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Abstract
Remote attackers can recover “FPGA pentimento” - long-
removed data belonging to a prior user or proprietary design
image on a cloud FPGA. Just as a pentimento of a painting
can be exposed by infrared imaging, FPGA pentimentos can
be exposed by signal timing sensors. The data constituting
an FPGA pentimento is imprinted on the device through bias
temperature instability effects on the underlying transistors.
Measuring this degradation using a time-to-digital converter
allows an attacker to (1) extract proprietary details or keys
from an encrypted FPGA design image available on the AWS
marketplace and (2) recover information from a previous
user of a cloud-FPGA. These threat models are validated on
AWS F1, with successful AES key recovery under one model.

CCS Concepts: • Security and privacy→ Side-channel
analysis and countermeasures.

Keywords: Bias Temperature Instability, Time-to-Digital
Converter, Side-channel, Field Programmable Gate Array
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1 Introduction
Amazon, Microsoft, Alibaba, Baidu, Huawei, Tencent, and
Nimbix offer FPGAs as an on-demand cloud service. FP-
GAs efficiently accelerate common cloud applications in-
cluding neural networks [21], video transcoding [2], genome
sequencing [16], secure database transactions [6], network-
ing [54], homomorphic encryption [53], and other applica-
tions with strict security requirements.
Cloud FPGAs open the door to new security vulnerabili-

ties related to confidentiality [22, 24, 60, 61, 78], integrity [13,
34, 42, 45, 55], and availability [27, 48]. Signal timing sen-
sors [18, 26, 79] can extract cryptographic keys of active
computation within the FPGA [60], identify the active com-
putation running within the FPGA [28], implement covert
channels across dies on a 2.5D integrated package [22], and
perform attacks across chips on the same board [23, 61].
These attacks require the attacker and victim to be spa-

tiotemporally co-located on the same system. For this rea-
son, cloud FPGAs are often only temporally shared; they do
not allow multiple users to co-exist spatially on the same
FPGA. After a user relinquishes the cloud FPGA, the FPGA
is wiped [9, 40] before it is rented to another user.
This work shows that even after an FPGA is wiped, an

attacker can use an “FPGA pentimento” as an analog side-
channel to target previous FPGA user data. The victim no
longer resides on the device; they are not renting the FPGA
and have left no logical information. An FPGA pentimento is
the analog residue of digital data that remains on the FPGA
due to bias temperature instability (BTI) (aka burn-in). Our
experiments show that FPGA pentimenti are recoverable by
sensing BTI recovery using a time-to-digital converter (TDC)
and demonstrate that pentimenti are a real and extant threat
to cloud FPGAs. Much like infrared imaging can expose art-
work pentimenti (previous paint strokes since painted over),
we demonstrate that attackers can exploit FPGA pentimenti
(previous design and user data digitally wiped).

https://doi.org/10.1145/3620665.3640355
https://doi.org/10.1145/3620665.3640355
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BTI physically deteriorates transistors, thus negatively
affecting their propagation delay. The BTI effect is caused by
applying positive/negative (1/0) voltages to CMOS transis-
tors. Transistors undergo negative and positive BTI caused
by applied logical 0 and 1 values, respectively. BTI recov-
ery occurs when the transistors are no longer stressed; the
transistors partially revert to their previous fast state. By
measuring the speed and size of the recovery, an attacker
can deduce the previous value on a CMOS transistor (1 or 0).

We experimentally validate the burn-in threat on AWS F1
cloud FPGAs and a local AMD Xilinx ZCU102 FPGA. In both
cases, we demonstrate a discernible difference in the burn-in
behavior on an FPGA route before and after BTI degradation.
Since the route’s timing behavior depends upon the previous
burn-in value, an attacker can reliably extract the previous
data stored on that route.

Our experiments recover pentimenti in commercial cloud
FPGAs to expose two cloud FPGA security model violations
when the target design “skeleton” (the physical structure,
but not the contents) is known. An attacker can (1) extract
proprietary details or keys from an encrypted bitstream ac-
cessible via the cloud platform (i.e., the AWS marketplace)
and (2) recover non-transient runtime data from a previous
user of a cloud FPGA device by observing the BTI recovery
via circuit timing changes.

These findings are validated against a high-throughput
AES accelerator deployed on live AWS F1 instances. A key-
bit recovery attack is performed against the AES accelerator
in both attack scenarios (1) and (2). These results demon-
strate an attacker can extract individual key bits with high
likelihood via pentimenti in cloud FPGAs.

Section 2 provides background on BTI transistor degrada-
tion. Section 3 describes the threat model. We describe the
experimental setup in Section 4. Section 5 describes exper-
iments demonstrating the BTI effects on a local and cloud
Ultrascale+ FPGA. Section 6 uses these experiments to vali-
date the threat models. We describe related work in Section 8,
mitigations in Section 9, and conclude in Section 10.

Disclosure: We have disclosed the results to the affected
vendors. Amazon Web Services was originally notified July
2022. AMD Xilinx was originally notified in August 2022.

2 BTI as a Pentimento
Bias temperature instability (BTI) is a transistor degradation
behavior fundamental to modern field-effect transistors [43,
44]. Degradation, or burn-in, increases the propagation delay
(𝑇𝑃 ) of logic gates. BTI degradation recovers when the gate
stress is removed; the magnitude of that recovery depends
heavily on the process, age, and environmental parameters [7,
39, 49, 71, 72]. During recovery, the propagation delay will
decrease towards the nominal delay. Changes in propagation
delay create a side-channel conveying information about
how the logic gate was previously used.

CMOS logic gates consist of PMOS and NMOS transis-
tors. Negative BTI (NBTI) occurs when the PMOS transistor
gate voltage is negative relative to its other terminals (log-
ical value of 0), which results in positive charge migration
into the silicon dioxide insulation. Positive BTI (PBTI) af-
fects NMOS transistors when the gate voltage is positive
relative to the other terminals (logical value of 1), resulting
in negative charge migration into the insulating dielectric.
A static 0/1 logic input causes NBTI/PBTI degradation on
PMOS/NMOS transistors of the CMOS gate. BTI effects ac-
cumulate under voltage stress and increase rising (𝑇𝑃𝐿𝐻 ) and
falling (𝑇𝑃𝐻𝐿) propagation delays [46].
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Figure 1. Bias temperature instability burn-in affects
CMOS rise/fall propagation delay. An inverter has a
PMOS (top) and NMOS (bottom) transistor. A 𝑉𝑖𝑛 logical
value of 0 (1) allows current to flow through the PMOS
(NMOS) transistor, causing NBTI (PBTI). BTI effects gen-
erally increase the propagation delay of a circuit, 𝑇𝑃 . As
NBTI effects accumulate on the inverter, the low-to-high
propagation delay, 𝑇𝑃𝐿𝐻 , increases; PBTI effects increase the
high-to-low propagation delay, 𝑇𝑃𝐻𝐿 . We define Δps, the dif-
ference between𝑇𝑃𝐿𝐻 and𝑇𝑃𝐻𝐿 . The sign of Δps depends on
whether the BTI stress was caused by a 0 (NBTI) or 1 (PBTI).
Measuring Δps over time reveals the prior logical value on a
transistor and can form an information side channel.

Figure 1 demonstrates data-dependent BTI degradation ef-
fects on a CMOS inverter. A 0/1 input on the logic gate causes
NBTI/PBTI degradation on the individual transistors. These
changes are differentiable; over time, defects accumulate
and increase the rising (𝑇𝑃𝐿𝐻 ) and falling (𝑇𝑃𝐻𝐿) propagation
delays of the gate. BTI effects result in timing deviations
captured by the difference in rising and falling propagation
delays through the inverter. Rising and falling propagation
delays are compared in a single metric Δps = 𝑇𝑃𝐻𝐿 −𝑇𝑃𝐿𝐻 .
Figure 2 shows how BTI burn-in forms a pentimento on

an inverter – analog remanence of previous design state and
data. The rate and degree of BTI effects are driven by constant
voltages and dynamic switching [64]. NBTI degradation ef-
fects are more significant in recent technology nodes, which
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led to the study of NBTI for reliability concerns [10, 37]. Still,
both NBTI and PBTI continue to be measurable in state-of-
the-art process nodes [17, 41, 70, 72]. BTI effects on Δps are
differentiable if observed before and after BTI occurs; they
encode data about prior state, e.g., if the input to a gate was
previously a 0 or 1 value.

When BTI-causing values are removed or inverted, there is
a partial defect recovery that improves transistor switching
speed and reduces gate propagation delay [10, 15, 56–58].
BTI recovery occurs in PMOS and NMOS transistors [30].
The magnitude of the recovery depends on the depth of
charge carrier traps, process characteristics, device age, and
environmental conditions.

NBTI and PBTI recovery differ inmechanism and timescale
[30, 31, 39]. NBTI recovery is due to defect removal via the
recuperation of broken bonds with positively-charged hy-
drogen atoms [36, 56]. PBTI recovery is due to the removal
of trapped negatively-charged electrons in the transistor di-
electric [44]. PBTI electron charge traps are energetically
deeper than NBTI positive charge traps [76]; this affects the
recovery timescale of PBTI relative to NBTI [30, 31, 39].
Figure 2 shows how the data-dependent behavior of BTI

recovery is also a pentimento that encodes information about
the prior state, e.g., if the input to a gate was previously a 0
or 1 value. The shorter timescales of NBTI and PBTI recovery
and NBTI/PBTI differences due to trap behavior mean the
side-channel can be observed much more quickly than the
burn-in side-channel. BTI recovery effects are observable via
differentiable changes in Δps and can be exploited.

FPGAs contain many resources that undergo BTI and can
be targeted in pentimenti attacks: bitstream configuration
bits, programmable routing, configurable logic blocks (CLBs),
digital signal processors (DSPs), and block RAMs (BRAMs).
Cloud FPGAs add additional restrictions to increase security
and availability and make it harder to perform attacks. To
perform a successful attack, the victim resource should meet
the following:

1. BTI effects must occur: The target resource must be
used in a manner that induces burn-in.

2. BTI effects must be differentiable: The target re-
source should exhibit differences in circuit-level be-
havior due to the value held on it.

3. BTI-affected resources must be observable: Tar-
geted resources must be observable by the attacker.
The BTI must be measurable without elevated privi-
leges or physical access and pass design rule checks [9].

FPGA programmable routing meets all three conditions.
Specifically, we target the route between an arbitrary FPGA
register and a CLB. The programmable routing can be com-
posed into arbitrarily long sequences of transistors to in-
crease the magnitude of BTI effects, but these effects will be
more complex than studying a single inverter, as in Figure 2.
Additionally, programmable routes often carry sensitive data

PBTI (Input = 1)

ps

Burn-in Phase Recovery Phase

ps

Inverter A
Inverter B

PBTI (Input = 1)

NBTI (Input = 0)

P/NBTI Effects on , , and ps of an Inverter 

P/NBTI Burn-in/Recovery Effects on ps of an Inverter

PBTI (Input = 1)

NBTI (Input = 0)

NBTI (Input = 0)

Figure 2. 1 (PBTI) and 0 (NBTI) burn-in and recovery
on an inverter create differentiable effects that form
an analog side channel. In the top figures, the value of 1
(magenta) applied to an inverter causes𝑇𝑃𝐻𝐿 to increase and
has minimal effect on 𝑇𝑃𝐿𝐻 . If a value of 0 (cyan) is applied,
𝑇𝑃𝐿𝐻 will increase, with minimal effect on𝑇𝑃𝐻𝐿 . These cause
a differentiable effect on Δps: 1 (magenta) produces an op-
posing trend to 0 (cyan). The bottom figure shows how these
changes can be partially recovered through inversion and
produce differentiable behavior. The rate and magnitude of
changes in Δps will differ between inverters due to process
variations and environmental conditions.

(e.g., encryption keys and machine learning weights). Veri-
fying that a route from register to CLB exhibits pentimenti
threatens data integrity in most FPGA designs.
We measure BTI burn-in and recovery using Time-to-

digital converters (TDCs) implemented on the FPGA fabric.
TDCs measure delays through logic in the FPGA. There ex-
ists a large body of prior work on implementing TDC sensors
within cloud FPGAs [18, 23, 25, 28, 60, 61]. Prior work study-
ing BTI on FPGAs use Ring Oscillators [5, 52, 64] or off-chip
oscillators [80] which require elevated privileges to bypass
compiler checks or physical access, respectively. These tech-
niques do not satisfy item 3 above. Our experiments use the
open-source Tunable Dual-Polarity TDC [18], which can be
instantiated on cloud FPGAs.
The original sensor is designed for FPGA power mea-

surement; we re-purpose it without modifications to mea-
sure propagation delay and compute Δps = 𝑇𝑃𝐻𝐿 − 𝑇𝑃𝐿𝐻
as shown in Figure 1. The TDC measures changes in the
delay through a Route Under Test. Rising (0 → 1) and
falling (1 → 0) transitions from the Pulse Generator are
sent through the Route Under Test and into the Delay
Line. The Capture Clock records the propagation distance
in the Capture Registers. The propagation distance of the
rising and falling transitions (in bits) is converted to 𝑇𝑃𝐿𝐻
and𝑇𝑃𝐻𝐿 respectively using data in [18]. Finally, we compute
Δps = 𝑇𝑃𝐻𝐿 −𝑇𝑃𝐿𝐻 as in Figure 1 and plot it as in Figure 2.
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We instantiate the TDC on the target Cloud FPGA to mea-
sure the delay through a Route Under Test. The Route
Under Test carries secure information, e.g., an AES Key Bit.
The key bit value should induce PBTI if the value is 1 and
NBTI if the value is 0. This will cause differentiable behavior,
for example NBTI/PBTI would increase 𝑇𝑃𝐿𝐻 /𝑇𝑃𝐻𝐿 respec-
tively and cause an decrease/increase in Δps as in Figure 2.
The differentiable behavior caused by 1/0 values on the route
forms a side-channel.

3 Threat Models
Our threat models extract side-channel information about
previous cloud FPGA user data via temporal analog residue,
aka “pentimenti,” that arise from BTI effects. Our discussion
is framed in the context of the AWS F1 platform, though it
applies to other cloud FPGA platforms.
AWS enables customers to share/sell preexisting designs

to other AWS users through the AWS marketplace. AWS
provides these designs as an Amazon Machine Image (AMI)
and Amazon FPGA Image (AFI). The AFI provides the FPGA
bitstream, while the AMI is the host Linux image.

Figure 3 describes our threat models. 1○ A user rents and
loads a design containing confidential information (denoted
by the green key). 2○ The design remains programmed on
the FPGA and computes for some number of hours, allowing
the user data to experience BTI effects and burn-in (red key).
The victim FPGA is released back into the rental pool. AWS
performs a system wipe to reset the system and clear out any
data remanence [9, 40]. 3○ The attacker gains access to the
FPGA and loads the TDC sensor to extract the pentimenti.
With this setup, we can extract two types of previously

safe data using the techniques presented in this paper: Type
A design data and Type B user data.

Type A (Design Data): FPGA designs often contain con-
fidential information as netlist constants, e.g., cryptographic
keys or machine learning weights. The AFI promises to keep
such proprietary information secret. A purchased AFI does
not permit the user access to the FPGA source code or bit-
stream to preserve intellectual property rights. But this sensi-
tive information can be extracted via their pentimenti, as this
paper shows. We refer to these proprietary design constants
as Type A data; the victim is the AFI publisher.

TypeB (UserData):Type B data is from a previous user of
the FPGA. The previous user loads confidential information
onto an AFI at runtime. Since the attacker does not control
the loading and unloading of the design, an attack cannot rely
on gathering initial delay estimates (as with Type A data).
Thus, extracting Type B user data is a more challenging but
powerful attack that requires measuring BTI recovery.

The difference between Type A and Type B is subtle but
shifts the target from being the publisher of a design/AFI
(Type A) to the user of a design/AFI (Type B). While the
threat models differ, both follow the steps in Figure 3.

Threat Model 1 - Proprietary Design Data Extraction:
Threat Model 1 targets Type A Design Data encoded into the
design itself, e.g., a netlist constant holding a cryptographic
key or machine learning weight. The attacker is renting the
design, satisfies Assumptions 1 and 2 (discussed later), and
can control the loading and unloading of the design. AWS
guarantees to keep design intellectual property secret [9].
Thus, Threat Model 1 violates AWS F1 security guarantees.

The attacker extracts proprietary design information via
the following steps:

1. A malicious AWS F1 user rents an FPGA instance with
the intent to extract sensitive information from a third-
party design.

2. The attacker measures the routes that will hold the
sensitive data and gathers pre-burn-in route delay char-
acteristics as a baseline for comparison in Step 6.

3. The attacker loads a target design in Stage 1○ of Fig-
ure 3 that contains sensitive information stored in the
FPGA routes.

4. The attacker executes the target design until Stage 2○
of Figure 3 when the BTI effects burn in the FPGA
routes holding sensitive information.

5. The attacker initiates the attack phase (Stage 3○ of
Figure 3). They unload the victim design and load a
measure design that contains the TDC sensor from
Section 2 to measure the BTI degradation of the victim
routes via their timing behavior.

6. The attacker analyzes sensor data to extract sensitive
values from the victim design with high probability.

Threat Model 2 - Confidential User Data Extraction:
The attacker recovers confidential data from a previous vic-
tim tenant of the cloud FPGA (Type B). This model assumes
that the attacker can requisition an FPGA after the victim
has finished computing. The attacker extracts confidential
user data via the following steps:

1. A non-malicious AWS F1 victim user loads a design
in Stage 1○ of Figure 3. This design contains sensitive
information stored statically in the FPGA bitstream
(e.g., a netlist constant) or as runtime data.

2. The victim design executes, during which the sensitive
data is statically held in the FPGA resources. After
some time, the victim design has induced the burn-in
effect (Stage 2○ of Figure 3).

3. The victim completes their computation and yields the
FPGA back into AWS’s pool of available devices.

4. The attacker instantiates an AWS instance and is as-
signed the relinquished victim device.

5. The attacker loads in Stage 3○ of Figure 3 an FPGA de-
sign that contains TDC sensors connected to resources
that previously held sensitive information.

6. The attacker analyzes TDC sensor results to determine
the sensitive victim data with high probability.
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Figure 3. FPGA Pentimento Threat Models. 1○ A design containing confidential information (green key) is loaded onto the
FPGA. 2○ After this design runs for some number of hours, parts of the design are imprinted – a pentimento (red key) is left
on the FPGA due to analog remanence from BTI effects. 3○ The attacker loads their design with a BTI sensor to extract the
pentimento based on residual timing effects.

The difference between these two threat models shifts the
attack target from the producers of the design IP (Threat
Model 1) to a previous user of the cloud FPGA (Threat
Model 2). Both threat models are a fundamental violation of
the AWS FPGA F1 security guarantees. AWS guarantees that
“no FPGA internal design code is exposed” [9] through an
AFI leased from the marketplace, meaning Threat Model 1
should not occur. Furthermore, AWS states that they scrub
“FPGA state on termination of an F1 instance,” [9] mean-
ing Threat Model 2 leakage should not occur. Our results
demonstrate the feasibility of these threat models, which
show that burn-in is recoverable using a TDC sensor.
Threat Model 1 extracts Type A data, relying on As-

sumption 1. Threat Model 2 extracts Type B data, relying
on Assumption 1 and 2.
Assumption 1: The attacker knows the placement, or

“skeleton,” of the targeted routes that contains confidential
design information (Type A) or sensitive user data (Type B).
The attacker’s knowledge of the sensitive information’s

location could be derived from a publicly available design
or bitstream. For example, the OpenTitan hardware root of
trust distributes a prebuilt bitstream that a user loads with
sensitive information like cryptographic keys [50]. Xilinx
FINN provides prebuilt bitstreams for different neural net-
work architectures [74]. In both cases, the complete source
code and compilation scripts are available, which allows one
to determine the locations of the sensitive data – the keys
for OpenTitan and the neural network weights for FINN.
Other options to learn the target route placements in-

clude 1) the attacker is the original author of the AFI on the
AWS marketplace and knows design route details, and 2)
proprietary information about the design layout has been

leaked to an attacker. Additionally, when evaluating an im-
plementation’s security, it is common practice to assume the
architecture is publicly visible [51]. Thus, it is reasonable
to assume that the attacker knows the placement informa-
tion (Assumption 1). Loosening or removing this assumption
would strengthen the threat model, and extending the threat
model without Assumption 1 is left to future work.
Assumption 2: The attacker can access the same FPGA

the victim relinquished. Gaining access to a relinquished
cloud FPGA requires aspects of cloud cartography and co-
location attacks [8, 33, 59, 75, 77] that check out devices en
masse or leverage cloud FPGAfingerprinting techniques [65–
68]. Another potential option is a flash attack, where the
attacker locks up the available stock before the victim re-
leases their instance. If the attacker procures all the available
resources, they are guaranteed to obtain the relinquished
victim board. In our AWS experimentation, we commonly
received errors implying that we have reached the limit of F1
devices in the region, suggesting this approach is feasible.

4 Experimental Setup
We design experiments to study BTI burn-in and recovery
effects on the programmable routing of FPGAs. We create
four designs and sequence them in a series of phases. The
experiments in Section 5 leverage these designs to demon-
strate a successful proof of concept of Threat Model 1 and
2 remotely on an AWS F1 instance.

4.1 Experimental Designs
Our experiments use four independent FPGA designs in two
categories: Target and Measure. A Target Design biases a
set of routes with a sensitive value that an attacker wishes
to recover. These routes may be artificially generated, as



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Drewes et al.

Measure Design 
Data Bank

D Q

D Q

D Q

D Q

D Q

D Q

256

D Q

D Q

D Q

D Q

D Q

D Q

256

D Q

D Q

D Q

D Q

D Q

D Q

256

Capture ClockPulse Generator

Target Design 

C
apture R

egisters

R
ou

te
U

nd
er

 T
es

t
D

el
ay

 L
in

e

R
ou

te
U

nd
er

 T
es

t

Figure 4. Designs for on-FPGA measurement of BTI
burn-in and recovery effects in FPGA routing. The Tar-
get Design conditions a set of pre-determined routes to 1 or
0, the burn value. This induces BTI effects on transistors of
each route, which the attacker would intend to recover. The
Measure Design records the BTI degradation of multiple
Routes Under Test using TDC sensors. The TDC records
𝑇𝑃𝐻𝐿 and 𝑇𝑃𝐿𝐻 to compute Δps as in Figure 1. Changes in
Δps are due to BTI burn-in and recovery effects and form a
side channel that reveals unknown data.

in Experiment 1 and 2, or part of a realistic AES core, as
in Experiment 3. A Measure Design contains the TDCs
required to instrument the routes containing sensitive data
of the Target Design. The four designs are as follows:

Artificial Target Design: Figure 4 presents the Target
Design that biases a set of routes by holding them to a fixed
0 or 1 value. The data held on these routes under test repre-
sent the Type A or Type B data that an attacker wishes to
recover. The Routes Under Test are generated artificially
by specifying a source pin and destination pin (correspond-
ing to the Pulse Generator and Delay Line input in the
Measure Design) and a desired path delay to the Vivado
router. The routes tested are 1k picoseconds, 5k picoseconds,
and 10k picoseconds in length to better understand how BTI
burn-in and recovery are affected by route characteristics.

ArtificialMeasure Design: Figure 4 presents a high-level
view of the architecture for measuring the propagation de-
lay of the routes under test. We instantiate the TDC on the
target FPGA to measure the delay through a Route Under
Test. Routes from the Target Design generate routing con-
straints that yield identical routes for the Measure Design.
The Pulse Generator sends transitions through the Route
Under Test and into the Delay Line. The Capture Clock

records the propagation distance in the Delay Line with
the Capture Registers. The Route Under Test carries
secure information, the Type A or Type B data.
The propagation distance is measured as the Hamming

weight of the Capture Register output and reflects the
delay through the Route Under Test [18, 24]. We convert
the propagation distance to a delay using calculations in [18]
and compute Δps. By tracking the change in Δps caused by
P/NBTI degradation and recovery, the side-channel can be
exposed to exploit Threat Model 1 and 2.

AES Target Design: Our second Target Design is a de-
ployment of the Secwork AES[62] core. This mature Ver-
ilog implementation of the NIST FIPS 197 standard supports
128-bit blocks and 256-bit keys. The core contains its own
key/data memory, which is loaded at runtime and connects
to a single cipher and decypher block. The design’s foot-
print is only a few thousand flip-flops and look-up tables
(LUTs). We parameterize the core to instantiate 64 internal
cipher blocks to reflect a high-throughput, cryptographic
cloud FPGA accelerator. The design is placed and routed
in one synchronous logic region using the default compila-
tion parameters of the tool; we do not constrain the routing
or placement in any way. The AES key bit wires are dis-
tributed to each cipher core and routed by the tool without
constraints. The sensitive AES key value that determines
the value of each key bit route is loaded into the AES core
at runtime. The route lengths naturally distribute across a
range of 6-10k ps. FPGA clock frequencies of designs rarely
exceed 300-400MHz at best, making our 100MHz AES ac-
celerator a reasonable mid-end design. The design’s clock
period determines the latitudes given to the place and route
tool and, thus, the maximum length of the route generated.
For a 100MHz clock, the tool can generate 10k ps delay paths
when faced with congestion, physical location constraints,
etc, as discussed in Section 7.

AESMeasureDesign: TheAESMeasureDesignmeasures
the propagation delay through the sensitive key bit routes
of the AES Target Design. We select the longest sub-route
of each key bit for BTI burn-in and recovery analysis. The
TDCs are placed using the samemethodology as the Artificial
Measure Design, with an extra two “jumper” routes to link to
the head and tail of the target key bit route. This does mean
that the Route Under Test is not exclusively from the AES
Target Design. However, if the “jumper” is significantly less
than the segment of the key bit route it connects, then the
delay effects from the jumper are negligible. We place 256
TDCs to target every one of the key bit routes in the AES
accelerator.

4.2 Experimental Phases
These designs form the basis of three experimental phases:
Calibration to configure and obtain a baseline measurement
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for the TDCs, Condition to induce the BTI effect on a pre-
defined set of routes, and Measure to capture Δps. We aim
to sequence Measure and Condition phases to induce and
measure BTI effects, which will be visible as changes in Δps.

Calibration Phase: Calibration determines a TDC con-
figuration for each TDC used for every subsequent exper-
imental measurement. Each TDC defines a configuration
parameter, 𝜃 , that defines the delay between the Launch and
Capture clock domains in the TDC. A short Trace of samples
is taken from each TDC to calibrate a TDC. 𝜃 then is reduced,
and another sample is taken. This process is repeated until
the rising and falling transition from the Pulse Generator
is located at the top of the Capture Registers. This final
calibration value is 𝜃𝑖𝑛𝑖𝑡 . 𝜃𝑖𝑛𝑖𝑡 and the initial Δps is computed
and saved for every route under test in the Measure De-
sign. We use this TDC calibration as a reference to study
the change in Δps over time, uncovering the BTI.

Condition Phase: During theCondition Phase, theTarget
Design design is loaded onto the FPGA. In the Artificial
Target Design, a pre-defined but randomly generated set of
burn values is applied to the routes under test. In the AES
Target Design, a constant-but-randomly-generated AES key
is loaded into the design and applied to the key bit routes
under test as burn values. These burn values represent Type
A or Type B data that induce value dependent BTI effects.

Measure Phase: The Measure Phase loads theMeasure
Design and configures all TDCs to their respective 𝜃𝑖𝑛𝑖𝑡 .
For each Route Under Test, fifteen traces are taken as 𝜃
is iteratively decreased from 𝜃𝑖𝑛𝑖𝑡 . This reduces the effect
of architectural irregularities in the delay line [18, 20, 24].
The mean is computed on all samples within each trace.
Then, the mean of all traces is calculated to obtain values
for the rising and falling propagation distance through the
Route Under Test and into the Capture Registers. These
values are converted to 𝑇𝑃𝐻𝐿 and 𝑇𝑃𝐿𝐻 based on a derived
relationship of 2.8𝑝𝑠

𝑏𝑖𝑡
for UltraScale+ parts [18, 73]. Finally,

Δps is computed by subtracting 𝑇𝑃𝐻𝐿 and 𝑇𝑃𝐿𝐻
Over multiple Condition-Measure cycles, any deviation in

Δps could represent BTI-induced variation on a route. This
variation could potentially form an exploitable side-channel.

4.3 Experimental Assumptions
Our threat models rely on knowledge of the design “skeleton”
(TM1 and TM2) and the ability to locate a device relinquished
by a victim (TM2).We now refine our assumptions to a subset
of device operating conditions for the particular experiment.
We assume that in Experiment 1 (Root Cause Analysis), the
device is kept in constant temperature and voltage condi-
tions and is relatively new (having only 5-10 hours of light
use prior). For Experiment 2 (Cloud BTI Validation) and
Experiment 3 (AES Attack), we assume the data-center oper-
ating temperature and voltage conditions are nominal, and

the device is not too old to exhibit measurable BTI changes.
However, we are unable to control this and can only show
that in general the attack works. When the attack fails we are
left to infer with limited knowledge which of the operating
condition assumptions was violated. We assume that for Ex-
periments 2 and 3, the attacker can gain access to the FPGA
promptly after being relinquished by a user (within a minute
after the AWS reset process, which takes 2-3 minutes).

5 Experimental Results
We perform two experiments to demonstrate BTI effects on
FPGA platforms. Experiment 1 uses a new ZCU102 Ultra-
scale+ FPGA development board to study BTI burn-in and
recovery timescales in a controlled, constant-temperature
environment. Experiment 2 validates that burn-in and recov-
ery effects of Threat Models 1 and 2 are measurable on
the AWS F1 platform in an uncontrolled environment.

5.1 Experiment 1: Root Cause Analysis
Experiment 1 studies BTI degradation and recovery effects on
a local, new FPGA. This allows us to characterize the burn-in
effects while controlling temperature, FPGA age, and system
computation. The experiment demonstrates that the burn-
in degradation occurs and is differentiable. Additionally, it
shows that BTI is non-permanent; recovery is measurable
and differentiable, which is required for Threat Model 2.

A ZCU102Ultrascale+ is placed in a temperature-controlled
forced convection oven. The ZCU102 is factory-new; thus,
little prior BTI degradation has occurred. The board is placed
in a Lab Companion OF-01E oven and set to 60◦C to limit
environmental noise and increase BTI burn-in and recov-
ery rates. The experiment studies 48 routes: 16 with a delay
of 1000 ps, 16 with 5000 ps, and 16 with 10000 ps. These
routes are surrounded by heat-inducing computation to ac-
celerate the BTI effect through increased heat generation.
A randomly generated value 𝑋 is applied to each route for
200 hours to induce BTI degradation, followed by a 200-hour
recovery period that applies 𝑋 to induce BTI recovery.

Sequence: Experiment 1 is divided into three experimen-
tal periods consisting of phases from Section 4.2.

• Calibration, Hour 0: The Calibration Phase is exe-
cuted to compute the 𝜃𝑖𝑛𝑖𝑡 for each of the 48 routes.

• Burn-In, Hours [0,200): The burn-in period alter-
nates between Condition and Measure Phase. The Con-
dition Phase applies the burn values 𝑋 to the 48 routes
for one hour. Then, theMeasure Phase is launched, and
the TDC sensors measure Δps for each of the 48 routes
under test as described in Section 4.1. The measure-
ment phase takes about 52 seconds to, then the FPGA
is put back into the Condition Phase for another hour,
and the process repeats 200×.

• Recovery, Hours [200,400): The recovery period is
similar to hours [0,200), except the Condition Phase



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Drewes et al.

loads 𝑋 , the complement of 𝑋 , into the 48 routes. This
period focuses on understanding BTI recovery effects.

Results: Figure 5 plots the 400-hour results of Experi-
ment 1 for three different route delays: 1000 ps, 5000 ps, and
10000 ps. A switch from burn-in values 𝑋 to recovery values
𝑋 happens at the 200-hour mark. Data points are colored
cyan if their burn value 𝑋 is a logical 0 and magenta if their
burn value 𝑋 is a logical 1. A red background indicates that
the value applied to the routes is the burn value 𝑋 , and a
green background is the BTI recovery period where the val-
ues are complemented 𝑋 . Finally, we center the data based
on the Δps at hour 0; any deviation from zero indicates BTI
degradation or recovery-induced variation on that route.

Figure 5. Experiment 1: Root Cause Analysis. Three sets
of 16 routes (1000 ps, 5000 ps, and 10000 ps) are routed on a
new ZCU102 FPGA. A random burn value 𝑋 is conditioned
into the routes during the 200-hour burn-in period. Then, a
200-hour BTI recovery period is induced by applying 𝑋 into
the routes (green background). Δps is recorded every hour.
Routes conditioned with logical 0 behave differently than
routes conditioned with logical 1 in the burn-in and recovery
periods. This reveals the unique, differentiable effects of
P/NBTI burn-in and recovery. From this data, we conclude
that Threat Model 1 and Threat Model 2 are feasible.

Analysis: A trend is immediately apparent during the
burn-in phase (red half) of Figure 5. The Δps corresponding
to the burn value 0 (cyan) routes decreases from hour zero.
The Δps of the burn value 1 (magenta) routes increase from
hour zero. Larger routes experience a bigger relative change
in Δps magnitude. All routes show a clear difference between
0- and 1-burned routes. These results indicate that Threat
Model 1 is possible. If an attacker can observe BTI burn-in
effects on a route before and after a design has been run, they
can deduce the burn value on a route and observe a side channel.
Figure 5 also shows that the 1000 ps routes have ±[1, 2]

ps difference between the rising and falling transition at the

200-hour mark. The 5000 ps routes have a ±[5, 6] ps differ-
ence, and the 10000 ps routes have a ±[10, 11] ps difference.
This matches our expectation of burn-in behavior: the route
length, which is correlated with the number of transistors
in the route, determines the magnitude of the BTI effect.

At the 200-hour mark, the experiment switches from burn-
in to recovery, i.e., the condition route values change from 𝑋

to 𝑋 . The routes with logical 1 burn-in in 𝑋 in the first 200
hours (and logical 0 in the recovery period) quickly return to
their pre-burn state across all route lengths. This recovery
takes approximately 30-50 hours before the propagation de-
lay difference between the rising and falling transition has
returned to the original state at hour 0. We do not see the
same behavior in the routes that were logical 0 in the first
200 hours and logical 1 in the second 200 hours; they recover,
but the process is much slower (over 200 hours).

These results indicate that BTI is elastic and non-permanent
and that recovery behavior differs depending on the burn-
in value. This pattern persists for all tested route lengths,
suggesting a fundamental difference between the NBTI and
PBTI effect on the 16nm FinFET transistors of the UltraScale+
device. The difference in BTI recovery indicates that Threat
Model 2 is possible. If an attacker can observe BTI recovery on
a route after a design has been run, they can easily deduce the
burn value on a route and observe a side channel.
The differentiable behavior of burn-in 0 and burn-in 1

recovery routes is a possible side channel for Type B data
(Threat Model 2). A Threat Model 2 attacker obtains the
FPGA during the recovery period, does not know the burn-
in values, and cannot apply the complement. Instead, they
can apply logical 0 to all routes, and stronger recovery will
indicate routes that previously held a logical value of 1. This
strategy is evaluated in the following section.

5.2 Experiment 2: Cloud BTI Validation
Experiment 2 tests Threat Models 1 and 2’s assumptions
about BTI effects on an AWS F1 cloud FPGA and informs
how an attacker can best use BTI effects. As a reminder,
in Threat Model 1, the attacker can perform initial device
characterization and load and unload the victim design for
as long as necessary. Crucially, this allows the attacker to
measure the burn-in period as well as the recovery period.
They aim to extract design intellectual property, e.g., netlist
constants holding cryptographic keys or neural network
weights. In Threat Model 2, the attacker may only measure
the recovery period. They aim to extract design intellectual
property, e.g., netlist constants holding cryptographic keys,
neural network weights, or dynamically loaded data.

As a result, we design an experiment that measures burn-
in over time (for Threat Model 1) and then recovery from
burn-in (for both threat models). This experiment is bro-
ken into an initial 24-hour phase of burn-in with randomly
chosen values and regular measurements, then a 24-hour
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phase of ‘recovery’ (burn-in with all 0 values) and regu-
lar measurements. We measure across eight FPGAs, labeled
{A,B,C,D,E,F,G,H}, all in the same AWS Dedicated Host. Each
FPGA runs the same design and uses the same set of pre-
generated random {1, 0} values for the burn-in phase, rep-
resented by a vector 𝑋 . The design contains 64 routes, each
of 1000 ps, 5000 ps, and 10000 ps, for 192 routes on a single
board and 1536 routes tested across all the FPGAs.

Setting all routes to logical 0 during recovery is motivated
by the results in Experiment 1; routes that were logical 1
in 𝑋 and switched to 𝑋 quickly returned to the original
value. Thus, it exhibits a more significant differential signal
for detection. For clarity, we refer to this recovery period
as burn-in 0, as routes will be left unchanged in a 0 state
throughout the entire duration of the experiment.

The cloud environment provides no control over tempera-
ture, and the device is likely years old. This experiment is
performed in the eu-west-2 and eu-central-1 AWS region, po-
tentially putting four years of wear on the devices [1]. These
factors will make BTI effects less observable [4]. These fac-
tors could affect the magnitude and rate of BTI degradation
and recovery, especially compared to Experiment 1. How-
ever, our goal remains to identify differentiable BTI behavior
caused by 0/1 values applied to routes.

Sequence: Experiment 2 is divided into three periods:

• Calibration, Hour 0: The Calibration Phase is exe-
cuted to compute the 𝜃𝑖𝑛𝑖𝑡 for each of the 1536 routes.

• Burn-In, Hours [0,24]: The burn-in period alternates
between Measure and Condition Phase. The Condi-
tion Phase applies the “unknown” burn values 𝑋 to
the routes for one hour. Then, the Measure Phase is
launched, and the TDC sensors measure Δps for each
of the routes under test, taking about 8 seconds. We
measure Δps for every route at 30-minute intervals.

• Recovery/0-Only, Hours [24,49]: The recovery pe-
riod alternates between the Measure and Condition
Phase. However, in the recovery period, the Condition
Phase runs with all 0 values as it represents execution
fully controlled by the adversary ignorant of 𝑋 or 𝑋 .
In 30-minute intervals Δps is measured.

Results: Figure 6 shows the average Δps of each route
length during our experiment. Per-route performance is dis-
cussed in more detail in Section 6. Each data point is the
average Δps for the given board across all routes of a partic-
ular burn-in value (magenta for burn 1 and cyan for burn 0)
for a specific length (1k, 5k, 10k). We recompute the starting
value at the switchover from burn 𝑋 to burn 0 (recovery), so
all boards show a Δps of 0 at 24 hours. As a result, magenta
points (burn 1 → burn 0) switch the sign of their Δps, while
cyan points (burn 0 → burn 0) largely stay near 0 Δps for
the recovery phase as they did not change burn values. This

(a) Board C: Most susceptible of the eight tested boards. No global Δps
trend, inverted 0/1 → Δps relationship.

(b) Board F: Least susceptible of the eight tested boards. Downward Δps
trend, predicted 0/1 → Δps relationship.

Figure 6. Experiment 2: Cloud BTI Validation.A random
burn value 𝑋 is conditioned into three sets of FPGA routes
for 24 hours: 64×1000 ps routes, 64×5000 ps routes, and
64×10000 ps routes. At 24 hours all routes are switched to
‘recovery’, applying burn-in value 0 to all routes. Δps is
measured twice per hour over 48 hours and is re-normalized
at the 24 hour switchover. Each data point is the average
of all 64 routes of a given length measured at a given time.
Both plots show differentiable BTI burn-in and recovery.

is in contrast to the ZCU102 data of Figure 5 where the tran-
sitions (burn 1 → burn 0 and burn 0 → burn 1) are plotted
continuously. This better reflects the view of an attacker
gaining access to the board at the switchover point, only
able to detect deviations from their first measurement.
Figure 6 shows the most and least susceptible boards of

the 8 boards that also exemplify two behaviors described
below. Other boards show behaviors similar to these boards.

Analysis: Overall, Experiment 2 demonstrates similar be-
haviors to Experiment 1. The magnitude of the change in
Δps is proportional to the route length as in Experiment 1.
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The magnitude is smaller on the cloud FPGAs than on the
new ZCU102 (±[.5, 1.5] ps vs ±10 ps for 10000 ps routes).
Environmental factors and the age of cloud FPGAs could
explain this decrease. Regardless, these results show that 𝑋
can be estimated during both burn and recovery/burn-0. The
estimation accuracy is explored in Section 6.

Consistent with our expectations, switching to recovery/0-
only at hour 24 causes differential behavior on burn-in 0 and
burn-in 1 routes on all boards. Extremely apparent in our
best case board, Figure 6a, the burn-in trend causes magenta
to fall below cyan transitions to cyan below magenta.
Our test boards demonstrate two categories of behavior,

global trends and inversion, exemplified in Figure 6. We
stress that this experiment was run across all eight boards
simultaneously, using the same FPGA image in the same
hardware chassis, thus sharing any environmental effects.
First, during the burn-in phase, boards A, B, C, and D

experience an initial burn-in effect, after which Δps stabilizes
and remains relatively constant. Boards E, F, G, and H also
exhibit a burn-in effect but have a global negative Δps trend
from hour 0 on all routes and route lengths. Regardless of
global trend, the longer routes show more clear separation.
Second, some boards show an inverted relationship be-

tween burn-in value and Δps. On boards B and F, burn-in
value 1 increases Δps and 0 decreases Δps, while all other
boards have a consistently inverted relationship. We believe
the inversion is a property of either the board itself, possibly
related to the quality or age of the voltage regulators, or a
poor initial tuning of the TDC (which is done per board)
potentially influenced by the quality of the board. For an
attacker, this only doubles the work per board, as they need
to test the complement of the entire extracted value.

In the context of the behaviors above, Figure 6a is a best-
case board with clear burn-in effects, no global trend, and
an inversion behavior. Figure 6b is a less susceptible board
with a global negative Δps trend and no inversion behavior.

For all boards, we find that a differential exists between a
burn-in value 0 or 1 routes in the first 24 hours, which influ-
ences the behavior of the route in the recovery/0-only period
in the following 24 hours. This differential is exploitable by
an attacker, and in the following section, we evaluate the
ability of an attacker to extract the burn value from the data
of boards A, B, C, D, E, F, G, and H in the face of the global
trends and potential burn-in trend inversion.

6 Data Recovery Attacks
Based on the behavior demonstrated in Section 5.2, we val-
idate our threat models with two additional experiments.
First, we attempt to recover arbitrary data from an idealized
design using data from Section 5.2. Second, we construct a
proof-of-concept attack on a cloud-resident AES accelera-
tor design. We analyze each experiment in the context of
Threat Model 1 and Threat Model 2. Our results show

that even given the complex operating conditions and wear
of cloud devices, both threat models are feasible on AWS F1.

6.1 Data Recovery on an Idealized Design
To measure the ability of an attacker to recover arbitrary
values using BTI effects, we perform clustering on the data
in Section 5.2 to predict burn-in values. We use a basic 2-
cluster k-means classifier, where the inputs are a vector of
Δps values for each route of a given length. For clustering the
burn-in phase, the vector contains samples from the start of
the burn-in to the time being considered. For clustering the
recovery/0-only phase, we do not use any Δps values from
the burn-in phase as to properly emulate an attacker gaining
access to the device after victim computation completes.
Clustering is performed on a per-board and per route-length
basis, yielding one line in the plot for each physical device
and route length. We then evaluate the accuracy of that
clustering given the ground truth: burn-in 0 or burn-in 1.
Figure 7 shows the per-board accuracy for 1000 ps and

5000 ps routes from hour 0 to 24, exclusively during the burn-
in phase. Figure 8 shows the per-board accuracy for 1000 ps
and 5000 ps routes from hour 24 to 48, exclusively during the
recovery phase. Any deviation from 50% accuracy (below or
above 50%) indicates an exploitable timing differential.
As expected, longer routes were significantly easier to

classify, as seen in Figures 7a and 8a vs Figures 7b and 8b.
During recovery, we observe that even for 1000 ps routes,
three boards (H, C, and E) achieve 80% accuracy within 12
hours. For 5000 ps routes, we see accuracy at its highest in
the first two hours after recovery begins, with all but Board
B above 80% classification accuracy.
Threat Model 1: Threat Model 1 allows the adversary

access to the burn-in and recovery/0-only phases, which
our results demonstrate can provide a meaningful advan-
tage over either in isolation. Notably, boards like Board B
were significantly easier to classify during the burn-in phase,
whereas most others were easier to classify during recovery.

Threat Model 2: Threat Model 2 only allows the adver-
sary access to the FPGA after all victim computation has
occurred and thus is represented by Figure 8. Based on these
results, we believe that 5000 ps or greater routes are likely eas-
ily classified by an adversary with access to a device shortly
after victim computation, and 1000 ps routes are recoverable
on many, but not all, boards using current techniques.

6.2 AES Key Recovery
Section 6.1 demonstrates the feasibility of Threat Model 1
and Threat Model 2 against an idealized design. The routes
used in these experiments were generated by specifying
desired path delays (1000 ps, 5000 ps, and 10000 ps) to the
FPGA router and the route’s precise predefined source and
destination pins. As a result, every Route Under Test in
theMeasure Design was identical to the route being biased
in the Target Design. This enabled studying the BTI effect
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(a) 1000 ps K-means Clustering Accuracy (Burn-In)

(b) 5000 ps K-means Clustering Accuracy (Burn-In)

Figure 7. Clustering Accuracy for the Burn-In Phase.
Plots show k-means clustering accuracy for each of the 8
boards distinguishing between its 64 routes burned-in with
a 0 or 1 value over the 24 hour burn period of Experiment 2.
At hour 0 the guessing accuracy is 50%. Any deviation from
50% accuracy demonstrates the attacker’s ability to exploit a
differential between 0/1 values burned into a route.

in exclusion and much more closely profiling the effect of
route length on side-channel recovery. These luxuries are not
available to an attacker, who must take an existing Target
Design and construct a Measure Design to instrument it.

In this section, we remove these simplifications and eval-
uate Threat Model 1 and Threat Model 2 against the AES
Target Design described in Section 4.1. This design imple-
ments an array of 64 AES cores, which share a key memory.
The design is placed and routed without constraint and given
the entirety of a Synchronous Logic Region. The AES Mea-
sure Design is then generated by an attacker in response to
the placed and routed AES core. This process involves using

(a) 1000 ps K-means Clustering Accuracy (Recovery/0-only)

(b) 5000 ps K-means Clustering Accuracy (Recovery/0-only)

Figure 8. Clustering Accuracy for the Recovery/0-only
Phase. Plots show k-means clustering accuracy for each of
the 8 boards distinguishing between its 64 routes during the
recovery phase (burn-in value of 0), after they were biased
with a burn-in value of 0 or burn-in value of 1 for 24 hours. At
hour 24 the guessing accuracy is 50%. Any deviation from 50%
accuracy demonstrates the attacker’s ability to distinguish
between a historical 0/1 value burned into a route

“jumper” wires to accommodate the targeted key route’s arbi-
trary source and destination pins. Each key route of the AES
Target Design is then a subset of the route measured by the
AES Measure Design, breaking the 1-to-1 mapping of the
prior experiments and introducing noise into measurements.

We evaluateThreatModel 1 andThreatModel 2 against
the AES Measure Design identically in structure to Experi-
ment 2. A 256-bit key vector is chosen before the experiment
begins to be loaded into the AES core’s key memory at run-
time. We will perform 24 hours of burn-in with 𝑋 in the
key memory being distributed to each of the cipher cores of
the design while regularly measuring (Threat Model 1). A
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full instance restart is performed, causing AWS’ proprietary
“wipe” and initialization procedure, same as what would oc-
cur if re-leased to a customer. This process takes 2-3 minutes.
After which, 24 hours of recovery begin, where a 0 vector is
loaded into the key memory to be distributed to the cipher
cores while regular measurements are taken. These steps are
performed on a set of 8 AWS F1 instances that we refer to as
{S,U,W,Y,Z,T,V,X}, for a total of 2048 tested key bits.

6.2.1 Recovering Keys. To recover keys, we generate a
candidate key using K-Medoid clustering on the combined
burn+recovery traces (matching Threat Model 1’s assump-
tions.) We also use the ratio of the distance of each key bit’s
Δps vector from the assigned cluster center to the other clus-
ter center as a metric to sort key bits by confidence. Finally,
we generate a plaintext-ciphertext pair using the real key.
Due to limitations in our infrastructure, we consider only
the latter half of the 256-bit key as an AES128 key.
Using these confidence values and the candidate key, we

perform a search that tries all possible variations of the can-
didate key, prioritizing flipping the bits with the lowest con-
fidence. We additionally limit the maximum number of flips
it will attempt to 20% of the keysize – 24 bits – in line with
our previous clustering accuracy. Each key is checked by
encrypting the plaintext and comparing the resulting cipher-
text. This process will only find a correct key in a reasonable
time if the highest-confidence bit that must be flipped is
in the ∼30 lowest-confidence bits. Our search strategy also
checks both the candidate key and the bitwise inverse of the
candidate key based on our observations from Section 5.2. If
𝑀 is the maximum number of flips we search for,𝑊 is the
highest confidence index of a flipped bit in the guess, then
our search will find the key in ≤ 2×∑𝑀−1

𝑐=0
(
𝑊 −1
𝑐

)
encryptions.

For five of our eight boards (V,W,X,Y,Z), we were able to
complete key recovery under Threat Model 1. Boards X and
Y had a single incorrect predicted bit, in both cases as the 6th
least confidently predicted bit. Board V had two incorrect
predictions, as the 4th and 12th least confident. Board W had
three incorrect predictions, as the 4th, 5th, and 12th least
confident. Board Z had five incorrect predictions, as the 5th,
7th, 9th, 10th, and 14th least confident.

After generating an initial key guess based on the confi-
dence of our clustering from the first 24 hours of burn-in,
using the confidence-directed key search we found the full
correct key in under a second for all five boards.
Figure 9 shows our clustering accuracy for the AES key

bit routes. Accuracy is very high for all our clusters, as these
routes are 10k ps, and combining the burn and recovery
phases yields further improvements in accuracy for most
boards. Further work evaluating the sensor behavior and
alternative clustering and confidence approachesmay be able
to identify outliers and prioritize them before key search.
Our recovery-only analysis (matching Threat model 2)

for most boards resulted in 7 incorrect bit predictions, all

(a) K-medoid Clustering Accuracy (Burn-In Phase)

(b) K-medoid Clustering Accuracy (Recovery/0-only Phase)

Figure 9. Clustering Accuracy for AES Experiments.
Plots show k-medoid clustering accuracy for each of the
8 boards, distinguishing between the 128 key-bit routes
burned-in with a 0 or 1 value over the 100 hour AES ex-
periment for burn (a) and recovery/0-only (b).

of which included at least one high-confidence incorrect
prediction. Using our current search strategy, our best Threat
Model 2 data will recover the key after ≈ 262 encryptions,
and thus we are not currently able to perform a complete
key recovery using only the recovery phase data.

7 Limitations
We have evaluated only a single experimental configuration
in what is a complex and unknown dynamic system. The
temperature condition, device wear, ...., all effect the ability
of an attacker to exploit this vulnerability. This paper has
shown that the attacks are possible with a high rate of success,
but the conditions which differentiate a successful attack are
not well understood. For example, our sensor in its current
form is vulnerable to ambient temperature or on-chip voltage
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shifts effecting the propagation distance of a signal through
the delay line. Should the temperature/voltage shift too dra-
matically in either direction, the signal will “fall out” of the
delay line. During experimentation on the AWS us-west-2
region we saw on particular days that the temperature or
voltage of the device changed so dramatically our sensor
failed to capture any results. These shifts were consistent
with the day/night cycles of the respective area.

We make a simplifying assumption that an attacker can
gain access to a target FPGA soon after it is relinquished by
a user. Our experiments do perform the full FPGA restart
process (completing AWS’s secret device “wipe”), but assume
the attacker gains immediate access after. Our results of
Figure 6a suggest that the majority of the bias effects are
occurring in the first few hours. If immediate access is not
possible, the attack may be more challenging.
Vulnerable designs have a key property of long routes

statically carrying sensitive data. Our AES 64 core design
demonstrated how simply sharing a resource (the key mem-
ory) between logical units can generate highly vulnerable
10k ps delay routes. There are a number of other mechanisms
which could potentially lead to long routes: 1) high conges-
tion designs, 2) low-clock frequency resulting in timing clo-
sures trivially met by long routes, 3) user defined placement
and routing decisions to meet timing or power constraints,
4) physical device topology (the distance from the PCIe lanes
to the Gigabit Transceivers) resulting in stretched routes. A
thorough investigation of the vulnerability of open-source
designs is required to understand the depth of vulnerability.
Despite high key bit extraction accuracy (90%+) our ex-

periments were unable to demonstrate successful full key
recovery under Threat Model 2, despite success under Threat
Model 1. A more in-depth analyses is needed to determine if
the high-confidence outliers which prevented full key extrac-
tion could be removed or whether the attacker instrumenta-
tion should be reevaluated. A full 256 bit key extraction is
also lacking. This omission is due to our highly-optimized
test infrastructure already equipped for 128 bit keys.

8 Related Work
Our attack is a single-tenant temporal side-channel – state
is preserved within the FPGA that provider fails to remove,
or is unable to remove, between subsequent users [11]. It
is common to “wipe” the FPGA device between successive
users [40] as a security precaution. Our approach subverts
these efforts as it measures analog remanence that remains
even after wiping. We show that our data recovery tech-
niques work even after performing the wiping done by AWS.
It is impossible to mitigate burn-in risk via a logical erasure
of the device because burn-in is a fundamental characteristic
of the device transistors that reflects previous logical values.

Tian et al. [67] demonstrate a single-tenant temporal covert
channel. They use ring oscillators to heat the FPGA (trans-
mitter) and detect temperature (receiver). They can trans-
mit hundreds of bits over a few minutes on cloud FPGA at
Texas Advanced Computing Center using Microsoft Catapult
hardware. To make their covert channel, the FPGA trans-
mitter and receiver must alternate obtaining and releasing
the same FPGA, which is possible but very difficult in other
cloud infrastructures (e.g., AWS). Using temperature as a
side-channel requires the user to get on the FPGA quickly;
temperature effects are short-term, e.g., the cloud FPGAs
return to ambient temperatures within a few minutes [67].
BTI effects are a more pernicious temporal channel. Instead
of measuring the tertiary effects of computation or a covert
channel, it is a direct measurement of a previous user or pro-
prietary design data, sometimes lasting hundreds of hours.

Zick et al. [80] demonstrate a single-tenant temporal side-
channel on a local FPGA by recovering previous user data
stored in LUT SRAMs. Their experiment has a burn-in period
of 922 hours at high temperatures to induce burn-in. Then,
the FPGA sat powered off for several weeks. Their exper-
iments were performed on a local Xilinx Kintex-7 KC705
development board. Unfortunately, their experimental re-
quirements are incompatible with the cloud FPGA attack
model. They use a highly precise, off-chip oscillator to en-
hance the on-chip TDC sensor timing resolution. This re-
sults in femtosecond-level timing precision. Such precision
is impossible on cloud FPGA TDC sensors since an attacker
cannot use off-chip components. On-chip TDCs operate at
approximately 10 ps precision on the UltraScale+, so it is
an order of magnitude difference with their sensor. They
perform recovery of data stored in FPGA LUTs (SRAM) and
specifically target transistors in the output buffers of the
SRAM bits. We ruled out the examination of this resource
since their burn-in effects are too subtle to measure with
cloud FPGA sensors, requiring femtosecond precision. We
target FPGA programmable routing. We show that our at-
tacks are deployable on cloud FPGAs (AWS F1 instances).

A significant body of prior work uses ring oscillators (RO)-
based sensors to measure long-term FPGA BTI effects [5,
52, 64]. RO sensors build a combinatorial loop through a
tested component and an inverter. The oscillation frequency
through the loop reflects the time taken for the signal to
propagate through that tested component, which changes
due to BTI effects. While ROs measure BTI effects, they have
two significant limitations. First, ROs have a single variable
output—the frequency of oscillation – that integrates the
propagation speed through the NMOS and PMOS transis-
tors. This is an essential factor as BTI stresses PMOS vs.
NMOS transistors differently. Our TDC sensor can separate
the differences in BTI stress on PMOS and NMOS. We use
this ability to differentiate between BTI degradation. Second,
ROs are often not allowed on cloud FPGAs. ROs use com-
binatorial loops, which violate the design rule checks and
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can be detected [35, 38]. Cloud FPGA providers can disallow
designs that contain self-oscillating circuits, e.g., as is done
by AWS. Our TDC-based sensor is more challenging to de-
tect since it uses computational structures that are common
to many FPGA designs. It was implemented on an AWS F1
instance. Thus, it passes AWS design rule checks.
Previous works have recovered SRAM user data on recy-

cled ICs [14, 32, 69]. Though SRAMs are volatile memory,
where logical data is lost on power-off, an imprint is left be-
hind and is recoverable. These techniques rely on measuring
the statistical power-on state of SRAM bits. They assume a
different threat model, e.g., requiring physical access.

9 Mitigations
This paper demonstrated that Threat Model 1 and Threat
Model 2 are exploitable in cloud systems. A determined at-
tacker could build more precise sensors to measure BTI on
shorter routes with shorter burn-in periods. Users should
take precautions to manage sensitive data to mitigate burn-in
effects, cloud FPGA providers should enforce stronger tem-
poral boundaries between users, and FPGA manufacturers
should consider architectural solutions to mitigate BTI.

User Mitigations: The cloud FPGA user should not al-
low sensitive data to sit unchanged on the FPGA for long
periods to avoid burn-in remnants. If data must statically
persist for long periods, the user should consider techniques
that periodically cycle sensitive data. Key rotation is com-
mon in cryptography [12, 19] and could be employed on
cloud FPGAs, though this is not always possible, especially
if data needs to be embedded into the RTL directly, e.g., in
random netlist constants as found in the OpenTitan. Key
masking [3, 29, 47] could also help reduce the number and
lengths of routes that hold a key but this is specific to crypto-
graphic algorithms and may not be feasible for other types of
sensitive data. Ideas of FPGA wear leveling [63] would likely
reduce the burn-in effects as well, but need to be verified.

If there are natural breaks in computation, the user could
move between different FPGAs in the cloud. A new FPGA
should be leased from the cloud provider, the application
moved, and the burn-in would start fresh on the new FPGA.

The user should strive to make routes that hold sensitive
data as short as possible. FPGA EDA tools already attempt to
make routes as short as possible, though focus on the critical
timing path, often at the expense of other routes. The ability
to specify that the tool minimize sensitive route delay would
reduce vulnerability to pentimento attacks.
A cloud FPGA user could mitigate the BTI remnants by

erasing their design and holding on to the instance for some
time before relinquishing it back into the user pool. The
tenant could invert the values of the sensitive routes to speed
up the recovery and thus limit the remaining BTI signal. Or
they could perform some other actions (perhaps toggling the

routes). This costs the user money commensurate with the
time they deemed sufficient to erase BTI effects.

Cloud Provider Mitigations: The primary issue cloud
providers could hope to resolve is the rapid reallocation of
FPGAs once yielded by a user. The cloud provider could
implement launch rate controls by withholding devices after
they are returned, for days, weeks, or longer to mitigate the
ability to recover the burn-in.
The cloud provider can attempt to combat the accelera-

tors of the BTI effect: higher voltage and temperature. Some
FPGAs that operate at lower voltage would potentially re-
duce the burn-in effect. However, cloud providers are already
incentivized to control voltage and temperature to reduce
FPGA power consumption and aging.

FPGAManufacturerMitigations: FPGAmanufacturers
can attempt to mitigate FPGA BTI effects. BTI mitigations
are already commonly considered to increase reliability. It is
unlikely that FPGA manufacturers will be able to eliminate
BTI, especially at advanced design nodes. BTI effects are
more negligible at less advanced process nodes; thus, falling
back on older technology would be a potential mitigation.
The performance and power benefits of advanced nodes are
likely too much to sacrifice for cloud providers and users.
Manufacturers can help reduce BTI through voltage and

temperature mitigations; however, this is already a primary
directive due to their negative influence on power consump-
tion. Thus, it is unlikely these mitigations will advance at
a faster pace. FPGA manufacturers could consider more ad-
vanced dynamic voltage scaling techniques to allow users to
mitigate BTI selectively, but this adds complexity and cost.

10 Conclusion
Demonstrable FPGA pentimenti recovery represents a new
class of threat to shared FPGAs. We have shown conclusively
that analog remnants of digital data are not only left behind
long after computation ends, but that under the right cir-
cumstances, these remnants are recoverable by an attacker.
This is not a threat that other types of computation, e.g. CPU
computation, need to consider. We expect that many users
will find that their routes are short, their key transport can be
whitened, or that other aspects of their design keep it from
being obviously attackable. Similar to other families of novel
attacks, the attack techniques will improve. Future attacks
will likely successfully recover secrets from shorter routes,
other types of FPGA resources, and on different timescales of
use. As a result, any users of cloud FPGAs that handle sensi-
tive data, or publishers on FPGA marketplaces that package
design secrets, should re-calibrate their threat model under
this new attack paradigm.
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