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TECHNICAL ADVANCE Open Access

Advantages of the net benefit regression
framework for trial-based economic
evaluations of cancer treatments: an
example from the Canadian Cancer Trials
Group CO.17 trial
Jeffrey S. Hoch* , Annette Hay, Wanrudee Isaranuwatchai, Kednapa Thavorn, Natasha B. Leighl, Dongsheng Tu,
Logan Trenaman, Carolyn S. Dewa, Chris O’Callaghan, Joseph Pater, Derek Jonker, Bingshu E. Chen and
Nicole Mittmann

Abstract

Background: Economic evaluations commonly accompany trials of new treatments or interventions; however,
regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not widely
appreciated.

Methods: To illustrate regression-based economic evaluation, we review a cost-effectiveness analysis conducted by
the Canadian Cancer Trials Group’s Committee on Economic Analysis and implement net benefit regression.

Results: Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing
economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide
simple solutions to commonly encountered challenges (e.g., the need to adjust for potential confounders, identify
key patient subgroups, and/or summarize “challenging” findings, like when a more effective regimen has the
potential to be cost-saving).

Conclusions: Economic evaluations of patient-level data (e.g., from a clinical trial) can use net benefit regression to
facilitate analysis and enhance results.

Keywords: Net benefit regression, Economic evaluation, Cost-effectiveness

Background
We must deal with the escalating price of cancer therapy
now… We cannot ignore the cumulative costs of the
tests and treatments we recommend and prescribe. As
the agents of change, professional societies, including
their academic and practicing oncologist members, must
lead the way. The time to start is now [1].
Cancer is a costly disease; there are huge costs physic-

ally, mentally and financially. A major component of
many treatment regimens is pharmaceuticals. Fiscal

toxicity of cancer treatment is not unique to patients
and their families; healthcare payers also experience
financial distress. Without the resources to pay for all
treatments for all diseases for all patients, most health-
care payers have embraced an evidence informed
decision-making process involving recommendation
committees. Frequently, these recommendation commit-
tees embrace other types of evidence in addition to
clinical evidence. For example, in Canada, the pan-
Canadian Oncology Drug Review (pCODR), a national
recommendation committee for oncology drugs, uses a
deliberative framework that includes clinical evidence,
patient values, system feasibility as well as economic
evidence [2]. In the United States, the Institute for
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Clinical and Economic Review considers both net clin-
ical benefit as well as value (i.e., cost-effectiveness and
budget impact). Usually, the economic evidence used by
recommendation committees is in the form of a cost-
effectiveness model with inputs, based in part, on
patient-level trial data.
In advance of formal drug reimbursement dossier sub-

missions trial data are often presented at national con-
ferences and published in scientific journals, providing
an initial (and often impactful) preview of the clinical
and economic evidence. Thus, cost-effectiveness analyses
based entirely on patient-level trial data have the poten-
tial to play a major role in influencing clinical and deci-
sion maker perceptions of whether a drug provides value
(e.g., is economically attractive). The analysis of a cost-
effectiveness dataset provides insight into the value of
the clinical benefit, over the same time horizon as the
clinical study. In this way, the extra costs of the extra
patient benefits accruing in the trial can be appreciated
concurrently. However, there are some challenges that
attend the analysis of patient-level cost-effectiveness
data. For example, in cancer studies, these can involve
the need to i) adjust for potential confounders, ii) iden-
tify key patient subgroups (e.g., with biomarkers), and
iii) summarize the economic evidence when there is a
negative cost-effectiveness ratio (e.g., when more effect-
ive treatment regimens are also potentially cost saving).
This article illustrates a regression-based method for

analyzing patient-level cost-effectiveness data called net
benefit regression. It has a variety of benefits that
address shortcomings in conventional cost-effectiveness
analysis methods. These benefits are illustrated using the
Canadian Cancer Trials Group CO.17 study showing
that patients with advanced colorectal cancer had
improved overall survival and greater costs when cetuxi-
mab, an epidermal growth factor receptor-targeting anti-
body, was given in addition to best supportive care.
Although the concepts of net benefit and net benefit re-
gression have been applied in other healthcare areas,
their application in oncology has not been widespread
[3–5]. It is the goal of this article to clarify how to use
and interpret the net benefit regression method, so that
more authors and readers can appreciate what it offers.

Methods
Case study description
Mittmann and colleagues [6] conducted an economic
evaluation of cetuximab plus best supportive care versus
best supportive care alone in unselected advanced colo-
rectal cancer patients. The initial clinical trial was con-
ducted by the Canadian Cancer Trials Group as a
multicenter, open-label, randomized phase III trial of
cetuximab plus best supportive care versus best support-
ive care alone in patients with chemotherapy-refractory

metastatic EGFR-positive colorectal cancer (Clinical-
Trials.gov number NCT00079066). Survival times for
the entire study population and for patients whose tu-
mors harbored wild-type KRAS were calculated over an
18- to 19-month period [6], and the trial (hereafter re-
ferred to as CO.17) found a statistically significant over-
all survival advantage for cetuximab with a 1.5 month
difference in median survival for cetuximab versus best
supportive care [7]. In patients with wild-type KRAS
tumors, there was a larger survival advantage (i.e., 4.7
months additional median survival for cetuximab) [8].
Mittmann and colleagues conducted a cost-effectiveness

analysis using prospectively collected cost and quality ad-
justed life year (QALY) data for patients in the CO.17 [6].
For patients in the trial, cetuximab showed unattractively
high incremental cost-effectiveness ratios. The incremen-
tal cost-effectiveness ratios (ICERs) were more favorable
for patients whose tumors harbored wild-type KRAS but
were still more than $186,000 per quality-adjusted life-
year gained. Since there is no universally agreed upon
cost-effectiveness threshold or willingness to pay (WTP)
value, jurisdictions often adopt fuzzy thresholds that are
guided by several factors [9–11]. Nevertheless, the likeli-
hood of a positive funding recommendation appears
inversely related to the incremental cost-effectiveness ratio
(i.e., higher ICERs have a lower probability of being
funded). [12, 13] This suggest that cost-effectiveness
methods that explicitly allow the WTP threshold to vary
may be helpful.
In the following section, we describe net benefit re-

gression before applying the technique to analyze the
cost-effectiveness data for patients in the CO.17 study.

Net benefit regression framework
We briefly review below the key components of net
benefit regression and offer additional references for the
interested reader [14–16]. With the net benefit regres-
sion approach, analysts can use regression-based tech-
niques to analyze cost-effectiveness data; some
advantages of the net benefit regression approach in-
clude facilitating solutions to challenging statistical situ-
ations (e.g., negative cost-effectiveness ratios or when
Fieller’s theorem will not yield a confidence interval)
[14]. The net benefit regression framework was proposed
a decade ago to marry regression and cost-effectiveness
methods [17]. At that time, the conventional statistic re-
ported in most cost-effectiveness studies was the ICER.

Building from the ICER
Mathematically, the ICER estimate is defined as Extra
Cost ÷ Extra Effect, where Extra Cost is defined as ΔC =
Expected Cost with New Treatment - Expected Cost with
Usual Care and Extra Effect is defined as ΔE = Expected
Effect with New Treatment - Expected Effect with Usual
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Care. With a cost-effectiveness dataset, it is common to
use the Average Cost and Average Effect to represent
Expected values. The ICER is troublesome to estimate
because it is a ratio; however, its parts—the numerator
and denominator—can be estimated easily by regression.
If one defines a binary treatment indicator variable as

TX = 1 for a study participant receiving the new treat-
ment, and TX = 0 for a study participant receiving usual
care, then one can use ordinary least squares (OLS) to
estimate linear regressions for cost (ci) and effect (ei). By
adding an interaction term (say, between the KRAS
status and TX indicator variables), it is possible to ex-
plore hypothesis-generating questions about subgroups
for whom the new intervention may be more (or less)
cost-effective. For example, is a drug more cost-effective
for patients with wild-type KRAS tumors?

Willingness to pay (WTP)
When a new treatment costs more (ΔC > 0) and is more
effective (ΔE > 0), the ICER > 0. For decisions, an ICER
must be compared with a WTP threshold value. Unfor-
tunately, a decision maker’s WTP is unknown, so
methods that treat WTP as unknown are best (e.g., vary-
ing WTP and exploring how a recommendation based
on the estimated ICER may change). Net benefit regres-
sion addresses the unknown nature of the “correct”
WTP value within the incremental net benefit.

Incremental net benefit regression
By computing each patient’s net benefit (NB) as WTP ×
ei − ci and using it for a dependent variable, one can run
a simple or multiple linear regression of the form

NB ¼ b0 þ bTXTXþ εNB ðorÞ
NB ¼ b0 þ bTXTXþ b1X1 þ⋯

þ bpXp þ εNB; ðrespectivelyÞ
If bTX > 0, the new treatment is cost-effective since bTX

equals the incremental net benefit (INB); the INB con-
veys by how much the value of the extra effect out-
weighs the extra cost (i.e., INB =WTP ×ΔE −ΔC) [17].
Another way to view the INB is as the difference in the
average net benefits between the new treatment and
usual care: new treatment is more cost-effective if it has
higher net benefits than usual care. The linearity of the
dependent variable NB means the estimate of bTX =
WTP ×ΔE − ΔC. While the 95% confidence interval (CI)
for the ICER cannot be made from the separate CIs for
the estimates of ΔC and ΔE (because this process
ignores the correlation between the cost and effect data)
[18], the 95% CI for bTX is the 95% CI for the INB. If
there is concern about using a parametric method for
the 95% CI, one can use a non-parametric method like
bootstrapping [19].

By estimating net benefit regression equations with
various WTP values, one can gauge the sensitivity of
cost-effectiveness findings in relation to WTP assump-
tions. One WTP value that should always be checked in
a net benefit regression is WTP = $ΔC/ΔE since this
should yield an INB estimate of zero (i.e., bTX = 0). By
setting WTP = $0, the INB should become − 1 ×ΔC.
One can characterize uncertainty using CIs or p-values
to create cost-effectiveness acceptability curves (e.g., see
[20] for a step by step tutorial on using p-values this
way). Because the INB and the ICER are related through
WTP, both their estimates and uncertainty are closely
connected. A graph of INB by WTP has a y-intercept
equal to -ΔC, a slope of ΔE and an x-intercept of the
ICER. The addition to the graph of 95% CIs for the INB
illustrates, at their x-intercepts, the lower and upper
95% CIs (from Fieller’s Theorem) for the ICER (see Re-
sults section for examples). We illustrate these points
next using net benefit regression results.

Results
Table 1 reports the results of simple linear regressions
with dependent variables Effect, Cost and NB regressed
on the cetuximab treatment indicator (i.e., the TX vari-
able in the METHODS section). The estimates in Table
1 represent ΔE, ΔC and ΔNB (i.e., INB), respectively.
Results when WTP = $0 are reported in the NB ($0) col-
umn; results for WTP = $500,000 are reported in the NB
($500 k) column. In this economic analysis, cetuximab
showed extra cost of $22,210 and extra effect of 0.0771
QALYs (see the row labeled “ALL” in Table 1) when com-
pared with best supportive care for all patients in the
CO.17 trial. This corresponds to an ICER over $288,000
(i.e., 22,210/0.0771), not generally considered economically
attractive. However, the results differ by KRAS status. While
the extra cost estimate appears larger for patients with
wild-type KRAS tumors (ΔC= $30,843, p-value < 0.001)
than patients whose tumors do not express wild-type KRAS
(ΔC= $13,787, p-value < 0.001), the extra effect estimates
tell a much different story. Cetuximab appears more effect-
ive than best supportive care for patients with wild-type
KRAS tumors (ΔE = 0.1769 QALYs, p-value < 0.001) but
less effective than best supportive care for patients whose
tumors do not express wild-type KRAS (ΔE = − 0.0172
QALYs, p-value > 0.40).
Table 2 shows the estimates for multiple linear regres-

sion; these results further support analyzing the data
stratified by KRAS status. The coefficient on the cetuxi-
mab treatment indicator, which represents INB for
patients with mutant status, is negative for WTP values
from $0 to $500,000. However, the interaction term be-
tween cetuximab treatment and wild-type KRAS status,
which represents difference of INBs between patients
with KRAS wild-type and mutant statuses, switches from
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a negative value (− 738) to a positive value (14,762) as
WTP increases from $100,000 to $200,000. This coin-
cides with the INB estimate transitioning from a nega-
tive value (− 14,637) to a positive value (1149) over the
same WTP range for patients whose tumors express
wild-type KRAS (KRAS-WT). For the lowest value of
WTP ($0), the interaction term between the cetuximab
treatment and KRAS-WT indicator variables is statisti-
cally significantly negative (− 16,238, p-value < 0.001).
This implies that ΔC is significantly higher for patients
with wild-type KRAS than those with mutant KRAS.
Conversely, for the highest value of WTP ($500,000), the

interaction term is statistically significantly positive (61,
262, p-value < 0.05); this suggests INB with this WTP is
significantly higher for patients with wild-type KRAS
than those with mutant KRAS.
Figure 1 plots the incremental net benefit estimate (as

a solid line) and the pointwise 95% CIs (as dashed lines)
in relation to WTP values varying from $0 to $500,000.
Vertical values greater than zero indicate when INB is
positive and cetuximab is cost-effective. The graphs for
the overall sample and the KRAS-WT sub-group (the
top and middle graphs in Fig. 1) show a positively sloped
INB line that intersects the horizontal axis; for the over-
all sample this occurs near the WTP value of $300,000
and near $200,000 for the KRAS-WT subgroup. For the
patients whose tumors do not express wild-type KRAS
(i.e., the KRAS-MUT group), the negatively sloped INB
line does not intersect any positive WTP value (on the
horizontal axis). Figure 2 communicates the probability
that cetuximab is cost-effective as WTP varies. There
are three curves: one for KRAS-WT patients (upper
solid line), one for all patients (middle dashed line) and
one for KRAS-MUT patients (lower hashed line).

Discussion
Typically, ICERs are the metrics reported in economic
evaluations; However, in this case study, the ICER for
the patients whose tumors do not express wild-type
KRAS (KRAS-MUT) is negative. Based on expert recom-
mendations, this means the ICER should not be calcu-
lated [21]. This makes it challenging to report the
conventional cost-effectiveness statistic (which is nega-
tive in this case) and to report its 95% CI (where at least
one limit will be negative as well). In contrast, Table 1’s
negative INB estimates, reported for all WTP values,
indicate that cetuximab for KRAS-MUT patients is not
economically attractive (at least for WTP values from $0
to $500,000). For KRAS-WT patients, the INB estimate
becomes positive (switching from − 13,154 to 4536) as
WTP increases from $100,000 to $200,000. This indi-
cates that the ICER falls within this range (ΔC/ΔE = 30,
843/0.1769 ≈ 174,350 per QALY). The overall sample
demonstrates a similar pattern, switching from − 6805 to
898 as the WTP increases from $200,000 to $300,000
due to the overall ICER being ΔC/ΔE = 22,210/
0.0771 ≈ $288,000 per QALY. As noted earlier, when
WTP = $0, the INB estimate reduces to −ΔC; this ex-
plains the similarity between the coefficients in the Cost
Column and those in the NB($0) column in Table 1.
As noted earlier, the findings in Table 2 support strati-

fying the analysis by KRAS status. Either simple linear or
multiple linear regression can be run separately stratify-
ing on a patient’s tumor’s KRAS status. In this case
study, we simplified matters by focusing on simple linear
regressions (except for Table 2). The findings of the

Fig. 1 Incremental net benefit estimate for all patients (upper graph,
dashed line), KRAS-WT (middle graph, solid line), and KRAS-MUT
(lower graph, hashed line) and 95% confidence intervals
(dashed lines)
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simple linear regression models were similar to those of
the multiple linear regression models for small WTP
values; they diverged more for larger WTP values. This
suggests that there is important variability in the patient
outcome related to the independent variables; however,
the variability in cost is not as strongly associated with
the independent variables since adjusting for the patient
covariates (i.e., all of the Xp’s) does not affect the INB
estimate for small WTP values. In passing, we note that
investigators interested in studying a patient subgroup, de-
fined by a continuous variable (e.g., age, disease severity,
etc.), would not be able to stratify and run separate
models; a model with a treatment interaction term would
be better suited to exploring this type of hypothesis gener-
ating question (involving a continuous covariate).
Figure 1 demonstrates the usefulness of an INB by

WTP graph. The different shapes of the curves suggest
different findings. The upper graph (for the overall sam-
ple) and the middle graph (for the KRAS-WT group)
show INB lines with negative y-intercepts, positive
slopes and x-intercepts at WTP values of approximately
$300,000 (for the overall sample) and approximately
$200,000 (for the KRAS-WT group). As noted in the
Methods section, an INB by WTP graph has a y-
intercept equal to -ΔC, a slope of ΔE and an x-intercept
of the ICER. Thus, a negative y-intercept means cetuxi-
mab is more costly, a positive slope means that cetuxi-
mab is more effective, and the WTP value where the
INB estimate line intersects is the ICER. Of the three
graphs in Fig. 1, the KRAS-WT group has the steepest
INB estimate line; therefore, that group enjoys the lar-
gest gain from treatment (i.e., has the biggest ΔE). For
the KRAS-MUT group, the negative y-intercept means

cetuximab is more costly, the slightly negative slope
means that cetuximab is slightly less effective than best
supportive care, and the WTP value where the INB esti-
mate line looks to intersect indicates a negative ICER.
Figure 1 can also be used to characterize the uncer-

tainty associated with both the INB and the ICER. For
the KRAS-WT group (in the middle graph), the upper
and lower 95% confidence limits for the INB intersect
the horizontal axis over the illustrated WTP range of $0
to $500,000. The two intersection points mark the Fiel-
ler’s Theorem 95% CI for the ICER. This 95% CI corre-
sponds very closely to the 95% CI of $130,326 to 334,
940 reported in the original economic analysis. For the
overall sample, Mittmann and colleagues reported a 95%
CI of $187,440 to 898,201. This is congruent with the
upper graph in Fig. 1; one confidence limit intersects the
horizontal axis near a WTP = $200,000 and the other
intersection point appears greater than $500,000. The
lower graph (for the KRAS-MUT group) suggests a
negative ICER with one 95% confidence limit that will
be negative.
The cost-effectiveness acceptability curve (CEAC) in

Fig. 2 combines parts of the regression results and Fig. 1
to characterize uncertainty [20]. The CEAC shows the
probability that cetuximab plus best supportive care is
cost-effective compared to best supportive care alone.
WTP varies along the horizontal axis reflecting its
unknown nature (to the analyst). The vertical axis com-
municates the portion of the INB distribution that is
positive (indicating the probability that cetuximab is
cost-effective). The three curves—one for KRAS-WT
patients (upper solid line), one for all patients (middle
dashed line) and one for KRAS-MUT patients (lower

Fig. 2 Probability that new treatment is cost-effective for KRAS-WT (upper solid line), all patients (middle dashed line) and KRAS-MUT (lower
hashed line) by Willingness to Pay threshold values
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solid line)—support the general conclusions that have
been offered. While the CEACs presented in Fig. 2 were
made using parametric p-values from Table 1, it is pos-
sible to create them using non-parametric bootstrapping
methods [20].

Limitations
We conclude our discussion by reviewing some key limita-
tions in our example involving the analysis of person-level
cost-effectiveness data. The usefulness of person-level cost-
effectiveness data is diminished when either a relevant out-
come is not included in the original study or when the trial
is too short in duration to see activity in the outcome of
interest. The original clinical trial in our example used
overall survival as its primary end point with secondary
outcomes that included progression-free survival as well as
quality adjusted life years (QALYs). Even with the strength
of the trial’s design, there is still the critical question of
whether “enough” study participants contributed outcome
data. Of the randomly assigned 572 patients, a total of 456
deaths occurred by the date of analysis. The median
survival was 6.1months in the cetuximab group and 4.6
months in the supportive-care group. The proportions of
patients surviving at 6 and 12months were 50 and 21%,
respectively, in the cetuximab group and 33 and 16%,
respectively, in the supportive care group.
Typically, when time-to-event data (e.g., survival) are

incomplete, methods for censored data are employed. In
contrast to the original economic evaluation which
employed two methods to calculate overall survival: the
restricted mean survival method (which restricts calcula-
tion of mean survival to the longest observed survival
time) and the Kaplan – Meier method (which takes into
account censoring), we used only the restricted mean
survival method. Our simplifications (e.g., ordinary least
squares to estimate a simple linear regression without
specific methods for censoring) did not appear to make
any qualitative difference in this case study; the original
economic evaluation reported ICERs of $186,761
(KRAS-WT) and $299,613 (entire study population)
compared to ICERs of $174,353 and $288,067 calculated
using estimates from our Table 1, respectively. While
our simple illustration of net benefit regression is meant
to facilitate understanding, there are situations where
more advanced methods for the analysis of censored
cost-effectiveness data may be desired. Advanced papers
by Bang and Tsiatis [22] as well as Chen et al. [23] pro-
vide excellent direction in this area. More advanced
methods for simultaneous estimation of cost and effect
equations are also available [24].
Finally, often analysts do not report INB results for all

willingness to pay (WTP) values. When a reader is inter-
ested in a WTP value occurring within the range of
WTP values that are used (e.g., WTP = $123,456) or a

WTP value outside the range (e.g. WTP = $600,000), this
may appear to be a concern. This concern can be ad-
dressed easily because the formula for INB is linear (i.e.,
INB =WTP ×ΔE − ΔC). For each $1 change in WTP, the
INB changes by ΔE. Thus, the INB when WTP = $123,
456 is $23,456 ×ΔE more than the INB when WTP =
$100,000. Using Table 1 and KRAS-WT as an example,
INB($123,456) = INB($100,000) + ($23,456 ×ΔE) = − 13,
154 + ($23,456 × 0.1769) = −$9005. This matches the re-
sult from a direct calculation of INB($123,456) = $123,
456 ×ΔE − ΔC = $123,456 × 0.1769 − $30,843 ≈ −$9005.
This method can also be used for WTP values outside of
the WTP ranges reported. For example, using the values in
Table 1 for KRAS-WT, INB($600,000) = INB($500,000)
+ ($100,000 ×ΔE) = 57,606 + ($100,000 × 0.1769) = $75,296.
Direct calculation verifies this result for KRAS-WT,

INB($600,000) = $600,000 × 0.1769 − $30,843 ≈ $75,297.

Conclusion
This article showcases the advantages of the net benefit
regression framework [17]. The framework allows incre-
mental cost and incremental effect to be estimated either
separately (i.e., using cost or effect as a dependent vari-
able) or together (i.e., using net benefit as a dependent
variable). In this paper’s case study, there was a straight-
forward application of OLS. However, more ambitious
analytical strategies with more sophisticated techniques
can be used (e.g., using regression diagnostics, employ-
ing interaction terms and/or using advanced methods
for non-randomized data). We were able to adjust our
cost-effectiveness analysis for covariates using multiple
linear regression and to explore clinically relevant
patient subgroups. The incremental net benefit by WTP
curve illustrated both our estimate of cost-effectiveness
and the associated uncertainty. The INB by WTP graph
allows the cost-effectiveness results to reflect the
unknown WTP’s impact on policy implications. When
analyzing a cost-effectiveness dataset, net benefit regres-
sion can be a useful starting point for exploring one’s
data and communicating a new treatment’s value.
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