimate the calibration error. Panel a
shows the observations calibrated using RCW 38, and panel b shows those calibrated using
MAT 5a. The subplot titles refer to the mean declination of the subfield in which the bright
sources are found. The significant outliers are discussed in more detail in the text; however
they are mostly explained by external factors.

calibration using bright point sources in the science fields. All of the brightest sources
we observe are AGN, which have a spectrum that falls with increasing frequency. This,
unfortunately, means that they do not have sufficient SNR at 220 GHz to provide a useful
consistency check on the calibration. AGN are also somewhat variable, but their variability
is uncorrelated. Therefore, we use the average brightness of many sources.

We first measure the brightness of 30 sources in each field. To measure their brightness,
we fit a beam-sized Gaussian to each source, and take the best-fit amplitude as the source
brightness. We do this for many observations to build a lightcurve for each source. Given
the distribution of source fluxes (with just a few very bright sources and many dimmer ones)
taking the mean of the lightcurves at this point would result in a mean dominated by just
a few sources. This would introduce spurious calibration variation from the variability of
those particular sources. Therefore, we normalize all the light curves such that their mean
is 1.0. Finally, we apply a weighting scheme to decrease the influence of more variable
sources. To calculate the weights, we subtract the mean lightcurve from each of the individual
lightcurves. We assign the inverse variance of each of the mean-subtracted lightcurves as its
weight. We then recalculate the mean using these weights. This downweights sources that
vary independently from the rest of the sources, but preserves a coherent variability. If the
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Figure 3.5: Histograms of the mean lightcurves. The orange lines show the same quantity
calculated using the original calibration pipeline; the blue histogram shows the calibration
pipeline described here. There were some adjustments to the mapmaking process (specifically
in masking and glitch finding) that reduce the scatter somewhat (as seen by the higher peak
in the central bin). However, the largest difference is the data selection criteria, which simply
removes the outlier population centered near 0.2 (see §3.1.2). The gray band indicates the
range used to estimate the calibration error.

calibration is varying between observations, it should appear as a coherent variability in all
of the sources.

Figure 3.4 shows the mean lightcurves after this processing. As expected, they are roughly
consistent with 1 (indicating that the calibration pipeline is not injecting variability between
observations). However, there are some very significant outliers, which turn out to be caused
by external factors. The two biggest outliers in the ra0hdec-44.75 field around September
2019 were caused by a problem with the thermal source in the calibrator. It failed, and
was running at a much lower temperature. This caused most of the detectors to be cut
when making maps of the short RCW 38 observation, to the point that the source was not
imaged at all. Similarly, the cluster of three observations around mid-April of 2019 in the
ra0hdec-59.75 subfield were caused by a failure of the chopper itself. The low points around
mid-July 2019 in both ra0hdec-59.75 and ra0hdec-67.25 were caused by a problem with the
elevation drive that injected a huge noise signal into the short MAT 5a observations. Finally,
the two high points in mid-August 2019 in the ra0hdec-59.75 field were caused by particularly
bad weather. The summer months (November through March) exhibit higher noise due to
the expected increase in atmospheric noise. We used these failures to develop data selection
procedures in the calibration pipeline (discussed in §3.1.2).

Finally, Figure 3.5 shows histograms of the mean lightcurves. This figure shows a
comparison to an older calibration pipeline (“v1”, in orange), as well. The pipeline discussed
here is shown in blue. Since the distribution is highly consistent with 1, we use the gray
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Figure 3.6: Histograms of the per-detector signal to noise in long Hii region observations
over ∼1 year of observations. The vast majority of detectors have a high SNR on the source
over multiple observations. We discard detectors with SNR < (60, 60, 20) at (90, 150, 220)
GHz, which is only a few percent of the total. Note that the x-axis in on the 220 GHz plot is
significantly smaller.

region to estimate the statistical error of the calibration pipeline. This will be strictly an
overestimate, since some amount of intrinsic source variability will leak into the final light
curve. We find the RMS scatter of the lightcurves is 3.7% at 90 GHz and 6.0% at 150
GHz. Since we handle absolute calibration later (see §3.1.3), these bad calibrations only
apply the wrong weight to an observation when we make a coadd. Small misweightings
inflate the final noise by approximately the square root of the error on the weight. Therefore,
the observed scatter only results in a ∼2-3% increase in the final noise from miscalibration
between observations.

While we cannot directly test the per-detector relative calibration, this analysis shows
that the mean detector calibration per observation is correct. Based on the required SNR
of the observations that make up the calibration, we expect (very roughly) expect ∼5-10%
errors in the per-detector calibration, and therefore only a ∼2-5% contribution to the total
noise from misweighting between detectors.

Calibration Quality Control

As seen in Figure 3.4, there are a handful of observations with extremely bad calibrations.
The extreme outliers that have excessively high calibrations will contribute up to several
times the weight of the other observations. Therefore, it is important to remove extremely
bad calibrations, and there are marginal gains from removing the less extreme outliers.

We remove detectors from both the Hii region maps if their calibrator response SNR is <
20. This removes detectors with either low sensitivity, or high noise. We also choose not to
process long Hii observations that have fewer than 6000 good detectors. This is about half
the number of detectors that typically pass all data selection cuts. If we do not process a
long Hii region observation, we can simply fall back to the previous good observation, so
there is no loss of science data. This cut is responsible for removing the largest outliers seen
in Figures 3.4 and 3.5.
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Figure 3.7: The Hii region MAT 5a without individual detector pointing offsets applied. The
map gets one copy of the source for each pixel with in the focal plane (as long as it has at
least one live detector). In this image, each detector is in uncalibrated electrical power, which
leads to the variations in source brightness.

In order to assess the quality of the calibration, we calculate the SNR of the Hii region
for each single detector map. Here, the SNR is defined as the flux in a 4′ × 4′ box divided
by the RMS of the map outside the signal-dominated region (this masking is discussed in
§3.3.5). Note that the “signal” and “noise” here are not defined in the same way (and don’t
even have the same units). However, the cut thresholds are arbitrary, so we do not need the
formally correct SNR here. The distribution of this SNR metric is shown in Figure 3.6. By
default, we cut detectors that have SNR < (60, 60, 20) at (90, 150, 220) GHz.

3.1.3 Absolute Calibration

As mentioned in §3.1.2, we use SPT-SZ maps (which are calibrated to Planck) to measure
the “true” Hii region flux. This is not perfect, as SPT-SZ and SPT-3G have different bandpass
functions and beams, so we expect the flux (and hence final calibration) to be off by 5-10%.
When highly precise absolute calibration is required, we use cross spectra between SPT-3G
and Planck maps (which are calibrated to the CMB dipole (Planck Collaboration et al.,
2016b)). This still has a ∼1% uncertainty, so we usually leave the absolute calibration of our
power spectra as a free parameter in our cosmological fits. For more details on this process,
see Dutcher et al. (2021).

3.2 Detector Pointing Offsets
In order to reconstruct an image of the sky with the full resolution of the SPT, we must

account for the pointing offset of each detector. Without doing so, a single source would
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Figure 3.8: A toy model of the coverage from a single observation. The thick gray line shows
the true signal, and the dashed gray lines show the boundaries of the map pixels. The colored
triangles show two detectors sampling that signal, with a sub-pixel size pointing offset. The
top panel shows where the true samples are taken. The bottom panel shows where the
samples appear after binning into a map.

appear once for each pixel (for example, see Figure 3.7). We fit the individual detector
pointing offsets using maps of Hii regions.

There are some subtleties in the way this fit interacts with our scan strategy. By scanning
continuously in azimuth, but stepping in elevation, we get very different coverage in the two
dimensions. Horizontally, our maps are very well sampled, while they are not well sampled
in the vertical direction. The maps are not sparse, however (i.e. every pixel on the source
has several samples). Figure 3.8 shows a toy model of our vertical coverage. The thick gray
line shows the true signal, and the dashed gray lines show the boundaries of the map pixels.
The colored triangles show two detectors sampling that signal, with a sub-pixel size pointing
offset. In the top panel, we show where each detector samples the signal in the sky. The blue,
downward triangle detector samples exactly at the pixel centers, while the orange, upward
triangle detector samples near the pixel edges. In the lower panel, we show the effect of
binning these two detector TOD into a map. Since we do not keep any information about
subpixel pointing, it now appears that the detectors were sampled at the same location, and
the source has a spurious offset. In the map (the lower plot), the apparent offset of the
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detector is ∼0.4 pixels From the top panel, we can see that its true offset is ∼−0.4 pixels.
This example shows the worst case scenario, where the sample spacing (i.e. elevation step in
the scan) is equal to the pixel spacing. If we do not account for this effect, we would inject a
random error into the vertical offset of each detector. In a map made with many detectors, it
would manifest as a convolution of the beam with a 1′-tall tophat function in the vertical
direction (and no effect in the horizontal direction), which would significantly degrade the
SPT’s sensitivity on small scales.

There are two obvious solutions for poor coverage in a map. We can increase the map pixel
size, although if the pixel size becomes comparable to the source size, we begin to increase
our localization error. We can also increase the sampling density. This is impossible in a
single observation (increasing the density in a single observation would make the observation
too long). However, we have many (∼75, at the time this analysis was done) observations
with small elevation offsets. We can coadd these to make a map that is well-sampled both
horizontally and vertically.

In order to do this, we must first take out an overall pointing offset between observations.
So, we first make coadds of all the detectors in one band for each observation. We measure
the flux-weighted centroid in each observation, and apply these offsets to a new set of single-
detector maps. We then coadd all the observations for each detector to get a densely-sampled
map. In order to avoid assigning bad offsets to some detectors, we cut any detector that has
fewer than 10 usable maps. To find the pointing offset for each detector, we use the iterative
fitting method described in §3.1.1.

Finally, we performed some systematic tests on the calculated offsets. We expect that
different detectors in the same pixel and band (i.e. co-pointed detectors observing orthogonal
polarizations) should have the same pointing offsets, and that we should get the same offsets
whether we use MAT 5a as or RCW 38 maps to find the offsets. In both cases, we find that
the difference in the offsets is consistent with zero, as shown in Figure 3.9. Furthermore,
these differences are small compared to the arcminute-scale beams, and errors at this level
will have a negligible impact on our science results.

3.3 Mapmaking
With calibrated TOD, and measured detector offsets, we turn our attention to the actual

process of making maps. Mapmaking consists of four major steps:

1. Data selection

2. Filtering

3. Weighting

4. Binning
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(a) Differences between detector offsets in polarization pairs.

(b) Differences between detector offsets calculated using RCW 38 maps and
MAT 5a maps.

Figure 3.9: Histograms showing the difference between detector offsets under different splits
of the data. Panel a shows the difference between pairs of detectors in the same pixel. Both
of these detectors share the exact same optical path, and only differ by the polarization state
they are sensitive to. Panel b shows the difference between pointing offsets calculated from
two different sources, MAT 5a and RCW38. In both cases, the left plot shows differences
in the x (R.A.) direction, and the right plot shows the differences in the y (declination)
direction.



49

Figure 3.10: A map of a very bright source made without masking the source location. The
negative strips on either side of the source are “filtering wings,” which can be avoided by
masking the source. The minimum of the filtering wing is ∼−0.25 times the peak amplitude
of the source.

3.3.1 Data Selection

In the first step, we discard bad data. The data are discarded at the scan level: we
evaluate our selection criteria for every detector in every scan. We remove detectors for a
variety of reasons, including

• Signal-to-noise ratio of < 20 in the most recent calibrator observation (see §3.1.1)

• Missing or low-quality calibration data (see §3.1.2)

• Missing identifying information (e.g. some detectors are missing pointing offsets due to
producing low quality maps of the Hii regions)

• Excess glitches (glitches are short transient spikes in the detector TOD, which lie above
the detector noise).

We typically cut ∼800 of ∼12000 (∼7 %) live detectors.

3.3.2 Filtering

We then filter the TOD. The filters are applied to one detector TOD over one scan at a
time. These filters have two primary purposes. The first is to reduce low frequency noise,
which comes from both the instrument and from brightness variations in the atmosphere.
The second is to apply an anti-aliasing low pass filter, to remove signals that on the scale
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of the map pixel size or smaller. We implement three different time domain filters. The
anti-aliasing low-pass filter is implemented in the Fourier domain. We apply a high-pass
filter in the time domain, by fitting and subtracting sinusoidal modes. For each scan, we
re-calculate the cutoff frequencies of the high- and low-pass filters to keep the spatial scale of
the filters the same across an observation. Finally, we implement a polynomial filter, which
fits and remove Legendre polynomials. The polynomial filter is useful for removing very
slowly varying modes that the high-pass filter struggles to remove. These modes contain
power on scales that are similar to or larger than the scan, and therefore do not map cleanly
onto low-frequency Fourier modes (a slope across the entire scan, for example).

The use of the polynomial filter and high-pass filters assumes that the individual detector
TOD are noise dominated. This is generally true, as the CMB variations are much smaller
than the combined atmospheric and instrument noise in a single detector. However, sufficiently
bright point sources will exceed the individual detector noise floor, and bias those filters.
This manifests as “filtering wings,” where the flux from the source is spread along the scan
direction (see Figure 3.10 for an example). Therefore, we allow some TOD samples to be
masked in the polynomial and high-pass filters. This excludes any TOD samples within a
given radius of bright sources when fitting the sinusoids or polynomials. However, we do
subtract the filtered modes from the masked regions. We typically mask sources that are
detected at SNR ≳ 10 in a coadd of all the observations, although this threshold may vary
depending on the use case for the maps. For most analyses using the 2019 and 2020 data
of the 1500 deg2 field, we have chosen to mask sources that are brighter than 6 mJy at 150
GHz. This results in ∼2000 masked sources over 1500 deg2, and a ∼1% loss in total area.

3.3.3 Weighting

To account for the different detector noise levels, we apply an inverse variance weighting
to each detector in each scan. We have two methods of calculating the variance. We either
use the band-limited variance (i.e. the sum over each detectors power spectrum in some
frequency range, selected to ensure the variance only contains white noise), or we use the
total variance, with optional masking in the time domain. The former is used for most maps,
but the latter is useful for small maps where a single source might dominate the variance.

3.3.4 Binning

Finally, we bin the filtered and weighted TOD into a map. The value of each pixel in
the map is the weighted mean of all the TOD samples that fall within the boundary of that
pixel. In order to determine which TOD samples go into each pixel, we use the telescope
pointing, combined with the detector offsets described in §3.2.
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3.3.5 Hii Region Mapmaking

We make maps of the Hii regions in the same way as described above with one key
difference: we obviously cannot require that the detectors have valid calibrations, since we
are in the process of calculating them. We also set the data selection criteria to the most
permissive setting possible, so as to produce as many valid calibrations as possible (and
leave the decision to cut potentially noisy detectors for a later time). The maps are made in
dimensions of electrical power or “source relative” units (as detailed in §3.1.1). The maps are
30′ × 30′ with 0.′5 pixels.

Example maps of RCW 38 and MAT 5a are shown in Figure 3.1. Since the emission of
both sources is quite extended, we use large masks (a minimum of 7′ in radius). RCW 38
requires an irregularly shaped mask. There are some sources in the observed region around
RCW 38 that are not masked, and the results of filtering an unmasked source are visible as
extended negative wings on either side. However, these are at ∼1− 2% the peak amplitude
of RCW 38, and do not impinge on the main source. We do mask MAT 5b, the dimmer, but
more extended, source visible at the left edge of the MAT 5a map. This is necessary because
MAT 5b is similarly bright, and is at the same declination as MAT 5a, so the filtering wings
would intersect the primary source. The additional unmasked sources near both Hii regions
fall outside of the default 30′ × 30′ map.

3.4 Conclusion
We now have maps of the sky, calibrated relative to the CMB (i.e. in ∆TCMB). However,

these maps are not unbiased. The time domain filtering removes information at certain scales
(and preferentially in the scan direction). We can measure this effect using simulations (see
Dutcher et al. (2021), for example). The telescope optics also remove information at small
scales. We show how the effect of the optics is measured in the next chapter. Both of these
effects must be either removed or accounted for in a science analysis, as we will see in the
final chapter.
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Chapter 4

SPT-3G Beams

The sky contains information at all scales. However, the resolution of the SPT is limited
by diffraction at the scale of the primary mirror. This imposes a low-pass filter on the scale
of 1 arcminute. In order to recover the true sky signal, we need to characterize the telescope
response as a function of angle. This is known as the “beam” (in other fields, it is more
commonly called the “point spread function”). The signal that the telescope measures is the
true sky signal convolved with the beam. This has several important impacts on the data:

1. A power spectrum measured directly from the maps will be biased low on smaller scales
due to the beam. By measuring the beam, we can recover that power, and accurately
report the true power spectrum.

2. We can optimally extract objects of known shape from our maps using a matched filter.
However, their shape has been convolved with the beam, so we must include its effects
to get the optimal recovery. See Chapter 5 for an application of the matched filter to
finding clusters of galaxies.

3. The flux from point sources is spread out over the beam, and an accurate flux measure-
ment requires knowledge of the beam to recover all of the flux.

This chapter describes the measurement of the SPT-3G beams. We use observations of
both planets and bright sources (all of which are AGN) in our science field. The beam falls of
quickly with radius, so the AGN can only be used out to a radius of ∼5′. Planets are much
brighter, and have SNR > 1 to several tens of arcminutes. However, the planets are bright
enough to saturate our detectors near the center of the source. Therefore, we “stitch” the core
of the AGN maps to the planet maps. This gives us a low noise measurement of the beam at
all scales, although it does require a careful accounting of systematics. We make many of
these composite maps, and use their cross spectra to estimate the beam and its covariance.
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Figure 4.1: Calibrator response as a function of frequency (filled circles) and the transfer
function for the best-fit time constant for a sampling of detectors. The response for each
detector has been normalized to 1.0 at the lowest frequency. Figure by Zhaodi Pan.

4.1 Systematic Effects
This section describes several systematics we must account for in the process of measuring

the beam. Here, we primarily describe the effects; the mitigations are described in detail in
§4.3.

4.1.1 Saturation

We use planet observations to get a high SNR on the outskirts of the beam, where
the signal may be reduced by orders of magnitude from the center. However, the extreme
brightness of the planets deposits enough power on the detectors to make them nonlinear, and
eventually saturate. This makes the data near the center of planet unusable. Furthermore,
once the detectors saturate, it can take them O(0.1) seconds to recover. This makes the
portion of the scan after passing over the planet unusable.

4.1.2 Detector Time Constants

Our detectors have a non-zero response time, which we characterize as the time constant
(τ) in a single-pole filter. In the time domain, this acts as a simple delay between the sky
signal and the signal recorded from the detector (to first order). In the Fourier domain, the
time constant decreases the detector response as frequency increases. We use a sequence
of calibrator (§3.1.1) observations over a wide range of frequencies to measure the detector
time constants. We then fit those to a single-pole filter model to measure the detector time
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Figure 4.2: The distribution of the mean time constants (τ) for every detector over the 2019
and 2020 observing seasons. The 220 GHz detectors are somewhat faster than the 90 and
150 GHz detectors.

constants. The response and best-fit filter models are shown in Figure 4.1 for a handful of
detectors.

In principle, the time constants can vary day-to-day, as they depend on the optical load
on each detector. However, we find that they are fairly stable, and we can use their mean,
rather than accounting for any time variability. The mean detector time constants are shown
in Figure 4.2

Finally, we also have a temporal offset of δt = −4.6 ms between the detector TOD and
the pointing TOD. To first order, this effect is identical to the time constants in the time
domain (the time constants have higher orders, but the time offset does not). Purely by
chance, the time offset is of approximately the same magnitude as the time constants, but
has the opposite sign. Their combined effect is therefore smaller than one would anticipate,
but still significant. In particular, it causes discrepancies between beam measurements with
AGN at different elevations. To avoid including this as an uncertainty in the final beam, we
must remove the time constant and offset effects from the maps.

In the map domain, time constants also cause a shift, to first order. But the map-space
shift is determined by the product of the time constant and the on-sky scan speed. Since our
scans are at a fixed speed in R.A., the magnitude of the shift is proportional the cosine of
the declination. Therefore, in a map made from left-going scans only, everything is shifted
slightly towards the left (towards positive R.A.), and the shift is larger closer to the equator.
In a map made from right-going scans only, everything is shifted to the right (with the same
declination dependence). This is shown schematically in Figure 4.3a. The gray dashed line
shows the true sky signal, and the blue and orange lines show the recorded signal in right- and
left-going scans, respectively. We use maps that combine both the left- and right-going scans
for both our science analyses and beam measurements. The net effect of the time constant
and time offset is to broaden the beam parallel to the scan direction, and the magnitude of
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(a) True beam (gray), and the beam as seen in
the left-going (orange) and right-going (blue)
scans.

(b) The beam after coadding the full left and
right scans (orange), and when using only the
approaching portion of the scan (blue).

Figure 4.3: A 1d demonstration of the effect of the time constant on the beam. Panel a shows
the true beam (gray dashed), and the beams after the application of a time constant (blue and
orange). To first order, each beam is shifted in the direction of the scan. Panel b shows the
beam after two different coadding schemes are applied. The orange line shows the standard
coaddition of the left- and right-going scans (in which the beam is broadened parallel to the
scan direction). The blue line shows the beam when using only the approaching portion of
each scan, as we do with the planet maps. In this case, the beam is narrower than expected.

the broadening depends on declination (the orange line in Figure 4.3b).
Due to the effects of the saturation, we also make maps that use only the portion of a

scan that approaches the planet (the receding portion is discarded). In this format, the time
constants have the opposite effect (it makes the beam narrower parallel to the scan direction).
The blue line in Figure 4.3b shows the result of coadding only the approaching portion of
each scan.

Assuming the time constants act as a single pole filter, both their effect and the effect of
the time offset on the map can be described by a Fourier domain filter.

F (θ, ℓx) = [1− iℓxτv cos θ]
−1 + exp (iℓxδtv cos θ) (4.1)

The first term is the effect of the time constant, and the second term is the time offset. τ
is the time constant (which depends on the observing band), ℓx is Fourier partner of the
horizontal coordinate of the map, v is the scan speed, and θ is the declination of the source. v
is positive in right-going scans, and negative in left-going scans. In principle, we should allow
θ to vary over the map. However the maps used for the beam only span 30′ in declination, so
the variation of cos θ is small, and we ignore it.

To remove the effects of the time constant and offset, we deconvolve this filter from the
maps. However, the maps used for our science analyses have not had these effects removed.
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Figure 4.4: Radial profiles of the (approximate) beam from the brightest source (black
dashed), and 60 simulated backgrounds (colored lines). The simulated backgrounds include
Gaussian realizations of the CMB, CIB, and thermal and kinematic Sunyaev-Zel’dovich
effects, as well as Poisson realizations of radio sources.

Therefore, we need to apply the mean effect of the time constants and offset over the entire
field. The mean effect is given by the square root of the average of F (θ, ℓx)2, where the
average is taken over the entire field. Since these effects depend only on declination, the
mean can be taken over declination, with a weight for the area observed at each declination.
Specifically,

Fmean(ℓx)
2 = Ω−1

∫
field

dΩF (θ, ℓx)
2 (4.2)

=
∆ϕ

Ω

∫ θmax

θmin

dθ cos θF (θ, ℓx)
2 (4.3)

where (θmin, θmax) is the declination extent of the field, ∆ϕ is the width of the field in R.A.,
and Ω is the area of the entire field.

4.1.3 Background Contamination

Both types of sources (planets and AGN) are much brighter than astrophysical backgrounds
(by multiple orders of magnitude). However, on scales of 2′-4′ (where we stitch the AGN to
the planet, see §4.3.3), the astrophysical backgrounds become a significant contaminant. This
potentially biases the stitching by changing the apparent amplitude of the AGN. Figure 4.4
shows the relative amplitude of the AGN and astrophysical backgrounds. On very large scales
(≳ 10′), astrophysical backgrounds become significant compared to the planets. However, we
are able to directly remove these backgrounds (see §4.3.1).
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4.1.4 Intra-band Frequency Dependence

The presence of the Lyot stop in our optical path injects some dependence on the observing
frequency into the beam. Let’s consider the limit where the illumination across the opening
of the Lyot stop is flat (i.e. the beam coming from the detectors is much larger than the Lyot
stop). In this case, the illumination of the primary mirror is constant with frequency (and
defined by the edge of the Lyot stop). Then, the beam coming from the primary mirror is
diffraction-limited, and therefore its width scales as the inverse of the observing frequency
(ν−1). Now, let’s consider the opposite limit, where the beam from the detectors is entirely
contained within the opening of the Lyot stop. In that case, the diffraction-limited detector
beam determines the the illumination of the primary. The illumination of the primary scales
as ν−1, and therefore the beam width on the sky is constant with frequency.

Our 90 GHz band is near the first limit (flat illumination of the Lyot stop), and the higher
frequencies (150 and 220 GHz) are somewhere between the two limits. When we measure the
beam using AGN (which have a falling spectrum), the result is not appropriate for a different
spectrum (such as the CMB, or the CIB which both rise with frequency). To model this, we
approximate each beam as a Gaussian with

σobs(νeff)
2 = σ2

geom + σdiffraction(νeff)
2 (4.4)

where σobs is the observed beam width, σgeom is the frequency-independent part of the
beam width (from geometric optics), and σdiffraction is the frequency-dependent part (from
diffraction). νeff is the effective frequency at which the observation is made. Under our
assumption that the 90 GHz band evenly illuminates the Lyot stop, σobs,90 = σdiffraction. In
other words, the 90 GHz band behaves like a standard diffraction-limited beam, with its
width inversely proportional to observing frequency. This allows us to assign

σdiffraction(νeff) = σobs,90
νeff,90
νeff

(4.5)

We now need to determine νeff .
Following an internal memo by Tom Crawford (Crawford, 2022), we define νeff as the

frequency at which a beam with a δ-function bandpass has the same solid angle as our
observed beam. We start by defining the observed beam as

Bobs(θ̂ ≡ P (θ̂)

P (0)
. (4.6)

This states that the measured beam (in map space) is the power received by the SPT from
a point source at an angle θ̂ from the source, divided by the power received when pointing
directly at the source. We now expand P (θ̂) and P (0) in terms of the source spectrum I(ν),
the bandpass function t(ν), the solid angle of the point source Ωs, the effective aperture area
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A(ν), and B(ν, θ̂), the beam for a δ-function bandpass at frequency ν:

Bobs(θ̂) =

∫
ΩsA(ν)I(ν)t(ν)B(ν, θ̂)dν∫
ΩsA(ν)I(ν)t(ν)B(ν, 0)dν

(4.7)

=

∫
A(ν)I(ν)t(ν)B(ν, θ̂)dν∫

A(ν)I(ν)t(ν)dν
(4.8)

In the second line, we have assigned B(ν, 0) = 1, which just sets the overall normalization
of the beam. This just states that the observed beam is a weighted mean of the δ-function
bandpass beams, weighted by the power received at each frequency.

The solid angle of the beam is

Ωobs
b =

∫
Bobs(θ̂)dΩ (4.9)

=

∫ ∫
A(ν)I(ν)t(ν)B(ν, θ̂)dν∫

A(ν)I(ν)t(ν)dν
dΩ (4.10)

=

∫
A(ν)I(ν)t(ν)

∫
B(ν, θ̂)dΩdν∫

A(ν)I(ν)t(ν)dν
(4.11)

We now need to evaluate
∫
B(ν, θ̂)dΩ. First, we assume A(ν) = const., so

∫
B(ν, θ̂)dΩ ∝ ν−2.

We use νeff as the pivot frequency, such that∫
B(ν, θ̂)dΩ = Ωb(νeff)

(νeff
ν

)2
(4.12)

Inserting this assumption into equation 4.11 gives

Ωobs
b =

∫
A(ν)I(ν)t(ν)

∫
B(ν, θ̂)dΩdν∫

A(ν)I(ν)t(ν)dν
(4.13)

=

∫
I(ν)t(ν)Ωb(νeff)

(
νeff
ν

)2
dν∫

I(ν)t(ν)dν
(4.14)

= Ωb(νeff)ν
2
eff

∫
I(ν)t(ν)ν−2dν∫
I(ν)t(ν)dν

(4.15)

To determine the value of νeff , we set Ωobs
b = Ωb(νeff), and solve for νeff :

νeff =

[∫
I(ν)t(ν)ν−2dν∫
I(ν)t(ν)dν

]− 1
2

. (4.16)

We now fit the free parameters of this model using observations of the brightest source in
our science field. Since we assume that the 90 GHz evenly illuminates the Lyot stop, the only
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Band νeff σobs σdiffraction σgeom

GHz arcmin arcmin arcmin
90 GHz 93.7 0.′66 0.′66 0′

150 GHz 147.1 0.′50 0.′42 0.′26

220 GHz 219.9 0.′42 0.′28 0.′31

Table 4.1: Model parameters defining the frequency dependency of the beam. νeff is the
effective frequency at which σobs is measured, assuming a source spectrum I(ν) ∝ ν−0.5.
σobs is the best-fit Gaussian width of our brightest source. σdiffraction is the frequency-
dependent portion of the width, and σgeom is the frequency-independent portion. By definition,
σgeom,90 = 0, and σ2

obs = σ2
diffraction + σ2

geom.

free parameters are σgeom,150, and σgeom,220. We use the best-fit circular Gaussian to define
σobs for each band. The spectrum of AGN are generally falling power laws. For this source,
we find I(ν) ∝ ν−0.5 is a good fit. Finally, we use the measured bandpasses for the SPT-3G
receiver. The results are shown in Table 4.1. This shows that the 150 GHz band is close to
the diffraction limit, and the 220 GHz band is evenly split between geometric effects and
diffraction.

This model allows us to approximate the change in the beam for different source spectra.
Under the Gaussian beam approximation, we simply (de)convolve another Gaussian to convert
beams between sources with different spectra. In Fourier space, this is a multiplication by a
Gaussian. For example, to convert a Gaussian beam measured on AGN to a beam appropriate
for the CMB, we multiply by

exp(−ℓ2(σ2
CMB − σ2

AGN)/2) (4.17)

where σCMB, and σAGN are the Gaussian widths for the CMB and AGN respectively. Using
our model, this can restated in terms of effective frequencies:

σ2
AGN→CMB ≡ σ2

CMB − σ2
AGN (4.18)

= (σ2
geom + σdiffraction(νeff,CMB)

2)− (σ2
geom + σdiffraction(νeff,AGN)

2) (4.19)
= σ2

obs,90ν
2
eff,AGN,90(ν

−2
eff,CMB − ν−2

eff,AGN) (4.20)

Since the CMB spectrum rises with frequency, and the AGN spectrum falls with frequency,
and the SPT-3G bandpasses are approximately tophats, νeff,CMB > νeff,AGN. Therefore,
σ2
AGN→CMB < 0, and the multiplicative conversion in Fourier space rises with ℓ. In other

words, the CMB beam is narrower than the AGN beam in map space. This conversion is
shown in Figure 4.5.

This model has a few problems. First, there is an inconsistency in how νeff is defined. We
have calculated νeff assuming that the beam area Ω is proportional to ν2, and the aperture
area A is fixed. Our model uses a more complex formulation of the beam area, which includes
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Figure 4.5: The conversion from a beam measured on an AGN (with I(ν) ∝ ν−0.5) to a beam
appropriate for the CMB spectrum. This is a negligible effect at 220 GHz, small at 150 GHz,
and substantial at 90 GHz.

terms that are both linear in ν and constant. Our model does assume A is fixed (at least
within a band), however that cannot be the case at 150 and 220 GHz, where σgeom is of the
same order as σdiffraction. We have also fixed σgeom,90 = 0, under the assumption that the 90
GHz band over-illuminates the Lyot stop significantly. Finally, we assume that frequency
dependence is scale independent, which we also know is not true. For example, we expect
some large scale response in the beam from imperfections in the alignment of the panels that
make up the primary mirror (Ruze scattering (Ruze, 1952, 1966)). This effect increases with
frequency, rather than decreasing, as our model for the main lobe does. There is work in
progress to address some of these concerns (see §4.8.1). Nonetheless, we show that the data
are not inconsistent with this model (§4.6.4).

4.2 Data
We use two types of sources to measure the beams: planets, and AGN. The planets

provide an extremely high signal-to-noise ratio (SNR), but are so bright that they cause the
detectors to saturate at radii of r ≲ 2′. We use AGN in our science field to fill in the core of
the beam, where the planet maps are unreliable.

4.2.1 AGN Maps

We selected the 10 brightest sources in the 1500 d2 winter field to measure the beam.
However, two of them have dimmer sources within a few arcmin, so we reject those two
sources, leaving us with 8. Of these sources, one is clearly brighter than the others, at ∼3
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Source Name
R.A. Declination Flux [mJy]
deg deg 90 GHz 150 GHz 220 GHz

0210-51 32.693 -51.017 2788 2245 1827
2329-47 352.324 -47.505 1223 865 600
2056-47 314.068 -47.246 1096 882 685
0309-60 47.484 -60.978 1050 806 617
0133-52 23.274 -52.001 1028 820 651
2357-53 359.472 -53.187 874 638 461
0253-54 43.372 -54.697 833 652 502
0049-57 12.497 -57.641 826 603 442

Table 4.2: The AGN used for beam measurement.

mJy, while the remainder are around ∼1 mJy at 90 GHz. See Table 4.2 for their fluxes in all
three bands, and positions.

Since these sources are in our main science field, we have ∼1000 observations of each
source. We make small maps centered on each source from the 2019 and 2020 observations.
We use observations of entire subfields, but only create small output maps. The TOD filtering
follows the process outlined in §3.3, with a 15.′0 mask around each source, the high pass filter
is set at ℓ = 500, and a 9th order polynomial subtraction. At the 0.′1 scale, the SPT has
effectively no response, so we do not apply a time-domain low pass filter. The beam itself
provides sufficient anti-aliasing at these scales. The masking prevents the TOD filtering from
impacting the beam, since we only use the AGN maps at scales smaller than 5′ in radius.
The maps are 30′ × 30′, and are pixelized at 0.′1.

We coadd the maps of each source, where each map is weighted by its inverse variance.
To measure the variance we first mask out the source with a 5.′0 mask, then apply a 3.′0× 3.′0
mean filter, and calculate the total variance. This weighting scheme captures noise from
atmospheric fluctuations that are common between detectors, and therefore not correctly
accounted for in the map weights. It also allows us to weight on exactly the most important
spatial scales.

4.2.2 Planet Maps

We use 9 dedicated observations of Saturn, performed in 2019 and 2020. In principle, we
could use other planets (previous cameras on the SPT have used Mars, Venus and Jupiter).
However, we are limited by which planets are far enough above the horizon at the South Pole.
We make the Saturn maps with a much larger mask and lighter TOD filtering to recover
the large scales. We use a 30.′0 mask, 2nd order polynomial, and set the high pass filter1 at

1Since the high pass filter is masked, we do not remove the large scale modes present in the planet.
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Band σmain σsidelobe a

arcmin arcmin
90 GHz 0.66 2.8 0.011

150 GHz 0.48 1.2 0.033
220 GHz 0.39 0.75 0.086

Table 4.3: Parameters of the input beams used for simulations. For each band, the beam is
modeled as Bν(r) ∝ exp (−r2/2/σ2

main) + a exp (−r2/2/σ2
sidelobe).

ℓ = 200. The planet maps are 6◦ × 6◦, and pixelized at 0.′1, to match the AGN maps. We
also apply a small perturbation to the telescope pointing to track the movement of Saturn
over the course of a 6-hour observation. Instead of producing one map per observation, we
split each observation into left- and right-going scans, and make maps from these separately.

4.2.3 Simulations

We use simulations to test that the beam analysis pipeline is properly constructed. To
construct the inputs to the simulation, we use a very approximate model of the beams. We
assume each band can be modeled as the sum of two Gaussians. One (which is narrower
and has a higher amplitude) represents the main lobe of the beam. The second is much
wider and lower amplitude, and represents the sidelobes. The exact details of the input
beam are unimportant, but they do need to have approximately the right signal levels in the
stitching region, so the sidelobe contribution is important. In summary each band is modeled
as Bν(r) ∝ exp (−r2/2/σ2

main) + a exp (−r2/2/σ2
sidelobe), with individual band parameters as

shown in Table 4.3. These radial profiles are inserted into maps with perfect circular symmetry
(i.e. no azimuthal dependence).

Depending on the simulation, we may also use two different types of noise: white noise
and simulations of the mm-wave sky. The simulations include Gaussian realizations of the
CMB, CIB, tSZ, kSZ, and Poisson realizations of radio sources with 150 GHz flux less than 6
mJy. The power spectra used to generate the Gaussian realizations are the best-fit models
from (Reichardt et al., 2021).

4.3 Map Preparation
This section describes how we prepare the planet and AGN maps, and then stitch them

together to form the composite beam map.

4.3.1 Saturn Preparation

We apply 4 processes to the planet maps.
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1. CMB cleaning

2. Remove a scan-synchronous signal from right-going scans

3. Recentering

4. Masking and coadding left- and right-going maps

CMB Cleaning

Even though the signal-to-noise ratio on the planet is very high (> 1000), the large scales
still contain a significant CMB contribution. Fortunately, we are able to clean the CMB from
the planet maps. Since planets move in (R.A., Dec.), we can use previous observations of the
current location of the planet to remove the CMB. In this case, we use maps from the Planck
satellite. For each band and planet observation, we mock observe map of the closest Planck
band. In a mock observation, we simulate an observation of a given input sky with the SPT.
We use the real pointing information from an observation to determine where in the input
map each detector is pointing, then assign those values to the simulated detector TOD. From
there, we proceed with the usual mapmaking procedure. This ensures that the same modes
are removed by our time domain filtering. We then subtract the mock-observed map from
our planet maps to remove the CMB.

Scan-synchronous cleaning

In the 2020 observations of Saturn (7 of 9), the telescope elevation has not settled before
starting the right-going scans. This modulates the atmospheric loading on the detectors,
and leaves a noticeable oscillatory mode in the right-going maps. The mode is purely in
the x/R.A. direction, because the scans are at fixed elevation. Figure 4.6 shows left- and
right-going maps for comparison. The right-going map has a large oscillatory mode that
starts on the right side, and decays as it moves towards the left.

Since the injected mode is so well synchronized between scans, we can effectively remove
it directly from the maps. First, we mask Saturn with a 40.′0 circle, and the the two visible
sources closest to the center of the map with a 3.′0 radius. This prevents subtracting real
signal (the Saturn mask) or spreading a contaminating signal in the y direction (the additional
source masks). We then average the map in the y direction, to measure the average scan
synchronous mode. Finally, we subtract that mode from every row of pixels. Figure 4.6c
shows the right-going map after the scan-synchronous mode is removed.

Recentering

We are unable to use our usual pointing corrections for the planet maps, since those are
based on bright sources scattered throughout a large field. However, we can simply center
our maps on the planet itself. For each map, we fit a Gaussian to the planet, and find
the offset that would bring the peak of that Gaussian to the center of the map. We then
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(a) Left-going (b) Right-going (c) Right-going, after cleaning

Figure 4.6: A comparison of Saturn maps made from left-going (a), and right-going (b) scans,
and right-going scans after cleaning (c). The right-going scans show an oscillatory mode
which decays from left to right.

Figure 4.7: This shows the Saturn maps coadded without masking, minus the same maps
coadded with our masking procedure. The x and y scales are marked in arcminutes from
the source center, and the color scale is in units of the peak brightness of the source. The
unmasked map is analogous to the orange line in Figure 4.3b, and the masked map is
analogous to the blue line. As expected, the unmasked maps are wider in the scan direction,
but equal to the masked maps at the center. The 150 GHz map shows the largest effect, as
the detectors are operated closer to their saturation power than the other bands.

apply that offset in the Fourier domain, to avoid additional smoothing caused by map-space
interpolation.

Masking and Coaddition

Our detectors saturate as they pass over Saturn. This causes the time constants to
increase significantly, and the detector to become highly non-linear. It may take several time
constants for the detector to recover. Therefore, we mask the receding portion of scans that
come within 2.′0 at 90 and 150 GHz, or 1.′0 at 220 GHz. The effect of the masking is shown
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Figure 4.8: This shows the Saturn maps after accounting for the time constant and offset
minus the same maps before accounting for the time constant and offset (these are the maps
produced by the masking step). The x and y scales are marked in arcminutes from the source
center, and the color scale is in units of the peak brightness of the source. The masked map
is analogous to the blue line in Figure 4.3b, while the map after accounting for the time
constants and time offset is closest to the mean of the orange and blue lines in Figure 4.3a.
The overall effect is to narrow Saturn in the scan direction.

in Figure 4.7. These masks cover the opposite sides of the map in the left- and right-going
maps, so when we coadd them together, we get a complete map of the planet. However, this
requires an additional step to account for the time constants.

Time Constants and Offset

As described in §4.1.2, this masking narrows the beam in the scan direction. Since the
receding portion of the scan is contaminated by saturation and non-linear effects, we cannot
simply deconvolve the time constant and time offset from the maps. Therefore, we apply
an iterative forward modeling approach. We begin by generating separate transfer functions
for the left- and right-going maps from the measured time constants and time offset. We
then apply these transfer functions to a biased estimate of the true planet map (in this case,
the coadd of the left- and right-going maps with the receding portions of the map masked).
This produces biased left- and right-going maps, which we coadd with the same mask to
produce a doubly-biased coadd. We then take the difference between the doubly-biased map,
and the estimate of the true map, which produces an estimate of the effect we are trying to
remove. We subtract that from the estimate of the true map, and repeat this process until
we have converged on the true map. With a satisfactory estimate of the true map, we apply
the mean filter for the field (see equation 4.2). We test this method on the brightest AGN in
our science field, and find that only two iterations are required to converge, with residuals of
< 1% of the peak amplitude of the source.

For the unmasked portions of the map, we first deconvolve the transfer function of the
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Figure 4.9: The Saturn maps before accounting for the RJ spectrum of Saturn, minus the
same maps after accounting for the spectrum. The x and y scales are marked in arcminutes
from the source center, and the color scale is in units of the peak brightness of the source. This
effect is isotropic, by construction, and makes Saturn broader (since the effective observing
frequency on a RJ spectrum is higher than that of an AGN-like spectrum). It is also several
times smaller than the other processes applied to the Saturn maps.

time constant and time offset from each map (equation 4.1). We use the mean of the time
constants measured immediately before and after each Saturn observation. Then, we convolve
with the mean transfer function for the 1500 deg2 field (equation 4.2). For the science field,
we use the mean time constants measured over 2019 and 2020 (Figure 4.2). For each band, we
take the weighted mean over all detectors in that band, with weights taken from the average
weight each detector receives in the mapmaking process. This results in time constants of
(6.9, 6.5, 4.3) ms at (90, 150, 220) GHz. This makes the beam in the Saturn maps match the
mean beam in the 1500 deg2 science maps. The effect of correcting for the time constant and
offset is shown in Figure 4.8.

Spectrum Conversion

Saturn is much hotter than the CMB, with brightness temperature of ∼100 K across all
three of our bands (Planck Collaboration et al., 2017; Hasselfield et al., 2013b; Dunn et al.,
2005). So, we assume Saturn follows a Rayleigh-Jeans spectrum (I ∝ ν2). We apply the
spectrum correction described in §4.1.4. Instead of converting from an AGN-like spectrum to
a CMB spectrum, we instead convert from the RJ spectrum to an AGN-like spectrum. Since
we are working with maps, we must also construct the transfer function in two dimensions.
Finally, we also add a small broadening for the pointing error in the field observations. The
maps of the science field have a small random error in pointing reconstruction, which we treat
as a circular Gaussian with standard deviation σjitter = 3.′′0. Since we work with individually
recentered Saturn observations, we need to broaden the maps by σjitter to match the AGN
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maps. With these adaptations, the transfer function is

exp−(ℓ2x + ℓ2y)(σ
2
RJ − σ2

AGN + σ2
jitter)/2) (4.21)

(compare this to equation 4.17). This effect is shown in Figure 4.9.

4.3.2 AGN Preparation

We apply 4 processes to the AGN maps before stitching them:

1. Convolution with the planet disk

2. Correct for the time constants and offset

3. Recentering

4. Background subtraction

The first three operations are applied in Fourier space. Finally, we combine all of the AGN
maps into a single stack, with each AGN weighted by its signal-to-noise ratio.

Planet Disk

The finite extent of Saturn cannot be completely neglected. To account for it, we convolve
the AGN (which are point-like) with a disk that has a radius of 8.′′55. This may seem like an
odd choice at first, since Saturn has bright rings that are several times larger than the planet
itself. However, the rings are simply very dim at mm wavelengths2. The BIMA collaboration
made high resolution images of Saturn (Dunn et al., 2005) which allow separation of the
rings from the planet. The rings are only ∼15− 20K, compared to the 100 K planetary disk.
Therefore, we ignore emission from the rings.

Time Constants and Offset

Each AGN is subject to a slightly different time constant and time offset transfer function
because of their different elevations. To make them all match the mean over the 1500 deg2
field, we first remove the transfer function for the the declination of each AGN. We then
apply the mean transfer function over the 1500 deg2. Figure 4.10 shows the resulting change
to one of the AGN maps.

2The brightness of the rings in optical images comes from reflected sun light, which is a negligible
contribution to the mm-wave emission from Saturn or its rings (Esposito et al., 1984; Cuzzi, 1984).
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Figure 4.10: The map of one AGN before accounting for the time constants, minus the same
map after accounting for the time constants. The x and y scales are marked in arcminutes
from the source center, and the color scale is in units of the peak brightness of the source.
This source is below the mean elevation of the field, so it is more extended in the scan
direction (horizontal) than the mean. The very high frequency modes in the scan direction
are induced by inverting the transfer function, which has zeros in it. However, these occur at
extremely high ℓ (≈ 40, 000), and are irrelevant to the SPT-3G beam.

Recentering

The map centers used for mapmaking were based on preliminary source positions, and so
the sources lie slightly off the center of the map. We correct for this by fitting a Gaussian to
the full-depth coadd, and find the shift that puts the peak of the Gaussian at the center of the
map. While the individual observations have low enough noise to perform this recentering,
there is some scatter in the pointing between observations. The same scatter is in the science
observations, and effectively broadens the beam, so we need to include it here. This operation
is performed in Fourier space to avoid the smoothing caused by interpolation.

Background Subtraction

In order to stitch the planet and AGN maps, we are forced to use the AGN maps at
2-3 times the FWHM (see §4.3.3). The signal from the source itself is many times lower
than the peak in this range, and therefore we need to carefully consider sources of noise.
We measure the CMB at high signal to noise ratio, so the instrumental noise will never be
relevant. The CMB itself (and other astrophysical backgrounds) make up the majority of the
noise. The CMB power spectrum peaks at much larger scales (∼ degree scales, as opposed to
the several-arcminute scales considered here), so the the noise can be approximated very well
by a low-order expansion. In this section, we show that a second order background model
can effectively subtract the majority of the noise, and provides a higher signal-to-noise ratio
for the stitching.



69

(a) Before background subtraction.

(b) After background subtraction

Figure 4.11: Radial profiles of the (approximate) beam from the brightest source (black
dashed), and 60 simulated backgrounds (colored lines). The simulated backgrounds include
Gaussian realizations of the CMB, CIB, and thermal and kinematic Sunyaev-Zel’dovich
effects, as well as Poisson realizations of radio sources. Panels a and b show the radial profiles
before and after background subtraction, respectively.
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Assuming the beam is symmetric about its center of mass (which is a good approximation),
the contribution of the background modes are effectively azimuthally averaged about the
center of the source. Any mode that is odd about the center of the source (such as a slope)
contributes no noise. Therefore, we chose to model the background as constant offset and
a slope in radius. The slope in radius is a cone shape in the 2d map, which maps onto an
infinite number of smoothly varying modes in x and y.

To fit the model parameters (the slope and offset), we use the coadd of planet maps
described above. The fit uses the 90 and 150 GHz maps, since we expect the CMB to be
completely dominant in those bands (the 220 GHz maps contain a significant CIB contribution).
We fit the parameters over an annulus centered on the source, with 2.′25 < r < 6.′0. The lower
limit ensures that we don’t include the portion of planet that is contaminated by saturation,
and the upper limit constrains the fit to regions where the planet has a high signal-to-noise
ratio. We run the fit on the coadd of each AGN, and then subtract the background (over the
entire map, not just the fitting region).

To test the efficacy of the background subtraction, we use simulated maps with astrophys-
ical backgrounds included. Figure 4.11 shows the simulated radial profiles before and after
background subtraction. These used an annulus at slightly larger radius than the final beam
maps, but the qualitative results are unaffected: this process effectively removes background
noise from the AGN maps.

4.3.3 Stitching

With the maps prepared, we can now combine the planet and AGN maps into a single
beam map. The planet and AGN have dramatic differences in brightness, so we scale the
planet map to match the AGN map. We cannot use the core of the beam (where the SNR is
highest) in the fit, because the planet maps are contaminated by saturation in that region.
This adds noise to the fit, since we are forced into a region of lower SNR on the AGN.
Therefore, we do the fit in two stages. First, we fit the AGN map to the stack of all AGN
maps, with only an amplitude scaling as a free parameter. This fit uses the full AGN map
(30.′0 × 30.′0), and includes the region of maximum SNR. We then fit the stack of all the
AGN to the planet map, using only a small region at a radius of rinner ≤ r ≤ router, again
with only an amplitude scaling as a free parameter. Using the stack gives us maximum SNR
on stack-to-planet amplitude. The product of the two best-fit amplitudes gives the final
amplitude scaling to make the planet map match the AGN.

To stitch the maps together, we first apodize the AGN map with a mask that linearly
transitions from 1 to 0 over rinner ≤ r ≤ router. We apodize the planet map with the
opposite mask (i.e. transition from 0 to 1 from rinner to router). Finally, we add the two
apodized maps together. We stitch every AGN map to every Saturn map, creating a total of
nAGN × nplanet = 72 beam maps.
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rinner router BG rinner BG router ᾱAGN δt τ rdisk σjitter

arcmin arcmin arcmin arcmin ms ms arcsec arcsec

90 GHz 2.′25 3.′5
2.′25 6.′0

−0.622 −4.6

6.88

8.′′55 3.′′0150 GHz 1.′5 3.′0 6.53

220 GHz 1.′0 2.′5 - - 4.27

Table 4.4: Fiducial input parameters for the beam pipeline.

4.4 Parameter Variations
Through all of the steps outlined above, we have accrued 9 important input parameters

for the beam pipeline. They are

rinner
The inner radius of the stitching region, per band.

router
The outer radius of the stitching region, per band.

BG rinner
The inner radius of background fitting region.

BG router
The outer radius of background fitting region.

ᾱAGN

Mean spectral index of the AGN.

δt Time offset between detector and pointing TOD.

τ Mean of detector time constants, per band.

rdisk Radius of the disk of Saturn.

σjitter
Pointing reconstruction uncertainty.

Their fiducial values are listed in Table 4.4
For the purposes of measuring the beam uncertainty, we repeat this process with some of

the input parameters varied. This allows us to approximately marginalize over systematic
variations from our analysis choices in the mean beam, and include those variations in the final
uncertainty. We vary the stitching region, moving the inner and outer radii by ±0.′5 separately.
Under ideal circumstances, this would not cause any change to the beam. However, the Saturn
and AGN maps do not match exactly, and varying the stitching region accounts for this
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systematic uncertainty. We also vary the region used to fit the background that is subtracted
from the AGN maps, for the same reason. Finally, we vary the time offset between pointing
and detector TOD to account for uncertainty in the time constants and time offset. In the
observations used to determine the time offset, we find that the observation-to-observation
scatter on the time constants is ∼0.7 ms. It is also highly correlated between bands, so simply
apply a ±0.7 ms variation to the time offset (rather than varying the time constants for each
band individually). The mean time constants themselves are extremely well-determined over
two years of observations, so any additional uncertainty is negligible.

4.5 Beam and Covariance Estimation
We use cross spectra of the different stitched maps to estimate the beam window function.

The beam window function is the power spectrum of the beam map, and labeled Wℓ. We
cannot use every possible pair of stitched maps, as we would generate a noise bias from
taking the cross spectrum of one of the input maps with itself. For example, we cannot cross
the stitched map made from AGN1, planet1 with the stitched map made from AGN1, planet2.
The planet maps are different, but the AGN map is the same, and has the same noise near
the center of the source (i.e. below the stitching radius). Since the beam normalization is
arbitrary, we fix the beam to unity at an ℓ that is appropriate for the analysis. The beam
normalization is completely degenerate with absolute calibration, which we determine from
cross spectra with Planck maps. The ℓ range used to do this varies depending on the analysis
goals (e.g. the high-ℓ TT power spectrum uses 1200 < ℓ < 1500, whereas the mid-ℓ analyses
use 600 < ℓ < 1200). For the purposes of this chapter, we have fixed the beam to 1 at
ℓ = 800.

The beam maps are sufficiently small that the flat-sky approximation works very well,
so we are able to use the standard Fourier transform (rather than the spherical harmonic
transform). Before taking the Fourier transform, we apodize the beam maps to remove
noise-dominated regions. The apodization mask is unity at r < 0.75◦, and has a cosine
edge taper smoothly goes to 0 at r = 1.25◦. We tested several variations of the apodization
mask (including a maximal version that only apodizes the noisy map edges), and found no
significant differences.

Including all the parameter variations, we have 792 beam maps, and can create O(105)
unique cross spectra. Actually calculating all these spectra is infeasible, so we actually
calculate a semi-random subset of these spectra to measure the mean beam window function.
The generation of random subsets is motivated by the expected correlation structure of the
spectra. We randomly select a subset of the stitched maps such that each planet and AGN
map is used at most once (this requires that we leave out one of the planet maps, since
we have 8 AGN maps and 9 planet maps). For each map, we randomly select a parameter
to vary. For most parameters (everything except the inner and outer stitching radii), we
then chose the sign of the variation, and use it for all three bands. For the inner and outer
stitching radii, we choose the sign of the variation at random for each band. This is because
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the choice of stitching region is independent for the three bands, and therefore we do not
want to capture any covariance from varying those parameters together. This forms a set of
maps with independent noise. We repeat this selection process 1000 times to get a reasonable
sampling of different cross spectra and parameter variations.

To calculate the mean window function, we simply take the mean of all these spectra.
Finally, we account for two semi-analytic effects: the planetary disk, and the AGN spectrum.
As described above, we convolve the AGN maps with a disk of 8.′′55 in radius to match the size
of Saturn. We now deconvolve the same disk from Bℓ (the square root of the beam window
function). We also use the frequency dependence model described in §4.1.4 to convert Bℓ

from the AGN spectrum to the CMB spectrum. To do so, we use the mean of the measured
AGN spectral indices (which is ᾱAGN = −0.622).

To estimate the uncertainty, we extend the procedure described in Appendix A of Lueker
et al. (2010) (hereafter L10). L10 describes a method of calculating the covariance of all
unique spectra created from a set of independent maps. For a set of nmaps maps, the covariance
of the mean of their cross spectra is given by

Cwindow
ℓℓ′ =

2f(nmaps)

n4
maps

∑
λ

∑
α ̸=λ

(
∆Dλα

ℓ ∆Dλα
ℓ′ + 2

[∑
β ̸=λα

∆Dλα
ℓ ∆Dλβ

ℓ′

])
(4.22)

where Cdata
ℓℓ′ is covariance matrix of the cross spectra, ∆Dλα

ℓ is the mean-subtracted cross
spectrum formed from maps λ and α, and f(nmaps) is a factor that accounts for the finite
number of maps. Since we have non-independent beam maps, this method is not directly
applicable. However, the previous paragraph describes an algorithm to select subsets of the
beam maps that are independent. Therefore, we apply the L10 covariance calculation to each
set of independent maps, and take the mean over all of the resulting covariance matrices. L10
uses 300 different maps, and assumes f(nmaps) ≈ 1. With only 8 AGN maps, we must use
account for this factor properly.

f(nmaps) =
n4
maps

nmaps(nmaps − 1)2(nmaps − 2)
(4.23)

and f(8) = 1.74. We calculate Cwindow
ℓℓ′ for 1000 different sets of independent beam maps, and

take their mean.
Cwindow
ℓℓ′ is the is the covariance of the beam window function (B2

ℓ ), however we want the
covariance of Bℓ. Applying standard error propagation formulae, we have

Cdata
ℓℓ′ =

〈
Cwindow
ℓℓ′

〉
4BℓBℓ′

. (4.24)

At this point, we need to account for uncertainty in our AGN spectral index and bandpasses.
We assign the spectra index an uncertainty of σ(αAGN) = 0.16. This is two times the largest
uncertainty in the spectral index of any AGN. To estimate the uncertainty this adds to
the beam, we calculate the change in Bℓ assuming the average AGN spectral index is
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α = ᾱAGN ± σ(αAGN). We then create the covariance matrix from such an uncertainty, and
add it to the covariance matrix calculated from the data. That is,

∆Bℓ = Bℓ(α = −0.622− 0.16)−Bℓ(α = −0.622 + 0.16) (4.25)

CAGNspectrum
ℓℓ′ = ∆Bℓ∆B

′
ℓ. (4.26)

Cbeam
ℓℓ′ = Cdata

ℓℓ′ +CAGNspectrum
ℓℓ′ (4.27)

Cbeam
ℓℓ′ is the final covariance of the beam.
We also produce a binned radial profile of the beam. This is not currently used in any

science analysis, but can be useful for gaining an intuitive understanding of the beam. We
first azimuthally average every stitched map (including those created from varying input
parameters), with bins that are 0.′1 wide, then take their mean. Finally, we apply corrections
for the planet disk, and the AGN spectrum (in the future, these should be done at the map
level).

4.6 Systematic Tests
Since the beam measurement is such a broadly used calibration product, and directly

affects our power spectra, we have put this process through a battery of systematics tests.
These tests are either based on the simulations described in §4.2.3, or on differences between
different data products.

4.6.1 Pipeline Tests

The pipeline tests us our simulations to make sure we recover the simulation inputs.

Beam Pipeline

To test for bugs and inconsistencies in our pipeline, we run a simulation without any
noise. However, we also need to inject several systematics into the input maps. First, we
use the our model of the beam dependence on observing frequency to expand or contract
the input beam, depending on the source. For the planet maps, we assume a RJ spectrum
(α = 2). For the AGN maps, we use the mean spectral index of the 8 AGN used to measure
the real beams (α = −0.622) The planet maps are then convolved with a disk of radius 8.′′55.
Finally, we apply the time constants and time offset. This is done in map space (rather than
the time domain, where the effect natively lives) to save time. For each map, we construct
the effective map-space filter (equation 4.1), using the measured time constants and source
declinations. For the AGN maps, the time constants are the same between maps, but the
declination varies. For the planet maps, we make separate left- and right-going maps, using
the appropriate transfer function. Each planet map is assigned the time constants measured
from one real observation of Saturn. The time offset is fixed for all maps. Finally, each map
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Figure 4.12: The fractional error on the beam recovered from a simulation. The dominant
effect is a multiplicative scaling, which is degenerate with absolute calibration (and much
smaller than our uncertainty on the absolute calibration). The variation with multipole ℓ is
O(10−4), and much smaller than the beam uncertainties.

is scaled to match the observed amplitude of the corresponding source (the planet maps are
all given different amplitudes, based on the amplitudes of the different Saturn observations).
To determine the true beam, we simply take the power spectrum of one of the input maps,
and remove the pixel window function.

While this is a relatively thorough application of the systematics, it does have a few
deficiencies. First, there are some systematics we have not simulated. In particular, we have
not included the saturation effects in the planet maps. However, the methodology used here
is primarily intended to remove the effects of the saturation, so ignoring it in the simulations
should have little effect. Second, we use the same models (and the same code) to inject and
remove the systematics. Therefore, any inaccuracy in the model is not reflected in these
simulations. For example, modeling the individual detector time constants as a single mean
time constant for all the detectors in one band is somewhat inaccurate. It would be more
accurate to model the time constant transfer function as the mean of many single-pole filters
with the individual detector time constants. However, that still assumes that the detectors
behave as single-pole filters in the time domain, which may not be exactly true. Nonetheless,
we believe that these models are close enough (and we account for their inaccuracies in the
uncertainty).

We run these maps through the beam pipeline with as few modifications as possible. In
fact, we only have to remove the treatment of pointing jitter in the pipeline. Nearly all of the
processing to account for systematics is invertible (the one exception is the masking applied
to the receding portion of the planet scans). Therefore, we should recover the input beams
extremely accurately. In fact, we do. Figure 4.12 shows the fractional change between the
input and recovered beams. These are dominated by a global scaling, which is degenerate
with absolute calibration (and much less than the uncertainty on our absolute calibration).
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Figure 4.13: The scatter in 100 simulated beams (black dashed line), and the estimated noise
from each simulation (blue lines). The black line falls within the expected scatter, indicating
the the covariance calculation we use is unbiased.

This likely comes from floating point arithmetic discrepancies. The beam normalization is
calculated by interpolating the complex beam window function at the pivot ℓ. The recovered
Bℓ is the square root of the real part of the beam window function, so some discrepancy is
not surprising. The remaining variation is at the level of a few parts in 104, which is much
smaller than the final beam uncertainties. We do not fully understand the difference between
150 GHz and the other bands. However, this only appears when the time constants and offset
are included in the simulations, which allows us to partake in some motivated speculation.
The 150 GHz detectors are most sensitive to additional loading, and have the longest time
constants (this comes about from operating near their saturation power). Therefore, the
difference between the time constants in the Saturn observations and the AGN observations
is largest at 150 GHz. Due to the information loss from masking the receding portions of the
Saturn scans, we are forced to recover information in an iterative fashion, which is not exact.
These facts most likely conspire to create a small mismatch between the Saturn maps and
the AGN maps at 150 GHz, that couples into the beam as the long wavelength oscillation we
see here.

Covariance

To test the covariance calculation, we run a set of simulations with white noise added to
the Saturn and AGN maps. The white noise amplitude set to roughly match the SNR of
the individual AGN and Saturn maps, although this is not particularly important for this
test. For each simulation, we create 9 Saturn maps and 8 AGN maps, with their amplitude
scaled to match the observed amplitudes in the data maps. We do not apply any of the
systematics described in the previous section, since we want the only noise contribution to be
from the white noise. We then run a minimal version of the beam pipeline, that consists of
the background subtraction, stitching, beam estimation, and covariance calculation only. We
perform 100 of these simulations, and compare the scatter in the recovered beams with the
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covariance estimated from each simulation. This is shown in Figure 4.13, where we can see
that the covariance estimates generally agree with the scatter in the recovered beam.

4.6.2 Data-based Tests

While the simulation-based tests are effective for catching implementation errors in the
pipeline, they do not test whether the models we are applying are a good representation of
the data. In this sections, we show two further tests based on differences between subsets of
the data that directly test the models. These are similar in spirit the the null tests commonly
used in a power spectrum analysis, but we do not have sufficient information to construct
rigorous passing criteria.

4.6.3 Elevation Dependence of AGN

As described in §4.3.2, we account for the elevation-dependent effects of the time constant
and time offsets. Without the corrections, we would expect to see features along the scan
direction when comparing AGN maps at different declinations. After the map processing, we
expect those differences to be consistent with zero (or at least significantly reduced).

To test this, we take the difference between two sources, one at declination δ = −57.6◦,
the other at δ = −47.5◦. Since they have different intrinsic fluxes, we must normalize their
amplitudes before taking the difference. We do this by fitting for a single multiplicative
amplitude. Otherwise, there are no free parameters (the time constants and offset are fixed
by external measurements). The differences (both before and after processing) are shown in
Figure 4.14. After processing, there is no detectable difference between these sources.

4.6.4 Agreement Between Planet and AGN Maps

Our AGN and planet observations have several significant differences:

• The planet observations occur with much higher loading on the detectors, which makes
their time constants longer.

• We use a different on-sky scan speed

• Planets have rising spectra (Saturn follows a Rayleigh-Jeans spectrum in our bands),
compared to the falling spectra of AGN.

• Saturn is not point-like.

However, we expect to find the the same underlying beam in both the AGN and planet maps.
We can use the difference between the AGN and planet maps (with an amplitude scaling as a
free parameter) to see if our processing is making the AGN and planet maps more similar.

The expectations in this case are somewhat complicated. Some of they systematic
effects we account for partially cancel each other. For example, accounting for the elevation
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(a) Before map processing

(b) After map processing

Figure 4.14: The difference between two AGN maps at different declinations (a source at
δ = −47.5◦ minus a source at δ = −57.6◦). The x and y scales are marked in arcminutes from
the source center, and the color scale is in units of the peak brightness of the source. Panel a
is before accounting for the time constants and time offset, while b is after. Before processing,
the higher declination (lower elevation) source is broadened in the scan direction relative to
the lower declination source. This effect does not appear at 220 GHz because the SNR of
these sources is insufficient at 220 GHz. After processing, the differences have disappeared.
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(a) Before map processing

(b) After map processing

Figure 4.15: The map of one of the brightest AGN minus a coadd of the Saturn maps. The x
and y scales are marked in arcminutes from the source center, and the color scale is in units
of the peak brightness of the source. Panel a is before applying the map processing steps
(except recentering), while b is after all the processing steps. The dashed circles show the
fiducial stitching region. Inside the inner circle, the stitched beam map uses only the AGN;
outside the outer circle, the stitched maps use only Saturn; the region between the circles is
the transition region. The residuals are significantly reduced at 90 and 220 GHz, but are
nearly unaffected at 150 GHz.
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Figure 4.16: The SPT-3G beams (Bℓ) at 90, 150, and 220 GHz (top panel), and their
fractional uncertainties (bottom panel). The beams are normalized such that B800 = 1. The
uncertainty shown here is

√
Cbb, i.e. the square root of the diagonal of the covariance matrix.

This uncertainty is for qualitative purposes only, and any formal analysis must use the full
covariance matrix.

dependence of the time constants and time offset makes Saturn narrower in the scan direction,
while accounting for using only the approaching scans broadens Saturn in the scan direction.
Therefore, we cannot separate each systematic, and expect the agreement between Saturn and
the AGN to improve. However, the final maps should agree much better than the unprocessed
maps. We show the difference between the coadd of Saturn maps and the brightest AGN (at
δ = −51.0◦) in Figure 4.15. As in the previous section, we must normalize each source for its
intrinsic brightness. For this set of three maps, there are a total of five free parameters: 3
amplitudes to account for the difference in brightness, and the 2 background parameters (a
slope and offset, which are applied across all three bands). All the other parameters of the map
processing are fixed by external measurements. Therefore, it is somewhat unsurprising that
we do not get perfect agreement between Saturn and this AGN. We expect some disagreement
at the core (≲ 0.′5), due to the detectors saturating on Saturn. However, the residuals extend
far beyond that core. Therefore, we set the inner stitching radius outside the majority of
the residual, and include the change in the beam with variation of the stitching radii in the
uncertainty.
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(a) Radial profiles of the beams.
(b) Fractional area of the beam at radii larger
than r.

Figure 4.17: Panel a shows the radial profiles of the beams. The high-frequency noise in the
radial profiles is due to our corrections for the planet disk and source spectrum. Panel b
shows the fraction of the beam area at radius > r. This is the reverse cumulative distribution
function of the beam area, and is useful as an intuitive reference point for the sidelobe power
on a given scale.

4.7 Results and Discussion
We present the final SPT-3G beams and their fractional uncertainties in Figure 4.16. The

beams and uncertainty are calculated using all Saturn maps, AGN maps, and parameter
variations.

4.7.1 Radial Profiles

Figure 4.17 shows the radial profiles of the beams. The 90 GHz radial profile shows a
distinct non-Gaussian feature at ∼2.′5. This is due to the greater effect of the Lyot stop at
90 GHz. 220 GHz has a larger response than 150 GHz at large radii (r ≳ 6′), which is most
likely due to Ruze scattering from imperfections in the primary mirror. This is also visible in
the fractional beam area as a function of radius (Figure 4.17b), which shows several times
more sidelobe response at 220 GHz than 150 GHz. We fit a Gaussian to each radial profile,
and find the full width at half maximum (FWHM) is (1.′54, 1.′16, 0.′99) at (90, 150, 220) GHz.
A more thorough analysis of these radial profiles is ongoing (see §4.8).

4.7.2 Uncertainty Contributions

The covariance calculation described in §4.5 cannot be used to isolate the contribution of
a single systematic, unfortunately. Since it operates on cross spectra between different Saturn
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Figure 4.18: The most significant contributions to the beam uncertainty. Saturn and AGN
refer to variations between the different Saturn and AGN maps, respectively. αAGN refers to
uncertainty in the spectral index and detector bandpasses. rinner refers to the inner stitching
radius (where we start to use the Saturn maps). BG rinner refers to the inner radius of the
region used to fit the background model. The contributions from varying the outer radii of
the stitching and background fit regions, and the uncertainty on the time constants and time
offset are not shown.

and AGN maps, it is impossible to remove the uncertainty due to noise in the maps, and
variations between Saturn observations and different AGN. However, we can approximate
the contribution of each uncertainty term for the purposes of understanding their relative
contributions to the total uncertainty. To estimate the uncertainty from varying each input
parameter, we first calculate the mean beam for every parameter value (this is only two
beams per parameter). We then approximate the uncertainty from that parameter taking
the standard deviation of the beams over the different parameter values. For the uncertainty
caused by differences between the AGN and Saturn maps, we have to adopt a slightly more
complicated procedure. As noted above, it is impossible to isolate a single AGN or Saturn
map. Therefore, we select all the cross spectra that are made from a single AGN. For each
AGN, we then construct the mean beam from those cross spectra, and take their standard
deviation. We repeat the same process for each Saturn observation, as well.

The most significant contributions to the uncertainty are shown in Figure 4.18. On
the largest scales, variations in the Saturn maps dominate the uncertainty. This is from
atmospheric noise in the Saturn maps. The contribution from the uncertainty in the spectral
index and detector bandpasses is primarily significant at 90 GHz. This is due in part to the
shape of the 90 GHz bandpass (it is the least uniform), and the higher fractional bandwidth.
Finally, the contribution from varying the inner stitching radius shows an interesting band
dependence. This uncertainty comes from discrepancies between the observed beam profile
in the Saturn and AGN maps. As a reminder, Figure 4.15b shows the difference between the
brightest AGN and a coadd of the Saturn maps, with the fiducial stitching region. Based
just on the magnitude of the residuals, we would expect 90 GHz to receive the smallest
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contribution from varying rinner (as it does), and 150 GHz to receive the largest (it does not).
However, we are more sensitive to the change in residual at rinner (the inner dashed circle in
Figure 4.15b). This may indicate that we are choosing rinner sub-optimally at 150 and 220
GHz. If we increased its fiducial value, we would decrease the uncertainty contribution from
varying rinner. However, we would the increase the contribution from map noise in the AGN
maps (since the AGN maps have lower SNR than the Saturn maps, particularly at the higher
frequencies).

4.8 Ongoing Work
In this section, we discuss some ongoing work to potentially improve the beam measure-

ment.

4.8.1 Towards a Physical Beam Model

As mentioned in §4.1.4, there are a few deficiencies in our model of frequency dependence
in the beam. We are working on developing a physically motivated model for the beam that
more appropriately captures the frequency dependence. For now, this model only includes
the main lobe of the beam (not the sidelobes). We consider four components in the model:

1. Gaussian illumination pattern of the primary mirror by the detector lenslets.

2. Truncation of that illumination pattern by the Lyot stop.

3. Gaussian broadening of the diffracted beam due to a frequency independent geometric
aberration.

4. Averaging the frequency dependent beam over the detector bandpass weighted by a
CMB spectrum

We model the illumination pattern for a δ-function bandpass on the primary mirror as a
truncated Gaussian, then use the Fraunhofer diffraction equation to generate the beam on the
sky. We then integrate over the real bandpass function, and apply the geometric aberration.

The illumination pattern on the primary is

P (r, ν) = exp

(
−r2

2
(
σ0

ν0
ν

)2
)
Π(R) (4.28)

where σ0 is the width of the Gaussian beam from the lenslets at frequency ν0, ν0 is a fiducial
frequency and Π(R) is a disk of radius R:

Π(R) =

{
1 r ≤ R

0 r > R
(4.29)
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For SPT-3G R ≈ 3.75 m. Note that P (r) is the illumination pattern for the electric field. In
the terminology of §4.1.4, σdiffraction is roughly equivalent to σ0ν0/ν (although the model is
not identical, and we do expect somewhat different values).

To get the beam on the sky, we apply the Fraunhofer diffraction equation.

U(ρ, z, ν) = 2π

∫ ∞

0

P (r, ν)J0

(
2πrρ

c/νz

)
rdr (4.30)

U(θ, ν) = 2π

∫ ∞

0

P (r, ν)J0

(
2πrθ

c/ν

)
rdr (4.31)

where z is the distance to the image plane, ρ is the distance from the origin on the image
plane, and J0 is the Bessel function. In the second line, we have taken the small angle
approximation (ρ/z = θ) to put this in terms of angles on the sky. The beam on the sky is
the square of the electric field,

Bideal(θ, ν) = U(θ, ν)2. (4.32)

The ideal subscript indicates that this is without any geometric aberration.
To get the beam for our wide bandpass function, we need to integrate Bideal(θ, ν) over the

bandpass and source spectrum. One might think we should integrate U over the bandpass and
source spectrum, since U represents the electric field. However, at any significant separation
between frequencies, the electric field phases will decohere very quickly. Our bandpasses
and observing spectra are slowly varying, so any adjacent frequencies where phase coherence
matters have very nearly the same illumination pattern. Therefore, the beam over a wide
bandpass function t(ν) when observing a source with a spectrum given by I(ν) is

Bideal(θ) =

∫
A(ν)ΩsI(ν)t(ν)Bideal(θ, ν)dν∫

A(ν)ΩsI(ν)t(ν)dν
(4.33)

where A(ν) = 2π
∫
P (r, ν)rdr is effective collecting area of the SPTat frequency ν, and Ωs is

the solid angle of the source. While these integrands are quite complicated, this is just the
mean of Bideal(θ, ν) weighted by the total power received at each frequency. Finally, we need
to account for geometric aberration, which we model as a convolution with a Gaussian:

B(θ⃗) = Bideal(θ⃗)⊗ exp

(
− θ⃗2

2σ2
geom

)
(4.34)

where ⊗ indicates convolution, and we have replaced θ with θ⃗ to emphasize that this
convolution must be done in the 2D plane.

This model has two free parameters: σ0, and σgeom. We can simultaneously fit these using
the radial profiles of the beams at low radii. We restrict the fit to low radii to ensure that
the beams are dominated by the main lobe.
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4.8.2 Polarized Beam Measurements

Thus far, all SPT analyses have assumed that the response to polarized and unpolarized
sources is identical. However, there is some evidence that this is not the case (Ge et al. in
prep, Chou et al. in prep). In particular, it seems that the side lobes may have a lower
polarization efficiency. Physically, we might expect this from either scattering off the gaps
between the panels that make up the primary mirror, or any optical path that involves
multiple scatterings inside the camera. In both of our upcoming papers, we explore the
possibility of allowing the side lobes to have a lower polarization efficiency than the main
lobe. We do so by first modeling the main lobe (Ge et al. uses the model presented here).
We then assume that the side lobes are whatever remains in the beam after subtracting the
main lobe, and allow them to have a free amplitude in the analysis of polarization spectra.

We are also exploring the possibility of measuring the polarized beams directly. This is
quite challenging, as there are no point-like sources with polarized flux similar to the AGN
we use. We have found two sources with O(100) mJy of polarized flux. While these are
much dimmer than the few Jy AGN we use in this work, the polarization noise is also lower
(both the atmosphere and the CMB have low polarization fractions). We are in the process
of planning dedicated observations of these two sources. In addition, we are beginning to
explore the possibility of flying our own bright polarized source at the South Pole. This is
challenging, because we need to put the source in the far field of the optics (which is at least
a few km from the SPT). We also need the source to be at a reasonable elevation (≳ 25◦)
above the horizon to avoid excess atmospheric loading. Finally we need the source’s position
to be stable at a scale much smaller than the beam scales3 we need to measure (≲ 30′′). At 3
km, this requires position stability of ∼0.5 m.

4.8.3 Time Constants

Until very recently, our science maps have ignored the effects of the time constants and
time offset. Since they very nearly cancel, this is acceptable. However, future data products
will remove both effects from each detector in the time domain. To analyze these data
products, we will need a new beam measurement, with the time constants and time offset
removed at the TOD level, as well. In principle, this makes the beam pipeline much simpler:
there are several processing steps that only exist because we have to account for the different
effects of the time constants and time offset with observing elevation.

4.9 Conclusion
The telescope beam is convolved with the sky, so it affects our observations at all scales.

In this chapter, we described the measurement of the SPT-3G beam using bright sources, and
confirmed that our beams fall in the 1-2 arcminute range. We also make a careful accounting

3In principle, we only need to measure the side lobes, on scales of > 2′.
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of the uncertainty in the beam, and the different contributions to that uncertainty. These
are critical elements to a measurement of the CMB power spectrum, where they are used to
both correct for the effects of the telescope optics, and properly account for uncertainties in
the final spectra (e.g. Dutcher et al. (2021) and Ge et al. in prep.). In the final chapter, we
also show how knowledge of the beam is important for finding resolved objects.
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Chapter 5

Galaxy Clusters Selected via the
Sunyaev-Zel’dovich Effect in the SPTPol
100-Square-Degree Survey

This chapter describes the construction of a catalog of galaxy clusters using the tSZ
signal. The catalog was previously published as Huang et al. (2020). This work uses data
from the SPTPol camera, which is the predecessor the SPT-3G (which as been the primary
focus of this work). The cameras are technically very similar: the detectors are TESes, read
out with a frequency-domain multiplexing system; however, SPTPol had only two observing
bands, centered at 95 and 150 GHz. Since they are mounted on the same telescope, we
achieve approximately the same angular resolution. The calibration, mapmaking, and beam
measurement procedures are equivalent in spirit, but vary in their details. For instance, the
Hii region calibration is done in the time domain for the SPTPol data.

In §1.3.3, we have described the thermal Sunyaev-Zel’dovich effect as a spectral change
to the CMB induced by clouds of relativistic electrons. Galaxy clusters provide a plentiful
supply of relativistic electrons in the ICM. As mentioned, we can use the unique spectrum of
the tSZ to isolate the galaxy clusters with maps across multiple observing frequencies.

Compared to traditional methods of finding galaxy clusters (either using the X-ray
emission from the ICM, or overdensities in optical/infrared galaxy catalogs), the tSZ is less
effective at finding low-mass, low-redshift clusters. On the other hand, the traditional probes
rely on intrinsic emission from the galaxy cluster, which is subject to cosmological dimming.
At infrared wavelengths, the K correction compensates for most of the cosmological dimming
(see e.g. Gonzalez et al., 2019, and references therein). However, infrared surveys are affected
by projection effects and have higher mass-observable scatter than tSZ-selected clusters. tSZ
surveys are able to provide approximately mass-limited catalogs across the full redshift range,
with the maximum redshift set by the increasing rarity of high-mass clusters at high redshift.
At the highest redshifts, more massive clusters have not had time to form.
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As a reminder from Chapter 1, the magnitude of the tSZ is given by

∆TtSZ = TCMBf (x)

∫
ne
kBTe
mec2

σtdl (5.1)

≡ TCMBf (x) y (5.2)

(Sunyaev and Zel’dovich, 1972), where x ≡ hν/kBTCMB is the dimensionless frequency, ne is
the electron number density, Te is the electron temperature, σt is the Thomson cross section,
kB is the Boltzmann constant, c is the speed of light, and the integral is along the line of
sight. f describes the frequency dependence of the tSZ:

f (x) =

(
x
ex + 1

ex − 1
− 4

)
(1 + δrc) (5.3)

where δrc is a relativistic correction which is several percent for massive clusters with Te > 5
keV (Nozawa et al., 2000). Below 217 GHz, f < 0, which leads to the CMB decrement noted
above. Since the tSZ is a spectral effect, it is independent of the distance to the galaxy cluster.
Furthermore, y is proportional to the thermal energy integrated along the line of sight. The
total tSZ signal of the cluster (Ysz), defined as the integral of y over the transverse extent of
the cluster, is mathematically equivalent to the total thermal pressure of the cluster. It is
expected to be tightly correlated with cluster mass (Motl et al., 2005). This makes the tSZ
an effective tool for building galaxy cluster catalogs for cosmological analyses (see Carlstrom
et al. 2002 for a review).

We present a catalog of galaxy clusters found in one of the deepest high-resolution CMB
maps currently available. This pushes the cluster detection threshold to lower mass, and
represents the first of several catalogs that will use data of similar or greater depth. By
decreasing the mass threshold, we have also increased the effective redshift limit. The catalog
consists of 89 galaxy cluster candidates, of which 81 have been confirmed using optical and near-
infrared data. Of the confirmed clusters, 29 are presented for the first time. This chapter is
organized as follows: in §5.1, we describe the mm-wave data and processing; §5.2 discusses the
cluster search methodology and characterization; §5.3 describes the optical and infrared follow
up used to confirm cluster candidates and estimate their redshifts; the catalog is presented
and compared with other cluster catalogs in §5.4; finally, we discuss conclusions and upcoming
work in §5.5. Selected data reported in this work (and any updates to the clusters in this
catalog) will be available at http://pole.uchicago.edu/public/data/sptsz-clusters.

5.1 Millimeter-wave Data
The cluster sample presented in this work was derived from two-band millimeter-wave

(mm-wave) data taken with the SPTPol camera on the South Pole Telescope (SPT, Carlstrom
et al. 2011). In this section, we describe the observations and the data processing used to
produce mm-wave maps.

http://pole.uchicago.edu/public/data/sptsz-clusters
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5.1.1 Telescope and Observations

The SPT is a 10-meter-diameter telescope located within 1 km of the geographic South
Pole, at the National Science Foundation’s Amundsen-Scott South Pole Station, one of
the premier sites on Earth for mm-wave observations. The 10-meter aperture results in
diffraction-limited angular resolution of ∼1 arcmin at 150 GHz, which is well-matched to
the angular size of high-redshift galaxy clusters. Combined with the redshift-independent
surface brightness of the tSZ, this makes the SPT a nearly ideal instrument for discovering
high-redshift clusters through the tSZ. The first camera on the SPT was used to conduct the
2500-square-degree SPT-SZ survey. The resultant cluster catalog contains 42 clusters above
z = 1 with typical masses of 3× 1014M⊙, the most extensive sample of massive, high-redshift
systems selected via ICM observables in the literature (Bleem et al., 2015b, hereafter B15).

The SPTPol camera (Austermann et al., 2012), installed on the telescope in 2012, consists
of 1536 detectors, 1176 configured to observe at 150 GHz, and 360 configured to observe at 95
GHz. The first SPTPol observing season and part of the second season were spent observing
a roughly 100-square-degree field centered at right ascension (R.A) 23h30m, declination
-55◦ (bounded by 23h < R.A. < 24h, -60◦ < decl. < -50◦, the same definition as the
ra23h30dec−55 field in B15). This is referred to as the SPTPol 100d field. It was actually
observed as two separate sub-fields: a “lead” field and a “trail” field. This strategy was
adopted to mitigate the effects of ground-based signals. No ground signals were ever detected,
so we analyze both fields as one. Observations occurred between March and November of
2012, and in March and April of 2013. Of approximately 6600 observations of the field, 6150
observations at 95 GHz and 6040 observations at 150 GHz are used in this work. Maps made
from the weighted sum of all SPTPol observations of this field have rough noise levels (in
CMB temperature fluctuation units) of 6.5 µK-arcmin at 150 GHz and 11.2 µK-arcmin at 95
GHz, a factor of 3-4 lower than the typical noise levels for the SPT-SZ maps used in B15,
but over a much smaller area.1 We thus expect a lower total number of clusters compared to
B15 but a higher density and a larger fraction of systems at high redshift.

5.1.2 Mapmaking

The mapmaking for this work is performed as described in §3.3 The data from every
individual observation of the field at each observing frequency is calibrated, filtered, and
binned into 0.25 arcmin map pixels using the Sanson-Flamsteed projection (Calabretta and
Greisen, 2002). The equivalent Fourier-domain filtering from each of these steps is a high-pass
in the scan direction with a cutoff of angular multipole ℓ∼400, a low-pass in the scan direction
with a cutoff of ℓ∼20, 000, and an isotropic high-pass with a cutoff of ℓ∼200, respectively.
The low-pass filter is set well above the resolution of the SPT, and is only used to prevent
aliasing of high-frequency time-domain noise. In the two high-pass filtering steps, compact

1The SPTPol camera is sensitive to both the total intensity and the polarization of incoming radiation,
but we only use the total intensity information in this work.
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emissive sources with flux density greater than 6.4 mJy at 150 GHz are masked to avoid
filtering artifacts (the same sources were masked in B15).

5.1.3 Beams and Calibration

For SPTPol, we measure the instrument response as a function of angle (i.e., instrument
beams) on planets, particularly Mars. The main lobe of the beam at both frequencies is
well approximated by an azimuthally symmetric Gaussian, with full width at half maximum
(FWHM) ∼1.′6 and ∼1.′1 at 95 and 150 GHz respectively. Uncorrected shifts in absolute
pointing between individual-observation maps leads to a further smearing of the beam in
coadded maps, resulting in final beam FWHM of ∼1.′7 and ∼1.′2 at 95 and 150 GHz. In the
matched filter described in the next section, we use a Gaussian approximation to the beam
at each frequency.

The relative calibration among detectors in the SPTPol focal plane, and the absolute
calibration used in this work, are derived using a combination of detector response to an
internal thermal source and to the Galactic Hii region RCW38. We use a calibration procedure
identical to that described in Schaffer et al. (2011), and we refer the reader to that work
for details. We apply an additional calibration factor to our simulations to account for any
discrepancies between the RCW38-based calibration and absolute calibration against SPT-SZ
maps (see §5.2.2).

5.2 Cluster Extraction and Characterization from
mm-wave Data

In this section, we summarize the procedure used to extract the cluster signal from maps
of the microwave sky. The method used in this work is very similar to that of previous SPT
publications. For a more detailed treatment, see Williamson et al. (2011), Reichardt et al.
(2013), Vanderlinde et al. (2010, hereafter V10), and B15.

5.2.1 Cluster Extraction

The SPTPol maps contain signals from several classes of sources, each of which has its own
spatial and spectral characteristics. We first describe the spatial behavior of these sources.
At large angular scales, our maps are dominated by the CMB. On the smallest scales, power
comes mostly from point sources, such as dusty galaxies and radio-bright sources. Galaxy
clusters populate the intermediate regime, between the large scale CMB fluctuations and the
point sources.

The intensity of these signals also varies by observing frequency. The amplitude of the
CMB and kSZ is preserved across observing frequencies, because the maps are calibrated
in CMB temperature units. Radio-loud active galactic nuclei (AGN) appear with a falling
spectrum, while dusty galaxies have a rising spectrum. Finally, the tSZ spectrum is given in
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(a) 95 GHz map (b) 150 GHz map

Figure 5.1: Panels a and b each show a 3◦-by-3◦ cutout at 95 and 150 GHz, respectively, with
several galaxy cluster detections circled in orange. These cutouts are taken from the larger
map used in this work, which was produced as described in §5.1.2. The black dashed region
is shown in Figure 5.2, after the matched filter is applied.

equation 5.3. For a given cluster, the magnitude of the tSZ is greater at 95 GHz than 150
GHz. We model the map as follows:

T
(
θ⃗, νi

)
= B(θ, νi) ∗

[
∆Tsz

(
θ⃗, νi

)
+Nastro

(
θ⃗, νi

)]
+Nnoise

(
θ⃗, νi

) (5.4)

where θ⃗ is the position on the sky, νi is the observing band, ∆Tsz is the tSZ, as defined in
equation 5.1, Nastro is all other signals fixed on the sky (such as emissive point sources), Nnoise

is any noise term not fixed on the sky (such as instrumental noise), B(θ, νi) represents the
effects of the SPTPol beam, as well as filtering operations applied during mapmaking, and ∗
is the convolution operator.

Using the known spatial and spectral forms of the astrophysical noise terms described
above, and the measured non-astrophysical noise (see §5.2.2), we construct a simultaneous
spatial-spectral filter to optimally extract the cluster signal. The process is similar to that
described in Melin et al. (2006). In the Fourier domain, the filter takes the form

ψ(l, νi) = σ2
ψ

∑
j

N−1
ij (l)f(νj)Sfilt(l, νj) (5.5)
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(a) Matched-filtered map
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Figure 5.2: Panel a is the region of sky outlined with a black dashed line in Figure 5.1, after
the matched filter is applied. This region is 50.′0 on each side. The filtering is described in
§5.2.1, and this map has been filtered to optimally find objects with θc = 0.′25. It contains 2
detected galaxy clusters, SPT-CL J2323-5752 at z = 1.3, and SPT-CL J2320-5807 at z = 0.56,
both of which are detected at a signal-to-noise-ratio greater than 5.0. A composite image
of tSZ contours, optical, and infrared images for SPT-CL J2323-5752 is shown in Figure
5.4. Panel b shows the azimuthally-averaged spatial filter used to produce panel a for each
observing band. Since the tSZ has a larger magnitude at 95 GHz, the 95 GHz filter remains
positive over the entire range. The 150 GHz filter is negative at intermediate ℓs to subtract
CMB fluctuations. The peak of the 95 GHz filter is lower than the peak of the 150 GHz filter
due to the relative noise in the 95 and 150 GHz SPTPol maps.

where σ2
ψ is the predicted variance of the filtered map, given by

σ−2
ψ =

∫
d2l
∑
i,j

f(νi)Sfilt(l, νi)N
−1
ij (l)f(νj)Sfilt(l, νj) (5.6)

The band-band, pixel-pixel covariance matrix is represented by N, and Sfilt is the Fourier
transform of the search template convolved with B(θ, νi). We use an isothermal projected
β-model (Cavaliere and Fusco-Femiano, 1976) with β fixed at 1 for the SZ surface brightness
template:

S = ∆T0
(
1 + θ2/θ2c

)− 3
2
β+ 1

2 . (5.7)
The normalization (∆T0) is a free parameter, and we search over a range of core radii (θc).
V10 explored the use of more sophisticated models, but found no significant improvement.
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The covariance matrix N is constructed using model power spectra for the astrophysical
terms, and measured noise properties for the remaining terms. The astrophysical portion is
made up of the lensed CMB, point sources, and kSZ and tSZ from unresolved sources. The
CMB power spectrum is calculated using the best-fit WMAP7 + SPT ΛCDM parameters
(Komatsu et al., 2011; Keisler et al., 2011). The tSZ background is taken to be flat in l(l + 1)
space, with the level taken from Lueker et al. (2010). The kSZ spectrum is taken from
Shirokoff et al. (2011). While newer results are available for these spectra (e.g., George et al.
2015; Planck Collaboration et al. 2018), the matched filter is insensitive to the details of the
spectra at this level. The combination of instrumental and atmospheric noise is measured
from the data (see §5.2.2).

Before applying the matched filter, we mask point sources above 6.4 mJy (at 150 GHz)
with a radius of 4 arcminutes from the source center. This reduces spurious detections caused
by ringing around the brightest sources. We also apply an additional 8 arcminute veto
around these sources, in which we reject any candidate objects. A small number of spurious
detections are still included, which we remove via visual inspection.2 After masking, the total
search area is 94.1 deg2.

We use 12 different filters, with θc evenly spaced between 0.′25 and 3.′0. After applying
the filter in the Fourier domain, we transform back to map space to locate cluster candidates.
Candidates are selected by their signal-to-noise ratio. Our observation strategy causes small
variations in noise in both R.A. and declination. The overlap region between the lead and
trail fields is somewhat deeper than the non-overlapping regions, and instrumental and
atmospheric noise are larger closer to the equator. Our simulations (see §5.2.2) naturally
include both noise variations. We account for the declination-dependence of the noise by
splitting the field into 90′ strips of constant declination and ignore the R.A.-dependence when
calculating the signal-to-noise ratio of cluster candidates. Both variations are small (typically
≤ 5%), so this will not bias our mass estimation (see §5.2.4).

In each strip, we fit a Gaussian to the distribution of all unmasked pixel values within 5
σ of the mean. We use the standard deviation of the fitted Gaussian as our measure of noise.
The pixel distribution is highly Gaussian within 4 σ of the mean, and the fitted standard
deviation varies only a small amount when fitting all pixels within 2, 3, 4 or 5 σ of the mean.
Therefore, we expect that using the Gaussian approximation of our noise distribution to be
sufficiently accurate. This was changed from previous SPT analyses, which used the root
mean square (RMS) of the strip. For each strip, we divide the filtered map by the noise,
resulting in a signal-to-noise map. The updated method of measuring the noise typically
results in a 6-10% increase in the signal-to-noise ratio at the locations of clusters. Galaxy
cluster candidates are found using a SExtractor-like algorithm (Bertin and Arnouts, 1996)
on each filtered map. For each candidate, we maximize the signal-to-noise ratio (ξ) over R.A.,
declination, and filter scale. A small region of the mm-wave maps is shown in Figure 5.1.
The matched filter, and the results of applying it to this region are shown in Figure 5.2.

2Our visual inspection is statistically consistent with masking point sources above 3 mJy in simulations.
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5.2.2 Simulations

In order to characterize our detection algorithm, we use simulated maps of the sky. Each
map has several components:

CMB The Code for Anisotropies in the Microwave Background (CAMB; Lewis et al. 2000)
is used to generate CMB spectra from the WMAP7+SPT best-fit ΛCDM parameters
(Komatsu et al., 2011; Keisler et al., 2011). These are used to generate Gaussian random
fields for the CMB realizations.

Radio Sources We generate point sources at random locations, with fluxes at 150 GHz
based on the model from De Zotti et al. (2005). We assume 100% spatial correlation
between 95 and 150 GHz, and a spectral index αradio = −0.9 (George et al., 2015) with
Gaussian scatter of 0.47 (Mocanu et al., 2013).3 Sources have fluxes between 1.0 and
6.4 mJy. The upper cutoff was chosen to match the masking threshold used on the real
data.

Dusty Sources Dusty sources are modeled as two Gaussian random fields: one for the
Poisson contribution, and another for the clustered term. We again assume 100%
spatial correlation between bands. We adopt the model from George et al. (2015)
and use the best-fit values for spatial and spectral behavior from that work: the
Poisson term is assumed to be of the form Cℓ = const., and is normalized such that
Dℓ = ℓ (ℓ+ 1) / (2π)Cℓ = 9.16µK2 at ℓ = 3000 in the 150 GHz band; the clustered
term is normalized such that D3000 = 3.46µK2 at 150 GHz, and Dℓ ∝ ℓ0.8. George et al.
(2015) finds the best fit spectral indices to be αclustered = 3.27 and αpoisson = 4.27.

tSZ N-body simulations are used to project tSZ halos onto simulated skies. Halo locations
and masses are taken from the Outer Rim N-body simulation (Heitmann et al., 2019).
We use the method described in Flender et al. (2016) to map halos to a location on the
sky. The pressure profile described in Battaglia et al. (2012) is added at the location
of each halo to create a map of the tSZ. The simulated maps contain contributions
from halos with M500c > 6.25× 1012M⊙h

−1
70 , spanning a redshift range from z = 0.01 to

z = 3.0.4 These maps contain a sufficient number of low-mass clusters to reproduce a
power spectrum consistent with George et al. (2015). While the amplitude of the kSZ
is similar to that of the tSZ, we neglect the kSZ because it is much smaller than other
noise terms.

Noise The instrumental and atmospheric noise terms are not simulated. Instead, we use
noise realizations calculated from the data. Noise realizations are generated by splitting
the maps into equal-weight halves, and then differencing them. We split the data into

3We define the spectral index such that the specific intensity of a species i is Iν,i ∝ ναi .
4M500c is the mass within r500c of the cluster center, where r500c is the radius at which the average density

of the galaxy cluster is 500 times the critical density at the cluster’s redshift.
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halves containing different maps for each noise realization, and normalize based on the
number of input maps.

We do not account for any spatial correlation between simulated components. In particular,
this leads to an underestimate of the number of tSZ decrements that are partially filled by
radio sources. Bleem et al. (2020) performs an analysis of the radio intensity at the locations
of tSZ-selected galaxy clusters, and finds that this is not a large effect. However, this work
uses deeper mm-wave data, so the Bleem et al. (2020) result should be considered a lower
limit to the radio contamination. The effects of lensing dusty sources and CMB on cluster
catalogs was studied in Hezaveh et al. (2013). They conclude that lensing has little to no
effect on the source density in tSZ-selected cluster surveys. Finally, we have not included
the kSZ at all. However, we have tested its impact using the simulations from Flender et al.
(2016), and find that it adds variance, but no bias. We find that the kSZ is responsible for
∼5% of the intrinsic scatter in the scaling relation between signal-to-noise and mass (see
§5.2.4).

These simulations are used to characterize both the expected number of false detections,
and the normalization when calculating cluster mass. In order to properly account for the
SPTPol beams and calibration, we first filter a map containing all the simulated components
with the SPTPol filter transfer function and the beam. For this step, we use the measured
beam instead of the Gaussian approximation that is used when constructing the matched
filter. Then, we apply an overall calibration factor to the map for each band. This calibration
factor is calculated via comparisons to calibrated SPT-SZ maps of the same field (see Keisler
et al. 2015). Finally, the instrumental and atmospheric noise is added.

5.2.3 Sample Purity

We expect some fraction of our cluster candidates to be false detections caused by
astrophysical and instrumental noise. In order to estimate the rate of false detections, we
create a set of simulated sky maps containing all noise terms, but no tSZ signal. While,
in principle, this means we are missing a noise term from sub-threshold galaxy clusters,
the power in the tSZ is much smaller than other noise terms on the spatial scales that the
matched filter is sensitive to. Furthermore, at current noise levels, chance associations of
below-threshold clusters that overlap to form an apparently higher significance cluster are very
rare. We search for clusters in these maps, using the procedure described above (including
by-eye cleaning of spurious detections associated with bright point sources). The remaining
detections are assumed to be representative of the false detections we find in the real data.
At our cutoff of ξ > 4.6 we expect 91% purity (i.e. 8 false detections). See §5.4 for more
details on the cutoff. The false detection rate is shown as a function of cutoff significance in
Figure 5.3.
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Figure 5.3: Simulated false detection rate, as calculated from approximately 1000 deg2 of
simulated sky (10 simulations of the sky area used in this work). This shows the density of
false detections above a given significance (ξmin) on the left side, and the expected number
of false detections for the entire 100 deg2 survey area on the right. We expect 8 ± 2 false
detections at our significance cutoff, ξmin = 4.6.

5.2.4 Galaxy Cluster Mass

We estimate masses for each cluster based on its detection significance (ξ) in SPT maps.
Our method for estimating masses is described in detail in Reichardt et al. (2013), Benson
et al. (2013) and Bocquet et al. (2019). In this section, we briefly describe the method.

For each galaxy cluster, we calculate the posterior probability for mass

P (M |ξ) = dN

dMdz

∣∣∣∣
z

P (ξ|M, z) (5.8)

where ξ is the measured signal-to-noise ratio of the cluster, dN
dMdz

is the assumed mass function
(Tinker et al., 2008), and P (ξ|M) is the ξ-mass scaling relation. As discussed in V10, ξ itself
is a biased mass estimator, so we introduce the unbiased SPT detection significance ζ:

ζ ≡
√

⟨ξ⟩2 − 3. (5.9)

For ⟨ξ⟩ > 2, this removes bias caused by the maximization over three degrees of freedom
(R.A., declination, and filter scale) performed when producing the catalog. ⟨ξ⟩ is the mean
significance with which a cluster would be detected in an ensemble of tSZ surveys. For each
cluster, we assume that P (ξ) is a Gaussian distribution with unit width, centered on the
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measured signal-to-noise ratio, and marginalize over the scatter. Finally, we parameterize the
relationship between the unbiased detection significance and cluster mass as

ζ = Asz

(
M500c

3× 1014M⊙h
−1
70

)Bsz ( E(z)

E(0.6)

)CSZ

(5.10)

with normalization Asz, slope Bsz, redshift evolution Csz. We assume log-normal scatter σln ζ
on the ζ −M scaling relation.

As defined, Asz is dependent on the noise levels in the maps. In order to use the same
scaling relation for a variety of fields, we redefine Asz → γfieldAsz. To find γfield, we run a
modified version of the cluster extraction algorithm. We filter 10 simulated maps, using all
the components (noise and tSZ) described above. We also filter the maps containing only the
tSZ (signal-only maps). Instead of running the source extraction on the signal-to-noise ratio
maps, we divide the signal-only maps by the noise (calculated as described in §5.2.1). This
gives us a direct measure of ⟨ξ⟩ instead of ξ, by removing the scatter associated with the noise
terms, and reduces the number of simulations required. To construct a catalog, we maximize
the signal-to-noise over the filter scale at the central pixel of each halo. We fit the scaling
relation using all halos with M500c > 2 × 1014M⊙h

−1
70 and z > 0.25, to match the SPTPol

cluster sample. Note that the size of the cluster on the sky becomes comparable to CMB
fluctuations for galaxy clusters at z ≤ 0.25, and our mass estimates may be systematically
low at these redshifts.

In previous SPT publications, we have calculated γfield from a common set of simulations.
We use a different set of cluster simulations to calculate γfield in this work than have been
used in previous SPT publications. To account for this, we recalculate γfield for each of the 19
sub-fields in the SPT-SZ observing region using our new simulations, and we compare these
results to the SPT-SZ values of γfield published in de Haan et al. (2016). The ratios of the
SPT-SZ field scalings in de Haan et al. (2016) to those calculated using our new simulations
agree at the percent level among the 19 fields, and we take the median of this ratio and
apply it to the γfield we calculate for the SPTPol 100d field. This results in a final scaling for
the SPTPol 100d field of γfield = 2.66. Because γfield is defined relative to V10, this implies
that for the same cluster detected in this data and in V10, we should find a value of ξ 2.66
times larger here. A quick check using the most significant object in both catalogs, SPT-CL
J2337-5942, bears this out: that cluster is detected in this work with ζ = 38.9 and in V10
with ζ = 14.8 (a factor of 2.63 smaller).

In order to provide consistent, comparable mass estimates between cluster catalogs
produced by the SPT collaboration, we adopt the mass estimation method used in B15.
In this method, the cosmological parameters are held fixed and only the scaling relation
parameters are varied (such that the fitting procedure becomes equivalent to abundance-
matching to the fixed cosmology). The cluster catalog we use for the scaling-relation fit is the
updated B15 catalog presented in Bocquet et al. (2019).5 The resulting best-fit parameters

5The updated catalog provides better redshift measurements on a handful of clusters and redshifts for a
few previously unconfirmed clusters.
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Figure 5.4: Four new z > 1 clusters identified in the SPTPol 100d catalog. Clockwise from
upper left: SPT-CL J2259-5301 at z = 1.16± 0.09 detected at ξ = 5.1; SPT-CL J2336-5252
(z = 1.22± 0.09, ξ = 6.7); SPT-CL J2323-5752 (z = 1.3± 0.1, ξ = 5.1), and SPT-CL J2355-
5514 (z = 1.4± 0.1, ξ = 4.9). The composite rgb images are created using Magellan/PISCO
g + r-band data, Magellan/LDSS3-C z−band data, and Spitzer IRAC 3.6 µm data from the
SSDF; detection contours from the SPTPol θc=0.′25 filtered maps are overlaid.

are Asz = 4.07, Bsz = 1.65, CSZ = 0.63, and σln ζ = 0.18. As a check, we run the same fit
using only the cluster sample presented in this work. As expected, the constraints are not as
tight as those provided by the fit using the B15 sample, but they are consistent.
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5.3 Optical and IR Followup
As in previous SPT cluster publications, we use the existence of overdensities of red-

sequence galaxies at the locations of SZ cluster candidates to both confirm candidates as
clusters as well as to obtain redshift estimates for confirmed systems. Galaxy overdensities
are identified in optical and near-infrared imaging observations; such imaging was obtained
for all 66 cluster candidates at ξ ≥ 5 and 94% (84/89) of the candidates at ξ ≥ 4.6. Optical
and infrared imaging for four high-redshift clusters is shown in Figure 5.4.

5.3.1 Optical Data

The optical imaging for this work was primarily conducted using the Parallel Imager
for Southern Cosmology Observations (PISCO; Stalder et al. 2014), a simultaneous 4-band
(griz ) imager with a 9′ field-of-view mounted on the 6.5-meter Magellan/Clay telescope at
Las Campanas Observatory. The simultaneous imaging in multiple bands allows PISCO to
provide efficient follow-up of faint targeted sources such as galaxy clusters.

PISCO data were reduced using a custom-built pipeline that incorporates standard image
processing corrections (overscan, debiasing, flat-fielding, illumination) as well as additional
PISCO-specific corrections that account for non-linearities introduced by bright sources.
Reduced images are further processed through the PHOTPIPE pipeline (Rest et al., 2005;
Garg et al., 2007; Miknaitis et al., 2007) for astrometric calibration and to prepare for
coaddition which is performed with the SWarp algorithm (Bertin et al., 2002). Astrometry
is tied to bright stars from the Dark Energy Survey public release (Dark Energy Survey
Collaboration et al., 2018) and sources from the second Gaia data release (Gaia Collaboration
et al., 2018). Sources are identified in the coadded imaging data utilizing the SExtractor
algorithm (Bertin and Arnouts, 1996) (v 2.8.6) in dual-image mode, star-galaxy separation is
accomplished using the SG statistic introduced in Bleem et al. (2015a), and photometry is
calibrated using the Stellar Locus Regression (SLR; High et al. 2009).

Additional optical imaging was drawn from targeted observations with the LDSS3-camera
on Magellan/Clay (5 systems) as well as from a reprocessing of public data from the Blanco
Cosmology Survey (Bleem et al. 2015a; 5 systems). These data were processed following the
methods described in B15 and Bleem et al. (2015a), respectively.

5.3.2 Near-Infrared Data

Spitzer/IRAC imaging (Fazio et al., 2004) at 3.6 µm and 4.5 µm is available for the
majority (91%) of the SPTPol 100d sample. These data come from both targeted imaging
obtained over the course of the SPT-SZ survey (8%, see B15 for details) as well as from data
in the Spitzer-South Pole Telescope Deep Field (SSDF; Ashby et al. 2013). The 94-square-
degree SSDF in particular was designed to overlap with deep observations by the South Pole
Telescope in this 100d field, although it does not cover the entire extent of the mm-wave
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maps used in this work. Our near-infrared imaging with Spitzer is of sufficient depth to
identify galaxy clusters at z ≲ 1.5.

Near-Infrared Completeness

We use SSDF galaxy catalogs to estimate the probability that otherwise unconfirmed
candidates are false detections. The method we use was developed in Song et al. (2012);
and we only give a brief overview here. For each cluster candidate, we fit a β-model with
β = 1 and a background density to the observed number density of galaxies brighter than
18.5 magnitude (Vega) in the 3.6 µm channel. We also perform this fit for 10,000 random
locations in the SSDF footprint. The probability of a candidate being a false detection is
then the fraction of the random locations that have a larger β-model amplitude than the fit
at the location of the cluster candidate. This statistic is reported as Pblank for all candidates
without redshifts and galaxy clusters with z > 0.7 in Table A. We consider candidates with
Pblank < 0.05 confirmed galaxy clusters.

5.3.3 Redshift Estimation

Cluster candidates are characterized using tools that identify excesses of red-sequence
galaxies at cluster locations. These tools, as well as the models used for the colors of red-
sequence galaxies as a function of redshift, are described in detail in B15; here we simply
note details specific to the analysis of this SPTPol sample.

As this is one of the first analyses to make use of PISCO data for confirming and
characterizing SPT cluster candidates, it was necessary to calibrate the cluster red-sequence
models to match the PISCO photometric system. Further details are given in Bleem et al.
(2020), which performs a detailed comparison of redshifts derived from PISCO and a sub-
sample of the B15 catalog with spectroscopic redshifts. Similar to other griz -band photometry
derived from previous targeted observations of SPT clusters, we have transformed the PISCO
photometric system to that of the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009)
using instrumental color terms in the SLR calibration process.6 The PISCO imaging presented
here was obtained as part of a broader effort to obtain high-quality data with good seeing on
SPT-SZ and SPTPol clusters for a number of additional follow-up studies. In the course of
this effort, imaging was obtained for a large fraction of galaxy clusters identified in the 2500d
SPT-SZ survey with spectroscopic confirmations (Ruel et al., 2014; Bayliss et al., 2016);
51 of these systems were used to calibrate the red-sequence models for redshift estimation
with the PISCO data; from this calibration we determine cluster redshifts to be accurate to
σz/(1 + z)∼0.015− 0.02.

6This transformation works well in the gri -bands, but results in a poorer match in the z -band, in part
because PISCO has a narrower z -filter (similar to that to be employed on LSST Ivezić et al. 2007). This
photometric calibration scheme is sufficient for our work here, where having a well-calibrated color-redshift
model is the driving requirement. However, in the future PISCO data will be tied to the LSST photometric
system.
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Figure 5.5: The mass and redshift distributions for several recent SZ-selected galaxy cluster
catalogs. We plot the estimated mass and redshift for each of the 79 galaxy clusters with
measured redshifts from this catalog, 517 from the SPT 2500 deg2 survey (B15), 182 from
the ACTPol-ED56 survey (Hilton et al., 2018), 91 from the ACT survey (Hasselfield et al.,
2013a), and 1653 from the second Planck galaxy cluster catalog (Planck Collaboration et al.,
2016a). The black line is the forecast detection threshold (50 photon counts) for eROSITA
(Pillepich et al., 2012).

Finally, we have also taken advantage of additional spectroscopy of high-redshift clusters
obtained following the publication of B15 (e.g., Bayliss et al. 2016; Khullar et al. 2019) to
improve our calibration of near-infrared color-redshift models.

5.4 The Cluster Catalog
The SPTPol 100d cluster catalog contains 89 galaxy cluster candidates, 81 of which are

optically confirmed and 29 are reported for the first time. In Table A, we present the galaxy
cluster candidates found with ξ > 4.6. We originally chose a cutoff of ξ = 4.5, so that the
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marginal false detection rate7 is approximately 50%. This choice is largely motivated by
the need to follow up our candidates with dedicated optical imaging, and was used to select
targets for followup with PISCO. In the interim, we discovered that it was necessary to change
our noise calculation (as noted in §5.2.1), which caused ξ for each candidate to increase by
approximately 0.1. This left us with nearly complete followup above ξ = 4.6, and a similar
marginal false detection rate.

For each candidate, we provide its location, mass, detection significance (ξ), the β-model
core radius (θc) of the filter scale that maximizes detection significance, redshift (if one is
available) and Pblank (see §5.3.2, for candidates without redshifts and clusters with z > 0.7).
Masses are estimated according to §5.2.4, and redshift estimation is discussed in §5.3. We
have 2 candidates with Pblank ≤ 0.05, but no optical data. We consider these candidates
confirmed clusters, but are unable to provide redshifts or masses at this time.

The median redshift of the catalog is 0.60, with a maximum redshift of 1.38. There are
23 clusters (29% of the sample) with z > 0.8, 15 of which (18% of the sample) are above
z = 1.0. The median mass of the catalog is M500c = 2.7×1014M⊙h

−1
70 , and spans a range from

1.8× 1014M⊙h
−1
70 to 8.3× 1014M⊙h

−1
70 . The full redshift and mass distribution in comparison

to other catalogs is shown in Figure 5.5.
Based on our simulations, we expect to find 2± 1 false detections in this catalog (which

equates to 98% purity) above ξ = 5.0. Our optical follow up is consistent with this estimate:
it indicates that two of our candidates (SPT-CL J2349-5140 and SPT-CL J0002-5214) are
likely false detections. For the full catalog (ξ > 4.6) we expect 8 ± 2 false detections; our
followup indicates that there are 7 false detections. In addition, 1 candidate cannot be
confirmed due to bright stars in the foreground. Ignoring this unconfirmed candidate, we
obtain a catalog purity of 92%. The expected number of false detections is described in
detail in §5.2.3 and plotted as a function of minimum significance in Figure 5.3. Our optical
and near-infrared data on these candidates are of sufficient depth to confirm clusters out to
z ≲ 1.5.

Figure 5.6 shows the estimated completeness for this catalog. Our selection function
is a Heaviside function in significance (Θ(ξ − 4.6)). We convert this to a completeness in
mass and redshift using the ζ −M scaling relation discussed in §5.2.4. We find that this
catalog is expected to include all galaxy clusters in the survey region more massive than
M500c = 2.6× 1014M⊙h

−1
70 and at a redshift greater than z = 0.25.

Figure 5.5 shows the mass and redshift distribution for several galaxy cluster surveys. The
ACT, ACTPol, SPT-SZ, and SPTPol selection functions are nearly independent of redshift.
There is a slight slope, caused by two effects. At low redshift, the size of the cluster becomes
similar that that of CMB fluctuations and residual atmospheric noise (see e.g., Schaffer et al.
2011). At moderate to high redshift, the slope is predicted by the self-similar evolution
of galaxy clusters. Self-similarity implies that clusters of the same mass will have higher
temperatures at higher redshift, which causes the tSZ to be brighter for more distant clusters.

7The marginal false detection rate is defined as the fraction of candidates we expect to be false detections
in the range ξ0 − dξ < ξ < ξ0, where ξ0 is the cutoff significance.
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Figure 5.6: The estimated completeness as a function of M500c for the SPTPol 100d catalog.
Completeness is estimated at four redshifts: 0.25, 0.50, 1.00, and 1.50. For fixed mass, the
completeness at low redshift decreases, because the angular extent of the clusters becomes
similar to the fluctuations in the CMB. We expect our catalog to be complete for M500c >
2.6× 1014M⊙h

−1
70 .

Self-similar evolution further predicts that Csz = 2
3

Kravtsov et al. (2006). tSZ-selected
cluster catalogs generally do not provide strong constraints on self-similarity (Bocquet et al.
2019 provides only a ∼50% constraint on Csz). McDonald et al. (2017) used X-ray data to
study clusters below z = 1.9 and found the bulk of the ICM to be remarkably self-similar.
The Planck catalog is limited to lower redshift because the SZ signal from distant clusters is
diluted by the relatively large Planck beams (7’ at 143 GHz).

5.4.1 Comparison to Other Cluster Catalogs

In this section, we compare the catalog presented in this work with other cluster catalogs.
We compare against galaxy clusters in the Simbad8 database, as well as the second Planck
cluster catalog (Planck Collaboration et al., 2016a), B15, and the XXL 365 catalog (Adami
et al., 2018). Two objects are considered a match if they fall within 5.′0 of each other below
z = 0.3. For higher redshift objects, we apply a threshold of 2.′0 (except for comparisons to
the Planck catalog, where we use a 4.′0 radius to compensate for the larger Planck instrument
beam). The full results can be found in Table A. Here, we highlight some recent catalogs.

The most directly comparable catalog is the SPT-SZ catalog presented in B15. The full
SPT-SZ 2500 deg2 catalog contains 0.22 confirmed clusters per square degree, while our
catalog has nearly four times the density, at 0.86 clusters per square degree. The median

8http://simbad.u-strasbg.fr/simbad/
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Figure 5.7: A merging cluster, SPT-CL J2331-5052, identified in the SPTPol 100d sample.
This system was detected as two separate clusters in the B15 catalog, but due to the deeper
mm-wave data used in this work, it is detected as a single system. The composite image
is created using PISCO gri images. The contours show tSZ detection significance from the
θc = 0.′5 match-filtered map. The position reported in this catalog is in the upper right,
near the center of the ξ = 16 contour. In B15, the smaller object (SPT-CL J2332-5053)
is at z = 0.56 ± 0.04; SPT-CL J2331-5052 is one of the 13 clusters with spectroscopically
measured redshifts at z = 0.576. For the more massive object in the upper right of this image,
R500 ≈ 2.′8.

redshifts of the two catalogs are similar (zmed = 0.60 for this work, and zmed = 0.55 in B15),
but our catalog contains a much larger fraction at high redshift. 18% of the clusters with
measured redshifts in this work are more distant than z = 1, while only 8% of the clusters in
B15 have z > 1.

The B15 catalog contains 28 candidates in the ra23h30dec−55 field, and we find 22
of them in this work. One cluster (SPT-CL J2332-5053) is optically confirmed in B15, but
not included in this catalog. It is part of an interacting system with SPT-CL J2331-5052,
which was also noted in previous X-ray observations (Andersson et al., 2011). Our source
finding algorithm groups all connected pixels above a fixed threshold. Due to the deeper data
used in this work, there is a high significance “bridge” that connects the two clusters detected
in B15. By increasing the detection threshold above the minimum value in the bridge in
our source finding algorithm, we can force this detection to become separate objects. We
find two clusters, one at (R.A., decl.) of (352.96122,−50.864841) with ξ = 19.08, and the
other at (353.02512,−50.892534) with ξ = 9.59, both with θc = 0.′5. Both objects are at the
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same redshift (the smaller object, reported only in B15 is at z = 0.56± 0.04, while SPT-CL
J2331-5052 is at z = 0.576). For the more massive object, R500 ≈ 2.′8, which is more than
half the projected distance between the two objects. In Table A we report the single cluster
SPT-CL J2331-5052. This choice is largely arbitrary for this catalog, and we have chosen
to be consistent with our stated selection function. However, future catalogs will find many
objects like this, and the choice to report them as single clusters or more than one must
be accounted for in any cosmological analyses. Figure 5.7 shows a composite image with
combined optical imaging and tSZ contours of this system. The remaining 5 candidates found
in B15 are not optically confirmed, which is consistent with the expected false detection rate.
Finally, one candidate (SPT-CL J2321-5418) is not optically confirmed in this catalog or B15,
due to several bright stars in the foreground of the optical imaging.

The sky coverage in this work extends slightly beyond the boundaries of the ra23h30dec-55
field in B15, and as a result we find an additional 4 clusters which are reported in different
fields in the B15 catalog; this brings the total number of matching clusters in both our catalog
and B15 to 26. The estimated masses for these two catalogs are consistent with the estimated
errors.

The Planck galaxy cluster catalog (Planck Collaboration et al., 2016a) contains 4 clusters
in this field, all of which are included in both this catalog and the SPT 2500 deg2 catalog.
The cluster redshifts agree and the scatter in mass between these clusters is consistent with
the scatter between the clusters in B15 and the Planck cluster catalog. A more detailed
comparison of Planck and SPTPol masses is included in Bleem et al. (2020).

The XXL is an X-ray survey performed using XMM-Newton (Pierre et al., 2017), and is
one of the deepest X-ray surveys to date. It covers 50 deg2, 25 of which overlap with the sky
area in this work. In the overlapping area, XXL finds 154 galaxy clusters, the majority of
which are at sufficiently low mass or redshift as to be undetectable in this analysis. 14 of
these clusters are also found in the SPTPol data. The masses of clusters in the XXL catalog
are reported using two different methods. Since we report masses in M500c, we compare to the
XXL masses calculated using an X-ray temperature scaling relation (since these are also in
M500c). Of the 14 matching clusters, only 13 have scaling relation masses reported in Adami
et al. (2018). We compare the masses of the 13 clusters, and find that they are statistically
consistent, with a median ratio of 1.08−0.04

+0.06 and RMS scatter of 41%. Dividing out the median
difference yields a scatter of 38%. The scatter is dominated by the highest mass cluster,
however the SPTPol mass estimate is only 1.2σ discrepant from the estimated XXL mass.
The masses of the matching clusters are shown in Figure 5.8. We also compare redshifts
between the two catalogs. Most of the redshifts are consistent, but one cluster is significantly
discrepant. Our optical imaging suggests that there is a very low richness cluster at the
reported redshift (z = 0.81) of XLSSC 549. There is also a much larger cluster at higher
redshift (z = 1.2), which we report as SPT-CL J2334-5308. Given that the mass reported for
XLSSC 549 is very similar to that of SPT-CL J2334-5308 (M500c = 2.58± 0.97× 1014M⊙h

−1
70

and M500c = 2.25± 0.38× 1014M⊙h
−1
70 , respectively), we believe that the reported redshift

for XLSSC 549 is incorrect. Assuming that the X-ray temperature remains fixed, the change
in redshift would bring the mass of XLSSC 549 closer to the mass measured in this work.
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Figure 5.8: Galaxy cluster masses as measured by SPTPol and XXL. Both the XXL and
SPTPol mass uncertainties are calculated using a scaling relation with an intrinsic scatter in
the mass-observable relation (see §5.2.4), which leads to an X-ray or SZ mass uncertainty
that is highly correlated between clusters in the sample. Only 13 of the 14 clusters found in
both surveys are included, because the mass is not provided for one of the XXL clusters.

5.5 Conclusions
This work documents the assembly and properties of the first catalog of galaxy clusters

using data from the SPTPol camera. Using a matched filter on intensity maps from both 95
and 150 GHz bands, we construct a catalog of 89 candidates at signal-to-noise ratio ξ > 4.6.
Of these, 29 candidates are reported for the first time, and 81 are confirmed using optical
and infrared observations. Based on simulations, we expect the sample to be 91% pure (8
false detections), and we find that the number of unconfirmed candidates (7) is consistent
with this expectation.

We use a program of optical and infrared follow up to both confirm candidates and estimate
their redshift. The median redshift of the catalog is z∼0.6, with 23 (29%) clusters at z > 0.8,
and 15 (18%) at redshift greater than 1.0. While this catalog does not contain clusters at the
highest redshifts seen in B15 (which contains 6 confirmed clusters at z ≥ 1.4), the fraction
at z > 1 is substantially larger. We estimate galaxy cluster masses based on the detection
significance and redshift of each cluster. Using the fixed set of cosmological parameters
and scaling relation from B15, we find masses ranging from M500c = 1.8 × 1014M⊙h

−1
70 to

8.3× 1014M⊙h
−1
70 , with a median mass of 2.7× 1014M⊙h

−1
70 .

This work was followed by two more cluster catalogs using data from the SPTPol camera.
The next catalog covers 27 times the area at higher noise levels (the 2700 square degree
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SPTPol-ECS field, Bleem et al. 2020), while the other covers 5 times the area at similar noise
levels (the SPTPol 500 square degree field, Bleem et al. 2024). This program is continuing
with the SPT-3G camera, which began collecting data in early 2018. The SPT-3G survey
will cover 15 times the area included in this work. Data from this survey will achieve noise
levels of (3.0, 2.2, 8.8) µK-arcmin at (95, 150, 220) GHz, approximately (3 ×, 2 ×) lower at
(95, 150) GHz than the map noise in this work. These noise levels will allow us to detect
over 3000 galaxy clusters with redshifts extending beyond z = 2.0, and masses as low as
9 × 1013M⊙h

−1
70 . On a similar timescale, a new X-ray satellite, eROSITA, will survey the

entire sky, and produce an extremely large cluster catalog (Merloni et al., 2012). Although
eROSITA will detect lower mass clusters, our catalog already includes clusters below the
eROSITA detection threshold at z > 1. This work is still in progress, with early results
shown in Sobrin and SPT-3G Team 2022.

The sky area used in this work has also been surveyed at several other wavelengths. In
fact, we have used some of those datasets in this work. In the infrared, nearly the entire area
has been observed by Spitzer/IRAC; a similar area was observed in the far infrared with
the SPIRE instrument on the Herschel Space Observatory (Pilbratt et al., 2010); the Dark
Energy Survey (Dark Energy Survey Collaboration et al., 2018) has covered the region in 5
optical and near-infrared bands (grizY ); the XXL survey has observed 25 deg2 of the SPTPol
100d field; and the Australian Telescope Compact Array (ATCA) was used to survey 86 deg2
of the field at 1.1-3.1 GHz (O’Brien et al., 2018), as well as the entire Southern sky at 20
GHz (Ekers et al., 2007). Since these observations are sensitive to different physics (galactic
emission in the optical and infrared, ICM temperature in X-rays, and electron pressure
in the microwave), they provide semi-independent measures of intrinsic cluster properties.
Combined, this multi-wavelength data set can give us a much clearer picture of the physics
at work in the galaxy clusters than any single probe.
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Chapter 6

Conclusion

This dissertation has discussed observations of the Cosmic Microwave Background with
the South Pole Telescope. The CMB is the oldest light in the universe, originating from
the surface of last scattering, when the universe suddenly became neutral. Its primary
anisotropies in the CMB provide state-of-the art constraints on the ΛCDM parameters (such
as H0 the expansion rate of the universe). CMB photons traverse the majority of the universe
before we can observe them, and a small fraction of them are affected by structures that
evolved over cosmic history. These secondary anisotropies allows us to constrain significant
processes in cosmic history, such as reionization and the growth of large scale structure.
To measure the small secondary anisotropies, we need a highly sensitive camera with high
resolution at mm wavelengths. The SPT is capable of exactly these observations.

The 10-m primary mirror of the SPT provides arcminute-scale resolution at mm wave-
lengths. SPT-3G(the third-generation camera on the SPT) houses 16000 polarization sensitive
detectors in three bands centered at 95, 150, and 220 GHz. The detectors are TESes, which are
operated below temperatures below 1 K. While many systems are important to maintaining
the temperatures, we describe the vacuum window and infrared filtering in detail.

The TESes have a time-variable sensitivity that must be calibrated out to reproduce
images of the sky. The SPT-3G calibration pipeline uses a combination of bright galactic
sources (Hii regions) and an internal calibration source to account for changes in the sensitivity.
To achieve the maximum resolution of the SPT-3G camera, we must determine where (on
the sky) each detector points relative to the others. With these components in place, we can
convert the raw time-ordered data into images of the sky. In our mapmaking pipeline, we
perform a basic data selection to remove detectors that have either too much noise or too
little sensitivity. We then filter the remaining detector TOD to remove low-frequency noise
(which comes from the atmosphere and the readout electronics). Finally, we bin the filtered
TOD into an image of the sky.

Before we can interpret these images, we need to account for the effects of the telescope
optics. We use observations bright extragalactic sources (AGN) and Saturn to construct the
instrument beam. Saturn is bright enough to saturate our detectors when they pass close to
the center of the planet, so we “stitch” AGN near the center of the maps to Saturn at the
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outskirts. The beam is a critical part of any analysis of the maps, so we perform a variety
of systematic tests to ensure our measurement is unbiased. We also develop a method to
measure the uncertainty in the beam despite the complicate noise correlations induced by
the stitching process. Finally, we show how all of these parts come together by constructing
a catalog of galaxy clusters using data from the SPTPol camera.
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Appendix A

The Cluster Catalog

In this appendix, we present the full catalog of galaxy cluster candidates.
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Table A.1: Galaxy cluster candidates with ξ ≥ 4.6

SPT ID R.A. Decl. Best Redshift M500c Imaging Pblank Notes
(J2000) (J2000) ξ θc (1014h−1

70 M⊙)
SPT-CL J0000−5748 0.2479 −57.8081 14.64 0.25 0.702 4.72+0.50

−0.59 3 0.002 1
SPT-CL J0000−6020 0.0323 −60.3405 7.18 0.50 0.762± 0.049 2.90+0.39

−0.46 1 . . .
SPT-CL J0001−5440 0.4132 −54.6695 9.11 0.50 0.820± 0.082 3.37+0.40

−0.48 3 0.009
SPT-CL J0001−5614 0.4862 −56.2410 5.41 0.25 0.428± 0.036 2.55+0.45

−0.46 3 . . .
SPT-CL J0002−5017 0.6515 −50.2889 5.45 0.25 0.901± 0.033 2.25+0.40

−0.41 1 . . .
SPT-CL J0002−5214 0.5985 −52.2388 5.88 0.25 . . . . . . 3 0.445 2
SPT-CL J0002−5557 0.5048 −55.9624 7.22 0.75 1.150± 0.097 2.62+0.36

−0.41 3 0.016
SPT-CL J2259−5301 344.8284 −53.0308 5.08 0.25 1.160± 0.094 1.98+0.34

−0.41 3 0.014
SPT-CL J2259−5349 344.7941 −53.8236 7.17 0.25 0.258± 0.023 3.28+0.44

−0.52 3 . . .
SPT-CL J2259−5431 344.9783 −54.5260 7.79 0.75 0.390± 0.043 3.38+0.42

−0.51 3 . . . 3
SPT-CL J2300−5331 345.1749 −53.5208 10.69 1.00 0.262 4.31+0.49

−0.58 3 . . .
SPT-CL J2300−5617 345.0003 −56.2849 9.53 0.25 0.153 4.11+0.47

−0.58 3 . . . 4
SPT-CL J2301−5317 345.3371 −53.2843 5.26 1.50 0.348± 0.025 2.54+0.44

−0.49 3 . . .
SPT-CL J2301−5546 345.4486 −55.7759 5.45 0.75 0.748 2.35+0.40

−0.44 3 0.005
SPT-CL J2303−5114 345.8057 −51.2406 5.72 0.50 0.288± 0.023 2.76+0.45

−0.50 3 . . .
SPT-CL J2304−5007 346.0036 −50.1167 4.79 0.50 0.590± 0.030 2.22+0.39

−0.46 3 . . .
SPT-CL J2304−5718 346.1080 −57.3099 6.25 0.25 0.897± 0.033 2.53+0.38

−0.42 3 0.064
SPT-CL J2305−5719 346.2706 −57.3261 5.67 0.25 0.654± 0.043 2.48+0.43

−0.44 3 . . .
SPT-CL J2306−5120 346.6121 −51.3465 8.11 0.50 1.260± 0.102 2.78+0.36

−0.40 3 0.001
SPT-CL J2307−5440 346.7843 −54.6681 5.50 0.75 0.688± 0.044 2.40+0.43

−0.43 3 . . .
SPT-CL J2309−5710 347.2520 −57.1777 6.17 0.25 0.364± 0.035 2.87+0.44

−0.49 3 . . .
SPT-CL J2310−5239 347.7022 −52.6609 4.91 0.50 * . . . 2 0.047
SPT-CL J2310−5919 347.5696 −59.3203 6.12 0.25 0.768± 0.049 2.56+0.40

−0.44 3 0.020
SPT-CL J2311−4944 347.8888 −49.7397 4.95 1.50 0.584± 0.041 2.29+0.41

−0.47 1 . . .
SPT-CL J2311−5522 347.8989 −55.3724 7.47 0.75 0.217± 0.022 3.42+0.45

−0.52 3 . . .
SPT-CL J2311−5820 347.9955 −58.3363 5.47 0.25 0.930± 0.087 2.25+0.40

−0.41 3 0.020
SPT-CL J2312−5101 348.2421 −51.0292 4.81 1.00 0.350± 0.024 2.38+0.42

−0.49 3 . . .
SPT-CL J2314−5554 348.5355 −55.9016 4.88 0.25 0.712± 0.044 2.18+0.38

−0.46 3 0.074
SPT-CL J2316−5027 349.1854 −50.4550 4.73 0.50 1.120± 0.092 1.90+0.33

−0.40 3 0.025
SPT-CL J2316−5454 349.2113 −54.9020 9.18 1.00 0.371± 0.035 3.80+0.44

−0.53 3 . . .
SPT-CL J2317−5000 349.3259 −50.0018 4.87 0.25 1.110± 0.090 1.95+0.34

−0.41 3 0.002
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SPT ID R.A. Decl. Best Redshift M500c Imaging Pblank Notes

(J2000) (J2000) ξ θc (1014h−1
70 M⊙)

SPT-CL J2317−5357 349.3365 −53.9649 6.17 0.25 0.395± 0.035 2.85+0.44
−0.48 3 . . .

SPT-CL J2317−5852 349.4379 −58.8807 5.08 0.50 0.594± 0.042 2.32+0.40
−0.47 3 . . .

SPT-CL J2318−5059 349.5380 −50.9834 4.90 0.75 0.350± 0.024 2.41+0.42
−0.49 3 . . .

SPT-CL J2318−5617 349.7028 −56.2885 5.55 0.25 0.545± 0.039 2.53+0.42
−0.46 3 . . .

SPT-CL J2319−5842 349.8642 −58.7125 6.94 0.50 0.298± 0.023 3.20+0.42
−0.50 3 . . .

SPT-CL J2320−5233 350.1251 −52.5641 6.45 0.25 0.755± 0.046 2.68+0.38
−0.44 3 0.001

SPT-CL J2320−5807 350.0694 −58.1311 5.80 1.00 0.562± 0.040 2.59+0.44
−0.45 3 . . .

SPT-CL J2321−5418 350.3925 −54.3109 4.68 0.75 . . . . . . 3 0.445 5
SPT-CL J2323−5752 350.8787 −57.8831 5.14 0.25 1.300± 0.097 1.92+0.35

−0.40 3 0.006
SPT-CL J2325−5116 351.3778 −51.2824 5.01 0.25 0.940± 0.082 2.08+0.36

−0.43 3 0.002
SPT-CL J2325−5316 351.4188 −53.2766 4.60 0.25 0.350± 0.026 2.31+0.40

−0.49 3 . . .
SPT-CL J2325−5815 351.3448 −58.2545 5.72 0.25 0.556± 0.039 2.57+0.42

−0.47 3 . . .
SPT-CL J2327−5137 351.7801 −51.6231 6.22 1.25 0.338± 0.024 2.90+0.44

−0.49 3 . . .
SPT-CL J2328−5533 352.1780 −55.5605 7.88 0.25 0.773± 0.031 3.08+0.39

−0.46 3 0.016
SPT-CL J2328−5550 352.0383 −55.8466 4.65 0.75 0.770± 0.033 2.07+0.35

−0.45 3 0.003
SPT-CL J2329−5831 352.4712 −58.5241 10.81 0.50 0.719± 0.045 3.87+0.44

−0.52 3 0.001
SPT-CL J2330−5955 352.5054 −59.9275 4.90 2.50 . . . . . . 3 0.445
SPT-CL J2331−5052 352.9767 −50.8720 19.08 0.50 0.576 5.75+0.58

−0.70 3 . . . 1,6
SPT-CL J2331−5736 352.8991 −57.6143 8.40 0.50 1.380± 0.102 2.77+0.34

−0.39 3 0.055 7
SPT-CL J2332−5220 353.1338 −52.3482 4.95 1.00 0.460± 0.026 2.36+0.41

−0.47 3 . . .
SPT-CL J2332−5358 353.1076 −53.9745 18.25 1.50 0.402 5.83+0.59

−0.71 3 . . . 1,8
SPT-CL J2334−5308 353.5188 −53.1397 6.02 0.25 1.200± 0.094 2.25+0.38

−0.38 3 0.001
SPT-CL J2334−5938 353.6940 −59.6479 7.09 0.25 0.400± 0.027 3.15+0.42

−0.49 3 . . .
SPT-CL J2335−5434 353.8866 −54.5795 5.26 0.75 1.030± 0.088 2.11+0.37

−0.42 3 0.059
SPT-CL J2336−5252 354.0877 −52.8725 6.74 0.25 1.220± 0.094 2.45+0.35

−0.41 3 0.009
SPT-CL J2336−5352 354.0112 −53.8683 5.86 0.75 0.549± 0.039 2.63+0.42

−0.47 3 . . .
SPT-CL J2337−5912 354.3994 −59.2048 6.25 1.00 0.599± 0.041 2.73+0.40

−0.46 3 . . .
SPT-CL J2337−5942 354.3532 −59.7074 38.90 0.25 0.775 8.32+0.82

−0.96 3 0.000 1
SPT-CL J2339−5008 354.9618 −50.1427 4.81 0.25 * . . . 2 0.005
SPT-CL J2339−5550 354.8686 −55.8416 5.08 0.50 0.403± 0.036 2.44+0.43

−0.49 3 . . .
SPT-CL J2340−5958 355.0851 −59.9711 4.96 0.25 . . . . . . 3 0.758
SPT-CL J2341−5119 355.3003 −51.3299 22.05 0.25 1.003 5.61+0.58

−0.67 3 0.002
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SPT ID R.A. Decl. Best Redshift M500c Imaging Pblank Notes

(J2000) (J2000) ξ θc (1014h−1
70 M⊙)

SPT-CL J2341−5138 355.4472 −51.6395 5.42 0.75 0.567± 0.040 2.45+0.45
−0.45 3 . . .

SPT-CL J2341−5640 355.4535 −56.6678 5.93 0.25 0.480± 0.038 2.70+0.42
−0.48 3 . . .

SPT-CL J2341−5724 355.3527 −57.4161 13.31 0.50 1.259 3.85+0.41
−0.49 3 0.004

SPT-CL J2342−5411 355.6940 −54.1869 10.42 0.25 1.075 3.44+0.40
−0.47 3 0.022 1

SPT-CL J2343−5024 355.8396 −50.4016 9.03 0.25 0.879± 0.033 3.29+0.39
−0.47 3 0.009

SPT-CL J2344−5655 356.0958 −56.9292 4.85 0.50 0.500± 0.038 2.31+0.41
−0.47 3 . . .

SPT-CL J2349−5113 357.3841 −51.2259 6.05 0.75 0.416± 0.036 2.79+0.45
−0.46 3 . . .

SPT-CL J2349−5138 357.4703 −51.6417 4.77 0.25 . . . . . . 3 0.857
SPT-CL J2349−5140 357.2968 −51.6744 5.05 0.25 . . . . . . 3 0.887
SPT-CL J2350−5107 357.6060 −51.1253 4.63 0.75 . . . . . . 3 0.960
SPT-CL J2350−5301 357.7262 −53.0218 10.11 0.75 0.541± 0.039 3.88+0.45

−0.53 3 . . .
SPT-CL J2351−5005 357.8298 −50.0936 4.94 0.75 0.580± 0.041 2.28+0.40

−0.47 3 . . .
SPT-CL J2351−5452 357.9044 −54.8825 11.40 0.75 0.384 4.37+0.47

−0.58 3 . . . 1
SPT-CL J2352−5251 358.2098 −52.8631 5.06 1.00 0.470± 0.037 2.39+0.42

−0.48 3 . . .
SPT-CL J2354−5106 358.5402 −51.1013 6.02 0.50 0.308± 0.024 2.85+0.47

−0.48 3 . . .
SPT-CL J2354−5632 358.7191 −56.5499 8.21 0.75 0.563± 0.040 3.37+0.40

−0.49 3 . . .
SPT-CL J2355−5055 358.9464 −50.9325 8.39 1.00 0.320 3.64+0.44

−0.52 3 . . .
SPT-CL J2355−5156 358.8482 −51.9474 8.24 0.25 0.704± 0.044 3.24+0.39

−0.47 3 0.007
SPT-CL J2355−5258 358.9372 −52.9833 6.97 0.25 0.712± 0.044 2.87+0.40

−0.46 3 0.007
SPT-CL J2355−5514 358.8668 −55.2497 4.91 0.25 1.320± 0.098 1.84+0.32

−0.40 3 0.005
SPT-CL J2355−5850 358.9619 −58.8468 4.94 0.25 0.970± 0.084 2.04+0.37

−0.43 3 0.001
SPT-CL J2355−6002 358.7942 −60.0428 4.78 0.25 1.220± 0.095 1.85+0.32

−0.40 3 0.049
SPT-CL J2357−5421 359.2691 −54.3594 7.06 0.25 0.920± 0.081 2.75+0.37

−0.43 3 0.014
SPT-CL J2357−5953 359.2865 −59.8988 4.67 0.75 . . . . . . 3 0.768
SPT-CL J2358−5229 359.5318 −52.4840 7.69 0.50 0.638± 0.042 3.15+0.41

−0.47 3 . . .
SPT-CL J2359−5010 359.9302 −50.1708 9.69 0.50 0.775 3.55+0.41

−0.50 3 0.003 1
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SPT ID R.A. Decl. Best Redshift M500c Imaging Pblank Notes

(J2000) (J2000) ξ θc (1014h−1
70 M⊙)

The first column is the ID of the candidate. The second and third column give the position. The fourth column
gives the signal-to-noise ratio at which the cluster is found, and the fifth column gives the scale of the β profile
which maximizes the signal-to-noise ratio. The sixth column lists the redshift, and the seventh column gives
the calculated mass for clusters with measured redshift. The eighth column indicates our available followup
for each cluster. 1 means optical imaging only, 2 means near-infrared only, and 3 indicates both optical and
infrared imaging. The ninth column has the statistic Pblank (the probability that the near-infrared data are
consistent with a blank field, see §5.3.2) for clusters in the SSDF without measured redshifts, and those with
z > 0.7. Redshifts derived from spectroscopic data are reported without uncertainties, but they are typically
accurate to ∼0.1% (see Ruel et al., 2014; Bayliss et al., 2016). The data in this catalog will be hosted at
http://pole.uchicago.edu/public/data/sptsz-clusters.

1 Strong-lensing cluster.
2 There is a group of galaxies at z = 0.44± 0.04.
3 There may be a background cluster at z ≈ 1.1.
4 Cluster masses at low redshift (z < 0.25) are only approximate. See §5.2.4.
5 Bright star impedes confirmation.
6 This cluster is currently undergoing a merger; see §5.4.1.
7 There is also a foreground cluster at z = 0.29± 0.02.
8 The mass is biased low by a factor of ∼1.5 owing to contamination from a magnified high-redshift dusty star
forming galaxy; see B15 and Andersson et al. (2011) for details.

* Confirmed cluster based on infrared imaging only. See §5.3.2.

http://pole.uchicago.edu/public/data/sptsz-clusters
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Table A.2: SPTPol clusters matched to other catalogs.

SPT ID Catalogs
with Matches

SPTPol
Redshift

Literature
Redshift

Redshift
Reference

SPT-CL J0000-5748 1 0.70 0.70 [1]
SPT-CL J0001-5440 1 0.82 0.82 [1]
SPT-CL J0002-5557 1 1.15 1.15 [1]
SPT-CL J2259-5431 1,2 0.39 0.39 [1]
SPT-CL J2300-5331 1,2,3,4 0.26 0.26 [1]
SPT-CL J2300-5617 1,2,3,6,7 0.15 0.15 [1]
SPT-CL J2301-5546 1 0.75 0.75 [1]
SPT-CL J2306-5120 1 1.26 1.26 [1]
SPT-CL J2311-5522 3 0.22 . . . . . .
SPT-CL J2311-5820 1 0.93 0.93 [1]
SPT-CL J2312-5101 8 0.35 0.33 [8]
SPT-CL J2314-5554 8 0.71 0.75 [8]
SPT-CL J2316-5454 1,8,9,10,11,12 0.37 0.37 [1]
SPT-CL J2317-5357 12 0.40 0.38 [12]
SPT-CL J2318-5059 8 0.35 0.33 [8]
SPT-CL J2318-5617 8,9,12 0.55 0.55 [12]
SPT-CL J2321-5418 1 . . . . . . . . .
SPT-CL J2325-5316 8,12 0.35 0.37 [12]
SPT-CL J2327-5137 1 0.34 0.34 [1]
SPT-CL J2328-5533 10,12 0.77 0.81 [12]
SPT-CL J2328-5550 10,12 0.77 0.80 [12]
SPT-CL J2329-5831 1 0.72 0.72 [1]
SPT-CL J2331-5052 1 0.58 0.58 [1]
SPT-CL J2332-5220 8,9,12 0.46 0.46 [12]
SPT-CL J2332-5358 1,2,7,8,9,12 0.40 0.40 [1]
SPT-CL J2334-5308 12 1.20 0.81 [12]
SPT-CL J2335-5434 10,12 1.03 0.67 [12]
SPT-CL J2336-5352 8,9,12 0.55 0.52 [12]
SPT-CL J2337-5912 1 0.60 0.60 [1]
SPT-CL J2337-5942 1,2 0.78 0.77 [1]
SPT-CL J2339-5550 8,12 0.40 0.38 [12]
SPT-CL J2341-5119 1,13 1.00 1.00 [1]
SPT-CL J2341-5640 12 0.48 0.47 [12]
SPT-CL J2341-5724 1 1.26 1.26 [14]
SPT-CL J2342-5411 1,12 1.07 1.08 [1]
SPT-CL J2350-5301 1,9 0.54 0.54 [1]
SPT-CL J2351-5452 1,8,9 0.38 0.38 [1]
SPT-CL J2354-5632 1,7,9 0.56 0.56 [1]
SPT-CL J2355-5055 1,7 0.32 0.32 [1]
SPT-CL J2358-5229 1 0.64 0.64 [1]
SPT-CL J2359-5010 1 0.78 0.77 [1]
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SPT ID Catalogs
with Matches

SPTPol
Redshift

Literature
Redshift

Redshift
Reference

Cluster candidates with matches in other published catalogs. We take
two objects to be a match if they are within 2.′0 (5.′0) if their redshift is
higher (lower) than z = 0.3, except Planck clusters, which are considered
to be a match within 4.′0 at z > 0.3. When available, we provide the
redshift of the matching cluster.
[1] Bleem et al. (2015b); [2] Voges et al. (1999); [3] Abell et al. (1989); [4]
Skrutskie et al. (2006); [5] Jones et al. (2009); [6] Braid and MacGillivray
(1978); [7] Planck Collaboration et al. (2016a); [8] Bleem et al. (2015a);
[9] Menanteau et al. (2010); [10] Šuhada et al. (2012); [11] Mauch et al.
(2003); [12] Adami et al. (2018); [13] Pascut and Ponman (2015); [14]
Khullar et al. (2019);
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