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Comprehensive molecular profiling  
of multiple myeloma identifies refined copy 
number and expression subtypes

Multiple myeloma is a treatable, but currently incurable, hematological 
malignancy of plasma cells characterized by diverse and complex tumor 
genetics for which precision medicine approaches to treatment are 
lacking. The Multiple Myeloma Research Foundation’s Relating Clinical 
Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile 
study (NCT01454297) is a longitudinal, observational clinical study of 
newly diagnosed patients with multiple myeloma (n = 1,143) where tumor 
samples are characterized using whole-genome sequencing, whole-exome 
sequencing and RNA sequencing at diagnosis and progression, and clinical 
data are collected every 3 months. Analyses of the baseline cohort identified 
genes that are the target of recurrent gain-of-function and loss-of-function 
events. Consensus clustering identified 8 and 12 unique copy number and 
expression subtypes of myeloma, respectively, identifying high-risk genetic 
subtypes and elucidating many of the molecular underpinnings of these 
unique biological groups. Analysis of serial samples showed that 25.5% of 
patients transition to a high-risk expression subtype at progression. We 
observed robust expression of immunotherapy targets in this subtype, 
suggesting a potential therapeutic option.

Multiple myeloma is a treatable, but currently incurable, hematological 
malignancy of plasma cells (PCs). The incorporation of new treatment 
modalities over the last two decades has vastly improved outcomes  
of patients with myeloma; however, patients still relapse, and some 
have poor outcomes. Despite substantial efforts to understand  
the molecular basis of the disease, predicting patient outcomes and 
identifying high-risk patients remains a challenge.

Multiple myeloma is a genetically heterogeneous disease with 
two broad karyotypic groups. A hyperdiploid (HRD) phenotype, with 
characteristic trisomies of chromosomes (chr) 3, 5, 7, 9, 11, 15, 19 and 
21, is present in 50–60% of tumors1–3. The remaining non-HRD (NHRD) 
tumors typically have an immunoglobulin translocation dysregulating 
NSD2/WHSC1/MMSET, MYC, CCND1 or MAF transcription factors4–9.  
Tumors harbor many other genetic aberrations, including non
immunoglobulin structural abnormalities and mutations10–13.  

Although previous genomic studies were instrumental in deconvolut-
ing the genetic heterogeneity of myeloma, they are mostly limited by 
small cohort sizes, the number and types of assays performed, a lack 
of longitudinal sampling, clinical follow-up and biased inclusion of 
heavily pretreated patients, limiting our comprehensive understand-
ing of the disease.

To understand the impact of tumor genetic profile on patient 
outcomes and treatment response, the Multiple Myeloma Research 
Foundation (MMRF) sponsored the Relating Clinical Outcomes in  
Multiple Myeloma to Personal Assessment of Genetic Profile 
(CoMMpass) study (NCT01454297). CoMMpass was a prospective, 
longitudinal, observational clinical study that accrued 1,143 newly  
diagnosed, previously untreated patients with multiple myeloma 
from sites throughout the United States, Canada, Spain and Italy 
between 2011 and 2016. Tumor samples collected at diagnosis and 
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each progression event were profiled using whole-genome sequenc-
ing (WGS), whole-exome sequencing (WES) and RNA sequencing 
(RNA-seq). Clinical parameters were collected every 3 months through 
the 8-year observation period.

We present a molecular analysis of the complete baseline 
cohort, with a median follow-up of 4 years, identifying recurrent 
loss-of-function (LOF) and gain-of-function (GOF) events and distinct 
copy number and gene expression subtypes of myeloma. The compre-
hensive nature of this dataset and our integrated analysis framework 
define both the overall frequency of gene alterations in myeloma and 
the genetic basis of a high-risk patient population that does not benefit 
from current therapies.

Results
Cohort description
The demographic and clinical parameters of the cohort follow  
expected distributions with a median diagnostic age of 63 years 
(range = 27–93 years), the expected over-representation of males 
(60.4%) and an international staging system (ISS) distribution of  
35.1% ISSI, 35.1% ISSII and 27.2% ISSIII14 (Table 1 and Supplementary 
Table 1). This cohort is primarily from the United States, and, unlike 
most clinical trials, the distribution of self-reported ancestry reflects 
US Census Bureau statistics with 80.6% Caucasian, 17.5% Black and 
1.9% Asian.

Each patient’s cytogenetic phenotype was defined by WGS with 
57.2% HRD and 42.8% NHRD, 24.3% del(1p22), 35.2% gain(1q21), 52.0% 
del(13q14) and 12.5% del(17p13). Translocations involving common 
target genes from any of the three immunoglobulin loci occurred at 
the following frequencies: 20.0% CCND1, 1.2% CCND2, 1.8% CCND3, 
4.0% MAF, 0.7% MAFA, 1.3% MAFB, 14.3% MYC and 12.8% WHSC1. Of these 
events, 83.0% involved the IgH locus, while 5.3% and 11.7% involved the 
κ and λ loci, respectively.

Irrespective of treatment, the cohort median time to second- 
line therapy was 38.1 months, and the median overall survival (OS) 
was 103.6 months (Extended Data Fig. 1a,b). The median OS for  
ISSIII patients was 53.9 months, while the median OS for ISSI and ISSII 

Table 1 | Characteristics of the baseline CoMMpass cohort

Characteristic n = 1,143

Age at diagnosis, year

  Median (range) 63 (27–93)

Distribution, no. (%)

  <55 year 239 (20.9)

  55–64 year 400 (35.0)

  65–74 year 358 (31.3)

  ≥75 year 146 (12.8)

Sex, no. (%)

  Male 690 (60.4)

  Female 453 (39.6)

Race, no. (%)

  White 742 (64.9)

  Black 161 (14.1)

  Asian 18 (1.6)

  Other/unknown 222 (19.4)

ISS, no. (%)

  I 401 (35.1)

  II 401 (35.1)

  III 311 (27.2)

  Unknown 30 (2.6)

Type of myeloma, no. (%) n = 971

  Heavy chain

    IgG 568 (58.5)

    IgA 169 (17.4)

    IgM 2 (0.2)

    Biclonal 11 (1.1)

    Negative 123 (12.7)

    Unknown 98 (10.1)

  Light chain

    IgK 547 (56.3)

    IgL 322 (33.2)

    Biclonal 15 (1.5)

    Negative 25 (2.6)

    Unknown 62 (6.4)

Ploidy statusa, no. (%) n = 871

  HRD 498 (57.2)

  NHRD 373 (42.8)

Immunoglobulin translocationsa, no (%);  
IgH, IgK and IgL

n = 851

  CCND1 170 (20.0), 168, 2, 0

  CCND2 10 (1.2), 5, 1, 4

  CCND3 15 (1.8), 13, 0, 2

  MAF 34 (4.0), 33, 1, 0

  MAFA 6 (0.7), 5, 1, 0

  MAFB 11 (1.3), 9, 1, 1

  MYC 122 (14.3), 55, 18, 49

  NSD2/WHSC1/MMSET 109 (12.8), 108, 1, 0

MYC structural events, no. (%) n = 851

MYC STRb 251 (29.5%)

Characteristic n = 1,143

Common copy number alterationsa, no. (%) n = 871

  del(1p22) 212 (24.3)

  gain(1q21) 307 (35.2)

  del(13q14) 453 (52.0)

  del(17p13) 109 (12.5)

ECOG performancec, no. (%) n = 844

  0 295 (35.0)

  1 406 (48.1)

  2 99 (11.7)

  3 38 (4.5)

  4 6 (0.7)

Cytogenetic risk profiled n = 832

  Standard risk 585 (70.3)

  High risk 247 (29.7)
aPloidy status, immunoglobulin translocation and copy number event data were extracted 
from WGS data. bMYC translocation (Ig or non-Ig) or intrachromosomal deletion is proximal 
to MYC. cECOG performance—0 = fully active, 1 = restricted in physically strenuous activity, 
2 = ambulatory and capable of all self-care, 3 = capable of only limited self-care and 
4 = completely disabled. dHigh risk defined as those patients with one or more high-risk 
events—del17p13, t(14;16) (MAF), t(14;20) (MAFB), t(8;14) (MAFA) and t(4;14) (NSD2/WHSC1/
MMSET).

Table 1 (continued)  | Characteristics of the baseline 
CoMMpass cohort
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patients could not be confidently predicted (Extended Data Fig. 1c,d). 
Patients with at least one high-risk cytogenetic feature had worse  
OS outcomes, even with uniform usage of new agents (Supplemen-
tary Fig. 1)15.

Integrated analysis for gain and LOF genes
To comprehensively identify LOF and GOF events in patients with 
myeloma, an integrated model was developed to overcome the limi-
tations of analyzing any one data type by combining measurements 
from WES, WGS and RNA-seq to assign a functional state to each gene 
(Supplementary Tables 2–6). In the LOF model, a single event in a gene 
was designated as partial LOF, whereas genes with two or more events 
were designated as complete LOF. At diagnosis, 592 patients had all 
three sequencing assays performed and were included in the analy-
sis (Supplementary Fig. 2). We identified 70 genes where a complete  
LOF event was identified in ≥5 patients (Fig. 1a). Complete LOF was 
observed in 12 genes in >2% of the cohort, including TRAF3 (10.1%), DIS3 
(6.9%), TENT5C/FAM46C (5.1%), CYLD (4.7%), TP53 (4.1%), MAX (3.5%), 
RB1 (3.2%), WWOX (3.2%), HUWE1 (2.7%), PVT1 (2.5%), CDC42BPB (2.0%) 
and MAGEC1 (2.0%). However, CDC42BPB is in a contiguous gene region 
on chr14 with TRAF3, which was previously shown to be the target of 
bi-allelic loss in this region16.

The target gene(s) of chr13 loss continues to be controversial. WGS 
data detected 13q14 deletion in 52.0% of patients, while LOF analysis 
identified that 26.5% of patients had complete LOF of one or more 
genes on chr13. The commonly assumed target, RB1, showed complete  
LOF in 3.2% of patients, while DIS3 complete LOF was detected in 6.9%  
of patients; however, a striking number of additional genes were  
independently knocked out in myeloma (Fig. 1b). The following two  
contiguous gene regions with complete LOF were identified: the first  
comprising MPHOSPH8 (1.4%), PSPC1 (1.5%), ZMYM5 (1.4%), ZMYM2 
(1.0%), and the second comprising TGDS (1.9%) and GPR180 (0.8%) 
where the minimal region of deletion and LOF frequency suggest  
that the targets are PSPC1 and TGDS, respectively. Additional com-
plete LOF events were identified targeting LATS2 (1.4%), BRCA2 (1.2%),  
PARP4 (1.0%), MYCBP2 (1.0%), TPP2 (1%), CDK8 (0.8%), TSC22D1 (0.8%) 
and ARHGEF7 (0.8%). These results highlight that monosomy 13 is 
associated with multiple independent gene inactivation events.

The GOF analysis identified an event in 92% of patients at diag-
nosis and 27 genes where a GOF event was identified in five or more  
patients (Fig. 1c). There were seven genes in which a GOF event was 
identified in greater than 2% of the cohort, including KRAS (23.6%), 
NRAS (21.6%), WHSC1 (10.3%), BRAF (7.1%), FGFR3 (4.9%), HIST1H1E 
(3.2%) and EGR1 (2.5%).

Identification of copy number subtypes of multiple myeloma
To discover potential underlying phenotypes of myeloma beyond 
the known dichotomy of HRD and NHRD karyotypes, unsupervised 
consensus clustering was performed on copy number data from  
871 patients (Extended Data Fig. 2). Three independent trials were 
highly consistent and identified eight subtypes as the optimal solution 
(Supplementary Figs. 3 and 4).

The copy number subtypes consisted of five HRD and three NHRD 
subtypes and were annotated based on defining features (Fig. 2a). 
The HRD classic subtype had gains of classic HRD chromosomes, and 
the remaining HRD subtypes were annotated based on deviations 
from this phenotype. The subtype designated as HRD, ++15 exhibited 
tetrasomy of chr15 (Supplementary Fig. 5), while two subtypes (HRD, 
diploid 7 and HRD, diploid 3, 7) were defined by the absence of chr7 
and chr3 trisomies. Finally, the complex HRD, +1q, diploid 11, −13 
subtype lacked chr11 trisomy but harbored gain of chr1q and loss of 
chr13. Of the NHRD subtypes, the diploid subtype was mostly devoid 
of copy number events and highly associated with translocations tar-
geting a D-type cyclin (71.3%). The remaining two NHRD groups were 
strongly associated with canonical immunoglobulin translocations 

(71.1%) and were defined by chr13 loss. The −13 subtype contained a 
subpopulation of patients with chr14 loss, while the +1q, −13 subtype 
had gains of 1q.

There was no difference in outcomes between HRD and NHRD 
patients (Supplementary Fig. 6). However, the HRD and NHRD sub-
types with both 1q gain and chr13 loss had inferior OS outcomes when 
compared to patients in other copy number subtypes (Fig. 2b), sug-
gesting that HRD patients should not be universally considered as a 
group with good outcomes. Combining these two subtypes identified 
a group with inferior outcomes as compared to patients with other 
genetic backgrounds (Fig. 2c; hazard ratio (HR) = 1.732, 95% confidence 
interval (CI) = 1.354–2.215, P < 0.001). The 35-month difference in OS 
outcomes between NHRD patients in the +1q, −13 subtype and the −13 
subtype suggested 1q gain, rather than 13q loss, is the predictor of poor 
outcome; however, a Cox proportional hazard model examining the 
contribution of 13q14 and 1q21 copy numbers on OS outcomes did not 
identify gain(1q21) as an independent feature (Extended Data Fig. 3).

RNA subtypes of multiple myeloma
Consensus clustering was performed on RNA-seq results from 714  
baseline samples to identify subtypes of myeloma defined by gene 
expression (Extended Data Fig. 4). Three independent replicates iden-
tified 12 clusters as the optimum solution; two were identical, and a 
third had 20 (2.8%) patients assigned to different classes (Supplemen-
tary Figs. 7 and 8). Many of the observed subtypes were associated 
with known immunoglobulin translocations and copy number states 
(Fig. 3a and Extended Data Fig. 5), and there were clear relationships 
with subtypes identified in previous studies (Supplementary Figs. 9 
and 10)17,18. Four subtypes were identified across all studies, includ-
ing MMSET expressing (MS) (characterized by t(4;14) patients), MAF 
family transcription factor expressing (MAF) (primarily characterized 
by t(14;16) patients), cyclin D expressing group 1 (CD1) (characterized 
by t(11;14) patients) and proliferation (PR) (characterized by patients 
with a high proliferation index). To maintain consistency across stud-
ies, we used subtype names from previous studies when appropriate 
but otherwise assigned names based on common molecular features.

The MS subtype comprised 10.6% of patients for whom a 
t(4;14)-WHSC1 was detected in 62 of 67 (92.5%) samples by WGS. One 
patient had a t(2;4) bringing the κ enhancer close to WHSC1, while 
two others had fusion transcripts between WHSC1 and the highly 
expressed genes FUT8 or CXCR4. The MAF subtype included 6.4%  
of patients, of whom 38 of 41 (92.7%) patients had translocations  
(27 t(14;16)-MAF, 4 t(8;14)-MAFA, 6 t(14;20)-MAFB and 1 t(20;22)-MAFB). 
All three patients with undetectable immunoglobulin translocations 
had high expression of an MAF family gene. One had a t(1;16) juxta
posing the FAM46C super-enhancer with MAF19,20. Another had an 
atypical insertion of a class-switch circle telomeric of MAF. One patient 
had both a t(14;16)-MAF and a t(4;14)-WHSC1 yet strongly associated  
with the MAF subtype, suggesting the MAF expression signature  
overpowers the MS signature. Immunoglobulin translocations 
targeting MAF family transcription factors are associated with  
higher mutation load21, and in this cohort, 8 of 10 patients with high 
tumor mutation burden (>10 mutations per Mb) were in the MAF  
subtype and could qualify to receive a checkpoint inhibitor.

Three subtypes were highly associated with overexpression 
of a D-type cyclin caused by t(11;14)-CCND1, t(12;14)-CCND2, or 
t(6;14)-CCND3 (Supplementary Fig. 11a–c). The CD1 subtype included 
4.3% of patients, of whom 24 of 25 (96%) patients had a D-type cyclin tar-
geting translocation. One patient had a t(9;14), resulting in the overex-
pression of the B-cell master regulator PAX5 (Supplementary Fig. 11d). 
Unlike previous studies that identified a single cyclin D expressing 
group 2 (CD2) subtype, we identified two related subtypes designated 
as CD2a and CD2b. The CD2a subtype comprised 7.8% of patients, of 
whom 40 of 47 (85.1%) patients had a detected D-type cyclin IgH trans-
location. The CD2b subtype included 8.0% of patients, of whom 51 of 56 
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Fig. 1 | Recurrent LOF and GOF events occurring in at least five patients at 
diagnosis ordered by event frequency. The location and proximity of individual 
genes are shown next to each gene with the alternating gray and black bars 
illustrating when the chromosomal location changes, while black bars directly to 
the right denote contiguous genes. Each tick along the x axis represents a patient 

with the corresponding event. a, Complete LOF was observed in 53 autosomally 
located genes. b, Genes on chr13q that were the target of complete LOF events 
in at least five patients in the baseline cohort. c, GOF events were detected 
in 27 autosomal genes due to amplification, gene fusions, mutations or over 
expression associated with a structural variant (SV).
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(91.1%) patients had a detected D-type cyclin targeting translocation. 
Both the CD2a and CD2b subtypes were associated with cell surface 
expression of CD20, which is largely absent in other RNA subtypes, 

including CD1. Compared to CD2a, patients in the CD2b subtype had 
higher proliferative index scores (P < 0.005), but there is not a sig-
nificant difference in OS or time to second-line therapy between these 
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Fig. 2 | Copy number subtypes of multiple myeloma. a, Consensus clustering 
of WGS copy number data identified eight unique copy number subtypes, 
comprising five HRD and three NHRD clusters that were annotated based on 
common copy number features. b, Pointwise OS estimates are shown by the 
respective lines for each copy number subtype. Median OS was met for the 
HRD, +1q, diploid 11, −13 (55.7 months, 95% CI = 31.7–NA (not available)), +1q, −13 
(69.3 months, 95% CI = 53.0–97.4), HRD, diploid 3, 7 (95.3 months, 95% CI = 43.6–
NA) and −13 (103.9 months, 95% CI = 79.2–NA) subtypes. Pairwise outcome 
comparisons identified eight significantly different subtypes by the log-rank 
test after multiple testing corrections using the Benjamini–Hochberg method. 

The significant differences were between the HRD, +1q, diploid 11, −13 subtype 
and HRD, ++15 (P = 0.0015), HRD, classic (P = 0.0373), diploid (P = 0.0373) or 
−13 (P = 0.0373); between the +1q, −13 subtype and HRD, ++15 (P = 0.0015), HRD, 
classic (P = 0.0373) or diploid (P = 0.0448); and between HRD, ++15 and HRD, 
diploid 3, 7 (P = 0.03733). c, Pointwise OS estimates are shown by the respective 
lines, and pairwise outcomes were compared by the log-rank test, which showed 
a significant difference (P = 9.5 × 10−6) between patients in the +1q, −13 and HRD, 
+1q, diploid 11, −13 groups (median = 67.2 months, 95% CI = 53.0–83.2) versus 
patients in other copy number subtypes (median = 103.9, 95% CI = 103.9–NA).
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Fig. 3 | RNA subtypes of multiple myeloma and associated characteristics. 
a, Consensus clustering of RNA-seq data revealed 12 RNA subtypes of multiple 
myeloma. The MYC STR flag indicates the detection of a MYC translocation (Ig 
or non-Ig) or intrachromosomal deletion centromeric of MYC. b, Pointwise OS 
estimates are shown by the respective lines for each RNA subtype. Median OS was 
reached for the PR (21.3 months, 95% CI = 15.0–55.3); HRD, low TP53 (55.4 months, 
95% CI = 36.7–NA); MS (79.2 months, 95% CI = 57.3–97.4) and MAF (103.9 months, 
95% CI = 34.4–NA) subtypes. Pairwise outcome comparisons identified ten 
significantly different subtypes by the log-rank test after multiple testing 
corrections using the Benjamini–Hochberg method. All significantly different 
pairs were compared against the PR subtype, with P values ranging from 0.03305 

compared to MAF and 1.3 × 10−6 compared to HRD, ++15. The only PR pairwise 
comparison that was not significant was against HRD, low TP53, the subtype 
with the second lowest median OS. c, Pointwise OS estimates of patients in the 
PR (21.3 months, 95% CI = 15.0–55.3) versus non-PR (median = 103.9 months, 95% 
CI = 97.4–NA) subtype at diagnosis (P = 1.1 × 10−10), HR = 3.16 (95% CI = 2.19–4.57). 
d,e, Expressed (median transcripts per million (TPM) > 1 in at least one group) 
checkpoint inhibitor (d) and immunotherapy (e) targets in independent non-PR 
(n = 663) versus PR (n = 51) patients. Significant differences in median expression 
between the two groups were determined using a two-sided unpaired Wilcoxon 
rank sum test and are indicated when significant (*P < 0.05, **P < 0.01 and 
***P < 0.001).
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groups, and unexpectedly, CD2a patients start second-line therapy 
8.4 months earlier.

The PR subtype contained 7.1% of patients with an admixture of 
classic genetic subtypes and very poor clinical outcomes, with a median 
OS of 21 months (Fig. 3b,c). High proliferation index scores were also 
concentrated in this subtype (Extended Data Fig. 6). Clearly, current 
treatment regimens are ineffective for these patients. We compared 
the expression of current checkpoint and immunotherapy targets in 
non-PR versus PR patients and observed that all five checkpoint targets 
(CD200, CD86, CD274/PDL1, TNFRSF14/HVEM and LGALS9/GAL9) were 
decreased in the PR group, whereas TNFRSF17/BCMA was increased,  
and the other four immunotherapy targets (CD38, SLAMF7/CS1,  
GPRC5D and FCRL5/FCRH5) showed no difference in expression in  
PR patients (Fig. 3d,e).

A subtype representing 11.1% of patients most closely resem-
bled the previously defined low bone subtype17 (Supplementary  
Fig. 9); however, there was no decrease in bone lesions (Supplemen-
tary Fig. 12). This subtype comprised an admixture of 59.2% HRD and  
40.8% NHRD patients, but 74.0% had a gain of chr1q with 26.0%  
having ≥4 copies and was thus termed the 1q gain subtype.

Four of the RNA subtypes were associated with HRD (Extended 
Data Fig. 5) and either did not uniquely associate with a subtype 
from a previous study, or the original name could not be justified. 
Two HRD subtypes associated closely with the previously identi-
fied HY subtype, but differed due to an enrichment of tetrasomy 15, 
observed in 58.7% and 60.8% of patients. Because structural events 
involving MYC are associated with HRD karyotypes22, we investi-
gated the association between these two groups and MYC rear-
rangements. We identified 37 of 49 (75.5%) versus 23 of 76 (30.3%) 
patients who had MYC rearrangements, and thus these subtypes 
were named HRD, ++15, MYC and HRD, ++15, respectively. A third 
HRD subtype comprising 8.3% of patients most closely associ-
ated with the PRL3 subtype18; however, the signature was elevated  
in four subtypes (Supplementary Fig. 10). A MYC structural event  
was identified in 35 of 49 (71.4%) of these patients, and this group was  
also distinguished from all others except PR in having a low nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-kB) index 
(Extended Data Fig. 7) and was thus named HRD MYC, low NF-kB.  

The smallest HRD group contained 4.6% of patients and was asso-
ciated with the previously defined NF-kB subtype18; however, no  
clear association existed with the NF-kB index used to define the sub-
type (Supplementary Fig. 10 and Extended Data Fig. 7). One of the 
predictors of this RNA subtype was overexpression of NINJ1 (Supple-
mentary Table 7 and Supplementary Fig. 13a), which inhibits translation 
of TP53 (ref. 23). TP53 was also found to be underexpressed, exhibiting 
the lowest median expression in this subtype as compared to all other 
RNA subtypes (Supplementary Fig. 13b). Taken together, this subtype 
was termed HRD, low TP53. The final subtype, termed low purity, with 
12.2% of patients correlated with the previously defined myeloid group 
but was dominated by lower purity samples (Supplementary Fig. 10 
and Extended Data Fig. 8)18.

Clinical and molecular associations with RNA subtypes
To identify additional defining features of each RNA subtype, we tested 
for significant associations between clinical and molecular features, 
including complete LOF and GOF events. Overall, 21 genes with com-
plete LOF or GOF were identified to have a significant association with 
one or more RNA subtypes (Fig. 4). As expected, GOF was detected in 
the translocation target genes associated with the MAF, MS, and CD 
subtypes. Although the loss of one WWOX allele is expected in t(14;16), 
we frequently detected complete LOF of WWOX (P < 0.001), supporting 
a possible role of WWOX in myeloma. Both the MS and 1q gain subtypes 
were diminished for NRAS GOF, and the latter was enriched for TRAF3 
LOF. The CD2a subtype was enriched for GOF events in NRAS (P < 0.005) 
and IRF4 (P < 0.005), while the CD2b subtype was enriched for GOF 
events in IRF4 (P < 0.005) and EFTUD2 (P < 0.01), representing potential 
subtype-specific therapeutic targets. In general, the HRD RNA subtypes 
were not enriched for any GOF or LOF events aside from the HRD, ++15, 
MYC subtype, which was enriched for LOF events in FAM46C (P < 0.001).

The PR subtype was enriched for LOF of RB1 (P < 0.001) and MAX 
(P < 0.01), gain(1q21) (P < 0.001), del(13q14) (P < 0.001) and ISSIII 
patients (P < 0.001). Interestingly, 50% of PR patients were ISSIII, while 
22% and 28% of PR patients were ISSI and ISSII, respectively, highlight-
ing that ISS underestimates disease severity in half of these high-risk 
patients. Complete loss of RB1 typically involves a one-copy deletion 
of 13q coupled with a second molecular event (Supplementary Fig. 14). 
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Identifying LOF of RB1 and MAX represents defining genetic features 
of the high-risk PR phenotype.

Association of G1/S checkpoint with transition to PR subtype
We developed a predictive model to assign the serial samples to the 
subtypes with the highest class probability (Supplementary Table 7). 
Overall, 71 patients were assigned a subtype at two or more time points, 
with 55 patients assigned a subtype other than low purity for at least 
two time points. At diagnosis, five serial patients were classified as low 
purity; however, at progression, they all had a subtype other than low 
purity (one each CD1; 1q gain; PR; HRD, ++15 and HRD, ++15, MYC), fur-
ther supporting that this phenotype is driven by relative sample purity 
rather than distinct disease biology (Extended Data Fig. 9). Although 
most patients remained in the same subtype throughout their disease 
course, 13 of 49 (26.5%) patients who were not classified as low purity or 
PR at baseline, transitioned into the PR subtype at progression (Fig. 5a). 
Patients who transitioned to the PR subtype rapidly succumbed to their 
disease (Fig. 5b), with a median OS after the detected progression of 
88 days (Supplementary Fig. 15), and had inferior outcomes compared 
to other patients who also progressed (Fig. 5c).

To identify molecular events potentially driving the transition of 
patients to the PR subtype, gene functional status was compared at 
the PR and prior non-PR time points. Molecular data were available for 
comparison at both time points for 9 of 13 patients who transitioned to 
PR. Despite the prevalence at baseline, none of the patients transition-
ing to PR acquired complete LOF of RB1. However, three patients (33%) 
had complete LOF of a cyclin-dependent kinase inhibitor at progres-
sion. Two patients had complete LOF of CDKN2C at progression due to 
homozygous deletions (Extended Data Fig. 10). One patient acquired 
two independent deletions at progression, while the other had one 
clonal deletion at diagnosis, and the second increased from 26% to 
100% at progression, suggesting this aggressive clone existed before 
treatment. One patient acquired complete loss of CDKN1B at progres-
sion from a pre-existing deletion, and a clonal frameshift mutation 
was detected only at progression (Supplementary Fig. 16). Similar to 
the baseline observations, there are multiple genetic defects in G1/S 
checkpoint genes that can result in the PR phenotype.

Discussion
The MMRF CoMMpass study represents—to the best of our knowledge— 
the largest single sequencing study of patients with multiple myeloma 
undertaken to date based on the number of enrolled patients and  
the total number of sequencing assays performed. The cohort has 
facilitated the identification of distinct copy number and expression 
subtypes of myeloma, as well as both recurrent and rare molecular 
events that occur at frequencies that would not be detected in smaller 
patient cohorts.

A diverse array of genetic events can contribute to the develop-
ment or progression of cancer, with individual genes often being 
affected by multiple types of alterations; however, these diverse pro-
cesses are generally summarized in isolation, thus underrepresenting 
a gene’s contribution. To accurately summarize the frequency of these 
changes, we integrated seven different data formats extracted from 
WES, WGS and RNA-seq data and identified 70 LOF and 27 GOF genes 
occurring in five or more patients. Differentiating between partial and 
complete LOF is pertinent for the accurate identification of high-risk 
patient populations. For TP53, solitary deletions or mutations have 
been associated with poor prognosis; however, only patients with com-
plete LOF of TP53 have poor outcomes, suggesting that only one-third 
of patients with del(17p13) identified by clinical cytogenetic assays are 
true high-risk patients12,24–26. Finally, there is a long-standing interest 
in determining the gene associated with monosomy 13 in myeloma, 
detected in 44.9% of patients. Our analysis not only identified recurrent 
complete loss events in RB1 and DIS3 but also identified independent 
complete loss events in PSPC1, TGDS, LATS2, BRCA2, PARP4, MYCBP2, 

TPP2, CDK8, TSC22D1 and ARHGEF7, suggesting that multiple genes 
on chr13 can independently contribute to myelomagenesis. Oddly, 
DIS3 LOF events almost always maintain a full-length polypeptide, 
suggesting the dual function of this gene in PCs. Notably, no complete 
loss event was identified in nearly half of the patients (48.1%) with 
monosomy 13, thus haploinsufficiency, as observed in Mir15a/Mir16-1, 
may also be a contributing factor27.

We identified eight distinct copy number subtypes, including 
five HRD and three NHRD subtypes. Although previous studies have 
shown that HRD patients have favorable outcomes compared to NHRD 
patients, in CoMMpass there was no difference in outcomes. This large 
cohort analysis revealed a number of seemingly interrelated events, 
such as 1q gains and monosomy 13, HRD patients lacking both trisomy 
3 and trisomy 7, and groups with a classic HRD phenotype defined 
by trisomy or tetrasomy 15. Interestingly, the HRD subtype with 1q 
gain and chr13 loss lacks the classic trisomy 11, suggesting that the 
combination of these events can phenocopy the benefits of trisomy 
11. Although patients with 1q gain and 13 loss represent poor outcome 
copy number subtypes, the median OS of these patients was between 
56 and 69 months, comparable to the 54 months observed for ISSIII, but 
not the 44-month OS associated with R-ISSIII, which includes patients 
with high-risk clinical and cytogenetic features15. Taken together, this 
highlights that copy number features alone are insufficient to distin-
guish the subset of ultra-high-risk patients.

Previous studies clustering microarray gene expression data iden-
tified eight to ten unique subtypes, many of which were consistent 
among studies including the MS, MAF, CD1, CD2 and PR subtypes17,18. 
Our consensus clustering of RNA-seq data identified 12 unique RNA 
subtypes. Some previously identified subtypes were further sub
divided, while others were renamed to better reflect the underlying 
biology, aided by incorporating the diverse data types in this study. For 
instance, several studies have sought to identify treatment strategies 
for CD20-positive patients, but based on the distribution within CD2a 
and CD2b, it may be pertinent to consider that these patients originate 
from two unique populations. In the context of precision medicine, the 
strong link between t(11;14) and the CD subtypes leads to the question 
of whether one of the CD subtypes better predicts response to vene-
toclax than t(11;14)28.

The PR RNA subtype defined a group of patients with extremely 
poor OS, high proliferative index scores and nearly ubiquitous 1q gains. 
This group has remained controversial because of the competing 
supervised patient segregation TC classification models29,30 that argue 
to group patients by defined genetic features, while this subtype has a 
mixture of those genetic events. Through our integrated analysis, we 
identified LOF of RB1 or MAX as common genetic events in baseline PR 
patients, providing a genomic link to this gene expression phenotype. 
Loss of MAX was recently associated with transformation and increased 
proliferation in small cell lung cancer31, and thus, LOF of RB1 or MAX 
likely contributes to the highly proliferative phenotype observed in PR 
patients. PR patients exhibited lower median expression of checkpoint 
targets but equivalent or higher expression of most immunotherapy 
targets when compared to non-PR patients, suggesting that immuno-
therapies may represent a viable therapeutic option in these high-risk 
patients and highlighting the importance of identifying these patients 
in future clinical studies.

There was also a strong tendency for patients to transition to the 
PR subtype at progression, with 26.5% of serial patients in a non-PR sub-
type at diagnosis transitioning to PR, similar to recent results32. Patients 
who transitioned to the PR subtype had extremely poor outcomes after 
the transition, with a median survival of less than 3 months after their 
progression visit. An acquired complete loss of a cyclin-dependent 
kinase inhibitor, such as CDKN2C or CDKN1C, was observed in 33% of 
patients transitioning to the PR subtype at progression, suggesting 
that transition to the PR phenotype at progression is associated with 
genetic events disrupting cell cycle control.
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These findings demonstrate that advanced molecular diagnostics 
such as WGS and RNA-seq are better predictors of disease behavior than 
current staging systems based on clinical laboratory, conventional 
cytogenetic and fluorescence in situ hybridization (FISH) data. These 
assays also identify therapeutic targets, including RAS, BRAFV600E and 
FGFR3 mutations, that are actionable with agents already approved 
for other cancer indications. In fact, early CoMMpass findings drove 
the development of a number of clinical trials, notably MMRC-085 
Myeloma-Developing Regimens Using Genomics (NCT03732703), an 
umbrella trial using targeted exome and transcriptome sequencing 
to stratify subjects into subprotocols with approved targeted agents. 
These findings favor the adoption of advanced molecular diagnostics 
into the routine care of myeloma, especially as the breadth of clinical 
impact broadens and costs decrease.

Comprehensive molecular analyses of the baseline CoMMpass 
cohort have permitted a more thorough understanding of the genetic 
diversity and subtypes of the disease. This approach clearly defined 
the primary molecular features driving different subtypes of multi-
ple myeloma and identified high-risk patients at both diagnosis and 
progression. Innovative clinical trials targeting this high-risk popula-
tion are needed given the current poor outcomes with therapies that 
are otherwise highly effective in other subtypes. Given that patients 
frequently transition to the high-risk PR subtype at progression, it 
will be important to know the percentage of PR patients in clinical trial 
populations, particularly in the relapse/refractory setting, to under-
stand if the arms are balanced and if there is a difference in response 
between these groups. The identification of unique subtypes and the 
frequency of target gene dysregulation, via our integrated analysis, 
provide a solid foundation to prioritize targets for precision medicine 
approaches in multiple myeloma.
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Methods
Sample collection and biobanking
Patients were enrolled in the CoMMpass study (NCT01454297), spon-
sored by the MMRF in accordance with the Declaration of Helsinki. 
The study was approved by panel 2 of the Western Institutional Review 
Board and the Internal Review Board at each participating site, and 
the patients were not compensated for participation and were only 
enrolled after providing written informed consent. All samples ana-
lyzed originate from interim analysis 14, and clinical data analyzed 
in this study were collected as of interim analysis 22. The MMRF 
CoMMpass study accrued patients from clinical sites in Canada, Italy, 
Spain and the United States. All patient samples were shipped to one 
of the following three biobanking operations: Van Andel Research 
Institute (VARI) in Grand Rapids, Michigan, for all samples collected 
in Canada or the United States; University Hospital of Salamanca for 
samples collected in Spain; or University of Torino for samples col-
lected in Italy. In North America and Spain, potassium ethylenedi-
aminetetraacetic acid (K2-EDTA) tubes were used for the collection 
of peripheral blood (PB), and sodium heparin tubes were used for 
the collection of bone marrow (BM) aspirates. These samples were 
shipped to their respective biobanks using CoMMpass study kits that 
maintained samples at 7–12 °C. In Italy, clinical sites participating in 
the FORTE clinical trial (NCT02203643) collected BM and PB sample 
aspirates in sodium citrate vacutainers. Samples collected at sites in 
Italy were shipped at ambient temperature to the biorepository site.

At VARI, the received BM and PB specimens were first quality con-
trolled by flow cytometry to determine the percentage of PCs in the PB 
and BM specimens. Patients were only included in the study when the 
submitted BM contained at least 1% PCs. If the PB showed less than 1% 
circulating PCs, white blood cells were used as the constitutional DNA 
source; however, when >1% circulating PCs were observed, enriched 
CD3-positive T cells were used. Whole BM PC enrichment, or PB PC 
enrichment when >5% circulating PCs were detected, was performed 
using the Miltenyi autoMACS Pro Separator using anti-CD138 microbe-
ads. The purity of the enriched samples was assessed using a three-color 
slide-based immunofluorescence assay that identified cells with DAPI 
and the presence or absence of κ or λ light chains. Clinically eligible 
baseline patients with tumor samples with greater than 250,000 cells 
recovered after CD138 enrichment and monoclonal purity greater 
than or equal to 80% moved forward for nucleic acid extraction. For 
progression samples, the cell recovery requirement was 200,000 cells. 
To minimize nucleic acid isolation failures, the first 750,000 cells were 
used exclusively for DNA isolation. When more than 750,000 cells were 
recovered, the sample was split 50/50 for DNA and RNA isolations. 
When more than 4 million cells were recovered, multiple aliquots were 
stored for future use. Cells destined for DNA isolation were stored as 
snap-frozen pellets, while samples for RNA extraction were lysed in 
QIAzol before long-term storage at −80 °C.

Samples from clinical sites in Spain were collected and shipped 
using the provided CoMMpass collection kits. Red blood cells were 
removed from the PB and BM specimens using a red cell lysis buffer, and, 
following a PBS wash, the remaining white blood cells were counted. 
After red cell lysis, the isolated cells were quality controlled using 
flow cytometry to determine the percentage of PCs in the PB and BM 
specimens. If the PB showed less than 1% circulating PCs, white blood 
cells were used as the constitutional DNA source; however, when >1% 
circulating PCs were observed, enriched CD3-positive T cells were used. 
The isolated PB cells (1–5 million cells) were snap-frozen as dry pellets 
for constitutional DNA isolation. The isolated BM cells were stained 
with anti-CD138 microbeads, and PCs were enriched using a Miltenyi 
autoMACS Pro Separator. The enriched CD138+ cells were stored as 
snap-frozen dry pellets, and, when possible, a separate aliquot was lysed 
with QIAzol and stored at −80 °C until shipped on dry ice to VARI for iso-
lation. The purity of the CD138-enriched PC fractions was determined 
using flow cytometry with antibodies against CD38, CD138 and CD45.

Samples collected in Italy were treated with red cell lysis buffer. 
After washing the remaining WBC with PBS, the cells were counted. The 
isolated PB cells (1–5 million cells) were snap-frozen as dry pellets for 
constitutional DNA isolation. The BM WBC were stained with anti-CD38 
magnetic beads, and PCs were enriched using a Miltenyi autoMACS 
Pro Separator. After sorting, the purity of the enriched specimens was 
assessed by flow cytometry using a fluorescent anti-CD38 antibody. 
Cells destined for DNA isolation were stored as snap-frozen pellets, 
while samples for RNA extraction were lysed in QIAzol before long-term 
storage at −80 °C.

Flow cytometry phenotyping and quality control process
All samples received at VARI were tested by flow cytometry to pheno-
type and quality control the received specimens. The antigens and 
corresponding commercial antibodies used in the flow cytometry 
assays are as follows: CD38 (BD Biosciences, 340677), CD45/PTPRC 
(BD Biosciences, 340665), CD138/SDC1 (BD Biosciences, 347205), 
CD319/SLAMF7 (Invitrogen/eBioscience, 12-2229-42), CD13/ANPEP (BD 
Biosciences, 340686), CD19 (BD Biosciences, 340720), CD20/MS4A1 
(BD Biosciences, 346581), CD27 (BD Biosciences, 654665), CD28 (BD 
Biosciences, 348047), CD33 (BD Biosciences, 340679), CD52 (Life Tech-
nologies, MHCD5204), CD56/NCAM1 (BD Biosciences, 340724), CD117/
KIT (BD Biosciences, 340867), FGFR3/CD333 (R&D Systems, FAB766P), 
κ (BD Biosciences, 643774) and λ (Life Technologies, MH10614). 
Flow panels performed included CD38 × CD45 × CD138 × CD56 (ini-
tial BM and PB screening panel 1), CD38 × CD45 × CD138 × CD319 
(updated screening panel 1 after the introduction of daratumumab), 
CD38 × CD45 × cytoplasmic κ × cytoplasmic λ (BM and PB screening 
panel 2), CD38 × CD45 × CD138 × either CD13, CD19, CD20, CD27, CD28, 
CD33, CD52, CD117 or FGFR3, and propidium iodide-stained nuclei to 
determine the DNA content of each tumor.

Nucleic acid isolation
All nucleic acid isolations were performed at VARI. DNA was extracted 
from the dry cell pellets with the Qiagen Gentra Puregene Tissue Kit 
(Qiagen, 158667) with isolated DNA suspended in Qiagen buffer ATE and 
stored at −20 °C. DNA was extracted from PB samples using the Qiagen 
QIAsymphony, which uses magnetic beads for automated sample pro-
cessing. Blood tubes were either processed immediately upon receipt 
or frozen at −20 °C and processed in batches. QIAsymphony extractions 
were performed using the DSP DNA Midi Kit (Qiagen, 937255). DNA was 
eluted in Qiagen buffer ATE and stored at −20 °C. DNA was quantified by 
NanoDrop spectrophotometric analysis as well as by fluorescence using 
Qubit 2.0 to determine dsDNA content. Sample quality was determined 
by agarose gel or Agilent TapeStation Genomic ScreenTape. Samples 
with at least 250 ng of dsDNA were submitted to TGen for analysis.

Tumor cells designated for RNA extraction were dissolved in  
QIAzol Lysis Reagent (Qiagen, 79306), stored at −80 °C and extracted 
with the Qiagen RNeasy Plus Universal Mini Kit (Qiagen, 73404). RNA 
was eluted in nuclease-free water and stored at −80 °C. RNA was quanti-
fied by NanoDrop spectrophotometric analysis, and RNA quality was 
evaluated using the Agilent Bioanalyzer 2100. Samples with a RNA 
integrity number (RIN) ≥ 6.0 and at least 200 ng of RNA were submit-
ted to TGen for analysis.

Sequencing library construction
Details on the specific procedures used for genome, exome and 
RNA-seq library construction and Illumina-based sequencing are  
provided in the accompanying Supplementary Information.

Primary sequencing data analysis
Analysis of all sequencing data was performed at TGen on a high- 
performance computing system using an internally developed analysis 
pipeline (Medusa Subversion, https://github.com/tgen/medusaPipe) 
and the MMRF CoMMpass-specific TGen05 recipe. This recipe is based 
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on the hs37d5 version of the GRCh37 reference genome used by the 
1000 Genomes Project, with gene and transcript models from Ensembl 
v74. Additional automated CoMMpass-specific primary processing was 
also performed (https://github.com/tgen/Post_Medusa_Processing). 
Code for the creation of the reference genome and gene models used, 
as well as secondary and tertiary analysis methods, are available on 
GitHub (https://github.com/tgen/MMRF_CoMMpass).

The paired-end fastq files generated in the long-insert whole 
genome sequencing (LI-WGS) and WES assays from each sequencing 
lane were aligned with bwa (v0.7.8-r455). The output SAM file was con-
verted to a BAM file and sorted using SAMtools (v0.1.19-44428cd), after 
which base recalibration was performed using GATK (3.1-1-g07a4bf8). 
When multiple lanes existed, they were merged into a single BAM file, 
duplicate reads were marked using Picard (v1.111(1901)) and joint indel 
realignment was performed using GATK to produce the final BAM 
files used for analysis. The quality of each assay was determined using 
multiple Picard and SAMtools quality control metrics. To be included 
in the analysis, both the tumor and constitutional sample needed to 
meet the following criteria for genomes: physical coverage of ≥25×, 
chimera read rate of <3% and derivative log ratio spread (DLRs) of 
≤0.2. To be included in the analysis, both the tumor and constitutional 
sample needed to meet the following criteria for exomes: >90% target 
bases at 20× coverage and chimera read rate of <3%. Somatic mutations 
were identified using Seurat (v2.6, https://github.com/tgen/seurat), 
Strelka (v1.0.13) and MuTect (v2.2-25-g2a68eab), and their outputs 
were combined to identify somatic events called by at least two call-
ers. The coding effect of each mutation was determined using snpEFF 
(v4.2 (build 2015-12-05)), and additional annotations were added using 
snpSIFT. Somatic structural abnormalities were detected using Delly 
(v0.7.6), to which additional filtering fields were added to ensure that 
informative read pairs spanned at least a 100 bp window on both break-
ends. The MYC STR flag was derived from Delly structural calls and 
indicates the detection of either (1) a MYC translocation (Ig or non-Ig) 
or (2) an intrachromosomal deletion with a break end of <3 Mb centro-
meric of, but not spanning, MYC. Somatic copy number abnormalities 
were identified with a CoMMpass-specific implementation of tCoNut 
(https://github.com/tgen/MMRF_CoMMpass).

Paired-end fastq files from the RNA-seq assays were aligned using 
STAR (v2.3.1z, 24 January 2013), and the output SAM file was converted 
to a BAM file and sorted using SAMtools followed by duplicate marking 
with Picard. For RNA-seq to be included in the analyses, we required 
at least 50 million read pairs (100 million reads) generated from each 
library, a 5′ bias ratio ≥0.5 and a 5′/3′ bias ratio ≥0.75. Gene expression 
estimates were determined using multiple tools. Counts were extracted 
from the unsorted SAM file using HtSeq (v0.6.0). TPMs were estimated 
with Salmon (0.7.2) using the fastq reads as input for quasi-alignment 
to a transcriptome defined by the GTF gene model. To correct for the 
variable level of immunoglobulin transcription between samples that 
compress the TPM values, we removed plasma-cell specific transcripts, 
including immunoglobulin, mitochondrial, rRNA and chrY genes, from 
the final TPM calculation (https://github.com/tgen/Post_Medusa_Pro-
cessing). Gene fusion events were identified using the TopHat-Fusion 
workflow in TopHat2 (2.0.8b) followed by independent cross-validation 
that an associated genomic event existed in the matched LI-WGS assay.

The genotypes of each result file were compared using SNPsniffer 
(v5; https://github.com/tgen/snpSniffer) to ensure that the constitu-
tional DNA, tumor DNA and tumor RNA were from the same individual 
and that each patient was uniquely represented. To ensure accurate 
alignment with clinical data, molecular predicted sex was required 
to match the clinically recorded sex, and, when available, the clinical 
immunoglobulin isotype was confirmed to match the isotype defined 
by flow cytometry and RNA-seq. All constitutional DNA samples were 
manually reviewed to ensure that they represented a diploid genome. 
Potential low-level cross-contamination of the tumor DNA speci-
mens was determined by comparing the number of high-confidence 

mutations detected versus the percentage of those mutations that 
exist in dbSNP.

Survival analyses
Survival curves were computed using the Kaplan–Meier method as 
implemented in R by the survfit function from the survival (v3.1-8) 
package and plotted using the ggsurvplot function from the survminer 
(v0.4.6) package. Pairwise comparisons of survival curves were cal-
culated using pairwise_survdiff from the survminer package. Time to 
second-line survival estimates were computed using the TTSLT_Censor_ 
Flag (censt2line_curated) and Time_To_Second_Line_Therapy (ttct2line_ 
curated) fields (Supplementary Table 1). OS estimates were computed 
using OS_Censor_Flag (censos) and Time_To_Censored_OS (ttcos)  
fields. Univariate and multivariate Cox proportional hazards models 
were calculated using the coxph function from the survival package.

Secondary sequencing data analysis
Details on the specific secondary analysis procedures used for the inte-
grated analysis, consensus clustering, along with clinical and molecular 
associations with subtypes are outlined in detail in the accompanying 
Supplementary Note.

Statistics and reproducibility
No statistical method was used to predetermine sample sizes, and 
each experiment used all samples meeting the outline quality control 
requirements. The investigators were not blinded to allocation during 
experiments, as subset allocation was based on observed features and 
outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MMRF CoMMpass study was funded in part by a precompetitive 
consortium of pharmaceutical companies that had early access to each 
data release. This body of work uses data from Interim Analysis 22, the 
most recent nonembargoed dataset available at this time, which includes 
the full 8 years of planned observation for 963 of 1,143 (84.3%) patients. 
All of the data needed to reproduce the presented observations are fully 
accessible. These data have been available on two platforms for the major-
ity of this study. The nonidentifiable clinical data and processed datasets 
are on the MMRF researcher gateway (https://research.themmrf.org/), 
where data are freely accessible for all academic researchers who register. 
For-profit entities can contact the MMRF to negotiate access. Identifiable 
raw DNA and RNA-seq read data are deposited in dbGAP under accession 
phs000748. All sequencing read data in dbGAP are available under the 
General Research Use consent group and can be freely accessed through 
the standard dbGAP data access request process. As part of a data-sharing 
agreement with the National Institutes of Health—National Cancer  
Institute, the IA11 dataset was added to the Genomic Data Commons 
(GDC; https://gdc.cancer.gov/). Nonidentifiable clinical data and  
processed sequencing data from that release are available from the 
GDC, where the processed data originates from their harmonized  
data processing pipeline. Going forward, the clinical and molecular 
datasets will also be available at https://www.mmrfvirtuallab.org/ and 
can be accessed through an email to mmrfcommpass@themmrf.org. 
Supplementary Tables 1–7 referenced in this manuscript are also freely 
available on Zenodo (https://doi.org/10.5281/zenodo.10608273).

Code availability
The complete analysis pipeline used to process all sequencing result 
files is publicly available on the TGen GitHub repository (https://github.
com/tgen). The pipeline code base, individual repositories and soft-
ware version are noted in the Methods.
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Extended Data Fig. 1 | Survival outcomes of the cohort. Pointwise survival 
estimates are shown by the respective dark lines, while the 95% confidence 
interval is shown by the matching shaded bands. (a) Time to second line therapy 
(median 38.1 months, 95% CI = 35.2–40.6 months) and (b) overall survival (OS; 
median 103.6 months, 95% CI = 92.7–not met). The median of the CoMMpass 
cohort has been met; however, as of the IA22 release, there is insufficient 
follow-up to accurately report the upper limit of the OS 95% confidence 
interval. As expected, ISS stage stratified patients into three clinically distinct 
classes. (c) Time to second line therapy outcomes for patients classified as ISSI 
(53.7 months, 95% CI = 44.9–63.3), ISSII (35.7 months, 95% CI = 31.5–42.2) and 

ISSIII (24.4 months, 95% CI = 20.6–28.5) at diagnosis are clearly different. Pairwise 
outcomes were compared by the log-rank test after multiple testing corrections 
using the Benjamini–Hochberg method. Significant differences in outcomes 
were observed ISSI vs ISS2 (P = 7.6e−06), ISS1 vs ISS3 (P < 2e−16) and ISS2 vs ISS3 
(P = 2.9e−05). (d) OS outcomes for patients classified as ISSI (103.9 months, 95% 
CI = NA–NA), ISSII (median not met, 95% CI = 91.3–NA) and ISSIII (53.9 months, 
95% CI = 43.3–59.6) at diagnosis are compared with significant differences in 
outcomes observed for ISSI vs ISS2 (P = 0.00023), ISS1 vs ISS3 (P < 2e−16) and ISS2 
vs ISS3 (P = 2.2e−09).
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Extended Data Fig. 2 | Copy number consensus clustering matrix. Consensus 
clustering matrix with an optimal clustering solution of K = 8. The M3C (Monte 
Carlo reference-based) consensus clustering algorithm was applied to the CN 

measurements of 26,771 (100 Kb) intervals across the GRCh37 reference genome 
for 871 WGS BM-derived baseline samples. Five of the eight subtypes include only 
samples classified as hyperdiploid.
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Extended Data Fig. 3 | Survival outcomes for patients with gain(1q21) and 
del(13q14). (a) Time to second line therapy, and (b) OS outcomes for CoMMpass 
patients with gain(1q21) and del(13q14) (both), gain(1q21) alone, del(13q14) 
alone and those with neither event. gain(1q21) was defined as a gain of 1 or 
more copies of 1q21, whereas del(13q14) was defined as a loss of one copy of 
13q14. There is a significant difference in time to second line therapy and OS 
for all groups compared to the group with neither event (p < 0.05); however, 
there is no significant difference between the groups with gain(1q21) and/or 
del(13q14). The median time to second line therapy for gain(1q21), del(13q14) 
patients was 29.3 months (95% CI = 24.4–33.7), while gain(1q21) was 35.3 months 
(95% CI = 23.6–49.2), del(13q14) was 35.7 months (95% CI = 31.4–40.6), and for 

those with neither, it was 51.4 months (95% CI = 42.0–55.9). The median OS for 
gain(1q21), del(13q14) patients was 69.2 months (95% CI = 55.7–97.4), while 
gain(1q21) was 83.2 months (95% CI = 56.0–not met), del(13q14) was 92.7 months 
(95% CI = 72.7–not met), conversely the median has not been reached for those 
with neither. (c) In a univariate Cox proportional hazards model, both gain(1q21) 
(P = 8.2e−05) and del(13q14) (P = 0.0022) were found to significantly impact OS 
outcome using a Wald test. (d) In a multivariate model, both gain(1q21) (n = 307) 
and del(13q14) (n = 453) were found to have a significant impact on outcome 
within the full cohort of patients with CN data (n = 871). The box represents the 
hazard ratio, and the error bars represent the 95% confidence interval.
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Extended Data Fig. 4 | RNA-seq consensus clustering matrix. Consensus matrix showing the consistency of class assignment for K = 12 clustering of RNA-seq data 
derived from 714 BM baseline samples and 4811 feature-selected genes.
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Extended Data Fig. 5 | RNA subtypes and association with copy number. Copy number states for patients by RNA subtype are shown. Diploid copy number is 
represented as 2 (white), copy loss is shaded in blue and copy gain is shaded in red. Rare copy number values exceeding 4 are represented as a copy number value of 4 to 
maintain uniformity in the heatmap scales for gain and loss.
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Extended Data Fig. 6 | Relationship between proliferation index and RNA 
subtypes. The association with an RNA-seq-defined proliferation index and 
CoMMpass subtypes is shown (n = 714). The Bergsagel proliferation index27 for 
each sample was determined by calculating the geometric mean expression of 
12 genes (TYMS, TK1, CCNB1, MKI67, KIAA101, KIAA0186, CKS1B, TOP2A, UBE2C, 

ZWINT, TRIP13 and KIF11). The PR subtype had the highest median proliferation 
index score. The index range is shown as a boxplot with the upper and lower 
bounds of the box representing the 25th and 75th percentile, while the center line 
indicates the median and whiskers represent the highest and lowest value within 
1.5 (IQR).
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Extended Data Fig. 7 | NF-kB index distribution by RNA subtype. The 
association with an RNA-seq-defined NF-kB index and the CoMMpass subtypes 
is shown (n = 714). The NFKB(11) index for each sample was determined by 
calculating the geometric mean expression of 11 genes (BIRC3, TNFAIP3, 

NFKB2, IL2RG, NFKB1, RELB, NFKBIA, CD74, PLEK, MALT1 and WNT10A)33,34. The 
index range is shown as a boxplot with the upper and lower bounds of the box 
representing the 25th and 75th percentile, while the center line indicates the 
median and whiskers represent the highest and lowest value within 1.5 (IQR).
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Extended Data Fig. 8 | Low-purity RNA subtype association with low-purity 
metrics. The low-purity RNA subtype was defined based on an association of 
the samples in this category with multiple independent measures of sample 
purity. (a) An index associated with genes expressed in non-B-cell tissues 
was used to identify samples with contamination of non-B lineage cells in the 
CD138+-enriched cell fractions (n = 714). (b) Tumor purity was estimated from 
the exome copy number or mutation data based on the absolute allele frequency 
of constitutional variants in deletion regions or somatic SNV allele frequency 

in diploid regions of the genome when no usable deletions were detected in 
the tumor (n = 593). The range of estimated contamination (a) and purity (b) is 
shown as a boxplot with the upper and lower bounds of the box representing the 
25th and 75th percentile, while the center line indicates the median and whiskers 
represent the highest and lowest value within 1.5 (IQR). (c) The full distribution of 
observed somatic SNV allele frequencies (n = 593) is shown as a violin plot, where 
the median is indicated by the horizontal line and the population frequency of 
the value is indicated by the width of the plot.
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Extended Data Fig. 9 | Change in RNA subtype probabilities over time. RNA 
subtype probabilities for the 71 serial patients with RNA-seq data at two or more 
time points. All patients classified in the low-purity subtype at baseline have a 
discernable RNA subtype other than low purity at progression, supporting the 

observation that this subtype is driven by sample purity. Shifts from a non-PR 
baseline subtype to a largely PR subtype or partial population of PR cells are 
evident.
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Extended Data Fig. 10 | Deletion of CDKN2C in patients who transitioned  
to PR. Two patients that transitioned to the PR subtype at progression acquired 
complete loss of function of CDKN2C due to overlapping deletion. Panels show 
long-insert WGS reads from tumor samples for patients MMRF_2523 (a) and 
MMRF_1269 (b) at baseline (non-PR) and progression (PR). (a) At baseline, patient 
MMRF_2523 was diploid (log2 CN = −0.0747) with no evidence of a deletion 
spanning CDKN2C; however, at progression, the patient had a 2-copy deletion 
of CDKN2C (blue bar, log2 CN = −3.3505) due to two unique deletions (red bars) 

spanning CDKN2C (green box). (b) At baseline, patient MMRF_1269 had a 1 
copy loss of CDKN2C (light blue bar, log2 CN = −0.3511) due to a larger deletion 
on chr1. There is also read evidence supporting a deletion involving CDKN2C/
FAF1, suggesting that a subclonal population with complete loss of CDKN2C was 
present at diagnosis in this patient. At progression, when the patient transitioned 
to PR, the patient’s tumor had a 2-copy deletion of CDKN2C (dark blue bar,  
log2 CN = −4.6212). In this patient, the minor clone harboring the CDKN2C 
deletion at baseline constitutes the bulk of the tumor population at progression.
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