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Reinforced concrete structural walls are frequently used as the main lateral load 

resisting system in multi-story buildings. The seismic response of buildings with such a 

lateral load system has been traditionally labeled as excellent, but damage observed in 

walls in recent earthquakes has prompted the need to look into behavioral modes not 

considered before in design and to look into the response of walls into the softening range. 

This dissertation focuses on enhanced numerical methodologies for the verification of the
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seismic response, including softening, of reinforced concrete structural wall systems. 

First, a Truss Model for reinforced concrete coupled structural walls is developed. 

Bar bond-slip, dowel action, and confining effect of the foundation are considered. Two 

cyclic tests, on scaled seven-story coupled walls (from literature), are used for validation. 

It is shown that the compressed wall piers resist most of the base shear force and that the 

coupling beams at lower levels develop the largest shear forces. 

Second, using the same benchmark test specimens, two models for the nonlinear 

cyclic analysis of reinforced concrete coupled walls are developed, i.e., Modified Beam-

Truss Model and Enhanced Beam-Truss Model. The role of the strain penetration in 

diagonally reinforced coupling beams on the hysteretic energy dissipated is studied. It is 

verified that the computational-efficient proposed models predict well the overall response 

and the sliding shear failures of coupling beams. 

Third, the Beam-Truss Model developed in a previous study for the nonlinear cyclic 

analysis of reinforced concrete components is extended to compute out-of-plane buckling 

in structural walls. The novel Beam-Truss Model computes accurately the force − 

displacement responses and the buckling behavior of three test specimens reported in 

literature used for validation. 

Finally, the Beam-Truss Model is enhanced to compute the out-of-plane nonlinear 

shear response of wall piers in the analysis of Core-Wall-Building systems. Using the 

proposed model and pushover analyses, a comprehensive study on a 14-story archetype 

Core-Wall building is carried out. It is shown that the in-plane shear response has a large 

influence on the lateral strength and displacement capacity, whereas the out-of-plane shear 

response mainly influences the displacement capacity.  
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Chapter 1.  Introduction 

 

1.1 Motivation 

In buildings of all heights, it is common that reinforced concrete (RC) structural 

walls form the lateral load resisting system. Traditionally these systems have been 

considered to exhibit excellent seismic performance; however, in relatively recent high-

intensity earthquakes, i.e., Maule 2010 and Christchurch 2011, some buildings with 

structural walls exhibited an unexpected behavior (Wallace et al. 2012, NEHRP 2014, 

Dashti et al. 2015). Extensive concrete crushing, bar buckling and fracture, shear failures 

of vertical and horizontal wall segments, and out-of-plane wall buckling were observed. 

The expectations of society in the face of an earthquake scenario are changing. 

More buildings’ owners want existing and new structures to meet performance tailored to 

their necessities. It has been possible with the arrival of the Performance-Based Design 

(PBD) (ASCE 41-17 2017, LATBSDC-17 2017, TBI-17 2017). The structural engineers 

identify, according to the owner’s requirements, objectives for serviceability and 

resistance, and execute the projects to achieve the desired performance. Results of 

nonlinear analyses are used to support the design.  

In PBD, the Fiber Model is the most commonly used methodology to simulate RC 

structural walls, whereas in general, nonlinear shear springs are used to model coupling 

beams (Naish et al. 2013, ASCE 41-17 2017). These modeling techniques have some 

limitations since nonlinear flexure-shear interaction, and actual kinematics of the coupling 

beams are not accounted for, which could lead to inaccuracies, especially when short 

coupling beams are included in coupled walls and core walls (Lu and Panagiotou 2016). 
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Moreover, it has been observed that for nonlinear time history analysis, the Fiber Models 

could compute larger shear force demands than the models including flexure-shear 

interaction (Mehmood et al. 2017). Not to mention that by definition, the Fiber Models 

cannot capture out-of-plane wall buckling. 

Modeling the nonlinear shear response (including shear failure) and out-of-plane 

buckling (including softening) is especially important because current conventional design 

and PBD rely on prescribed limits based on scarce experimental evidence, (ACI 318-14 

2014, ACI 318-19 2019). 

Flexure-shear interaction in RC structural walls can be computed by several 

advanced finite element models (e.g., Gormak 1974, Zhao et al. 2004, Mohr et al. 2007, 

Kono et al. 2011, Constantin and Beyer 2012, Mihaylov and Franssen 2017, Wang et al. 

2017, Hoult et al. 2018). However, only two numerical studies have been carried out to 

compute buckling in structural walls (Parra 2015, Dashti 2017), which also used the finite 

element method. In all these cases, the associated computational cost hampers their 

application to nonlinear time history analysis of building systems. 

On the other hand, more computationally efficient macro models, which consider 

flexure-shear interaction, have been developed, e.g., Multiple-Vertical-Line-Element-

Model (Kolozvari et al. 2019, Isakovic and Fischinger 2019), Truss Model and Beam-Truss 

Model (Panagiotou et al. 2012, Lu et al. 2014). 

The Truss Model and the Beam-Truss Model have been extensively validated using 

RC test specimens that exhibited flexural and shear failures (Panagiotou et al. 2012, 

Moharrami et al. 2015, Lu et al. 2016, Lu and Panagiotou 2016, Alvarez et al. 2019). 
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Moreover, the Beam-Truss Model has successfully calculated the seismic response of 

buildings (Lu 2014, Zhang et al. 2017). 

 

1.2 Objectives and scope 

The research work presented herein focuses on enhanced practicing engineering-

oriented methodologies for the numerical verification of the seismic response of reinforced 

concrete (RC) structural wall systems, including softening. 

The first objective was to enhance the simple and computationally efficient Truss 

Model (Panagiotou et al. 2012) and Beam-Truss Model (Lu et al. 2014), for the simulation 

of RC coupled walls incorporating conventionally and diagonally reinforced coupling 

beams.  

The nonlinear cyclic Truss Model was validated for RC coupled walls, after some 

additions were implemented (Alvarez et al. 2019). These additions included modeling: (i) 

the strain penetration of beam’s reinforcement protruding into the wall piers (Zhao and 

Sritharan 2007), (ii) the dowel action of the longitudinal reinforcement of wall piers and 

coupling beams, and (iii) the confining effect of the foundation on the base of the wall piers 

(Presland 1999). The proposed Truss Model used the element Truss2, and material 

ConcretewBeta, as these implemented in OpenSees (OS, McKenna 2018) by Lu and 

Panagiotou (2013). The validation of the model was carried out comparing computed and 

measured overall and local responses for two 1:4 scale seven-story coupled wall specimens 

reported by Santhakumar (1974). One test specimen incorporated conventionally 

reinforced coupling beams, which exhibited sliding shear failure, whereas the other 

specimen incorporated diagonally reinforced coupling beams and had a highly-ductile 



 

4 

response. Key responses that can be only computed were also studied to characterize the 

seismic response of the RC coupled walls, i.e., the base shear force apportioning, the 

coupling efficiency coefficients (Paulay and Priestley 1992), and the shear forces in the 

coupling beams. 

Then, using the same test specimens for validation (Santhakumar 1974), and 

building on the Beam-Truss Model, two computationally efficient models were proposed, 

i.e., the Modified Beam-Truss Model (MBTM) and the Enhanced Beam-Truss Model 

(EBTM). The grid and diagonals of the MBTM used truss elements except for the boundary 

elements, where displacement-based elements were used. The EBTM was an extension of 

the MBTM, which incorporated the strain penetration in the reinforcement of the coupling 

beams. The effect of the strain penetration on the hysteretic energy dissipated was 

investigated. Results obtained with these models were validated and compared with the 

results computed by the Truss Model (Alvarez et al. 2019).  

The second objective of this work was to extend the Beam-Truss Model developed 

by Lu et al. (2014) for nonlinear cyclic analysis of RC components, to compute the out-of-

plane buckling response of structural walls. This was achieved by using a grid of 

displacement-based elements, and diagonal truss elements with nonlinear geometric 

transformation. Strain penetration of the longitudinal reinforcement at the base of the walls 

was included. The novel Beam-Truss Model was validated using three test specimens, 

whose response exhibited degradation because of out-of-plane buckling, i.e., TW1 

(Almeida et al. 2017), RWL (Dashti 2017), and Wall2 (Goodsir 1985). Unsupported height 

to wall thickness ratio of the test specimens ranged from 10-25. Computed and measured 

lateral force-displacement responses, out-of-plane displacements, and strains were 
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compared. The influence of key aspects of the modeling on the overall response, e.g., the 

grid size and torsional rigidity of the elements, was studied by means of parametric 

analyses. 

The final objective was to develop a model for the nonlinear analysis of Core-Wall-

Building systems, including the out-of-plane shear response of the walls piers. To achieve 

this, the Beam-Truss Model developed by Lu et al. (2014), which considers in-plane 

nonlinear shear response and nonlinear flexural warping, was enhanced using shear springs 

to model the nonlinear out-of-plane shear response. The response of the shear springs was 

made axial-force dependent via a built in-house material, i.e., PinHardwP, implemented in 

OS. The model used a hybrid approach to improve the computational economy (Arteta et 

al. 2019), i.e., the lower stories of the Core Wall were modeled with the novel Beam-Truss 

Model, whereas the upper stories adopted Fiber-Section Model. Nonlinear geometric 

transformation was used. An archetype 14-story Core Wall building assumed located in 

downtown Los Angeles was modeled using the hybrid Beam-Truss Model, and carrying 

out a series of pushover analyses with 1st mode shape and triangular load patterns, its 

overall and local responses were characterized. 

 

1.3 Outline 

A short description of the five chapters included in this dissertation is presented 

below: 

- Chapter 1: Introduction 

In this chapter, the motivation, objectives, and scope, including the outline of the 

content, are presented. 
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- Chapter 2: Nonlinear Cyclic Truss Model for Analysis of Reinforced Concrete 

Coupled Structural Walls 

This chapter presents a Truss Model for the simulation of reinforced concrete 

coupled structural walls. Models for conventionally reinforced and diagonally 

reinforced coupling beams are discussed.  

- Chapter 3: Analysis of Reinforced Concrete Coupled Structural Walls Via the 

Beam-Truss Model 

Two computationally economic approaches for the nonlinear cyclic analysis of 

reinforced concrete coupled walls, i.e., Modified Beam-Truss Model and 

Enhanced Beam-Truss Model, are presented in this chapter. The effect of 

modeling the bar-bond slip in the coupling beams is studied.  

- Chapter 4: RC Wall Plastic Hinge Out-of-Plane Buckling – Analysis Using the 

Nonlinear Beam-Truss Model  

In this chapter, the Beam-Truss Model developed to compute the nonlinear cyclic 

response of concrete components is extended to consider out-of-plane buckling 

in structural walls. The role played by the strain penetration of the longitudinal 

reinforcement at the base of the walls on the out-of-plane displacements is 

investigated. 

- Chapter 5: Enhanced Beam-Truss Model for Nonlinear Analysis of RC Core 

Walls 

The Beam-Truss Model for nonlinear analysis of reinforced concrete structures 

is enhanced to compute the out-of-plane nonlinear shear response of the wall pier 
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in the analysis of Core-Wall. Using the novel model, a comprehensive study on a 

14-story Core-Wall building is carried out. 
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Chapter 2.  Nonlinear Cyclic Truss Model for Analysis of 

Reinforced Concrete Coupled Structural Walls 

 

2.1 Abstract  

This paper discusses the Truss Model proposed by Panagiotou et al. (2012) for 

modeling reinforced concrete coupled structural walls. The model is validated with the 

landmark seismic testing of two 1:4 scale seven-story test specimens reported in 

Santhakumar (1974) and in Paulay and Santhakumar (1976). The first specimen, Wall A, 

incorporated conventionally reinforced coupling beams, whereas the second specimen, 

Wall B, incorporated diagonally reinforced coupling beams. These two specimens attained 

roof drift ratios of at least 1.7% before the initiation of lateral strength degradation. 

Coupling beams in specimen Wall A exhibited significant strength degradation due to 

sliding shear, whereas coupling beams in specimen Wall B maintained the capacity 

throughout. 

We compare key overall and local responses reported for the two specimens with 

those computed with the Truss Models, as well as responses that could be only computed. 

In the latter, we show that when the beams effectively coupled the walls, the shear force at 

the wall base was mainly resisted by the wall being compressed. Moreover, the analysis 

shows that the first level coupling beams develop greater shear forces than the other beams 

despite all beams were identically reinforced. This is caused by the restraint provided by 

the fixed-base walls and by the kinematics of the strongly coupled walls. The Truss Model 

captures these responses because it explicitly considers the axial-flexure-shear interaction 

of RC walls and beams. 
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2.2 Introduction 

A lateral load resisting system of choice in mid-to high-rise buildings are reinforced 

concrete coupled structural walls, termed coupled walls thereafter in this paper. Strongly 

coupled walls are characterized by the significant variation of axial forces in the walls when 

subjected to lateral loading. Such variation affects the distribution of internal forces as well 

as the deformation capacity and damage patterns. Coupling beams are key elements in 

coupled walls. Conventionally reinforced squat coupling beams have exhibited shear 

failures in buildings subjected to strong intensity earthquakes Paulay (1969). For these 

reasons, codes prescriptive dimensional limits for the use of squat conventionally 

reinforced coupling beams (ACI 318-14 2014). 

In current U.S. practice and for RC wall buildings lower than 73 m, coupled walls 

are typically modeled using linear shell elements, and the results of the linear analysis are 

used to support the design. For taller buildings, and occasionally for buildings of less than 

73 m high, the performance-based design is used, and the performance of the different 

elements is assessed via nonlinear time-history analysis (LATBSDC-17 2017). In design 

offices, walls are typically modeled for nonlinear analysis with fiber-section nonlinear 

beam elements and coupling beams with ad hoc shear springs or with calibrated beam 

elements with non-physical moment hinges (Naish et al. 2013, ASCE 2017).  

Various modeling techniques able of capturing axial-flexure-shear interaction in 

the nonlinear reversed cyclic analysis of structural walls and elements have been reported 

by several researchers (Panagiotou et al. 2012, Lu and Panagiotou 2013, Toprak et al. 2015, 

Dashti et al. 2017, Rajapakse et al. 2019). These models can be grouped in four main 
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categories: (a) models that use empirically calibrated shear springs which are uncoupled 

from the flexural modeling of the component (Vulcano 1992, Fischinger et al. 1992, Naish 

et al. 2013); (b) macro models that use multiple vertical lines of elements to model the 

nonlinear behavior in flexure, coupled with specific assumptions with elements modeling 

the nonlinear behavior in shear (Fischinger et al. 2012, Kolozvari et al. 2015); (c) nonlinear 

Truss or Beam-Truss Models (Panagiotou et al. 2012, Lu et al. 2016); (d) and finite element 

models using smeared-crack, plasticity approach (Mohr et al. 2007) or fiber force-based 

elements (Rajapakse et al. 2019). This paper focuses on the nonlinear cyclic Truss Model 

and Beam-Truss Model which have been validated for RC walls (Panagiotou et al. 2012, 

Lu et al. 2016), columns (Moharrami et al. 2015), and slabs (Lu and Panagiotou 2016) as 

well as for entire RC buildings (Lu 2014, Zhang et al. 2017).  

Coupled RC walls have been modeled by Panagiotou et al. (2012), and by Lu and 

Panagiotou (2016) using either a Truss or a Beam-Truss Model, respectively. In both cases, 

diagonal shear failures were reported in the wall piers. Mihaylov and Franssen (2017) 

modeled 24 coupling beam tests using FEM (smeared rotating crack model); displacements 

were increased monotonically to capture sliding shear and diagonal compression failures 

of the coupling beams. The failure of coupling beams due to sliding shear in coupled RC 

walls in reversed cyclic loading tests has not been explicitly computed before, to the best 

of our knowledge.  

The objective of this paper is to validate the Truss Model for coupled walls 

incorporating conventionally and diagonally reinforced coupling beams. The validation is 

achieved by computing the complete response, including failure, of the two landmark tests 

on coupled structural walls reported by Santhakumar (1974) and Paulay and Santhakumar 
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(1976). The seven-story test specimens were built at a 1:4 scale. Specimen Wall A 

incorporated conventionally reinforced coupling beams, whereas Wall B incorporated 

diagonal reinforced coupling beams. Wall A exhibited sliding shear of the coupling beams 

resulting in degradation of the overall response at 1.7% roof drift ratio. Wall B 

demonstrated a highly-ductile response up to a 3.6% roof drift ratio; after that, it 

experienced buckling of the wall longitudinal reinforcement and toe crushing of one of the 

wall piers. 

The 2D analysis used a Truss Model based on the Beam-Truss Model method (Lu 

et al. 2014), and the corresponding elements and materials as these implemented in 

OpenSees (OS) (McKenna 2018) by Lu and Panagiotou (2013). The vertical and horizontal 

elements were trusses in the Truss Model instead of force-based beam elements used in the 

Beam-Truss Model, Lu et al. (2016). 

 

2.3 Description of the Truss Model 

2.3.1 Components and geometry 

Figure 2.1 depicts two wall piers connected through coupling beams and the 

suggested 2D Truss Model. In Lu et al. (2014), nonlinear fiber-section beam elements 

model the concrete and reinforcing steel of the section sub-areas in the vertical and 

horizontal direction; the elements are pinned in the plane except the confined boundary 

elements. In the 2D model (Figure 2.1), all vertical and horizontal elements are nonlinear 

trusses, except for some elements at the base of boundaries and ends of coupling beams 

where beams (displacement-based elements) were used. The beams are used to model only 

the reinforcement in those specific locations and to consider dowel action. The diagonal 
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elements are truss elements modeling the diagonal compression field of concrete, including 

biaxial effects.  

For all the nodes, where only truss elements are interconnected, the rotational DOFs 

are restrained. All the elements at the base of the wall piers are fixed. Biaxial behavior of 

concrete (Vecchio and Collins 1986), as adjusted for mesh objectivity by Panagiotou et al. 

(2012), is considered in the diagonal trusses using Truss2 elements and the ConcretewBeta 

uniaxial material (Lu and Panagiotou 2013). These truss elements are defined using four 

nodes, two of them for element length and others for transverse gage length. The area of 

diagonals is defined based on the thickness of the panel and effective width beff = a sin(d) 

(Figure 2.1). Lu et al. (2016) include recommendations about geometry definition and 

angle of inclination of diagonals d in coupled walls.  

2.3.2 Materials 

The Truss Model uses constitutive stress-strain relationships for the materials 

available in the OS: ConcretewBeta, and SteelDRC. The former is a routine developed for 

concrete subjected to a biaxial strain field (Lu and Panagiotou 2013), and the latter is an 

in-house written routine for reinforcing steel, based on the model proposed by Dodd and 

Restrepo-Posada (1995). 

Lu et al. (2016), use zero tensile strength for concrete in diagonal and horizontal 

wall elements (vertical coupling beam elements). Stress at the closure of cracks is a 

function of cracking strength in the ConcretewBeta material. To improve the calculation 

of hysteretic behavior, in terms of pinching, a small tensile strength and a scaled alpha 

parameter were used. Parameter alpha controls the path of unloading from tensile strain 
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(McKenna 2018). Tensile strength in diagonals was ftd = 0.01ft, whereas alpha = 0.03f’c/ftd 

(where ft and f’c are defined in the next paragraph). 

The parameters for unconfined concrete material were calculated according to Lu 

and Panagiotou (2013), see Figure 2.2a. The compressive strength f’c occurs at the strain 

o = -0.002 and the crushing at strain cu = -0.004, whereas the modulus of elasticity is Ec 

= 5000√𝑓′
𝑐
 (MPa). Tensile strength of concrete ft was calculated according to the Eq. 2.1 

(Collins and Mitchell 1997),   

ft = 0.55fr                                                          (2.1) 

Where fr is the modulus of rupture of concrete. For the case of confined concrete, 

Lu and Panagiotou (2013) recommend define the peak compressive stress fcc and strain co, 

according to Mander et al. (1988), see Figure 2a. In this model, the onset of softening strain 

cs was, 

cs = -0.002 − ke  
f1

9f’c
⁄      (2.2) 

Where ke is the confinement efficiency coefficient, and fl is the confining stress. 

The regularized strain at crushing (or residual strength) was calculated according to Lu and 

Panagiotou (2013) using a maximum value cu = cs − 0.002. Ideally, the crushing strength 

should be set equal to zero, but for enhanced numerical robustness, a residual compressive 

strength fcu = -0.2f’c was used.  

Whenever the response of a material includes perfectly plastic or softening 

behavior, the objectivity of the model in the nonlinear analysis could be lost (Coleman and 

Spacone 2001). Here, the regularization of the concrete stress-strain relationship was, 

according to Lu et al. (2014). For concrete in tension, a distinction was made: while 
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unreinforced concrete considers tension softening and regularization (Rokugo et al. 1989), 

reinforced concrete considers tension stiffening (Stevens et al. 1991) and no regularization 

was carried out.  

 

 
Figure 2.1. Determination of components geometry for the 2D version of the Truss Model 

methodology. 

 

The steel reinforcement material constitutive model SteelDRC (Carreño 2018) 

depicted in Figure 2.2b and available in OS was used. This material makes use of tensile 

test parameters to model the yield plateau and kinematic hardening and bar fracture. 
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SteelDRC includes ultimate strain u as a parameter; because of that, no calibration is 

needed using parallel materials to include a cap for the strength. The Bauschinger effect 

is represented by the parameter OmegaFac, which could be used to heuristically account 

for bar bond-slip (Rashid et al. 2000). 

 

 
(a) 

 

(b) 

 

Figure 2.2. Uniaxial materials used in the Truss Model. (a) Strain-stress relationship for 

ConcretewBeta (Lu and Panagiotou 2013). (b) Model parameters for material SteelDRC 

(Carreño 2018). 
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2.4 Case studies 

2.4.1 Description of test units  

This section describes the seven-story coupled wall test specimens reported by 

Santhakumar (1974). The two specimens, Wall A and Wall B, had identical geometry and 

reinforcement, except for the reinforcement in the coupling beams, see Figure 2.3. The 100 

mm thick walls were 5.49 m high by 1.60 m long. The 76 mm thick coupling beams were 

0.38 m long by 0.31 m deep, resulting in an aspect ratio lc/h = 1.25. Each specimen was 

cast flat in a single operation and with the same concrete batch. The concrete mechanical 

properties at the day of testing were f’c = 31.6 MPa and fr = 2.9 MPa for Wall A and f’c = 

30.0 MPa and fr = 2.7 MPa for Wall B.  

Table 2-1 lists the main mechanical properties of the reinforcement. The walls were 

reinforced longitudinally with 5/8 in. diameter deformed bars (nominally 16 mm diameter 

bars & labeled D16 in Table 2-1) and transversely with 1/4 in. diameter deformed bars 

(nominally 6 mm diameter bars & labeled D6 in Table 2-1). Tables 2-2 and 2-3 list the 

mechanical properties of the reinforcement used in the coupling beams of Wall A and Wall 

B, respectively. The coupling beams in specimen Wall A were reinforced longitudinally 

with 3/8 in. diameter deformed bars (nominally 10 mm diameter bars & labeled D10 in 

Table 2-2) and transversely with 1/4 in. diameter bars (nominally 6 mm diameter bars & 

labeled D6 in Table 2-2).  
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Figure 2.3. Dimensions and reinforcement details for wall piers and coupling beams of Wall A 

and Wall B. 

 

The coupling beams in specimen Wall B were diagonally reinforced with 3/8 in. 

diameter deformed bars (D10) and longitudinally with 3/16 in. diameter bars (nominally 5 

mm diameter bars & labeled D5 in Table 2-3), and the transverse reinforcement consisted 

of 3/16 in. diameter bars (D5).  

The reinforcement of the wall specimens was defined according to the design of the 

seven-story prototypes considering five tributary bays (20’x30’) and lateral load equal to 

0.1Wt (where Wt is the seismic weight), in accordance with the seismic design knowledge 

of the 1970s. The design resulted in a large amount of longitudinal reinforcement at the 

boundaries and relatively large longitudinal bar sizes, see Table 2-1. 
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Table 2-1.  Properties of reinforcement used in the wall piers. 

Story Flexural (vert) Secondary (vert) Stirrup (horiz) 

 fy = 305 MPa fy = 343 MPa fy = 352 MPa 

 fu = 472 MPa fu = 487 MPa fu = 498 MPa 

 Outer () Inner ()     

 bar s s
 * bar s    s

 * Bar s  () Bar s  () 

1 10 D16 3.49 10.6 2 D16 0.70 2.13 2 D6 0.26 2 D6@76 0.88 

2 10 D16 3.49 10.6 2 D16 0.70 2.13 2 D6 0.26 2 D6@76 0.88 

3 10 D16 3.49 10.6 2 D16 0.70 2.13 2 D6 0.26 2 D6@76 0.88 

4 8 D16 2.79 8.52 2 D16 0.70 2.13 2 D6 0.25 2 D6@102 0.67 

5 6 D16 2.79 6.39 2 D16 0.70 2.13 2 D6 0.24 2 D6@102 0.67 

6 4 D16 1.39 4.26 2 D16 0.70 2.13 2 D6 0.23 2 D6@152 0.44 

7 4 D16 1.39 4.26 2 D16 0.70 2.13 2 D6 0.23 2 D6@152 0.44 
 

*, percentage of the reinforcement with respect to the maximum area of the outer boundary element. 

 

Contribution of concrete to shear resistance was ignored, and excess stirrups were 

provided. This allowed the development of very large yielding flexural strains. A large 

amount of shear reinforcement in the coupling beams of the Wall A allowed yielding of 

the flexural reinforcement and prevented shear diagonal failures, but the stirrups were 

ineffective controlling sliding shear. At this stage, dowel action played an important role 

in the coupling beams. Dowel action also was important at the failure of Wall A, failure 

initiated in the trailing walls, having a narrow area in compression, the transmission of 

shear by dowel action was significant. Moreover, Santhakumar (1974) estimated that more 

than 30% of the base shear in Wall B was carried by mechanisms other than stirrups, such 

as dowel action and aggregate interlock. 

Because of height limitations, the specimens were tested in the horizontal position 

using a double cantilever loading frame with forces applied manually using single-acting 

prestressing jacks. The dead load was simulated by applying a compressive force of 111 

kN on each wall pier using a prestressing system that ran the entire height of the specimen 

(wall height + foundation block depth). The vertical loads applied to the specimens were 
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selected to generated equal stresses as those expected in the prototype. In non-dimensional 

terms, the applied prestressing load was N/f’cAg = 0.057 for Wall A and N/f’cAg = 0.06 for 

Wall B. The specimens were subjected to reversed cyclic loading by quasi-statically 

applying identical lateral forces on Levels 3, 5 and 7. The load pattern of the applied lateral 

forces was chosen to mimic the shear and moment distribution that results in the application 

of the inverted triangular pattern in the New Zealand code (NZSS 1900). 

The axial force in the tendons was adjusted during the loading and unloading phase 

of tests to keep it reasonably constant. Displacements on the loading frame and specimens 

were recorded using a theodolite, while strains in the walls and coupling beams were 

measured with DEMEC gages (CCA 2018).  

 
Table 2-2. Properties of reinforcement used in conventionally reinforced coupling beams of       

Wall A. 

Flexural (long) Secondary (long) Stirrup (transv) 

fy = 315 MPa fy = 230 MPa fy = 346 Mpa 

fu = 431 MPa fu = 339 MPa fu = 487 Mpa 

Bar s  () Bar s  () Bar s  () 

2 D10 0.62 2 D 5 0.14 2 D6 @ 51 1.76 

Table 2-3. Properties of reinforcement used in diagonally reinforced coupling beams of Wall B. 

Main (diag) Secondary (vert) Confining 

fy = 315 MPa / 346 MPa fy = 230 MPa fy = 381 MPa 

fu = 431 MPa / 487 MPa fu = 339 MPa fu = 478 MPa 

Bar s  () Bar s  () Bar s  () 

2 D10 + 2 D6 1.12 2 D 5 @ 114 0.35 12 Gauge @ 19 4.00 
 

2.4.2 Truss Models of the two specimens 

All the models described here were developed using the 64-bit open-source 

computer program OpenSees Version 2.5.0 rev 6248 (McKenna 2018). This version was 

compiled, including the in-house routine SteelDRC written by Carreño (2018) and HDF5 

libraries to run a beta version of the OS postprocessor STKO (Petracca et al. 2017b, 
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Petracca et al. 2017a). The models were generated from TCL scripts without any 

preprocessor. 

The definition of the geometry of the vertical elements accounted for the 

asymmetry of the wall longitudinal reinforcement. Each wall had a concentration of 

longitudinal reinforcement at one of the ends, where a boundary element would typically 

be detailed nowadays. For this reason, in this paper, the term “boundary” will be used 

thereafter. However, the walls had no confinement reinforcement. Based on the 

formulation of Lu et al. (2014), vertical end beams use in-plane flexural rigidity only for 

confined regions. Here, with the exception of the elements modeling reinforcement to 

consider dowel action, the end elements were modeled without in-plane flexural rigidity 

because of the absence of confinement. This prevented a spurious delay in the computation 

of shear failures. 

The mesh layout size was selected to result in six identical quadrilaterals. The 

exterior boundary at the base had 10 D16 bars (Figure 2.4); this section was modeled with 

two vertical lines of elements. Truss elements represented reinforcement and concrete, with 

the exception of the first three levels of the grid (Figure 2.4), where circular fiber-section 

beams modeled the bars in order to capture the effect of dowel action at the regions of the 

wall where the peak sliding deformations occur. 

The rest of the sections of the exterior boundary (Figure 2.3) were modeled using 

only truss elements. The interior boundary had 2 D16 bars in all its elevation (Figure 2.3), 

and the section was modeled in a similar way with one vertical line of elements. Areas of 

concrete and reinforcement of the remaining four field vertical lines (trusses) were adjusted 

to obtain agreement between model and test centroidal axes. 
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Figure 2.4. Description of the Truss Models of Walls A and B. 

 

For the case of study, the inclinations of diagonals were proposed according to the 

recommendation of Lu et al. (2014) and the general crack pattern observed. Four angles 

resulted in each wall, corresponding to four zones (Figure 2.4): pier of the first level, pier 

above the first level, coupling beams, and panel zones. The selected inclination of 

diagonals in the wall piers was 55° in the first level and 54° above the first level, whereas, 

in the panel zones, it was 56°. In the coupling beams, the inclination of the diagonal was 

47° and 30° in the Wall A and Wall B, respectively. The inclination of the diagonals in the 

panel zones (56°) was the result of the grid formed by the vertical and horizontal elements. 

If the wall piers are considered as individual cantilever walls, the inclination of diagonals, 
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according to Lu et al. (2014) would have been 56° and 60° in Wall A and Wall B, 

respectively, whereas the inclination in coupling beams would have been 45°. Although 

shear failures in the wall piers were not reported during the tests, the definition of these 

angles is very important because in-plane pure Truss Models are quite sensitive to the 

inclination of the diagonals for a response that involves diagonal failure (especially 

diagonal tension failure). 

The coupling beams in Wall A used seven vertical and five horizontal lines. The 

reinforcement and concrete were represented with truss elements except for the top and 

bottom bars that were modeled using circular fiber-section beams to capture dowel action 

in this critical region of the walls. The mesh of coupling beams was more refined than those 

of the piers to capture sliding shear. Additional rigid elements were used to generate offsets 

and consider the real length of the coupling beams, with the objective of moving the 

localization of the sliding shear out of the wall piers (Figure 2.4). The coupling beams of 

Wall B used five vertical and five horizontal lines, and all the elements were trusses 

modeling reinforcement and concrete. 

The protruding length of the horizontal and diagonal bars of the coupling beams 

into the wall piers were modeled with truss elements (slip elements, Figure 2.4). The 

anchorage length of these elements was adjusted close to the physical length of the bar 

minus one half of their development length. To simulate the pinched hysteretic behavior 

typical of bond-slip, the slip elements used Hysteretic material of OS calibrated according 

to the properties of the steel and pinching parameters 0.60 and 0.15. The stress-strain 

envelopes were adjusted to generate force-displacement curves corresponding to the length 

recommended by Zhao and Sritharan (2007), in this case, about twenty bar diameters. In 
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the slip elements, the horizontal DOFs in the nodes of the boundaries were released to 

avoid restrictions of the wall piers reinforcement on the debonded elements. For both 

models, a parametric study using larger anchorage lengths showed similar overall 

responses. 

Presland (1999) noted that the foundation adjacent to members under compression 

provides additional confinement in the critical section at the base. Without modeling the 

confinement provided from the foundation, degradation due to premature sliding shear 

failure at the base of the Wall A and Wall B occurs at 2.7% and 1.5% drift ratios, 

respectively. To consider the influence of the foundation on the base of the Wall B, the 

concrete of vertical and diagonal trusses of the first two levels of the grid was considered 

as well-confined by the foundation beam. This height is approximately equal to the length 

of the compression zone of the wall pier under the maximum compressive load (Presland 

1999). The first level was considered under triaxial confinement (Mander et al. 1988), with 

lateral stresses f2 and f3 chosen ad hoc and made equal to 0.3f1 (where f1 is the maximum 

vertical stress). Trial runs were made using lower confinement, but the analysis showed the 

crushing of the concrete at the wall base, which was not observed during testing. The 

second level was confined to the average of unconfinement state and the maximum 

confinement. This resulted in confined compressive strength fcc equal to -1.86f’c and -

1.43f’c for the first and the second grid-level, respectively. At the base of the piers and the 

elements adjacent to the piers in the coupling beams of the Wall A, a similar calibration of 

the properties of the concrete was carried out. For the case of the beams, this resulted in fcc 

equal to -1.1f’c.  
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OpenSees includes the uniaxial material ReinforcingSteel, which allows the use of 

two different approaches to consider bar buckling in the fiber section level: Gomes and 

Appleton (1997) and Dhakal and Maekawa (2002). These models for bar buckling are 

calibrated in terms of the slenderness ratio lSR = Lu/db (where Lu is the unsupported length 

and db equal to the bar diameter). In the boundary elements of the test specimens, only the 

most exterior bars could be considered latterly supported; because of that the definition of 

Lu is not straightforward for the rest of the bars. For this reason, the bar buckling was kept 

out of the scope of this work. 

The nonlinear fiber-section beam elements (DBE) used three integration points. 

Linear geometry was used for the analysis. Lateral loads were applied using displacement 

control. 

 

2.5 Comparison of responses  

This section compares key test responses with those computed using the Truss 

Models for the two specimens. Figure 2.5 depicts the overall hysteretic response for 

specimens Wall A and Wall B (in grey). Specimen Wall A showed a pinched response 

caused by sliding shear in the coupling beams. The peak base shear force in this specimen 

was reached at a 1.7% roof drift ratio. Thereafter, gradual softening occurred. Specimen 

Wall B showed a stable hysteretic response with minimal degradation to a 3.6% roof drift 

ratio. Santhakumar (1974) reported that at this drift ratio, “the kink at the junction of the 

wall and the base block caused the compression wall to buckle”. This failure mode could 

be cataloged today as buckling of the reinforcement in the wall boundary element, followed 

by the crushing of the unconfined concrete core.  
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The models resulted in larger initial stiffness due to the overlapping areas of the 

elements (Lu et al. 2014). The model of Wall A, computed with a very good level of 

accuracy the peak lateral forces at each of the loading cycles (i.e., within ±8%), except for 

the peaks of the semi-cycles 1, 2 and 12 where the Truss Model predicts the lateral force 

with a maximum error of 24% (see Figure 2.5a). The model captures very well the sliding 

shear in the coupling beams in this specimen, compare Figure 2.6a and Figure 2.6b. 

Santhakumar states that during a semi-cycle with large lateral displacement (maximum 

drift ratio equal to 2.4%), the inner wall boundary element reinforcement buckled. The 

Truss Model cannot capture the buckling of the wall longitudinal reinforcement since bar 

buckling is not considered. However, the contour of the minimum principal strains 2 of 

the Wall A at maximum drift suggests that the model is capable of capture the damage 

pattern at the base, compare Figure 2.7a and Figure 2.7b.  

A comparison of the experimentally measured and computed hysteretic responses 

for Wall A indicates that the Truss Model overpredicts the hysteretic energy dissipated. 

The authors note that the hysteretic response recorded for specimen Wall A shows an 

unusual ‘banana’ shape and recentering during the unloading phases (i.e., unloading in 

double curvature). Without any further evidence, we judge this to be caused by the presence 

of the prestressing tendons providing axial force in the walls. The tendon acts unintendedly 

as a recentering mechanism if it remains linear (Restrepo and Rahman 2007).  
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(a) 

 

(b) 

 

Figure 2.5. Comparison of Truss Models and test results: base shear – roof displacement. (a) 

Wall A. (b) Wall B (theoretical ultimate base shear in Wall A V* = 230 kN and Wall B V* = 252 

kN). The coupling efficiency coefficient (Paulay and Priestley 1992) calculated at the specific 

displacement in the response is shown in parenthesis. 

 

For the specimen Wall B, the Truss Model computes the peak lateral force 

accurately in all semi-cycles with a maximum error of 10%, as well as the response 

envelope up to 3.6% roof drift ratio, see Figure 2.5b. However, the model significantly 

overpredicts the hysteretic energy dissipation and the unloading stiffness throughout all the 

cycles. The ‘banana’ shape and recentering unloading response are also present for Wall 
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B. Local responses provide an insight into the response of the different members in the 

system. The tests described by Santhakumar (1974) were densely instrumented. However, 

the tests were carried out in the early days of experimental earthquake engineering, where 

the emphasis in the presentation of the data was given to the applied forces, and not to 

forces and displacements. Unfortunately, the step number or applied lateral displacement 

are not given in the report.  

 
 

(a) (b) (c) (d) 

    

Figure 2.6. (a) Deformed shape of model Wall A at maximum displacement (2x). (b) Wall A 

after the test. (c) Deformed shape of model Wall B at maximum displacement (2x). (d) Wall B 

after the test. Deformed shapes generated using STKO (Petracca et al. 2017a, Petracca et al. 

2017b) and pictures from Santhakumar (1974). 

 
(a) (b) 

 
 

Figure 2.7. (a) Minimum principal strains 2 at maximum drift in Wall A (strains calculated 

according to Zhang et al. 2017). (b) Cracks formed in the Wall A at the base in the semi-cycle 

12 (pictures from Santhakumar 1974). 
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Instead, and as it was customary in the early days of experimental earthquake 

engineering, the researchers used the ratio of the base shear at which the response is 

presented to the theoretical ultimate base shear (V/V*). 

The use of such a ratio leads to significant uncertainty in the definition of the lateral 

displacement when the tangent stiffness is small and makes the comparison of model and 

specimen results difficult. Nevertheless, we consider the test results to be valuable and to 

give insight into the behavior. For this reason, the results of the models are compared with 

test results reported for the two specimens.  

Figure 2.8a and Figure 2.8b compare the measured and computed reinforcing 

strains for the coupling beams in specimens Wall A and Wall B, respectively. The strains 

computed from the Truss Models were calculated from the nodal displacements. Although 

the magnitude of the bar strains computed from the models and those recorded in the 

experiments differ as much as 300%, the Truss Model strains do, in general, follow similar 

trends.  

An aspect that is often overlooked in simplified models of coupled shear walls is 

the coupling between the axial and flexure degrees of freedoms in the coupling beams.  

Coupling beams, whether these beams are conventionally or diagonally reinforced and are 

part of coupling walls or tube-like frames, lengthen and result in the development of yield 

lines in the slabs (Fleischman et al. 2014).  

Santhakumar measured the dilatation at discrete locations between the longitudinal 

axes of the leading and trailing walls in both specimens, see Figure 2.9a and Figure 2.9b, 

respectively.  
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(a) 

 

(b) 

 

Figure 2.8. (a) Average strains in flexural reinforcement of tension corners in coupling beams 

of Wall A. (b) Average strains of diagonal reinforcement in tension for coupling beams of Wall 

B. 

Past 1.25% roof drift ratio (i.e., semi-cycle 9 and greater for specimen Wall A, and 

semi-cycle 13 and greater for specimen Wall B), the dilatation is rather uniform throughout 
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the wall height, except below the lowest most coupling beam, where it is significantly 

smaller. This is because of the restraint provided by the foundation block. 

 
(a) 

 

(b) 

 

Figure 2.9. Dilatation of coupled walls last cycles. (a) Wall A. (b) Wall B. 

 

Dilations computed from the Truss Models follow similar trends, though the 

dilations computed for specimen Wall A are greater than those recorded for this test. The 
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magnitude of the recorded and computed dilations in specimen Wall B are in reasonable 

agreement. 

 

2.6 Evaluation of computed responses not measured in the tests 

This section discusses responses that could not be recorded during the tests, due to 

the degree of internal indeterminacy, but that can easily be extracted from the analyses. 

These responses provide significant insight into the behavior of coupled walls. Figure 2.10 

shows the variation of axial forces of specimens Walls A and B as predicted by the Truss 

Models. Axial forces of alternating sign develop in the walls of these specimens because 

of coupling. In these walls, the theoretical coupling efficiency coefficient, as defined by 

Paulay and Priestley (1992), calculated at the peak of various semi-cycles are depicted in 

Figure 2.5 next to the semi-cycle number (number inside parentheses). In specimen Wall 

A, the model indicates that the coupling efficiency coefficient decreases once the peak base 

shear force has been reached. The decrease in the coupling efficiency is also manifested in 

the amplitude of the wall axial forces, which also decreased after semi-cycle 9, see Figure 

2.10a. According to the model, the decrease in the coupling was caused by degradation in 

the response of the coupling beams, see Figure 2.11a. In contrast, the coupling efficiency 

coefficient remained approximately constant with the progression of the test on specimen 

Wall B. Figure 2.10b shows that the magnitude of the maximum and minimum axial forces 

at the peak in every semi cycle remained very similar.  

The hysteretic shear force - shear strain responses of Level 1 and Level 7 beams 

given by the Truss Models are shown in Figure 2.11 for the beams of specimens Wall A 

and Wall B. Figure 2.11 also shows the theoretical shear force calculated in accordance 
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with ACI-318 (2014) but using measured material properties and considering zero axial 

force. The theoretical shear strength of the conventionally reinforced coupling beams of 

specimen Wall A was 58% of the limit prescribed in ACI 318-14 of 0.83√𝑓′
𝑐
 Ag (MPa). 

For the diagonally reinforced coupling beams of specimen Wall B, the theoretical shear 

force was 81% of the limit prescribed in ACI 318-14. A comparison of the hysteretic 

responses of Level 1 and Level 7 beams reveal some distinct behavior. In both specimens, 

Level 1 coupling beams develop significant overstrength (70% and 63% greater strengths 

than the theoretical strength). In contrast, Level 7 beams develop low to moderate 

overstrength (25% and 8% greater strengths than the theoretical strength for the beams in 

Wall A and Wall B, respectively). The reason for the excess in capacity in Level 1 beams 

is the presence of axial compression force in the beams. When unrestrained, deep 

conventionally and diagonally reinforced beams elongate significantly if subjected to large 

chord rotations (Restrepo-Posada 1993). However, the presence of stiff walls connected to 

a foundation and framing into these beams, constrain the elongation of the beams, see 

Figure 2.9, resulting in the development of compressive forces, which redistribute the shear 

force from the trailing (decompressing or tensioning) wall to the leading (compressed) 

wall. The compressive force results in an increase of the capacity of the beams, and in the 

case of the beams in these two specimens, it decreases the shear strain at the onset of 

softening. The restraint on the coupling beams caused by the foundation and stiff walls 

gradually vanishes with height. Thus, coupling beams in Level 7, experienced small axial 

forces and the capacity was well predicted by conventional methods.  

Figure 2.12 shows the distribution of the base shear in specimens Wall A and Wall 

B at various drift ratios. For specimen Wall A, the model indicates that at the wall base, 
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the leading wall resists between 67% and 84% of the base shear force. The maximum force 

resisted by the leading wall (shown as “Comp” in Figure 2.12) was 80% of the limit 

prescribed in ACI-318 (2014) of 0.83√𝑓′
𝑐
 Ag (MPa).  

(a)  

 

(b) 

 

Figure 2.10. (a) History of axial force distribution in Wall A. (b) History of axial force 

distribution in Wall B (simulated gravitational force W = -222 kN). 

 

Only at the end of testing (i.e., at 7.01% roof drift ratio), when the coupling 

provided by the beams had degraded because of sliding shear, the trailing wall resisted a 

significant percentage of the base shear. 
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(a) 

 

(b) 

 

Figure 2.11. Normalized shear force - shear strain relationships computed for the first-level 

coupling beam and for the roof coupling beam. (a) Wall A. (b) Wall B. The theoretical capacity 

in Wall A and Wall B beams was predicted using measured material properties. The coupling 

efficiency coefficient (Paulay and Priestley 1992) calculated at the specific displacement in the 

response is shown in parenthesis. 

 

For specimen Wall B, the model indicates that at the wall base, the leading wall 

resisted between 81% and 91% of the base shear force. The maximum force resisted by the 

leading wall 96% of the limit prescribed in ACI-318 (2014) of 0.83√𝑓′
𝑐
 Ag (MPa). We 

note that apportioning of the shear force between leading and trailing walls should not be 
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computed by linear analysis tools often used in design practice, unless different ad hoc 

stiffness modifiers are used for the leading and trailing wall in the linear model. 

 
(a) (b) 

  

Figure 2.12. Distribution of base shear in the left wall and right wall for peaks of semi-cycles 

(blue color indicates the wall is in compression while green corresponds to the wall in tension). 

(a) Wall A. (b) Wall B. 

 

2.7 Conclusions 

This paper compared the response of a landmark test on two 1:4 scale seven-story 

coupled walls (Santhakumar 1974) with the response calculated using the Truss Model. 

The model was developed using the opensource nonlinear analysis program OpenSees. 

Specimen Wall A used conventionally reinforced beams with a theoretical shear force 

capacity of 58% of the maximum permitted in ACI-318 (2014). The peak lateral force in 

this specimen was attained at a 1.7% roof drift ratio. Gradual softening in the overall 

response occurred thereafter and was associated with significant sliding shear in all the 

coupling beams. Specimen Wall B was built incorporating diagonally reinforced beams 

with a theoretical shear force capacity of 81% of the maximum permitted in ACI 318-14. 

This specimen exhibited stable response with minimum degradation and attained a roof 



 

36 

drift ratio of 3.6% when the longitudinal reinforcement in a wall toe buckled and the 

concrete there crushed.  

Truss Models of both specimens capture well key aspects of the response: the 

response envelope of both specimens and sliding shear of the beams in specimen Wall A. 

The models overpredict the hysteretic energy dissipation compared with the observed test 

response. It seems plausible that the unloading part of the experimentally measured 

hysteretic responses, and the recentering observed could be due to the presence of the 

elastic tendons used to provide axial force. The tests incorporated a mechanism to manually 

control the axial force in the tendons during the loading and unloading phase of the tests. 

In broader terms, and because the methodology used in this system test in the early days of 

experimental earthquake engineering gave emphasis on reporting results as a function of 

force ratios, and not force and drift ratios, a comparison of test and model results is made 

difficult. Nevertheless, model and test results show similar trends in the strains in the 

coupling beam reinforcement and in the dilatation between the wall axes caused by the 

lengthening of the coupling beams. 

Important responses that cannot be recorded in a test, were computed with the Truss 

Model. The model shows the effect that the restraint provided by the foundation to the 

walls also restrains the lower level coupling beams. As a result, these beams develop axial 

compression and higher overstrength that beams on other levels. Finally, the Truss Models 

showed that for the two test specimens, the wall being compressed (leading wall) carries 

more than 67% of the shear force. This apportioning of the shear force between leading 

and trailing walls cannot be computed by linear analysis tools unless different ad hoc 

stiffness modifiers are used for the leading and trailing wall in the linear model.  
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Chapter 3.  Analysis of Reinforced Concrete Coupled Structural 

Walls Via the Beam-Truss Model 

 
 

3.1 Abstract 

The use of an enhanced version of the Beam-Truss Model proposed in a previous 

study to compute the nonlinear response of reinforced concrete coupled walls is discussed 

in this paper. The results of the cyclic tests of two seven-story one-quarter scale coupled 

walls tested in New Zealand are used for model validation. Except for the coupling beams, 

the specimens were identical. One of the specimens (Wall A) had a conventional 

arrangement of reinforcement in the coupling beams, whereas the other (Wall B) had 

beams with diagonal bars. Specimen Wall A showed lateral force-displacement response 

degradation after reaching a 1.6% roof drift ratio. The degradation in specimen Wall A was 

due to the sliding shear of the beams. Specimen Wall B exhibited stable hysteretic response 

throughout the test. 

The authors use two kinds of Beam-Truss Models and compare computed and 

measured key responses in these tests. Computed responses, measured and not measured 

in the tests, are also compared with the results of Nonlinear Truss Models reported in the 

literature. 

This paper shows that the relatively simple and computational-efficient Beam-

Truss Models predicted well important aspects of the response, such as the lateral force-

displacement envelope, the sliding shear of the coupling beams in specimen Wall A and 

the ductile behavior of specimen Wall B. 
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3.2   Introduction 

Reinforced concrete coupled structural walls or core walls incorporating two wall 

piers interconnected with a series of coupling beams are a commonly used lateral system 

in buildings. Walls can be coupled with conventionally reinforced or diagonally reinforced 

beams. However, shear failures observed in stout conventionally reinforced coupling 

beams in buildings exposed to strong ground motions and in a testing (Boroschek et al. 

2014, Paulay and Santhakumar 1976) have led to geometrical and shear stress limits for 

the use of these two types of coupling beams. For example, in ACI 318-14 (2014), coupling 

beams with an aspect ratio ln/h < 2 (where ln is the length of the clear span measured face-

to-face of supports, and h is the depth of the coupling beam) and Vu ≥ 4√𝑓′
𝑐
 Acw (where Vu 

is the factored shear force in lb, f’c is the compressive strength of concrete in psi, and Acw 

is the area of the concrete section in in2) shall be diagonally reinforced, and if ln/h ≥ 4 the 

coupling beams shall be designed as beams of special moment frames. In any case, Vn shall 

not be taken greater than 10 Acw √𝑓′
𝑐
 (where Vn is the nominal strength in lb). The coupling 

beams are key components for the seismic response of coupled walls; these have a 

significant influence in the axial and shear force demands in the framing wall piers (Alvarez 

et al. 2019). 

In current practice, it is common to use linear analysis (either equivalent static or 

modal response spectrum) to obtain section demands in support of the design. It is well 

known that demands calculated from the linear analysis can significantly underestimate the 

shear force demands in the wall piers (Boroschek et al. 2014, Panagiotou et al.  2011, 

Panagiotou and Restrepo 2011, Panagiotou and Restrepo 2009). An important 

disadvantage of the linear analysis is the use of prescriptive element effective stiffness to 
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account for cracking, which hampers the use of redistribution concepts and, more 

importantly, it results in irrational shear and flexure demands in coupled walls (Alvarez et 

al. 2019). Such irrational demands can cause difficulties in the implementation of the 

capacity design. For buildings, the performance-based design is desired to use nonlinear 

time-history analysis (TBI 17 2017). In this situation, the most popular solution to model 

the walls is using Euler-Bernoulli beams with fiber-sections and uniaxial materials, 

whereas in general, the coupling beams are modeled using shear springs (Naish et al. 2013, 

ASCE 41-13 2013). These modeling techniques have their own limitations as nonlinear 

flexure-shear interaction cannot be accounted for. 

The correct simulation of coupled walls with short coupling beams is especially 

difficult because it is necessary to consider flexure-shear interaction (Lu and Panagiotou 

2016). Reinforced concrete structural walls can be modeled using either micro or macro 

models (Lu and Panagiotou 2013, Toprak et al. 2015, Dashti et al. 2017a), which consider 

the flexure-shear interaction. The micro models relay on the detailed interpretation of the 

local behavior of specimen walls, whereas the macro models focus on capturing practically 

and efficiently the overall wall response with reasonable accuracy. Smeared-crack or 

plasticity-based finite elements (Gormak 1974, Zhao et al. 2004, Mohr et al. 2007, 

Mihaylov and Franssen 2017) are examples of micro models. On the other hand, 

empirically calibrated shear springs (Naish et al. 2013, Vulcano 1992, Fischinger et al. 

1992); multiple vertical line models (Fischinger et al. 2012, Kolozvari and Wallace 2016); 

truss models and beam-truss models (Lu et al. 2016,  Lu and Panagiotou 2013, Panagiotou 

et al. 2012) are macro model examples. 
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This paper mainly focuses on the Beam-Truss Model (BTM) methodology 

proposed by Lu et al. (2016). The BTM had its origin in the 2D Truss Model developed by 

Panagiotou et al. (2012), which incorporated the biaxial behavior of concrete proposed by 

Vecchio and Collins (1986). The Truss Model implements a truss analogy capable of 

capturing flexure-shear interaction in 2D walls. Barbosa (2011) extended the Truss Model 

to 3D by considering out-of-plane bending in the model. Lu and Panagiotou (2013) 

developed a model similar to BTM, which included mainly truss action in-plane and beam-

like action out-of-plane; in this methodology, all the vertical elements incorporated the in-

plane flexural rigidity. Lu et al. (2016) developed the BTM from the former model (Lu and 

Panagiotou 2013), making all the elements to work as truss elements in-plane, except for 

those representing confined concrete (e.g., boundary elements), which included in-plane 

flexural rigidity. The BTM naturally considers the flexure-shear interaction and warping 

associated with multi-axial stress states in nonplanar elements, which allows to model not 

only walls but slabs and core walls. Furthermore, the BTM has been used to compute the 

seismic response of complete buildings with nonlinear time-history analysis (Lu 2014, 

Zhang et al. 2017). 

This paper applies, with some differences, the BTM methodology to the 

computation of the nonlinear cyclic response of two pioneering tests on reinforced concrete 

coupled walls. The tests, reported by Santhakumar (1974), consisted of two one-quarter 

scale seven-story coupled walls that were subjected to quasi-static reversed cyclic loading. 

Except for the coupling beams, the specimens (Wall A and Wall B) were equal. Specimen 

Wall A was reinforced with longitudinal bars and stirrups in the beams. This specimen 

exhibited degradation of its response after reaching a 1.6% roof drift ratio. Sliding shear 
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failure occurred in the beams that resulted in overall degradation. Specimen Wall B 

incorporated diagonally reinforced coupling beams and exhibited ductile and stable 

hysteretic behavior up to a roof drift ratio equal to 3.6% when a wall pier buckled above 

the foundation. 

Two computational models of the specimens Wall A and Wall B were created in 

OpenSees (OS) (McKenna 2019) with different variants of the BTM developed by Lu et 

al. (2016). The first BTM used in this paper included truss elements to represent vertical 

and horizontal elements, except for the modeling the boundary elements, where 

displacement-based elements (DBE) were the preferred choice; whereas Lu et al. (2016) 

exclusively used force-based elements (FBE) in all vertical and horizontal elements. This 

model will be termed here Modified Beam-Truss Model (MBTM). The second BTM, 

termed the Enhanced Beam-Truss Model (EBTM), was an extension of the MBTM that 

incorporated the bar-bond slip of the reinforcement anchored beyond the coupling beam 

ends. In the case of specimen Wall A, the EBTM also incorporated the dowel action of the 

longitudinal reinforcement of the coupling beams. This paper discusses key results 

obtained with each of these two models and makes a comparison with responses reported 

by Santhakumar (1974).  Furthermore, responses computed with the EBTM are compared 

with those computed using the Nonlinear Truss Model (NTM) developed by Alvarez et al. 

(2019) for the same specimens. Element responses that are relevant to the practicing 

engineering community, which could not be measured in these two tests, are discussed in 

this paper. 
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3.3 Description of specimens 

The MBTM and EBTM are validated with the landmark reversed cyclic loading 

tests of two specimens reported by Santhakumar (1974), Paulay and Santhakumar (1976). 

The geometry and reinforcement of the two one-quarter scale specimens, Wall A and Wall 

B, corresponded to the design of building prototypes with seven stories. The tributary area 

of the coupled walls in the prototype buildings was 6.10 m by 9.10 m, and the 

corresponding lateral loading was 10% of the seismic weight (NZSS-1900 1965). 

The specimens were identical except for the reinforcement of the coupling beams 

(see Figure 3.1). The coupling beams in specimen Wall A had conventional longitudinal 

and transversal reinforcement, and those in specimen Wall B had diagonal bars. The 

geometry of the coupled walls and coupling beams is displayed in Figure 3.1. The aspect 

ratio of the beams resulted in length/depth = 1.25. The specimens were cast in a horizontal 

position without cold joints. The reinforcement properties used in the wall piers of the 

specimens are listed in Table 3-1. The compressive strength of the concrete was f’c = 31.6 

MPa, whereas the modulus of rupture was fr = 2.9 MPa in specimen Wall A; in specimen 

Wall B, these were 30.0 MPa and 2.7 MPa, respectively.  

The longitudinal bars sizes at base of the wall piers were #5 (16 mm) at the edges, 

and #2 (6.35 mm) in between edges, see Figure 3.1. The walls piers were transversely 

reinforced using #2 stirrups. Table 3-2 and Table 3-3 list the characteristics of the 

reinforcement of the beams in both specimens. Longitudinal bars #3 and transversal bars 

#2 were used to reinforce the coupling beams of specimen Wall A. The beams in specimen 

Wall B had diagonal #3 bars and longitudinal 3/16” (4.8 mm) diameter bars. 
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Figure 3.1. Geometry and reinforcement details of specimens Wall A and B. 

 

Table 3-1. Reinforcement used in the wall piers of both specimens. 

Level Vertical Reinforcement Horizontal Reinforcement 

 Outer boundary Inner boundary   Stirrups  

 Steel ratio Bar Steel ratio Bar Steel ratio Bar Steel ratio Bar 

1 0.1060 10 #5 0.0213 2 #5 0.0026 2 #2 0.0088 2 #2@76 

2 0.1060 10 #5 0.0213 2 #5 0.0026 2 #2 0.0088 2 #2@76 

3 0.1060 10 #5 0.0213 2 #5 0.0026 2 #2 0.0088 2 #2@76 

4 0.0852 8 #5 0.0213 2 #5 0.0025 2 #2 0.0067 2 #2@102 

5 0.0639 6 #5 0.0213 2 #5 0.0024 2 #2 0.0067 2 #2@102 

6 0.0426 4 #5 0.0213 2 #5 0.0023 2 #2 0.0044 2 #2@152 

7 0.0426 4 #5 0.0213 2 #5 0.0023 2 #2 0.0044 2 #2@152 

 fy = 3.05 GPa   fy = 3.43 GPa fy = 3.43 GPa 

 fu = 4.72 GPa   fu = 4.87 GPa fu = 4.87 GPa 

 

Table 3-2. Specimen Wall A coupling beam reinforcing details. 

Main Reinforcement  Secondary Reinforcement 

Longitudinal Transverse Longitudinal 

Steel ratio Bar Steel ratio Bar Steel 

ratio 

Bar 

0.0062 2 #3 0.0176 2 #2 @ 51 

mm 

0.0014 2 φ 3/16” 

fy = 3.15 GPa 

 

fy = 3.46 GPa 

 

fy = 2.30 GPa 

fu = 4.31 GPa fu = 4.87 GPa fu = 3.39 GPa 
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Table 3-3. Specimen Wall B coupling beam reinforcing details. 

Main Reinforcement  Secondary Reinforcement 

Diagonal Confining of diagonal Vertical 

Steel ratio Bar Steel 

ratio 

Bar Steel 

ratio 

Bar 

0.0112 2 #3 + 2 #2 0.0400 12 Gauge @ 19 mm 0.0035 2 φ 3/16” @ 114 mm 

fy = 3.15 – 3.46 GPa fy = 3.81 GPa 

 

fy = 2.30 GPa 

 fu = 4.31 – 4.87 GPa fu = 4.78 GPa fu = 3.39 GPa 

 

In the case of the conventionally reinforced coupling beams incorporated in 

specimen Wall A, a large amount of transverse reinforcement was used (see Table 3-2), 

which in turn was effective delaying shear diagonal failures but ineffective preventing 

sliding shear. Due to the relatively large size of the longitudinal reinforcement of the 

coupling beams, dowel action played an important role during the sliding shear. A large 

amount of longitudinal reinforcement was placed at the wall pier ends too (see Table 3-1), 

where relatively large diameter bars were detailed. Therefore, dowel action was also 

important in this case. For specimen Wall B, Santhakumar (1974) estimated that 

mechanisms such as dowel action and aggregate interlock carried more than 30% of the 

base shear. 

To simulate the vertical load, the specimens were subjected to compressive forces 

of 111 kN at the wall piers (N/f’cAg = 0.06), which resulted in similar axial stresses as in 

the walls of the prototype buildings. These forces were applied with prestressing tendons 

at the centroid of the wall piers, along with the height. The specimens were also subjected 

to forced-controlled quasi-static reversed cyclic loading with equal loads at the 3rd, 5th, 

and 7th level; the lateral load pattern was chosen according to the NZSS-1900 (1965). The 

test control method employed by Santhakumar (1974) differs from the nowadays used 

displacement-controlled, which can maintain adequate control near the peak load and the 

softening response. The forces were applied using single-acting jacks. To keep the vertical 
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load constant during the lateral loading and unloading, the tensile force in the tendons was 

manually controlled. 

 

3.4 Description of the modified Beam-Truss Model 

3.4.1 Model components  

The BTM, as developed by Lu et al. (2016) is a 3D methodology used to compute 

the response of planar (e.g., coupled walls) and non-planar (e.g., core walls) reinforced 

concrete elements and structures subjected to quasi-static monotonic or reversed cyclic 

loading and to earthquake input ground motions. The concrete and reinforcement in the 

vertical and horizontal directions are modeled using FBE with fiber-sections according to 

their tributary areas. The grid formed by the vertical and horizontal elements has out-of-

plane flexural rigidity, which allows the BTM to capture warping. In-plane rigidity is only 

used in the confined elements (e.g., boundary elements). The diagonal compression field 

of the concrete is modeled using Truss2 elements with sections also according to their 

tributary areas. 

The specimens Wall A and Wall B were planar, loaded only in-plane, and no 

warping was expected to occur. Due to this, to reduce the number of DOF, the models were 

implemented using a 2D version of the BTM described above. In this modified BTM 

(termed thereafter MBTM), the vertical and horizontal elements, instead of being FBE, are 

chosen truss elements. Additionally, to enhance convergence, the boundary elements of the 

MBTM use DBE (including in-plane flexural rigidity) instead of FBE. Truss2 elements for 

diagonals and ConcretewBeta material, as implemented by (Lu and Panagiotou 2013) in 

OpenSees (McKenna 2019), are also adopted for the MBTM. 
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When ConcretewBeta is used in the definition of a Truss2 element, the material 

considers the influence of the biaxial field of strains in the compressive strength of the 

concrete via the compressive strength reduction factor  (Vecchio and Collins 1986). The 

Truss2 element defines a dummy perpendicular element as gage; then, the ConcretewBeta 

material monitors the strains and adjusts the compressive strength of the Truss2 element 

accordingly. This adjustment in the compressive strength is a key aspect to consider for the 

correct computation of shear failures in concrete elements. The calibration of the input 

parameters that control the factor  ( i.e., bint, ebint, bres and ebres), is in accordance with 

Lu et al. (2014). 

The geometry and definition of the elements of the MBTM are shown in Figure 3.2. 

The inclination of the diagonal elements is proposed according to Lu et al. (2014) as, d = 

tan-1 (Vmax/(fy,t t tw dvl)) ≤ 65 °, where Vmax is the peak lateral force, fy,t  the yield strength 

of the transversal reinforcement, t is the steel ratio of the transversal reinforcement, tw the 

wall thickness and dvl the width of the grid in the direction of loading. The areas of concrete 

and reinforcement in the truss elements and fiber-section beams are also defined in Figure 

3.2. The effective width of the diagonal elements is beff = a sin (d), where a is the spacing 

between the vertical elements. Additional recommendations about the geometric definition 

of the elements and the angle of inclination of the diagonals can be found in Lu et al. 

(2014). In the MBTM, all the DOF of the nodes are fixed at the walls piers’ base; and 

where only truss elements are connected to a single node, the in-plane rotational DOF of 

the node is restrained to avoid ill-conditioning.  
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3.4.2 Constitutive stress-strain relationships 

The reinforcing steel is modeled with the uniaxial material SteelDRC (Carreño 

2018), which is an in-house OpenSees implementation of the model developed by Dodd 

and Restrepo-Posada (1995) (Figure 3.3a). This constitutive material stress-strain 

relationship is calibrated using tensile test parameters, and because this explicitly simulates 

the yield plateau, the kinematic hardening, and the point of ultimate strength (u, fu), further 

calibrations are not needed to set a cap in the strength. SteelDRC also considers the 

Bauschinger effect, which is controlled by the parameter OmegaFact. This parameter is 

calibrated according to the carbon content of the steel (Carreño 2018). 

 

Figure 3.2. Description of the geometry and the type of elements used in the MBTM. 

 

The MBTM uses ConcretewBeta material in all concrete components. The 

calibration of the constitutive stress-strain relationships of the ConcretewBeta (see Figure 

3.3b) was similar to that described in Alvarez et al. (2019) and repeated here for 

convenience. The Young’s modulus of concrete is Ec = 5000√𝑓′
𝑐
 (MPa), whereas the strain 

at the compressive strength f’c and the strain at crushing fcu are o = -0.002 and cu = -0.004 

respectively (Lu and Panagiotou 2013). The direct tensile strength in terms of the modulus 

of rupture fr is ft = 0.55fr (Collins and Mitchell 1997). The confined compressive strength 
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fcc and the corresponding strain co were calculated according to Mander et al. (1988). The 

strain at the softening onset was defined as cs = -(0.002 + ke·fl/(9f’c)), where fl is the 

confining stress and ke the efficiency coefficient (Alvarez et al. 2019). Zero tensile strength 

ft was assumed in all diagonal elements, horizontal wall pier elements, and vertical 

elements of the coupling beams (Lu et al. 2016). The compressive stress at the closure of 

cracks in the diagonal elements was made equal to -0.03f’c (Alvarez et al. 2019). To 

enhance convergence,  the compressive residual strength of the concrete after crushing is 

equal to -0.2f’c. 

 
(a) 

 

(b) 

 

Figure 3.3. Uniaxial constitutive material stress-strain relationships. (a) Stress-strain 

relationship for SteelDRC, figure courtesy of Carreño (2018). (b) Stress-strain relationship for 

ConcretewBeta, figure courtesy of Lu and Panagiotou (2013). 
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To preserve the mesh objectivity of the models (Coleman and Spacone 2001), the 

constitutive stress-strain relationships used for concrete are regularized in compression 

following Lu and Panagiotou (2013), whereas the regularization of the factor  is carried 

out as in Lu et al. (2014).  

3.4.3 Specific details of the models 

A built in-house 64-bit executable of the program OpenSees (McKenna 2019) is 

used to develop the models in this paper. The executable includes the classes corresponding 

to the material SteelDRC (Carreño 2018) and the postprocessing libraries of the program 

STKO (Petracca et al. 2017a, Petracca et al. 2017b). 

The wall pier toes had concentrations of longitudinal reinforcement (Figure 3.1). 

Here, these regions are designated “boundary elements”, as in modern codes, although they 

were not detailed to confine the concrete and delay the buckling of the reinforcement. Due 

to the asymmetry of the longitudinal reinforcement in the wall piers, the geometric 

definition of vertical elements is challenging. Three equal horizontal quadrilaterals are 

proposed for the grid (Figure 3.4). The boundaries are modeled with beam elements 

including in-plane flexural rigidity. It is considered that any spurious delay of shear failures 

in the wall piers due to the use of beam elements in the boundaries does not affect the 

conclusions because indeed, shear failures were not observed in the wall piers of the 

specimens. 

Section “a” (see Figure 3.1) had 2 #5 + 2 #2 bars at the interior boundary element 

and 10 #5 bars at the exterior boundary, and each bar is represented in the model by one 

fiber of steel. The concrete is modeled with 15 layers in the interior boundary element 

(0.148 m x 0.102 m) and 18 layers in the exterior boundary (0.183 m x 0.102 m). The two 
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remaining vertical lines use truss elements, and the corresponding areas are adjusted, so 

the test and model centroids coincide. The rest of the sections (“b” to “d”, see Figure 3.1) 

are defined in a similar way. 

Lu et al. (2016) proposed a methodology to calculate the inclination of the 

diagonals in their BTM. Assuming the wall piers are two independent cantilever walls, this 

procedure results in inclinations of the diagonals equal to 60° and 63° in specimens Wall 

A and Wall B, respectively. However, because the wall piers of the specimens did not fail 

in shear and the diagonals only play an important role in such a situation, in this paper, the 

methodology of Lu et al. (2016) is not used. Instead, the inclination of the diagonals of the 

MBTM is proposed according to the crack pattern observed in the specimens. The 

inclination in the wall piers at Level 1 and the wall piers above the Level 1 results in 53° 

and 46°, respectively. The inclination of the diagonal reinforcement in the specimen Wall 

B defines the grids of the coupling beams, resulting in the inclination of the diagonals 

trusses equal to 60°. To capture sliding shear in the coupling beams of the MBTM, the 

grids of beams are finer than those in the wall piers (four by four quadrilaterals, see Figure 

3.4). Finally, the slope of the diagonals in the panels is 40°, as a result of the grid set by 

vertical elements in the wall piers and horizontal elements in the beams. 

The flexure reinforcement of the coupling beams in specimen Wall A and the 

diagonal reinforcement of the beams in specimen Wall B are anchored in the MBTM using 

truss elements (Figure 3.4). The length of these truss elements is proposed to be equal to 

the physical anchorage length minus one half the corresponding development length. 

The element state-determination of the fiber-section beams adopts three Gauss-

Lobatto integration points; all the elements in the MBTM use linear coordinate 
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transformation. The vertical loads and the lateral loading protocol are applied through force 

control and displacement control integrator, respectively. As mentioned before, the vertical 

loads were simulated in the specimens by applying forces with prestressing tendons at the 

centroid wall piers. It is possible to model the tendons in the MBTM using truss elements 

along the height wall piers. The truss elements should be connected at the top wall piers, 

and the tendons’ nodes at the base should be the loading and control nodes to introduce the 

prestressing forces using displacement control analysis. The main side effect of using 

tendons to simulate vertical loads is the additional stiffness introduced in the system if the 

prestressing forces are not controlled as the coupled wall experiences lateral deformations.  

 

 

Figure 3.4. Specific details of the MBTM of the specimens Wall A and Wall B. 

 

The force in the tendons was manually controlled in the tests, and because of that 

in the MBTM the vertical loads were applied directly at top nodes using simple force 

control analysis. 
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3.5 Description of the Enhanced Beam-Truss Model 

The Enhanced Beam-Truss Model (EBTM), was mainly an extension of the MBTM 

described above. The EBTM uses the same model components and constitutive stress-

strain relationships as the MBTM, and the modeling of the wall piers is identical, but some 

improvements to the modeling of the coupling beams were implemented. The EBTM 

incorporates the bar-bond slip of the reinforcement anchored beyond the coupling beam-

ends, and for specimen Wall A, it also incorporates the dowel action of the longitudinal 

reinforcement of the coupling beams. A detailed description of these enhancements is given 

below. 

In the models developed for the two coupled wall specimens, the coupling beams 

are modeled using only truss elements (i.e., Truss Model). For responses that exhibit shear 

failures, which is the case of the beams of specimen Wall A, the Truss Models are rather 

dependent on the slope of diagonal elements (Panagiotou et al. 2012). In the EBTM of 

specimen Wall A, the angle of inclination of the diagonal elements of the coupling beams 

is defined according to the methodology proposed for specimen walls by Lu et al. (2016), 

which results in 45°. This angle agrees with the general crack pattern observed. The grid 

of the coupling beams of the EBTM of specimen Wall A has six horizontal quadrilaterals 

by four vertical quadrilaterals (Figure 3.5a). Truss elements are used to represent the 

reinforcement and the concrete, except for the flexure reinforcing steel at the top and 

bottom of the beams. In such locations, to better compute the sliding shear response 

exhibited in this specimen, dowel action is captured modeling the reinforcement with fiber-

section beams. Additional rigid elements are used to locate sliding shear failure outside the 
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wall piers. The grid of the coupling beams of the EBTM of specimen Wall B is identical 

to the grid of the MBTM. 

 

 
Figure 3.5. Coupling beam modeling details used in the  EBTM. (a) Specimen Wall A. (b) 

Specimen Wall B. 

 

To better compute the hysteretic energy dissipated, the coupling beams of the 

EBTM include the bond-slip of the longitudinal reinforcement anchored in the wall piers 

in specimen Wall A (Figure 3.5a) and of the diagonal bars in specimen Wall B (Figure 

3.5b). A parametric study indicated that when in-plane flexural rigidity is used in the beams 

to represent the boundary elements, the modeling of the anchorage of the flexure 

reinforcement and diagonal bars does not affect the computed responses significantly. This 

is because the end beam elements locally stiffen the behavior and redistribute the forces 

eliminating the effect of the anchorage. Therefore, the bar bond-slip is modeled using 

(a) 

(b) 
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zeroLength elements with horizontal DOF in the interface of the coupling beams and the 

wall piers, see Figure 3.5. The pinched hysteretic behavior typical of bar bond-slip is 

simulated using the uniaxial material Hysteretic in the zeroLength elements, see Figure 3.6. 

This material used pinching parameters pinchx = 0.40 and pinchy = 0.20 (Lu et al. 2014), 

and it was calibrated with the properties of the reinforcement that represents. The force-

displacement curves of the zeroLength elements mimic truss elements with area equal to 

the anchor reinforcement and length Lb defined using the methodology proposed by Zhao 

and Sritharan (2007). The different lengths Lb result in about twenty bar diameters for the 

case studies. The envelope of the Hysteretic material is defined as depicted in Figure 3.6. 

In the case of specimen Wall B, the force-displacement envelope of the diagonal anchorage 

is transformed to the horizontal DOF of the zeroLength element in terms of the inclination 

of the diagonal d as follows: 

e1 = y Lb / sin d, s1 = As fy sin d    (3.1) 

e2 = 0.5u Lb / sin d, s2 = As fu sin d    (3.2) 

e3 = u Lb / sin d, s3 = As fu sin d    (3.3) 

To avoid deformations in compression in the zeroLength elements, the Hysteretic 

material runs in parallel with the no-tension uniaxial material ENT calibrated to be rigid in 

compression. In the EBTM, fiber-section beam elements in specimen Wall A and truss 

elements in specimen Wall B are used to model longitudinal and diagonal bars in the 

coupling beams, respectively. The beams and trusses representing the reinforcement are 

connected to the boundary elements through zeroLength elements, whereas the truss 

elements representing the concrete areas are connected directly to the boundaries (Figure 

3.5). 
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Figure 3.6. Calibration of the Hysteretic Material for bond-slip of the reinforcement of the 

coupling beams. 

 

3.6 Model validation  

3.6.1 Validation of the Modified Beam-Truss Models 

Key aspects of the experimentally measured overall responses for both specimens, 

and corresponding predicted responses using the MBTM are compared in this section. The 

measured and computed base shear - roof displacement relationship responses for the 

specimens are shown in Figure 3.7. 

Specimen Wall A exhibited sliding shear failure in the beams and crushing at the 

base, which caused the pinched overall response depicted in Figure 3.7a. This specimen 

attained the peak base shear at the roof drift ratio equal to 1.6%; after that, the specimen 

Wall A displayed progressive softening. On the other hand, a stable hysteretic response 

was exhibited by specimen Wall B up to the roof drift ratio of 3.6%. At this drift, a 

misalignment of the specimen caused plastic hinge wall buckling at the wall pier assuming 

the largest compressive force of the two wall piers (Santhakumar 1974). 

The MBTM predicts an initial stiffness twice as large as the values reported for the 

tests, which is expected because of the overlapping areas of the elements (Lu et al. 2014). 

For specimen Wall A the model underpredicts the peak forces of the base shear, except for 
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the first cycles (Figure 3.7a). The maximum error was 26% and occurred at the peak of the 

semi-cycle 1. During the semi-cycle 11 (with maximum drift ratio 2.4%), specimen Wall 

A exhibited bar buckling at the base of the inner boundary of the wall pier in tension 

(Santhakumar 1974). This local response is not captured by the models because these do 

not explicitly consider bar buckling. 

 
(a) 

 

(b) 

 

Figure 3.7. MBTM computed and measured the base shear - drift ratio. (a) Specimen Wall A. 

(b) Specimen Wall B. Where the code-calculated ultimate base shear, V*, is 230 kN for 

specimen Wall A and 252 kN for specimen Wall B. 
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For specimen Wall A, a comparison of the measured and computed base shear - 

roof displacement relationship responses (Figure 3.7a) reveals that the hysteretic energy 

dissipated is greatly overestimated by the MBTM. The measured hysteretic response 

exhibits unusual behavior (i.e., unloading in double curvature). The unloading branches, 

exhibit small stiffness in comparison with the initial stiffness and then stiffens upon further 

unloading. The opposite was expected; that is, close to the reversals, unloading branches 

with stiffness like the initial and then gradual softening. The authors believe that such 

unexpected behavior is likely caused by the manual control of the load in the prestressing 

in the tendons (used to simulate the vertical loading in the specimens) during lateral 

unloading (Restrepo and Rahman, 2007). 

The envelope of the hysteretic response of specimen Wall B computed by the 

MBTM is in good agreement with the measured response, see Figure 3.7b. The maximum 

error is 19% and occurs at the peak of the semi-cycle 6; for the rest of the lateral loading, 

the peaks of base shear are calculated within an error of 8.4%. However, significant 

differences exist in the prediction of the overall hysteretic energy dissipation with the 

MBTM. This is visually explicit when comparing the measured and computed hysteretic 

responses in Figure 3.7b. The authors note that the unloading response of specimen Wall 

B also exhibits an unusual double curvature and recentering, which greatly affects the 

energy dissipated per cycle. The lack of the explicit consideration of the bond-slip of the 

diagonal reinforcement in the coupling beams may have also contributed to the 

overestimation of the hysteretic energy dissipated. 
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3.6.2 Validation of the Enhanced Beam-Truss Models 

To validate the EBTM, key experimentally measured and numerically computed 

responses are compared in this section. Figure 3.8a compares the measured and computed 

base shear - roof displacement relationship responses for the specimen Wall A and Figure 

3.8b displays the corresponding information for specimen Wall B. The EBTM of specimen 

Wall A, in general, computes with a good level of accuracy the peak base shears of the 

semi-cycles, except for the first cycles. In the first two cycles, the maximum error is 42%; 

and for the rest of the lateral loading, the maximum error occurred at the peak of the semi-

cycle 12, where the computed base shear is 14% less than the measured response. As the 

computed base shear - roof displacement response depicted in Figure 3.5a, the hysteretic 

response calculated for the EBTM of specimen Wall A (Figure 3.8a) overestimates the 

hysteretic energy dissipated. Thus, no effect of the explicit consideration of bond-slip in 

the flexure reinforcement of the coupling beams is observed. The EBTM captures the 

observed sliding shear failure of beams in specimen Wall A remarkably well, see Figure 

3.9a and Figure 3.9b. 

The envelope of the hysteretic response for the Wall B computed by the EBTM is 

in excellent agreement with the measured response (Figure 3.8b). The maximum error is 

8% and occurs at the peak of the semi-cycle 6. As in Figure 3.5b, the experimentally 

measured, and the calculated unloading response using the EBTM for the Wall B differ, 

see Figure 3.8b. The enhanced model still overestimates the hysteretic energy dissipated, 

but the explicit consideration of bar bond-slip in the diagonal reinforcement of the coupling 

beams clearly has a positive effect on the prediction. The ductile behavior of the specimen 

Wall B is well-captured by the EBTM, compare Figure 3.9c and Figure 3.9d.  
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(a) 

 

(b) 

 

Figure 3.8. EBTM computed and measured the base shear - drift ratio. (a) Specimen Wall A. 

(b) Specimen Wall B. Where the code-calculated ultimate base shear, V*, is 230 kN for specimen 

Wall A and 252 kN for specimen Wall B. 

 

A deeper understanding of the behavior of the coupled walls as a system is gained 

through the study of the local responses. Specimens Wall A and Wall B were densely 

instrumented (Santhakumar 1974). However, the measured local responses were reported 

for lateral force levels, which was typical in the early experiments in the field, and not for 
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lateral displacement levels, as it is widely accepted today, because the latter can be used 

effectively to capture responses near or past the peak load. 

(a) (b) (c) (d) 

  
 

 

Figure 3.9. (a) EBTM deformed the shape of specimen Wall A at maximum drift ratio (2x). (b) 

Specimen Wall A at the end of the test. (c) EBTM deformed the shape of specimen Wall B at 

maximum drift ratio (2x). (d) Specimen Wall B at the end of the test. The images of the model 

were created with the program STKO (Petracca et al. 2017a, Petracca et al. 2017b). 

 

Therefore, results are labeled using the ratio of the base shear (when the response 

occurs) to the code-calculated ultimate base shear, V/V*. When the stiffness of the specimen 

is small, the definition of the lateral displacement at which a specific response occurred is 

uncertain if the ratio V/V* is used. This makes the comparison of the experimentally 

measured and numerically calculated local responses difficult. Nevertheless, in this paper, 

the results of tests and models are compared, because the authors consider that such 

comparison is still valuable for the qualitative validation of the models. 

Measured and computed average tensile strains at the corners of the coupling beams 

are depicted in Figure 3.10. Figure 3.10a compares the strains of the flexure reinforcement 

of the coupling beams of specimen Wall A, whereas Figure 3.10b compares the strains of 

the diagonal reinforcement of the beams of specimen Wall B. To compute the strains, the 

truss elements closest to the locations of the instrumentation in the specimens are used. The 
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magnitude of the average tensile strains calculated using the EBTM differs from those 

measured in the tests. However, in general, the computed values follow similar trends to 

the experimentally measured responses. Additionally, to the particular reasons that make 

challenging the prediction of strains for these tests, in general, the approximation of the 

strains in finite element models is coarser than for displacements because strains are 

computed as derivatives of displacements. Moreover, although the regularization of the 

concrete stress-strain relationships (Dashti et al. 2017a) achieves the overall objectivity of 

the models, meaning that the base shear - roof displacement relationship response is 

essentially independent of the grid size, such methodology makes the response to lose 

objectivity at the section level.  

 
(a) (b) 

  

Figure 3.10. EBTM computed and measured strains of the reinforcement at the tension corners 

of the coupling beams. (a) Specimen Wall A. (b) Specimen Wall B. Where x / x.xx = Semi-cycle 

/ Ratio V/V*. 
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Therefore, the stress-strain curves are grid-dependent, and the prediction of the 

local responses becomes especially challenging when localization occurs. 

Coupling beams tend to lengthen significantly after yielding, regardless of whether 

these beams incorporate conventional or diagonal reinforcement (Restrepo-Posada 1993), 

and yield lines can result in the slabs connected to the beams because of such lengthening 

(Fleischman et al. 2014, Paulay and Priestley 1992). Dilatation between the center lines of 

the leading and trailing wall piers was measured in both specimens to study the lengthening 

of the coupling beams (Santhakumar 1974). Figure 3.11a and Figure 3.11b compare the 

computed and measured dilatations for the Wall A and Wall B, respectively; the computed 

dilatations were derived from nodal displacements. According to Figure 3.11, the dilatation 

remains quite uniform along the wall height for roof drift ratios larger than 1.3% (9th and 

11th semi-cycle in specimens Wall A and Wall B, respectively), except for the Level 1. In 

that location, the dilatation of the coupled walls is significantly smaller. This is because the 

foundation restrains the coupling beams from lengthening. Computed dilatations from the 

EBTM exhibit similar trends than those measured. However, whereas for specimen Wall 

B measured and calculated dilatations are in good agreement, for specimen Wall A the 

dilatations are generally overpredicted. 

Figure 3.12a and Figure 3.12b compare the measured and computed strains of the 

outermost longitudinal reinforcement at the left wall piers (bars F) in the Wall A and Wall 

B, respectively. The average strains of the first and third integration points of the fiber-

sections beams representing the boundaries are used to compute the strains at the gage 

location. The EBTM computes the longitudinal strains with a reasonable level of accuracy. 
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(a) (b) 

  

Figure 3.11. EBTM computed and measured specimen dilatations. (a) Specimen Wall A. (b) 

Specimen Wall B. Where x / x.xx = Semi-cycle / Ratio V/V*. 

 

(a) (b) 

  

Figure 3.12. EBTM computed and measured strains at the outermost longitudinal reinforcement 

of the left wall pier (Bars F). (a) Specimen Wall A. (b) Specimen Wall B. Where x / x.xx = 

Semi-cycle / Ratio V/V*. 
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A similar comparison for the innermost longitudinal reinforcement at the left wall 

pier (bars D) of specimen Wall A and Wall B is shown in Figure 3.13a and Figure 3.13b, 

respectively. Even though the longitudinal strains calculated by the EBTM differ with those 

measured, the computed strains follow similar trends. 

 
(a) (b) 

  
Figure 3.13. EBTM computed and measured strains at the innermost longitudinal reinforcement 

of the left wall pier (Bars D). (a) Specimen Wall A. (b) Specimen Wall B. Where x / x.xx = 

Semi-cycle / Ratio V/V*. 

 

3.6.3 Strain contours computed from the Enhanced Beam-Truss Models 

To get additional insight into the local behavior of lateral systems based on coupled 

walls, contours of strains for the EBTM of specimen Wall B were created (Figure 3.14 and 

Figure 3.15). For each node, rosettes of strains are formed using the horizontal, diagonal, 

and vertical elements of the quadrilaterals concurring the node (Alvarez-Sanchez and 

Restrepo 2017, Zhang et al. 2017). The strains of the horizontal, diagonal, and vertical 
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elements of the rosettes (x, x1, y, respectively) are calculated from nodal displacements. 

Then, these strains are used to define the shear strain xy, maximum principal strain 1, 

minimum principal strain 2, and maximum shear strain max as follows: 

 

xy = 
2x1 − x − y − (x − y) cos 2d

sin 2d
                                         (3.4) 
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2
)

2

                                                (3.7) 

 

Where d is the inclination of the diagonal. The results of the rosettes concurring in 

each node are averaged to calculate the nodal strains. The contours are generated from the 

interpolation of the nodal strains. For convenience, the rectangular components of the 

coupled wall (i.e., wall piers and coupled walls) are assumed isolated for calculating nodal 

strains. To generate strain contours, strains are averaged at the boundaries of the 

components. This procedure was implemented in the GUI StrainContour1.m developed in-

house using MATLAB (MathWorks 2018). 

Figure 3.14a shows the contour of computed vertical strains y for specimen Wall 

B at the peak of the semi-cycle 15 (drift ratio 2.5%). The maximum computed strain y is 

0.045, and it occurs in the compression diagonal of the coupling beam in Level 1. 
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(a) y (b) 2 

  

Figure 3.14.  Strain color plots calculated using the EBTM of specimen Wall B at the peak of 

the semi-cycle 15 (drift ratio 2.5%). (a) Vertical strains y. (b) Minimum principal strains 2. 

 

Large strains y are also observed at the walls’ bases concentrated toward the 

boundary elements in tension. Minimum principal strains 2 for the same peak are depicted 

in Figure 3.14b. The strains 2 are concentrated at the compression corners of the coupling 

beams, the smallest computed value occurs in Level 1, and it is equal to -0.018. The 

magnitude of the minimum strains 2 in the coupling beams increases towards the Level 7 

(roof level). Close-ups of the contours of computed strains in Level 1 for specimen Wall B 

at the peak of the semi-cycle 15 (drift ratio 2.5%) are shown in Figure 3.15. Horizontal 

strains x larger than 0.03 are reported at the tension corners of the coupling beam (see 

Figure 3.15a). Figure 3.15b and Figure 3.15d present similar distribution for the vertical 

strains y and maximum principal strain 1, which indicates that the largest tensile strains 

occur in the vertical direction close to the boundary elements in tension. Shear strains xy 

and maximum shear strains max larger than 0.04 are observed in the joints of the coupling 
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beam and the walls piers (see Figure 3.15c and Figure 3.15f). Finally, Figure 3.15e shows 

that the minimum principal strains 2 at the base of specimen Wall B occurs in the boundary 

element in compression of the wall pier in compression. 

 

(a) x  (b) y 

 
 

 

(c) xy (d) 1 

 
 

 

(e) 2  (f) max 

  

Figure 3.15. Strain color plots calculated using the EBTM at the base of specimen Wall B at the 

peak of the semi-cycle 15 (drift ratio 2.5%). (a) Horizontal strains x. (b) Vertical strains y. (c) 

Shear strains xy. (d) Maximum principal strains 1. (e) Minimum principal strains 2. (f) Maximum 

shear strains max. 
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3.6.4 Comparison of EBTM with a Nonlinear Truss Model 

This section compares some overall and local responses computed using the EBTM 

with responses reported by Alvarez et al. (2019) for specimens Wall A and Wall B 

computed using a Nonlinear Truss Model (NTM). The NTM used only truss elements, 

except for some fiber-section beam elements used to simulate dowel action at the base of 

the walls and the ends of the coupling beams. The wall piers in the NTM had grids of 6 by 

43 quadrilaterals, whereas in the EBTM, they have 3 by 35 quadrilaterals. Finer grids were 

used in the NTM to simulate the boundaries with two vertical lines of truss elements instead 

of one line of beams as in the EBTM. The grids and bond-slip considerations of the 

coupling beams in the NTM were similar to the proposed for the EBTM. Additionally, the 

NTM included the effect of the confinement that the foundation provides to the base of 

specimen wall piers (Presland 1999); for specimen Wall A, this confining effect was also 

included in the elements of coupling beams adjacent to the wall piers. According to Alvarez 

et al. (2019), without the confining of the foundation, the NTM predicted sliding shear 

failures at the base of the specimen walls, when in reality, this behavior was not reported 

in the tests. No sliding shear at the base of the wall piers was observed for the EBTM; 

therefore, the confining effect is not included here. 

The EBTM and the NTM were run using a computer with a dual-processor Intel 

Xeon Gold 6136, 64 GB of RAM, and the same version of the OpenSees [2.5.0 (rev 6248) 

64 Bit]. The runtimes for the specimen Wall A were 2.8 and 4.2 hours for the EBTM and 

NTM, respectively; whereas, for the specimen Wall B, the corresponding times were 1.7 

and 2.2 hours, respectively. 
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Figure 3.16a and Figure 3.16b compare the computed base shear - roof 

displacement relationship responses calculated using the EBTM and the NTM for the 

specimen Wall A and Wall B, respectively. The measured responses (gray lines) are shown 

as a reference.  

 
(a) 

 

(b) 

 

Figure 3.16. EBTM and NTM computed base shear - drift ratio. (a) Specimen Wall A. (b) 

Specimen Wall B. Where the code-calculated ultimate base shear, V*, is 230 kN for specimen 

Wall A and 252 kN for specimen Wall B. 
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The EBTM and the NTM of specimen Wall A predict similar shear strengths and 

hysteretic responses (Figure 3.16a). The shear strength calculated using the EBTM is 3.3% 

greater than the shear strength calculated with the NTM. However, the EBTM exhibits a 

higher rate of degradation than the NTM; see, for example, the peak of the semi-cycle 11 

(drift ratio 2.4%), at that point, the base shear is 16% smaller than the value predicted for 

the NTM. The difference in the rate of degradation is attributed to the fact that the EBTM 

does not consider the confining effect of the wall piers on the coupling beam ends, whereas 

this effect is included in the NTM. 

For specimen Wall B, the EBTM and the NTM computed very similar base shear - 

roof displacement hysteretic responses, see Figure 3.16b. The NTM considered the bond-

slip of the diagonal reinforcement of the coupling beams using the material Hysteretic in 

the anchor truss elements (Alvarez et al. 2019), whereas the EBTM concentrated the bond-

slip behavior in zeroLength elements put in series with the anchor truss elements. The 

practically overlapping computed responses (Figure 3.16b) prove that the beams used to 

model the interior boundary elements in the EBTM cut-off the work in series (zeroLength-

Truss), preventing any double-counting of bond-slip. 

The average tensile strains at the corners of the coupling beams computed using the 

EBTM and the NTM are compared with the measured responses (in gray) in Figure 3.17a 

and Figure 3.17b for specimens Wall A and B, respectively. The measured average tensile 

strains and those computed with the EBTM and NTM are generally in poor agreement. 

Nevertheless, the general trends are similar, being the results more consistent for the NTM. 
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(a) (b) 

  

Figure 3.17. EBTM and NTM computed reinforcement tensile strains at the coupling beam 

corners. (a) Specimen Wall A. (b) Specimen Wall B. Where x / x.xx = Semi-cycle / Ratio V/V*. 

 

Table 3-4 compares the coupling efficiency coefficients (CEC) computed for 

different peaks of the semi-cycles in the Wall A and Wall B responses using the EBTM 

and NTM. The CEC is defined as 1 - |(Ma + Mb)/MOT|, where Ma and Mb are the base 

moments of wall piers, and MOT is the overturning moment (Paulay and Priestley 1992). 

The maximum possible value for CEC is one, which corresponds to idealized wall piers 

pinned at the base with base moments equal to zero. As the stiffness of the coupling beams 

decreases relative to the stiffness of the wall piers, CEC decreases towards zero, that is, the 

wall piers gradually decouple. The values of the CEC calculated using the EBTM 

(CECEBTM) are slightly smaller than the corresponding values for the NTM (CECTM). For 

specimen Wall A, the CEC consistently decreases after the response has reached the lateral 
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strength at the peak of the semi-cycle 5 (drift ratio 0.7%). From this point onwards, 

coefficient CECEBTM decreases to only 16%, and CECTM drops to 19%, indicating severe 

decoupling, which resulted from the softening and eventual failure of the coupling beams, 

see Figure 3.19a and 3.19b. In contrast, the CECEBTM and CECTM computed for specimen 

Wall B remain relatively constant throughout, see Table 3-4. 

 
Table 3-4.  Comparison of the coupling efficiency coefficients computed for the EBTM and the 

NTM. 

Wall A Wall B 

Semi-

cycle 

Drift 

Ratio 

(%) 

CECEBTM
* CECTM

** Semi-

cycle 

Drift 

Ratio 

(%) 

CECEBTM
* CECTM

** 

1 0.37 0.57 0.60 5 0.22 0.59 0.63 

2 -0.38 0.57 0.61 6 -0.29 0.58 0.63 

5 0.70 0.55 0.60 9 1.14 0.58 0.63 

6 -0.99 0.55 0.60 10 -0.99 0.56 0.61 

8 -1.28 0.53 0.59 11 1.35 0.56 0.62 

9 1.64 0.47 0.57 12 -1.25 0.56 0.61 

10 -1.43 0.49 0.56 13 1.93 0.57 0.62 

11 2.42 0.36 0.50 14 -1.93 0.56 0.62 

12 7.01 0.16 0.19 15 2.46 0.57 0.62 

    16 -3.61 0.57 0.62 

*, coupling efficiency coefficients calculated using the EBTM. 
**, coupling efficiency coefficients calculated using the NTM. 

 

 

 

 

 

 

 

 

In coupled walls, the base shear is the sum of the base shear forces carried by the 

leading wall pier (that is, the pier being compressed), and trailing wall pier (that is, the pier 

being decompressed). The proportion in which the wall piers carry the shear force is of 

interest from the point of view of design. Both the EBTM and the NTM indicate that for 

specimens Wall A and B, the leading wall carried a significant percentage of the applied 

shear force while the coupling between the wall piers was maintained, see Figure 3.18a 

and Figure 3.18b. At the peak applied lateral force at 0.70% drift ratio, the leading wall 

pier carried 81% of the lateral force applied to specimen Wall A according to both models. 

At larger drifts, when the coupling beams softened and eventually failed, the leading and 
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trailing wall piers had more even participation in the shear resistance, see the participation 

at 2.42% and 7.01% drift ratios. For specimen Wall B, the models indicate that the leading 

wall pier carried between 90% and 93% of the peak applied lateral force, which occurred 

at a 1.14% drift ratio, and such large participation was largely maintained throughout 

testing.  

(a) (b) 

 

Figure 3.18. Base shear distribution in the wall piers for semi-cycles peaks computed using EBTM 

and NTM. Blue color indicates compression in the wall pier (leading wall pier), whereas green 

indicates tension (trailing wall pier); the darker colors show the results computed by the EBTM, 

and the clearer colors show the results computed by the NTM. (a) Specimen Wall A. (b) Specimen 

Wall B. The red rectangles indicate the base shear distribution at the peak base shear resisted by 

each specimen. 

 

The overall response of specimen Wall B did not exhibit degradation, and the 

uneven distribution of shear force between the trailing and leading wall piers was observed 

during the complete test, in the EBTM and NTM. The maximum shear force predicted in 

the two models was at least 109% the limit in the ACI 318-14 (2014). 

Figures 3.19 and 3.20 compares the hysteretic shear force - shear strain responses 

computed with the EBTM and the NTM for Level 1 and Level 7 coupling beams, 

respectively, of specimens Wall A and Wall B.  
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The shear strain was calculated from nodal points at the corners using the following 

equation,  

 

g  = 1 + 2 = 
jm − il

2
 (tan  + 1

tan ⁄ )                                 (3.8) 

 

Where: 

, shear strain of the coupling beam 

, inclination of the diagonals 

jm, il, strains of the diagonals 

1, 2, inclination of vertical and horizontal sections of the coupling beams after the 

shear deformation, respectively. 

The equation assumes the entire deformation in the panel defined by the four points 

is caused by shear, see Figure 3.21.  This assumption is deemed acceptable for the coupling 

beams in these two specimens, given their small aspect ratio. 

The code-calculated shear strength of the coupling beams (calculated using 

measured material properties), and the maximum shear strength allowed by ACI 318-14 

(2014) for these beams of 0.83√𝑓′
𝑐
 Ag (MPa) are also plotted in Figures 3.19 and 3.20. The 

EBTM and NTM compute for Level 1 beams for both specimens, a peak shear force well-

above code-calculated shear strength. Whereas for Level 7, the code-calculated shear 

strength and the peak shear forces predicted by the models are closer. Despite the coupling 

beams in specimen Wall A were identical, the EBTM and NTM predict that Level 1 beam 

resisted 19% and 37% greater shear force than Level 7 beam. Similarly, the two models 

indicate that in specimen Wall B, Level 1 beam resisted 41% and 49% greater shear force 

than Level 7 in spite, also, that these two beams were identical. The reason for this 
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difference is chiefly due to the development of significant axial compression in the lower 

level beams in both specimens.  

(a) Wall A, Level 7 

 

(b) Wall A, Level 1 

 

Figure 3.19. EBTM and NTM computed shear force - shear strain in coupling beams of Wall 

A. (a) Level 7. (b) Level 1. The code-calculated capacity was computed using measured 

material properties. 

As these beams try to lengthen, the restraint provided by the walls, which are 

themselves restrained from sliding by the footing, results in the development of axial 

compression, and in a redistribution of the shear force in the trailing wall pier into the 

leading wall pier. 

 



 

77 

(a) Wall B, Level 7 

 
(b) Wall B, Level 1 

 
Figure 3.20. EBTM and NTM computed shear force - shear strain in coupling beams of Wall 

B. (a) Level 7. (b) Level 1. The code-calculated capacity was computed using measured 

material properties. 

 

The axial force levels N/(Ag f’c) computed at the peak base shear force for specimen 

Wall A Level 1 coupling beam were -0.008 and -0.009, according to the EBTM and NTM. 

For specimen Wall B, the axial compression force levels computed at the peak base shear 

for Level 1 beam were -0.015 and -0.017 to the EBTM and NTM. In contrast, at the peak 

base shear, the computed axial compressions in Level 7 beam were -0.005 and -0.007 for 

specimen Wall A, and -0.006 and -0.004 for specimen Wall B according to the EBTM and 

NTM. 
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Figure 3.21. Computation of shear strain () in a coupling beam. 

 

3.7 Impact of findings on current practice. 

Current practice to support the design of building systems incorporating reinforced 

concrete coupled structural walls, planar or configured in core walls, is divided into two 

main groups: (i) those who use the code prescriptive methods and use linear analysis tools 

together with stiffness modifiers to heuristically account for cracking and (ii) those who 

take a further step and carry a nonlinear design verification via a set of multi-axis input 

ground motions.   

The uneven apportioning of base shear between the wall piers, predicted by the 

EBTM and the NTM at drifts approaching the peak base shear, cannot be captured with 

linear analysis when stiffness modifiers in the trailing and leading wall piers are made 

equal, as recommended in codes and design standards, nor by methods that apportion the 

shear force in proportion to the overstrength moment as recommended by Paulay and 

Priestley (1992). For identical trailing and leading wall piers, the use of identical stiffness 

modifiers for the leading and trailing wall piers would result in equal design shear forces 

in both wall piers, which, as shown in Figure 3.18, would grossly underestimate the design 

shear force demands. A small improvement is attained if the shear force is apportioned in 

proportion to the overstrength moments. Table 3-5 indicates that if the base shear is 
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apportioned in proportion to the overstrength moments, the leading wall pier will assume 

between 58% and 67% of this force, whereas the nonlinear analysis indicates the leading 

wall piers in Specimens A and B resisted 81% and 90% to 93% of the applied base shear, 

respectively, see these ratios in the bars marked with red boxes in Figure 3.18. If only a 

linear analysis were to be used to support the design of such coupled walls, the stiffness 

modifier for the lead wall pier should be significantly greater than that for the trailing wall 

pier. Judgment should be exercised in the selection of the stiffness modifiers in each case 

due to the inherent nonlinear nature of the response of these lateral systems, but the analysis 

of specimens Wall A and Wall B presented in the previous section seems to suggest a 

design where each wall pier is detailed to resist the entire base shear force. 

Those in practice that make use of nonlinear analysis tools to validate the response 

of a preliminary design often model the nonlinear response of diagonally reinforced 

coupling beams with one DOF vertical shear springs. These simple models have shown the 

ability to reproduce the measured response of such beams (Naish et al. 2013, ASCE 41-13 

2013). However, such a model ignores any axial-flexure-shear coupling, which will 

preclude the coupling beams from assuming axial load caused by the restraint of the wall 

piers. The axial load itself in the coupling is not as important as it is the additional 

redistribution of the shear force from the trailing to the leading wall pier, indicating that 

nonlinear analysis using simple vertical shear elements to represent the coupling beams 

will also underestimate the shear force demand in the wall piers, particularly near the base 

of the walls where the foundation provides the most considerable restraint to the wall piers 

and, hence, to the coupling beams. Modeling diagonally reinforced coupling beams with a 

model similar to that used in the MBTM is simple enough for use in practice.  
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Table 3-5. EBTM and NTM computed wall pier base moments at peak base shear and apportioning 

base shear factors computed using Paulay and Priestley (Paulay & Priestley, 1992).  

 Wall A    Wall B    

Model Ma Mb DFa DFb Ma Mb DFa DFb 

 kN-m kN-m   kN-m kN-m   

EBTM 256 184 0.58 0.42 269 171 0.61 0.39 

NTM 260 167 0.61 0.39 286 143 0.67 0.33 

Ma, base moment in leading wall pier 

Mb, base moment in trailing wall pier 

DFa, distribution factor for leading wall pier, Ma/(Ma+Mb) 

DFb, distribution factor for trailing wall pier, Mb/(Ma+Mb) 

 

3.8 Conclusions 

This paper uses two versions of the Beam-Truss Model, termed the Modified Beam-

Truss Model (MBTM) and the Enhanced Beam-Truss Model (EBTM), to compute key 

response parameters of two one-quarter scale seven-story coupled structural walls tested 

by Santhakumar (1974). Specimens Wall A and Wall B were identical except for the type 

of the coupling beams. Specimen Wall A was built incorporating conventional coupling 

beams, whereas Specimen Wall B had diagonally reinforced coupling beams. In Specimen 

Wall A, sliding shear of the coupling beams and crushing at the base caused degradation 

of the lateral load capacity at 1.6%  roof drift ratio. Specimen Wall B had a stable response 

up to a 3.6% roof drift ratio when the wall pier in compression exhibited local buckling at 

the wall base. 

The MBTM was a variation of the model developed by Lu et al. (2016); the former 

used a combination of truss and displacement-based elements in vertical and horizontal 

members as opposed to the latter, which just used force-based elements. The EBTM was 

identical to the MBTM except that it incorporated the bar-bond slip of the reinforcement 

anchored beyond the coupling beam ends. 
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The overall lateral load-displacement responses computed using the MBTM 

exhibited a very good agreement with the responses reported for the two specimens, 

including the softening in the response of Specimen Wall A. However, it was evident that 

this model overpredicts the hysteretic energy dissipated by the specimens. Like the MBTM, 

the lateral load-displacement response computed with the EBTM also showed very good 

agreement with the measured responses for both specimens. The inclusion of a bond-slip 

relationship in the EBTM resulted in a closer prediction of the overall specimens’ hysteretic 

responses.  

The EBTM was used to predict local responses like (i) strains of the reinforcement 

at the tension corners of the coupling beams, (ii) dilatation of the coupled walls, and (iii) 

strains of the longitudinal reinforcement of the boundary elements. All the predicted 

responses were in fair agreement with those reported.  Similar responses were also attained 

with the Nonlinear Truss Model (NTM) described by Alvarez et al. (2019). 

The degree of coupling provided for the beams was studied using the coupling 

efficiency coefficients (Paulay and Priestley 1992). For the EBTM of Wall A, the 

coefficients decrease after the response reaches the peak base shear, whereas, for Wall B, 

the coefficients remain approximately constant during the entire test. The EBTM also 

shows that the foundation restrains the lengthening of the coupling beams at the first level, 

which generates axial compression and, consequently, large overstrength in these beams. 

Similar results were obtained using the NTM. 

From the point of view of professional practice, the EBTM has clearly indicated 

that the lead wall pier in the coupled walls tested assumed a very high proportion of the 

applied base shear. This contrasts with the equal shear force design stemming from the use 
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of equal stiffness modifiers in linear analysis of such walls, or from apportioning the base 

shear in the leading and trailing wall piers in proportion to the overstrength moments. A 

recommendation is to design each wall pier for the entire shear force.  

The MBTM and EBTM are alternative methodologies to model coupled walls that 

overcomes some limitations of the beam elements and calibrated shear springs commonly 

used in practice to model wall piers and coupling beams, respectively. The models can 

adequately compute lengthening of the coupling beams and naturally capture the axial load 

exerted on them by the restraint imposed for the coupled walls in the proximity of the 

foundation, this is not achieved by calibrated shear springs. It was also verified that the 

EBTM computes a rational apportioning of base shear between the trailing and the leading 

wall piers, which is not possible to compute using linear analysis and code-prescribed 

stiffness modifiers, as commonly done in practice. Softening and shear failures in the 

coupling beams are also well- captured by the models, and with relative simplicity, the 

EBTM can include bond-slip and dowel action in the coupling beams. 
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Chapter 4.  RC Wall Plastic Hinge Out-of-Plane Buckling – 

Analysis Using the Nonlinear Beam-Truss Model 

 

4.1 Abstract 

The Beam-Truss Model (BTM), developed for the nonlinear cyclic analysis of 

reinforced concrete components including softening, is extended to compute the out-of-

plane buckling observed in plastic hinges of various slender structural walls. This is 

achieved by using fiber-section displacement-based elements with PDelta geometric 

transformation and truss-elements with Corotational transformation. The BTM is enhanced 

by considering strain penetration at the base of the walls. This paper discusses the BTM 

for three test specimens that exhibited out-of-plane buckling and whose response softened 

as a result of this phenomenon. The test specimens’ unsupported height to wall thickness 

ratio ranged between 10 and 25. Using the same calibration of the modeling parameters for 

the development of the three models, the BTM is validated by comparing measured and 

computed lateral force −  displacement responses, out-of-plane displacements, and local 

strain responses. The BTM computes accurately the force − displacement responses as well 

as out-of-plane displacements of the test specimens and the buckling behavior. 

 

4.2 Introduction 

Reinforced concrete (RC) structural walls are commonly used as a seismic load-

resisting system in buildings of all heights.  The response of structural walls to earthquakes 

has often been branded as excellent. Despite this, the performance of structural walls in 

some of the buildings affected by the strong-intensity 2010 Mw = 8.8 Maule and 2011 Mw 
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= 6.2 Christchurch earthquakes was somewhat unexpected (where Mw is moment 

magnitude). Out-of-plane buckling observations in the plastic hinge regions of well-

detailed structural walls raised concerns (Dashti et al. 2015) and indicated design 

deficiencies requiring further research.  

Out-of-plane buckling, termed “buckling” thereafter, is a response mode 

manifested by a significant out-of-plane deformation in the compression zone in the plastic 

hinge region of the walls. This mode of response occurs  after a large in-plane curvature 

reversal (Rosso et al. 2016) and is caused by a number of factors, e.g., (i) residual tensile 

strains in the longitudinal reinforcement after a large inelastic excursion (Paulay and 

Goodsir 1985,  Paulay and Priestley 1993), (ii) wall height to thickness ratio (i.e., 

slenderness), (iii) loss of concrete cover when responding in flexure, (iv) crushing of the 

concrete at the wall toe, which can also result in local buckling of the reinforcement. 

Contrary to the definition of buckling used here, which implies out-of-plane 

deformations of a large portion of the wall, local buckling, as defined by Rosso et al. (2016) 

is a localized phenomenon which involves out-of-plane deformations mainly related with 

compression failure. The local buckling is out of the scope of this paper. 

Buckling reduces the lateral deformation capacity of a structural wall, and hence, this 

mode of response should be studied, and appropriate design provisions should be 

incorporated into design codes and guidelines.  

Large residual out-of-plane deformations observed in building walls in the 

aftermath of the Chile 2010 and New Zealand 2011 earthquakes, resulted in changes of the 

slenderness limits of structural walls in codes as the ACI-318 (2014 and 2019), requiring a 

minimum thickness for special boundary elements equal to hu/16 (where hu is the laterally 
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unsupported height). For the case where c/lw ≥ 3/8 (where c is the length of the compression 

zone, and lw is equal to the length of the wall), the thickness of the boundary shall be greater 

than or equal to 12 in. 

In the current performance-based design (PBD) practice (e.g., LATBSDC 2017), 

structural walls are typically modeled using nonlinear fiber-section beam-elements or 

similar. However, such modeling techniques, by definition, cannot capture buckling. 

Hence, the stability performance of the walls is limited to meet prescriptive code 

requirements (e.g., ACI 2019). 

The nonlinear cyclic Beam-Truss Model (BTM) (Lu et al. 2014) is a modeling 

methodology for RC walls, beams, and slabs that explicitly represents flexure-shear 

interaction and it efficiently models both planar and flanged walls. The BTM has been 

shown to compute accurately the response of various structural wall and coupling beam 

specimens that exhibit various failure modes, including diagonal tension, diagonal 

compression, and sliding shear failures  (Lu et al. 2016, Lu and Panagiotou 2016, Alvarez 

et al. 2019). This methodology has successfully calculated the seismic response of 

buildings (Lu 2014), including the collapse simulation of the structurally complex 15-story 

Alto Rio building (Zhang et al. 2017).  

To the best of our knowledge, only two numerical studies have been carried out to 

compute buckling in structural walls (Parra 2015, Dashti 2017). In those, a detailed 

nonlinear finite element method (FEM) was used with an associated computational cost 

that hampers the application of such a modeling approach in the nonlinear time-history 

analysis of buildings systems. BTM, the approach presented here, is a simple but robust 

methodology that can be easily incorporated in the analysis of buildings. In this paper, the 
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BTM is extended to include the buckling of structural walls subjected to reversed in-plane 

cyclic loading. Three test specimens are studied: TW1 (Almeida et al. 2017), RWL (Dashti 

2017), and Wall2 (Goodsir 1985). The test specimens RWL and Wall2 had a rectangular 

section and incorporated two curtains of longitudinal and transverse reinforcement, 

whereas the test specimen TW1 was a short-flange T-shaped section wall and had a single 

curtain of longitudinal and transverse reinforcement. The three test specimens exhibited 

buckling during testing. Buckling resulted in the softening of the in-plane lateral force − 

wall top displacement (F−D) response. The peak drift ratios attained by the test specimens 

before the degradation occurred were |pk| ≥ 2.5% (where pk = p/hc, p is the peak in-

plane lateral displacement of a cycle at the control point and hc is the height of the control 

point), with exception of the test specimen TW1 which degraded after a pk = 1.0%.  

This study builds on the BTM methodology described by Lu et al. (2014). To 

compute buckling, instead of using the Linear geometric transformation and force-based 

elements (FBE) as Lu et al. (2014, 2016), PDelta transformation and displacement-based 

elements (DBE) are used. Another difference with the BTM described by Lu et al. (2014, 

2016) is the incorporation of strain penetration at the base of the walls, which was found 

to have an important effect on the response of walls exhibiting buckling. 

 

4.3 Literature review 

Prior to the earthquakes of Chile (2010) and New Zealand (2011), buckling in 

structural walls had been observed in quasi-static reversed load testing as an unintended 

behavior (e.g., Oesterle et al. 1976, Vallenas et al. 1979, Thomsen and Wallace 1995). One 

of the earliest studies focusing on this response mode was that reported by Goodsir (1985), 



 

88 

who observed buckling in the test specimen Wall2. Buckling occurred in the compression 

zone of the wall after unloading from pk = -2.3%, where large tensile strains had been 

imposed in the longitudinal reinforcement in the boundary region of the wall, which 

buckled. Another pioneering experimental study was conducted by Chai and Elayer (1999). 

They tested fourteen prisms simulating wall boundary elements. These prisms had ratios 

hu/tw between 12 and 18 (where tw is the thickness of the wall) and were subjected to large 

amplitude cyclic axial loading to demonstrate the influence of the maximum tensile strain 

on the prisms’ lateral stability. 

In the experimental study at the E-Defense Shaking table on a four-story building 

designed with modern code provisions, buckling of walls was observed. In this test, the 

buckling of the compression zones was accompanied by spalling and crushing (Tuna et al. 

2012, Wallace 2012).  

Most recent experimental testing studies on buckling of RC vertical components 

have used isolated boundary elements (e.g., Moehle et al. 2010, Chrysanidis and Tegos 

2012, Arteta et al. 2014, Massone et al. 2014, Taleb et al. 2016, Haro et al. 2018). 

Experimental studies on buckling of RC walls are found in Beattie (2004), Johnson (2010), 

Almeida et al. (2017), and Dashti et al. (2017). Beattie (2004) tested a slender structural 

wall, whereas Johnson (2010) tested an asymmetrically reinforced planar wall. In both 

cases, the walls exhibited small out-of-plane displacements (Y), and small strength 

degradation up to |pk| = 2%. Almeida et al. (2017) investigated the behavior of short-

flange T-shaped walls. Two test specimens, TW1 and TW4, with a single curtain of 

longitudinal reinforcement, were subjected to in-plane and biaxial loading, respectively. 

The test specimens exhibited buckling that ultimately triggered the in-plane failure of the 
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walls after |pk| = 0.75%. Dashti et al. (2017) tested uniaxially a planar wall (RWL) that 

exhibited buckling failure after |pk| = 3%. Buckling failure occurred in the wall when the 

out-of-plane displacements generated instability. 

Some phenomenological models for buckling of RC prisms have been developed 

(Paulay and Priestley 1993, Chai and Elayer 1999, Parra-Torres 2015, Haro et al. 2019). 

these models calculate values of the maximum tensile strain capacities prior to the buckling 

failure. Moreover, numerical simulations have been carried out to reproduce buckling in 

prisms. For example, Parra et al. (2015) used FEM (smeared crack) to reproduce the prisms 

tested by Chai and Elayer (1999), whereas Parra and Moehle (2017) simulated the same 

series of tests using nonlinear fiber-section Corotational beam-elements. A limitation of 

the tests and models of prisms, when they are used to simulate buckling of walls, is that 

prisms are subjected to curvature only about the horizontal axes, whereas in walls 

exhibiting buckling curvature is present about vertical and horizontal axes. 

Archetype models of RC walls with ratios hu/lw between 1 and 3 were used in Parra 

(2015) to study the influence of strain gradients along with the wall height and length on 

the out-of-plane displacements. The models used four-node isoparametric curved shell 

elements with Total Lagrangian description for geometric nonlinearity. The number of 

FEM simulations to capture the buckling phenomena in structural walls described herein 

is limited. Parra (2015) modeled the specimen R2 tested by Oesterle et al. (1976) using 

curved shell elements with embedded reinforcement and total strain crack model for 

concrete. The analysis was conducted up to pk = ±2.2% cycle, at which lateral bracing 

was added in the test. There was good agreement between the measured and computed 

F−D responses. The peak |Y| computed by this researcher was 50% larger than that 
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measured. Dashti (2017) used the same FEM formulation than Parra (2015) and modeled 

the test specimens: R2 (Oesterle et al. 1976), Specimen 3 (Beattie 2004), RWN (Johnson 

2010), RWL (Dashti et al. 2017), and TW1 (Almeida et al. 2017). The computed F−D 

response of the test specimen R2 exhibited good agreement with the reported up to the 

second cycle with pk = ±2.2%, whereas the computed peak |Y| was 64% larger than the 

measured value. The simulation was continued without considering the lateral bracing 

added during the test; softening in the F−D response was computed at pk = 3% before it 

occurred in the test. Specimen R2 exhibited bar fracture, which was not modeled. For 

Specimen 3 and RWN, the F−D responses, in general, were reasonably predicted. 

However, in Specimen 3 at a cycle with pk = ±2%, the computed peak |Y| was 70% 

larger than that measured, and ultimately the model became unstable before reaching pk 

= -2.5%, which was not observed in the test. The F−D response of RWL was well predicted 

up to pk = 3%, but the model did not capture the strength degradation associated with Y 

as the wall approached to pk = -3%. The computed peak |Y| after pk = 3% was 93% 

smaller than the measured. Dashti (2017) also carried out the blind prediction of TW1. In 

this case, the computed F−D response up to pk = 1% exhibited more degradation than the 

observed in the test. The test specimen failed at peak displacement pk = -1%, because of 

the large |Y| during that semi-cycle; however, the model did not. 

 

4.4 Description of the analysis methodology 

4.4.1 Elements and geometry definition 

Figure 4.1 and 4.2 depicts the typical BTM layout of an RC wall developed to 

capture buckling. This methodology is based on the elements (CorotTruss2) and materials 
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(ConcretewBeta) as implemented in the program OpenSees (OS) (McKenna 2019) by Lu 

and Panagiotou (2013). The BTM has three spatial dimensions; and six degrees of freedom 

(DOF): three translations (Ux, Uy, and Uz) and three rotations (Rx, Ry, and Rz) in each node 

(see Figure 4.2a). The areas of concrete and reinforcement, as well as the inclination of 

diagonals (d), follow the recommendations given by Lu et al. (2014) (Figure 4.1 and 

Figure 4.2a). In the BTM, the concrete and reinforcement are modeled using nonlinear 

Bernoulli fiber-section beam-elements in the vertical and horizontal directions, whereas 

truss-elements are used in the diagonals. All beam-elements have in-plane rotational (DOF 

Ry) releases at the nodes, except for those at the confined boundaries, as described by Lu 

et al. (2014). The BTM, as presented here, differs from that described by Lu et al. (2014) 

in that in the unconfined compression zones in the wall’s boundaries, the beam-elements 

also have in-plane flexural rigidity when a single vertical beam-element is used to model 

the compression zone. 

To compute the out-of-plane buckling response mode, truss-elements use the 

Corotational geometric transformation (element CorotTruss2), and beam-elements use the 

PDelta transformation (geomTransf PDelta). The only option for geometric nonlinearity in 

OS truss-elements is the Corotational transformation. Corotational transformation and 

PDelta transformation can be used with beam-elements. PDelta transformation uses small-

angle approximation for the rotation of the cords and considers shear forces to act in the 

undeformed configuration. Since out-of-plane buckling in these walls is primarily 

governed by the axial forces acting in the beam-elements, the latter constraint did not affect 

the analysis.  
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Figure 4.1. Description of the Beam-Truss Model − Structural component. 

 

These simplifications render a reduced number of nonconstant terms in the local 

transformation matrix and the local stiffness matrix. The PDelta transformation was found 

to be more robust than the Corotational transformation, and the former was the preferred 

choice in the analysis. The model does not require any eccentricity to compute buckling. 

However, to trigger buckling in the same direction as observed in the test, an eccentricity 

in the reinforcement equal to 0.01tw is used. This eccentricity affects neither the F−D 

response nor the magnitude of the out-of-plane displacements; similar results can be 

obtained with no eccentricity.  
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Figure 4.2. Description of the Beam-Truss Model. (a) Definition of the geometry and type of 

elements used. (b) Approach for modeling strain penetration. 

 

The nonlinear fiber-section beam-elements chosen in OS are dispBeamColumn 

(DBE), and the truss-elements in the diagonals are CorotTruss2 elements (Lu and 

Panagiotou 2013). DBE were preferred because the FBE need to iterate at the element level 

in each analysis step. With the additional lack of guarantee of convergence at the element 

level, the robustness of FBE, in general, is expected to be inferior to that of DBE 

(Koutromanos and Bowers 2016). Three Gauss-Lobatto integration points are used for the 

beam-elements. The torsional rigidity of the beam-elements was found to have an 

(a) 

(b) 
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important effect on the buckling, as it will be discussed below. The optimum value for the 

torsional rigidity found from a sensitivity study was 0.02GJ (see section “Parametric 

Studies”), where G = 0.38Ec is the shear modulus of the concrete, Ec is the concrete 

Young’s modulus, and J the torsional constant of the beam-element gross-section.  

Elastic beam-elements (elasticBeamColumn) are used to model auxiliary rigid 

elements such as the transfer beams at the top of the test specimens (Figure 4.2a). 

The solution strategy included the integrators LoadControl and 

DisplacementControl for the application of the vertical forces and the lateral 

displacements, respectively. A TCL script to change the solution algorithm, number 

maximum of iterations, error tolerance, and increment of force and displacement for the 

LoadControl and the DisplacementControl integrator, respectively, was developed to 

control the iterative computation. The default option for the solution algorithm was 

Newton, which was changed for ModifiedNewton, NewtonWithLineSearch, and 

KrylovNewton until attaining convergence. The maximum number of iterations for the 

solution algorithm varied from 100 to 1000 before moving to the next algorithm. To check 

for convergence was used the test EnergyIncr, with error tolerance ranging from 1e-7 to 

1e-2 N-m (1e-6 to 1e-1 kip-in). The solver and method to impose constraints were 

SparseSYM and Transformation, respectively. 

The nodes at laterally supported levels are considered restrained in the DOF Uy, 

which is the translation perpendicular to the plane of the walls (Y-axis) (Figure 4.2a). All 

the DOFs of the nodes at the base level of the walls are fixed, with the exception of the 

vertical translation Uz, to allow for the strain penetration modeling (Figure 4.2b), described 

next. 
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As it is shown in the section “Parametric Studies”, the strain penetration was also 

found to significantly affect the wall buckling. The strain penetration is modeled using 

auxiliary vertical truss-elements corotTruss (termed “SP-elements” thereafter) to represent 

the reinforcement protruding towards the foundation (Figure 4.2b). The length of the SP-

element (Lb) was calculated conforming to the type of steel and bar diameter (db) that the 

element represents as well as the compressive strength of the concrete (f’c) (Moharrami et 

al. 2015). In particular, Lb is equal to sy/y, where sy is the elongation at the yield (bond-

slip) and y the strain at the yield. The value of sy was defined in accordance with Zhao and 

Sritharan (2007). The constitutive stress-strain relation used for the simulation of the strain 

penetration is SteelDRC (Carreño 2018), described in the following section. This material 

model was run in parallel with the elastic-no-tension material ENT to prevent compressive 

strains in the SP- elements. 

Additional information about the elements and geometry definition of the BTM is 

available in Lu et al. (2014). 

4.4.2 Material modeling  

To model unconfined and confined concrete, the BTM uses the ConcretewBeta (Lu 

and Panagiotou 2013) (Figure 4.3a) material model. When used with CorotTruss2 

elements, the ConcretewBeta material incorporates the effect of the biaxial strain field on 

the compressive behavior of concrete (Vecchio and Collins 1986). This material uses the 

tensile strain perpendicular to the compression field measured by a dummy gauge-element 

defined in the CorotTruss2 elements, whose instantaneous strain is used to modify the 

uniaxial compressive stress-strain behavior of the concrete through the compressive 
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strength reduction factor  (Vecchio and Collins 1986) (Figure 4.3b). The calibration of 

the concrete materials is explained in the following paragraphs.  

 
(a) 

 

(b) (c) 

 

 
Figure 4.3. Materials used in the Beam-Truss Model. (a) Stress-strain relationship for 

ConcretewBeta (reprinted from Lu and Panagiotou 2013,©ASCE). (b) Compressive strength 

reduction factor  (Lu et al. 2014) (c) Stress-strain relationship for SteelDRC (adapted from 

Carreño 2018). 

 

Unless the key parameters defining the stress-strain response of unconfined 

concrete are known, the strain at the compressive strength of the concrete is assumed o = 

-0.002, the strain at crushing is assumed cu = -0.004 (Figure 4.3a), and Ec is assumed 

5000√𝑓′
𝑐
 (MPa) (Lu and Panagiotou 2013). As in Lu et al. (2014, 2016), the direct tensile 
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strength of the concrete ft is made equal to zero in the diagonal and horizontal elements, 

whereas for the vertical concrete elements  ft = 0.55fr (Collins and Mitchell 1997) if the 

modulus of rupture fr is known, or  ft = 0.33√𝑓′
𝑐
 (MPa) (Lu and Panagiotou 2013) if fr is 

unknown. In the BTM, the tension stiffening is computed activating the ConcretewBeta 

tension-stiffening option based on Stevens et al. (1991). The compressive strength of the 

confined concrete fcc and the corresponding strain co (Figure 4.3a) are defined according 

to Mander et al. (1988). The strain at the onset of softening is cs = -(0.002 + ke·fl/(9f’c), 

where ke is the coefficient of efficiency of the confinement and fl is the confining stress 

(Alvarez et al. 2019). The stress at the closure of the cracks in the diagonal elements is 

considered -0.01f’c, which improves the calculation of pinching in the hysteretic responses. 

The stress-strain relation of the ConcretewBeta is regularized, adjusting the strains 

at crushing, based on the fracture energy in compression (Lu et al. 2014). Additionally,  

is regularized based on  Lu et al. (2014). To improve the numerical robustness of the 

models, a residual compressive strength fcu = -0.2f’c is used (Alvarez et al. 2019).  

Reinforcing steel is modeled with the SteelDRC material (Carreño 2018) (Figure 

4.3c), which is an in-house OS implementation based on the model proposed by Dodd and 

Restrepo-Posada (1995). SteelDRC simulates the yield plateau, the Bauschinger effect, 

strain hardening, the ultimate strength point (u, fu), and bar fracture. In this paper, the 

monotonic stress-strain constitutive relationships were calibrated using the available 

experimental coupon tests. The parameter OmegaFact, which controls the curvature of the 

Bauschinger effect, was calibrated based on the type of steel (Carreño 2018). 
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4.4.3 Implementation of the BTM 

The models described in this paper were developed using a built in-house 64-bit 

executable of the open-source code OpenSees Version 2.5.0 rev 6248 (OS) (McKenna 

2019). The executable included the uniaxialMaterial class SteelDRC and the HDF5 

libraries to run a beta version of the graphical user interface STKO (Petracca et al. 2017). 

All the models were created from TCL scripts and post-processed using STKO and 

MATLAB (2018). To run the models was used a workstation fitted with Dual 3.00-GHz 

Intel Xeon Gold 6136 CPU and 64GB of RAM. 

An adequate cross-section discretization is important to compute buckling response 

mode. Interior vertical elements and horizontal elements must have out-of-plane flexural 

rigidity and in-plane rotational releases at the nodes (Figure 4.2a). It is not possible 

explicitly to model nodal releases in OpenSees. To introduce the in-plane rotational release 

at the nodes of the beam-elements, the fiber-sections are discretized, as shown in Figure 

4.4.  

 

 

Figure 4.4. Implementation of the Beam-Truss Model in OpenSees 

using displacement-based elements and fiber-section with layers. 
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The concrete is modeled here with at least eight layers perpendicular to the axis 

released in rotation (i.e., Y-axis), whereas the reinforcement corresponding to each curtain 

is discretized in fibers over the released axis. This arrangement of fibers creates zero 

flexural rigidity at the section level in the plane of the wall, which generates numerical 

instability. To avoid numerical instability of the section and allow in-plane rotational 

release at the nodes of the elements, four auxiliary elastic fibers with very low-stiffness are 

used. This fibers have a modulus of elasticity equal to 200 GPa and area equal to the area 

of the section times 1 x 10-12. 

 

4.5 Parametric studies 

The BTM described in this paper was validated by comparing the measured and 

computed responses of three test specimens: TW1 (Almeida et al. 2017), RWL (Dashti 

2017), and Wall2 (Goodsir 1985). Relevant information on the test specimens and models 

is listed in Table 4-1. The failure modes of the test specimens are depicted in Figure 4.5. 

Using the default methods and values stated above, the comparison between model and test 

specimen key responses of the three case studies is presented in detail in the following 

section. 

The response of the test specimens was computed using the same set of values for 

the empirical parameters, i.e., eccentricity in the reinforcement to control the direction of 

buckling, the torsional rigidity of beam-elements, and area of auxiliary fibers to avoid 

numerical instability, set forth above. The selection of such values was supported by a 

series of parametric analyses. 
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Table 4-1. Summary of properties of the test specimens and results of the BTM. 

Test lw tw l ℎ𝑢

𝑡𝑤

 
𝑁

𝑓′
𝑐
𝐴𝑔

 
𝑀

𝑉𝑙𝑤

 
𝑉𝑚𝑎𝑥

𝑉𝐴𝐶𝐼 𝑙𝑖𝑚𝑖𝑡

 
pp tb Δ′

𝑌𝑝

𝑡𝑤

 
Computed 

Failure 

 (mm) (mm) (%) (%) (%) (Reported 

Failure) 

TW1 2700 80 0.67 25 0.043 3.7 0.16 1.0 1.6 -0.6 B (OCB) 

RWL 1600 125 2.29 16 0.06 3.75 0.24 3.0 4.1 0.6 B (B) 

Wall2 1500 100 1.73 10 0.04−0.16 − 0.51 -2.3 3.0 -0.4 OU (B) 

Notes: 

lw, length of the wall 

tw, thickness of the wall 

l, average vertical steel ratio 

hu/tw, where hu is the laterally unsupported height 

N/f’cAg, axial load ratio, where N is the total vertical load (N), f’c is the compressive strength of concrete 

(MPa), and Ag is the gross area of the wall (mm2) 

M/Vlw, shear span ratio, where M is the base bending moment, V is the base shear 

Vmax/VACI limit, where Vmax is the computed peak base shear (N) and VACI limit = 0.83𝐴𝑐𝑣√𝑓′
𝑐
 (MPa) 

[10𝐴𝑐𝑣√𝑓′
𝑐
 (psi)], Acv is the area considered for shear (mm2) 

pp, peak drift ratio prior to the computed peak out-of-plane displacement 

tb, maximum computed tension strain in reinforcement prior to the peak out-of-plane displacement 

’Yp, peak measured out-of-plane displacements 

B = buckling failure; OCB = out-of-plane displacement triggered crushing and bar buckling; OU = out-of-

plane displacements without failure. 

 

(a) (b) (c) 

 

Figure 4.5. (a) Case Study 1 − TW1, south end at the end of the test after failure (Almeida et al. 

2017). (b) Case Study 2 − RWL, west end out-of-plane instability (Dashti 2017). (c) Case Study 

3 – Wall2, east end showing buckling to the south (Goodsir 1985). 
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The grid size initially was proposed to meet, as close as possible, different 

requirements such as the inclination of the diagonals, location of the out-of-plane restrains, 

distribution of the properties of concrete and reinforcement, and geometry of the boundary 

elements. The use of at least four vertical elements in the unsupported height was deemed 

as suitable to compute out-of-plane buckling response mode. The most appropriate grid 

size was found by examining two models of each test specimen.  One model had a fine-

grid (default method used in the case studies to be described later), whereas the other had 

a coarse-grid. The ratios lv/hu (where lv is the length of the vertical elements) in the fine-

grid models were 0.1, 0.08, and 0.13 for test specimens TW1, RWL, and Wall2, 

respectively. The coarse-grid models had grids with lv/hu ratios of about double those used 

in the fine-grid models. While the mesh refinement, in general, did not affect the F−D 

responses, the coarse-grid models predicted about 20% smaller |Y| than those computed 

with the fine-grid models. Which for the case study, RWL delayed the buckling failure in 

the coarse-grid model until the second cycle with pk = 3%, whereas in the fine-grid model, 

as in the test, buckling failure occurred during the first cycle. For test specimen TW1, both 

the model with coarse-grid and the model with fine-grid computed softening in the F−D 

responses in the semi-cycle reported in the test. Neither the fine-grid model nor the coarse-

grid model of Wall 2 computed buckling failure, and the use of coarse-grid did not 

significantly modify the load step at which the peak Y was computed.  

The effect of using beam-elements with in-plane flexural rigidity in the 

compression zones in the wall’s boundaries was studied with three models, termed “in-

plane truss models” (ITM), corresponding to the case studies (see Table 4-2). The ITM are 

similar to the BTM with the difference that the former had no flexural rigidity in all the 
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elements. For the test specimen TW1, the ITM computed peak lateral strength and |Y| at 

the onset of the buckling failure 10% and 30% smaller than the corresponding values 

computed by the BTM (the onset of the buckling failure or instability is defined as the point 

after which the increments of |Y| consistently grow for constant increments of in-plane 

lateral drift ). For RWL, the ITM computed similar peak strength and |Y| at the onset of 

the instability than the values computed by the BTM; however, the ITM exhibited 

excessive pinching. The ITM of the test specimen Wall2 did not converge due to early 

strength degradation in the F−D response. Degradation in the ITM of Wall2 occurred 

during the first cycle with pk = -1.6%, whereas the test exhibited degradation after 

reaching pk = -2.3%.  

 
Table 4-2. Summary of parametric studies. 

Test Default BTM No Strain Penetration No in-plane flexural 

rigidity for the 

boundaries (ITM) 

Torsional Rigidity 

0.1GJ 

TW1 Buckling failure 

 

Premature buckling 

failure 

Buckling failure Y without buckling 

failure 

RWL Buckling failure 

 

Y without buckling 

failure 

Buckling failure Y without buckling 

failure 

Wall2 Y without buckling 

failure 

Y without buckling 

failure 

M−D degradation at 

 = 1.3% and non-

convergence 

Y without buckling 

failure 

 

A number of parametric analyses carried out in this investigation indicate that the 

strain penetration has a small influence on the F−D response prior to the buckling failure, 

but in general, it affects the computed out-of-plane displacements (Table 4-2). Models of 

test specimens TW1, RWL, and Wall2 where strain penetration was not considered resulted 

in 15%, 93%, and 27% smaller peak |Y|  (respectively) than the models including strain 

penetration (default method used in the case studies). The model of test specimen TW1 

without strain penetration computed softening in the F−D response during the cycle with 
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pk = 0.75%, whereas the test exhibited degradation after reaching pk  = 1%. In the model 

of test specimen RWL the reduction of |Y| prevented the buckling failure observed in the 

test. In test specimens TW1 and RWL, the consideration of strain penetration allowed to 

capture softening in the F−D responses in the same semi-cycles as in the corresponding 

tests. 

The effect of using Linear geometric transformation instead of nonlinear 

transformation (default method used in the case studies) was also studied. Three models 

for the case studies were created using the Linear transformation (BTM-LG). For the test 

specimens TW1 and RWL, the BTM-LG and BTM F−D responses were similar up to the 

onset of the buckling failure. Furthermore, the BTM-LG and BTM of the Wall2 computed 

a similar base moment − top displacement relationship response (M−D). No noticeable out-

of-plane displacements were computed by the BTM-LG; even in the test specimen TW1, 

where its single curtain of reinforcement was placed with a small eccentricity (see Figure 

4.9a). 

The torsional rigidity of the beam-elements was found to play an important role in 

the prediction of the out-of-plane displacements. Values of torsional rigidity equal to 

0.02GJ (default value used in the case studies), 0.05GJ, and 0.1GJ (Table 4-2) were 

studied. The |Y|, in general, decreased as the torsional rigidity increased. For the test 

specimen TW1, the models with torsional rigidity 0.05GJ and 0.02GJ accurately computed 

softening in the F−D responses, whereas the torsional rigidity equal to 0.1GJ prevented 

buckling failure (Figure 4.6a). For test specimen RWL, buckling failure did not occur when 

the torsional rigidity was made equal to 0.05GJ and to 0.1GJ (Figure 4.6b). The F−D 

responses for Wall2 computed with torsional rigidities 0.02GJ, 0.05GJ, and 0.1GJ were all 
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very similar (Figure 4.6c). The sensitivity study led to an optimum torsional rigidity equal 

to 0.02GJ for vertical and horizontal beam-elements. 

 
(a) (b) 

  

(c) 

 

Figure 4.6. Comparison of base shear force − top displacement computed using torsional rigidity 

equal to 0.02GJ (BTM) and 0.1GJ. (a) Case Study 1 − TW1. (b) Case Study 2 – RWL. (c) Case 

Study 3 – Wall2. 
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Bar buckling did not trigger plastic hinge out-of-plane buckling in any of the three 

test specimens; therefore, this response mode was not included in the BTM. However, to 

study the role played by bar buckling on the overall out-of-plane buckling response mode 

of the walls, an alternative model for test specimen Wall2, termed  “BTM-Cages”, was 

created (Figure 4.7). 

This model was identical to the default BTM, except for explicitly including the 

reinforcement cages of the boundary elements. The concrete at boundary elements was 

modeled using a single vertical line of fiber-section beam-elements (Plain-Concrete-

Elements), from the base to the intermediate support level (Figure 4.7), whereas the bars 

were modeled using multiple lines of beam-elements (Bar-Elements).  

 

Figure 4.7. Description of the Beam-Truss Model with Cages for Case Study 3 − Wall2. 
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The Bar-Elements had circular fiber-sections (3 fibers in the radius by 12 fibers in 

the circumference) and used PDelta geometric transformation, similar to the formulation 

developed by (Carreño 2018). Rigid-Elements connected the Bar-Elements to the Plain-

Concrete-Elements. The lateral support provided by stirrups to bars was modeled using the 

Auxiliary-Elements, which were elastic beam-elements rigid in flexure and axially very 

flexible. Additionally, to prevent bar buckling inwards of the confined concrete core were 

used Only-Compression-Elements. These elements resulted from the aggregation of elastic 

beam-elements and truss-elements (Figure 4.7). 

To trigger the bar buckling outwards, the bars were modeled with eccentricity 

between stirrups equal to 0.001s, where s is the spacing of the stirrups. This eccentricity 

was small enough to do not affect the results. 

Figure 4.8a compares the M−D responses computed by the BTM and BTM-Cages 

for test specimen Wall2. The models compute very similar overall responses, the maximum 

difference, which occurs at the peak base moment (pk = 2.5%), is equal to 6.2%. 

Figure 4.8b compares the out-of-plane displacement histories computed with both 

models at the location of the peak Y  (height 0.53hu, east end). In general, the BTM-Cages 

computes slightly smaller out-of-plane displacements with a very similar shape than the 

BTM, the difference for the peak Y ( = 0.7%) is 5.9%. 

Deformed shapes computed by both models are also very similar (see Figure 4.8c 

and Figure 4.18a). The plastic buckling of the reinforcement was found not to play an 

important role in the out-of-plane buckling response, even in the post-buckling behavior. 
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(a) (b) 

  

(c) 

 

Figure 4.8. BTM-Cages responses, Case Study 3 – Wall2. (a) Base moment − top displacement. 

(b) Out-of-plane displacement (Y) at height 0.53hu (height of computed peak Y) at the east end. 

(c) Line color map at peak out-of-plane displacement (inches, 10x). 

 

4.6 Model validation 

A comparison of measured and computed F−D responses, out-of-plane 

displacements, and wall longitudinal reinforcement strains is used herein to validate the 

BTM. Additionally, to gain insight into the buckling behavior of the BTM, contours of 
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strains are computed using a methodology similar to the described by Álvarez-Sánchez and 

Restrepo (2017). Displacement fields for planes at different locations along the wall 

thickness are obtained from the nodal displacements and rotations of the BTM, and using 

strain rosettes are computed the nodal strains and contours for z (vertical) and 2 (minimum 

principal strain). This procedure was implemented in the GUI StrainContour3D.m 

developed in-house with MATLAB (2018). 

4.6.1 Case Study 1 − Specimen TW1 (Almeida et al. 2017) 

Case Study 1 is the short-flange T-shaped structural wall specimen TW1 built at 

full-scale and reported by Almeida et al. (2017), see Figure 4.9. This test specimen was 

designed following the current practice for residential buildings in Colombia (NSR-10 

2010). The shear span ratio was M/Vlw = 3.7 (where M is the base bending moment, and V 

is the base shear) and the axial load ratio N/f’cAg = 0.043 (where N is the total vertical load 

including self-weight and Ag is the gross area of the wall), which was maintained constant 

throughout the test. The test specimen was tested to pk = ±1%. Two cycles were applied 

at each displacement level. The lengths of the web and the flange were 2620 mm and 440 

mm respectively, whereas the thickness in both cases was 80 mm; the ratio hu/tw was equal 

to 25. TW1 had a single curtain of reinforcement; the average vertical steel ratio was l = 

0.67%, and the horizontal steel ratio h = 0.18%. No confining reinforcement was provided 

at the wall boundaries. The material properties for the test specimen are listed in Figure 

4.9c. 

The measured and computed F−D responses for TW1 are depicted in Figure 4.10a. 

Stable hysteretic behavior was observed up to pk = 1%.  
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(a) (b) 

 

(c) 

 

Figure 4.9. Case Study 1 − TW1. (a) Description of the test specimen. (b) Description of the Beam-

Truss Model. (c) Material properties. 
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The peak base shear measured for this wall was 𝑉̂max = 0.15Acv √𝑓′
𝑐
 (MPa) 

[1.8Acv√𝑓′
𝑐
 (psi)] (where Acv is the area considered for shear). The ratio 𝑉̂max /VACI limit was 

equal to 0.18, where VACI limit = 0.83Acv √𝑓′
𝑐
 (MPa) [10Acv √𝑓′

𝑐
 (psi). 

During the reloading towards pk = -1%, near-zero , the test specimen exhibited 

the largest peak |Y| (south end deformed towards the west side, see Figure 4.9b), followed 

by strength degradation in-plane and failure of the wall due to concrete crushing and bar 

buckling (Figure 4.5a). 

Figure 4.9b shows the BTM for test specimen TW1 with d equal to 45°. Twelve 

quadrilaterals in the horizontal direction and ten in the vertical were formed by the grid of 

beam-elements with lv/hu = 0.1. The length of the SP-elements for bars with db = 16 mm 

was Lb = 12db, and for bars with db = 6 mm it was Lb = 23db. In this case, because the wall 

had a single curtain of reinforcement, auxiliary elements, rigid in compression, represented 

the interface between the wall’s concrete and the foundation (Figure 4.9b). The nodes at 

the laterally supported level (top of the grid) were restrained to the rotation about the X-

axis, according to the boundary condition in the test. The BTM had 1267 DOFs and 

required 98 minutes to run the total cumulative displacement equal to 415 mm using 

increments of 0.03 mm. 

The BTM computes the overall hysteretic response very satisfactorily, see Figure 

4.10a. The computed peak base shear Vmax is 10% smaller than that recorded in the test. 

The maximum |error| in the computation of the peak forces, at any cycle, is 14%.  

The peak Y was measured at the south web end at a distance measured from the 

wall base equal to 0.4hu. The computed out-of-plane response, at the location where the 

measured out-of-plane response was reported, was obtained using linear interpolation of 
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the out-of-plane displacements of the nodes. A similar procedure was used in the other two 

case studies. In general, the BTM of TW1 computes the out-of-plane displacement history 

satisfactorily at that location (Figure 4.10b).  

 
(a) (b) 

  

(c) 

 
Figure 4.10. Results of the BTM for Case Study 1 − TW1. (a) Base shear force − top 

displacement. (b) Out-of-plane displacement (Y) at height 0.4hu (height of measured peak Y) 

at the south end. (c) South end vertical reinforcement strains for cycle 1 of large amplitude 

positive peak drift ratios (pk). 

 

Just like in the test, the BTM computes peaks Y at near-zero lateral drift,  in 

reasonable agreement with the test. The maximum |error| for the computed peaks of Y is 

48%, with the exception of peak Y in the last semi-cycle (from 1% to -1% drift ratio ). 
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After partially recovering from buckling by the end of the last-semi-cycle, the test 

specimen exhibited failure in-plane (concrete crushing and bar buckling, see Figure 4.10a 

and Figure 4.5a). The failure in-plane was triggered by the large prior peak Y. As in the 

test, softening in the F−D response is computed by the BTM in the last semi-cycle; 

however, it is associated with the onset of buckling failure (Figure 4.10b). 

Figure 4.10c compares the measured and computed strains of the outer vertical bar 

at the web end of the test specimen TW1. The comparison considers the strains 

corresponding to the positive pk in the first cycle of the three largest amplitudes tested 

(0.5%, 0.75%, and 1% drift ratios). The measured strains were reduced from six external 

LVDTs placed along with the height of the south face. The LVDTs were supposed to be 

attached to the outer vertical bar of the wall’s boundary. The computed strains at the center 

of the bar at the location of the LVDTs (mid-height of the supports) were calculated by 

linear interpolation of the strains computed by the model at the location of the first and last 

integration point of the Bernoulli beam-elements at the boundary. Neither the measured 

nor computed bar axial strain immediately above the foundation included strain 

penetration. A similar procedure for the computation of bar strains was used in the other 

two case studies. The strains computed for the bar of this test specimen do not compare 

closely with those reported at the lower end of the wall where plasticity developed, and the 

|error| in the computed peak strain is 37%. The regularization of the concrete constitutive 

stress-strain relationships achieves the overall objectivity of the BTM. However, it results 

in the loss of objectivity at the section level if plasticity is present. Therefore, the stress-

strain curves are grid-dependent, and the prediction of the strains becomes challenging. 
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Figure 4.11a displays the contour of the out-of-plane displacement ratio Y/tw at the 

onset of the buckling failure predicted by the model.  

 
(a) (b) 

  
(c) 

 

Figure 4.11. Contours of the BTM for Case of Study 1 − TW1. (a) Out-of-plane displacement 

ratio Y/tw at the onset of the instability. (b) Minimum principal strains 2 in the compression face 

at the onset of the instability. (c) Vertical strains z in the axis of the wall at the peak drift prior 

to the peak out-of-plane displacement. 
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Instability begins after reaching the pk = 1% at  = 0.49% (see Figure 4.11a and 

dot in Figure 4.10b), with |Y| equal to 0.69tw, which is 16% larger than the measured peak 

|Y|. The computed peak Y occurs as in the test at the web end (south end) but at a height 

equal to 0.3hu, 25% lower than the measured height. The contour of 2 in the compression 

face (east side) at the same drift is depicted in Figure 4.11b. The peak 2 occurs in the 

region of peak Y and is equal to -0.0035, which indicates degradation of the cover; 

however, no spalling was observed in the test in that location. Figure 4.11c displays the 

contour of z in the wall axis at the prior peak displacement (pk = 1%). Strains z are large, 

ranging from 0.018 at the base to 0.012 at the height of the computed peak Y. 

4.6.2 Case Study 2 − Specimen RWL (Dashti 2017)  

Case Study 2 refers to the half-scale test specimen RWL reported by Dashti (2017). 

This planar wall, see Figure 4.12a, represented the base story of a four-story prototype 

building designed in accordance with NZS 3101 (2006). The wall-length lw and thickness 

tw were 1600 mm and 125 mm, respectively, and the ratio hu/tw was equal to 16. The 

reinforcement ratios were l = 2.29% and h = 0.84%. Two curtains of reinforcing steel, 

and confining reinforcement in the boundaries were incorporated in this test specimen. 

Figure 4.12c lists the material properties. The shear span and axial load ratio were M/Vlw 

= 3.75 and N/f’cAg = 0.06, respectively. The lateral loading protocol included three cycles 

for each displacement level, except for the last two increments where two cycles were 

applied. This wall was tested to pk = -2.5% − 3%.  

Figure 4.13a compares the measured and predicted F−D responses for this test. 

Force 𝑉̂max = 0.22Acv √𝑓′
𝑐
 (MPa) [2.6Acv √𝑓′

𝑐
 (psi)], and 𝑉̂max /VACI limit = 0.26.  
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(a) (b) 

 

(c) 

 
Figure 4.12. Case Study 2 – RWL. (a) Description of the test specimen. (b) Description of the 

Beam-Truss Model. (c) Material properties. 
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Noticeable out-of-plane displacements began when the test specimen was unloaded 

from pk = 1.5% (west end deformed to the north side, see Figure 4.12b). For this semi-

cycle, the peak Y recovered completely. As |pk| increased, the residual |Y| also increased. 

The hysteretic response was stable up to pk = 3%. However, during the unloading from 

that drift, the wall exhibited buckling failure (Figure 4.5b). Neither bar buckling nor bar 

fracture was observed in the test. 

The BTM, shown in Figure 4.12b, used a grid of 8 by 12 quadrilaterals with lv/hu = 

0.08 and d = 46°. The SP-elements for db = 16 mm (boundary elements) had Lb = 11db, 

and for bars with db = 12 mm (interior vertical beam-elements) had Lb = 15db. 

The rotations about X-axis were released at the laterally supported level (top of the 

grid; see Figure 4.12b). The model had 875 DOFs and completed 2101 mm of total 

cumulative displacement in 46 minutes with increments of 0.13 mm. 

The F−D response of this test specimen is accurately computed by the BTM, see 

Figure 4.13a. Vmax is within 8% of the measured peak force. The maximum |error| for the 

computed peak lateral forces at each of the loading cycles with |pk| ≥ 0.5% is less than 

14%. The model also accurately computes the abrupt strength degradation due to buckling 

failure after reaching pk = 3%, as occurred in the test. 

Figure 4.13b compares the measured and computed out-of-plane displacement 

versus top in-plane displacement response at the location of peak Y. The measured peak 

Y occurred at a distance measured from the wall base equal to 0.3hu at the west end. 

Despite that the maximum |error| for the computed peaks Y  is 63%, the buckling histories 

follow similar patterns, both the west and the east ends develop peaks Y near-zero . 
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(a) (b) 

  

(c) 

 

Figure 4.13. Results of the BTM for Case Study 2 – RWL. (a) Base shear force − top 

displacement. (b) Out-of-plane displacement (Y) at height 0.3hu (height of measured peak Y) 

at the west end. (c) West end vertical reinforcement strains for cycle 1 of large amplitude positive 

peak drift ratios (pk). 

 

The measured and computed strains of the outer vertical bar at the south face at the 

west end of test specimen RWL are compared in Figure 4.13c. In this case, the measured 

strains were computed from two externally placed linear potentiometers attached to the 

extreme end reinforcement of the test specimen. The strains in the first cycles with pk = 

2%, 2.5%, and 3% are compared. The BTM predicts the strains with maximum |error| equal 

to 25%. 
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Figure 4.14a depicts the contour of Y/tw computed at  = -1.8% after reaching pk 

= 3%. This is the drift where the onset of buckling is predicted (see the dot in Figure 4.13b).  

(a) (b) 

  

(c) 

 

Figure 4.14. Contours of the BTM for Case of Study 2 – RWL. (a) Out-of-plane displacement 

ratio Y/tw at the onset of the instability. (b) Minimum principal strains 2 in the compression face 

at the onset of the instability. (c) Vertical strains z in the axis of the wall at the peak drift prior 

to the peak out-of-plane displacement. 
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The computed peak Y occurs, as in the test, at the west end, but at a height equal 

to 0.42hu (0.3h in the test). The computed |Y| at the onset of buckling is 0.54tw, whereas 

the corresponding measured |Y| was 0.58tw. Figure 4.14b shows the contour of 2 in the 

compression face (south side) at the onset of the instability. The peak 2 is -0.024 and 

occurs in the region of peak Y. The strain in the reinforcing bar at the side of compression 

(south side) is z = -0.02, whereas the corresponding strain in the side of tension (north 

side) is z = 0.035. The strain difference indicates the localization due to the onset of the 

buckling failure. Figure 4.14c shows the contour of z in the axis of the wall at pk = 3% 

(the peak drift prior to the peak Y). At that drift, the computed peak of tensile strains at 

the west end (at the height of peak Y) is very large (z = 0.025), which points out the 

importance of the residual reinforcing steel strains on the buckling failure. 

4.6.3 Case Study 3 − Specimen Wall2 (Goodsir 1985)  

Case Study 3 is the 1:4 scale planar test specimen Wall2 described by Goodsir 

(1985). This test specimen was designed per NZS 3101 (1982) to represent the first two 

stories of a mid-rise building (Figure 4.15a). The application of an eccentric and variable 

vertical force P caused the shear span ratio M/Vlw to vary during the test (Figure 4.15b), P 

was applied with eccentricity equal to 0.25lw (Figure 4.15a). N/f’cAg varied between 0.04 

and 0.16, and the shear span was 3180 mm. Two cycles were applied for increasing 

displacement levels up to pk = -2.3% − 2.5%. The lw and tw of the wall were 1500 mm and 

100 mm, respectively. A concrete slab, connected to the bracing steel structure, was placed 

close to the middle height of the wall, resulting in hu/tw = 10 for the lower vertical span 

(Pour 1, see Figure 4.15a).  
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(a) (b) 

 

(c) 

 

Figure 4.15. Case Study 3 − Wall2: (a) Description of the test specimen; (b) Description of the 

Beam-Truss Model; (c) Material properties. 
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This wall had steel ratios l = 1.73% and h = 0.96% and incorporated two curtains 

of reinforcement with confinement in the wall’s boundaries. The material properties of the 

test specimen are listed in Figure 4.15c. 

The measured base bending moment − wall top displacement relationship response 

(M−D) is shown in Figure 4.16a. The Vmax = 0.42Acv √𝑓′
𝑐
 (MPa) [5.1Acv √𝑓′

𝑐
 (psi)], and 

Vmax/VACI limit is equal to 0.51. In this test, the 𝑉̂max cannot be compared with VACI limit because 

such value was not reported. During the reloading from pk = -2.3% to the third pk = 

2.5%, softening in the measured M−D response initiated at  = −  due to buckling 

failure (east end deformed to the south side, Figure 4.15b), the test was stopped at 

 = . Test specimen Wall2 did not exhibit bar buckling or bar fracture (Figure 4.5c).  

The BTM had a grid of 10 by 18 quadrilaterals with d = 47° and lv/hu = 0.13 (Figure 

4.15b). The lengths of the SP- elements were Lb =14db for bars with db = 12 mm (boundary 

elements), and Lb = 33db for db = 6 mm (interior vertical beam-elements). Nodal rotations 

about X-axis were released at levels of lateral support (the bottom of the transfer beam and 

the bracing slab). The bracing slab was modeled using truss-elements and elastic material 

with a modulus of elasticity equal to 0.35Ec. The cyclic analysis, with a cumulative 

displacement of 1351 mm, took 159 minutes for this 1472 DOFs model. The displacement 

increment used was 0.38 mm; between each of these increments, a series of force 

increments adjusted the vertical load P. 

The BTM accurately computes the overall hysteretic response of Wall2, with the 

exception of the last semi-cycle, where the degradation exhibited in the test is 

underestimated by the model (Figure 4.16a). At each of the loading cycles, the peaks of the 

computed base moments are also well predicted, the maximum |error| is 5.4%, except for 
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the first two cycles where this is 9.2%. The test was stopped during the last semi-cycle at 

 = 1.1% because the wall exhibited instability, and the actuator’s stroke limit was 

reached. 

 
(a) (b) 

  

(c) 

 

Figure 4.16. Results of the BTM for Case Study 3 − Wall2. (a) Base moment − top displacement. 

(b) Out-of-plane displacement (Y) at height 0.53hu (height of computed peak Y) at the east end. 

(c) East end vertical reinforcement strains for cycle 2, large amplitude negative peak drift ratios 

(pk). 

 

Although the numerical simulation reaches pk = 2.5% without exhibiting as much 

degradation as occurred in the test, the buckling response mode is well captured by the 



 

123 

model (Figure 4.17). Figure 4.16b displays the computed out-of-plane displacements − top 

in-plane displacements relationship response at the location of the computed peak Y. The 

BTM captures the peaks of Y near-zero , which was the typical behavior of the test 

specimen. Measured Y at the onset of buckling failure was not reported, the measured 

peak |Y| was 0.4tw (when the test was stopped because buckling failure) whereas the 

computed peak |Y| is 0.2tw, which is consistent with the fact that smaller degradation 

occurred in the model than in the test. 

Figure 4.16c displays the strains of the outer vertical bar at the northeast end; the 

measured and computed strains at the second peak of the cycles with pk = -0.77%, -1.5% 

and -2.5% are compared. Eight strain gauges attached to the bar were used to calculate the 

strains along with the height of the test specimen. As in the previous case studies, the 

computed strains were interpolated from strains at the location of the integration points. In 

this case, the measured and computed bar strains follow very similar trends, and the peak 

bar strain is computed with |error| equal to 11%.  

Figure 4.17 displays a comparison of the measured and computed histories of Y at 

the east end at 0.6hu (Level 1) and 0.3hu (Level 2). The BTM computes quite accurately 

the load steps where the peaks of Y occurred in each cycle. 

Figure 4.18a shows the contour of Y/tw at the drift where the peak Y is computed 

in the last semi-cycle ( = 0.68%). The contour indicates that peak Y occurs at the east 

end at a height equal to 0.53hu, whereas in the test, the peak was reported at 0.4hu. Figure 

4.18b displays the contour of 2 computed at the same  for the north side (compression 

face).  
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Figure 4.17. Measured vs. Computed out-of-plane displacement history for Wall2 at a height 

equal to 0.6hu (Level 1) and 0.3hu (Level 2) at the east end. 

 

 
(a) (b) 

  
Figure 4.18. Contours of the BTM for Case of Study 3 − Wall2. (a) Out-of-plane displacement 

ratio Y/tw. (b) Minimum principal strains 2 in the compression face at the peak out-of-plane 

displacement (Y).  

 

The 2 in the location of the peak Y is -0.0045, whereas the peak 2, which occurs at 

the base, is equal to -0.0058. This is consistent with the damage pattern observed in the test 

specimen (Figure 4.5c). 
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The contour of z at the prior cycle with pk = -2.3% is depicted in Figure 4.19. The 

peak vertical strain z occurs at the east end at the region of the peak Y, and it is 0.022, a 

large value as in the previous case studies. 

 

 

Figure 4.19. Contours of the BTM for Case of Study 3 − Wall2. Vertical strains z in the axis of 

the wall at the peak drift prior to the peak Y. 

 

4.7 Conclusions 

This paper extended the previously developed Beam-Truss Model (BTM) without 

geometric nonlinearities for analysis of RC walls, including softening, to plastic hinge out-

of-plane buckling analysis using nonlinear-geometry. The model uses a grid of nonlinear 

fiber-section displacement-based elements with PDelta geometric transformation and 

diagonal nonlinear Corotational truss-elements. All the beam-elements have an in-plane 

rotational release at the nodes, except for outer vertical elements representing the 

compression zones at the wall’s boundaries. The BTM was further enhanced by modeling 

the strain penetration of the reinforcing steel at the base of the walls, which was found to 

play an important role in the accurate calculation of out-of-plane buckling. This is because 
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modeling of strain penetration affects the boundary condition as well as the magnitude of 

strains, both having an important effect for computing buckling. Important for the accurate 

computation of buckling was also the use of in-plane flexural rigidity at the end vertical 

beam-elements (representing the compression zones) for both cases of confined and 

unconfined wall’s boundaries. 

The BTM model for buckling analysis was validated by comparing the 

experimentally measured and computed responses of three large-scale test specimens 

subjected to in-plane uniaxial loading: TW1, RWL, and Wall2 with slenderness ratios 

ranging between 10 and 25. The comparisons included the overall lateral force − 

displacement, the out-of-plane displacement, and the local strain responses. TW1 is a short-

flange T-shaped wall with a single curtain of reinforcement, whereas RWL and Wall2 are 

planar walls with two curtains of reinforcement. The walls had strength degradation 

because of buckling. TW1 exhibited softening in the F−D response after drift ratio pk = 

1%, whereas the planar walls reached |pk| ≥ 2.5% before buckling failure. The models 

were developed using the open-source nonlinear analysis program OpenSees (McKenna 

2019). The following conclusions are drawn: 

- In general, the BTM computes the F−D responses of the walls TW1 and RWL 

very satisfactorily, and the M−D response of Wall2, with 10% maximum |error| 

of the peak base shear or base moment. The models also computed similar 

strength degradation of the walls TW1 and RWL at the same semi-cycle with the 

tests. The model of Wall2 did not capture as much degradation in the last semi-

cycle as that observed in the test. 
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- In all models, the out-of-plane buckling response mode was computed very 

satisfactorily. The peaks Y were computed, in agreement with the tests, at 

relatively small ||. The maximum |error| for the computed peaks Y is 63%. The 

location of peak out-of-plane displacements differed no more than 40% in 

elevation between the models and the tests. 

- Vertical strains at the bars of the wall’s boundaries for pk prior to the onset of 

buckling failure in TW1 and RWL, and peak out-of-plane displacement in Wall2, 

were computed. In general, the measured and computed bar strains followed 

similar trends, and the peak bar strains at the wall’s boundaries were computed 

with maximum |error| equal to 37%. 

- Computed vertical strains z corroborated the importance of residual tensile 

strains for out-of-plane buckling. The maximum z ranged from 0.018 to 0.025 

for the pk prior to the onset of buckling failure (TW1 and RWL) or peak out-of-

plane displacement (Wall2). 

- The computation of buckling was found to be sensitive to the effective torsional 

rigidity of the beam-elements. While the default BTM with 0.02GJ in general 

computed the buckling behavior accurately, models with 0.1GJ did not capture 

buckling failure. 
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Chapter 5.  Enhanced Beam-Truss Model for Nonlinear Analysis 

of RC Core Walls 

 

5.1 Abstract 

The three-dimensional Beam-Truss Model for nonlinear analysis of reinforced 

concrete structures, including degradation due to in-plane shear response, is enhanced to 

compute out-of-plane nonlinear shear response in the analysis of Core-Wall-Building 

systems. This Enhanced Beam-Truss Model considers nonlinear axial-flexure-shear 

interaction in-plane and nonlinear warping, including out-of-plane flexural and shear 

responses. The latter is archived via nonlinear shear springs, which use a built in-house 

material to compute shear response dependent on axial forces. 

To improve the computational economy, the model combines in series using a 

hybrid approach, the Enhanced Beam-Truss Model with a Fiber-Section Model. 

Displacement-based elements and truss-elements with nonlinear geometric transformation 

are used. 

Using the novel Hybrid Fiber-Section − Enhanced Beam-Truss Model, a 

comprehensive study on a 14-story archetype Core-Wall building is carried out. The 

responses of monotonic pushover analyses with 1st mode shape load pattern and triangular 

load pattern (resultant at 1/3 height), in two orthogonal directions, are studied. Fiber-

Section Model and Hybrid Fiber-Section − Beam-Truss Model are used as benchmarks. 

Influence of the in-plane shear deformations on the overall response was found for 

both load patterns. The models that considered in-plane shear response computed smaller 

lateral strengths than the models that did not. For 1st mode shape load pattern, the in-plane 
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shear response did not affect the displacement capacity, and the influence of the out-of-

plane shear response on the overall and local responses was limited. However, for the 

triangular load pattern, the in-plane shear response had a large influence on the lateral 

strength and displacement capacity, whereas the out-of-plane shear response exhibited 

limited influence on the lateral strength and large influence in the displacement capacity. 

 

5.2 Introduction 

Reinforced concrete (RC) walls are commonly used as part of the lateral system of 

buildings in earthquake-prone regions. Due to its low cost, fast construction, and open 

architecture, the RC Core-Wall-Building system has become the choice in mid-rise (30-50 

m tall) and high-rise constructions (more than 50 m tall). In these buildings, a central Core 

Wall is the primary lateral system, whereas post-tensioned RC slabs and peripheral 

columns constitute the gravity system. The Core Wall is formed by coupled walls in one 

direction and cantilever walls in the orthogonal direction, i.e., two coupled C-shaped walls. 

Even though the seismic response of RC wall buildings is labeled as excellent, some 

gaps of knowledge have been pointed out, since unexpected damage in mid-rise and high-

rise RC wall buildings has been observed in past earthquakes, e.g., Mw 6.2, 2011 

Christchurch, New Zealand (Kam et al. 2011) (where Mw is moment magnitude). 

Moreover, in recent years, with the increase in the use of Performance-Based 

Design (PBD), e.g., LATBSDC-17 (2017), and Nonlinear Response History Analysis 

(NLRHA), it has been observed that the Modal Response Spectrum Analysis (MRSA), 

commonly used in conventional design, e.g., ASCE 7-16 (2016), can underestimate the 

seismic shear force demands in mid-rise and high-rise Core Walls (Zekioglu et al. 2007, 
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Fry et al. 2010). The source of this underestimation may be attributed to the lower level of 

nonlinearity exhibited by the higher vibration modes. Therefore, to use the same response 

modification coefficient, R, in the MRSA, to account for the demand contributions of all 

modes may be inappropriate (Panagiotou 2017, Mehmood et al. 2017, Najam 2018). 

Several linear and nonlinear methods of analysis suitable for RC Core-Wall-

Building systems have been developed. The linear methods are used for conventional 

design, e.g., Equivalent Lateral Force (ELF) procedure and MRSA, whereas the nonlinear 

methods are used in PBD and research. The analysis of Core Walls requires to model wall 

piers and coupling beams. 

The methods available to model wall piers can be grouped into four main 

categories: (i) Wide-Column-Frame analogy. In this method, the wall piers of each C-

shaped wall are modeled using beam-elements connected to each other with rigid links. 

Euler-Bernoulli linear beam-elements and nonlinear fiber-section beam-elements (Fiber-

Section Model or for simplicity Fiber Model, which is commonly used in PBD) are used. 

These elements account for axial-flexure interaction and assume plane sections and zero 

shear deformations (Kwan 1993, Arabzadeh and Galal 2018, Arteta et al. 2019). (ii) 

Multiple-Vertical-Line-Element-Model (MVLEM). Here, the wall piers are modeled using 

four-node macro elements. These macro elements have internal vertical line elements and 

shear springs, which model nonlinear axial-flexure-shear behavior assuming plane 

sections. The in-plane and out-of-plane behavior are uncoupled; and, whereas the in-plane 

response is nonlinear, the out-of-plane response is linear (Kolozvari et al. 2019, Isakovic 

and Fischinger 2019). (iii) Beam-Truss Models (BTM) (Lu et al. 2014, Lu et al. 2016, Lu 

and Panagiotou 2016). In this method, a grid of nonlinear fiber-section beam-elements and 
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diagonal truss-elements is used to model the wall piers. The BTM explicitly considers 

axial-flexure-shear interaction and coupled in-plane and out-of-plane axial-flexure 

behavior. The out-of-plane flexural response is nonlinear, whereas zero out-of-plane shear 

deformations are assumed. (iv) Finite Element Method (FEM). Linear shell elements are 

the most commonly used elements to model wall piers when ELF procedure or MRSA is 

prescribed. For PBD, NLRHA is required, and nonlinear shell elements are also used. The 

most popular nonlinear shells are rectangular elements, where separate layers account for 

vertical nonlinear axial-flexure interaction and in-plane horizontal shear forces, whereas 

out-of-plane flexure and shear responses are linear (Zekioglu et al. 2007, Fry et al. 2010, 

Ugalde et al. 2019). Other more sophisticated 4-node shells and 8-node solid-elements 

based on the Modified-Compression-Field-Theory (MCFT) are available to model Core 

Walls in research applications (Wang et al. 2017, Mehmood et al. 2017). 

Coupling beams are modeled in the linear applications, e.g., ELF procedure and 

MRSA, using beam-elements or shell elements. In the nonlinear analysis, e.g., NLRHA, 

the most common methodologies used to model coupling beams are based on calibrated 

nonlinear shear springs or beam-elements with nonlinear rotational springs (Naish et al. 

2013b, ASCE 41-17 2017). 

For some years, it has been known that the shear force demands computed using 

NLRHA could be higher than the shear forces computed using MRSA (Zekioglu et al. 

2007, Fry et al. 2010). However, recently, it was observed that the Fiber Models, the most 

common approach used in nonlinear analysis applied to PBD, exhibit higher amplification 

than FEM models, including axial-flexure-shear interaction (Mehmood et al. 2017). This 

difference in the shear force demands occurs because of the inability of the Fiber Models 



 

133 

to take into account the nonlinear shear response, which indicates the importance of the 

axial-flexure-shear interaction in the modeling of RC-Core-Wall building systems. 

Additionally, modeling the nonlinear shear response, including shear failure, of Core Walls 

is especially important because currently conventional design and PBD, rely on prescribed 

limits for shear strength capacity based on scarce experimental evidence (ACI 318-14 

2014).  

Built on the BTM methodology described by Lu et al. (2014), this paper develops 

an enhanced OpenSees (OS) (McKenna 2019) framework for the nonlinear analysis of RC 

Core-Wall-Building systems. The novel model combines in series an enhanced version of 

the BTM, termed thereafter Enhanced Beam-Truss Model (EBTM) with a conventional 

Fiber Model, upgrading the two-dimensional hybrid approach used by Arteta et al. (2019) 

to three-dimensional analysis. In the resulting model, termed thereafter Hybrid Fiber-

Section – Enhanced Beam-Truss Model (HyEBTM), the lower stories of the Core Walls 

are modeled using EBTM, whereas the upper levels use Fiber Model. 

Like the BTM, the HyEBTM includes axial-flexure-shear interaction in-plane and 

nonlinear warping, however, whereas the BTM considers zero shear deformations for 

warping, the HyEBTM is extended to include an out-of-plane nonlinear shear response. 

Additionally, the proposed model improves the computational economy by applying a 

hybrid approach. The HyEBTM uses the special material ConcretewBeta and element 

Truss2 as coded by Lu and Panagiotou (2013) in OS for the implementation of BTM; also, 

it uses the built in-house materials SteelDRC and PinHardwP, the latter developed for the 

implementation of RC shear response dependent on axial force.  
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5.3 Literature review 

Most of the experimental information related to the behavior of RC Core-Wall-

Building systems comes from studies focused on individual walls, e.g., (Oesterle et al. 

1976, Thomsen and Wallace 1995, Thomsen and Wallace 2004, Tran et al. 2017), and 

coupling beams, e.g., (Binney 1972, Galano and Vignoli 2000, Naish et al. 2013a, Poudel 

et al. 2018). Some other studies on planar RC coupled wall systems, more relevant for the 

study of Core Walls, are also available (Santhakumar 1974, Shiu et al. 1981, Ozselcuk 

1989, Lequesne et al. 2010, Lehman et al. 2013). However, except for the test reported by 

Lehman et al. (2013), these studies do not fully represent the geometry and loading 

conditions of modern coupled walls. Lehman et al. (2013) tested a 1:3 scale 3-story coupled 

wall specimen, which simulated the lowest part of a 10-story building by considering the 

vertical and lateral load demands from upper stories. Damage in the test specimen 

progressed from yielding in the coupling beams to yielding and spalling in the wall piers. 

Sudden loss of lateral and vertical load resisting capacity occurred at 2.3% drift ratio, 

because of concrete crushing and bar buckling in the compressed wall pier. 

Experimental studies focused on RC Core-Wall-Building systems are scarce 

(Nakachi et al. 1996, Adebar et al. 2008, Inada et al. 2008, Constantin and Beyer 2016, 

Menegon et al. 2017). Nakachi et al. (1996) conducted the static lateral loading test of four 

1:8 scale L-shaped wall specimens to simulate the response of multistory Core Walls. The 

effect of the size of the confinement area and the amount of confining steel, on the lateral 

displacement capacity of the Core Walls, was studied. The influence of cracking on the 

effective stiffness of multistory buildings was studied by Adebar et al. (2008). They tested, 

under static lateral loading, a large-scale flanged-section wall specimen with aspect ratio 
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hw/lw = 7.2 (where hw and lw are height and length, respectively), low vertical steel ratio s 

= 0.0045, and constant vertical load ratio N/(f’cAg) = 0.1 (where N is the compressive load, 

f’c is the compressive strength of the concrete, and Ag is the gross area of the section). The 

damage progressed from concrete spalling to bar buckling and bar fracture at 2.4% drift 

ratio. Inada et al. (2008) tested three 1:4.5 scale L-shaped wall specimens under static 

lateral loading, up to 1.5% drift ratio, to simulate the corners of Core Walls. The first test 

specimen, an equilateral L-shaped wall, was loaded parallel to one of its wall piers, whereas 

the second and third test specimens, equilateral and inequilateral L-shaped walls, 

respectively, were loaded diagonally. After a 0.5% drift ratio, it was observed that plane 

sections did not remain plane; this due to local crushing of concrete. The first test specimen 

exhibited sudden out-of-plane shear failure of the wall pier perpendicular to the direction 

of loading, and the other two test specimens failed when the concrete at unconfined regions 

crushed. Constantin and Beyer (2016) investigated the response of two 1:2 scale C-shaped 

wall specimens under bidirectional and diagonal static lateral loading. The test specimens 

were subjected to vertical load ratios of 0.06 and 0.15. The failure mode in both test 

specimens was related to concrete crushing in unconfined regions. The displacement 

capacity of the walls decreased as the vertical load ratio increased; hence the first test 

specimen failed at a 3.0% drift ratio, whereas the second failed at a 1.5% drift ratio. The 

major findings were: (i) plane sections do not remain plane under diagonal loading, (ii) 

large compression depth in the flange ends can generate large compressive strains in 

unconfined regions, and (iii) out-of-plane buckling can occur because of the strain gradient 

across the wall pier width. Menegon et al. (2017) tested a 1:1.5 scale 1-story C-shaped wall 

specimen (box-shaped building core) under static lateral loading up to 4% drift ratio. The 
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test specimen represented the ground story of a 4-story Core Wall, and it was detailed to 

match typical practice in low seismicity regions. Relatively good displacement capacity 

was attained given the type of detailing used. 

Testing on complete Core Wall sections, i.e., two coupled C-Shaped walls, are even 

scarcer. To the best of our knowledge, only two experimental studies have been carried out 

in this fashion, (Barbachyn et al. 2015, Wang et al. 2017), and these studies were focused 

on novel multistory Core-Wall-Building systems. Barbachyn et al. (2015) investigated the 

lateral response of two 1:2.5 scale 3-story coupled shear wall specimens with post-

tensioned coupling beams; whereas Wang et al. (2017) tested two 1:5 scale 5-story Core 

Wall specimens, one steel reinforced concrete (SRC) Core Wall and the other Core Wall 

with embedded steel trusses (STRC). 

On the other hand, several numerical studies related to RC Core-Wall-Building 

systems have been carried out. Some of these studies used the BTM methodology. Lu et 

al. (2014) modeled a C-shaped wall specimen reported by Constantin and Beyer (2016), 

which was subjected to multidirectional static lateral loading. Computed and measured 

force – displacement responses exhibited excellent agreement, except for diagonal loading. 

In this case, the response was underestimated. Diagonal concrete crushing was computed 

by the BTM, as reported for the test. Lu and Panagiotou (2015) modeled three 20-story 

archetype buildings located in a near-fault region. One building had a conventional fixed-

base Core Wall. Another building had post-tensioned rocking Core Wall, and the last one 

was an isolated building with post-tensioned rocking Core Wall. Modeling scheme, i.e., 

BTM, explicitly accounted for flexure-shear interaction in walls and slabs. The 

conventional building exhibited diagonal concrete crushing at a 2.3% drift ratio. Arteta et 
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al. (2019) developed a hybrid model formed by BTM and nonlinear fiber-section force-

based elements (FBE) connected in series. The lower levels of the walls, where flexure-

shear interaction could play a role, are modeled using BTM, whereas the upper levels, 

where the behavior is flexure-dominated, are modeled using FBE. The methodology was 

validated using three wall specimens with aspect ratios hw/lw = 1.5, 2.3, and 3.1. Finally, 

an 8-story non-ductile frame-wall archetype building was simulated. 

Other studies on Core Walls, using more sophisticated models based on FEM, have 

also been done. Kono et al. (2011) simulated two L-shaped wall specimens (Inada et al. 

2008) using rectangular nonlinear shell elements with ten layers. Computed and measured 

force – displacement responses exhibited fair agreement, whereas the extension and 

intensity of the damage were well captured. Constantin and Beyer (2012) modeled a C-

shaped wall specimen (Constantin and Beyer 2016) using eight-layered rectangular 

nonlinear shell elements. A smeared rotating crack formulation based on the MCFT was 

employed, and out-of-plane shear behavior was considered. Two C-shaped wall specimens 

(Constantin and Beyer 2016, Menegon et al. 2017) were modeled by Hoult et al. (2018) to 

study the plastic hinge length in walls with low longitudinal steel ratios. RC three-

dimensional solid-elements that uses the Disturbed-Stress-Field-Model (DSFM) were 

employed. Wang et al. (2017) simulated two Core Wall specimens (Wang et al. 2017), one 

SRC, and other STRC. The FEM models used 8-node solid-elements with three 

translational degrees of freedom (DOF) per node to simulate concrete. Initial stiffness was 

overestimated in both models, and the lateral force – displacement response was predicted 

with reasonable accuracy. 
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As mentioned before, recent studies have observed that shear forces used in the 

conventional design of mid-rise and high-rise Core Walls could be unconservative. For this 

reason, using mostly high-rise buildings case studies, several other numerical studies have 

been focused on evaluating and improving the code prescription of the RC Core-Wall-

Building systems (Boivin and Paultre 2010, Munir and Warnitchai 2012, Leng et al. 2014, 

Panagiotou 2017, Mehmood et al. 2017). 

 

5.4 Core wall case study building 

5.4.1 Building description 

This paper studies a 14-story RC Core-Wall building assumed located in downtown 

Los Angeles, California (34.05° N, 118.26° W). The building was proportioned to be 

representative of a typical residential tower. Figure 5.1 shows the geometry of the building. 

The floor to floor height is 3.66 m for all stories, the total building height is 51.21 m, and 

the plan area is 28.14 m x 28.14 m. A central Core Wall composed of two C-shaped coupled 

walls is used as the lateral force-resisting system. In the X-direction, the centerline length 

of the walls is 3.2 m, whereas, in the Y-direction, it is 7.32 m, with a wall thickness of 610 

mm at Story 1-5 and 508 mm at Story 6-14. Coupling beams span 2.13 m between the C-

shaped walls in the X-direction, the beams are 1016 mm deep with the same width of the 

walls. This configuration results in a coupled wall system in the X-direction and in a 

cantilever wall system in the Y-direction. The gravity system consists of post-tensioned 

RC flat slabs, 203 mm thick, which are supported by 711 mm square columns at the 

perimeter, and the Core Wall at the center.  
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Figure 5.1. Core Wall case study building − Geometry. 

 

5.4.2 Building design 

The gravity and seismic design loads were in accordance with the minimum loads 

prescribed in the ASCE 7-16 (2016), whereas the reinforced concrete elements were 

proportioned to meet the provisions of the ACI 318-14 (2014). Consistent with residential 

use, Live load equal to 1.92 kPa and Superimposed Dead load also 1.92 kPa, were 

considered on all floors. Normal-density concrete (2400 kg/m3) with nominal compressive 

strength f’c = 48.3 MPa, and reinforcing steel ASTM 615 with nominal yield strength fy = 

414 MPa (Grade 60), were used for design. 

The building was located in a high seismic hazard area with PGA = 0.52 g, on-site 

class D (Stiff soil). Modal Response Spectrum Analysis (MRSA) was adopted to compute 

the seismic-demands. The total Dead load, this is, structure self-weight plus superimposed 
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dead load, constituted 100% the seismic weight (94,600 kN). The seismic design criteria 

are listed in Table 5-1.  

A linear model developed in ETABS Ultimate 18.0.2 (CSI 2018) was used for the 

MRSA (Figure 5.2a). The computer model included the structure above the ground, which 

was considered fixed at the base. Walls and slabs were simulated using Shell-Thin 

elements, whereas columns and coupling beams were modeled using Frame elements. 

Following the guidance of ACI 318-14, the effective moment of inertia of the walls was 

0.5Ig (where Ig is the inertia of the gross section). For the coupling beams, the effective 

moment of inertia was assumed 0.3Ig, which is the upper limit prescribed in LATBSDC-

17 (2017). Additionally, the flexural rigidity of columns and slabs was artificially 

decreased to make the Core Wall resisting the total lateral loads. 

The same linear model was used to perform a modal analysis (Figure 5.2a). The 

overall seismic response was dominated by translational modes, instead of torsional modes, 

due to the symmetry of the masses and the lateral force-resisting system. Periods of the 

first translational modes in the X-direction (coupled walls) and Y-direction (cantilever 

walls) are T1X = 1.39 sec and T1Y = 1.49 sec, respectively. Modal mass ratios for the first 

translational modes are Me-1X = 0.63 and Me-1Y = 0.67, whereas modal height ratios are He-

1X = 0.74 and He-1Y = 0.73. The mode shapes of the first and second translations modes are 

shown in Figure 5.2b-5.2e. 

The ASCE 7-16 design-basis earthquake response spectrum, with damping ratio  

= 5%, was used in the MRSA. Modal decomposition included 30 modes, which accounted 

for modal mass participation of 99% the actual mass in all directions, well above the 90% 

participation required by the code (ASCE 7-16, 12.9.1.1). 
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Table 5-1. Seismic design criteria for Core Wall case study building (Chapter 11, ASCE 7-16). 

Parameter Value 

Risk category (Table 1.5-1) II 

Seismic importance factor, Ie (Table 1.5-2) 1.0 

Site class (Table 20.3-1) D 

Design spectral response accelerations:  

    Mapped spectral response accelerations short period, Ss (Figure 22-1) 1.97 g 

    Mapped spectral response accelerations 1-s period, S1 (Figure 22-2) 0.70 g 

    Short period site coefficient, Fa (Table 11.4-1) 1.0 

    1-s period site coefficient, Fv (Table 11.4-2) 1.7 

    MCER spectral response accelerations short period, SMS (Eq. 11.4-1) 1.97 g 

MCER spectral response accelerations 1-s period, SM1 (Eq. 11.4-2) 1.19 g 

Design spectral response accelerations short period, SDS (Eq. 11.4-3) 1.31 g 

Design spectral response accelerations 1-s period, SD1 (Eq. 11.4-4) 0.79 g 

Design response spectrum:  

    To = 0.2(SD1/SDS) 0.12 s 

    Ts = SD1/SDS 0.61 s 

    Long-period, TL 8.0 s 

Seismic design category (Table 11.6-1 & 11.6-2) D 

 

The total lateral responses were obtained, combining the spectral responses using 

the CQC combination method. The reduction response modification coefficient, R = 6, was 

used since the Core Wall was intended to be designed as a special RC walls system (ASCE-

14, table 12.2-1). To compute the MRSA demands, an amplification redundancy factor  

= 1.3 was also considered. Finally, the design seismic-demands were calculated, scaling 

up the MRSA base shear in the X and Y-direction to make them equal to the corresponding 

shears calculated using the Equivalent Lateral Force (ELF) procedure. Seismic design 

parameters used in the MRSA and the details of the calculation of design base shear are 

shown in Table 5-2. 

The estimated inter-story drift ratios (s) were computed using MRSA demands, 

with the elastic displacements scaled by Cd / = 5/1.3 = 3.8. Maximum drift ratio in X and 

Y-direction were s-x = 0.008 and s-y = 0.01, respectively, well below the code limit, i.e., 

s-max = 0.02 (ASCE 7-16, Table 12.12-1). 
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(a) (b) (c) (d) (e) 

     

Figure 5.2. (a) ETABS model of case study. (b) Mode shape 1 in EW, T1X = 1.39 sec. (c) Mode 

shape 2 in EW, T2X = 0.35 sec. (d) Mode shape 1 in NS, T1Y = 1.49 sec. (e) Mode shape 2 in NS, 

T2Y = 0.29 sec. 

 

The design seismic-demands were combined with the gravity demands using ASCE 

7-16 load combinations rules (ASCE 7-16, 2.3.1), which resulted in factored axial forces, 

shear forces, and moments. These design demands were used to proportion the wall piers 

and coupling beams of the Core-Wall (Figure 5.3).  

A single-base plastic-hinge design was adopted, consistent with the uniform 

structural configuration of the Core-Wall. Axial-flexure design of the Core Wall was 

controlled by load combinations with primary action in the X- direction, which generated 

tensile axial forces in the decompressed C-shaped wall. The Core Wall was divided into 

three portions, along with the height for longitudinal reinforcement proportioning. The 

lower portion, i.e., Story 1-5 (Figure 5.3, Sec-1a, 1b), was 610 mm thick and had a 

longitudinal steel ratio l = 1.57%. The middle and upper portion, i.e., Story 6-8 (Figure 

5.3, Sec-2), and Story 9-14 (Figure 5.3, Sec-3), respectively, were 508 mm thick; however, 

the middle portion had l = 1.53%, whereas the upper portion had l = 1.21%. The sections 

were tension controlled, and a strength reduction factor  = 0.9 was used for the calculation 

of the design flexural strength. The amount of longitudinal reinforcement at the Core Wall 
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base was determined such that its design flexural strength was approximately equal to the 

design base moment. In other levels, longitudinal reinforcement in excess was provided to 

avoid the formation of plastic-hinges in unintended locations. 

 

Table 5-2. Calculation of the design base shear for Core Wall case study building (ASCE 7-16, 

Chapter 12). 

Parameter Value 

Structural system selection (Table 12.2-1):  

    Seismic force-resisting system Special RC shear walls 

    Response modification coefficient, R 6.0 

    Overstrength factor, o 2.5 

    Deflection amplification factor, Cd 5.0 

    Height limit, hn 48.8 m 

Horizontal structural irregularities (Table 12.3-1) 1a Torsional 

Vertical structural irregularities (Table 12.3-2) None 

Redundancy factor,  () 1.3 

Period determination (12.8.2):  

    Parameter for calculation of Ta, Ct 0.02 

    Parameter for calculation of Ta, x 0.75 

    Approximate fundamental period, Ta = Ct hn
x (Eq. 12.8-7) 0.93 s 

    Coefficient for the upper limit, Cu (Table 12.8-2) 1.4 

    Upper limit period, Tmax = Cu (Ta) 1.31 s 

    Period of 1st translational mode X-direction, T1X 1.39 s 

    Period of 1st translational mode Y-direction, T1Y 1.49 s 

    Period for scaling forces in X and Y-direction, TX, TY (12.9.1.4.1) 1.31 s 

Base shear:  

    Effective seismic weight, W (12.7.2) 94,600 kN 

    Upper limit seismic response coefficient, CS-2 = SDS/(R/Ie) (Eq. 12.8-2) 0.218 

    Seismic response coefficient for T ≤ TL, CS-3 = SD1/(T . R/Ie) (Eq. 12.8-3) 0.101 

    Seismic response coefficient Cs = min(CS-2, CS-3) 0.101 

    Base shear of Equivalent Lateral Force procedure, VELF =  . Cs 
. W  12,400 kN 

    Base shear of MRSA, without scaling, in X-direction, VX MRSA  95,60 kN 

    Base shear of MRSA, without scaling, in Y-direction, VY MRSA  92,70 kN 

    Scaling force factor in X-direction, SFFX 1.3 

    Scaling force factor in Y-direction, SFFY 1.34 

    Base shear in X and Y-directions, VX, VY 12,400 kN 

 

Compression zones in the Core Wall were checked for special boundary 

requirements using the neutral axis depth calculated for all load combinations (ACI 318-

14, 18.10.6.2). Special boundaries were required only in the toes of the C-shaped walls 
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(Figure 5.3, Sec-1a, and Detail 1a); however, alternate anti-buckling ties (#3 @ 203 mm) 

were provided in the complete section at Story 1, which is a common practice. 

Design shear demands in the wall piers were relatively low. In the X and Y-

direction, the maximum shear force were 0.21Acv √𝑓′
𝑐
 (MPa) and 0.18Acv √𝑓′

𝑐
 (MPa), 

respectively, whereas the maximum shear force allowed by the ACI 318-14 is  · 0.83Acv 

√𝑓′
𝑐
 (MPa), where f’c is the compressive strength of concrete, and Acv is the area consider 

for shear (mm2). The design shear strength was calculated using  = 0.6 since the nominal 

shear strength was not verified to be larger than the shear demands developed by the 

nominal moment strength of the wall (ACI 318-14, 21.2.4). The horizontal steel ratio 

provided in the X-direction in all stories was h = 0.37%. In the Y-direction, the minimum 

steel ratio prescribed in the code controlled the design, h = 0.25% was provided.  

 

 

Figure 5.3. Core Wall case study building − Structure. 
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Two groups of coupling beams were designed, the first group included beams in 

Story 1-5 (Figure 5.3, CB-1) and the second group beams in Story 6-14 (Figure 5.3, CB-

2). Diagonal reinforcement in the coupling beams was determined such that their design 

shear strengths (calculated using  = 0.85) were approximately equal to the maximum 

design shear force in each group. The shear demands were relatively high; the maximum 

shear force was 0.57Acv √𝑓′
𝑐
, which is 81% the maximum allowed by the code. Coupling 

beams in Story 1-5 were diagonally reinforced with a total of 20 bars # 11, and in Story 6-

14, they were reinforced with a total of 20 bars # 10. Full confinement of the diagonally 

reinforced coupling beams was used (ACI 318-14, 18.10.7.4d). 

 

5.5 Hybrid Fiber-Section – Enhanced Beam-Truss Model 

5.5.1 Geometry and components of the model 

Figure 5.4 shows a typical Core Wall formed by two coupled C-shaped walls, and 

the corresponding OS Hybrid Fiber-Section – Enhanced Beam-Truss Model (HyEBTM). 

Three spatial dimensions; and six DOF, i.e.,  translations Ux, Uy, Uz, and rotations Rx, Ry, 

Rz, are activated in each node. HyEBTM uses OS stock materials and elements as well as 

other built in-house components, as it is described below. 

The lower portion of the Core Wall, where axial-flexure-shear interaction can be 

important, is modeled using Enhanced Beam-Truss Model (EBTM) (Figure 5.4, Detail 1), 

whereas upper portion, where behavior is controlled by axial-flexure interaction, is 

modeled using conventional Fiber Model (Figure 5.4, Detail 2). The two parts of HyEBTM 

are connected using rigid beam-elements (elasticBeamColumn) (Figure 5.4, Detail 3). The 
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EBTM portion height is hEBTM  ≥ 6lw/5 – hv/3, where lw is the length of the wall, and hv is 

the shear span, (Arteta et al. 2019).  

The EBTM is an enhanced version of the BTM methodology described by Lu et al. 

(2014), which includes out-of-plane nonlinear shear response (see section “Out-of-plane 

shear response modeling”). Nonlinear fiber-section beam-elements are used to model 

reinforced concrete in vertical and horizontal directions. Unlike the BTM (Lu et al. 2014), 

which uses force-based elements (FBE, forceBeamColumn), the EBTM uses displacement-

based elements (DBE, dispBeamColumn), since the numerical robustness of DBE, in 

general, is expected to be superior to that of FBE (Koutromanos and Bowers 2016). Except 

for the nodes of vertical beam-elements at boundary elements and corners, the nodes of all 

DBE have in-plane rotational releases, i.e., nodes in webs are released in Rx and nodes in 

flanges, and coupling beams are released in Ry. The nodal releases are modeled using the 

procedure proposed in Chapter 4, i.e., the reinforcement of each curtain is concentrated in 

corresponding fibers along the axis released in rotation, whereas the concrete is discretized 

in several perpendicular layers. Truss2 elements are used to model the diagonal 

compression field of concrete. Sections of concrete and reinforcement in beam-elements 

and truss-elements are defined according to their tributary areas, (Lu et al. 2014), as shown 

in Figure 5.4, Detail 1. The inclination of diagonals is d = tan-1 (Vmax /(fy,t t tw dvl)) ≤ 65°, 

where Vmax is the maximum resisted lateral force, fy,t is the yield stress of the transversal 

reinforcement, t is the transversal steel ratio, tw is the thickness of the wall, and dvl is the 

distance between the vertical outer lines in the EBTM, (Lu et al. 2014).  

In the Fiber Model portion of the HyEBTM, each of the C-shaped walls is modeled 

using a single vertical line of nonlinear fiber-section beam-elements (stick-model). DBE 
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are also used in this case. The sections of the beam-elements are discretized in multiple 

fibers of confined and unconfined concrete, and reinforcement, according to the structural 

layout. The torsional rigidity of the stick-model is 0.1GJ, G = 0.38Ec is the shear modulus 

of the concrete, Ec is corresponding Young’s modulus, and J is the torsional constant of 

the gross section. Rigid beam-elements (elasticBeamColumn) connect the stick-models at 

floor levels with the model of the coupling beams, which in turn connect both stick-models 

(Figure 5.4, Detail 3). 

The coupling beams in the EBTM and the Fiber Model portions are modeled based 

on the Truss Model developed by Alvarez et al. (2019) (see section “HyEBTM for Case 

Study”). Slabs framing C-shaped walls and coupling beams are modeled at floor levels 

using elastic beam-elements (elasticBeamColumn). 

 

 

Figure 5.4. Description of the Hybrid Fiber-Section – Enhanced Beam-Truss Model. 
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The geometric properties of these elastic beam-elements are calculated using the 

tributary slab width. Axial rigidity is AgEc, where Ag is the gross area, in-plane flexural 

rigidity is 0.7EcIz, out-of-plane flexure rigidity EcIy is assumed zero, and the torsional 

rigidity is 0.1GJ. 

All nodes at the HyEBTM base are fixed. Corotational geometric transformation is 

used in the truss-elements (CorotTruss and CorotTruss2), whereas PDelta transformation 

is used in the beam-elements (geomTransf PDelta). Two Gauss-Lobatto integration points 

are used in all DBE. 

5.5.2 Material modeling 

Concrete 

The material ConcretewBeta, developed by Lu and Panagiotou (2013), is used to 

model unconfined and confined concrete in HyEBTM (Figure 5.5a). If the ConcretewBeta 

parameters are unknown, the stress-strain relations of the concrete materials are calibrated 

as follows.  

Young’s modulus of concrete is Ec = 3220√𝑓′
𝑐
 + 6900 (MPa), and strain at the 

compressive strength of the concrete is o = 0.0008k3 – 0.0028, where k3 is 40/f’c (MPA), 

as proposed by Razvi and Saatcioglu (1999). The strain at crushing is, 

 

cu = 
0.8f 'c

Ec
⁄  + o − 

Gfc

0.6f 'c Le
⁄  ≤ 3o                                    (5.1)                         

 

Which is a regularized value dependent on the length of the element Le (mm) and 

the fracture energy in compression Gfc (N/mm), as proposed by Coleman and Spacone 

(2001). Gfc is 87.6 N/mm (Ugalde et al. 2019). Maximum cu = 3o (Arteta et al. 2019) is 

set to avoid an excessive steep slope for the degrading branch. 
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In the vertical beam-elements of wall piers, the direct tensile strength of the 

concrete ft is 0.55fr, where fr is the modulus of rupture (Collins and Mitchell 1997). If the 

fr is unknow, ft is assumed 0.33√𝑓′
𝑐
 (MPa) (Lu and Panagiotou, 2013). ConcretewBeta 

option to calculate tension stiffening with the model developed by Stevens et al. (1991) is 

used. In the horizontal beam-elements of wall piers, vertical beam-elements of coupling 

beams, and diagonal truss-elements, the direct tensile strength of concrete is assumed zero 

according to Lu et al. (2014), a dummy value of ftd = 0.01ft is used here; in other locations 

ftd = ft. The parameter alpha, which controls the path of unloading from tensile strain, is 

0.045f’c/ftd. 

The compressive strength of the confined concrete fcc (MPa) and the corresponding 

strain co are defined as proposed by Razvi and Saatcioglu (1999). The strain at the onset 

of softening is cs = o - ke fl /9f’c, where ke is the coefficient of efficiency of the confinement 

and fl is the confining stress (Alvarez et al. 2019). The strain at the crushing of confined 

concrete is, 

 

ccu = 
0.8f'cc

Ec
⁄  + co − Gfcc

0.6f'ccLe
⁄ ≤ cs + 2co                                (5.2) 

 

Where corresponding fracture energy in compression is Gfcc =  87.6 ≤ (fcc/f’c – 0.85) 

≤ 219 (N/mm) (Ugalde et al. 2019). A limit for ccu, i.e., cs+2co, is used to increase 

numerical robustness. 

In the EBTM portion and the coupling beams, ConcretewBeta is used along with 

Truss2 elements to model the effect of the biaxial strains field on the compressive stresses 

of the concrete in the diagonal directions (Vecchio and Collins 1986, Hsu and Mo 2010). 

A gauge-element, defined with each Truss2 element, measures the perpendicular strains n 
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(Figure 5.5b). Current strains are used to modify the compressive stresses of the concrete 

via the compressive strength reduction factor . For n ≤ 0  is 1, and for n > 0, a trilinear 

relation  − n is used. Intermediate and residual  values are chosen similar to test values 

reported by Hsu and Mo (2010), i.e., int = 0.45f2, and res = 0.25f2, respectively, where f2 

= 5.8√𝑓′
𝑐
 (MPa). Corresponding perpendicular tensile strains are bint = 0.01Lr/Lg, and bres 

= 0.035Lr/Lg, which are regularized values, as proposed by Panagiotou et al. (2012), 

dependent on the truss-element length Lg (mm), where the reference length Lr (test gauge-

length) is 1500 mm (Hsu and Mo 2010). The numerical robustness of the models is 

enhanced using residual compressive strength, which for unconfined concrete is -0.2f’c and 

for confined concrete is -0.2f’cc (Alvarez et al. 2019). 

Reinforcement 

The uniaxial material SteelDRC, developed by Carreño (2018), is used to model the 

reinforcement. This material is an in-house OS implementation of the model proposed by 

Dodd and Restrepo-Posada (1995). SteelDRC explicitly models the yield plateau, the 

kinematic hardening, and the bar fracture. Coupon-test parameter values are used to 

calibrate the constitutive stress-strain relation, i.e., yield point (y, fy), point of onset of 

hardening (sh, fsh), point in hardening branch (sh,1, fsh,1), and point of ultimate strength (u, 

fu) (Figure 5.5c). When experimental information is not available, the constitutive stress-

strain relation can be calibrated using recommended values, e.g., for steel ASTM A615, 

Young’s modulus Es = 200 GPa, yield stress fy = 478 MPa, strain at the onset of hardening 

sh = 0.011, ultimate strain in tension u = 0.106, ultimate strength fu = 769 MPa, and 

exponent of power function for hardening Psh = 3.5 (Carreño 2018). SteelDRC also models 

the Bauschinger effect, which is controlled by the parameter fac. This parameter is 
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calibrated according to the carbon content of the steel; the recommended value for steel 

ASTM A615 is 0.83 (Carreño 2018). 

 

 

 
 

Figure 5.5. Constitutive material stress-strain relations. (a) Stress-strain relationship for 

ConcretewBeta. (b) Concrete compressive strength reduction factor . (c) Stress-strain 

relationship for SteelDRC. 

 

5.5.3 Out-of-plane shear response modeling 

The out-of-plane nonlinear shear response of the wall piers is modeled via shear 

springs. Figure 5.6 shows a typical layout, including shear springs. Vertical beam-elements 

in the boundary elements and corners have bidirectional shear springs, with active DOF in 

Ux and Uy directions (Figure 5.6, Details 1, 2). Other vertical beam-element and horizontal 

beam-elements at the corners, only have out-of-plane shear springs, with active DOF in Ux 

and Uy directions, in webs and flanges, respectively (Figure 5.6, Details 3-5). The nodes at 

shear spring locations are connected through zeroLength elements. These elements use 

rigid materials (Elastic) in all directions except for those directions specified for the shear 

springs, which use PinHardwP material. 

Uniaxial material PinHardwP is an in-house OS implementation developed to 

model nonlinear shear response dependent on axial force using shear springs. The axial 

(a) 

(b) 

(c) 
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force in a control element (see the note in Figure 5.6) is monitored by the spring material 

to define the shear strength and the residual strength in the spring. Three branches form the 

backbone curve of PinHardwP, i.e., Elastic branch, Softening branch, and Residual branch. 

The backbone curve and hysteretic behavior of the material are shown in Figure 5.7. Stress-

strain relations of the concrete materials are calibrated as follows. 

The stiffness of the elastic branch, Ko, is GAg/Lc, where G (MPa) is the shear 

modulus of the concrete (as calculated above), Ag is the gross area of the cross-section of 

the control element (mm2), Lc is tributary length (mm), as proposed by LeBorgne (2012). 

Ultimate shear strength Vo is fVo
.Vn, where fVo is assumed 1.5 (Ugalde et al. 2019), and the 

nominal shear strength Vn is calculated adapting ACI 318-19 (2019) equations, 

 

Vn = fVc (0.66s w
1/3 √f'c (MPa) + Nu

6Ag
⁄ ) bw d + fVsVs                      (5.3) 

 

 

Where the size effect modification factor s is √2 (1 + 0.004d)⁄  ≤ 1, if the area of 

transverse reinforcement Av (mm2) is larger than the minimum specified Av,min (ACI 318-

19, 9.6.3.4), and s = 1, if it is not, w is the longitudinal steel ratio, Nu is the axial load (N), 

bw is the width of the cross-section (mm), and d is the effective depth (mm). fVc is a factor 

≤ 1, which considers the interaction of shear forces acting in-plane and out-of-plane on the 

shear strength contribution of concrete. For unidirectional lateral loading, e.g., monotonic 

or cyclic pushover analysis, fVc is assumed 1, whereas in multidirectional lateral loading, 

e.g., NLRHA, fVc is assumed 0.5. 

Shear reinforcement strength, Vs, is Av
 fy,t

 d/s, where fy,t is the yield strength of 

transverse reinforcement (MPa), and s is the spacing of the transverse reinforcement. 
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Figure 5.6. Out-of-plane shear response modeling. 

 

 

Figure 5.7. Stress-strain relation for PinHardwP material. 

 

fVs is a factor ≤ 1, which considers the efficiency of shear reinforcement; fVs is 

assumed 0.75. The minimum shear strength is Vn min = fVs
.Vs, whereas maximum shear 

strength Vn max is fVc
.Vc max+ fVs

.Vs, where Vc max is the minimum of fVc
.(0.42√𝑓′

𝑐
 (MPa) ).bw 

d and fVc
.(0.66s

 w
1/3

√𝑓′
𝑐

(MPa) + 0.05f’c )
 .bw d, (ACI 318-19 2019). 
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Calibration parameters for the softening and the residual branches are calculated 

according to LeBorgne (2012). The slope of the softening branch is sKo = -Vo/r, the 

residual deformation r (mm) is, 

 

r = (-0.16 − 15.4t − 0.009ld
db

⁄  + 0.7Acc
Ag

⁄ + 
0.58fyAs

f'cAg
⁄ ) L ≥ 0.02L (5.4) 

 

Where t is the transversal steel ratio, ld is the development length of the 

longitudinal reinforcement, db is the corresponding bar diameter, Acc is the confined area, 

and L is the wall pier span (mm). Finally, the residual shear strength, Vres, is (0.36 – 

0.17s/d).Vo. 

 

5.6 Hybrid Fiber-Section – Enhanced Beam-Truss Model for case study 

A built in-house executable of the open-source FEM program OpenSees 2.5.0 64-

bit (OS) (McKenna 2019) was used to develop the HyEBTM of the case study. Uniaxial 

materials SteelDRC (Carreño 2018) and PinHardwP, as well as HDF5 libraries of the GUI 

STKO (Petracca et al. 2017a, Petracca et al. 2017b), were included in the executable. OS 

input was created semi-automatically from TCL scripts, whereas the output was post-

processed using MATLAB (MathWorks 2018) and STKO. A workstation fitted with dual 

CPU Intel Xeon Gold 6136 and 64GB RAM was used to run the model. 

The HyEBTM included only the Core Wall of the case study building, and it was 

assumed that the gravity system, not included in the model, resists by itself the PDelta 

effect of its tributary vertical load. Figure 5.8 shows the layout of the HyEBTM and the 

key material properties of the concrete and reinforcing steel used. The first three stories in 
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the HyEBTM are modeled using EBTM, and the rest of the stories are modeled using Fiber 

Model.  

Grid size in the EBTM portion is selected to satisfy, as close as possible, the 

required inclination of the diagonal truss-elements (Lu et al. 2014), and the geometry of 

boundary elements and couplings beams. The grid of the webs forms 15 equal horizontal 

quadrilaterals (Figure 5.8, Elevation West), whereas the grid of flanges forms 6 equal 

horizontal quadrilaterals (Figure 5.8, Elevation South). Each story has 4 equal 

quadrilaterals in the vertical direction. This results in inclinations of the diagonal truss-

elements equal to 62° in flanges and webs. 

Vertical beam-elements at boundary elements and corners have biaxial flexural 

rigidity, the sections of these beam-elements are discretized using 10 by 10 concrete fibers 

and 10 steel fibers in the actual location of longitudinal bars. The rest of beam-elements 

only have out-of-plane flexural rigidity, which is accomplished in the vertical beam-

elements with sections using 10 layers of the concrete perpendicular to the out-of-plane 

direction and 2 steel fibers on the centroidal axis parallel to the out-of-plane direction 

(Figure 5.8, Sec-1a, 1b). A similar discretization is used in the sections of horizontal beam-

elements (Figure 5.8, Sec-vx, vy). 

The out-of-plane nonlinear shear response is modeled in the first story in vertical 

beam-elements and horizontal beam-elements at the corners (Figure 5.8, Elevation West, 

and South), as described in the previous section. 

The coupling beams in the HyEBTM are modeled using BTM, similar to Alvarez 

et al. (2019). Grid size in the coupling beams is selected according to the inclination of 

actual diagonal reinforcement and grid size of the panel zone of the wall piers in the EBTM. 
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This results in a grid of 2 by 2 quadrilaterals and inclination of the diagonal truss-elements 

equal to 65°, which is the upper bound for d (Lu et al. 2014). Concrete in the diagonal 

direction is modeled using Truss2 elements, whereas the diagonal reinforcement is 

modeled using Truss elements. Rigid offsets are used, in the EBTM, to adjust the beam 

span of the model to the actual length of the coupling beam. The protruding diagonal 

reinforcement is anchored in the grid of the wall piers using rigid beam-elements 

(elasticBeamColumn) with pinned connections (Figure 5.8, Detail 1). 

Each C-shaped wall at the Fiber Model portion is modeled using stick-models, 

discretized in five vertical beam-elements (DBE) in each story (Figure 5.8, Elevation West, 

and South). The beam-elements have sections using multiple fibers. Corners and toes of 

the flanges are modeled using 10 by 10 and 8 by 8 concrete fibers in Story 4-5 and Story 

6-14, respectively, and steel fibers in the actual location of longitudinal bars (Figure 5.8, 

Sec-1b’, 2, 3).In Story 4-5, the field of webs and flanges are discretized using 10 by 108 

and 10 by 37 fibers of concrete, respectively (Figure 5.8, Sec-1b’), whereas in Story 6-14, 

webs and flanges are discretized in 8 by 103 and 8 by 37 fibers of concrete, respectively 

(Figure 5.8, Sec-2, 3). The longitudinal reinforcement is modeled using multiple fibers 

equally spaced at the location of the actual reinforcement curtains. Rigid beam-elements 

(elasticBeamColumn) are used to connect the stick-models with the BTM of the coupling 

beams in each level (Figure 5.8, Elevation West, and South). 

The connection between the EBTM and Fiber Model is shown in Sec-L1 (Figure 

5.8). Slabs framing the C-shaped walls and coupling beams are modeled as explained in 

the previous section. Gravitational loads were applied as tributary nodal forces at every 

floor level. The solution strategy used LoadControl integrator. An in-house TCL script was 
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developed to automatically change the type of algorithm and test, and to adjust the test 

parameters: maximum number of iterations iter, and tolerance criteria tol, to attain 

convergence. 

 

 

Figure 5.8. Core Wall case study building, Hybrid Fiber-Section – Enhanced Beam-Truss 

Model. 
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5.7 Nonlinear static analysis 

5.7.1 Description of case studies 

Three different types of models of the Core Wall case study building were created 

for nonlinear static analyses, i.e., Fiber Model, Hybrid Fiber-Section – Beam-Truss Model 

(HyBTM), and HyEBTM. 

In the Fiber Model, the Core Wall was modeled all along with the height as 

described above for the Fiber Model portion of the HyEBTM, including the first three 

stories, whereas the HyBTM was equal to the HyEBTM, except that in the former, the out-

of-plane nonlinear shear response was not included. The Fiber Model and the HyBTM were 

used as benchmarks to evaluate the HyEBTM. Two HyEBTM cases were run to study the 

influence of the out-of-plane shear strength on the lateral response. The first case, 

HyBTM10, assumed fVo = 1, fVc = 1 and fVs = 0.75, and the second, HyBTM15, assumed fVo 

= 1.5, fVc = 1 and fVs = 1.  

Additional to gravity loading, the models were subjected to monotonic 

displacement-control lateral loading in X and Y-direction. Two load patterns were used, 

i.e., 1st mode shape and triangular with resultant at H/3, where H is the total height. The 

resultant set of case studies is listed in Table 5-3. 

DisplacementControl integrator was used in the solution strategy with a TCL script 

that, like with LoadControl integrator, automatically adjusted algorithm, test, iter, tol, and 

additionally, the increment of displacement, incr. The solver used was SparseSYM, and the 

method to impose constraints was Transformation. Tributary lateral forces were applied at 

every floor level, and the displacements were controlled at the top of the model. The models 

were intended to run up to top drift ratio  = 4.9% (2500 mm) for 1st mode shape load 
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pattern and up to  = 3.9% (2000 mm) for triangular load pattern. Some models stopped 

before the corresponding target when very steep degradation was captured. 

 
Table 5-3. Nonlinear static analysis cases. 

Case Name Type of Model Load 

Pattern 

fVo fVc fVs Loading 

Direction 

Fiber-Model-1st-X Fiber Model 1st mode - - - X 

Fiber-Model-1st-Y Fiber Model 1st mode - - - Y 

Fiber-Model-1/3-X Fiber Model Triangular - - - X 

Fiber-Model-1/3-Y Fiber Model Triangular - - - Y 

HyBTM-1st-X HyBTM 1st mode - - - X 

HyBTM -1st-Y HyBTM 1st mode - - - Y 

HyBTM -1/3-X HyBTM Triangular - - - X 

HyBTM -1/3-Y HyBTM Triangular - - - Y 

HyEBTM10-1st-X HyEBTM 1st mode 1 1 0.75 X 

HyEBTM10-1st-Y HyEBTM 1st mode 1 1 0.75 Y 

HyEBTM10 -1/3-X HyEBTM Triangular 1 1 0.75 X 

HyEBTM10 -1/3-Y HyEBTM Triangular 1 1 0.75 Y 

HyEBTM15-1st-X HyEBTM 1st mode 1.5 1 1 X 

HyEBTM15-1st-Y HyEBTM 1st mode 1.5 1 1 Y 

HyEBTM15 -1/3-X HyEBTM Triangular 1.5 1 1 X 

HyEBTM15 -1/3-Y HyEBTM Triangular 1.5 1 1 Y 

 

5.7.2 Results of Fiber-Model 

Figure 5.9a shows a comparison of the base shear force – top displacement (F−D) 

for the different Fiber Models. The peak base shear Vmax for Fiber-Model-1/3-X was 

0.70Acv √𝑓′
𝑐
 (MPa), which is 95% larger than the Vmax for Fiber-Model-1st-X. For Fiber-

Model-1/3-Y, Vmax was 0.62Acv √𝑓′
𝑐
 (MPa), 120% larger than the corresponding value for 

Fiber-Model-1st-Y. Vmax for Fiber-Model-1/3-X and Fiber-Model-1/3-Y exceeded by 41% 

and 26%, respectively, the shear force limit of the ACI 318-19 (ACI 318-19, 2019), i.e., 

Vave-ACI-limit =   0.66Acv √𝑓′
𝑐
 (MPa), where  is 0.75. All models maintained the capacity 

throughout the analysis, except for Fiber-Model-1/3-Y, which exhibited steep degradation 

at  = 3.6%, because of bar fracture. 
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Cases with lateral loading in X-direction exhibited the earliest yielding in tension 

at the base longitudinal reinforcement. In Fiber-Model-1/3-X first yielding occurred at  

= 0.17%, whereas in Fiber-Model-1st-X this was at  = 0.3%. Yielding of longitudinal 

reinforcement at Story 6, where section and steel ratio are decreased, occurred only in 

Fiber-Model-1st-X and Fiber-Model-1st-Y, at  = 1.9% in both cases; however, plastic 

hinges were not developed at that story. 

 
(a) (b) 

 
 

Figure 5.9. (a) Comparison of base shear force – top displacement for the Fiber Model. (b) 

Decomposition of base shear force for Fiber-Model-1/3-X. 

 

The earliest onset of softening in the core concrete occurred in Fiber-Model-1/3-X 

and Fiber-Model-1st-X, at  = 0.76% and 1.6%, respectively, whereas corresponding 

concrete crushing occurred at  = 1.3% and 2.7%. First yielding in diagonal reinforcement 

of the coupling beams occurred at  = 0.33% at level 2, and  = 2.1% at level 6, in Fiber-

Model-1/3-X and Fiber-Model-1st-X, respectively. In Fiber-Model-1/3-X, the yielding of 
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diagonal reinforcement spread at Stories 1-6, whereas in Fiber-Model-1st-X, this spread at 

Stories 1-9. 

Figure 5.9b shows the decomposition of the base shear force for Fiber-Model-1/3-

X. Most of the base shear was resisted by the compressed C-shaped wall, which resisted up 

to 1.2Acv √𝑓′
𝑐
 (MPa), 92% of the base shear. This shear force exceeded by 93% the limit 

in the ACI 318-19 (2019), i.e., Vpier-ACI-limit =   0.83Acv √𝑓′
𝑐
 (MPa), where  is 0.75.  

5.7.3 Results of Hybrid BTM 

F−D responses of the HyBTM for 1st mode shape and triangular load patterns are 

shown in Figures 5.10 and 5.11, respectively (labeled “Total”). Vmax for HyBTM-1/3-X was 

0.6Acv √𝑓′
𝑐
 (MPa) (Figure 5.11a), 68% larger than the corresponding value for HyBTM-

1st-X (Figure 5.10a). The F−D response of HyBTM-1/3-X exhibited degradation; Vmax 

occurred at  = 0.9%, whereas for HyBTM-1st-X, the base shear force increased throughout 

the analysis. A similar situation was observed for lateral loading in Y-direction. For 

HyBTM-Model-1/3-Y, the F−D response exhibited degradation after attained Vmax, i.e., 

0.46Acv √𝑓′
𝑐
 (MPa), at  = 1.4% (Figure 5.11b), whereas for HyBTM-Model-1st-Y, Vmax 

was considerable smaller, 0.25Acv √𝑓′
𝑐
 (MPa), and the response did not exhibit degradation 

(Figure 5.10b). The code limit Vave-ACI-limit was only exceeded by HyBTM-1/3-X, where the 

Vmax was 21% larger than the limit. 

Figures 5.10 and 5.11 also show the decomposition of the base shear force. At Vmax, 

most of the base shear force was resisted by the compressed flanges in HyBTM-1st-X and 

HyBTM-1/3-X, and by the webs in HyBTM-1st-Y and HyBTM-1/3-Y. The compressed 

flanges resisted 62% of the Vmax in HyBTM-1st-X,  and the rest of the shear force was 

resisted in similar portions by the decompressed flanges and the webs (Figure 5.10a). In 
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HyBTM-1st-Y, 72% of the Vmax was resisted by the webs, whereas the compressed and the 

decompressed flanges resisted 15% and 13%, respectively.  

 
(a) (b) 

 
 

Figure 5.10. Decomposition of base shear force. (a) HyBTM-1st-X. (b) HyBTM-1st-Y. 

 

(a) (b) 

 
 

Figure 5.11. Decomposition of base shear force. (a) HyBTM-1/3-X. (b) HyBTM-1/3-Y. 
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For HyBTM-1/3-X, the maximum shear force in the compressed flanges occurred 

at the same time as Vmax, at  = 0.9%, and it was 0.76Acv √𝑓′
𝑐
 (MPa) (Figure 5.11a). The 

shear force resisted by the compressed flanges was 63% of the base shear force, which 

exceeded Vpier-ACI-limit by 22%. At the same drift, the compressed web resisted 31% of the 

base shear force. As the compressed flanges exhibited a steep degradation, the shear 

resisted by the compressed web kept increasing, peaking at 0.5bwd √𝑓′
𝑐
 (MPa), where bw 

is the width of the member, and d is the effective depth. In HyBTM-1/3-Y, the maximum 

shear force resisted by the webs was 0.33Acv √𝑓′
𝑐
 (MPa), at  = 0.6%, whereas the 

maximum shear force resisted by the compressed flanges was 0.44bwd √𝑓′
𝑐
 (MPa), at Vmax, 

 = 1.4%  (Figure 5.11b). At this drift, the webs resisted 67% of the base shear force, and 

the compressed flanges 31%. 

The onset of yielding in tension in longitudinal reinforcement at the base was 

computed first for HyBTM-1/3-X and HyBTM-1st-X. First yielding occurred for HyBTM-

1/3-X in the toes of the compressed C-shaped wall (boundary elements), at  = 0.23%, and 

for HyBTM-1st-X in the decompressed corners, at  = 0.29%. Bar fracture was computed 

only for HyBTM-1/3-X, which occurred at  = 3.3%. Yielding of longitudinal 

reinforcement at Story 6 was computed for HyBTM-1st-X, at  = 2.7%. Throughout the 

analysis, the longitudinal strains were smaller than 0.0061, and plastic hinging did not 

occur at that story in any case. 

First yielding of horizontal reinforcement occurred for HyBTM-1/3-X, HyBTM-1/3-

Y, HyBTM-1st-X, and HyBTM-1st-Y at  = 0.68%, 0.45%, 2.6% and 1.3%, respectively. 

The largest values of horizontal strains were computed for HyBTM-1/3-X, HyBTM-1/3-Y. 

In HyBTM-1/3-X, peak horizontal strain, i.e., 0.078, was located in the compressed flanges 
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close to the corner base, and, in HyBTM-1/3-Y, corresponding strain, i.e., 0.10, was located 

in the compressed end of the webs, close to the base. 

The earliest yielding of diagonal reinforcement occurred for HyBTM-1/3-X in the 

coupling beams of Story 4 at  = 0.41%. The yielding spread to coupling beams at Stories 

1, 3-5. Except for the strains in the coupling beams at Story 1 in HyBTM-1/3-X, with peak 

strain equal to 0.023, the strains of diagonal reinforcement stayed in the yield plateau.  

The earliest core concrete softening and crushing, in the vertical direction, occurred 

at the base of compressed corners in the models using triangular load patterns. First 

concrete softening for HyBTM-1/3-X was at  = 0.67%, whereas first crushing occurred at 

 = 1.1%; for HyBTM-1/3-Y, corresponding drift ratios were 0.9% and  = 1.5%. Concrete 

softening in the diagonal direction occurred for HyBTM-1/3-X, HyBTM-1/3-Y, HyBTM-

1st-X, and HyBTM-1st-Y at  = 0.93%, 1.5%, 4.8% and 4.7%, respectively, whereas 

concrete crushing occurred for HyBTM-1/3-X and HyBTM-1/3-Y at  = 1.2% and 2%, 

respectively, no concrete crushing was computed for HyBTM-1st-X and HyBTM-1st-Y. 

5.7.4 Results of Hybrid Enhanced BTM 

HyEBTM10 

F−D responses of HyEBTM10-1st-X and HyEBTM10-1st-Y (Figure 5.12) were very 

similar to the corresponding responses of HyBTM-1st-X and HyBTM-1st-Y (Figure 5.10). 

Since HyEBTM10-1st-X and HyEBTM10-1st-Y did not exhibit degradation, Vmax in both 

cases was computed at the end of the analyses, i.e.,  = 4.9%. For HyEBTM10-1st-X Vmax 

was 0.35Acv √𝑓′
𝑐
 (MPa), and for HyEBTM10-1st-Y it was 0.25Acv √𝑓′

𝑐
 (MPa). 

HyEBTM10-1/3-X and HyEBTM10-1/3-Y computed peak base shear force at  = 0.9%. 

Vmax for HyEBTM10-1/3-X was 0.58Acv √𝑓′
𝑐
 (MPa) (Figure 5.13a), 17% larger than Vave-
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ACI-limit, and Vmax for HyEBTM10-1/3-Y was 0.45Acv √𝑓′
𝑐
 (MPa) (Figure 5.13b). The F−D 

response of HyEBTM10-1/3-X exhibited steep degradation, and the analysis stopped at  

= 1.4%. Softening in HyEBTM10-1/3-Y was initially gradual; however, at  = 2.7%, the 

response exhibited very steep degradation, and the analysis stopped at  = 2.8%. 

 
(a) (b) 

 
 

Figure 5.12. Decomposition of base shear force. (a) HyEBTM10-1st-X. (b) HyEBTM10-1st-Y. 

 

The decompositions of base shear forces for HyEBTM10-1st-X and HyEBTM10-

1st-Y (Figure 5.12) were very similar to corresponding results for HyBTM-1st-X  and 

HyBTM-1st-Y (Figure 5.10). The most notorious difference occurred in the apportioning of 

base shear resisted by the decompressed webs in HyEBTM10-1st-X and HyBTM-1st-X. The 

shear force of the decompressed web steadily increased for HyBTM-1st-X, whereas the 

shear force resisted in HyEBTM10-1st-X peaked at  = 2.9%. For HyEBTM10-1/3-X, the 

maximum shear force in the compressed flanges, i.e., 0.73Acv √𝑓′
𝑐
 (MPa), occurred at  = 

0.6% (Figure 5.13a), which exceeded Vpier-ACI-limit by 17%. Very steep response degradation 
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was exhibited by the compressed flanges, which ended up losing 78% of the strength. As 

the compressed flanges degraded, the shear force resisted by the compressed web peaked 

at 0.6bwd √𝑓′
𝑐
 (MPa). At Vmax, the shear force resisted by the compressed flanges was 57%, 

the compressed web resisted 32%, the decompressed flanges 8%, and the decompressed 

web 3%. By the end of the analysis, the shear force resisted by the decompressed flanges 

peaked, resisting 45% of the base shear force, then, their response suddenly dropped, while 

all other components exhibited softening and the analysis stopped. The maximum shear 

force resisted by the webs in HyEBTM10-1/3-Y, i.e., 0.33Acv √𝑓′
𝑐
 (MPa), occurred at  = 

0.6%, whereas the maximum shear force resisted by the compressed flanges was 0.51bwd 

√𝑓′
𝑐
 (MPa), and it occurred at  = 1.6%  (Figure 5.13b).  

 
(a) (b) 

 
 

Figure 5.13. Decomposition of base shear force. (a) HyEBTM10-1/3-X. (b) HyEBTM10-1/3-Y. 

 

 

At Vmax, the shear force resisted for the webs was 57%, for the compressed flanges 

29%, and for the decompressed flanges 14%. 
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The earliest yielding of longitudinal reinforcement at Story 1 occurred in 

HyEBTM10-1/3-X and HyEBTM10-1/3-Y. For HyEBTM10-1/3-X, first yielding in tension 

was at  = 0.2%, in the boundary elements of the compressed C-shaped wall, whereas the 

first yielding in compression was at  = 0.59%, in the compressed corners. In HyEBTM10-

1/3-Y, the decompressed corners exhibited first yielding in tension at  = 0.28. Plastic 

hinging did not occur in upper stories, and bar fracture was not computed in any case. 

First yielding of horizontal reinforcement in HyEBTM10-1st-X and HyEBTM10-

1st-Y occurred at 0.83% and 1.08%, respectively, whereas in HyEBTM10-1/3-X and 

HyEBTM10-1/3-Y this was at  = 0.26% and 0.3%. The largest horizontal strains were 

computed for HyEBTM10-1/3-X and HyEBTM10-1/3-Y, i.e., 0.11. In HyEBTM10-1st-X, 

the peak strain was 0.018, and, in HyEBTM10-1st-Y corresponding strain was 0.011. Peak 

horizontal strains were located in the compressed flanges close to the corner base for 

HyEBTM10-1st-X and HyEBTM10-1/3-X, and, in the compressed end of the webs, for 

HyEBTM10-1st-Y and HyEBTM10-1/3-Y. 

In HyEBTM10-1/3-X, yielding of diagonal reinforcement occurred only in the 

coupling beams of Story 4, at  = 0.41%. However, the diagonal reinforcement of coupling 

beams in other lower stories, i.e., 1-6, was close to yielding, the peak strains in these cases 

were at least 0.0018. For HyEBTM10-1st-X, the first yielding of diagonal reinforcement 

occurred in the coupling beams of Story 4, at  = 0.41%. The yielding spread to coupling 

beams at Stories 4-8; in all cases, the peak strains stayed in the yield plateau. 

First softening of core concrete in the vertical direction, for HyEBTM10-1st-X, 

HyEBTM10-1st-Y and HyEBTM10-1/3-Y, occurred at  = 2.4%, 2.3% and 1.6%, 

respectively. Corresponding concrete crushing occurred at  = 3.2%, 3.1% and 1.9%. No 
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softening of core concrete was computed for HyEBTM10-1/3-X. For lateral loading in X-

direction, peak vertical strain in compression, i.e., -0.027, was computed for HyEBTM10-

1st-X. The smallest strains in these cases were located at the base of the compressed 

corners. In Y-direction, the smallest vertical strains were computed for HyEBTM10-1/3-Y, 

and these were located at the base of the boundary element. Peak strain in compression, in 

this case, was -0.032.  

For HyEBTM10-1/3-X, HyEBTM10-1/3-Y, and HyEBTM10-1st-X, concrete 

softening in the diagonal direction occurred at  = 0.76%, 1.1% and 3.8%, respectively, 

whereas corresponding concrete crushing occurred for HyEBTM10-1/3-X and HyEBTM10-

1/3-Y at  = 1.1% and 1.8%. No concrete softening was computed for HyEBTM-1st-Y, 

neither concrete crushing for HyEBTM10-1st-X. For lateral loading in the X-direction, the 

smallest diagonal strains were computed in HyEBTM10-1st-X, and these occurred in the 

compressed flanges at the base of the corners. Peak strain in compression, in this case, was 

-0.054. In Y-direction, peak diagonal strain in compression, i.e., -0.074, was computed for 

HyEBTM10-1/3-Y. The smallest strains were located in the compressed end of the webs at 

the base of the corners. 

For lateral loading in the X-direction, the first softening of the shear response 

occurred at the corners’ base of the compressed C-shaped wall, from there, softening 

gradually spread toward the center of the web. In HyEBTM10-1/3-X, the shear strength, Vo, 

was reached in the compressed corners at  = 0.1%, and corresponding residual strength 

Vres was reached at  = 1.2%, whereas in HyEBTM10-1st-X, Vo occurred at  = 0.27% and 

Vres was not reached.  
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The first softening of out-of-plane shear response in the compressed web occurred 

at  = % and 0.54%, for HyEBTM10-1/3-X and HyEBTM10-1st-X, respectively. In the 

decompressed C-shaped wall, the softening of the shear response also spread from the 

corners’ base to the center of the web. In HyEBTM10-1st-X, first Vo occurred at  = 0.29%, 

and, in HyEBTM10-1st-X, this occurred at  = %. The first softening of the shear 

response, for loading in Y-direction, occurred at the base of the compressed corners, and it 

spread to the center of the flanges. First Vo in HyEBTM10-1/3-Y was at  = 0.13% and 

corresponding Vres at  = 1.6%. For HyEBTM10-1st-Y, first Vo occurred at  = 0.4%, and 

in this case, the response did not reach Vres. 

In the compressed flanges, the first softening of out-of-plane shear response 

occurred at  = % and 0.64%, for HyEBTM10-1/3-Y and HyEBTM10-1st-Y, 

respectively. In the decompressed side, the softening of the shear response also spread from 

the corners’ base to the center of the flanges, Vo occurred at  = .5% and 3.4% in 

HyEBTM10-1st-Y and HyEBTM10-1st-Y, respectively. 

HyEBTM15 

F−D responses of HyEBTM15 for 1st mode shape load patterns were almost 

identical to the corresponding responses of HyBTM (Figure 5.10) and HyEBTM10 (Figure 

5.12). Moreover, the decompositions of base shear forces for HyEBTM15-1st-X and 

HyEBTM15-1st were very similar to computed responses for HyBTM-1st-X and HyBTM-

1st-Y, respectively. Therefore, the following report mainly focuses on responses to the 

triangular load pattern (Figure 5.14). 

For HyEBTM15-1/3-X, Vmax was 0.60Acv √𝑓′
𝑐
 (MPa) (Figure 5.14a), 21% larger 

than Vave-ACI-limit. Vmax for HyEBTM15-1/3-Y was 0.45Acv √𝑓′
𝑐
 (MPa) (Figure 5.14b), which 
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resulted 10% smaller than the corresponding Vave-ACI-limit value. Peak base shear forces 

where computed at  = 1.1% and 1.2%, for HyEBTM15-1/3-X and HyEBTM15-1/3-Y, 

respectively. Initial degradation of HyEBTM15-1/3-X resulted in the loss of 11% of the 

strength at  = 1.6%. At  = 2.5%, the F−D response exhibited a second, very steep, event 

of degradation, which led to the loss of 80% of the strength at  = 3.6%, when the analysis 

stopped. Gradual softening after peaking was computed for HyEBTM15-1/3-Y; however, 

the F−D response exhibited very steep degradation at  = 3.1%, and the analysis stopped 

at  = 3.2%, with 20% loss of strength. 

 
(a) (b) 

 
 

Figure 5.14. Decomposition of base shear force. (a) HyEBTM15-1/3-X. (b) HyEBTM15-1/3-Y. 

 

For HyEBTM15-1/3-X, at Vmax, the shear force resisted by the compressed flanges 

was 53%, the compressed web resisted 37%, the decompressed flanges 6% and the 

decompressed web 4%. The maximum shear force resisted by the compressed flanges was 

0.72Acv √𝑓′
𝑐
 (MPa), which exceeded Vpier-ACI-limit by 16%. This peak occurred at  = 0.7% 
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(Figure 5.14a). The compressed flanges exhibited very steep degradation at  = 1.2%, and 

these lost up to 71% of the strength by the end of the analysis. The peak shear force resisted 

by the compressed web, i.e., 0.55bwd √𝑓′
𝑐
 (MPa) occurred at  = 1.3%, whereas the peak 

shear resisted by the decompressed flanges, i.e., 0.43bwd √𝑓′
𝑐
 (MPa), occurred at  = 

2.3%. At this drift, the base shear force was 0.84Vmax, and the largest portion was resisted 

by the decompressed flanges, i.e., 43%. Then, the shear response of the decompressed 

flanges suddenly dropped, while all other components exhibited softening, and the analysis 

stopped at 3.6%. 

For in HyEBTM15-1/3-Y, at Vmax, the shear force resisted by the webs was 64%, the 

compressed flanges resisted 34%, and the decompressed flanges 2%. The maximum shear 

force resisted by the webs and by the compressed flanges was 0.33Acv √𝑓′
𝑐
 (MPa) and 

0.55bwd √𝑓′
𝑐
 (MPa), respectively (Figure 5.14b). Peak force for the webs occurred at  = 

0.5%, and for the flanges at  = 1.5%.  

In HyEBTM15-1/3-X, the first yielding in the longitudinal reinforcement in tension 

occurred in the boundary elements of the compressed C-shaped wall, at  = 0.21%, 

whereas the first yielding in compression occurred in the compressed corners, at 0.38%. 

For HyEBTM15-1/3-Y, first yielding in tension occurred in the decompressed corners, at  

= 0.29%, and the first yielding in compression occurred in the compressed corners, at  = 

0.44%. Bar fracture was not computed in any case, and plastic hinging did not occur in 

upper stories. 

First yielding of horizontal reinforcement for HyEBTM15-1/3-X and HyEBTM15-

1/3-Y, was at  = 0.38% and 0.42%, respectively. For HyEBTM15-1/3-X, peak horizontal 

strains were located in the compressed flanges close to the corners’ base, and, for 
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HyEBTM15-1/3-Y theses occurred in the compressed end of the webs. HyEBTM15-1/3-X 

exhibited the largest horizontal strains. 

In HyEBTM15-1/3-X, the diagonal reinforcement of the coupling beams in Stories 

1, 3-5 exhibited yielding. First yielding occurred in the coupling beams of Story 4, at  = 

0.41%. The peak strains of diagonal reinforcement were at least 0.0019 for the coupling 

beams in Stories 1-6. 

First core concrete softening in vertical direction for HyEBTM15-1/3-X occurred at 

 = 1.3%, and for HyEBTM15-1/3-Y at  = 1.4%, whereas corresponding concrete 

crushing occurred at  = 1.4% and 1.9%. In both cases, the first softening was located in 

the compressed corners; however, for HyEBTM15-1/3-X, the first crushing was in the base 

of the compressed web, and, for HyEBTM15-1/3-Y it was in the base of the compressed 

flanges.  

For HyEBTM15-1/3-X and HyEBTM15-1/3-Y, concrete softening in the diagonal 

direction occurred at  = 0.9% and 1.3%, respectively, whereas corresponding concrete 

crushing occurred at  = 1.3% and 2.2%. In HyEBTM15-1/3-X, the peak diagonal strains 

in compression, i.e., -0.11, were located in the compressed flanges at the corners’ base, 

and, in HyEBTM15-1/3-Y the peak strains, i.e., -0.07, were located in the compressed end 

of the webs, at the corners’ base. 

The first softening of the shear response was computed for HyEBTM15-1/3-X in 

the base of the corners at the compressed C-shaped wall, from there, softening of the out-

of-plane shear response progressed gradually to the center of the web. Vo was reached in 

the compressed corners at  = 0.19%, and Vres at  = 1.3%.  
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The first softening of the shear response in the compressed web occurred at 

 = %. The decompressed C-shaped wall also exhibited softening, the first softening 

was at  = 1%, in the web base next to the decompressed corners. For HyEBTM15-1/3-Y, 

the first softening of the shear response spread from the base of the compressed corners to 

the center of the flanges. First Vo in the corners was at  = 0.27%, and corresponding Vres 

at  = %, whereas first Vo in the compressed flanges was at  = 0.44%. In the 

decompressed C-shaped wall, the first softening of the out-of-plane shear response 

occurred in the base of the flanges, at  = .7%. 

Base shear apportioning for the flanges and webs of HyEBTM15-1/3-X are shown 

in Figures 5.15a and 5.15b, respectively. Results for two drift ratios are plotted, i.e.,  = 

0.72%, which is the drift at peak shear force for the compressed flanges, and  = 1.3%, 

which is the drift at peak shear force for the compressed web.  

At  = 0.72%, most of the base shear force in the compressed flanges was resisted 

by the compressed corners, i.e., 34%; the rest of the length of the flanges resisted 27% 

(Figure 5.15a). As degradation took place in the compressed flanges, at  = 1.3%, the 

distribution of the shear force became more uniform, the base shear force resisted in the 

corners reduced to 8%, and the rest of the length resisted 36%. Since both drift ratios 

corresponded to load steps well before to final degradation of the F−D response, the 

contribution of the decompressed flanges was close to zero, except for the region of the 

boundary element, where at least 4% of the base shear force was resisted (Figure 5.15a). 

Most of the base shear force resisted by the compressed web was resisted in the region 

adjacent to the corners (2·0.24lweb), i.e., 24% and 28%, at  = 0.72% and 1.3%, 

respectively; whereas the central region (0.37lweb) resisted 7% at  = 0.72% and 11% at  
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= 1.3% (Figure 5.15b). The contribution of the decompressed web to the total strength was 

very limited, at  = 0.72% this was close to zero, and at  = 1.3%, the decompressed web 

resisted 4% of the base shear force in the regions adjacent to the corners and 1% in the 

central region (Figure 5.15b). 

 
(a) (b) 

  

Figure 5.15. Base shear force apportioning for HyEBTM15-1/3-X. (a) Flanges. (b) Webs. 

 

Figure 5.16a shows the base shear apportioning for the flanges of HyEBTM15-1/3-

Y, and Figure 5.16b shows the corresponding information for the webs. Results were 

plotted for  = 0.53% and 1.5%, which are the drifts at peak shear force for webs, 

and compressed flanges, respectively. In the compressed flanges, most of the base shear 

force was resisted in the region adjacent to the corners (2·0.39lflange), i.e., 16% and 25% at 

 = 0.53% and 1.5%, respectively, whereas the region adjacent to the boundary element, 

including it, (2·0.43lflange), resisted 6% at  = 0.53% and 14% at  = 1.5%. The 

contribution of the decompressed flanges to the total strength was very limited (Figure 

5.16a). At  = 0.53% and 1.5%, most of the shear force in the webs was resisted in the 
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region adjacent to the compressed corners, including it (2·0.32lweb), i.e., 70% and 51%, 

respectively. The rest of the webs’ length (2·0.68lweb) resisted 7% of the base shear force 

at both drifts (Figure 5.16b). 

 
 (a) (b) 

 

 

Figure 5.16. Base shear force apportioning for HyEBTM15-1/3-Y. (a) Flanges. (b) Webs. 

 

Figure 5.17a shows the deformed shape of HyEBTM15-1/3-X at the end of the 

analysis, i.e.,  = 3.6%. Out-of-plane nonlinear shear deformations in the compressed C-

shape wall began at the corners’ base region, and these spread toward the web, however 

most of the shear deformations localized in horizontal planes in the corners and vertical 

planes in the web adjacent to the corners. The compressed flanges exhibited in-plane shear 

failure, very large horizontal deformation, and diagonal crushing occurred (Figure 5.17b). 

The strength of the decompressed C-shaped wall played an important role after the failure 

of the compressed C-shaped wall (Figure 5.14a). In the decompressed C-shaped wall, the 

softening of the out-of-plane shear response began in the region of the corners’ base, and 

it progressed toward the center of the web. By the end of the analysis, the shear 
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deformations localized at the second level of the grid, i.e., 914 mm from the base. The 

decompressed flanges exhibited in-plane shear failure, with very localized horizontal 

deformation adjacent to the boundary elements, in spite of the boundaries themselves, did 

not fail in shear. 

 
(a) (b) 

  

Figure 5.17. Deformed shape for HyEBTM15-1/3-X at  = 3.6% (1x, inches). (a) General View. 

(b) Close up. 

 

5.7.5 Comparison and discussion of results 

Fiber-Model-1st-X, HyBTM-1st-X, HyEBTM10-1st-X and HyEBTM15-1st-X 

Figure 5.18a compares the F−D responses of models subjected to 1st mode shape 

load pattern in the X-direction. Initially, the responses were very similar, but from  = 

0.7%, the shear forces began increasing more rapidly for Fiber-Model-1st-X, which was 

expected since Fiber Models did not account for shear deformations. Then, Fiber-Model-

1st-X exhibited some limited softening at  = 3%, and by the end of the analyses, i.e.,  = 
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4.9%, the four models attained very similar shear strengths, with Vmax, ranging 

0.35−0.36Acv √𝑓′
𝑐
 (MPa). Limit of the ACI 318-19 (2019), i.e., Vave-ACI-limit =   0.66Acv 

√𝑓′
𝑐
 (MPa) ( = 0.75), was not exceeded. The responses of the Hybrid Models were almost 

identical throughout the analyses, which indicated that the out-of-plane shear response did 

not play a role in the F−D responses.  

Most of the base shear force was resisted by the compressed C-shaped wall. Peak 

shear forces ranged 0.56−0.59Acv √𝑓′
𝑐
 (MPa), where the minimum value was computed for 

HyEBTM10-1st-X and maximum for Fiber-Model-1st-X. In the compressed flanges, the 

peak shear forces ranged from 0.41−0.44Acv √𝑓′
𝑐
 (MPa), the minimum and maximum 

values were computed for HyEBTM15-1st-X and HyBTM-1st-X, respectively. The 

corresponding limit, i.e., Vpier-ACI-limit =   0.83Acv √𝑓′
𝑐
 (MPa), was not exceeded. 

The largest strains in the longitudinal reinforcement at the base occurred for Fiber-

Model-1st-X, which was expected since the lateral deformations in this model are related 

to the bending of the C-shaped walls. For the same reason, the largest strains in the diagonal 

reinforcement were also exhibited for Fiber-Model-1st-X. Yielding in Fiber-Model-1st-X 

occurred in coupling beams of Stories 1-9, whereas in Hybrid Models yielding occurred in 

Stories 4-8. First yielding in the horizontal reinforcement occurred for HyEBTM10-1st-X, 

at  = 0.83%, whereas HyBTM-1st-X and HyEBTM15-1st-X exhibited first yielding at  

= 2.6%, which indicated that the out-of-plane shear deformations played a role in it. A 

similar situation occurred for diagonal concrete softening, first softening occurred for 

HyEBTM10-1st-X, at  = 3.8%, whereas HyBTM-1st-X and HyEBTM15-1st-X exhibited 

first softening at  = 4.8%. Since the diagonal concrete softening occurred late in the 

analyses, the F−D responses did not exhibit degradation in any case. 
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Figure 5.20a compares the inter-story drift ratios s computed for the different 

models at the top drift ratio  = 4.9%. For Stories 1-3, s ranged 3%−4.7%, where the 

minimum value was for Fiber-Model-1st-X and the maximum for HyEBTM10-1st-X. For 

Stories 4-14, the four models computed similar s, with values for Fiber-Model-1st-X 

slightly larger than the values for the Hybrid Models, the largest s was 5.3%. It is possible 

to observe that the inter-story drift ratios could be underestimated by the Fiber Model in 

the lower stories, where the shear deformations played a role, even in these cases, which 

did not exhibit shear failure. 

Fiber-Model-1st-Y, HyBTM-1st-Y, HyEBTM10-1st-Y and HyEBTM15-1st-Y 

The F−D responses of models subjected to the 1st mode shape load pattern in Y-

direction were very similar up to  = 0.66%; from there, the shear forces for Fiber-Model-

1st-Y were larger than corresponding forces for the other models (Figure 5.18b). No 

softening was exhibited in any case. Practically equal F−D responses were computed for 

the Hybrid Models throughout the analyses since no influence of the out-of-plane shear 

response was observed on the overall response.  

By the end of the analysis, i.e.,  = 4.9%, Vmax for Fiber-Model-1st-Y was 0.28Acv 

√𝑓′
𝑐
 (MPa), 12% larger than in the other three cases. The peak shear forces in the webs 

ranged 0.15−0.18Acv √𝑓′
𝑐
 (MPa), the minimum value occurred for HyEBTM10-1st-Y, 

whereas the maximum for HyBTM-1st-Y. Limits Vave-ACI-limit and Vpier-ACI-limit were not 

exceeded in any case. 

At the base, the peak strains in tension in the longitudinal reinforcement ranged 

0.048−0.055, where the minimum value was for HyBTM-1st-Y, and the maximum for 

Fiber-Model-1st-Y; as expected, pure bending lateral displacements generated largest 
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longitudinal strains for the Fiber Model. The maximum longitudinal strains in the hybrid 

models occurred for HyEBTM10-1st-Y, which indicated that the out-of-plane shear 

response also influenced the longitudinal strains. 

Additionally, the out-of-plane shear deformations played a role in the strains of the 

horizontal reinforcement since the earliest yielding on it occurred for HyEBTM10-1st-X 

and HyEBTM15-1st-X, at  = 1.1%. The peak strains ranged 0.0084-0.011, where the 

minimum value was for HyBTM-1st-Y, and the maximum for HyEBTM10-1st-X. 

Moreover, the largest peak in compression for the diagonal strains in the concrete, i.e., -

0.0048, also occurred for HyEBTM10-1st-X.  

(a) (b) 

  

Figure 5.18. Comparison of base shear force – top displacement for Fiber Model, HyBTM and 

HyEBTM, 1st mode shape load pattern. (a) X-direction. (b) Y-direction. 

 

Fiber-Model-1/3-X, HyBTM-1/3-X, HyEBTM10-1/3-X and HyEBTM15-1/3-X 

F−D responses of models subjected to triangular load pattern in the X-direction are 

compared in Figure 5.19a. Similar responses were computed for the linear part of the 

pushover curves, i.e., up to  = 0.1%. From there, the shear forces in Fiber-Model-1/3-X 
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began increasing more rapidly than the forces in the Hybrid Models. The overall responses 

of the Hybrid Models were similar up to  = 0.64%. At that drift, the HyEBTM10-1/3-X 

response flattened, as the shear forces in HyBTM-1/3-X and HyEBTM15-1/3-X increased. 

The shear forces in Fiber-Model-1/3-X mostly kept increasing throughout the analysis, up 

to  = 3.9%, whereas the other models exhibited large degradation due to shear failure at 

different drifts.  

Vmax ranged 0.58−0.7Acv √𝑓′
𝑐
 (MPa), as before, the largest peak shear force 

corresponded to the Fiber Model, i.e., Fiber-Model-1/3-X, the minimum value was 

computed for HyEBTM10-1/3-X. The peak shear force for HyBTM-1/3-X and HyEBTM15-

1/3-X was 0.66Acv √𝑓′
𝑐
 (MPa). The in-plane nonlinear shear response played an important 

role not only on Vmax, but on the overall response since large degradation for HyBTM-1/3-

X was computed, whereas for Fiber-Model-1/3-X it was not. Limited influence of the out-

of-plane shear strength on Vmax was observed, Vmax computed for HyEBTM10-1/3-X was 

slightly smaller than the Vmax for HyEBTM15-1/3-X. The peak shear forces exceeded more 

than 17% Vave-ACI-limit. Peak shear forces resisted by the compressed C-shaped wall ranged 

1−1.2Acv √𝑓′
𝑐
 (MPa), where the minimum value was computed for HyEBTM10-1/3-X and 

maximum for Fiber-Model-1/3-X. In the compressed flanges, the peak shear forces ranged 

from 0.72−0.76Acv √𝑓′
𝑐
 (MPa), the minimum and maximum values were computed for 

HyEBTM15-1/3-X and HyBTM-1/3-X, respectively. Corresponding limit Vpier-ACI-limit was 

exceeded by more than 16%, which was consistent with the shear failures exhibited by the 

Hybrid Models. 

After the peak shear force was attained by the Hybrid Models, the shear force 

decreased to 0.8Vmax at  = 3.6%, 1.4%, and 2.4% for HyBTM-1/3-X, HyEBTM10-1/3-X, 
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and HyEBTM15-1/3-X, respectively. Large influence of the out-of-plane nonlinear shear 

response on the overall response was observed since the degradation in HyEBTM10-1/3-X 

and HyEBTM15-1/3-X occurred earlier than the degradation in HyBTM-1/3-X. 

The out-of-plane shear deformations also played a role in the local response. First 

yielding in the horizontal reinforcement occurred for HyEBTM10-1/3-X and HyEBTM15-

1/3-X, at  = 0.26% and 0.38%, respectively, whereas HyBTM-1/3-X exhibited first 

yielding at  = 0.68%. The model with the smallest out-of-plane shear strength, i.e., 

HyEBTM10-1/3-X, exhibited the earliest yielding. Additionally, earliest diagonal concrete 

softening and crushing also occurred for HyEBTM10-1/3-X, at  = 0.76% and 1.1%, 

respectively. 

The earliest yielding in the longitudinal reinforcement at the base occurred for 

Fiber-Model-1/3-X, at  = 0.17%. Moreover, the largest longitudinal strain, i.e., 0.06, up 

to the ultimate drift of HyEBTM10-1/3-X, i.e.,  = 1.4%, (Figure 5.19a), occurred for 

Fiber-Model-1/3-X. As expected, the Hybrid Models exhibited less mobilization of the 

longitudinal strains than the Fiber Model. The earliest yielding in the diagonal 

reinforcement was also computed for Fiber-Model-1/3-X, yielding occurred in coupling 

beams of Stories 1-7, whereas in HyBTM-1/3-X and HyEBTM15-1/3-X yielding occurred 

in Stories 1, 3-5. In HyEBTM10-1/3-X, the yielding was limited to Story 4, since in this 

case, the analysis stopped first than the other cases. 

The inter-story drift ratios s computed for the different models at  = 1.4%, i.e., 

the ultimate top drift ratio of HyEBTM10-1/3-X, are compared in Figure 5.20b. s ranged 

0.98%−% for Stories 1-3, where the minimum s was computed for Fiber-Model-1/3-

X and the maximum for HyEBTM10-1/3-X. For Stories 4-14, the Hybrid Models computed 
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similar s, with values for HyEBTM10-1/3-X slightly smaller; the minimum value was s 

= 1.1%. In these stories, Fiber-Model-1/3-X computed the largest s; the maximum value 

was s = 1.5%. The results showed that very large localization of lateral deformations 

occurred in Story 1 at  = 1.4%, especially for HyEBTM10-1/3-X, as expected, since it 

exhibited shear failure at this drift ratio. However, large localization was also observed in 

HyBTM-1/3-X, and HyEBTM15-1/3-X, in spite of these cases, did not exhibit ultimate 

degradation at  = 1.4%. 

Fiber-Model-1/3-Y, HyBTM-1/3-Y, HyEBTM10-1/3-Y and HyEBTM15-1/3-Y 

The F−D responses of models subjected to the triangular load pattern in Y-direction 

were similar up to  = 0.07% (Figure 5.19b). Then, the shear forces in Fiber-Model-1/3-Y 

increased more rapidly than the forces in the other models. The capacity of Fiber-Model-

1/3-Y steadily increased up to  = 3.6%, where the response exhibited steep degradation. 

Base shear forces for the Hybrid Models peaked early, i.e., at  = 1.4%, 0.9% and 1.2%, 

for HyBTM-1/3-Y, HyEBTM10-1/3-Y and HyEBTM15-1/3-Y, respectively. For HyBTM-

1/3-Y, softening was gradual throughout the analysis, i.e., up to  = 3.9%. However, F−D 

responses of HyEBTM10-1/3-Y and HyEBTM15-1/3-Y, which initially exhibited gradual 

softening, experienced very steep degradation at  = 2.7%, and 3.1%, respectively. In the 

Fiber Model, the longitudinal strains were mobilized to bar fracture, whereas in the Hybrid 

Models occurred shear failure. 

It is clear that the in-plane shear response played a role in the overall responses. 

Moreover, the out-of-plane shear response influenced the F−D responses, especially the 

displacement capacity, since the earliest ultimate degradation occurred for the model with 

the smallest out-of-plane shear strength, i.e., HyEBTM10-1/3-Y.  
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The strains in the horizontal reinforcement and in the concrete in diagonal direction 

were also influenced by the out-of-plane shear deformations. The earliest yielding in the 

horizontal reinforcement, which occurred at  = 0.3%, was computed for HyEBTM10-1/3-

Y. Furthermore, the earliest diagonal concrete softening and crushing occurred for 

HyEBTM10-1/3-Y, at  = 1.1% and 1.8%, respectively. 

 
(a) (b) 

  

Figure 5.19. Comparison of base shear force – top displacement for Fiber Model, HyBTM and 

HyEBTM, triangular load pattern. (a) X-direction. (b) Y-direction. 

 

The largest Vmax was computed for Fiber-Model-1/3-Y, i.e., 0.62Acv √𝑓′
𝑐
 (MPa), 

whereas the smallest for HyEBTM10-1/3-Y and HyEBTM15-1/3-Y, i.e., 0.45Acv 

√𝑓′
𝑐
 (MPa). 
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(a) (b) 

  

Figure 5.20. Comparison of inter-story drift ratios for Fiber Model, HyBTM and HyEBTM, X-

direction. (a) 1st mode shape load patter,  = 4.9%. (b) Triangular load pattern,  = 1.4%. 

 

Limited influence of out-of-plane shear response on Vmax was observed, since Vmax 

for HyBTM-1/3-Y, i.e., 0.46Acv √𝑓′
𝑐
 (MPa), was very similar to the value computed for 

HyEBTM10-1/3-Y and HyEBTM15-1/3-Y. Vave-ACI-limit was exceeded only for Fiber-Model-

1/3-Y, by 25%. The peak shear force in the webs was 0.33Acv √𝑓′
𝑐
 (MPa), in the three 

Hybrid Models, which did not exceed Vpier-ACI-limit. The fact that the Enhanced Hybrid 

Models exhibited brittle shear failures, as peak shear force limits of the ACI 318-19 (2019) 

were not exceeded, seems inconsistent; however, it is necessary to notice that steep 

degradation took place at relatively large drift ratios. 

As expected, the Fiber Model exhibited the largest mobilization of the longitudinal 

strains. The earliest yielding in the longitudinal reinforcement at the base was computed 

for Fiber-Model-1/3-Y, at  = 0.3%, moreover, the largest longitudinal strain, i.e., 0.059, 

computed at the ultimate drift of HyEBTM10-1/3-Y, i.e.,  = 2.8%, (Figure 5.19b), also 

occurred for Fiber-Model-1/3-Y. 
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5.8 Conclusions 

This paper enhanced the Beam-Truss Model (BTM) developed for nonlinear 

analysis of reinforced concrete structures, including in-plane nonlinear shear response and 

nonlinear flexural warping, to compute the out-of-plane nonlinear shear response, for the 

analysis of Core-Wall-Building systems. The enhanced Beam-Truss Model (EBTM) 

considered the out-of-plane shear deformations via nonlinear shear springs, which used the 

built in-house material PinHardwP, implemented in OpenSees, to compute shear response 

dependent on axial forces. Hysteretic rules and calibration equations were proposed. 

The EBTM was combined in series with a Fiber-Section Model to improve the 

computational economy, resulting in the Hybrid Fiber-Section - Enhanced Beam-Truss 

Model (HyEBTM). In this novel model, the lower stories of the Core Wall were modeled 

using EBTM, whereas the upper stories adopted Fiber-Section Model. Displacement-based 

elements with PDelta geometric transformation and diagonal truss-elements with 

Corotational transformation were used. 

The HyEBTM was applied to study the lateral response of a 14-story building with 

a central core formed by two C-shaped coupled walls. The structure building was assumed 

to be located in downtown Los Angeles. Monotonic nonlinear static analyses were carried 

out with 1st mode shape lateral pattern (up to drift ratio  = 4.9%) and triangular load 

pattern (up to  = 3.9%). The load patterns were considered independently in the direction 

of coupling (X-direction) and in the direction of the cantilever (Y-direction). The out-of-

plane shear response was bounded running cases for two extreme levels of out-of-plane 

shear strength. Fiber-Section Models and Hybrid Fiber-Section − Beam-Truss Models 
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(hyBTM) were used as references. Overall and local responses were compared for the 

different case studies. 

The following conclusions are drawn on the overall response: 

- The height of the result of lateral forces influences the lateral strength and 

displacement capacity of the Core Wall. Base shear forces computed for the 

triangular load pattern were 1.7−2.2 times larger than base shear forces for 1st 

mode shape load pattern. HyBTM and HyEBTM subjected to 1st mode shape load 

pattern did not fail, but they failed for the triangular load pattern. 

- The models that considered in-plane shear response computed smaller lateral 

strengths than the models that did not. HyBTM and HyEBTM computed up to 

26% smaller lateral strengths than the corresponding Fiber-Section Models. The 

in-plane shear response had a large influence on the displacement capacity of the 

Core Wall in the X-direction for triangular load pattern. Since the Fiber Model 

did not exhibit failure, whereas the HyBTM did, at  = 2.5%. 

- The out-of-plane shear response had a limited influence on the lateral strength of 

the Core Wall. Lateral strengths computed for HyEBTM were at most 3% larger 

than those for HyBTM. However, the out-of-plane shear response had a large 

influence on the displacement capacity of the models with the triangular load 

pattern. The drift ratios at the onset of ultimate degradation were 16%−52% 

smaller for HyEBTM than for HyBTM. 

- The peak shear forces in the models exceeded the ACI 318-19 (2019) limit, i.e., 

  0.66Acv √𝑓′
𝑐
 (MPa), by 17%−% for the triangular load pattern in the X-
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direction, where the maximum value was for Fiber-Section Model. For Y-

direction, the limit was exceeded only for the Fiber-Section Model, by 25%. 

- For the load patterns in the X-direction, the compressed C-shaped wall resisted at 

least 86% of the base shear force in HyBTM and HyEBTM, and at least 93% in 

the Fiber-Section Models, at Vmax. 

- At Vmax, the compressed flanges resisted 53%−% of the base shear force, for 

the analyses in X-direction, whereas, the webs resisted 64%−%, for the 

analyses in the Y-direction.  

- The peak shear force in the compressed flange (analyses in X-direction) exceeded 

by 16%−% the ACI 318-19 (2019) limit, i.e.,   0.83Acv √𝑓′
𝑐
 (MPa). The peak 

shear force in the webs did not exceed this limit (analyses in the Y-direction). 

- At Vmax, the compressed web resisted 12%−37% of the base shear force for the 

analyses in the X-direction, whereas, the compressed flanges resisted 15%−34%, 

for the analyses in the Y-direction. The minimum values occurred for 1st shape 

mode load pattern and the maximum values for the triangular pattern. 

The following conclusions are drawn on the local response: 

- The in-plane shear deformations inhibited the spread of yielding in the diagonal 

reinforcement of the coupling beams. For the Fiber-Section Models, the coupling 

beams of up to 9 stories exhibited yielding, whereas, for HyBTM and HyEBTM, 

at most 5 stories did.  

- The out-of-plane shear response influenced the deformations in the horizontal 

reinforcement of the Core Walls. HyEBTM exhibited yielding of horizontal 
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reinforcement at drift ratios 17%−68% smaller than corresponding drift ratios in 

HyBTM. 

- The out-of-plane shear response influenced the diagonal concrete deformation 

mainly for the triangular load patter. In this case, HyEBTM exhibited diagonal 

concrete crushing at drift ratios 9%−% smaller than corresponding drift ratios 

in HyBTM. 

Base on the models developed and the conclusions drawn, possible future research 

could include: 

- Carry out the experimental verification of the lateral response of Core-Wall 

Building systems, with a focus on the in-plane and out-of-plane apportioning of 

the base shear force. 

- Include the buckling of longitudinal reinforcement in the analysis of the Core-

Wall-Building systems. 

- Include the interaction of in-plane shear response and out-of-plane shear response 

explicitly. 

- Extend this study to the seismic response of Core-Wall-Building systems using 

Nonlinear Response History Analysis. 
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