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“Sometimes I go about in pity for myself,
and all the while

a great wind carries me across the sky.”

To my parents
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INVARIANT PROPERTIES OF ERGODIC PROCESSES, WITH APPLICATIONS

TO QUANTUM COMPUTING, DATA SCIENCE AND EMISSIONS MODELING

Abstract

The mathematics which underly the intrinsic structures of stochastic processes and dynamics of

probability are further developed, and broad applications are considered. I provide a general and

rigorous definition of predictive states in stochastic processes, and demonstrate how they may be

reliably and convergently estimated from time-series data. I connect this to new developments in the

machine learning of dynamical systems. I further demonstrate that the dynamics of predictive states

for a given stochastic process generates an algebraic structure, the observable semigroup, and show

that this constrains the structure of physical systems which can generate said process. I apply this

result to studying quantum machines which generate stochastic processes. By combining the algebra

of the semigroup with that of majorization theory, I show that the constraints of the semigroup

induce minimal costs in memory and energy required for these machines, and I compare these costs

with classical machines, finding overall quantum advantage in memory but more ambiguous results

in energy. I close by returning to questions of data science, and show how the mathematics of

stochastic processes and majorization can help separate genuine structure from artifact in models of

carbon footprints derived from global trade data.
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CHAPTER 1

Gliding o’er all: Ergodicity and structure in nonlinear systems

Gliding o’er all, through all,

Through Nature, Time, and Space,

As a ship on the waters advancing,

The voyage of the soul—not life alone,

Death, many deaths I’ll sing.

Walt Whitman, Leaves of Grass

1.1. Overture

It would be pointless to pretend that the work which comprises this dissertation was undertaken

with a single unified intent. There are, however, common themes which underly the disparate

subjects covered herein. Three, in particular, are worth drawing out clearly for the reader.

The first major theme of this work centers on the fact that, and methods for how, we can funda-

mentally understand nonlinear systems with linear algebraic tools. This is less of a contradiction

than it seems at first glance. For better or worse, the methods and models we so often use to

comprehend our complex, nonlinear world are awash in uncertainty. This uncertainty arises typically

from a lack of sufficient data, and is amplified by nonlinear structural processes such as chaos and

interconnectedness. Uncertainty, in turn, is quantified by probabilities.

It is at this level of perspective that nonlinear systems become linear: probabilities are inherently

linear objects, which follow linear laws, even when describing the most intricately intertwined

phenomena. Linear structures are also often the most easily generalizable, gliding easily between

different representations of the same system, finding relevance in all. Like a “ship on the waters”

they can smoothly transition between ports of perspective or advance forwards in time, even as the

systems beneath them roil with turbulence.
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The second major theme of this work is, in many ways, a corollary of the first: we can use the

algebra of probability theory to better understand the structure and behavior of models. Models are

often taken in science as fundamental tools, which must be taken for granted as we use them to

study a given system; the only question is whether the model is appropriate or not. Less frequently

do we undertake the “voyage of the soul” necessary to examine the nature of models themselves.

The contrary perspective of this thesis is that models can in fact be objects of rich study.

The models we construct of our complex world so often go uninterrogated in any dimension

before their application to “real data,” but even in the midst of sophisticated statistics there is

a pronounced lack of probabilistic perspective in analyzing the consequences and constraints of

models. Linear constraints often have much to say about a system’s dynamics, and when we tune

into the probabilistic stratum, we will find that they positively sing: telling us what it may cost to

implement a model, or what we can gain, and most importantly what types of systems the model

can even accurately describe without a loss of information.

These questions are, of course, ambitious, and so to make any progress I have constrained this work

to a particular kind of process, typically called “stationary and ergodic.” Stationary means that

the system’s behavior is invariant with respect to translations in time. Ergodic means that the

range of possible system behaviors will, ultimately, be fully explored over time. These are necessary

assumptions if we are to construct accurate models of systems from data collected over time. We

can think of these processes as those for which a definitive mathematical link can be constructed

between the superficial, empirical presentation of a process (the collected data) and the possible

underlying models.

Thus, the third theme of this thesis applies specifically to ergodic processes, and is the self-similarity

of time. Generally, the term self-similar is used to describe fractal structures, often spatial in

nature, which contain as components smaller copies of themselves. However, the recurrent nature of

stationary and ergodic processes means that the temporal stream of data they produce has its own

self-similar structure; strip off the first N observations, and the statistics of the remaining data is

unchanged. This self-similarity has crucial implications both for our mathematical understanding of

these datasets, but also for the nature of memory and persistence in the models that produce said

data. In these processes, memory may be long, but it is always transient: all information about
2



past goings-on is erased to make way for repetition. The “many deaths” of ergodic processes will be

recurrent throughout this work, being central to the results each chapter.

When these three themes come together, they provide a powerful framework for thinking about

many sorts of processes in both mathematics and the physical world. This approach is primarily

phenomenological, not concerned so much with uncovering hidden models as describing the behaviors

we find directly in the data we handle. Despite this, our approach will also engage a wide range of

technical mathematics. I have tried to keep the most specific technicalities quarantined to their

respective chapters. However, in the remainder of this introduction I will review some concepts that

will prove useful in multiple chapters.

1.2. Basic notations and concepts

In the wide range between quantum computers to carbon footprints there is a lot of conceptual

ground to cover. The advantage of a mathematical perspective is that we can recycle concepts and

notation like old grocery bags, whenever they are suitable to carry the relevant subjects on the

page. I will have mercy on the reader and avoid carrying this sort of abstraction too far (for that

way lies category theory)—but it will suffice to say that we shall always be concerned with systems

that may have a variety of states, circumscribed by some state space, and we will be interested in

transformations on these systems, characterized by mappings between state spaces.

To that end we will strive for some consistent notation. States will be denoted by lowercase letters,

either Greek (α, β, γ, etc.) or Latin (a, b, c, etc.); state spaces will be denoted by capital calligraphic

letters (A,B,C, etc.); mappings will be denoted by capital italic letters (F,G,H, etc.).

Functions in general have a more relaxed treatment. Certain functions which appear frequently

and with a standard definition will be indicated by roman letters, such as the entropy of a random

variable H[X] or the probability of an event Pr ( x ). In other cases, when dealing with functions as

abstract objects of interest, we will just adopt the usual f, g, h notation.

Sometimes it is useful to bundle a bunch of objects together in a tuple, such as in the case of

hidden Markov models, which are a triple
(
S,X ,

{
T (x)

})
of a state set, a symbol set, and a set

of stochastic transformations, respectively. We will often label such tuples with a Fraktur letter

(A,B,C, etc.) to emphasize the composite nature of the object.
3



A special conceptual space must be afforded to the spaces Rn; that is, vector spaces over reals with n

dimensions. These spaces are particularly useful for representing probability distributions over finite

sets. Elements of these spaces will be represented by lowercase bold letters (a,b, c, etc.); however, it

will also be useful to refer to their components, which we will do with the notation a = (ai), which

indicates that ai is the ith component of a in Rn. Sometimes we will write a = (ai)i∈S for some

finite set S; this still denotes a finite vector, but means that the index i instead refers directly to

the elements of S instead of being numerically indexed.

Since linear maps between Rn and Rm are representable by m× n matrices, we will denote them

similarly to vectors in the form T = (Ti,j), with capital letters and multiple indices instead.

A similar notation will be used to describe sequences. Given a set S, a sequence taking values in S
will be denoted with an arrow as −→x = (xi)i∈N. This indicates that the ith element of the sequence

x is given by xi. The N indicates that i = 1, 2, 3, . . . . Sometimes we will write ←→x = (xi)i∈Z to

denote a bi-infinite sequence, which stretches infinitely in both directions: i = . . . ,−1, 0, 1, . . . . The

space of sequences over S is denoted SN and the space of bi-infinite sequences is SZ. We can select

subsequences of a sequence x using a slicing notation similar to that found in python and MATLAB: −→x k:`

denotes the sub-sequence (xk, . . . , x`−1). We will often just write xk . . . x`−1 without the commas or

parentheses. −→x k just denotes the infinite subsequence (xk+i−1)i∈N.

In addition to the three core themes addressed in the previous section, I will now overview here

three threads of technical thought which will be utilized throughout this dissertation. The first

is the formalism of stochastic processes and, related, the idea of the predictive state. The second

thread is the multi-faceted concept of ergodicity, and a very important theorem which relates all

these facets, called the Perron-Frobenius theorem. Lastly I will cover some of the basic principles of

resource theory and information theory, which jointly describe how probabilistic systems balance

abstract informational resources against physical constraints. This chapter is not a literature review,

and the reader will be pointed to relevant technical literature in the relevant introductions of each

chapter.
4



1.3. Stochastic processes

The field of stochastic processes [90,175] can become easily fraught with mathematical formalism.

There will be a time for some of that formalism in the next chapter, but we need not worry about it

in order to get the idea of a stochastic process.

Let’s just define a process as a data source. The source produces a steady sequence of observations.

For instance, when I walk my dog every morning, I observe the weather. In the little town of Davis,

this creates a process whose sequence looks like

(. . . ,SUNNY,SUNNY, SUNNY,SUNNY,SUNNY, SUNNY,SUNNY, . . . )

in the summer,

(. . . ,RAINY,RAINY,SUNNY,RAINY,SUNNY,RAINY,RAINY, . . . )

in the winter, and something more like

(. . . ,RAINY,SUNNY, SUNNY,SUNNY,RAINY, SUNNY,SUNNY, . . . )

around spring and autumn.

Notice that a process necessarily involves both a system (the local weather) and a measurement (my

ambulatory observations). In what follows, we will be considerably agnostic as to the nature of this

underlying system and the measurement used to observe it. Our approach to studying stochastic

processes makes little effort to disentangle the system and the measurement. Rather, we will seek

to describe the structures in the data observed—whatever they are, whatever their origin. This

model-agnostic approach will guide our developments in Chapters 2 and 3. In Chapters 4, 5 and 6

we will pay a fair bit more attention to the underlying system-and-measurement assemblage which is

actually generating our process, but we will use our understanding gleaned from Chapter 2 to learn

about the informational and physical costs imposed on any system which is capable of producing

the observed data. This reverses the typical direction of things, as we use the data to study the

possible models, rather than using the model to analyze the data.
5



For now, though, we will just take a birds-eye view of things. Generally we will suppose that

the observations which comprise our data are drawn from a particular set, which we may call the

alphabet, and denote X . A process is then just a thing which, when we encounter it, begins to

generate a sequence −→x = (xt) from XN. A finite subsequence x1 . . . xL will be called a word.

Now, given a sequence (which we will conveniently suppose is infinite but could just be very long),

we can ask about its statistics. Generally speaking, given any quantitative measurement of my

observations, we can average the value of that measurement over time to get its mean which is

the most fundamental statistic. A quantitative measurement can be thought of as any function

f : XL → R which takes a length-L subsequence of observations and returns a number. Then the

mean of f is

E[f ] = lim
N→∞

1
N

N∑
t=0

f(xt . . . xt+L−1)

(The E means expectation, which is a silly notation since we don’t actually expect the mean most

times, but it is traditional.)

For instance, sunny days can be around 85 degrees and rainy days around 65 degrees. We could

built a few types of statistics from this. If we let T (SUNNY) = 85 and T (RAINY) = 65 then E[T ]

just gives us the average temperature over time in Davis. We could also define a rolling average

TL(x1 . . . xL) = 1
L

L∑
k=1

T (xk)

but then E[TL] would just be the same as E[T ], which is not very interesting. More interesting

would be the rolling variance, given by

VL(x1 . . . xL) = 1
L

L∑
k=1

(T (xk)− TL(x1 . . . xL))2

Then E[VL] would tell you something about the weekly weather volatility in Davis. (It is not very

high.)

A very commonly used statistic is the probability. If the set U ⊆ XL is some “bag of words” then we

can ask how frequently the observed word (that is, the L most recent observations) is in that bag.

Using the indicator function 1U (x1 . . . xL), which equals 1 when x1 . . . xL is in U and 0 otherwise,

we can compute the mean E[1U ]. This just means counting the number of times that x1 . . . xL is in
6



U and dividing by the total number of observations. Rather than actually using the cumbersome

indicator function every time we want to talk about this proportion, we denote it as:

Pr ( xt . . . xt+L−1 ∈ U ) = # of times xt . . . xt+L−1 ∈ U
# of observations

If X is discrete, like in the case of our weather example, then we can simplify this notation greatly

by simply asking how many times we observed a particular word. In that case we just write

Pr ( x1 . . . xL ) = # of times x1 . . . xL observed
# of observations

and dispense with any set notation whatsoever. These statistics have some key properties; namely,

they are always non-negative, and if we sum over all words of a given length, the probabilities add

to one: ∑
w∈XL

Pr ( w ) = 1

(This also implies that Pr ( w ) ≤ 1 for all words w.)

Now, I have made much ado of the words “stationary and ergodic” in reference to processes. The

concepts defined above allow us to give proper meaning to these words. Generally one uses the word

“stationary” to describe any process for which the computed statistics do not depend on when I

start computing them. Now, we must be careful not to be too strict about this. I take a rather

loose definition of stationary: if for every measurement f : XL → R (over any word length), the

time-dependent expectation

Et:N[f ] = 1
N − t

N∑
k=t

f(xk . . . xk+L−1)

(note that the sum starts at t!) has a well-defined limit as N → ∞ (that is, as the sample size

becomes longer), and that limit is independent of t, then the process is stationary.

For example, there was a time when the weather in the region now called Davis was probably

more-or-less stationary. Certainly, the short-term averages depended greatly on when you measured

them, but the long-run averages (which is exactly what E[f ] denotes) did not. Of course, that

has changed in recent years; one who starts measuring the long-run temperatures in Davis, or the

long-run proportion of rainy days, in the 21st century will arrive at distinctly warmer (or dryer)
7



results than in previous years. The global climate has never been fully stationary, but recent years

have very much seen an accelerated change in its underlying behavior.

To discuss ergodicity, we must define a new kind of statistic, which can be built up from the standard

probabilities. Let w1 = x1 . . . xL and w2 = xL+1 . . . xL+K be two words. Then we denote

Pr ( w2 | w1 ) = Pr ( w1w2 )
Pr ( w1 )

The pair w1w2 denotes the concatenated word x1 . . . xLxL+1 . . . xL+K . Notice that the number of

times we observe w1w2 cannot be more than the number of times that we observe w1; further, if we

sum Pr ( w2 | w1 ) over all w2 of length K, these quantities must add up to 1, because then we are

just counting how many times the word w1 appears followed by anything (and it is always followed

by something). We can call Pr ( w2 | w1 ) a conditional probability, and interpret it as telling us the

proportion of times we see w2 following w1, out of all the times we have seen w1.

Now, let us consider the set of all words of length L which have positive probability, which we

denote by XL. Consider the conditional probabilities Pr ( w2 | w1 ) for every pair of such words.

We can construct a graph (that is, a network) where each node is a length L word, and there is a

directed edge pointing from w1 to w2 if Pr ( w2 | w1 ) > 0 (that is, if we ever see w2 following w1).

Now examine this graph. If you can draw a path from any one word to any other word by following

the directed edges, then we say the graph is strongly connected. In this case, this would tell us that

starting from any observed word of length L, we are likely to eventually see every other word in XL.

If the graph of Pr ( w2 | w1 ) is strongly connected, then we say the process is ergodic. What that

means is that over time we will observe every possible behavior, and then we will eventually see

that behavior again. In the following section, we’ll discuss some of the more specific consequences

of this strong temporal connectivity and recurrence, but before we do so it will be helpful to give

one further note on stochastic processes.

Suppose we try to use the length-R block probabilities Pr ( w2 | w1 ) to recreate the process. Will

the result have the same statistics as the original? What I mean by this is: suppose that we

(1) generate a length-R word, w1, using a random number generator and the distribution

Pr ( w ),

(2) then generate another word w2 using the distribution Pr ( w2 | w1 ),
8



(3) concatenate that with the existing sequence,

(4) repeat the last two steps indefinitely with the most recent word as w1.

To assess the feasibility of reproducing the process in this way, it is helpful to note the following

telescopic identity for any word of length N :

Pr ( x1 . . . xN ) = Pr ( x1 ) Pr ( x2 | x2 ) Pr ( x3 | x1x2 ) . . .Pr ( xN | x1 . . . xN−1 )

Now, the process generated by the outlined steps will have the following simplifying rule: for all

N ≥ R,
Pr ( xt | xt−N . . . xt−1 ) = Pr ( xt | xt−R . . . xt−1 )

That is, the newest observation cannot depend on any more than the last R symbols. There are

some processes for which this is true; we say they are Markov with order R. Most processes, however,

are not Markov at any order R.

A core concept underlying much of the work in this thesis is the predictive state [39]. Simply put,

this is just the limit of how the next block of observations depends on an infinite amount of past

information:

Pr ( x1 . . . x` | ←−x ) = lim
N→∞

Pr ( x1 . . . x` | x−N . . . x0 )

where ←−x is some infinite sequence of past observations, ←−x = (x0, x−1, . . . ), with x−k being the

k + 1th most recent observation. While the length-R conditional probabilities are not typically

sufficient to give us the full range of behavior for a process, if we understand the structure of the

predictive state function, then we do have a full characterization of the process’s behavior.

It is also useful to note that the full predictive state is characterized by all the distributions

Pr ( x1 . . . x` | ←−x ) for each ` = 1, 2, . . . . This is an infinite number of probability distributions,

which together encompass our understanding of the full set of possible futures. If we want to bundle

all of these distributions into a nice, compact mathematical object, we will need to use the formalism

of measure theory. This will be undertaken in Chapter 2. In that chapter we will also discuss

how these predictive states can be represented by vector space embeddings which can be useful in

machine learning. Subsequent chapters (namely 4 and 6) will examine how predictive states can be

used to understand models of processes and their physical constraints.
9



1.4. Ergodicity and connectivity

Let’s return now to the concept of ergodicity. It is a very ubiquitous concept in the theories of

stochastic processes, dynamical systems, thermodynamics and elsewhere. Wherever it appears it

often comes with a specialized definition for the setting at hand. There are typically three basic

sorts of characterizations of ergodic processes [96,175]:

(1) An ergodic process is one where “spatial averages”—that is, averages taken at a moment

in time over all possibilities—are equal to temporal averages—the long-range averages we

have been considering. Put in formulaic terms, for any function f(x1 . . . xL) andd any

particular sample of the process −→x = (xt),

lim
N→∞

1
N

N∑
t=1

f(xt:t+N ) =
∑
w∈XL

f(w)Pr ( w )

The reader can check that this is a consequence of the definitions we have chosen for the

probabilities, stationarity and ergodicity.

(2) An ergodic process is one where the “word dynamics” (characterized by the graph of

Pr ( w2 | w1 ) which shows the probability of each word being followed by another) has no

proper invariant subsets. To unpack this, the only invariant sets of the dynamics (that is,

a set of words where all outward arrows point back to the same set) are the empty set, or

the whole set XL. In a moment, we will see how this is a consequence of the definition we

have already chosen.

(3) An ergodic process is one where the graph of Pr ( w2 | w1 ) is strongly connected. This is

the definition we gave in the previous section.

This is just my physicist’s opinion, which doesn’t really have a formal justification, but I consider

the strong connectivity definition to be in a certain sense the most causal definition of ergodicity, in

the sense that the other two definitions follow as rather natural consequences. For this reason I

consider ergodicity to be a very graphical concept, and it will therefore behoove us to take a moment

to discuss a little bit more graph theory. There is a theorem (or really, a cluster of theorems) we will

then be able to discuss, called the Perron-Frobenius theorem. This theorem provides insight to how

the graphical structure of the word dynamics Pr ( w2 | w1 ) determines the long-run behavior of the
10



(a) (b) (c)

Figure 1.1. Perron-Frobenius theory: (a) Example of an aperiodic graph with a
transient node (red) and a strongly connected part (blue). (b) An example of a
period-2 graph, with the blocks colored separately. (c) Example of a period-4 graph,
also with separately colored blocks.

stochastic process. These insights will guide our understanding of ergodic processes in Chapters 4

through 6, and there is also an extent to which the graph-theoretic picture will inform our intuition

in 7, when we analyze trade networks.

The two main properties of graphs that we will want to understand are connectedness and period

(Fig. 1.1). We have already defined the concept of strong connectivity, but it will be good to

consider the different ways that this can break down. There are a few distinct possibilities which can

arise. In imagining these possibilities, it will be helpful to the reader to imagine that the directed

edges of a graph are indicating the “flow” of some conserved fluid, such as water, and to think of the

long-term behavior of a process as all the ways the water can turn and pool throughout the graph.

(1) In the case of strong connectivity, every ounce of the water will at some point flow through

each node of the graph, as no matter where it starts, there are paths (at least one, and

typically more) it can take to get to any destination.

(2) In the case of completely separated subgraphs, there is no exchange of flow between the

subsets of the nodes, and so each subset has its own private water supply which is never

accessed by outside nodes.

(3) It may be the case that some subset of nodes has outflow to another subset, but no returning

inflow. In this case, though the graph is fully connected, it is not strongly connected. We

call the part which only has net outflow the transient part and the subset which only has
11



net inflow the recurrent part. Any water starting in the transient part will eventually flow

out into the recurrent part, and the transient part will be left empty.

Notice that we have said little about any sort of asymptotic or stationary distribution of water; to

talk about that aspect, we need to think about period. What connectivity tells us about, though,

is the the temporal average of water flow: how much water will flow through a node over a long

enough range of time? In a strongly-connected graph, every node will have some consistent rate

of flow over the long-time average. In disconnected graphs, this flow will be restricted to water

originating from the nodes in the same connected part. In weakly connected graphs, the transient

part receives no flow at all in the long run.

Period in graphs is a somewhat more subtle concept with a fairly clunky formal definition. A loop

in a directed graph is any sequence of edges, such that the “tail node” of each edge is the “head

node” of the preceding edge, and the head node of the final edge is the tail node of the initial edge.

For a given graph, we can consider the set of all possible loops; the lengths of these loops may take

on quite a variety of values. However, if these loop lengths all have a greatest common divisor p,

then we say that the graph has period p.

Now that we have given the number-theoretic definition, let’s give the intuitive definition. If I can

divide the nodes of my graph into p blocks, and label each block with some number in 1, . . . , p such

that all the outward edges from nodes of the kth block point into the k + 1th block, or the 1st

block in the case of the final pth block, then the graph has period p. Note that when we say all the

outward edges from nodes in a block point to the next, we really mean all. There are no internal

connections between nodes in the same block, and no “self-loop” edges connecting a node to itself.

This obviously disqualifies many graphs from having any period at all. We say these graphs are

aperiodic.

As with connectivity, it will be helpful to consider for the moment the implications of periodicity

for flows:

(1) In the case of periodicity, the there is an extent to which the distribution of water flow

through the nodes never settles into any asymptotic behavior. If all the water starts in a

given block, it will all be back in that block p steps later. Thus, if you know which block

a given ounce of water is in at time t, then you know which block it will be in at any
12



other time. Despite this, there may still be a well-defined unique stationary distribution of

water (the uniform distribution where water is contained in each block in equal amounts),

and there may still be well-defined long-time averages of water levels in each node (due to

connectivity properties).

(2) In the case of aperiodicity (and strong connectivity), the distribution of water across nodes

will, over time, settle into a unique stationary distribution. This is due to a combination of

the stable long-time averages arising form connectivity with the phenomenon of mixing, by

which aperiodicity introduces temporal “stutters” causing the juxtaposition of temporally-

shifted possibilities. The consequence is that the instantaneous distribution of the water

begins to reseemble the long-time average. A simple example which makes this phenomenon

evident is the case of a mostly circular graph of n nodes, where one of the nodes has a

single self-loop. Despite every other node only pointing to the next, water in any initial

distribution will eventually settle into the uniform distribution due to the action of the

“eddy” in the self-looped node catching and stalling water from completing the circle in

exactly n steps.

All of the considerations we have just given for connected and periodic graphs can be summarized

by a theorem called the Perron-Frobenius theorem.

The Perron-Frobenius theorem is stated in terms of positive matrices, and concerns their spectral

properties; that is, it tells us about the eigenvectors and eigenvalues of positive matrices, and relates

their spectra to the structural properties of the corresponding graph [32]. Thus, when we talk about

stationary distributions, Perron-Frobenius talks about eigenvectors; when we talk about asymptotic

behavior and mixing, Perron-Frobenius talks about the relative magnitudes of eigenvalues. We will

state the theorem and then relate its assertions to the graph concepts we have already discussed.

Recall that the graph of a positive matrix T = (Tij ≥ 0) is the directed graph such that the edge

from node j to node i has weight Tij if Tij > 0 (or does not exist otherwise). Further recall that the

spectral radius ρ of a matrix T is the maximum magnitude taken over all its eigenvalues.
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Theorem 1 (Perron-Frobenius Theorem (abridged)). Let T : Rn → Rn be a matrix with non-

negative values, T = (Tij ≥ 0). Suppose the graph of T is strongly connected. Let ρ be the spectral

radius of T.

(1) ρ > 0 is a simple eigenvalue of T; that is, it has only one left- and right-eigenvector.

(2) If T’s graph has period p, then there are exactly p simple complex eigenvalues of magnitude

ρ, and they take the form ρei2πk/p for k = 0, . . . , p− 1. If T’s graph is aperiodic, then there

is only one eigenvalue of magnitude ρ, which is ρ itself.

(3) The right- and left-eigenvectors corresponding to ρ, denoted by π and φ respectively, each

have all positive components: πi > 0 and φi > 0 for all i = 1, . . . , n.

(4) No other eigenvectors of T have all positive components.

Let’s discuss the meaning of each point successively.

(1) If we consider the scaled matrix ρ−1T, which has a spectral radius of 1, then the first point

of Perron-Frobenius tells us that ρ−1T has a single unique stationary vector π, so that

Tπ = π. In particular, for conditional probability matrices, ρ = 1 automatically, and so

Perron-Frobenius theorem says that an ergodic process has a unique stationary distribution

over words, given by the vector π = (πw) where πw = Pr ( w ). (Also, for a conditional

probability, it can be easily checked that φ is just a vector of all 1’s.)

(2) The second point tells us that, if the graph structure of T has period p, then the dynamic

will “rotate” the distribution through p distinct states (complex eigenvalues are always

an indicator of rotation). Alternatively, if T is aperiodic, then there is a “spectral gap”

between the eigenvalue ρ and all other eigenvalues. The consequence of a spectral gap is

that, as the dynamic system progresses, the stationary vector drowns out all other vectors.

We will examine this more closely in a moment.

(3) The positivity of the eigenvectors means that the stationary distribution can be interpreted,

when scaled, as a probability distribution, and has positive (i.e. nonzero) weight on every

node of the graph.

(4) The last point implies that any other eigenvector of T cannot describe a probability

distribution itself; however, they can describe differences between distributions. We can
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consider the non-maximal eigenvectors to describe all the possible ways that a distribution

can differ from the stationary distribution π, and their corresponding eigenvectors describe

how quickly that difference decays (or, in the periodic case, how that difference is rotated

over time).

Points 2 and 4 bear further elaboration. Let us start by considering the aperiodic case. It is

helpful to break the matrix T into two parts: the unital eigenvector part, ρπφ> (where (·)> is

the transpose), and the remainder T̃ = T− ρπφ>. Now, because ρ is the spectral radius, and we

are assuming aperiodicity, the Perron-Frobenius theorem tells us that the matrix T̃ has a spectral

radius less than ρ (after all, all it has left are smaller eigenvalues). Then for any vector v it will be

the case that
∥∥∥T̃v

∥∥∥ ≤ r ‖v‖ for some r < ρ. It must then be the case that

lim
n→∞

1
ρn

Tnv = (φ · v)π + lim
n→∞

1
ρn

T̃nv = (φ · v)π

Here · is the dot product between two vectors. The last limit drops off to zero because its norm

scales as (r/ρ)n. So, asymptotically, the action of ρ−1T on a vector v is the same as just multiplying

it by πφ>. If we drop the v (since it is arbitrary), we have the formula

lim
n→∞

1
ρn

Tn = πφ>

The periodic case is not that much worse. We will skip the details, but the gist is that the rotational

eigenvectors simply pick up powers of their corresponding complex phase ei2πk/p. When we multiply

by ρ−1T a number of p times, and sum over the results, these complex phases cancel out and

eliminate the rotational eigenvectors. As a consequence,

lim
n→∞

1
p

p∑
k=1

1
ρn+kTn+k = πφ>

Here, rather than looking at the repeated action of ρ−1T alone, we are looking at the average over

a length-p block of large powers of ρ−1T. This “seasonal” average removes the lingering effects of

periodicity to get an asymptotic result.
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For both periodic and aperiodic matrices, the Cesàro average formula holds:

lim
n→∞

1
n

n∑
k=1

1
ρk

Tk = πφ>(1.1)

This simply generalizes the asymptotic formulae above to a long-run temporal average.

The Perron-Frobenius formula covers matrices whose graphs are strongly connected. The summary

of what it tells us is that there is a unique stationary state of the matrix’s dynamics, which in the

aperiodic case is the asymptotic endpoint of the dynamical process, and in the periodic case is

arrived at via seasonal or long-time averages.

The reader may wonder just what Perron-Frobenius has to say on matrices whose graphs are not

strongly connected. In this case, our earlier delineation of the possible cases will be helpful. Earlier

we noted that every graph can be decomposed into transient parts, which have only a net outflow

and no net inflow, and recurrent parts, which have net inflow (and potentially net outflow). Further,

a graph can have multiple disconnected recurrent parts. We will suppose we have partitioned the

nodes of the graph of T into the sets T and Rs, where T is the set of transient nodes and Rs
are the disconnected recurrent components, also called ergodic components, indexed by s. If we

denote T|s = (Tij)i,j∈Rs , T|T = (Tij)i,j∈T , and T|s,T = (Tij)i∈Rs,j∈T as the restrictions of T to its

constituent blocks, then the matrix takes the overall block-matrix shape

T =



T|T 0 0 · · · 0

T|1,T T|1 0 · · · 0

T|2,T 0 T|T ,2 · · · 0
...

...
... . . . ...

T|S,T 0 0 · · · T|S


where S is the number of ergodic components.

By definition, the restricted matrices T|s satisfy the requirements of the Perron-Frobenius theorem.

In particular, each has a spectral radius ρs and a stationary state π|s.

The spectral radius ρ of the entire matrix T would just be the largest spectral radius of each of

the recurrent parts, maxs ρs. If we naïvely consider the behavior of ρ−1T, we would find that the

recurrent component with the largest spectral radius drowns out all the others, so that the only
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stationary state of ρ−1T is the vector which is zero on all components except for the maximal one,

where it takes the values of the vector π|s.

The more interesting, and thankfully far more common case for stochastic matrices is the case

where all ergodic components have the same spectral radius, which we will for simplicity assume

to be 1. In that case, the dynamical process described by T has an infinite number of possible

stationary distributions. If we let p = (ps) be a probability vector over the ergodic components,

then any vector which is zero on the transient component and takes the values psπ|s on the ergodic

components is itself a stationary distribution. That is, any vector which takes the block form:

v =



0

p1π|1
p2π|2
. . .

pSπ|S


is an invariant distribution under the action of T. Consequently, there may be a considerable degree

of mixing of possibilities going on within each recurrent part, but each recurrent part itself remains

insulated from the others, and discrepancies between them remain stable over time.

1.5. Resources and information

Knowledge is power—so they say. It is more apt to say that knowledge is a resource. There is,

of course, little novel insight in pointing out that having knowledge about the current state and

behavior of a system gives an observer the ability to extract value from it. Quantifying this ability,

on the other hand, remains a highly active area of research.

The modern science of information theory developed from precisely these sorts of questions during

the heyday of operations research, in the height and aftermath of the second World War. The

most familiar form of information theory, Shannon’s theory of communication [177], has become

foundational to signal processing and electrical and computer engineering, and has also drawn

considerable interest from social and biological sciences [36,119].
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Efforts by quantum physicists to adapt Shannon’s concept of information to the realm of quantum

probabilities gradually revealed the existence of numerous extensions describing a variety of distinct

forms of quantum informational resources. This frontier of research, which spans quantum physics,

nonequilibrium thermodynamics and nanoscale computing, has become known as resource theory [35].

In addition to Shannon’s theory of communication, with various entropic measures, resource theory

also draws heavily upon Blackwell’s theory of statistical decisions [18,19], utilizing additional tools

such as majorization [123]. We will give a brief overview of Shannon’s and Blackwell’s perspectives

here, presenting them as dual parts of a unified theory of data production and data processing.

Shannon’s and Blackwell’s definitions of information will together be central to Chapters 4 through

6, as well as in Chapter 7.

To discuss data processing, we have to make something of a frame shift from the preceding sections.

There we discussed the dynamics of a system with the use of conditional probabilities. These told

us, if we observed a block of observations as the word w, that we would observe the next block

as w′ with a frequency characterized by the probability Pr ( w′ | w ). We can also use conditional

probabilities to describe a method of signal processing. If a stimulus signal a is received, then we

produce the response signal b with frequency Pr ( b | a ). Whereas before the dynamical matrix was

always square, signal-processing matrices can be rectangular, as the set of responses may not be the

same as the set of stimuli.

When discussing information, the two dual perspectives on its quantification involve, on the one hand,

describing the variety of possible signals which can be observed from a source, and on the other hand,

describing the capacity of a data-processing mechanism for distinguishing between different signal

sources. These are dual precisely because the easiest way for two systems to distinguish themselves

from one another is to limit their signals to have minimal overlap—reducing their individual variety.

Variety and distinction are, in a sense, the two primary resources of interest in information and

resource theory. We shall discuss each in turn.

1.5.1. Variety as resource. The stochastic processes which we have previously discussed can

be characterized by their word probabilities Pr ( w ). These describe for us the range of possible

behaviors of the process, and how frequently different parts of this range are utilized.
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Our ablity to predict the behavior of the process—and thus, if it is linked to any physical resources,

to exploit its behavior—is dependent on our ability to comprehend, transcribe and interpret the

range of its behavior [13]. We will refer to the scope of this range of possiblities as the variety.

All resource theories are theories of data processing. Certain kinds of data processing will impact

corresponding kinds of informational resources. Thus every theory of a particular resource has a

corresponding set of free operations, which are taken to be those data processing operations which

cannot increase the resource. If we want to study variety—we must start by ask ourselves what

kind of conditional probabilities Pr ( b | a ) cannot increase the variety of the signal.

After considering this question for a moment, the reader might settle on deterministic operations.

These are conditional probabilities Pr ( b | a ) where for each stimulus signal a there is only one

response b with nonzero probability. Deterministic operations are more commonly known as

functions: essentially, they map each stimulus a to a specific response f(a). The resource theory of

variety is essentially just the theory of processing data with functions. Variety, in essence, is defined

as that quality of data which cannot be increased by applying functions to it.

This abstraction is very nice but not, on its own, particularly useful. Resource theories also provide

several means of quantifying the resource under investigation. Quantifications of variety are called

entropies. If we have a random variable X—that is, a variable whose possible values are described

by a probability distribution PrX ( x )—then an entropy of X is any function F[·] with the property

that

F[f(X)] ≤ F[X]

for all random variables X and functions f .

Many functions have this property, but it will be useful to consider ones which have practical

interpretations. Variety can have many origins in nature. Our challenge, as those who would make

use of nature, is to represent variety. Useful entropies are those which tell us how difficult or costly

it is to represent the variety of a process. Good representations will be reversible—we can use them

as a reference to reconstruct the original behavior that was observed. This means every useful

representation process consists of a function f , the encoding, which maps a stimulus to its symbol,
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and another function g, the decoding, which maps a symbol back to a stimulus of the original type:

a
encoding f−−−−−−−→ b

decoding g−−−−−−−→ a′

When a′ = a, we have successfully described the stimulus. Otherwise, we have an error. The goal of

representation is to encode as much variety as possible with minimal error.

Variety as a resource comes into play because it should be immediately evident to the reader that in

order to construct an error-free representation of a stimulus, the set of symbols B must be at least

as large as the set of possible stimuli A. Thus, the system being used as a representation must have

at least as much potential variety as the system being observed. This leads to our first entropy, the

max entropy:

Hmax[A] = log2 | { a ∈ A | PrA ( a ) > 0 } |

The log is for historical reasons that will become evident in a minute—but the purpose of the

max-entropy is to quantify the minimal number of distinct symbols required to represent the variety

of a process with zero error. This is just the number of observed stimuli.

On the other hand, we might simply ask ourselves what would be the chance of error if we simply

chose to always decode the symbol as the most likely stimuli. This way, we only need one symbol,

and have a success rate of maxa∈A PrA ( a ). The corresponding entropy is called the min-entropy:

Hmin[A] = − log2

(
max
a∈A

PrA ( a )
)

The logarithm is, again, for historical reasons. The negative is so that Hmin[·] has the proper

behavior of an entropy, and decreases when a function is applied to the random variable.

Between these two quantities is the Shannon entropy, which we will be the entropy we are referring

to if we just say “entropy” and do not otherwise specify. The Shannon entropy, unlike the previous

two we have considered, represents an ideal rate which can be achieved when we utilize the economy

of scales, and use the same symbol set to encode a large number of signals at once. The Shannon

entropy has a simple formula:

H[A] = −
∑
a∈A

PrA ( a ) log2 PrA ( a )
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The Shannon entropy has a dual interpretation. On the one hand, if we wish to encode a large number

N of copies of a signal X with a controlled error rate, the minimal amount of symbols required is

2N H[X]. On the other hand, to achieve this economy of scales, we admit an asymptotically vanishing

error rate of 2−N H[X]. Thus the Shannon entropy can be seen simultaneously as a generalization of

both the max- and min-entropies to the economy of scales.

The Shannon entropy has many remarkable properties. For one, it satisfies a formula called the

chain rule of entropies, which allows it to scale over multiple variables. If we have a joint variable

AB with probability PrAB ( a, b ) and conditional probabilities PrB|A ( b | a ),

H[AB] = −
∑
a∈A

PrA ( a ) log2 PrA ( a )−
∑
a∈A
b∈B

PrAB ( a, b ) log2 PrB|A ( b | a )

= H[A] + EA[H[B|A = a]]

The second term is the mean of the entropy for each conditional distribution of B, averaged over

the conditioning variable A. It is common to write more compactly

H[B|A] = EA[H[B|A = a]] = −
∑
a∈A
b∈B

PrAB ( a, b ) log2 PrB|A ( b | a )

This is called the conditional entropy, and quantifies how much variety is left in B once A is known.

Another property of entropy is its subadditivity. This means that the joint entropy is always less

than the sum of the two individual entropies. The difference is called the mutual information:

I[A : B] = H[A] + H[B]−H[AB] =
∑
a∈A
b∈B

PrAB ( a, b ) log2
PrAB ( ab )

PrA ( a ) PrB ( b )

Due to the chain rule, it is also the case that I[A : B] = H[B]−H[B|A]. The mutual information

quantifies the correlation between A and B: it tells us how much of their overall variety is in fact

shared betweeen the two sources.

1.5.2. Distinguishability as resource. We have examined how to quantify the variety ob-

served in stochastic processes, with an aim towards the describing the memory costs of describing

that variety. This is one approach to thinking about information as a resource. Another approach
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begins when we ask ourselves about the hidden variety which may be driving the behavior of a

process.

By hidden variety we mean potential latent states which determine the sorts of behavior a process

may display. Since latent states are unobservable, we can only hypothesize their value based on

the observable variables which they influence. If we wish to efficiently make use of the information

stored in processes, then it is important that we be able to infer knowledge about the latent states,

which may tell us about available energy and other physical resources.

We can only know latent states through the effects they induce. The important thing about latent

states, then, is how they affect observable quantities. This can be characterized by conditional

probabilities: if a is the observable signal and s is the latent state, then this means the probabilities

Pr ( a | s ). Telling the difference between two latent states s1 and s2 means telling the difference

between Pr ( a | s1 ) and Pr ( a | s2 ). The problem of distinguishing between different latent states

can then be reduced to the problem of distinguishing between different probability distributions.

For simplicity, let us consider pairs of probability vectors (p,q). Our ability to tell the difference

between these distributions (based on observing samples) is called their distinguishability and is a

kind of resource [209]. As with variety, our investigation of it must begin with a definition of what

kind of data processing operation does not increase distinguishability. In this case, the answer is

that no data processing operation can increase distinguishability, so long as you perform the same

operation on each distribution in the pair.

That is, given any conditional probability matrix T = (Tij) (with ∑i Tij = 1, Tij ≥ 0), the

pair (Tp,Tq) cannot be considered more distinguishable than (p,q). It is common, given two

distributions (p,q) and (p′,q′), to say that (p,q) relatively majorizes (p′,q′), written (p,q) %

(p′,q′), if there is a conditional probability matrix T such that p′ = Tp and q′ = Tq. The partial

ordering of relative majorization ranks pairs of distributions by their overall distinguishability.

The principle is simple: doing the same thing to two distributions can’t make them any more different

than they already are. The consequences of this observation are profound. This perspective on

information processing was first expounded by Blackwell [18,19], not long after Shannon expressed

his own theory of communication. Blackwell’s approach takes us down a somewhat different road,
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but ultimately leads to a very similar place, and we will even see how entropies arise naturally as a

consequence of this principle.

As with the resource theory of variety, there are a number of ways to quantify distinguishability.

Before we get to those, however, it is important to discuss an elegant and powerful tool unique to

the theory of distinguishability: we can visualize the difference between two distributions, using a

concept called relative majorization (Fig. 1.2).

The visualizations of pairs (p,q), called the Lorenz curves Λ(p,q), have a partial ordering on them

which is isomorphic to the partial ordering of relative majorization. To be specific, given two pairs

(p,q) and (p′,q′), the Lorenz curves satisfy Λ(p,q) ≥ Λ(p′,q′) if and only if (p,q) % (p′,q′).

The value in having a visual isomorphism of the theory of relative majorization is obvious. To

construct the Lorenz curve of a pair, we first sort the indices of the vectors i1, . . . , in so that the

ratio pik/qik is decreasing (n is assumed to be the number of possible outcomes to the distributions

p and q). We then draw a piecewise linear loop connecting the n+ 1 vertices (x0, y0), . . . , (xn, yn)

defined by

xk =
k∑
`=1

qik

yk =
k∑
`=1

pik

Note that (x0, y0) = (0, 0) and (xn, yn) = (1, 1) always. This loop is the Lorenz curve Λ(p,q).

The Lorenz curve outlines a convex set, which is the area between the diagonal connecting (0, 0) to

(1, 1) and a convex curve which “bows out” from this diagonal. We say that Λ(p,q) ≥ Λ(p′,q′) if

the convex seet outlined by Λ(p,q) contains the curve Λ(p′,q′). Alternatively, this means that the

bowed-out portion of Λ(p,q) is always vertically higher than that of Λ(p′,q′).

The Blackwell-Sherman-Stein theorem states that Λ(p,q) ≥ Λ(p′,q′) if and only if (p,q) % (p′,q′)

[19]. (It actually says quite a bit more than this, but this is the consquence on pairs of probability

distributions.)

The visualization afforded by the Lorenz curve, and the concept of relative majorization, are a

powerful tools which will very important to our results in Chapters 4, 5 and 7.
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Figure 1.2. Majorization primer: also seen in Chapter 7. (a) Example a Lorenz
curve for a pair of distributions (p,q) over 6 elements. We assume the elements are
indexed so that pi/qi is monotonically decreasing. p and q are not homogeneous
with respect to one another, and so the Lorenz curve bows out above the diagonal.
(b) An example of two pairs, (p,q) and (p′,q′), such that (p,q) � (p′,q′). Visually,
this means that the second Lorenz curve is fully beneath the first and, therefore,
closer to the line of homogeneity. (c) Example where majorization does not hold.
“DM” stands for dismajorization, which describes the extent to which majorization
fails (covered in more detail in Chap. 7).

It will also be important to understand the ways of quantifying distinguishability. A divergence is

any function of pairs of distributions D ( p ‖ q ) (the middle double-bar is traditional) which satisfies

D ( Tp ‖ Tq ) ≤ D ( p ‖ q )

As with entropy, we will primarily be interested with divergences that are interpretable; in fact,

here we will just discuss one: the Kullback-Liebler divergence, which is extremely versatile and

appears in a multitude of settings.

The Kullback-Liebler divergence, also sometimes called the relative entropy (for reasons that will be

soon apparent), is defined as

DKL ( p ‖ q ) =
n∑
j=1

pj log2

(
pj
qj

)

A direct interpretation of the relative entropy is provided by Sanov’s theorem. If we collect N

independent samples from distribution q without knowing the distribution, and we attempt to

determine if the statistics of the samples match distribution p, then we will erroneously conclude
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that the sample matches p with a probability which scales as 2−NDKL( p ‖ q ). Just as with the

Shannon entropy, the relative entropy characterizes an exponential rate of error decay, in this case

relating to the classification error between two distributions.

The relative entropy has a far wider reach than hypothesis testing, however. To consider its range,

we will consider some additional resource theories which are derived as embedded resource theories

within the theory of distinguishability.

One such embedded resource theory is the theory of nonuniformity [64]. The nonuniformity of

a distribution p is the degree to which it is not the uniform distribution, which we will denote

by u. To build a resource theory for this property, we would first have to characterize the set of

operations which do not increase nonuniformity. We can leverage the concept of majorization to do

so. Let B be a conditional probability matrix which has the uniform distribution as a fixed point:

Bu = u. Such a matrix is called bistochastic. By the definition of majorization, it is then the case

that (Bp,u) % (p,u) for all p. In other words, B can never make a distribution more different

from the uniform distribution than it already is. Bistochastic matrices are therefore a suitable “free

operation” for a theory of nonuniformity.

Notice what we have done: we have just taken a subset of the free operations of the theory of

distinguishability, and defined a new resource theory which is embedded in the old one. It stands

to reason that we can then import all the other properties of the theory of distinguishability. For

instance, the Lorenz curve Λ(p,u) can be used to visualize the nonuniformity of a distribution.

We can define a partial ordering on distributions where p % q if and only if (p,u) % (q,u). (This

ordering is traditionally just called majorization.) Last but certainly not least, any divergence used

in the theory of distinguishability can be used as a quantification of nonuniformity.

When we use the relative entropy on the pair (p,u), a familiar friend arrives:

DKL ( p ‖ u ) =
n∑
j=1

pj log2

(
pj

1/n

)
= log2 n−

n∑
j=1

pj log2 pj

= log2 n−H[p]

(We are abusing the standard notation a bit here—we have not defined a random variable to go with

p, but we hope the reader understands our meaning.) The divergence of any distribution from the
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uniform is just the negative of the entropy of that distribution. This is sensible, since the uniform

distribution maximizes entropy. This quantity is often called the negentropy.

Another example of an embedded resource theory is the theory of nonequilibrium thermodynamics

(sometimes called the theory of thermal operations) [77]. Suppose to each state j of our system,

there is a corresponding energy level Ej ; then the system is in thermal equilibrium at temperature

T if its distribution matches the Gibbs distribution γT = (γT,j),

γT,j = 1
Z(T )e

−Ej/kBT , Z(T ) =
∑
j

e−Ej/kBT

A system in nonequilibrium is just any system whose distribution differs from the Gibbs distribution.

Such a system can have work extracted from it as it relaxes to equilibrium. As with the theory of

nonuniformity, we can define free operations at temperature T as those conditional probability matri-

ces G which satisfy GγT = γT . These are called thermal operations, or sometimes Gibbs-stochastic.

Remarkably, thermal operations are precisely those which result from only doing energy-conserving

operations with the aid of a thermal bath at temperature T . Thus, the constraints of nonequilibrium

thermoynamics can be directly embedded into the resource theory of distinguishability.

The analogue of majorization here is called thermo-majorization [71], and when we apply the relative

entropy to the pair (p,γT ), we find another old friend, this time for the physicist:

DKL ( p ‖ γT ) = log2 Z −
n∑
j=1

pj log2
(
pje

Ej/kBT
)

= Ej∼p[Ej ]
kBT ln 2 −H[p] + log2 Z

The logarithm of the partition function is, up to a scaling factor of kBT ln 2, the negative of the free

energy of the system when it is in thermal equilibrium. Preceding this term is the average energy

minus the Shannon entropy—an information-theoretic modification to the traditional Helmholtz

formula of internal energy minus thermodynamic entropy, F = U − kBTS. If we denote

Feq = −kBT lnZ

Fneq = Ej∼p[Ej ]− kBT ln 2 H[p]
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as the equilibrium and nonequilibrium free energies, respectively, then

DKL ( p ‖ γT ) = Fneq − Feq
kBT ln 2

So the relative entropy in the theory of thermal nonequilibrium is just the difference between the

nonequlibrium free energy and equilibrium free energy; this indicates the energy over and above the

equilibrium free energy which can be extracted from the system as it relaxes to equilibrium.

The theory of thermal nonequilibrium thus provides one of the clearest examples of the intuition of

resource theory: that is, quantifying the informational resources of a system, such as our ability to

distinguish different distributions, can provide deep insights to our ability to extract value (in this

case, energy) from those systems.

Before we close, it would be helpful to discuss the implications of the relation

DKL ( Tp ‖ Tq ) ≤ DKL ( p ‖ q )

This is often called the data-processing inequality [36,119]. It is perhaps one of the most important

equations in all of information theory. Partly this is because of how many kinds of quantities can

be expressed as relative entropies. We have already seen this in the case of nonequilibrium free

energy and negentropy. Another example is the mutual information defined in the previous section.

If two random variables X and Y are distributed according to a joint distribution p(XY ) = (pxy)

with marginalizations p(X) =
(∑

y pxy
)
and p(Y ) = (∑x pxy), then the mutual information can be

expressed as

I[X : Y ] = DKL
(

p(XY )
∥∥∥ p(X) ⊗ p(Y )

)
where p(X) ⊗ p(Y ) denotes the distribution p(X)

x p
(Y )
y .

This identity results in another common form of the data processing inequality. Suppose we

transform the variable Y into another variable, Z, by use of conditional probabilities PrZ|Y ( z | y )

which have no explicit dependence on X. This situation, where three variables are related only by

an intermediary, is called a Markov chain and denoted X − Y − Z. Let T be the operation on XY

which leaves X unchanged and transforms Y to Z; then the data processing inequality implies

I[X : Z] ≤ I[X : Y ]
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In other words, the correlation between X and Z can be no more than the correlation of X with

the intermediate variable Y .

The data processing inequality, in both of the common forms presented here, will be examined more

closely in chapter 6.

1.6. Itinerary of results

Since this introduction is full of triples, one more should suffice to provide the reader with an

overview of the contents and results of this dissertation. The chapters can be thought of as organized

into three distinct categories.

In Chapters 2 and 3, we will examine the concept of a predictive state, which we defined at the end

of Section 1.3. Chapter 2 will lay down the mathematical foundation for a study of predictive states,

proving that they are well-defined, convergent objects, and determining which sorts of geometric

tools are most appropriate for their analysis. To accomplish this, we rely heavily on the theory of

measures [90] and ergodic dynamical systems [96,175].

The foundations laid by this chapter will be built on in Chapter 3, where we will examine how

predictive states may be studied in the context of machine learning. The geometric insights gleaned

from Chapter 2 will be used to understand why one commonly used method, the reproducing kernel

Hilbert space, has been so successful, and we will also show how previously unapplied methods such

as the Wasserstein distance can also be useful.

The foundations laid in Chapter 2 will also prove the bedrock of the next major thrust of this thesis.

Chapters 4, 5 and 6 will look at how stochastic processes can be modeled and generated by other

physical and mathematical systems. Chapter 4 will combine our insights from Chapter 2 with tools

from representation theory and resource theory, allowing us not only to begin mapping out the

space of all possible models for a given stochastic process, but also to understand what physical

constraints we may face when implementing these models. Our discussions on ergodicity and the

Perron-Frobenius theorem (Section 1.4) as well as our discussion of Shannon information theory

(Section 1.5.1) will be of use here. Chapter 5 will build on its predecessor by extending the analysis

to quantum models of stochastic processes. In both Chapters 4 and 5 we will focus on memory costs
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of modeling and generating processes; 5 will show how quantum models routinely offer significant

improvements in memory cost in comparison to classical models.

Chapter 6 will expand the resoure theoretic discussion to include thermodynamics, following the

resource theory of thermal operations we discussed in Section 1.5.2. Here we will consider how both

classical and quantum generators fare. One of the primary results of this chapter is that it is possible

to generate a process with zero dissipation, but this involves a strict minimal memory requirement.

The methods we use to prove this are very reminiscent of our discussion in Section 1.4 on systems

with multiple ergodic components: essentially, dissipation-free information processing requires only

operating on these ergodic components of a system in an invertible manner. Additionally, we find

that in any case where a quantum model is used over a classical one for the purpose of memory

compression, this will result in nonzero dissipation.

Our Chapter 7 stands alone—but it is not lonely. We will switch into a very different domain—the

calculation of carbon footprints from trade data via input-output models [99,100]—but in this

domain we will find all the familiar algebra of stochastic processes, majorization, and ergodicity.

We will examine how the assumptions of input-output analysis essentially model “embodied carbon”

as travelling through the trade network via a Markovian process; importantly, it is driven by the

same Markov process that is assumed to drive the flow of money through the same network. Our

knowledge of ergodicity from the Perron-Frobenius theorem (Section 1.4), and our understanding

of the theory of distinguishability via majorization (Section 1.5.2) both indicate the inevitable

consequence: the distribution of carbon footprints and the income distribution rapidly converge

to one another. Using majorization, we demonstrate how this statistical phenomenon is in fact

responsible for a number of quantitative results in the field of input-output analysis, which have

previously been presented as empirical results derived from economic data. We show how this

phenomenon can be easily identified using a null model network. In essence, the strong ergodicity

of input-output models drowns out information from the actual data being analyzed, leaving us

with artifacts being presented as policy impacts. It is our hope that this work will promote more

careful use of input-output analysis, and a greater motivation for policy analysts to interrogate the

structures of their models.
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Thus while this dissertation spans a great number of subjects and fields, ultimately the ideological

space we explore is quite small, and we hope will be increasingly familiar to the intrepid reader.

Stochastic processes, ergodic models, and information theory are extremely powerful tools which

are relevant in settings from the esoteric to the ubiquitous. Through all of these tools, we find that

linear algebra continues to be a first-class approach to understanding even the most complex and

nonlinear of systems, though we must make significant shifts in perspective to make effective use of

it. Once we make this shift, we can see more clearly how stochastic processes imprint their invariant

patterns across a wide variety of natural and manmade phenomena—including our own models for

those phenomena.

30



CHAPTER 2

Unfolding time: Prediction in stochastic processes

Life can only be understood backwards; but it must be lived forwards.

Søren Kierkegaard

2.1. Introduction

The best place to start off with this chapter is precisely where Section 1.3 left off: the predictive

states of processes.

In that section, we discussed how a (stationary, ergodic) stochastic process can be understood

in terms of its word probabilities Pr ( x1 . . . x` ), where the observations xk are drawn from an

“alphabet set” X . We will start here by noting that this approach, while intuitive, only works well

for the case that X is a discrete set, so that these probabilities can be nonzero. In the continuous

case, we would be more likely to deal with a probability density, and more specifically, a probability

measure. These details will be worked out later in this chapter; for now, if continuous states are

your concern, you may mentally imagine that Pr ( · ) denotes a density.

We also discussed in section 1.3 how conditional probabilities can be defined, allowing us to condition

the likelihood of subsequent observations on prior observations:

(2.1) Pr ( w2 | w1 ) = Pr ( w1w2 )
Pr ( w1 )

But wait!—you might be wondering—would this construction be well-defined in the continuous

case, where the probability of a specific observation is zero? It would be nice to suppose that, in an

appropriate limit, we could just take the ratio of densities. Generally, this is the case, but we will

also have to address this in the main body of the chapter.

If we want to have as complete as possible a prediction of the next ` observations, it is generally

necessary (unless the process is Markov at some finite order R) that condition on as much information
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about the past as possible. The logical conclusion of this approach is to eventually condition on the

infinite past:

(2.2) Pr ( x1 . . . x` | ←−x ) = lim
N→∞

Pr ( x1 . . . x` | x−N . . . x0 )

For a specified `, we may call this limit a future morph. The collection of all future morphs (at

every `) we will term the predictive state.

How should we think about this object? It is first helpful to draw an analogy between working

with infinite sequences and working with continuous data. The set of infinite sequences has the

cardinality of the continuum, and more importantly has close topological similarities to the real

line. We will be discussing these mathematical aspects of temporal data in section 2.3. For now

we will point out that the sequence of future morphs Pr ( x1 . . . x` | ←−x ) for increasing ` specifies

the probability of an increasingly specific future event, much as the sequence of probabilities for a

continuous variable being in increasingly smaller intervals. Thus, the approach of measure theory

will be useful for thinking about temporal limits just as it is for thinking about continuous data.

Additionally, the conditional limit in Eq. (2.2) is very similar to the “appropriate limit” that we

earlier speculated would make Eq. (2.1) sensible for continuous variables. This is also no accident.

A deeper understanding of the theory of conditional measures, and under which circumstances these

conditional limits are valid, will be developed in Section 2.4.

Before we take our deep dive into the esotericities of conditional measure theory and infinite

sequences, it would be prudent for me to justify to the reader why predictive states are worth the

trouble, and in particular why the level of mathematical care we will take in this chapter is worth

our while. We have established the concept of the predictive state; let us now review its history.

The predictive (or sometimes causal state) appeared in the study of dynamical systems, and the

attempt to reconstruct the geometry of chaotic attractors from a data stream of measurements

limited in number of variables (typically one) and precision (discretization at scale ε). In essence, it

was discovered that sufficient information for characterizing the hidden attractor could be recovered

in the form of the ε-machine: the term given for the dynamical model reconstructed from the data

at precision scale ε [44]. The state space for the ε-machine was precisely the set of predictive states

of the measured data.
32



Though we will postpone in-depth discussion of models of stochastic proceesses to Chapter 4, it

will be helpful to briefly explain how the ε-machine functions. It is a kind of stochastic automaton

known as a hidden Markov model. The states of this model are given by the unique predictive states

of the process; that is, if we define an equivalence relation on pasts such that ←−x ∼ ←−x ′ if and only if

Pr ( w | ←−x ) = Pr
(
w
∣∣←−x ′ )

for all words w, then the set of ε-machine states is the set of all equivalence classes inscribed by ∼.

Let η be one such equivalence class; it corresponds to a unique prediction Prη ( w ) of future words w.

Let us focus on just the very next observation x. The epsilon machine, starting in state η, generates

the observation x with probability Prη ( x ) and then transitions to the new state η′ given by

Prη′ ( w ) = Prη ( xw )
Prη ( x )

(Equivalently, if ←−x is in the equivalence class of η, then the new state η′ is the equivalence class of
←−x x.)

From a data science standpoint, the broad goals of predictive-state analysis are threefold [173].

The first is to understand the overall structure of how the predictive states relate to one another

geometrically. As mathematical objects, predictive states can be compared and distances between

them can be quantified. In the inference setting, we may use this geometry to classify pasts based

on equivalence of their predictive states. The second goal is to actually reproduce the prediction to

a specified accuracy. That is, once we have embedded the predictive states in an abstract geometry,

we must actually recover the useful information about a predictive state: what it predicts. The

third is to understand the dynamics of how predictions evolve under a stream of new observations.

This involves simulating the ε-machine of the reconstructed state.

Following the initial introduction of the predictive state approach and the ε-machine, both concepts

have been employed in numerous settings, such as classical and quantum thermodynamics [22,23,24,

25,26,27,28,86,107,108], quantum information and computing [4,6,7,17,66,106,109,120,204],

condensed matter [41,57,130,200,201,202,205], renewal processes and spike-trains [126,127],

dynamical systems [51,87,88,89,167], cellular automata [162], and model inference [31,124,128,
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129,131,163,164,165,174,176,184,185,186]. While the original emphasis on the measurement-

dependent aspect of the ε-machine has declined, the name “ε-machine” has stuck.

Predictive states were originally considered in the case where the process could be generated by a

finite-state model, analagous to the regular languages of computational linguistics, and the natural

“next step” appeared to be extending the concept to processes with more complex patterns, such as

those that might be generated by a stack automaton or an indexed grammar [44]. In the time since,

however, the finite-state case has proven to be an incredibly rich direction of study on its own, and

a sophisticated mathematical theory has developed around the predictive states of hidden Markov

models and their generalizations [76,173,180,193,195,196,197,199].

The content of the chapter is primarily drawn from the manuscript Topology, Convergence, and

Reconstruction of Predictive States [111] in which we built new foundations for predictive state

theory on the bedrock of measure theory. Our discussion of Cantor set geometry is from Predictive

State Geometry via Cantor Embeddings and Wasserstein Distance [112]. After the writing of both

these manuscripts I became aware that the specific result of the convergence of predictive states

had been previously in Ref. [199], using Lévy’s upwards theorem. Despite this, our independently

derived approach is covered in full in this chapter, as the process of deriving the result offers key

insights beyond the measure-theoretic convergence into the topology and geometry of predictive

states, as well as the practical means by which the convergence is achieved.

From these new foundations, we are able to extend the applicability of predictive states beyond

finite-state processes to any stationary, ergodic process, no matter how complex. Additionally, our

extensions allow the definition of predictive states on continuous-valued data (how far from the days

of ε we have come!). In Chapter 3 we will discuss how our broadened perspective offers insight to

the utility of machine learning tools for reconstructing predictive state geometry.

The concepts handled in this chapter also lay the foundations for the use of predictive states in

understanding models and their physical implementations in Chapters 4 through 6. In Chapters 4

and 5 we will show how predictive states form the bedrock of an entire theory of models of stochastic

processes which encompasses hidden Markov models and several of their generalizations. We will

learn to see predictive states as dynamical objects, and their dynamics have invariant symmetries

which we will prove to be present in every dynamical model of the same stochastic process. Indeed,
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we will in fact tie each dynamical model to an algebraic representation of the symmetry group of

the predictive states. In Chapter 6, this representation theory of models will be used in conjunction

with the resource theory of Section 1.5 to study the memory and energetic costs of physically

implementing models of stochastic processes. Thus, predictive states allow us to concretely explore

model space and understand its physical manifestations.

We hope this will justify to the reader why predictive states deserve such a close and scrutinizing

examination such as we will provide in this chapter. We will now proceed with an overview of the

mathematical tools and questions which will be the core of this chapter.

2.2. A brief introduction to measure theory and conditioning

The theory of measures and stochastic processes is deep and intricate, and even an introduction

to these concepts will be fraught with rabbit holes which, while interesting, are irrelevant to our

current considerations. Here we will briefly review the general concepts of measures and Lebesgue

integration, but we will resist formal definitions and refer the reader to more appropriate venues for

a properly rigorous introduction [90,96,175]. Once the general foundations have been laid we will

also give a brief review of the problem of conditioning on measures, as this is the central formal

roadblock which the current chapter seeks to divert. In the main body of this chapter we will be

much more rigorous in establishing how stochastic processes may be handled by measure-theoretic

approaches.

The measure is the mathematical formalization of the concept of “size,” particularly as applied to

sets. Given a space X , a collection of its subsets Σ (frequently called the Σ-algebra) is selected,

and the subsets within Σ are considered to be measurable. A (signed) measure is a function

µ : Σ→ R ∪ {±∞}, which is subject to the conditions that µ(∅) = 0 and

µ

⋃
j

Ej

 =
∑
j

µ(Ej)

where {Ej} is an at most countably large collection of disjoint measurable sets. Thus a measure µ is

considered to provide a sense of size to measurable sets which scales additively as sets are combined.

It may take infinite values, though most of the measures that we will consider are bounded. Note
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that implicitly, the Σ-algebra is required to be closed under countable unions. It is also supposed to

be closed under countable intersection.

A standard example of a measure is the Lebesgue measure on R, typically denoted by λ. The

Σ-algebra is generally taken to be generated by all intervals [a, b] ⊂ R, and the measure is given by

λ([a, b]) = b− a.

Measures are a natural way to formulate the ideas of probability theory. The long-time frequency

with which a variable is observed to take a value within the set U forms a measure µ with the

property that µ(U) > 0 always and µ(X ) = 1 (where X is the full domain of possible values). Any

measure satisfying these properties is called a probability measure.

Certain kinds of functions, known as measurable functions, can be integrated with respect to

measures. Specifically, the definition of measurable for a function is relative to the measure µ in

question; however, examples of non-measurable functions are typically non-constructive, relying on

the axiom of choice to prove their existence, and so we will go forwards with the assumption that

we are always dealing with measurable functions, since all the functions we will be concerned with

have unambiguously constructive definitions.

The Lebesgue integral of a function f with respect to a measure µ over a measurable set U is written

in the form ∫
U
f(x)dµ(x)

We will not give the precise definition here but will describe the basic intuition. Suppose we

subdivide U into smaller, measurable sets Ui, and take the maximum (minimum) of f on each

of these sets, denoted fi, and compute the quantity ∑i fiµ(Ui); then the integral is the maximal

(minimal) value attainable by this procedure over all subdivisions of U . If f is measurable, the

max-min approach to this limit should be the same as the min-max approach. This approach is

very similar to the Riemann integral, where the subdivisions are restricted to be intervals; when f

is Riemann-integrable (that is, continuous everywhere except for a measure-zero set), the Lebesgue

integral coincides with the Riemann integral.

It is common to think of probability distributions over continuous variables in terms of a probability

density. If the probability density function of a distribution is given by a positive function f , then
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the probability mass of a set U ⊆ R is given by

Pr ( U ) =
∫
U
fµ(x)dx

In measure-theoretic terms, we are describing a measure defined by an integral over the Lebesgue

measure:

µ(U) =
∫
U
fµ(x)dλ(x)

Some features of this definition should be noted. For any set U with Lebesgue measure zero

(λ(U) = 0), we must also have µ(U) = 0 from the definition of the Lebesgue integral and the

positivity of f .

Generally speaking, we say for two measures µ and ν that ν � µ, said “ν is absolutely continuous

with respect to µ,” if ν(U) = 0 whenever µ(U) = 0. Whenever this is true, the Radon-Nikodym

theorem stipulates that there exists a function, denoted dν/dµ(x), such that

ν(U) =
∫
U

dν

dµ
(x)dµ(x)

The function dν/dµ(x) is called the Radon-Nikodym derivative, and is a generalization of the notion

of a probability density function.

The Radon-Nikodym derivative is the pivot point for us to turn towards discussing the problem with

conditioning on measures. There are two facets of conditioning which are extremely important to

this chapter. First, we will discuss how conditional measures can be defined as a special application

of the Radon-Nikodym derivative. This part is (deceptively) straightforward. The second facet is, as

they say, the “catch”: the Radon-Nikodym theorem is non-constructive, only proving the existence

of the derivative, but giving us no method with which to compute it. Thus, pinning the definition

of a conditional probability to the Radon-Nikodym derivative means conditional probabilities are

also inherently non-constructive. Fortunately, there is a body of work that has provided numerous

tools to construct the Radon-Nikodym derivative, and therefore conditional probabilities, in certain

special cases [156]. Our task in this chapter will be to firmly establish stochastic processes as one

of those cases.
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When we talk about conditional probabilities, we will specifically assume that we are dealing

with a joint measure µXY over a product space X × Y. In this setting a conditional measure for

Y conditioned on X is typically defined by a regular conditional probability, which is a function

κY |X : ΣY × X → R. Note that κY |X is a function of a point in X and a measurable set in Y;
effectively, it can also be seen as a function from X to measures on Y. The conditional measure

must satisfy the formula

µXY (U × V ) =
∫
U
κY |X(V, x)dµX(x)

for all measurable U ⊂ X and V ⊂ Y. The idea is that the probability of the joint event x ∈ U ,
y ∈ V is given by the integral (over U) of the conditional probability of event y ∈ V .

This equation can be satisfied by use of the Radon-Nikodym theorem. Specifically, for a given set

V , let µX,V (U) = µXY (U × V ) be a measure on X. Then the conditional probability defined by

(2.3) κY |X(V, x) = dµX,V
dµX

(x)

satisfies the conditional measure equation. Thus, the existence of regular conditional probabilities

is just a special application of the Radon-Nikodym theorem; further, if we have a constructive

definition of the derivative, then the conditional probability may be computed using that definition.

Let us now turn our attention to this task.

The name “derivative” evokes the fundamental theorem of calculus: ν is the integral of dν/dµ

because dν/dµ is the derivative of ν. One might intuitively then suppose that the Radon-Nikodym

derivative is also a differentiation—that is, it is the limit of variations, just as the standard derivative

df/dx is defined. Specifically, it would be quite desirable if the Radon-Nikodym derivative were

equal to the limit

(2.4) dν

dµ
(x) = lim

U→x

ν(U)
µ(U)

where the limit is taken over sets U which contain x and “approach” it by contracting until they

only contain x.

This is, indeed, possible, but only when certain conditions are met. When the measure’s support

is countable, the limit is trivial as points x have nonzero probability mass to themselves, and the
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Radon-Nikodym derivative at x is just the ratio of the measures at x. The uncountable case is more

subtle [156]. The crux of the issue is whether a certain property—called the Vitali property—holds

to some degree of strength, in which case there exists a collection of sets— called the differentiation

basis—which can be used to take the limit in Eq. (2.4).

Skipping several steps which will be elaborated upon in Section 2.3, the predictive state definition as

(2.5) Pr ( w | ←−x ) = lim
k→∞

Pr ( x−k . . . x0w )
Pr ( x−k . . . x0 )

is essentially the application of Eq. (2.3) and Eq. (2.4) in sequence: namely, we are identifying

the conditional probability as a Radon-Nikodym derivative, and then identifying that derivative

as a limit of the ratio of increasingly specific probabilities. As we have explained, Eq. (2.3) is a

universally valid step, but Eq. (2.4) may not be. It is certainly not immediately clear that the

second step ought to hold for all stationary, ergodic processes. Demonstrating that this is in fact

the case is the primary goal of sections 2.3 and 2.4 of this chapter.

One of our first tasks in this chapter will be to demonstrate that the Vitali property holds in its

strongest form on the set of sequences XN when X is a finite set. This proves Eq. (2.5) will converge

to a valid conditional probability for any discretely-valued stochastic processes.

When X is a subset of Rd, the situation is considerably more complicated. Even in R itself, the

existence of a Vitali property is not trivial. For the Lebesgue measure, only a weak Vitali property

holds, though this is still sufficient for the equivalence between Radon-Nikodym derivatives and

likelihood ratios. The differentiation basis in this setting can be taken to be comprised of all intervals

(a, b) on the real line. Going from R to Rd, constraints must be placed on the differentiation basis.

An “interval” here is really the Cartesian product of intervals, but for a Vitali property to hold we

must only consider products of intervals whose edges are held in a fixed ratio to one another, so

that the edges converge uniformly to zero. Likelihood ratios for fixed-aspect boxes of this kind can

converge to the Radon-Nikodym derivative.

This requirement poses a challenge for generalizing the Vitali property to infinite dimensions, as we

must to study sequences of real numbers. A fixed-aspect “box” around a sequence of real numbers

is not a practical construction. In the empirical setting, we can only observe information about a

finite number of past outputs. We therefore cannot obtain any “uniform” knowledge of the entire
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past. A direct generalization of the case for Rd does not suffice. Nor, however, does a more relaxed

generalization, where only a finite number of axes are constrained to be fixed-aspect at a time:

the Vitali condition can be proven to be violated in this case [80]. This fact poses seemingly dire

consequences for the validity of Eq. (2.5).

The tools for surmounting this obstacle actually come from the same source as the identification of

the obstacle itself: the early work on integration of sequences by Jessen [79] and later Enomoto [53].

Their results focused on generalizing Lebesgue measure to (S1)N, where S1 is the circle. In Section

2.4 we will show that their results can be significantly extended. Though the Vitali property does

not hold on (S1)N (or more generally XN for X ⊂ R), our generalization of Enomoto’s Theorem

will provide a differentiation basis for XN under which Eq. (2.5) provides a well-defined conditional

probability.

An aspect of formulae like Eq. (2.4) and Eq. (2.5) which we have so far brushed over is the matter

of convergence of measures. Both the aforementioned formulae describe the convergence of an

evaluation of the measure: in Eq. (2.4), we are concerned with its evaluation on a set V , and in

Eq. (2.5) with its evaluation on a word w.

What do these limits over evaluations say about the convergence of the measure in question? There

are a variety of distinctly different manners in which a sequence of measures can converge. The

kind of convergence which applies in our case is convergence in distribution [90]. A sequence of

measures (µn) over X is defined to converge in distribution if

lim
n→∞

∫
f(x)dµn(x) =

∫
f(x)dµ(x)

for every continuous function f : X → R. We will try to avoid abstract topology here, but for our

purposes it will suffice to assume that X is either discrete (in which case any function is continuous),

a subset of R (in which case we simply inherent the definition of continuity from R), or a space of

sequences (in which case we will address continuity in Section 2.3). It turns out that convergence

in distribution of measures is equivalent to the convergence-on-words that we establish holds in

Eq. (2.5) (we will prove this equivalence in Section 2.3).

The purpose of this section has been to give the reader a brief introduction to the key concepts of

measure theory, and why our lengthy examination of conditioning on stochastic processes in the
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main body is necessary. In Sections 2.3, 2.4 and 2.3.4 we will elaborate further on how to address

these issues for stochastic processes.

2.3. The structure of temporal data

In this section we will cover the basic mathematics of stochastic processes and symbolic dynamics,

introducing some example processes which will follow us throughout the text as well as some useful

theorems. The eexamples will be presented in Section 2.3.1.

The methods here are intended to be applied to stationary and ergodic stochastic processes that

generate a discrete-time sequence of data. In the case of categorical data, we can consider a stochastic

process to be a collection of probability distributions Prµ ( x1 . . . xL ) over any finite, contiguous

sequence, taking values in a finite set X . Formally, this describes a measure µ over the set of all

bi-infinite sequences (. . . , x−1, x0, x1, . . . ) ∈ XZ. For real-valued data, we can similarly consider the

process to be a collection of measures over XL, which altogether constitute a single measure over

X Z. In Sections 2.3.2 and 2.3.3 we will cover the formal nuances of defining these measures and the

geometry of sequences. In Section 2.3.4 we demonstrate that the convergence in distribution for

measures on XN is equivalent to the convergence of the measure on all finite-word probabilities.

2.3.1. Example processes. Stochastic processes are generated by a number of systems with

widely varying complexity. Most popularly studied are those often characterized as having a degree of

“finite memory”: Markov chains, hidden Markov models, and observable operator models (also termed

generalized hidden Markov models) [76,199]. Beyond these, one can also generate processes using

probabilistic grammars, such as probabilistic context-free and indexed grammars [63]. Additionally,

coarse-grained data from chaotic dynamical systems—such as the logistic map—display behavior

varying widely in complexity [38].

We refer back frequently to the following example processes:

(1) The even process can be generated by repeatedly tossing a coin and writing down a 0

for every tail and 11 for every head; thus a sample might look like “011001101111.” The

process is essentially random except that 1s only appear in contiguous blocks of even size

bounded by 0s. The even process has infinite Markov order but can be generated by a

two-state hidden Markov chain [42].
41



(2) A renewal process, usually defined over continuous-time, can be defined for discrete time

as follows. A renewal process emits 0s for a randomly selected duration before emitting a

single 1 and then randomly selecting a new duration to fill with 0s [125]. A renewal process

is specified by the survival probability Φ(n) that a contiguous block of 0s has length at

least n. The exact probability of a given length is F (n) := Φ(n)− Φ(n+ 1). It is always

assumed that Φ(1) = 1. Further, stationarity requires that m := ∑∞
n=1 Φ(n) be finite, as

this gives the mean length of a block of 0s.

(3) The anbn process can be generated by choosing a random integer n ≥ 1 (we suppose via a

Poisson process) and writing n a’s followed by an equal number of b’s, and then repeating

this procedure indefinitely. This results in sequences where any contiguous block of as

is followed by a block of bs of equal size. The anbn process cannot be generated by any

finite hidden Markov chain, though it is a simple example of a probabilistic context-free

language [69].

(4) The x+f(x) process is a probabilistic context-free language modeling the syntactic structure

of simple mathematical expressions. It has terminal symbols {( , ) , ; , + , f , x} and
nonterminals {A,B,C}, and starts with a sequence of As. Sequences are generated by

applying the production rules:

A 7→ B + C ; | C ;

B 7→ B + C | C

C 7→ f(B) | x .

(5) The anbncn process is a probabilistic indexed language [69] that is analogous to anbn except

after writing the blocks of a’s and b’s, we also write a block of c’s of length n.

(6) The Morse-Thue process is generated by sampling from the time series of the logistic map

at critical “onset of chaos” parameter rc ≈ 3.56995:

yt+1 = ryt(1− yt)
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and then coarse-graining the data by taking xt = 0 if 0 < yt ≤ 1
2 and xt = 1 if 1

2 < yt < 1

[96]. Alternatively, we can generate this process by starting with a single 0 and executing the

replacements 0 7→ 11 and 1 7→ 01 consecutively. The resulting process is an indexed-context

free language [38].

2.3.2. Processes via measures. A stochastic process is typically defined as a function-valued

random variable X : Ω→ X T , where (Ω,Σ, µ) is a measure space, T is a set of temporal indices

(perhaps the real line, perhaps a discrete set), and X is a set of possible observations (also potentially

real or discrete in nature). We take the sample space Ω to be the set X T and X to be the identity.

In this way, a stochastic process is identified solely with the measure µ over Ω = X T .

When T is Z, we say the process is discrete-time; when it is R we say continuous-time. Unless

specified otherwise we assume discrete-time, later treating continuous-time as an extension of the

discrete case. In discrete time, it is convenient to write X(t) as an indexed sequence (xt), where each

xt is an element of X . When X is a discrete finite set, we say that the process is discrete-observation;

by continuous-observation we typically mean the case where X is an interval in R or a Cartesian

product of intervals in Rd. These are the only cases we consider rigorously. That said, we believe they

are sufficient for many practical purposes or, at least, not too cumbersome to extend if necessary.

The temporal shift operator τ : X Z → X Z simply translates t 7→ t + 1: (τX)(t) = X(t + 1). It

also acts on measures of X Z: (τµ)(A) = µ(τ−1A). A stochastic process paired with the shift

operator—(X Z,Σ, µ, τ)—becomes a dynamical system and is stationary if τµ = µ. It is further

considered ergodic if, for all shift-invariant sets I ⊆ XZ, either µ(I) = 1 or µ(I) = 0. Here, we

assume all processes are both stationary and ergodic.

We will note two implications of this ergodicity. The first is the ergodic theorem, which states that

for any function f : XZ → R,

(2.6) lim
T→∞

∞∑
t=0

f(τ tX) =
∫
f(X)dµ(X)

In other words, temporal averages are equal to instantaneous averages. The other implication of

ergodicity (which follows from the above) is that the “path” taken from any starting point eventually

fills the system. If we let 1U denote the indicator function of any set U ⊆ XZ , so that 1U (X) = 1
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whenever X ∈ U and 1U (X) = 0 otherwise, we have

(2.7) lim
T→∞

∞∑
t=0

1U (τ tX) = µ(U)

In other words, if U has positive measure, we will revisit it recurrently over time, no matter our

starting point. The reader will hopefully note that these three characterizations of ergodicity match

those we provided in the context of Section 1.4.

If X is discrete, then the measurable sets of XZ are generated by the cylinder sets:

Ut,w := {X : xt+1 . . . xt+` = w } ,

where w ∈ X ` is a word of length `. For a stationary process, the word probabilities:

Prµ ( x1 . . . x` ) := µ (U0,x1...x`)

are sufficient to uniquely define the measure µ.

In the continuous-observation case, the issue is more subtle. A cylinder set instead takes the form:

Ut,I1...I` := {X : xt+1 ∈ I1, . . . , xt+` ∈ I` } ,

where each It is an interval in X . This does not lend itself well to expressing simple word probabilities.

However, we can define the word measures µ` by restricting µ to the set X ` describing the first `

values. We use the notation

Prµ ( I1 . . . I` ) := µ (U0,I1...I`)

similarly to the discrete case when we want to specify that a word is constrained by a sequence of

intervals.

The set of all measures over XN will be denoted M(XN), and the set of all probability measures will

be denoted P(XN).

2.3.3. The self-similar geometry of time. The geometry of sequences is inherently self-

similar. Given an infinite sequence −→x = (x1, x2, . . . ), we can split it into its leading word x1x2 . . . xL
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and a following sequence −→x L = (xL, xL+1, . . . ). That is, the space of sequences XN can be factored

into XL × XN for any L. The fractal nature of sequence-space is encoded in the structure of its

product topology.

Topology is, in many ways, just the study of similarity: defining when things are similar to one

another, and how different kinds of similarity are linked. In the case of sequences, we say that two

sequences −→x and −→y are similar if they share matching symbols, and they are more similar the more

matching symbols they share. This intuition is encoded in the product topology, which defines the

basic “neighborhoods” of a sequence −→x to be generated by its cylinder sets: U0,x1...x` in the discrete

case and in the continuous case, U0,I1...I` where the intervals Ik are open and xk ∈ Ik. The product

topology endows the space of sequences with several useful properties; most importantly, if X is a

compact set (automatically true for discrete X , and true for closed and bounded X ⊂ R), then X Z

and XN are also compact in the product topology.

Two useful families of distance metrics, equivalent to the product topology on XN, are the Euclidean

metrics, one for the discrete and real case each:

DE,γ(X,Y )2 :=


∑∞
t=1(1− δxtyt)γ2t X discrete∑∞
t=1 ‖xt − yt‖2 γ2t X ⊂ Rd

,

for some 0 < γ < 1. These distance metrics arise from embedding XN in a Hilbert space. Given an

orthogonal basis (ei), the components of this embedding for the discrete case are given by:

ci(X) =


γbi/|X |c xbi/|X |c = i mod |X |

0 otherwise

and in the continuous case (X ⊂ Rd) by:

ci(X) = γtxk,t, i = k mod d .
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The Euclidean distance has an interesting “Pythagorean theorem.” Define the restricted distance on

X `:

D
(`)
E,γ(X,Y )2 :=


∑`
t=1(1− δxtyt)γ2t X discrete∑`
t=1 ‖xt − yt‖2 γ2t X ⊂ Rd

,

for X,Y ∈ X `. Then:

DE,γ(X,Y )2 =D(`)
E,γ(x1 . . . x`, y1 . . . y`)2

+ γ2`DE,γ(x`+1 . . . , y`+1 . . . )2
.(2.8)

This theorem provides an algebraic expression of the self-similarity of the product topology.

For discrete sequences, we can exploit the self-similar geometry in an interesting way by constructing

another distance metric which also generates the product topology. This is done by constructing an

embedding between sequence space and the celebrated Cantor set (or one of its generalizations).

Suppose a symbolic sequence (x1, x2, . . . ) takes values in an alphabet X of size |X |. To each x ∈ X
we associate a unique integer between 0 and |X | − 1 inclusive; call this J(x). Then, there is a

function C : XN → [0, 1] that maps every sequence to a positive real number:

C(x1, x2, . . . ) =
∞∑
k=1

2J(xk)
(2|X | − 1)k .

For instance, suppose that |X | = 2 has two elements; then C maps the sequence to a point in the

traditional Cantor set fractal. For a finite sequence of length L, truncate the sum at k = L.

Remarkably, the embedding C has the property that for any continuous function f on [0, 1],

the function F (−→x ) = f(C(−→x )) is continuous on XN. Further, if F is continuous on XN, then

f(y) = F (C−1(y)) is continuous on the image. Thus, the embedding C respects the basic structure

of the product topology [96].

Stationary processes, due to their time-translation invariance, inherit the fractal temporality of

sequence space. This can be easily visualized: Given a length-L sample x1 . . . xL, and n, k > 0,

take a sliding window of pasts and futures, (xt−k+1 . . . xt, xt+1 . . . xn) for t = k, . . . , L− n. For each
past-future pair, compute the truncated Cantor embeddings on the reversed past and (unreversed)

future: (C(xt . . . xt−k+1), C(xt+1 . . . xn)). The resulting pairs of real numbers can be plotted as
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Figure 2.1. Cantor plots for the even, anbn, anbncn, and x + f(x) processes. Each
point (x, y) corresponds to a pair of sequences corresponding to the past and future,
respectively. The symbol on the x (y) axis indicates that all points above (to the
right of) that symbol have a past (future) whose most recent observation is that
symbol. Though not marked, further proportional subdivisions of each segment of
the axes indicate the value of the second, third, etc. symbols. For instance, one
can read from the x + f(x) fractal that any past ending in f must be paired with a
future beginning in (f or (x.

(x, y)-values on a scatter plot. The fractal that emerges contains, in essence, all information necessary

to understand a process’ temporal structures. See Fig. 2.1 for examples and guidance on how to

interpret the visualization.
47



Note that for |X | > 2 the embedding C introduces additional structure that may or may not be

desired. Associating each symbol x with an integer jx endows an ordinal structure on the set X .
This ordinality is present in the macroscopic geometry of C

(
XN
)
.

2.3.4. Continuity and convergence of measures. A central feature of our result on pre-

dictive states is that they converge in distribution as more information from the past is provided.

Convergenec in distribution is defined in terms of continuous functions. Namely, a sequence of

measures µk over XN converges to a measure µ in distribution if, for every continuous function

f : XN → R,

lim
k→∞

∫
XN

f(−→x )dµk(−→x ) =
∫
XN

f(−→x )dµ(−→x )

To relate this definition of convergence to our own intuitions of stochastic processes, we must have a

better understanding of continuity in sequence-space.

The definition of continuity depends on the product topology, whose neighborhoods are cylinder

sets. For the discrete case, a simple rendering of the definition of continuity is this: a function f is

continuous if, for every −→x ∈ X and some small number ε > 0, there is a sufficiently large time t

such that |f(−→y )− f(−→x )| < ε whenever y1 . . . yt = x1 . . . xt. In other words, if two sequences match

sufficiently far into the future, then their function values will be arbitrarily close.

Another feature of continuity on XN comes to us by virtue of the compactness of the space.

The Heine-Cantor theorem asserts that any continuous function on a compact space is uniformly

continuous. This means that we can in fact amend our definition of continuity: for any small ε > 0,

there is a single time t > 0 after which it is guaranteed that |f(−→y )− f(−→x )| < ε for any two −→x ,−→y
who match on the first t symbols: y1 . . . yt = x1 . . . xt. In other words, convergence occurs at (at

most) a uniform rate at every point; there are no “straggler points” who take an arbitrarily long

time to converge compared to other points.

For the following theorem, we call a measure µ “full” if it assigns positive measure to every cylinder

set.

Proposition 1 (Continuity via word averages). A function f : XN → R is continuous if and only

if the functions

fµ,`(x1 . . . x`) =
∫
U0,x1...x`

f(−→x )dµ(−→x )
µ(U0,x1...x`)
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are continuous on X ` and converge to f(−→x ) uniformly over −→x and every full measure µ, as `→∞.

Proof. Suppose f is continuous; then it is uniformly continuous, and so for every ε > 0 there is a

t so that, for every −→x and µ, |fµ,`(x1 . . . x`)− f(−→x )| < ε. This follows because f will be close to

f(−→x ) on the cylinder set being averaged over, and so the average will be close. Further, continuity

of fµ,` will be inherited from the continuity of f . Thus the forward implication is true.

For the converse, consider the fact that fµ,` can be extended to a function on XN as fµ,`(−→x ) =

fµ,`(x1 . . . x`). Each of these extensions is necessarily continuous on XN. Because they converge

uniformly to f , f must be continuous by virtue of the Uniform Limit theorem (which states that a

uniform convergence of continuous functions results in a continuous function).

Let us keep in mind that if X is discrete, then the requirement that fµ,` is continuous is trivial.

We can now demonstrate that convergence-in-distribution will be equivalent to convergence over

word distributions. We will state the full result and then explain the implications afterward.

Theorem 2 (Equivalence of convergence-over-words and convergence-in-distribution). Let µk be a

sequence of measures on XN and let µ be a measure over the same. Then µk → µ in distribution if

and only if µk|` → µ|` in distribution for every `, where ν|` is the marginalization of the measure ν

to X `.

Proof. By virtue of Prop. 1, for any continuous function f we will have for all measures ν:

lim
`→∞

∫
fν,`(x1:`)d (ν|`) (x1:`) =

∫
f(−→x )dν(−→x )

If we replace ν with µk and µ respectively, then convergence in distribution has the form

lim
k→∞

lim
`→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`) lim

k→∞

∫
f(−→x )dµk(−→x ) =

∫
f(−→x )dµ(−→x )

for all continuous f .

On the other hand, convergence of µk|` → µ|` for all ` takes the form of the requirement

∫
f(−→x )dµ(−→x ) = lim

`→∞

∫
fµ,`(x1:`)d (µ|`) (x1:`) = lim

`→∞
lim
k→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`)

for all continuous f .
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Equivalence of these two convergences then just boils down to the interchange of limits lim`→∞ limk→∞ ↔
limk→∞ lim`→∞. By the Moore-Osgoode theorem, this interchange is in fact valid whenever the limit

lim
`→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`) =

∫
f(−→x )dµk(−→x )

is uniformly convergent over all k. But this is guaranteed by Prop. 1, and so the two forms of

convergence are equivalent.

Theorem 2 guarantees that in order to demonstrate convergence in distribution, it is sufficient that

the measures converge on ther marginalizations to finite words. For discrete X , this means that

lim
k→∞

Prµk ( w ) = Prµ ( w )

for all w is equivalent to convergence in distribution. This is extremelly convenient, as word

probabilities are perhaps the most intuitive way to interact with the measure.

For the case of X ⊂ R, the situation is more subtle. The Portmanteau theorem [90] states that

convergence in distribution is equivalent to a very weak bounded convergence over open sets. In our

case, this means that

lim inf
k→∞

Prµk ( I1 . . . I` ) ≥ Prµ ( I1 . . . I` )

for all open neighborhoods I1× · · · × I` of any length is equivalent to convergence in distribution. In

fact, what we will prove for predictive states is a somewhat stronger form of convergence than this,

where we maintain the equality at each `, though this is still not nearly as strong as other forms of

convergence over XN, and in most practical cases it is equivalent to convergence in distribution.

2.4. Conditioning on sequences: discrete intuitions

Each element x ∈ X Z can be decomposed from a bidirectional infinite sequence to a pair of unidirec-

tional infinite sequences in XN ×XN, by the transformation . . . x−1x0x1 · · · 7→ (x0x−1 . . . , x1x2 . . . ).

The first sequence in this pair we call the past ←−x and the second we call the future −→x . In this

perspective, a stochastic process is a bipartite measure over pasts and futures. The intuitive

definition of a predictive state is as a measure over future sequences that arises from conditioning
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on past sequences. Heuristically, Prµ
(−→
X
∣∣∣←−x ) represents the “predictive state” associated with

past . . . x−1x0.

Formally, the predictive state can be defined in terms of a Radon-Nikodym derivative. Consider the

discrete case. Let ←−µ denote the restriction of µ to pasts, and let ←−µ x`...x1 be the measure on pasts

which precede the word w := x1 . . . x`. These are given by:

Pr←−µ ( x0 . . . x−k ) := Prµ ( x−k . . . x0 )

Pr←−µ x`...x1
( x0 . . . x−k ) := Prµ ( x−k . . . x0x1 . . . x` ) .

Then the predictive state can be defined as a Radon-Nikodym derivative

Prµ ( x1 . . . x` | ←−x ) = d←−µ x`...x1

d←−µ (←−x ) .(2.9)

This definition has the benefit that, for any word w = x−n . . . x0,

Prµ ( x−n . . . x0x1 . . . x` ) =
∫
U0,x0...x−n

Prµ ( x1 . . . x` | ←−x ) d←−µ (←−x ) .(2.10)

Thus the predictive state acts as a proper conditional probability. The continuous case is equivalent,

with the replacement of symbols xk with intervals Ik.

As discussed in Section 2.2, there is a downside to the Radon-Nikodym formulation, which is that it

is not generally constructive. We therefore have to provide a definition of predictive state which is

grounded directly in ratios of probabilities which can be empirically measured. In this section we

will show the following:

(1) The predictive state, defined in the form of a Radon-Nikodym derivative, has a computable

formulation as a limit of ratios of word probabilities. In the discrete case, this looks like:

Prµ ( x1 . . . x` | ←−x ) = lim
k→∞

Prµ ( x−k . . . x0x1 . . . x` )
Prµ ( x−k . . . x0 )

This limit works for every stationary and ergodic process, regardless of complexity.

(2) Because the above limit exists for every word w = x1 . . . x`, the convergence of the predictive

state as a measure is convergence in distribution, as per Thm. 2. The measure associated

with the predictive state Prµ ( · | ←−x ) will be denoted ε[←−x ].
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(3) An example will be provided (namely, the Feigenbaum process) of a distribution for which

stronger forms of convergence (namely, convergence on sets and convergence in total

variation) do not hold, thus making convergence in distribution the strongest form of

convergence guaranteed for predictive states.

This section will focus on the case of discrete X in section 2.4.1. This will introduce us to the basic

issues at hand which, while not trivial for the discrete case, may be handled fairly straightforwardly.

In Section 2.3.4 we will examine the case of continuous observations, reviewing the previous literature

on the nuances of this domain and extending its results for our present purposes, in sections 2.3.4

through 2.5.2.

Because the mathematics in this section is far from either elegant or intuitive, we will close by

reviewing our results in Section 2.4.2 with example cases.

2.4.1. Discrete observations. Let ←−µ denote the restriction of µ to pasts. We will establish

the following:

Theorem 3. For all measures µ on X Z, all ` ∈ N, all w = x1 . . . x` ∈ X `, and ←−µ -almost all pasts
←−x , where X is a finite set, the following limit is convergent:

Prµ ( w | ←−x ) = lim
k→∞

Prµ ( x−k . . . x0x1 . . . x` )
Prµ ( x−k . . . x0 )(2.11)

Note that by Thm. 2, this implies that the predictive state converges in distribution.

For all ←−x where Eq. (2.11) converges, we can define a measure ε[←−x ] ∈ P(XN) over future sequences,

uniquely determined by the requirement ε[←−x ](U0,w) = Prµ ( w | ←−x ). This ε[←−x ] is the predictive

state of ←−x and the function ε : XN →M(XN), the prediction mapping.

The proof strategy will consist in redefining the problem. The limit Eq. (2.11) can be recast as what

is called a likelihood ratio. The convergence of likelihood ratios is itself closely related to the theory

of Radon-Nikodym derivatives between measures. Specifically, the Radon-Nikodym derivative can

be computed as a convergence of likelihood ratios of that convergence is taken over a particular

class of neighborhoods, called a differentiation basis, and that basis has a property called the Vitali

property. We will define these concepts for the reader below and use them to prove Theorem 1.
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Figure 2.2. Snapshot of a differentiation basis. A differentiation basis is a collection
of neighborhoods in XN, which have hierarchical structure. For every point x ∈ XN,
there must be a sequence of neighborhoods converging on that point. Pictured above,
a line is shown with a partial representation of its differentiation basis above it in
the form of a hierarchical collection of rounded rectangles. For two points x and y
we show the corresponding sequence of sets (Dj(x)), (Dj(y)) converging on each.

Let ←−µ and ←−µ x`...x1 be defined as in the start of this section. Then Eq. (2.11) can be recast in the

form of a convergence of likelihood ratios, taken over a sequence of cylinder sets Uk := U0,x0...x−k

converging on ←−x :

Prµ ( x1 . . . x` | ←−x ) = lim
k→∞

←−µ x`...x1 (Uk)←−µ (Uk)
.(2.12)

This reformulation, though somewhat conceptually cumbersome, is useful because of existing

theorems relating the convergence of likelihood ratios to the Radon-Nikodym derivative. Indeed,

wherever Eq. (2.12) converges, it will be equal to the Radon-Nikodym derivative d←−µ x`...x1/d
←−µ (←−x ).

To use these theorems we must define a differentiation basis. Any collection of neighborhoods D
in XN may be considered a differentiation basis if for every ←−x ∈ XN, there exists a sequence of

neighborhoods (Dk) such that limk→∞Dk = {←−x }. See Fig. 2.2.

The Vitali theorem states that whenever the differentiation basis D possesses the Vitali property

with respect to two measures ν and µ, then for µ-almost all←−x , the limit of likelihood ratios exists for

any sequence (Vk) ⊂ D converging on ←−X and is equal to the Radon-Nikodym derivative dµ/dν(←−x )
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at that point [156]. This sort of very flexible limit is denoted by

lim
V ∈D
V 3←−x

µ(V )
ν(V ) = dµ

dν
(←−x )

The Vitali property has strong and weak forms, but we will be able to prove the strong form. The

differentiation basis D has the strong Vitali property with respect to µ if for every measurable set

A and for every a sub-differentiation basis D′ ⊆ D covering A, there is an at most countable subset

{Dj } ⊆ D′ such that Dj ∩Dj′ is empty for all j 6= j′ and

(2.13) µ

A−
⋃

j

Dj

 = 0

In other words, we must be able to cover “almost all” of A with a countable number of nonoverlapping

sets from the differentiation basis [156].

We now demonstrate that the differentiation basis D generated by cylinder sets on XN has the

Vitali property for any measure µ.

Proposition 2 (Vitali property for stochastic processes.). For any stochastic process (XN,Σ, µ),

let D be the differentiation basis of allowed cylinder sets. Then D has the strong Vitali property.

Proof. Let D′ ⊆ D be any sub-differentiation basis covering XN. (Our proof trivially generalizes

to any A ⊆ XN.) Because D′ is a differentiation basis, for all ←−x ∈ XN there must be a sequence

(Dj(←−x )) of cylinder sets converging on ←−X . We can without loss of generality suppose that Dj(←−x ) =

U−`j ,x−`j+1...x0 with `j monotonically increasing. (If this is not the case, we take a subsequence of

Dj(←−x ) for which it is the case.)

Now consider the combination of all such sequences:

D′′ :=
⋃
←−x ∈XN

{
Dj(
←−
X )

∣∣∣ j ∈ N
}
.

We note that D′′, though it is a union of an uncountable number of sets, can itself cannot be larger

than a countable set, as the elements of the sets from which it is composed are characterized by

finite words, and finite words themselves only form a countable set. That is, there is significant

redundancy in D′′ which keeps it countable. Furthermore, D′′ has a lattice structure given by the
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set inclusion relation ⊆ with the particular property that for U, V ∈ D′′, U ∩ V is nonempty only if

U ⊆ V or vice-versa.

We then choose the set C of all maximal elements of this lattice: that is, those U ∈ D′′ such that

there is no V ∈ D′′ containing U . These maximal elements must exist since for each U ∈ D′′ there
is only a finite number of sets in D′′ that can contain it.

It must be the case that all sets in C are nonoverlapping. Furthermore, for any V ∈ D′′, not in C,
there can only be a finite number of such sets containing V . One of them must be maximal and

therefore in C. In particular, for every ←−x ∈ XN, each of its neighborhoods in D′′ is contained by the

union of C.

This implies C is a complete covering of XN. Since it is also nonoverlapping and countable, the

strong Vitali property is proven. �

As a consequence, the likelihood ratios in Eq. (2.12) must converge for ←−µ -almost every past ←−X and

every finite-length word w—proving Theorem 3.

We note that this result follows as a relatively straightforward application of the Vitali property,

which holds for any measure µ on X Z and XN. Our good fortune is due to the particularly well-

behaved topology of sequences of discrete observations. For continuous observations, a less direct

path to predictive states must be taken.

2.4.2. The space of predictive states. This section has defined predictive states in terms

of Radon-Nikodym derivatives, and then proven that thay may be computed using the method of

likelihood ratios. Providing concete examples of these ideas may be useful to the reader.

It will also help to lay down some new terminology surrounding predictive states. Let the (closure

of the) set of a process’s predictive states be denoted by:

K(µ) :=
{
ε[←−X ]

∣∣∣←−X ∈ XN
}
.

The closure is taken under convergence in distribution.

The relation between pasts and predictive states may be highly redundant. For instance, in the

process generated by the results of a random coin-toss, since the future observations do not depend

on past observations, K(µ) is trivial. Meanwhile, for a periodic process of period k, K(µ) has k
55



𝕂(μ)

Figure 2.3. Predictive states and their closed span. The red dots are a hypothetical
set of predictive states (shaped like the Sierpinski set), K(µ), which is uncountably
infinite but which has a finite-dimensional closed span K(µ).

elements, corresponding to the k distinct states—the process’ phases. In more complex cases, K(µ)

may have countable and uncountable cardinality.

We may also consider the vector space of signed measures generated by the closed span of K(µ),

denoted K(µ). This is the smallest closed vector space which contains the predictive states. This,

too, may demonstrate redundancy in the form of linear dependence, regardless of the cardinality

of K(µ). For instance, it is possible to have an uncountably infinite set of predictive states K(µ)
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whose dimension, dimK(µ), is finite. In fact it is the general case that any process generated by an

HMM or GHMM will have finite dimensional K(µ), but is not guaranteed to have finite K(µ) [89].

See Fig. 2.3.

We will start with some specific examples where, given a process, we construct the set of predictive

states and, where applicable, also directly compute their Radon-Nikodym derivatives with respect

to the stochastic process measure.

First we will consider the case of the Markov process:

Example 1 (Markov process). Consider a Markov process process where Prµ ( x1 . . . x` ) = πx1Px2|x1 . . . Px`|x`−1

for some stochastic map P from X to itself and stationary distribution π on X . Because the future

only depends on the most recent symbol, the set of causal states is given by K(µ) = { εx | x ∈ X },
where εx(U1,w) = Prµ ( w | x ).

For each x ∈ X , the predictive state’s Radon-Nikodym derivative with µ is given by

dεx
dµ

(−→x ) =
Px1|x
πx1

To summarize, a Markov process has a finite number of predictive states, each associated with a

possible observation, and their Radon-Nikodym derivative with the process measure is just the ratio

of the probability of the next symbol with the stationary probability of that symbol.

Markovian processes, as one would probably guess, have fairly simple causal structure. It is perhaps

less obvious that many non-Markovian processes have equivalently simple causal structures.

Example 2 (Even process). Consider the Even process, which is generated by a hidden Markov

model. A hidden Markov model (HMM) is a hidden state space S = {A,B} and a set of symbol-labeled

transition matrices
{

T(x)
∣∣∣ x ∈ X }, where each matrix T(x) = (T (x)

rs ) has its rows and columns

indexed by r, s ∈ S. The generated process is defined by

Prµ ( x1 . . . x` ) =
∑

s1...s`+1

T (x`)
s`+1s` . . . T

(x1)
s2s1 π(s1)
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where π(s) is the stationary distribution π(r) = ∑
x,s T

(x)
rs π(s). For the Even process, we have

S = {A,B}, X = {0, 1} and matrices

T(0) =

 1/2 0

0 0

 , T(1) =

 0 1

1/2 0


with π(A) = 2/3, π(B) = 1/3. The name of the process derives from the fact that it only assigns

nonzero probability to sequences symbols where the 1’s appear in blocks of even length. It has the

useful property that 0 is a synchronizing symbol, in that if xt = 0 at any t, then it must be the case

that st = st+1 = A.

Based on this property, it can be computed that

Prµ ( w | ←−x ) =



PrA ( w ) ←−x ∈ ←−X 0

PrB ( w ) ←−x ∈ ←−X 1

undefined ←−x =←−1

where ←−X 0 is the set of all pasts where the smallest ` such that x−` = 0 is even, ←−X 1 that where it is

odd, and ←−1 is the past of all 1’s where a 0 never appears. Furthermore,

PrA ( x1 . . . x` ) :=
∑

s1...s`+1

T (x`)
s`+1s` . . . T

(x1)
s2A

PrB ( x1 . . . x` ) :=
∑

s1...s`+1

T (x`)
s`+1s` . . . T

(x1)
s2B

Thus, we see that every past except ←−1 has a well-defined causal prediction, and the causal state set

has only two elements, K(µ) = { εA, εB } where εA and εB are given by the predictions PrA ( · ) and

PrB ( · ), respectively. In other words, the predictive states are just isomorphic to the HMM states

S. It has been proven elsewhere that for any HMM which is recurrent (the full transition matrix

is ergodic), unifilar (T (x)
ss′ is positive for only one s′ for fixed s, x), and minimal (each state has a

unique prediction of the future), the predictive states of the produced process will be isomorphic to

the HMM states [197].
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In addition, we can use the synchronizing property of 0 to calculate

dεA
dµ

(−→x ) =



0 −→x ∈ −→X 0

3/2 −→x ∈ −→X 1

undefined −→x = −→1

dεB
dµ

(−→x ) =



3 −→x ∈ −→X 0

0 −→x ∈ −→X 1

undefined −→x = −→1

where −→X 0 is the set of all futures where the smallest ` such that x` = 0 is even, −→X 1 that where it is

odd, and −→1 is the future of all 1’s where a 0 never appears.

We’ll now turn our attention to two examples of somewhat more complicated processes. The first

is a type of renewal process; our example will first consider the structure of the causal states for

general renewal processes, and then focus on the specific structure of a dual Poisson process.

Example 3 (Renewal process). A renewal process is characterized by output strings with individual

1’s (called events) with a certain number of 0’s between them. The probability of a contiguous block

of 0’s, bounded on either side by 1’s, having length at least n is given by the survival probability

Φ(n). This quantity starts at Φ(0) = 1 and monotonically decreases such that limn→∞Φ(n) = 0. It

is assumed that the length of each block is independent of other blocks, so that the “closure” of a

block with the symbol 1 resets the process.

The probability that a contiguous block of 0’s has actual length k is given by F (k) := Φ(k)−Φ(k+ 1).

The mean inter-event length is given by

m :=
∞∑
k=0

kF (k) =
∞∑
k=1

Φ(k)

and is assumed to be finite.
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We will partition pasts and futures into the sets

←−X k =
{←−x ∣∣∣ x−k . . . x0 = 10k

}
−→X k =

{−→x ∣∣∣ x−k . . . x0 = 0k1
}

where 10k = 10 . . . 0 is a 1 followed by k 0’s, and similarly for 0k1. These sets include every past

except ←−0 and every future except −→0 .

Each value of k ∈ N generally represents a distinct predictive state εk := ε←−x for ←−x ∈ ←−X k. We can

evaluate the predictive states in the Radon-Nikodym form as

dεk
dµ

(−→x ) =



(m+1)F (k+`)
Φ(k)Φ(`)

−→x ∈ −→X `

lim`→∞
(m+1)F (k+`)

Φ(k)Φ(`)
−→x = −→0 , limit exists

undefined −→x = −→0 , otherwise

We consider a specific case now: the dual Poisson process. This models a continuous process which

is observed at discrete time intervals ∆t; after each event, a decay rate is chosen from the distinct

set {γA, γB} with probabilities pA, pB and the time until the next event is determined by a Poisson

process with the chosen decay rate. We have

Φ(n) = pAΓnA + pBΓnB

F (n) = pAΓnA(1− ΓA) + pBΓnB(1− ΓB)

m = pAΓA
1− ΓA

+ pBΓB
1− ΓB

where Γs := exp(−γs∆t). If we assume WLOG that γA < γB, then

dεk
dµ

= pAΓkA
pAΓkA + pBΓkB

dηA
dµ

+ pBΓkB
pAΓkA + pBΓkB

dηB
dµ
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where

dηA
dµ

(−→x ) =


(m+1)Γ`A(1−ΓA)

Φ(`)
−→x ∈ −→X `

(m+1)(1−ΓA)
pA

−→x = −→0

dηB
dµ

(−→x ) =


(m+1)Γ`B(1−ΓB)

Φ(`)
−→x ∈ −→X `

0 −→x = −→0

We can think of the predictions ηA and ηB as representing what we would expect if we were given the

secret knowledge of which decay rate was chosen. That all our predictive states can be represented as

a linear combination of just two predictions is significant; it tells us that dimK(µ) is finite. We can

take the closure of the causal states: this just involves adding the state ε∞, whose Radon-Nikodym

form is given by
dε∞
dµ

:= lim
k→∞

dεk
dµ

= dηA
dµ

So we see that ηA is in fact the causal state ε∞. The interpretation of this is that the larger the block

observed, the more asymptotically certain we are that the decay rate is in fact the slowest of the two.

These facts also imply the existence of an HMM with only two states that generates the dual Poisson

process. This HMM has states S := {A,B}, and is given by the transition matrices

T(0) =

 ΓA 0

0 ΓB



T(1) =

 (1− ΓA)pA (1− ΓB)pA

(1− ΓA)pB (1− ΓB)pB


Each HMM state represents the separate Poisson processes being mixed, and each event (an observa-

tion of 1) results in a scrambling of these two states.

The dual Poisson process example is significant: it tells us that by observing the properties of the

predictive states, we can in fact infer a simple hidden Markov model underlying the process—this in

spite of the infinite number of distinct predictive states. Understanding the geometry of predictive

states informs us about the potential models which can produce a process.
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Our last example looks at a process generated by pushdown automaton, whose allowed language is

context-free but not regular. This example marks a strict divergence from much of the previous

literature on predictive states, which has focused on renewal processes and hidden Markov models.

Example 4. Consider the 0n1n process, which will generate a block of 0’s—we will denote the

survival probability that this block has length at least n as Φ(n), which is monotonically decreasing—

and then generate a block of 1’s of equal length, before starting over with another 0-block. Such a

process can be generated by a stochastic pushdown automaton.

To discuss the causal states, we will partition pasts and futures into the sets

←−X 0 =
{←−x ∣∣∣ x−2k . . . x0 = 10k1k, k > 0

}
←−X k =

{←−x ∣∣∣ x−k . . . x0 = 10k, k > 0
}

←−X −k =
{←−x ∣∣∣ x−2`+k . . . x0 = 10`1`−k, ` > k

}
−→X 0 =

{−→x ∣∣∣ x1 . . . x2k+1 = 0k1k0, k > 0
}

−→X k =
{−→x ∣∣∣ x1 . . . xk+1 = 1k0, k > 0

}
−→X −k =

{−→x ∣∣∣ x1 . . . x2`−k+1 = 0`−k1`0, ` > k
}

for k > 0. These sets include every past and future except ←−0 , ←−1 , −→0 and −→1 .

Using these we can define the causal states ε0, εk and ε−k for k > 0, where each causal state

corresponds to the similarly labeled partition of pasts. Using temporal symmetry and the fact that
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F (k) := Φ(k)− Φ(k + 1), we can evaluate the causal states in Radon-Nikodym form as

dε0
dµ

(−→x ) =


2m −→x ∈ −→X 0

0 otherwise

dεk
dµ

(−→x ) =



2m
Φ(k)

−→x ∈ −→X −k
2mF (k)
Φ(k)2

−→x ∈ −→X k

0 otherwise

dε−k
dµ

(−→x ) =


2m

Φ(k)
−→x ∈ −→X k

0 otherwise

2.5. Jessen-Enomoto theory: continuous conditioning

2.3.4 In the last section we introduced the concept of a differentiation basis and the Vitali property,

and explained how these concepts provide us with the necessary foundation to define predictive

states based on a computable limit.

In Section 2.2 we discussed why the extension of the Vitali property to XN is far less straightforward

in the case where X ⊂ R. To summarize, there is not really a useful form of the Vitali property

in this domain. Instead, we must rely on an alternative approach to computing Radon-Nikodym

derivatives, which relies on a series of theorems derived by Jessen [79] and Enomoto [53]. The

capstone of this body of work is Enomoto’s theorem, provided a differentiation basis for (S1)N which

is both practical and useful.

In sections 2.5.1 and 2.5.2, we will revisit the work of Jessen and Enomoto, proving a generalized

version of Enomoto’s theorem:

Theorem 4 (Generalized Enomoto’s Theorem). Let X be an interval of R, and let µ be any

probability measure over XN. Let f : XN → R+ and let F be its indefinite integral under µ. Let V
denote the differentiation basis consisting of sets of the form

Vn,δ(←−x ) = {←−y | |yj − xj | < δ, j = 1, . . . , n } .
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Then:

lim
V ∈V
V 3←−x

F (V )
µ(V ) = f(←−x )(2.14)

for ←−µ -almost all ←−x .

Note that the differentiation basis is very similar to the basis of cylinder sets, but is more restrictive.

Each Vn,δ is evidently a cylinder set, but of a very particular kind. As we take δ → 0 and n→∞,

we extend the “window” of the cylinder set to the entire past while simultaneously narrowing its

width uniformly. This turns out to be sufficient to replicate the same effect as the fixed-aspect

boxes in the finite-dimensional case.

As a direct corollary of Theorem 4, we will have the following result for predictive states:

Corollary 1. For all measures µ on X Z, where X ⊂ Rd is a compact set, all neighborhoods

U0,I1...I` ⊂ X `, and all ` ∈ N, and for ←−µ -almost all pasts ←−x = . . . x−1x0, the limit:

Prµ ( I1 . . . I` | ←−x ) := lim
n→∞

µ(Vn,δ(n)(←−x )× U0,I1...I`)
µ(Vn,δ(n)(←−x ))(2.15)

converges as long as δ(n) > 0 for all n and δ(n)→ 0.

Note here that we allowed X ⊂ Rd. This can be obtained from Enomoto’s theorem by simply reorga-

nizing a sequence of d-dimensional coordinates from (x1,x2, . . . ) to (x11, . . . , xd1, x12, . . . , xd2, . . . ).

Enomoto’s theorem then requires uniformity of the intervals across past instances as well as within

each copy of Rd.

To phrase this corollary in the η-notation of the previous section, we may define η`,δ[←−x ] to correspond

to the measure given by

Prη`,δ [←−x ] ( · ) :=
µ(Vn,δ(n)(←−x )× ·)
µ(Vn,δ(n)(←−x ))

Then Corollary 1 tells us that ηn,δ(n)[←−x ] converges to ε[←−x ] as n → ∞. This is an immediate

consequence of Thm. 4, but we get what we paid for: on its own, it is not as elegant as the result of

for discrete processes. What we would like, and will find useful later, is a result on the convergence
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of η`[←−x ], which would be defined directly as the conditional measures at each past length `:

Prη`,δ[←−x ] ( · ) := Prµ ( · | x−`+1 . . . x0 )

These conditional measures are themselves defined as Radon-Nikodym derivatives over the space X `.
As discussed in Section 2.2, these can be computed via likelihood ratios of intervals with fixed-aspect

ratios. In our case this means that η`,δ[←−x ]→ η`[←−x ] as δ → 0 with fixed ` and ←−x .

It would be useful and elegant if η`[←−x ]→ ε[←−x ]. As it happens, we can prove just this.

As before, the quantities Prµ ( U | ←−x ) define a unique measure ε[←−x ] on XN. It is determined by:

ε[←−x ](U0,I1...I`) = Prµ ( I1 . . . I` | ←−x )

for all U0,I1...I` .

Theorem 5. For all measures µ on X Z, all ` ∈ N, all intervals I1 × · · · × I` ⊂ X `, and ←−µ -almost

all pasts ←−x , where X is a finite set, the following limit is convergent:

Prµ ( w | ←−x ) = lim
k→∞

Prµ ( x1 . . . x` | x−k . . . x0 )(2.16)

Proof. For each θ > 0, let ∆(`, θ) be chosen such that η`,∆(`,θ)[←−x ] is θ-close to ε[←−x ], in the sense

that ∣∣∣Prη`,∆(`,θ)[←−x ] ( w )− Prε[←−x ] ( w )
∣∣∣ < θ

Now let ∆̄(L, θ) be given by

∆̄(L, θ) = min
0≤`≤L

∆(`, θ)

Now let δ(`, ζ) = `−1∆̄(`, θ). It is clear that δ(`, ζ) → 0 as ` → ∞, so it must be case that

η`,δ(`,ζ)[←−x ]→ ε[←−x ] by Cor. 1. Trivially, then, it is also true that

Prµ ( w | ←−x ) = lim
ζ→0

lim
`→∞

Prη`,δ(`,ζ)[←−x ] ( w )

But it is also the case that Prη`,δ(`,ζ)[←−x ] ( w )→ Prµ ( w | x−`+1...x0 ) as ζ → 0. In fact, this limit is

uniformly convergent in ` and ←−x , because ζ is defined to be the residual error, and so the error is ζ
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regardless of all other values. Due to the uniform convergence, we can exchange limits:

Prµ ( w | ←−x ) = lim
`→∞

lim
ζ→0

Prη`,δ(`,ζ)[←−x ] ( w )

= lim
`→∞

Prµ ( w | x−`+1...x0 )

Thus proving the theorem.

This is more properly the continuous analogue of Thm. 3.

Both Corollary 1 and Theorem 5 are reliant on Enomoto’s theorem. Enomoto’s theorem itself is

the capstone result in a sequence of theorems initiated by Jessen [79]. To prove Theorem 4, we

must start from the beginning, generalizing Jessen’s results. Fortunately, the bulk of the work to be

done is in generalizing the first of these results—Jessen’s correspondence principle. After this, the

generalization follows quite trivially to the subsequent theorems. The next section provides the full

proof for a generalized correspondence principle and explains how this result impacts the proofs of

the subsequent theorems. For completeness, we also give the full proof of the generalized Enomoto’s

theorem, though it does not differ much from Enomoto’s—published in French—once the preceding

theorems are secured.

2.5.1. Jessen’s correspondence principle. The Jessen and Enomoto theory rests on a

profound correspondence between cylinder sets on XN and intervals on R. To state it, we must

define the concept of a net.

A net is similar to but formally separate from a differentiation basis, but like the latter allows for a

notion of differentiation, called differentiation-by-nets. This is weaker than the Vitali property on a

differentiation basis, but following on Jessen’s work, Enomoto showed that differentiation-by-nets

can be extended to describe a particular differentiation basis with the Vitali property.

Let X be a finite interval on R. A dissection D = (b1, . . . , bN ) of X is simply a sequence of

cut points, that generate a sequence of adjacent intervals (bk, bk+1) spanning X , covering all but

a finite set of points (the edges of the intervals). See Fig. 2.4. Denote the intervals I(D) =

{ (bk, bk+1) | k = 1, . . . , N − 1 }. The length of the largest interval in I(D) is denoted |D|. (Not to
be confused with D’s cardinality, that we have no need to reference.) A net N = (Dn) is a sequence
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D1

D2

D3
⋮

I1(x)
I2(x)

I3(x)

x

Figure 2.4. Snapshot of a differentiation net. A differentiation net defined on
a line segment. D1, D2, D3, . . . represents the dissections which comprise the net.
Each dissection contains the last; new points are indicated in red and old points in
grey. These points define intervals; a sequence of these intervals is shown, (Ik(x)),
converging on the point x.

of dissections so that Dn ⊂ Dn+1 (that is, each new dissection only adds further cuts) and |Dn| → 0

(the largest interval length goes to zero). The boundary ∂N = ⋃
nDn denotes all the boundary

points from the sequence and is always a countable set.
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×

×

×

×

×

×

×

×

× …

…

…
x1 x2 x3

D1

D2

D3

X = x1x2x3…

⋮

I1 = i11 × i12 × i13… i11 i12 i13

i21 i22 i23

i31 i32 i33

I2 = i21 × i22 × i23…

I3 = i31 × i32 × i33…

Figure 2.5. Snapshot of a differentiation net on a product space. A differentiation
net defined on a product space XN. This is comprised of an increasingly detailed
dissection on each factor space. Also shown is a sequence of product intervals
converging on a point X = x1x2x3 . . . .

We can similarly define a dissection D = (d1, . . . , d`) on XN as a set of ` dissections, one for each

of the first ` copies of X . D intervals I(D) =
{
i1 × . . . i` ×XN

∣∣∣ ik ∈ I(dk)
}
are the cylinder sets

generated by the intervals of each individual dissection. See Fig. 2.5. The boundary of a dissection

is the set of all points that do not belong to these intervals: ∂D =
{−→x ∈ XN

∣∣∣ ∃k : xk ∈ dk
}
. The

size of the dissection is |D| := maxk |dk|. For a finite measure µ, there are always dissections with

µ(∂D) = 0 of any given |D| = maxk |dk|, because µ|X ` can only have at most countably many

singular points. A net N = (Dn = (d1,n, . . . , d`n,n)) of XN is a sequence of dissections of increasing

depth `n so that each sequence (dk,n) for fixed k is a net for the kth copy of X . ∂N = ⋃
n ∂Dn

denotes all the accumulated boundary points of this sequence. Again, for finite measure µ, nets

always exist that have µ(∂N ) = 0 for all n; nets with this property are called µ-continuous nets.

Note that for any net, every sequence of intervals (In), In ∈ I(Dn) and In+1 ⊂ In, uniquely

determines a point −→x ∈ XN. If −→x 6∈ ∂D, then X uniquely determines a sequence of intervals.

The following result can be proven (generalized from Ref. [79]):
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Theorem 6 (Generalized correspondence principle). Let X ⊂ R be an interval and let λ be the

Lebesgue measure on X , normalized so λ(X ) = 1. Let µ be a finite measure on XN that has no

singular points. Let N = (Dn) be any µ-continuous net of XN. Then there exists a netM = (dn)

of X so that:

(1) There exists a function Φn that maps each interval in I(Dn) of positive measure to one

and only one interval in I(dn), and vice-versa for Φ−1
n ;

(2) λ(Φn(I)) = µ(I) for all I ∈ I(Dn) with µ(I) > 0; and

(3) The mapping φ : XN − ∂N → X − ∂M, generated by −→x 7→ (In) 7→ (Φn(In)) 7→ x, is

measure-preserving.

To summarize this technical statement: For any method of indefinitely dissecting the set XN

into smaller and smaller intervals, there is in fact an “equivalent” such method for dissecting the

much simpler set X . It is equivalent in the sense that all the resulting intervals are in one-to-one

correspondence with one another, a correspondence that preserves measure. Since interval sequences

uniquely determine points (and vice-versa for a set of full measure), this induces a one-to-one

correspondence between points that is also measure-preserving.

The proof consists of two parts. The first proves the first two claims about M. Namely, there

is an interval correspondence and it is measure-preserving. The second shows this extends to a

correspondence between XN and X that is also measure-preserving.

Proof (Interval correspondence). The proof proceeds by induction. For a given µ-continuous

net N = (Dn), suppose we already constructed dissections d1, . . . , dN of X so that a function Φn

between positive-measure intervals in Dn and dn exists with the desired properties (1) and (2), for

all n = 1, . . . , N . Now, for Dn+1, a certain set of the intervals in I(Dn) will be divided. Suppose

I ∈ In is divided into I ′ and I ′′. If either of these, say I ′′, has measure zero then we discard it and

set Φn+1(I ′) = Φn(I). Otherwise, suppose that Φn(I) = (a, b). Then we will divide Φn(I) into the

intervals:

Φn+1(I ′) :=
(
a,
aµ(I) + (b− a)µ(I ′)

µ(I)

)

Φn+1(I ′′) :=
(
aµ(I) + (b− a)µ(I ′)

µ(I) , b

)
,
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which clearly have Lebesgue measures λ(Φn+1(I ′)) = µ(I ′) and λ(Φn+1(I ′′)) = µ(I ′′), respectively.

Generalizing this to more complicated divisions of I is straightforward.

Now, we can always suppose for a given net N that D0 is just the trivial dissection that makes no

cuts and only one interval. However, this has a trivial correspondence with X ; namely, Φ0(XN) = X .

By induction, then, the desiredM can always be constructed.

With the existence of the interval correspondence established, we further demonstrate the existence

of a point correspondence between µ-almost-all of XN and λ-almost-all of X .

Proof (Point correspondence). For every −→x ∈ XN − ∂N , there is a unique sequence (In) of

concentric intervals, In ∈ I(Dn) and In+1 ⊂ In, such that
⋂
n In = {−→x }. If −→x is in the support of

µ, then we define:

φ(−→x ) :=
⋂
n

Φn(In)

as the corresponding point in X −∂M. Due to the interval correspondence, this mapping is invertible.

By measure-preserving we mean that for all A ⊆ XN − ∂N , λ(φ(A)) = µ(A) and vice-versa for φ−1.

Both the Lebesgue measure and µ must be outer regular, due to being finite measures. Outer regular

means that the measure of a set A is the infimum of the measure of all open sets containing A, a

property we use to our advantage.

Consider for each n the minimal covering Cn of A by intervals in I(Dn). The measure of this

covering is denoted mn := µ(⋃ Cn). Clearly, mn ≥ µ(A) and mn → µ(A). The corresponding

covering Φn(Cn) in I(dn) is a covering of φ(A) and has the same measure mn. By outer regularity,

then, mn ≥ λ(φ(A)) for all n. And so, µ(A) ≥ λ(φ(A)).

Now, by the exact reverse argument of the previous paragraph, going from X to XN via φ−1, we

can also deduce that µ(A) ≤ λ(φ(A)). Therefore µ(A) = λ(φ(A)), and the function φ is measure-

preserving.

2.5.2. Corollaries and Enomoto’s Theorem. Jessen’s correspondence principle is an ex-

tremely powerful device. Among its consequences are the following theorems regarding functions on
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XN. We state their generalized forms here and for the proofs refer to Jessen [79], as each is a direct

application of Theorem 6 without making any further assumptions on the measure µ.

The first offers a much weaker (and on its own, insufficient for our purposes) concept of differentiation

of measures that we refer to as differentiation-by-nets.

Corollary 2 (Differentiation-by-nets). Let f : XN → R+ and let F be the measure defined by its

indefinite integral: F (A) :=
∫
A f(−→x )dµ(−→x ). Further let N = (Dn) be a net on XN and denote by

f̂n a piecewise function such that f̂n(−→x ) = F (In)/µ(In) for all X ∈ In and each In ∈ Dn. Then

f̂n(−→x )→ f(−→x ) as n→∞ for µ-almost all −→x .

Though the full proof is found in Ref. [79], we summarize the key point of the proof: Using the

correspondence of intervals, we write F (In)/µ(In) = F̃ (Φ(In))/λ(Φ(In)), where F̃ is the indefinite

integral of f ◦ φ−1 with respect to λ. The limit then holds due to the Vitali property of λ on X .
However, we also note that Corollary 2 is not an extension of the Vitali property to cylinder sets on

XN. Jessen himself offers a counterexample to this effect in a later publication [80].

Jessen’s second corollary is key to demonstrating that V , the differentiation basis defined in Theorem

4, will have the Vitali property we are after.

Corollary 3 (Functions as limits of integrals). Let f : XN → R+, and let fn(−→x ) be a sequence of

functions given by:

fn(x1x2 . . . ) :=
∫
Y ∈XN

f(x1 . . . xnY )dµ(Y ) .

That is, we integrated over all observations after the first n. Thus, fn only depends on the first n

observations. Then fn(−→x )→ f(−→x ) as n→∞ for µ-almost all −→x .

This proof we also skip, again referring the reader to Jessen [79], as no step is directly dependent

on the measure µ itself and only on properties already proven by the previous theorems.

We now have sufficient knowledge to prove the generalized Enomoto’s theorem (generalized from

Ref. [53]).

Proof (Generalized Enomoto’s Theorem). First, we must demonstrate, for almost every −→x , that
there exists a sequence Vj(−→x ) converging on −→x such that the limit holds. By Corollary 3, there
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must be, for µ-almost all −→x and any ε > 0, a K(−→x , ε) such that |fn(−→x ) − f(−→x )| < ε/2 for all

n > K(−→x , ε). Now, from the Vitali property on µn and the fact that fn only depends on the first n

observations, it must be true that for any ε > 0 and almost all −→x , there is a 0 < ∆(−→x , n, ε) < 1 so

that: ∣∣∣∣∣fn(−→x )− F (Vn,δ(−→x ))
µ(Vn,δ(−→x ))

∣∣∣∣∣ < ε/2 ,

whenever δ < ∆(−→x , n, ε). For a given ε, there is a countable number of conditions (one for each

n). As such, the set of points −→x for which all conditions hold is still measure one. Then, taking

for each −→x the integer K := K(−→x , ε) and subsequently the number ∆ := ∆(−→x , k(−→x , ε), ε), we can

choose VK,∆(−→x ) and by the triangle inequality we must have:

(2.17)
∣∣∣∣∣f(−→x )− F (VK,∆(−→x ))

µ(VK,∆(−→x ))

∣∣∣∣∣ < ε .

This completes the proof’s first part.

However, the second part—that all sequences Vnj ,δj (−→x ) of neighborhoods give converging likelihood

ratios—further follows from the above statements, as:∣∣∣∣∣f(−→x )− F (Vnj ,δj (−→x ))
µ(Vnj ,δj (−→x ))

∣∣∣∣∣ < ε

must hold for any nj > K(−→x , ε) and any δj < ∆(−→x ,K(−→x , ε), ε), which must eventually be true for

any converging sequence to −→x .

Now, the previous theorem does not directly prove the Vitali property but rather bypasses it.

Demonstrating that the differentiation basis V may be used to recover Radon-Nikodym derivatives.

This, then, is sufficient for Corollary 5 to hold, guaranteeing the existence of predictive states ε[←−X ]

for µ-almost all ←−X .

2.6. Discussion

In this chapter we have taken a very close look at predictive states. By this point the reader may be

experiencing a mathematical form of semantic satiation: the phenomenon in which repeating a word

many times causes it to temporarily lose meaning to the listener. What is a predictive state, even?
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The resolute answer given by this chapter is that a predictive state is a conditional measure. It

is conditional, in that it makes predictions of future behavior contingent on an infinite number of

past observations; it is a measure, in that these predictions take the form of an entire family of

probabilities assigned to finite future observations.

The infinities entailed in this conception of predictive states required us to ground ourselves in the

formalism of mathematics. While this kind of mathematics can ground the truth or falsehood of

our claims, it rarely grounds our understanding. It encourages us to pick at the details, to the point

that even our own musings may take on unending depth. Let us therefore take the bird’s eye view

of what we have accomplished in this chapter.

(1) We gave the concept of a predictive state Prµ ( · | ←−x ) a firm mathematical definition via

conditional measures.

(2) We proved, using this definition and the mathematical properties of sequences, that

Prµ ( · | ←−x ) = lim
k→∞

Prµ ( · | x−k . . . x0 )

where the right-hand side is the predictive state based on a finite amount of past information.

That is, the predictive state is stable; the more we know about the past, the more stable it

becomes, and this makes it well-suited for use in empirical data analysis. The convergence

theorems we have proven will also tell us much about the dynamics of models which

generate stochastic processes in Chapters 4 and 5.

(3) We showed that the stability of the predictive state is of a particular kind, which in Chapter

3 we will demonstrate has significant consequences for machine learning.

To the extent that these results look more straightforward in hindsight than the seemed in this

chapter, it is because of how foundational they are to the core reasons for the utility of predictive

states.

Taken altogether, the results fill-in important gaps in the foundations of predictive states, while

strengthening those foundations for further development, extension, and application. Previously,

predictive states were only examined in the context of hidden Markov models, their generalizations,

and hidden semi-Markov models. We provided a definition applicable to any stationary and ergodic
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process with discrete and real-valued observations. Further, our results indicate that predictive

states for these processes are learnable from empirical data.

One important extension is to continuous-time processes. By exploiting the full generality of Jessen’s

and Enomoto’s theorems we believe this extension is quite feasible. As long as the set of possible

pasts and futures constitutes a separable space, they should be expressible in the form of a countable

basis, to which these theorems may then be applied. The issue will lie in constructing an appropriate

and useful basis. We leave this for future work.
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CHAPTER 3

Model the noise: Inference with predictive states

Hollowed out, clay makes a pot.

Where the pot’s not is where it’s useful.

Lao Tzu, Tao Te Ching, transl. Ursula Le Guin

3.1. Introduction

As we have seen, predictive states can offer a characterization of the dynamics of a stochastic

process. One aspect of this offer which we have not sufficiently harped on at this point is that this

characterization is model-free; that is, we have assumed nothing and will assume nothing about

the underlying system which produces the stochastic process. We have only assumed the minimal

necessary assumptions on the qualitative nature of the data (that is, its temporal invariance via

stationarity and ergodicity) that allow us to quantify the statistics of the process in the first place.

This sort of approach entails a shift in perspective for both the typical modeler and data analyst.

The standard paradigm, though challenged on many fronts, remains to construct a model as a

“signal” process, with intricate and detailed features, shrouded in uninteresting and unstructured

“noise.” The predictive state paradigm, however, requires a fundamental reversal in how data is

perceived, in the same style as a Gestalt figure-ground inversion: model the noise. From this angle,

data becomes immensely richer, providing us with information about the entire family of models

which can produce the process, and the invariant qualities all these models share. Focusing on

separating signal and noise is like focusing solely on the clay of the pot in this chapter’s leading

epigraph: to do so blinds us to all that the pot can contain.

When we start modeling the noise, we see that noise can itself have structure, with intricate

dependencies on the present system state determining how deviations from the mean are generated.

What we perceive as noise, or randomness, is frequently just the lack of all relevant information [42].

Where the useful information for predicting future behaviors is not available in the present, we must
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avail ourselves of historical data, which may contain information that is not immediately at hand.

Modeling the noise, then, if it is to be done properly, requires conditioning the present and future

behavior of the data on as much of the past data as we can reliably utilize. This is precisely what

the predictive state accomplishes.

But how can we utilize the predictive state? Because predictive states are characterized by a poten-

tially infinite number of probabilities, they cannot be directly represented but must be represented by

some kind of embedded vector. Several works have sought to reconstruct representations of predictive

states using a formalism known as reproducing kernel Hilbert spaces (RKHS) [20,31,181,182].

This has been achieved to great effect for a specific reason, and to understand this, we must discuss

what an RKHS is.

A kernel k : X ×X → R generates a reproducing kernel Hilbert space (RKHS) H if k(·, ·) is positive

semi-definite and symmetric [11]. This is a shorthand for saying that, for any collection of points

{xi} ⊂ X , the matrix K = (k(xi, xj)) is positive semi-definite and symmetric. H is typically defined

as a space of functions (from X → R), which is generated as the span of all functions φx(y) = k(x, y)

for each x ∈ X , and has an inner product defined by 〈φx|f〉 = f(x). This is called the reproducing

property.

Each RKHS also allows the embedding of measures on X into the function space through µ 7→ fµ

where

fµ(x) =
∫
k(x, y)dµ(y)

Incidentally, the resulting inner product over measures has a natural expression in terms of the

original kernel:

〈fµ|fν〉k :=
∫ ∫

k(x, y)dµ(x)dν(y) .

Thus, an RKHS can also be viewed as endowing the space of measures with an inner product,

and therefore a geometry. The embedding of measures into this space is non-degenerate if the

kernel is characteristic. Further—and importantly—convergence in the norm of the Hilbert space is

equivalent to convergence in distribution whenever the kernel is universal [183].
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This is the key reason that RKHS embeddings have proven to be successful in reproducing the

predictive states from empirical data. In this chapter we prove that predictive states are convergent

in distribution, and this is exactly the kind of convergence which is consistent with the geometry of

RKHS embeddings.

The naturalness of the RKHS geometry for the specific kind of convergence demonstrated by

predictive states is a novel insight provided by the work we present in this chapter. Crucially,

understanding the source of the power of RKHS methods in predictive-state analysis frees us to

consider other alternatives.

The content of the chapter is primarily drawn from the publication Topology, Convergence, and

Reconstruction of Predictive States [110] and Predictive State Geometry via Cantor Embeddings

and Wasserstein Distance [112]. In Section 3.2 we consider a novel approach to reconstructing

the geometry of predictive states, inspired by the fractal Cantor set [96] and the Wasserstein

distance [145]. The “Cantor embedding” will rely on an isomorphism between the Cantor set and

the space of sequences, and the Wasserstein distance provides a geometry between measures which,

like RKHS geometry, respects convergence in distribution. The resulting distance matrix is then

used to find low-dimensional embeddings [21] of the geometry or hierarchical clusterings [139] of

the predictive states. When combined with the fractal embedding, the latter, in particular, provides

a highly interpretable visualization of the predictive-state space.

Following this, in Section 3.3 we revisit the previous literature on RKHS embeddings, and expound

on how previous successes can be both explained and generalized by our measure-theoretic formalism

for predictive states. In doing so we are able to add new terms to the traditional asymptotic

convergence bounds.

It is in this chapter, primarily, that our mathematical efforts from Chapter 2 shall pay off; under-

standing the structure of predictive states will demonstrate why certain embedding strategies work

far better than others and offer directions for new techniques. The predictive-state-as-embedding

provides a quantitative and computationally concrete manifestation of the abstract predictive-state-

as-measure.
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3.2. Cantor-Wasserstein embeddings

In this section and the following (Sec. 3.3), we will turn our attention towards the problem of

learning the geometry of the predictive states from empirical data.

As discussed in the previous section (Sec. 2.4), predictive states can be calculated as the convergent

limit of likelihood ratios. However, this limit has a caveat: it is generally convergent in distribution,

but further convergence cannot be assumed. Therefore, if we are to compute the geometry of

predictive states, then the distances which define said geometry must replicate the topology of

convergence in distribution. In the existing literature, the most popular method for predictive state

embeddings has been via reproducing kernel Hilbert spaces (RKHS). In Sec. 3.3, we will examine

the formal reasons for why these are appropriate, and use our results to provide more specific

convergence bounds for predictive state embeddings. Before this, though, we will consider a more

visually intuitive approach, which also utilizes the topology of convergence in distribution.

One method for accomplishing this can be inferred by analyzing the diagrams from Fig. [] back in

Sec. 2.3. The Cantor fractals represent probability distributions: We interpret a vertical slice of the

fractal, located at horizontal position C(←−x ), as visualizing the predictive state P←−x as a distribution

over Cantor-embedded futures C(−→x ).

For example, by examining the even process’ Cantor fractal, one notices that there are effectively

only 2 distinct predictive states—every vertical column is just one of two types. This corresponds

with the 2 states of the hidden Markov model that generates the even process.

We can compare predictive states not only on how much their supports overlap, but on how

geometrically close their supports are to one another. For the anbn process, for example, we see

that the first few columns (corresponding to pasts of the form . . . ban for some n) are inherently

similar to one another, though they are shifted upwards the closer to the y-axis they are. (This

corresponds to the increasing number of bs in the predicted future as n increases.)

The intuitive distance metric between probability measures for capturing this “weight-shifting”

geometry is the Wasserstein metric [145]. Given two measures µ and ν defined on a metric space
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M with metric d, the Wasserstein distance between µ and ν is given by:

W (µ, ν) = min
π∈Γ(µ,ν)

∫
M×M

d(x, y)dπ(x, y) ,

where Γ(µ, ν) is the set of all measures on M×M whose left and right marginals are µ and ν,

respectively. It is the minimal cost to “shift” the probability mass from one distribution to match

shape of the other.

W (µ, ν) is the solution to a constrained linear optimization. As a function of distributions, W (µ, ν)

is continuous with respect to convergence in distribution. In fact, convergence under the Wasserstein

distance is equivalent to convergence in distribution on compact spaces [145]. This makes W (µ, ν)

ideal for measuring geometry between predictive states, since empirical estimates of these are known

to converge in distribution.

WhenM⊆ R, there is in fact a closed-form solution to the Wasserstein optimization problem [190].

Let F and G respectively be the cumulative distributions functions of µ and ν. Then:

W (µ, ν) =
∫ ∞
−∞
|F (t)−G(t)| dt .

This closed-form solution is considerably faster to compute than the linear optimization required for

arbitrary metric spaces. Since the Cantor embedding embeds the space of sequences directly into

[0, 1], we can directly employ this formula.

One can therefore achieve useful visualizations of predictive state geometry from using empirical

data and calculating the Wasserstein distance between reconstructed predictive states. To elucidate

the relative geometry of the predictive states, we can use the Wasserstein distance matrix to

perform additional methods of geometric data analysis, such as hierarchical clustering [139] and

multidimensional scaling [21]. This will be performed in the following sections.

3.2.1. Visualization with hierarchical clustering. Figure 3.1 displays the result of collect-

ing the Cantor-embedded empirical predictions for all pasts of a given length for four processes—even,

anbn, anbncn, and x + f(x). For each, the Wasserstein distance between every pair of predictions was

computed and used to hierarchically cluster the pasts with others that produced similar predictions,

using the Ward method [139].
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Figure 3.1. (Upper left to lower right) Clustered Cantor diagrams of the even, anbn,
anbncn, and x + f(x) processes. Zoom for detail. For each, the vertical axis shows
all pasts of a given length k along with their hierarchically clustered dendrogram.
k = 8 for the even, anbn, and anbncn processes and k = 4 for the x + f(x) process.
For present purposes, the coloring threshold was chosen to aid visual interpretation.
The lines in each row show the empirical distribution of Cantor-embedded futures
observed following each past. As such, the horizontal axis corresponds exactly to the
vertical axis of Fig. 2.1.

The resulting clustered Cantor plots offer a highly interpretable visualization of the relationship

between pasts and futures, and of the predictive states’ geometry. Each plot, in a certain sense,

sorts the columns in the Cantor fractals of Fig. 2.1 with the white space between columns removed.

For instance, the even process’s clustered Cantor plot clearly contains the two major states, with a

third “transient” state visible. (The latter corresponds to the increasingly unlikely event of never

seeing a 0 in a block of length n.) This third state was previously hidden mostly out of view on the

far-right side of the 2-dimensional Cantor plot of the even process in Fig. 2.1.
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Figure 3.2. Scatterplots of the first two MDS coordinates of the reconstructed
predictive states: (Left) Even process. (Right) anbn process. Clusters colored
according to the scheme determined by the dendrogram in Fig. 3.1 and the label
on each cluster describes the pattern that uniquely characterizes the pasts in that
cluster.

Other features are worth calling out. Close observation shows that hierarchical clustering reveals

the (mostly) scale-free distinctions between pasts with subtle differences. For the anbn process,

pasts of the form . . . ban are distinguished for different n, as each involves a distinct number of

b’s appearing in the near future. Meanwhile, the clustering scheme carefully distinguishes pasts

of the form . . . banbn−k for different k but not for different n, as k is the essential variable for

predicting the remaining number of b’s. (The scale-free discernment of the algorithm breaks down

past n = 5—the scale at which sampling error becomes relevant for our chosen sample size.)

Similar discernment is seen for the anbncn and x + f(x) processes as well. We draw attention to

the manner in which the presence of a semicolon in pasts from x + f(x) affects the comparison of

predictions.

By analyzing clustered Cantor plots, one gains insight into the properties of pasts that make them

similar in terms of future predictions, even if they are superficially quite distinct. Furthermore, the

horizontal axis allows for continued use of the Cantor set’s natural geometry for visualizing the

future forecasts associated with each cluster of predictions.
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3.2.2. Visualization with multidimensional scaling. Sacrificing direct visualization of

future predictions leads to a more intuitive picture of predictive-state space geometry. Applying any

desired dimension reduction algorithm to the matrix of Wasserstein distances between predictions

yields a coordinate representation of the similarities between predictive states.

Figure 3.2 plots the first two dimensions of a multidimensional scaling (MDS) decomposition [21]

for the even and anbn processes. Clusters are colored in the same manner as in Fig. 3.1 and labeled

by the specific pattern that distinguishes the pasts in some of the clusters. Note that the clusters

and labels are directly drawn from Fig. 3.1 for reference. They are not the result of the MDS

algorithm itself. However, interactive plotting approaches may allow for similar exploration from

these decompositions without the need for prior clustering.

The even process, as in all other cases seen thus far, has two dominant prediction clusters. These

correspond to the predictive states that result from seeing an even-sized block of 1s (or, equivalently,

no 1s), and that result from seeing an odd-sized block of 1s.

The anbn plot is much more sophisticated. Intriguingly, its geometry not only clearly distinguishes

predictively distinct states, but organizes them in a manner highly suggestive of an pushdown stack.

The latter is particularly appropriate given that stack automata are the natural analog of hidden

Markov chains but for context-free languages. Observing more as pushes more symbols onto the

stack, with the predictive states moving further up towards the plot’s upper-right corner. And, as

more b’s are observed the top symbol is popped off the stack, and the predictive states move back

towards the lower left. The latter represents equality between as and bs.

The geometric approach is particularly insightful when computing the Wasserstein matrix between

predictions estimated from Morse-Thue process data. Recall that the Morse-Thue process is a

coarse-graining of the iterated logistic map yt+1 = ryt(1 − yt) at the critical chaos parameter

rc ≈ 3.56995. The resulting stream of 0s and 1s is a well-known instance of high complexity at the

“order-disorder border”. Specifically, setting parameter r on either side of rc results in sequences that

can be generated by finite hidden Markov chains. However, at rc itself the resulting Morse-Thue

process is context-sensitive and therefore requires infinite predictive states. That is, when it comes

to capturing its behavior, the process is several orders higher in model complexity. It is further up

the Chomsky language hierarchy.
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Figure 3.3. (Left) Scatterplot of the first two MDS coordinates of the reconstructed
predictive states for the Morse-Thue process, color-coded by cluster. (Right) Scat-
terplot of the corresponding points in the domain of the logistic map, plotting for
each point both the present value yt and the next value yt+1, with the x = y line
for reference. Each pair of color-coded arrows shows where each cluster maps to
under the action of the logistic map. The predictively reconstructed clusters thus
correspond to dynamically similar neighborhoods of the logistic map domain.

Despite this high order of structural complexity, the predictive state geometry reconstructed from a

sufficiently large sample of the Morse-Thue process recovers the neighborhoods of [0, 1] that are

relevant to the dynamics of the original logistic map. Said differently, there is a correspondence

between each past x−k+1 . . . x0 and a subset Vx−k+1...x0 , such that Vx−k+1...x0 is the set of all points y

for which x(f−t(y)) = x−t for 0 ≤ t < n. (Here, f(y) = ry(1−y) and x(y) is the encoding y 7→ {0, 1}.)
As it happens, pasts x−k+1 . . . x0 whose predictive states are close under the Wasserstein distance

are also pasts for which the sets f(Vx−k+1...x0) are close. That is, they correspond to predictively

similar ranges of the logistic map variable.

Figure 3.3 directly visualizes the relationship between the reconstructed predictive states of the

Morse-Thue process, neighborhoods of the logistic variable y, and the logistic map dynamics. In

short, despite the fact that the Morse-Thue process is a highly coarse-grained form of the logistic

map, the essential geometry of that map can be recovered by reconstructing predictive state geometry

with the Wasserstein metric and the Cantor embedding.

Note that, due to the deterministic nature of the Morse-Thue process, the combination of the

Wasserstein metric and the Cantor embedding is particularly important to achieving this result.

Asymptotically, each past corresponds to a unique future. And so, there is asymptotically no

overlap between predictions. The choice of the Cantor map facilitates placing together forecasts
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that match up to a certain time in the future. And, the Wasserstein distance allows directly

comparing predictions whose supports are geometrically close. In this way, the combination of the

two approaches enables the straightforward recovery of the underlying dynamical system’s (logistic

map’s) geometry.

3.3. Embedding predictive states in reproducing kernel Hilbert spaces

Thus far, we demonstrated that for discrete and real X , measures over XN possess a well-defined

feature called predictive states that relate how past observations constrain future possibilities. These

states are defined by convergent limits that can be approximated from empirical time series in the

case of stationary, ergodic processes.

We turn our attention now to the topological and geometric structure of these states, the spaces

they live in, and how the structure of these spaces may be leveraged in the inference process. The

results make contact between predictive states as elements of a Hilbert space and the well-developed

arena of reproducing kernel Hilbert spaces. We discussed the basic concepts of reproducing kernel

Hilbert spaces in Sec. 3.1; now, we will revisit these concepts by applying them to distributions

over sequences. This section will address the Hilbert space embedding of measures over sequences

in general. In Section 3.3.1 we will examine the truncation error which occurs in embedding when

we only have a finite length of a sequence to work with. Then, in Section 3.3.2 we will take the bull

by the horns, combining our results thus far with the theory of conditional RKHS embeddings to

establish the convergence of RKHS representations of predictive states.

The space K(µ) of predictive states is a subspace of M(XN), the space of measures over XN. On

M(XN), given any symmetric positive-definite kernel k : XN × XN → R, we can define an inner

product over measures:

〈µ, ν〉k :=
∫ ∫

k(−→x ,−→y )dµ(−→x )dν(−→y ) .(3.1)

Positive-definite means that for any finite set {−→x i} of −→x i ∈ XN and any set {ci} of values ci ∈ R,

both sets having the same cardinality:

∑
i,j

k(−→x i,−→x j)cicj ≥ 0 ,
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with equality only when ci = 0 for all i. If this is true, then the inner product Eq. (3.1) is

positive-definite for all measures. That is, 〈µ, µ〉k ≥ 0 with equality only when µ = 0 [183].

Since XN is compact, if the kernel k satisfies a property of being universal then norm convergence

under the inner product defined by k is equivalent to convergence in distribution of measures [183].

A simple example of a universal kernel is the Gaussian radial basis function, when paired with an

appropriate distance—namely, one defined from embedding XN in a Hilbert space [34]. The reader

will hopefully recall that the Euclidean metrics on sequences DE,γ , which we introduced in section

2.3.3 are of precisely this class. The kernel takes the form:

kβ,γ(−→x ,−→y ) := exp
(
−DE,γ(−→x ,−→y )2

β2

)
.

We denote the associated inner products by 〈·, ·〉β,γ . Hβ,γ :=
(
M(XN), 〈·, ·〉β,γ

)
defines a Hilbert

space, since it has the topology of convergence in distribution and M(XN) is complete in this

topology.

When referring to a measure µ as an element of Hβ,γ we denote it |µ〉β,γ and inner products in

the bra-ket are 〈µ|ν〉β,γ . Now, it should be noted that to every ket |µ〉β,γ there is a bra 〈µ|β,γ that

denotes a dual element. However, the dual elements of M(XN) correspond to continuous functions.

The function fµ corresponding to 〈µ|β,γ is given by:

fµ(−→x ) :=
∫
kβ,γ(−→x ,−→y )dµ(−→y ) ,(3.2)

so that:

〈µ|ν〉β,γ =
∫
fµ(−→x )dν(−→x ) .

Let Fβ,γ denote the space of all fµ that can be constructed from Eq. (3.2). This function space, when

paired with the inner product 〈fµ, fν〉 := 〈ν|µ〉, is isomorphic to Hβ,γ . Fβ,γ is then a reproducing

kernel Hilbert space with kernel kβ,γ .

It is necessarily the case that Fβ,γ is a proper subset of the space of continuous functions. Furthermore,

the Fβ,γ are not identical to one another, obeying the relationship Fβ,γ ⊂ Fβ′,γ when β > β′ [216].
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However, it is also the case that each Fβ,γ is dense in the space of continuous functions, so their

representative capacity is still quite strong [183].

We note an important rule regarding the scaling of our inner products, as constructed. The distances

DE,γ(−→x ,−→y ) have finite diameter on our spaces. Let ∆ denote the diameter of X . For discrete X
we simply have ∆ = 1; for X ⊂ Rd it is determined by the Euclidean distance. Then XN’s diameter

is given by ∆/
√

1− γ2. Since the Gaussian is bounded below by 1−D2
γ/β

2, for arbitrarily large β:

‖µ− ν‖2β,γ ≤
‖µ− ν‖TV∆2

(1− γ2)β2 +O(β−3) ,(3.3)

where ‖ · ‖β,γ is simply the norm of Hβ,γ and ‖ · ‖TV is the total variation norm. This tells us that

the norm is less discriminating between measures as β →∞. Naturally, this can be remedied by

rescaling the kernel with a β2 factor. As it happens, Eq. (3.3) will be useful later.

3.3.1. Finite-length embeddings. Our goal is to study how reproducing kernel Hilbert spaces

may be used to encode information about predictive states gleaned from empirical observations.

Given that such observations are always finite in length, we must determine whether and in what

manner the Hilbert space representations of measures over finite-length observations converges to

the Hilbert space representation of a measure over infinite sequences. We call the residual the

“truncation error.”

In Section 2.3.3 we also defined the restricted distance D(`)
E,γ , and showed a “Pythagorean theorem”

relation of the form DE,γ(−→x ,−→y )2 = D
(`)
E,γ(x1:`+1, y1:`+1) + γ2`DE,γ(x`+1:, y`+1:)2. Now, using D(`)

E,γ ,

define kernels k(`)
β,γ in the same style as for XN. These generate inner products on P(X `). Denote by

H(`)
β,γ the resulting Hilbert spaces. These are related to the original Hβ,γ by the following factorization

theorem:

Proposition 3. The predictive Hilbert space Hβ,γ factors into H(`)
β,γ ⊗Hβγ−`,γ.

Before stating the proof, we should explain the above. The factorization Hβ,γ = H(`)
β,γ ⊗Hβγ−`,γ de-

notes a separation of the infinite-dimensional Hβ,γ into two pieces—one of which is finite-dimensional,

but retains the same kernel parameters, and another reparameterized infinite-dimensional Hilbert

space. The reparameterization is β → βγ−`. This constitutes, essentially, a renormalization tech-

nique, in which the the topology of words starting at depth ` is equivalent to a reparameterization
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of the usual topology. This reparameterization works precisely because of the Pythagorean theorem

for sequences Eq. (2.8), and is a reflection of the self-similar geometry of sequences discussed in

Section 2.3.

Proof. We are demonstrating an isomorphism—a particularly natural one. Let δ−→x be the Dirac

delta measure concentrated on −→x . We note that for any measure µ:

|µ〉β,γ =
∫
|δ−→x 〉β,γ dµ(−→x ) .

Now, consider the linear function from Hβ,γ to H(`)
β,γ ⊗Hβγ−`,γ that maps:

|δ−→x 〉β,γ 7→ |δx1...x`〉
(`)
β,γ ⊗ |δx`+1...〉βγ−`,γ ,

for every −→x . Then by Eq. (2.8) we can see that this preserves the inner product and so is an

isomorphism.

Note that for any of these Hilbert spaces there exists an element corresponding to the constant

function 1(−→x ) = 1 for all −→x . This function always exists in Fβ,γ . We denote its corresponding

element in Hβ,γ as 〈1|β,γ , so that 〈1|µ〉β,γ = 1 for all µ. Then the operator Π(`)
β,γ : Hβ,γ → H(`)

β,γ is

given by:

Π(`)
β,γ := I(`) ⊗ 〈1|β,γ ,

where I(`) is the identity on H(`)
β,γ . It provides the canonical mapping from a measure µ to its

restriction µ`: That is, Π(`)
β,γ |µ〉β,γ = |µ`〉(`)β,γ .

Now we will consider the “truncation error”—that is, the residual error remaining when representing

a measure by its truncated form µ` rather than by its full form µ. We quantify this in terms of an

embedding. That is, there exists an embedding of truncated measures P(X `) into the space of full

measures P(XN) such that the distance between any full measure and its truncated embedding is

small:

Theorem 7. There exist isometric embeddings H(`)
β,γ 7→ H

(`′)
β,γ and H(`)

β,γ 7→ Hβ,γ for any ` ≤ `′.

Furthermore, let µ be any measure and µ` be its restriction to the first ` observations, and let |µ̂`〉β,γ
be the embedding of µ` into Hβ,γ. Then |µ̂`〉β,γ → |µ〉β,γ as `→∞, with ‖µ− µ̂`‖β,γ ∼ O(β−1γ`).
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Proof. Let λβ,γ ∈ P(XN) denote the measure such that 〈λβ,γ |β,γ = 〈1|β,γ for a given β, γ. For a

measure µ with restriction µ` let µ̂` denote the measure on XN with the property:

µ̂`(A×B) = µ`(A)λβγ−`,γ(B) ,

for A ∈ X ` and B ∈ XN. Then the mapping µ` 7→ µ̂` is an isomorphism, since:

〈µ̂`|ν̂`〉β,γ =
∫ ∫

kβ,γ(−→x ,−→y )dµ̂`(−→x )dν̂`(−→y )

=
∫ ∫

k
(`)
β,γ(x1 . . . x`, y1 . . . y`)dµ`dν` ×

∫ ∫
kβγ−`,γ(x` . . . , y` . . . )dλβγ−`,γdλβγ−`,γ

= 〈µ`|ν`〉(`)β,γ
∫
dλβγ−`,γ = 〈µ`|ν`〉(`)β,γ .

Now, as a result of Eq. (2.8), note that for any two measures µ and ν:

〈µ, ν〉 =∫
dµ`(x1 . . . x`)

∫
dν`(y1 . . . y`) exp

(
−β2D(`)

γ (x1 . . . x`, y1 . . . y`)
)
〈µ(·|x1 . . . x`), ν(·|y1 . . . y`)〉βγ`,γ

If we combine this fact with the bound Eq. (3.3), we have the result:

‖µ− µ̂`‖2β,γ =∫
dµ`(x1 . . . x`)

∫
dµ`(y1 . . . y`)e−β

2D
(`)
γ (x1...x`,y1...y`) ‖µ(·|x1 . . . x`)− µ̂`(·|y1 . . . y`)‖2βγ−`

≤
∫
dµ`(x1 . . . x`)

∫
dµ`(y1 . . . y`)

‖µ− µ̂`‖TV∆2γ2`

(1− γ2)β2 = ‖µ− µ̂`‖TV∆2γ2`

(1− γ2)β2 .

Thus, ‖µ− µ̂`‖β,γ ∼ O(β−1γ`).

In summary, representing measures µ over XN by their truncated forms µ` leads to a Hilbert space

representation that admits an approximate isomorphism to the space of full measures. The resulting

truncation error is of order O(β−1γ`).

We close this part with a minor note about a lower bound on the distance between measures. Given a

word w, the function on X ` that equals 1 whenX = w and zero otherwise has a representation inH(`)
β,γ ,

|w〉(`)β,γ . (This follows since for finite X , all functions on X ` belong to F (`)
β,γ .) The extension of this to

Hβ,γ is |w〉β,γ := |w〉(`)β,γ ⊗ |λβ,γ〉βγ−`,γ . This has the convenient property that 〈w|µ〉β,γ = Prµ ( w ).
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Then, by the Cauchy-Schwarz inequality, for any measures µ and ν and any word w:

‖µ− ν‖β,γ ≥
| 〈w|µ− ν〉 |√
〈w|w〉β,γ

= |Prµ ( w )− Prν ( w )|√
〈w|w〉β,γ

.(3.4)

So, word probabilities function as lower bounds on the Hilbert space norm.

3.3.2. Predictive states from kernel conditional measures. A prominent use of repro-

ducing kernel Hilbert spaces is to approximate empirical measures [138]. Given a measure µ over a

space X and N samples Xk drawn from this space, one constructs an approximate representation of

µ via:

|µ̂〉 := 1
N

N∑
k=1
|δXk〉 .

In other words, µ is approximated as a sum of delta functions centered on the observations.

Convergence of this approximation to |µ〉 is (almost surely) O(N−1/2) [138].

This fact, combined with our Theorem 7, immediately gives the following result for Hβ,γ :

Proposition 4. Suppose for some µ ∈ P(XN) we take N samples of length `, denoted {Xk ∈ X `}
(k = 1 . . . N), and construct the state:

|µ̂`,N 〉β,γ = 1
N

N∑
k=1
|δXk〉

(`)
β,` ⊗ |λβγ−`,γ〉βγ−`,γ .

Then |µ̂`,N 〉β,γ → |µ〉 converges almost surely as N, `→∞ with error O(N−1/2 + β−1γ`).

A more nuanced application of RKHS for measures lies in reconstructing conditional distributions

[20, 58, 138, 181, 182]. Let µ be a joint measure on some X × Y, and let µ|X and µ|Y be its

marginalizations. Given N samples (Xk, Yk), construct the covariance operators:

ĈXX := 1
N

∑
k

|δXk〉 〈δXk | and

ĈY X := 1
N

∑
k

|δYk〉 〈δXk | .
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Let µY|X be the conditional measure for X ∈ X . For some g ∈ HY—the RKHS constructed on Y—let

Fg(X) := 〈g|µY|X〉 be a function on X . If Fg ∈ HX for all g ∈ HY , then ĈY X
(
ĈXX − ζI

)−1
|δX〉

converges to |µY|X〉 as N → ∞, ζ → 0, with convergence rate O
(
(Nζ)−1/2 + ζ1/2

)
. (The re-

quirement essentially tells us that the structure of the conditional measure is compatible with the

structures represented by the RKHS.) This approach is called conditional kernel densities [58].

In section 2.4, we have defined predictive states as a conditional measure, obtained by taking the

convergent limit of finite-length probabilities. Our results for predictive states (Thm. 3 and Cor. 5)

and for truncation error (Thm. 7 and Prop. 4) can be combined with the technique of conditional

kernel densities to obtain the following theorem, which is the capstone of our work in this chapter.

To state it we will remind the reader of the notation η`[←−x ] to denote the measure given by

Prη`[←−x ] ( · ) = Prµ ( · | x−`+1 . . . x0 )

In Theorems 3 and 5, we demonstrated that η`[←−x ]→ ε[←−x ] in distribution as `→∞ for (µ-almost)

all ←−x . However, the convergence rate was not fixed; we will explicitly include the unknown rate in

the following theorem.

Theorem 8. Let µ ∈ P(X Z) be a stationary and ergodic process. Suppose we take a long sample

w ∈ XL and from this sample subwords of length 2`, wt = xt−`+1 . . . wt+` for t = `, . . . , L − `.
(There are L − 2` + 1 such words.) Split each word into a past ←−w t = xt−`+1 . . . wt and a future
−→w t = xt+1 . . . xt+`, each of length `. Define the operators:

Ĉ
(←−x←−x )
β,γ = 1

L− 2`+ 1

L−∑̀
t=`
|δ̂←−w t〉β,γ ⊗ |δ̂←−w t〉β,γ and

Ĉ
(←−x−→x )
β,γ = 1

L− 2`+ 1

L−∑̀
t=`
|δ̂←−w t〉β,γ ⊗ |δ̂−→w t〉β,γ .

Now, suppose for every g ∈ Fβ,γ that 〈ε[←−x ], g〉 ∈ Fβ,γ, and 〈η`[←−x ], g〉 → 〈ε[←−x ], g〉 at a rate of

O(h←−x (`)). Then for all ←−x :

Ĉ
(←−x−→x )
β,γ

(
Ĉ

(←−x←−x )
β,γ − ζ · Iβ,γ

)−1
|δ←−x 〉β,γ → |ε[←−x ]〉β,γ

µ-almost surely in ←−x , as L, `→∞ and ζ → 0, at the rate O
(
(Lζ)−1/2 + ζ1/2 + γ−` + h←−x (`)

)
.
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This integrates all our results thus far with the usual kernel Bayes’ rule. Since ε[←−x ] is not generally

continuous, the theorem’s strict requirements on ε[←−x ] are not satisfied. That said, weaker versions

hold. If 〈ε[←−x ], g〉 as a function of ←−x does not belong to Fβ,γ as a function of ←−x , then the

representational error scaling depends on the precise form of ε[←−x ]. The latter can be obtained by

choosing the ζ-parameter through cross-validation analysis [58,138].

3.4. Convergence rates: case studies

The next natural question is how rapidly convergence occurs for each past, in a given process. So far,

we only guaranteed that convergence exists, but said nothing on its rate. This is process-dependent.

Here we will give several examples of processes and process types with their convergence rate. The

most useful way to think of the rate is in the form of “probably-almost-correct”-type statements, as

exemplified in the following result:

Proposition 5. Let µ be a probability measure on X `. For every ∆1,∆2 > 0, we have for sufficiently

large `:

Pr←−µ ( ‖η`[←−x ]− ε[←−x ]‖ > ∆1 ) < ∆2 .

That is, the probability of an error beyond ∆1 is less than ∆2.

This is a consequence of the fact that all ←−x must eventually converge. The possible relationships

between ∆1, ∆2, and ` in particular is explored in our examples.

It will help at this point to have a few examples. The simplest case, as usual, is the Markov process:

Example 5. Recall that a Markov process is a stochastic process where each observation xt statisti-

cally depends only on the previous observation xt−1. An order-R Markov process is one where each

observation xt depends only on the previous R observations xt−R . . . xt−1. As such, the predictive

states are simply given by:

Prµ ( x | ←−x ) = Prµ ( x−R+1 . . . x0x )
Prµ ( x−R+1 . . . x0 ) ,
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for each ←−x = x0x−1 . . . . Since the predictive state is entirely defined after a finite number of

observations, and this number is bounded by R, there is no conditioning error when R is taken as

the observation length.

Going beyond Markov processes, processes generated by HMMs offer multiple layers of subtlety.

Recall that an HMM (S,X ,
{

T(x)
}

) is defined as a finite set S of states, a set X of observations,

and a set T(x) = (T (x)
ss′ ) of transition matrices, labeled by elements of X and whose components are

indexed by S [199]. The elements are constrained so that T (x)
ss′ > 0 and ∑x,s′ T

(x)
ss′ = 1 for all s ∈ S.

Let T = ∑
x T(x) and π be its left-eigenvector such that πT = π. HMMs generate a stochastic

process µ defined by the word probabilities:

Prµ ( x1 . . . x` ) :=
∑
s′

[
πT(x1) . . .T(x`)

]
s′
.

An extension of HMMs, called generalized hidden Markov models (GHMMs) [199] (or elsewhere

observable operator models [76]), is defined as (V,X ,
{

T(x)
}

) where V is a finite-dimensional vector

space. The only constraint on the transition matrices T(x) is that T(x) have a simple eigenvector of

eigenvalue 1, the left-eigenvector is still denoted π, the right-eigenvector denoted φ, and the word

probabilities:

Prµ ( x1 . . . x` ) := πT(x1) . . .T(x`)φ

are positive [199]. GHMMs generate a strictly broader class of processes than finite hidden Markov

models can [75,76,199], though their basic structure is very similar.

We will now consider first a special class of HMMs—called sofic processes—with a very well-defined

convergence law. Then we will consider the general case.

Example 6. consider sofic processes. A sofic process is one that is not Markov at any finite order,

but that is still expressible in a certain finite way. Namely, a sofic process is any that can be generated

by a finite-state hidden Markov model with the unifilar property. An HMM has the unifilar property

if T (x)
s′s > 0 only when s′ = f(x, s) for some deterministic function f : S × X → S. Unifilar HMMs

are the stochastic generalization of deterministic finite automata in computation theory [69].
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The most useful property of sofic processes is that the states of their minimal unifilar HMM correspond

exactly to the predictive states, of which there is always a finite number. Unlike with order-R Markov

processes, there is no upper bound to how many observations it may take to δ-synchronize the

predictive states. However, closed-form results on the synchronization to predictive states for unifilar

HMMs is already known: at L past observations, with L→∞, the conditioning error is exponentially

likely (in L) to be exponentially small (in L) [197,198]. In terms of our Hilbert space norm, there

are constants α and C such that

Pr←−µ
(
‖η`[←−x ]− ε[←−x ]‖β,γ > α`

)
< Cα` .

As such, for ←−µ -almost-all pasts, the corresponding convergence rate for the kernel Bayes’ rule applied

to a sofic process is O
(
(Lζ)−1/2 + ζ1/2 + min(α, γ)−`

)
.

Example 7. Not all discrete-observation stochastic processes can be generated with a finite-state

unifilar hidden Markov model; though still encompassing only a small slice of processes, general

hidden Markov models have a considerably larger scope of representation than finite unifilar models,

as noted above. The primary challenge in this setting is to relate the structure of a given HMM to

the predictive states of its process. This is achieved through the notion of mixed states. A mixed

state ρ is a distribution over the states of a finite HMM. A given HMM, with the stochastic dynamics

between its own states, induces a higher-order dynamic on its mixed states and, critically for analysis,

this is an iterated function system (IFS). Under suitable conditions the IFS has a unique invariant

measure, and the support of this measure maps surjectively onto the process’ set of predictive states.

See Refs. [86,87,88,89] for details on this construction.

If ρ = (ρ) is a mixed state, then the updated mixed state after observing symbol x is:

f (x)
s (ρ) := 1∑

s′
[
T(x)ρ

]
s′

[
T(x)ρ

]
s

Let the matrix
[
Df (x)

]
s′s

(ρ) be given by the Jacobian ∂f (x)
s′ /∂ρs at a given value of ρ. There is a

statistic, called the Lyapunov characteristic exponent λ < 0, such that:

λ = lim
`→∞

1
`

log

∥∥∥Df (x`)(ρ`) · · ·Df (x1)(ρ1)v
∥∥∥

‖v‖ ,
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where ρt := f (xt−1) ◦ · · · ◦ f (x1)(ρ), for any vector v tangent to the simplex, almost any ρ (in the

invariant measure), and almost any −→x = x1x2 . . . (in the measure of the prediction induced by ρ).

The exponent λ then determines the rate at which conditioning error for predictive states converges

to zero: for all ε and sufficiently large `:

Pr←−µ
(
‖η`[←−x ]− ε[←−x ]‖β,γ < Ceλ`

)
> 1− ε .

This is somewhat less strict—depending on how rapidly the Lyapunov exponent converges in prob-

ability. In any case, for ←−µ -almost all pasts, the convergence of the conditional kernel density is

O
(
(Lδ)−1/2 + δ1/2 + min(eλ, γ)`

)
, very similar to the sofic process rate.

We anticipate that these rules still broadly apply to generalized hidden Markov models, though we

recommend more detailed analysis on this question.

Lastly we will consider renewal processes, as they offer an important addendum to Theorem 8.

Example 8. Recall that a renewal process is specified by the survival probability Φ(n) that a

contiguous block of 0s has length at least n. The exact probability of a given length is F (n) := Φ(n)−
Φ(n+ 1). It is always assumed that Φ(1) = 1. Further, stationarity requires that m := ∑∞

n=1 Φ(n)

be finite, as this gives the mean length of a block of 0s. In the most general case the predictive states

are given by:

ε[←−x ] =


εk

←−x = 0k1 . . .

undefined ←−x = 0∞
,

where the measures εk are recursively defined by the word probabilities:

Prεk
(

0`1w
)

= F (k + `)
Φ(k) Prε0 ( w ) .

Now, it can be easily seen that each past ←−x converges to zero conditioning error at a finite length

since (almost) all pasts have the structure . . . 10k, and so only the most recent k + 1 values need be

observed to know the predictive state. Therefore the kernel Bayes’ rule has an asymptotic convergence

rate for each past ←−x of O
(
(Lδ)−1/2 + δ1/2 + γ−`

)
. However, this does not tell the entire story, as
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obviously not all pasts converge uniformly. A probabilistic expression of the conditioning error gives

more information:

Proposition 6. Suppose µ is a renewal process with Φ(n) ∝ n−α, α > 1. Then there exist constants

C and K such that:

Pr←−µ
(
‖ηx1...x` − ε[←−x ]‖β,γ > C`−1

)
> K`−α .

That is, the probability the conditioning error decays as 1/` is itself at least power-law decaying in `.

Proof. Recall from Eq. (3.4):

‖ηx1...x` − ε[←−x ]‖β,γ

>
|Prµ ( w | x1 . . . x` )− Prµ ( w | ←−x )|√

〈w|w〉β,γ
,

for every word w, so we can choose any w and obtain a lower bound on the conditioning error. If

our past ←−x has the form 0k1 . . . for k < `, then we are already synchronized to the predictive state

and the conditioning error is zero. Thus, we are specifically interested in the case k ≥ ` and we will

further consider the large-` limit.

Now, under our assumptions, Φ(n) = n−α for some constant Z. For large n, F (n) ∼ αn−α−1. Then

for any j:

Prµ
(

0j1
∣∣∣←−x ) = F (k + j)

Φ(k) ∼ α

k

(
k + j

k

)−α−1
.

Meanwhile, so long as k ≥ `, the truncated prediction has the form:

Prµ
(

0j1
∣∣∣ 0`

)
=
∞∑
n=1

Φ(n+ `)∑
p Φ(p+ `)

F (n+ `+ j)
Φ(n+ `)

= Φ(`+ j)∑
p Φ(p+ `) ∼

α− 1
`

(
`+ j

`

)−α
.

Now, choose 0 < C < α− 1 and define:

B =
(

1− C + 1
α

)−1
.
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Then it can be checked straightforwardly that whenever k > B`, we have:

Prµ
(

1
∣∣∣ 0`

)
− Prµ ( 1 | ←−x )

∼ 1
`

[
α

(
1− `

k

)
− 1

]
>
C

`
.

The probability that k > B` is given by Φ(B`) = B−α`−α. Setting K = B−α/
√
〈1|1〉β,γ proves the

theorem.

Therefore, while every sequence ←−x converges to zero conditioning error at finite length, this conver-

gence is not uniform, to such a degree that the proportion of pasts that retain conditioning error of

1/` has a fat tail in `. This is a matter of practical importance that is not cleanly expressed in the

big-O expression of the conditioning error from Thm. 8.

3.5. Discussion

Any use of predictive states in machine learning will require embedding techniques to represent

the information contained in the state. We demonstrated that the popular RKHS embedding is a

valid embedding of predictive states, in that it inherits their stability. We also showed how this

stability extends to other methods, such as an embedding based on combining the Wasserstein

metric with the Cantor fractal. This means that our results provide general insight into efficient

and stable machine learning algorithms for time series: one path to viability for an algorithm is

that it emulates the predictive state formalism.

Compared to using reproducing kernel Hilbert spaces—a dominant approach to predictive states at

present—our Cantor-Wasserstein embedding may appear a mere toy model. However, as the results

demonstrated, there are strong benefits to the approach, which synergizes the benefits of both

the Wasserstein distance and the Cantor embedding. The topology of convergence in distribution

can be replicated with both the Wasserstein distance and the RKHS inner product. However, the

Wasserstein distance depends on far fewer parameters—such as, the choice of the eponymous kernel

in RKHS approaches. Moreover, its value is directly interpretable in terms of the shapes of the

distributions it compares.
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Similarly, there are many ways to metrize the product topology on sequences, but the Cantor

embedding offers a direct way to connect the product topology with a visualizable geometry. And,

embedding in a single dimension enables efficient computation of the Wasserstein metric. The

benefits of the Cantor and Wasserstein approaches adds interpretability to the resulting predictive-

state geometry along two distinct axes, most clearly seen in Fig. 3.1’s clustered Cantor diagrams.

We hope that the success of this approach in providing clear insights will complement existing

thrusts in the direction of abstract embeddings and mathematical formalism by motivating further

development on interpretable approaches to predictive state analysis.

We close this chapter by noting that predictive states are not merely static objects. They predict

the probabilities of future observations. And, once those observations are made, the predictive state

may be updated to account for new information. Thus, predictive states provide the stochastic rules

for their own transformation into future predictive states. This dynamical process has been explored

in great detail in the cases where the process is generated by a finite hidden Markov model—this

is found in former work on the ε-machine (e.g. [172]) and the mixed states of HMMs (e.g. [87]).

In the following Chapters 4 through 6, we will show how the dynamics of predictive states must

be emulated in the internal states of any model or physical system which generates the stochastic

process. This constraint tells us an enormous amount about the space of possible models for a given

process, and the resource constraints those models must face if they are to be implemented in the

physical world.
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CHAPTER 4

There you are: Generating processes with memory

Wherever you go, there you are.

Old proverb

4.1. Introduction

When studying classical stochastic processes, we often seek models and representations of the

underlying system that allow us to simulate and predict future dynamics. If the process is memoryful,

then models that generate it or predict its future behaviors must also have memory. Memory,

however, comes at some resource cost; both in a practical sense—consider, for instance, the substantial

resources required to generate predictions of weather and climate [113,114]—and in a theoretical

sense—seen in analyzing resource use in thermodynamic systems such as information engines [24]. It

is therefore beneficial to seek out a process’ minimally resource-intensive implementation. Notably,

this challenge remains an open problem with regards to both classical and quantum processes.

In Chapter 1 we defined a process phenomenologically, as a “source” which produces a data stream.

When that stream is stationary and ergodic, a process can be described by its “word probabilities”

Prµ ( x1 . . . x` ), which describe how frequently certain observations appear consecutively. In Chapter

2 we showed that these word probabilities characterize a measure µ, which is the mathematical

formalization of a process. We also defined the notion of a predictive state. The arena of computational

mechanics relates predictive states to the information processing capacities required to produce

and predict a process [38,39,43,173]. The minimal information processing required to predict the

sequence is represented by a type of hidden Markov model called the ε-machine. The statistical

complexity Cµ—the memory rate for ε-machines to simultaneously generate many copies of a

process—is a key measure of a process’ memory resources. Where finite, Cµ is known to be the

minimal memory rate over all classical implementations.
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Computational mechanics has largely been developed in the domain of traditional information

theory. A generalization of information theory, termed resource theory has recently emerged within

quantum information theory as a toolkit for addressing resource consumption in the contexts of

entanglement, thermodynamics, and numerous other quantum and even classical resources [35]. Its

fundamental challenge is to determine when one system (a resource) can be converted to another

using a predetermined set of free or allowed operations.

Resource theory is closely related to the theory of majorization, which the reader will recall from

Section 1.5. On the one hand, majorization is a preorder relation % on positive vectors (typically

probability distributions) computed by evaluating a set of inequalities [123]. If the majorization

relations hold between two vectors, then one can be converted to the other using a certain class of

operations. Majorization is used in several resource theories to numerically test for convertibility

between two resources [64,71,142].

In this chapter we explore the concept of a model as the algebraic representation of the predictive

state dynamics. Specifically, we formulate the manner in which predictive states transform into one

another over the passage of time as a semigroup, and define models as a certain kind of representation

of this semigroup. Essentially, the invariant geometry of a process’s predictive states is again and

again repeated in the state space of any model of that process; as the old adage says, “Wherever

you go—there you are.”

Representation theory for stochastic processes was first considered in Refs. [81,82,83], though these

works did not receive much attention at the time. Later, though not formulated in the language

of representation theory, equivalent results were independently reached by both Ref. [199] and

Refs. [76, 193, 217]. We synthesize the perspectives from these approaches and combine them

with our results on conditional measures from Chapter 2 to build up a general theory of models

and generators of stochastic processes which will carry us through Chapters 5 and 6. This is

accomplished in Section 4.2.

In Sections 4.3 and 4.4, we will shift our attention to focusing on hidden Markov models of stochastic

processes. As a special case of representation models, we can interpret HMMs physically as describing

system dynamics. We use majorization theory to develop a resource-theoretic interpretation of

model memory, and in this new formalism we generalize existing results on the minimality of the
99



ε-machine as a predictive model of a stochastic process. These sections are mostly drawn from

the publication Strong and Weak Optimizations in Classical and Quantum Models of Stochastic

Processes [106].

4.2. Models and representations

Because systems and measurements are so intertwined in this discussion, we will not define them

as separate entities, but rather as one object: a generator. A generator is a triple G = (S,X , T ),

where S is a set of states which we will identify as the system, X is an alphabet of measurement

outcomes, and T : S → P(X × S) is a conditional measure which, given a current system state as

input, provides a measure over pairs of observations and updated system states.

Why the name “generator”? This is because because generators sequentially emit observations, and

therefore produce a process. Suppose, for instance, that X is discrete, in which case we can write T

instead as a set of functions T (x) : S →M(S) which map each state to a positive measure, so that∑
x T

(x) always results in a probability measure. Then we can define the process generated by G

and initial state s0 using the word probabilities

PrG ( x1 . . . x` | s0 ) =
∫
S`
dT (x`)(s`|s`−1)× · · · × dT (x1)(s1|s0)

If we also assume that S is discrete, then we can think of each T (x) as a matrix T(x) = (T (x)
s′s ), and

write the word probabilities as

PrG ( x1 . . . x` | s0 ) =
∑
s`

[
T(x`) . . .T(x1)

]
s`s0

using matrix multiplication.

Generators encapsulate together the system dynamics and measurement process. As it happens,

this encapsulated approach will be most useful when it comes to relating generators to predictive

states. The relation arises from two fundamental facts. The first we have essentially already stated:

the previous paragraph demonstrates that each generator G induces a mapping from its state space

S to the space P(XN) of probability measures over sequences. We will call this mapping PG(s), so

that

PrPG(s) ( x1 . . . x` ) = PrG ( x1 . . . x` | s )
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The second fact has to do with predictive states themselves. The reader may recall that in Sec. 2.1

we described the existence of a mathematical object, the ε-machine, which characterizes how the

predictive state is altered upon making new observations. We now have more precise language to

express the nature of the ε-machine: it is a generator of the process whose set of states is just the

predictive states. Specifically, the ε-machine of a process µ is the triple E(µ) = (K(µ),X , T ) with

the property that T (x)(ε[←−x ]) produces a scaled Dirac delta measure Prµ ( x | ←−x ) δε[←−x x].

Let us break this down. Given a starting predictive state ε[←−x ] conditional measure T assigns a

probability to the next symbol of Prµ ( x | ←−x ), and noiselessly transitions to the updated state

ε[←−x x]. This just means we are observing x with the probability determined by conditioning on

all previously observed data, and then reconfiguring our prediction of the future based on our

observation of x.

One of the most remarkable facts about the ε-machine is that it has a parallel interpretation, not in

terms of generators but in terms of vector spaces. Predictive states are, after all, measures, and can

be linearly combined; the vector space they span we have named K(µ). Consider, now, the mapping

for any probability measure η over XN given by η 7→ τ (x)η, defined as

Prτ (x)η ( w ) = Prη ( xw )

(You saw this earlier in Sec. 2.1.) The reader may quickly convince themselves that τ (x) is a linear

map. It is also related to the ε-machine: for each past ←−x , we have τ (x)ε[←−x ] = Prµ ( x | ←−x ) ε[←−x x].

The set {τ (x)} of these operators (spanning over x) generates an entire semigroup T (µ) = {τ (x1...x`)}
of operators, each corresponding to a sequence of observations as τ (x1...x`) = τ (x`) . . . τ (x1). We call

this semigroup the observable semigroup.

We will return to the observable semigroup in a moment. Let us now combine what we know about

generators with what we know about predictive states and the ε-machine. From the definition of the

map PG, which maps generator states S into the vector space P(XN), and that of the observable

operators τ (x), we have the notable fact:

(4.1) τ (x) ◦ PG(s) =
∫
S
PG(s′)dT (x)(s′|s)

At this point, the reader may notice a multitude of consequences.
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(1) Practically, this equation shows that the operator τ (x) can “pass through” the mapping

PG between the prediction space K(µ) and the system state space S, transitioning from a

linear map to a conditional measure.

(2) This “passing-through” (or should we say “gliding over”?) guarantees that several linear

and spectral properties must be shared between τ (x) and T (x) (when the latter is viewed

as a linear map on the space M(S)).

(3) The reader with background in mathematical physics may also notice that this equation

guarantees, when the conditional maps T (x) are viewed as linear maps on the space M(S),

that they form a representation of the observable semigroup T (µ). Further, the map PG

forms essentially a kind of homomorphism between representations, called an intertwining

operator.

The representation-theoretic language allows us to encapsulate these facts in a single statement.

For any generator of a process, the conditional maps T (x) over its state space form a homomorphic

representation of the predictive state dynamics for the same process.

It is in the representation-theoretic context that we will now, finally, introduce a definition of an

observable operator model. Our definition essentially follows that used by [76,193,217], and is also

equivalent to the generalized hidden Markov model used in [199]. An OOM of a process µ is any

quartet M = (V,X , {T (x)}, P ), where V is a vector space, X is the alphabet, each T (x) : V → V is

a linear operator on V, and P : V → M(XN) is a not necessarily linear mapping from vectors to

measures over sequences, satisfying the relation

(4.2) τ (x) ◦ P = P ◦ T (x)

As with generators, this definition guarantees that a model of µ always contains a representation of

the observable semigroup.

The primary distinction between an OOM and a generator is semantic but, we feel, important. A

generator is defined simply as some dynamics paired with an observation mechanic, which happens

to produce a process as a byproduct. An OOM, on the other hand, is always defined relative to a

process’s observable semigroup. This is also the main difference between our definition of an OOM

and that used in [76] (in which the OOM is not bound to a process, and indeed may not even be
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guaranteed to generate a positive measure over sequences). This distinction will be helpful to keep

in mind in the current chapter. In any case, it should be clear from what we have discussed that

every generator contains an OOM implicitly (in the vector space of distributions over its states);

similarly, every OOM contains a generator.

4.2.1. The observable semigroup. Let us discuss the observable semigroup in greater detail,

and discuss its properties. The main point which we would like to impart to the reader is that the

observable semigroup for a given process is just as fundamental an object as the predictive states.

Let us illustrate what we mean. Any process µ (defined as a measure on X Z) induces a measure

over “future” sequences, −→µ , which is a measure over XN. The stationarity of the process means

that the measure −→µ is invariant to the action of the shift operator τ = ∑
x τ

(x):

Prτ−→µ ( w ) =
∑
x

Pr−→µ ( xw ) = Pr−→µ ( w )

(Recall that ignoring the first observation of a stationary process should have no impact on our

predictions, if we know nothing else about the current state.)

Now, given a set of operators T and a vector v, the cyclic subspace generated by that pair is the

subspace spanned by all vectors of the form T1 . . . Tnv, where T1, . . . , Tn ∈ T . In other words, it is

the space “reachable” by applying the set of operators to the vector. (More specifically, it is really

the topological closure of that set.) The cyclic subspace of the observable semigroup T (µ) acting on
−→µ would be the closure of all vectors of the form

τ (x0) . . . τ (x−k)−→µ = Prµ ( x−k . . . x0 ) η`[←−x ]

for each past ←−x and k ≥ 0. Then, due to the convergence theorem of predictive states Thm. 3, the

cyclic subspace of T (µ) acting on −→µ must just be the space K(µ).

To rephrase this fact, the just as the observable semigroup can be defined in terms of the natural

dynamics on the predictive state space K(µ), it is also true that K(µ) is recoverable from the

observable semigroup as a cyclic subspace. We can therefore see the observable semigroup as being

just as fundamental to the characterization of a stochastic process as predictive states are. What is
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additionally remarkable, with considerable significance, is that K(µ) can be generated as the cyclic

subspace of T (µ) starting from any probability measure η ∈ K(µ).

Theorem 9. For any process µ and any almost any η ∈ K(µ), the cyclic subspace generated by the

action of T (µ) is just K(µ).

Proving this requires making an interesting observation, which is an extension o fthe earlier result

Prop. 5. There we noted that for every ∆1,∆2 > 0, for sufficiently large `

Pr←−µ ( ‖η`[←−x ]− ε[←−x ]‖ > ∆1 ) < ∆2 .

The norm here stands in for any distance which generates the topology of convergence in distribution.

A much stronger form is the following:

Proposition 7. For almost every ←−x , and any ∆1,∆2 > 0, there is a sufficiently large ` such that

←−µ ({←−y | ‖ε[←−y ]− ε←−x ‖ < ∆2, y−` . . . y0 = x−` . . . x0 })
←−µ ({←−y | y−` . . . y0 = x−` . . . x0 })

> 1−∆1 .

In other words, there is an arbitrarily high probability that “close” pasts (in the cylinder set sense)

will also have close predictive states.

Proof. This is a consequence of applying the Chebyshev inequality. We already know, for most pasts,

that Prµ ( w | x−` . . . x0 ) converges to Prµ (←−x ). Now consider instead the square Prµ ( w | ←−x )2. By

the Vitali property (Prop. 2),

lim
`→∞

∫
U−`−1,x−`...x0

Prµ ( w | ←−y )2
d←−µ (←−y )

←−µ (U−`−1,x−`...x0) = Prµ ( w | ←−x )2

Let us consider this in terms of expectations and moments. The left-hand side corresponds to the

second moment Eµ
[
Prµ ( w | ←−y )2

∣∣∣←−y ∈ U−`−1,x−`...x0

]
, while the right-hand side corresponds to the

square of the first moment Eµ
[
Prµ ( w | ←−y )

∣∣∣←−y ∈ U−`−1,x−`...x0

]2
. Their equality in the limit implies

that the variance Varµ
[
Prµ ( w | ←−y )

∣∣∣←−y ∈ U−`−1,x−`...x0

]
converges to zero as `→∞. Then by the

Chebyshev inequality (or any other similar inequality), the theorem is proven.

This proposition proves an important property of the function Prµ ( w | ←−x ), as a function of ←−x .
We say it is essentially continuous. What this means is that, for almost all ←−x , there is a sufficiently
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small neighborhood so that almost everywhere in that neighborhood the function is close to its

value on ←−x . It is a very weak form of continuity. However, it will prove a very useful concept going

forwards.

Now we can prove Thm. 9.

Proof. Due to the Prop. 7, starting from any predictive state ε[←−x ], there is a sufficiently long

sequence of symbols y−` . . . y0 such that ε[←−x y−` . . . y0] is arbitrarily close to ε[←−y ], for a given ←−y .
Since ε[←−x y−` . . . y0] is proportional to τ (y0) . . . τ (y−`), this means that ε[←−y ] is reachable. Therefore

all of K(µ) is in the cyclic subspace of T (µ) starting from ε[←−x ].

Theorem 9 is significant because we can interpret it as requiring a kind of ergodicity over the dynamics

of predictive states as driven by the observable semigroup. Remember that one interpretation of

ergodicity is that “everything can be reached from everything else,” and this is exactly what we

have shown here.

What we will demonstrate next is how the relationship between T (µ) and K(µ) is mirrored in

representations of T (µ), and therefore is mirrored in any model of the process µ. In particular, just

as ergodicity has implications on finite graphs in the form of the Perron-Frobenius theorem, we will

soon see how this allows us to implement some form of Perron-Frobenius theory for general models.

4.2.2. Irreducibility and indecomposibility. We have defined an OOMM = (V,X , {T (x)}, P )

as a representation of the observable semigroup, where each element τ (x) has a corresponding

T (x) ∈ GL(V), paired with a correspondence relation P : V → M(XN) mapping vectors in V to

measures over future sequences, satisfying the relationship

(4.3) τ (x) ◦ P = P ◦ T (x)

The map P is not necessarily a linear map, so it cannot be characterized as a homomorphism

between representations (which are traditionally linear). If it is linear, however, we will call the

model a linear OOM.

An example of a nonlinear OOM would be the class of quadratic OOMs, which we will return to in

Chapter 5. We will for now focus on linear models, as there is much of interest we can say about

them.
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In mathematical physics, as soon as the subject of representation comes up, it is almost always

accompanied by the classification of all irreducible representations for the algebraic object. Typically

this object is a group. This is significant, because it means that the word “irreducible” takes on two

equivalent meanings, which are not necessarily equivalent in the semigroup setting. The standard

meaning of an irreducible representation is one which contains no proper subspaces which are

invariant under the action of the group representation. Since group objects are invertible, this

also implies indecomposibility: the representation space cannot be the direct sum of two invariant

sub-representations.

The difference which arises in the case of semigroups like T (µ) is the possibility of transient subspaces.

This concept should be familiar from our discussion of the Perron-Frobenius theorem in Sec. 1.4.

Transient subspaces “sink” into invariant subspaces irreversibly, meaning that one can have a

proper invariant subspace without decomposibility: the transient subspace is neither invariant nor

a representation in its own right. This is not possible with a group action because of its inherent

invertibility, meaning there is no such thing as irreversible transience.

What we shall do here is point out a handful of useful observations about irreducibility and

indecomposibility for linear OOMs. These observations will be useful in a variety of settings later,

but our present interest will simply be to provide their straightforward derivation.

First, we will start by considering the nature of the linear map P . Let 1 : M(XN) be the linear

map on measures which corresponds to evaluation on the entire space: 1ν = ν(XN). This mapping

always sends probability measures to 1, hence the name. Define the composition 1 ◦ P , which we

will name 1M. A vector v ∈ V is called unital if 1M(v) = 1.

It is clear, then, that certain unital vectors in V should map to probability measures over XN. We

can, in fact, directly access the word probabilities of these measures by using the homomorphism

rule Eq. (4.3):

PrM ( x1 . . . x` | v ) = 1MT
(x`) . . . T (x1)v

Now, it should be noted that the map T = ∑
x T

(x) always maps unital vectors to unital vectors;

this is just a consequence of the fact that summing over any of the symbols in the above equation

still results in a probability measure. It is therefore the case that 1M ◦ T = 1M.
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This fact is extremely important: it tells us that 1 is an eigenvalue of T , because 1M is a fixed point.

It must therefore be the case that there also exists at least one vector, say π, in V which is a fixed

point of T : Tπ = π.

The following result concerns the relationship between decomposibility of a model M and the

dimension of T ’s stationary subspace.

Theorem 10. Let M = (V,X , {T (x)}, P ) be a linear model. Let {πj} be a linearly independent set

of stationary states of the matrix T = ∑
x T

(x), such that Tπj = πj for each j. Then M in fact

contains j sub-models, each inhabiting an invariant subspace of V. The converse (that the number

of stationary states is equal to the number of sub-models) is also true.

To prove this theorem we must do some legwork which will also have further value down the line. We

will introduce here the concept of embedding pasts in models, and prove an important lemma about

embeddings of pasts. This lemma is a much more specific form of Theorem 3.4.3 from Ref. [199].

Lemma 1. Let M = (V,X , {T (x)}, P ) be a linear model of the process µ such that V is finite-

dimensional, and let π be any one of the stationary states of T . Then there is a mapping EM,π :

XN → V, called a past embedding, with the properties

(1) EM,π(←−x ) is a homomorphism of the shift space:

(4.4) T (x)EM,π(←−x ) = Prµ ( x | ←−x )EM,π(←−x x) ;

(2) EM,π(←−x ) is predictively consistent:

(4.5) PrPEM,π(←−x ) ( w ) = Prµ ( w | ←−x ) ;

(3) EM,π is essentially continuous (in the same sense as used in Prop. 7);

(4) EM,π(XN) spans the cyclic subspace generated by {T (x)|x ∈ X} starting from π or EM,π(←−x )

for any ←−x .

Proof. We will define EM,π as a Radon-Nikodym derivative first. If V is finite dimensional, we

can give each vector v ∈ V coorinates v = (vj). For each j, define the measure νj over pasts as

νj
(
U−`,x−`...x0

)
=
[
T (x0) . . . T (x−`)π

]
j
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Then EM,π(←−x ) is the unique vector for which

[EM,π(←−x )]j = dνj
d←−µ (←−x )

Property (1) follows from the fact that

∑
j

T
(x)
j′j [EM,π(←−x )]j = d

d←−µ

∑
j

T
(x)
j′j νj

 (←−x ) = Prµ ( x | ←−x ) dνj
′

d←−µ (←−x x)

which is a consequence of the definition of νj. Property (2) is itself a direct consequence of property

(1) and the homomorphism law for models, Eq. (4.3).

Property (3), on the other hand, follows from the Vitali property of XN for exactly the same reasons

given in Prop. 7, which we will not repeat here. Similarly, property (4) follows just as Thm. 9

followed from Prop. 7.

Now it should be evident then that to each stationary πj associated with a model M, there

corresponds an invariant ergodic subspace spanned by the image of EM,πj . Due to this ergodicity, in

each of these subspaces there can only be one stationary state: πj itself. So, none of these subspaces

can intersect except at the origin. This proves Theorem 10.

What we have shown, then, is that every model either decomposes into a collection of sub-models

(plus some transient subspaces), or is itself indecomposible. In the latter case, due to Theorem

10, there can only be one stationary state. Since it goes without saying that any sub-model must

contain at least one stationary state, we find that the existence of a single stationary state π and

being indecomposible are equivalent properties for OOMs. Further, due to Lemma 1, this implies the

existence of a unique embedding of past states into any indecomposible model.

4.2.3. Time-reversal of models and processes. Thus far we have thought of processes,

their dynamics, and the predictive states and models which describe processes, all in terms of

a forward-pointing arrow of time. One symbol is generated after another, and each model state

transforms to the next. The future is conditioned on the past.

There is nothing stopping us, however, from turning the clock backwards. In fact, everything we

have proven remains true. As it happens, however, the structures we define in the reverse direction
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for a process are rarely mirror images of the same structures done forwards. Many times, they

provide us with additional crucial information about the process under study. Here we will just

make some simple definitions of reverse-time objects and operations which will be useful later in

this chapter.

We will start be defining the reverse of a process. Given a stochastic process µ, the reverse process,

denoted µR, is defined by the word probabilities

PrµR ( x1 . . . x` ) = Prµ ( x` . . . x1 )

That is, it assigns to every word the probability which µ assigned the reversed word. In this sense,

a reverse process “turns back time” by reversing the order of our observations.

Some processes are symmetric under reversal. An example of this is the Even process, which is

defined only by the fact that 1’s only appear in even-sized contiguous blocks. This property of a

word is unchanged under reversal and so the reverse of the Even process is still the Even process.

On the other hand, consider the anbn process, where every contiguous block of a’s is followed by

a block of b’s of the same size. Obviously, under time reversal, the role of a and b are reversed,

and so the process is not symmetric under time reversal. The can be visualized in Fig. 2.1: the

Cantor embedding of a process being symmetric under the swapping of the axes is a visualization of

time-reversal symmetry.

Now, just as µ has predictive states, so does µR. Consider a future −→x = x1x2 . . . and its reversal
←−x = . . . x2x1. Then we define the retrodictive state of −→x , denoted by εR[−→x ], as the measure over

pasts defined by the probabilities

PrεR[−→x ] ( y−` . . . y0 ) = PrµR ( y0 . . . y−` | ←−x )

While predictive states are measures over the future (conditioned on the past), retrodictive states are

the opposite: they are measures over the past, conditioned on the future. They can be mathematically

treated as the predictive states of the reverse process µR and inherit all of its properties (when all

temporalities are appropriately reversed).
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The last thing we will define here is the time reversals of generators and models. For clarity we will

do so under the assumption that the underlying spaces are finite (that is, that S is finite or V is

finite-dimensional).

Consider a finite generator G = (S,X , {T(x)}). We will suppose it is ergodic, in the sense that every

state can be reached by every other via the stochastic dynamic of the T(x)’s; then there is a unique

stationary distribution π = (πs) which satisfies Tπ = π. The reverse generator is then defined as

GR = (S,X , {T̃(x)}), where

T̃
(x)
s′s = πs′T

(x)
ss′

πs

It is fairly straightforward to check that GR generates the reverse of the process that is generated by

G [50]. When the generator has multiple ergodic components, we can apply the above formula to

each ergodic block of the transition matrices. Further, when the state space is infinite, particularly

continuous, the reversal in the above equation can be accomplished with a Radon-Nikodym derivative.

Now consider a finite-dimensional linear OOM M = (V,X , {T (x)}, P ). We shall define reversal here

in a very different way. Let V∗ be the dual space of V. It is isomorphic to V, and represents the

space of all linear functions φ : V → R. Since it is finite dimensional, like V, it can be expressed in

coordinates; the element φ has coordinates φ = (φj) so that φ(v) = ∑
j φjvj . For every operator

S on V, define the adjoint operator S† : V∗ → V∗ be defined by the formula (S†φ)j = ∑
j′ φj′Sj′j .

(This way, (Sφ)(v) = φ(Sv).) Lastly, let π be the stationary state of T ; then define the mapping

P̃ : V∗ →M(XN) as

PrP̃ φ ( x1 . . . x` ) =
(
T (x`)† . . . T (x1)†φ

)
(π)

Then the OOM MR = (V∗,X , {T (x)†}, P̃ ) is the reverse model of M, and generates the reverse

process.

4.3. Memory and variety in physical generators

We have thus far dealt with models and generators in the very abstract; let us now make matters

more concrete. Our primary interest is in using real, physical systems to simulate stochastic

processes. The concept of generator which we have defined is obviously the best object for this sort

of analysis; the states, described by the set S, can be interpreted as a set of possible microstates
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which a physical system may occupy at a given time, and the dynamics described by T (x) describe

how the system’s state is altered by the measurement of some macrostate as well as the normal

passage of time—all, of course, under the limitations of classical statistical mechanics.

The question of implementing a generator, then, comes to the forefront. In order to produce a

particular stochastic process in nature, we need a physical system in hand whose states and dynamics

correspond to one of the many generators that can produce the desired process! This is always easier

said than done. In particular, if the process is significantly complex—which we will characterize

here as meaning that the process displays a wide variety of behaviors over the course of time—then

it must draw its complexity, or rather variety, from somewhere. Specifically, variety in the process’s

behavior over time is accomplished by a generator which has a variety of states and is capable of

exploring all of them via its dynamics.

The ability of a generator to capture the variety in a process’s behavior is doubly important if we

are using the generator with the intention of tracking its state in order to more accurately predict

future outcomes. Performing this task optimally requires that the generator states correspond to

the predictive states of the process. This is precisely the function of the ε-machine. Therefore, the

memory required to implement the ε-machine is an important benchmark for the task of predicting

process behaviors.

In Section 1.5.1, we discussed the idea of variety as a resource and a form of information. In

the context of stochastic processes, we call this resource memory. Just as variety is defined for

distributions over random variables, memory is defined in terms of distributions over state spaces of

generators. For each (indecomposible) generator, the stationary distribution over states, π, is the

primary object which characterizes the potential information costs of implementing said generator

physically. These costs can be quantified using entropies.

In this section we will forget, for the moment, the language of generators and focus entirely on

distributions and their entropies. We will also extensively discuss majorization, which, as we

discussed in Section 1.5.2, is an important tool in the resource theory of nonuniformity, whose costs

are also formulated using entropies. For this reason majorization is also very useful in the discussion

of memory.
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4.3.1. Majorization as a tool for memory. First off, an overview of important relevant

concepts from majorization and information theory is in order.

The majorization of positive vectors provides a qualitative description of how concentrated the

quantity of a vector is over its components. For ease of comparison, consider vectors p = (pi),

i ∈ {1, . . . , n}, whose components all sum to a constant value, which we take to be unity (∑n
i=1 pi = 1),

and are nonnegative: pi ≥ 0. For our purposes, we interpret these vectors as probability distributions.

In Section 1.5.2 we first introduced relative majorization, and then majorization as a special case.

We introduce majorization here on its own terms, following Ref. [123]. The historical definition of

majorization is also the most intuitive, starting with the concept of a transfer operation.

A transfer operation T on a vector p = (pi) selects two indices i, j ∈ {1, . . . , n}, such that pi > pj ,

and transforms the components in the following way:

(Tp)i := pi − ε

(Tp)j := pj + ε ,

where 0 < ε < pi − pj , while leaving all other components equal; (Tp)k := pk for k 6= i, j.

Intuitively, these operations reduce concentration, since they act to equalize the disparity between

two components, in such a way as to not create greater disparity in the opposite direction. This is

the principle of transfers.

Suppose now that we have two vectors p = (pi) and q = (qi) and that there exists a sequence

of transfer operations T1, . . . ,Tm such that Tm ◦ · · · ◦T1p = q. We will say that p majorizes q;

denoted p % q. The relation % defines a preorder on the set of distributions, as it is reflexive and

transitive but not necessarily antisymmetric.

There are, in fact, a number of equivalent criteria for majorization. We list three relevant to our

development in the following composite theorem.

Theorem 11 (Majorization Criteria). Given two vectors p := (pi) and q := (qi) with the same

total sum, let their orderings be given by the permuted vectors p↓ := (p↓i ) and q↓ := (q↓i ) such that

p↓1 > p↓2 > · · · > p↓n and the same for q↓. Then the following statements are equivalent:
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Figure 4.1. (Left) Lorenz curves when p and q are comparable and the first
majorizes the second: p % q. Here, we chose p = (3/4, 1/8, 1/8, 0, 0) and q =
(2/5, 1/5, 1/5, 1/10, 1/10). Tick marks indicate kinks in the Lorenz curve. (Right)Lorenz
curves when p and q are incomparable. Here, we chose p = (3/5, 1/10, 1/10, 1/10, 1/10)
and q = (1/3, 1/3, 1/3, 0, 0).

(1) Hardy-Littlewood-Pólya: For every 1 ≤ k ≤ n,

k∑
i=1

p↓i ≥
k∑
i=1

q↓i ;

(2) Principle of transfers: p can be transformed to q via a sequence of transfer operations;

(3) Schur-Horn: There exists a unitary matrix U := (Uij) such that q = Dp, where D :=(
|Uij |2

)
, a uni-stochastic matrix.

The Hardly-Littlewood-Pólya criterion provides a visual representation of majorization in the

form of the Lorenz curve. For a distribution p := (pi), the Lorenz curve is simply the function

βp(k) := ∑k
i=1 p

↓
i . See Fig. 4.1. We can see that p % q so long as the area under βq is completely

contained in the area under βp.

The Lorenz curve can be understood via a social analogy, by examining rhetoric of the form “The

top x% of the population owns y% of the wealth”. Let y be a function of x in this statement, and

we have the Lorenz curve of a wealth distribution. (Majorization, in fact, has its origins in the study

of income inequality.)

If neither p nor q majorizes the other, they are incomparable. (See Fig. 4.1.)

It is worthwhile to note an ambiguity when comparing distributions defined over different numbers

of elements. There are generally two standards for such comparisons that depend on application.
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In the resource theory of nonuniformity [64], one compares distributions over different numbers

of events by “squashing” their Lorenz curves so that the x-axis ranges from 0 to 1. Under this

comparison, the distribution p3 = (1, 0, 0) has more informational nonequilibrium than p2 = (1, 0).

In the following, however, we adopt the standard of simply extending the smaller distribution by

adding events of zero probability. In this case, p3 and p2 are considered equivalent. This choice is

driven by our interest in the Rényi entropy costs and not in the overall nonequilibrium. (The latter

is more naturally measured by Rényi negentropies H̄α (p) = logn−Hα (p), where n is the number

of events.)

Now, as noted, majorization is a preorder, since there may exist distinct p and q such that p % q

and q % p. This defines an equivalence relation ∼ between distributions. It can be checked that

q % p if and only if the two vectors are related by a permutation matrix P. Every preorder can be

converted into a partial order by considering equivalence classes [p]∼.

If majorization, in fact, captures important physical properties of the distributions, we should expect

that these properties may be quantified. The class of monotones that quantify the preorder of

majorization are called Schur-convex and Schur-concave functions. A function f : Rn → R is called

Schur-convex (-concave) if p % q implies f(p) ≥ f(q) (f(p) ≤ f(q)). f is strictly Schur-convex

(concave) if p % q and f(p) = f(q) implies p ∼ q.

An important class of Schur-concave functions consists of the Rényi entropies:

Hα[p] := 1
1− α log2

(
n∑
i=1

pαi

)
.

In particular, the three limits:

H[p] := lim
α→1

Hα[p] = −
n∑
i=1

pi log2 pi ,

Hmax[p] := lim
α→0

Hα[p] = log2 |{1 ≤ i ≤ n : pi > 0}| , and

Hmin[p] := lim
α→∞

Hα[p] = − log2 max
1≤i≤n

pi

—Shannon entropy, topological entropy, and min-entropy, respectively—describe important practical

features of a distribution. In order, they describe (i) the asymptotic rate at which the outcomes can

be accurately conveyed, (ii) the single-shot resource requirements for the same task, and (iii) the
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Figure 4.2. Rényi entropies of the two incomparable distributions p and q from
Fig. 4.1.

probability of error in guessing the outcome if no information is conveyed at all (or, alternatively,

the single-shot rate at which randomness can be extracted from the distribution) [158,194]. As

such, they play a significant role in communication and memory storage.

We note that the Rényi entropies for 0 < α <∞ are strictly concave.

The example of two incomparable distributions p and q can be analyzed in terms of the Rényi

entropies if we plot Hα[p] and Hα[q] as a function of α, as in Fig. 4.2.

4.3.2. Strong and weak optimization. The central idea explored in the following is how

majorization may be used to determine when it is possible to simultaneously optimize all entropy

monotones—or, alternatively, to determine if each monotone has a unique extremum. Obviously,

this distinction is a highly practical one to make when possible. This leads to defining strong maxima

and strong minima. Let S be a set of probability distributions. If a distribution p ∈ S satisfies

p - q (p % q), for all q ∈ S, then p is a strong maximum (minimum) of the set S.

The extrema names derive from the fact that the strong maximum maximizes the Rényi entropies

and the strong minimum minimizes them. One can extend the definitions to the case where p 6∈ S,
but is the least-upper-bound such that any other p′ satisfying p′ - q must obey p′ - p. This case
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would be called a strong supremum (or in the other direction a strong infimum). However, these

constructions may not be unique as % is a preorder and not a partial order. However, if we sort by

equivalence class, then the strongly maximal (minimal) class is unique if it exists.

One example of strong minimization is found in quantum mechanics. Let ρ be a density matrix

and X be a maximal diagonalizing measurement. For a given measurement Y , let ρ|Y be the

corresponding probability distribution that comes from measuring ρ with Y . Then ρ|X % ρ|Y for

all maximal projective measurements Y . (This follows from the unitary matrices that transform

from the basis of X to that of Y and the Schur-Horn lemma.)

Another, recent example is found in Ref. [72], where the set Bε (p) of all distributions ε-close to p

under the total variation distance δ is considered:

Bε (p) := {q : δ(p,q) ≤ ε} .

This set has a strong minimum, called the steepest distribution pε, and a strong maximum, called

the flattest distribution pε.

When a strong minimum or maximum does not exist, we refer to the individual extrema of the

various monotones as weak extrema.

4.4. Classical generators and hidden Markov models

Recall that a (finite) generator of a process µ is defined as a triple G = (S,X ,
{

T(x)
}

) consisting

of a finite set of hidden states S, an alphabet X , and a set of transition maps T(x) which jointly

encode the probability of producing a given symbol and then transitioning to another state. When

S is finite, this is, incidentally, also the definition of a hidden Markov model (HMM).

If S has size |S| then the generator G also corresponds to the linear OOM (R|S|,X ,
{
T (x)

}
, P )

where T (x) are the linear operators corresponding to the conditional matrices T(x) and P is given by

PrPv ( x1 . . . x` ) = 1>T(x`) . . .T(x1)v

In Section 4.2.2 we discussed the conditions for the existence of unique stationary states in linear

OOMs. These results were a sort of extension of the Perron-Frobenius theorem, utilizing the ergodic

nature of the predictive states. If T = ∑
x T(x) is an irreducible matrix, we can directly apply the
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Perron-Frobenius theorem, which also guarantees a unique stationary state, Tπ = π. The process

generated by G is defined by the word probabilities

PrG ( x1 . . . x` ) = 1>T(x`) . . .T(x1)π

Note that this both defines a measure over XN but also a (stationary, ergodic) measure over X Z,

due to the stationarity of π.

The Embedding Lemma (Lemma 1) implies that there is a unique mapping, EG : XN → R|S|, which

maps each past to a “mixed state,” that is, a probability distribution over S. This mixed state

EG(←−x ) represents the asymptotic result of starting from any generator state and observing a long

sequence of symbols x−` . . . x0 which matches the past ←−x . Since EG(←−x ) is defined as a vector,

we will denote it as a probability using the notation PrG ( s | ←−x ) = [EG(←−x )]s. We have, to some

extent, discussed mixed states before, in Section 7. Even for finite measures, the set of mixed states

which can result may be uncountably infinite and have complex fractal structures. Mixed states

over generators were first considered in [199], and interest in them has recently been re-ignited due

to their usefulness in studying the behavior of hidden Markov models [86,87,88,89].

4.4.1. Moving through the space of generators. Let us now generalize a concept which

has appeared more than once so far, and will appear again later. We have noted that OOMs

are “homomorphisms” of the predictive state dynamics, in the sense of Eq. (4.3). We have also

encountered a similar notion in the relationship between the embedding dynamics and the natural

dynamics as pasts transform into other pasts: Eq. (4.4). There is a general relation that can exist

between generators which matches this intuition. Let F = (R,X ,
{

M(x)
}

) and G = (S,X ,
{

T(x)
}

)

be two generators of the same process. We say that G embeds F, written G % F, if there is a

stochastic matrix P = (Ps|r) such that

(4.6) PM(x) = T(x)P

for all x ∈ X . The idea of the relation % is that each state in F corresponds directly to a mixed

state in G, in a manner which commutes with the dynamics. The embedding relation % between
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generators should not be confused with majorization between distributions. There is, unfortunately,

such a lack of good ordering symbols.

Let us define two particular “landmark” generators (which are not finite) which will help us illustrate

this point. The pasts generator is the generator Pµ = (XN,X , σF ) where σF : XN →M(X ×XN) is

the pushforward on pasts, which for each past ←−x generates x and maps to ←−x x with probability

Prµ ( x | ←−x ). The futures generator is the generatorRµ = (XN,X , σR) where σR : XN →M(X×XN)

is the pullback on futures, which for each future −→x = x1x2 . . . generates x1 with with certainty and

then transitions to −→x ′ = x2x3 . . . .

The reason these are “landmark” generators is that, due to the Embedding Lemma, every generator

G of a process µ embeds its corresponding pasts generator Pµ; further, due to Eq. (4.3), the futures

generator Rµ embeds every generator G. In other words,

(4.7) Pµ % G % Rµ

for every generator G of µ.

Two other “landmarks,” whose importance will be seen shortly, are the (forward, or predictive)

ε-machine and the reverse (or retrodictive) ε-machine. (When we refer to the ε-machine alone, we

will mean the forward variety.) The forward ε-machine we have already defined as the generator

Eµ = (K(µ),X , {T (x)}) with the property that T (x)(ε[←−x ]) produces a scaled Dirac delta measure

Prµ ( x | ←−x ) δε[←−x x]. The ε-machine is, essentially, the generator which directly arises from the

predictive states [176].

Conversely, the reverse ε-machine arises from the retrodictive states; it is the generator ERµ =

(KR(µ),X , {T̃ (x)}) with the property that T̃ (x)(εR[−→x ]) works by randomly selecting a future −→y =

y1y2 . . . with εR[−→y ] = εR[−→x ] and then generating the symbol x = y1 and transitioning to εR[y2y3 . . . ].

The complexity of a finite generator G can be characterized by the entropies of its stationary

distribution: Hmin [π], H1/2 [π], H[π], and all the Rényi entropies Hα[π] in between. As mentioned

previously, these characterize the memory costs imposed on any physical system which implements

the generator.
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4.4.2. Unifilarity and prediction. We will now focus our attention on generators which can

be used to track the behavior of a process and predict its future behavior. We will define some

closely related properties of process which help to this end.

First, let us reintroduce the concept of a random variable, which is represented by a capital letter

and which takes values whose probabilities are described by some distribution. For a generator

G = (S,X ,
{

T(x)
}

), for instance, its state at any given time is represented by the random variable

S, which is distributed according to the stationary state, S ∼ π. For the pasts and futures generators,

Pµ and Gµ, the state random variables are denoted ←−X and −→X respectively, each distributed as
←−
X ∼ ←−µ and −→X ∼ −→µ .

Given three joint random variables XY Z distributed as PrXY Z ( xyz ), we say that Y is Markov for

X and Z, denoted X − Y − Z, whenever

(4.8) PrXY Z ( x, y, z ) = PrX ( x ) PrY |X ( y | x ) PrZ|Y ( z | y )

The Markov chain relation indicates that Y is “sufficient” for knowing Z, in the sense that also

knowing X provides no additional information on the distribution of Z.

The embedding rule introduced for generators Eq. (4.7) tells us that, given a value of the past
←−
X = ←−x , the distribution for the generator state and the subsequent future must be given by

the rule Pr
S
−→
X

(
S,
−→
X
∣∣∣←−x ) = PrG ( S | ←−x ) PrG

(−→
X
∣∣∣ S ). (Here we are playing fast and loose

with notations—obviously Pr
(−→
X
)
is not a well defined function and must be understood as a

measure—but we hope by now we have earned the reader’s trust and they are willing to play along.)

It is therefore a consequence of the rule Eq. (4.7) that ←−X − S −−→X for any generator state S. Every

generator state is Markov between the past and the future.

Now we shall define a predictive generator. These are any generator which satisfies the rule S−←−X−−→X .

To understand this rule we must think about the generator state as being an encoding of the past,

which contains the information in the past which is useful for understanding the future. This is a

consequence of the rule ←−X − S −−→X . However, that rule also allows that the state S also represents

additional information, which constrains the outcomes in the future beyond what is required by

knowledge of the past [161].
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This “oracular” knowledge may appear useful at first glance—but it is a mirage. If we are using

the generator as a kind of model, tracking the behavior of an existing process and attempting to

guess its internal state, the oracular dimensions of the state can never be known to us because, by

definition, they are not dependent on the past ←−X . These dimensions of the generator state are, from

a prediction standpoint, merely wasteful. For this reason a predictive generator is defined as one

where S −←−X −−→X , for this means that S cannot hold any information about the future which is not

already contained in the past.

This definition, though now ideologically justified, is too abstract to be constructive. In the next

section we’ll introduce an equivalent characterization of predictive models, which is much more

constructive, but we will need intermediate definitions.

To that end, let us define another concept, which is much more concrete and essentially graph-

theoretic. A generator G = (S,X ,
{

T(x)
}

) is said to be unifilar (read: Latin for “single-threaded”)

if the transition matrices T(x) = (T (x)
s′s ) have the form T

(x)
s′s = Pr ( x | s ) δs′,f(x,s) where f : X×S → S

is a deterministic function. A unifilar generator, in random variable terms, is one where the second

state is simply a function of the previous state and generated symbol: S′ = f(X,S). If we know

the initial state of a unifilar generator, then by tracking its output over time we can know with

certainty its state at any future time (as opposed to non-unifilar generators, whose states may follow

“many threads”).

A key example of a unifilar generator is the ε-machine. The ε-machine is also predictive—because

its state is defined as a function of the past, S = f(←−X ), it must be the case that S −←−X −−→X .

Unifilar generators provide a concretization of the intuition of predictive generators. After all, the

state at any time is just a function of all the emitted symbols (and some distant past state). It is

indeed the case that every unifilar generator is predictive (which will be demonstrated in the next

section). It is, however, not the case that every predictive generator is unifilar.

Before moving on, let us define the time-reversed equivalents of these concepts. A generator is

retrodictive if it obeys ←−X −−→X − S, and it is called co-unifilar if the previous state is a function of

the observed symbol and the future state: S = f(X,S′). As with the forward ε-machine, the reverse

ε-machine is both co-unifilar and retrodictive.
120



It may seem futile to define such generators—we have just discussed why they are not optimal in

the prediction setting—but prediction is not the only reason to utilize generators. We will see in

Chapter 6 that retrodictive generators are particularly thermodynamically advantageous.

4.4.3. State-merging generators. Since memory is a cost associated with generators, it is

potentially desireable to reduce those costs with minimal loss of useful information. We recall from

1.5.1 that the entropies of a random variable X are always lower for any function F (X). Let us now

leverage this fact to define a universally memory-reducing operation on generators.

Given a generator G = (S,X ,
{

T(x)
}

) and a function F : S → R for some function F to a new

state space R, we define the merged generator as G|F = (R,X ,
{

T̂(x)
}

), where

T̂
(x)
r′r =

∑
s′∈F−1(r)
s∈F−1(r)

T
(x)
s′s

πs
π̂r

and π̂r = ∑
s∈F−1(r) πs. We say that G is mergeable under F if G|F generates the same process as

G.

An important form of merging is via the predictive equivalence class. Two states s, s′ ∈ S of a

generator G are predictively equivalent, written s ∼P s′, if PrG ( · | s ) = PrG ( · | s′ ). The predictive

equivalence map [·]P maps states s to their equivalence class [s]P . The predictively merged generator

G|P is the result of merging states under the predictive equivalence relation.

Proposition 8. Any generator G = (S,X , {T (x)
s′s }) is mergeable under the predictive equivalence

relation [·]∼.

Proof. We will prove the forward (predictive) case; the retrodictive case follows from time reversal.

The proof proceeds by induction. Let us suppose that, for words w of length `, PrG|P ( w | r ) =

PrG ( w | s ) for all s ∈ r (here r represents an equivalence class). Then

PrG ( xw | s ) =
∑
s′

PrG
(
w
∣∣ s′ )T (x0)

s′s

=
∑
r′

PrG|P
(
w
∣∣ r′ )

∑
s′∈r′

T
(x0)
s′s
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We can average over all ŝ in the given equivalence class [s]P , which leaves the left-hand side unchanged

(by the definition of [s]P ):

PrG ( xw | s ) =
∑
r′

PrG|P
(
w
∣∣ r′ )

∑
s′∈r′
ŝ∼P s

T
(x)
s′ŝ

πŝ
π̂[s]P


=
∑
r′

PrG|P
(
w
∣∣ r′ ) T̂ (x)

r′[s]P

= PrG|P ( w | [s]P )

So, if “PrG|P ( w | r ) = PrG ( w | s ) for all s ∈ r” is true for all words of length `, it is also true

for words of length `+ 1.

But this is easily seen to be true for ` = 1: this is evident simply from the definition of T̂ (x)
r′r , as

summing over r′ gives the length-1 conditional probabilities.

So, by induction it is true for all words w that PrG|P ( w | r ) = PrG ( w | s ) for all s ∈ r. When we

average over the stationary state on both sides, this gives PrG|P ( w ) = PrG ( w ).

Before going on, let us fix intuitions, considering several example generators which can be predictively

merged. We will use majorization as a visualization to see how this process reduces memory.

First, consider the Biased Coin Process, a memoryless process (in the sense that it has only one state)

in which, at each time step, a coin is flipped with probability p of generating a 1 and probability

1− p of generating a 0. Figure 4.3 displays three models for it. Model (a) is the ε-machine of the

process, and models (b) and (c) are each 2-state uniflar generators. Notice that in both models (b)

and (c), the two states are predictively equivalent.

Continuing, Fig. 4.4 displays two alternative models of the Even-Odd Process. This process is

uniformly random save for the constraint that 1s appear only in blocks of even number and 0s only

in blocks of odd number. We see in Fig. 4.4(a) the process’ ε-machine. In Fig. 4.4(b), we see an

alternative unifilar generator. Notice that its states E and F predict the same futures and so are

not probabilistically distinct. They both play the role of state C in the ε-machine, in terms of the

futures they predict.
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(a)
A0:p 1:1 − p

(b)

B C0:p
1:1 − p

1:1 − p

0:p

(c)

D E0:p
1:1 − p

0:p
1:1 − p

Figure 4.3. The diagrammatic form of a FSM is read as follows. The colored
circles represent hidden states from the finite set R. The edges are labeled by a blue
number, the symbol x, and a probability p. The edges with symbol x represent the
transition matrix T(x) := (T (x)

r′|r), where the tail of the arrow is the starting state r,
the head is the final state r′, and p = T

(x)
r′|r. (a) ε-Machine for a coin flipped with

bias p. (b) Alternate representation with bias p to be in state B and 1− p to be in
state C. (c) Alternate representation with biases p to stay in current state and 1− p
to switch states.

(a)

A B

C

D

0:1/2

0:1/2

1:1/2

1:1/2 1:1

0:1/2

(b)

A B

E F

D

0:1/2

0:1/2

1:1/2

1:1/2 1:1

1:1/2

0:1/2

0:1/2

Figure 4.4. (a) ε-Machine for Even-Odd Process. (b) Refinement of the Even-Odd
Process ε-machine, where the ε-machine’s state C has been split into states E and
F .

Majorization, and Lorenz curves in particular, allow us to compare the various models for each of

these processes—see Fig. 4.5. We notice that the ε-machine state distribution always majorizes the

state distribution of the alternative machines.
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0 1 2

0

1

0

p

1

0 1 2 3 4 5

0

6/7

1

0

4/7

1

Figure 4.5. (Left) Lorenz curves for Fig. 4.3(a)’s ε-machine and Fig. 4.3(b)’s
alternative predictor of the Biased Coin Process. (Right) Same comparison for the
Even-Odd Process ε-machine Fig. 4.4(a) and alternative predictor Fig. 4.4(b).

4.4.4. Minimality of the ε-machine. We will close this section on classical generators by

demonstrating that predictively merging any predictive generator always results in the ε-machine.

This provides a useful characterization of predictive generators—the are, in essence, “state-splittings”

of the ε-machine. Significantly, this means that the stationary state of the ε-machine majorizes

the state distributions of all other predictive generators: put otherwise, the ε-machine strongly

minimizes the set of all predictive generators, attaining the minimum for every possible entropy.

We start by stating a core theorem regarding finite-state generators and the central role the ε-machine

plays among them [197].

Theorem 12 (Uniqueness of the ε-machine). Any generator G = (S,X ,
{

T(x)
}

) for which

(1) T is irreducible,

(2) the transitions are unifilar, and

(3) the states are predictively distinct (s ∼P s′ implies s = s′)

is isomorphic to the ε-machine.

Keeping this result in mind we will now turn to giving a new characterization of what it means for

a process to be predictive.

Proposition 9. Any generator G = (S,X ,
{

T(x)
}

) whose predictively state-merged generator G|P
is unifilar is also a predictive generator; the converse also holds.
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Proof. If G|P is unifilar, then it must be the ε-machine, because by definition it will have predictively

distinct states. Now, let us denote the predictive state by the random variable Σ and the generator

state by S. Since the ε-machine is predictive, Σ−←−X −−→X is Markov, but also we have S − Σ−−→X
because of the state-merging. These two together mean that S −←−X −−→X .

Now, consider the converse. If S −←−X −−→X then it must be the case that the embedded mixed state

PrG
(
S
∣∣∣←−X )

can only take non-zero values over predictively equivalent states. Since embedded

pasts must map to other embedded pasts under the generator dynamics (a consequence of Pµ - G),

generator states in a given equivalent block can only map into another equivalent block after a symbol

x is observed. This means that, after the predictively equivalent blocks are merged, the dynamics

will be unifilar.

Thus, the set of all predictive generators is actually the set of all generators which predictively

merge to unifilar ones, and specifically, which merge to the ε-machine. (The equivalent statement for

retrodictors is obtained by time-reversal: the reverse ε-machine is the unique recurrent, retrodictively

minimal counifilar generator, and all retrodictors merge to it.)

We therefore have the result:

Corollary 4. The ε-machine E(µ) strongly minimizes the set of all predictive generators for µ;

if Σ represents the ε-machine state, Hα[Σ] ≤ Hα[S] where S is the state of any other predictive

generator of µ.

This is a direct consequence of the fact that the ε-machine arises from a state-merging of every

predictive generator of µ.

Because of the universal optimality of the ε-machine among predictive machines, it is considered a

benchmark for the memory costs of predicting the process µ. To that end, the statistical complexity

of the process µ is defined as

(4.9) Cµ = H[Σ]

and similarly for the Rényi statistical complexities C(α)
µ = Hα[Σ].
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4.5. Discussion

In this chapter we synthesized much of the past literature on models of stochastic processes together

with new results in a manner which allow the application of resource theoretic methods. In his

seminal work Reflections on the Motive Power of Fire, Sadi Carnot expressed the importance of

discovering laws which apply “not only to steam engines but to all imaginable heat-engines.” In

this chapter we established rules, such as the Embedding Lemma 1, which constrain the internal

mechanics of all imaginable models and classical generators of stochastic processes. We demonstrated

one particular use of these principles, strengthening previous results on the fundamental memory

constraints of the tasks of prediction and retrodiction of processes, and identified in each case a single

generator (the ε-machine and the reverse ε-machine) which achieves universal memory minimality.

But all imaginable means all imaginable, and in the day and age of quantum computing it is not

sufficient to stop at the boundary of classical possibility. In Chapter 5 we will extend our results

on models to describe quantum models and generators, and we will assess the extent to which

our results on memory for classical generators can be extended to the quantum setting. Classical

and quantum generators will both feature heavily in Chapter 6 as we examine the thermodynamic

aspects of their physical implementations, and determine the nature of the tradeoff between energy

savings and memory compression. In both of the following chapters, results such as the Embedding

Lemma 1 and our definition of the embedding relation % between generators will provide crucial

insights to the nature of resource costs in models.

The Embedding Lemma, and more importantly the definition of a model as a homomorphism,

provided by Eq. (4.3), was in some sense anticipated by the field of cybernetics, for instance in the

work Every good regulator of a system must be a model of that system by Conant and Ashby. There

they defined a model of a process in terms of group homomorphisms while also appealing to the

intuitive picture of a model as any system which contains a “scale model” of another system; in

comparison, we have defined models in the chapter as semigroup homomorphisms, and used this

fact in conjunction with the topological and measure-theoretic results of Chapter 2 to demonstrate

that such models do indeed contain an embedded “scale model” of the predictive states.

The dynamics of this scale model place strict algebraic constraints on the spectra and fixed points

of the overarching model, and it is on this basis that we are able to discuss memory in terms of
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the entropies of stationary distributions over generator states. Physical constraints on the channels

which drive the evolution of the scale model will be the subject of Chapter 6 and will be the key to

determining which kinds of models are able to achieve thermodynamic optimality.
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CHAPTER 5

All imaginable: Quantum generators of processes

There are no answers, only cross-references.

Norbert Wiener’s “Law of Libraries”

5.1. Introduction

Recently, Google AI announced a breakthrough in quantum supremacy, using a 54-qubit proces-

sor (“Sycamore”) to complete a target computation in 200 seconds, claiming the world’s fastest

supercomputer would take more than 10,000 years to perform a similar computation [12]. Shortly

afterward, IBM announced that they had proven the Sycamore circuit could be successfully simulated

on the Summit supercomputer, leveraging its 250 PB storage and 200 petaFLOPS speed to complete

the target computation in a matter of days [146]. This episode highlights two important aspects of

quantum computing: first, the importance of memory and, second, the subtle relationship between

computation and simulation.

When simulating classical processes, quantum implementations can be constructed that have smaller

memory requirements than the ε-machine [17,66,121,192]. The study of such implementations

is the task of quantum computational mechanics. Over a wide range of processes, a particular

implementation of quantum simulation—the q-machine—has shown advantage in reduced memory

rate; often the advantage over classical implementations is unbounded [4,6,61,187]. For quantum

machines, the minimal memory rate Cq has been determined in cases such as the Ising model [187]

and the Perturbed Coin Process [191], where the q-machine attains the minimum rate. Though a

given q-machine’s memory can be readily calculated [160], in many cases the absolutely minimal

Cq is not known.
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In this chapter we will follow on the discussion of Chapter 4, with much the same goal. We will

develop the representation theory of stochastic processes to include quantum models, and we will

apply majorization and information theory to examine the memory costs involved.

The idea of using quantum-mechanical tools and Hilbert spaces as an alternative setting for

representations of stochastic processes has been around at least as long as the representation theory

of stochastic processes. In particular, representations involving the generation of a process via

sequential measurements of a qubit had been proposed independently at least twice before the advent

of the q-machine (see, for instance, [83] and [217]). The primary difference with the q-machine [66]

is that it contains a direct embedding of the predictive states from the ε-machine, a feature not

considered in prior approaches. Additionally, the q-machine formalism allows for fully general

complex phase parameters [102].

We synthesize the theory of quantum representations of stochastic processes with a novel result that

extends our Embedding Lemma 1 to quantum models. We expand on the role of the q-machine

within this larger framework, and also describe a concrete alternative construction, the reverse

q-machine. We additionally explore the structure of the space of quantum models for a given process

by examining the effects of gauge invariants which arise from the choice of phase parameters in the

model definition.

In Chapter 4, we showed that the ε-machine occupies an important information-theoretic role in

the class of all classical predictive models of processes, in that it strongly minimizes that class in

memory; this means that it achieves the minimal value for a wide spectrum of choices of entropy

measure. In this chapter we demonstrate that, on the hand, every q-machine of any phase choice has

a strong memory advantage over the ε-machine (and similarly every reverse q-machine has strong

advantage over the reverse ε-machine)—but, unlike the case of classical predictors, there is generally

no single strongly minimal q-machine; different entropies may be minimized by different choices of

phase parameters. Additionally, this chapter sets the stage for Chapter 6, where we will examine

classical and quantum models in an equivalent thermodynamic context, and compare their tradeoff

of memory and thermodynamic resources.
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This chapter is a synthesis of material on quantum generators from the publications Strong and Weak

Optimizations in Classical and Quantum Models of Stochastic Processes [106], Thermal Efficiency of

Quantum Memory Compression [107], and Thermodynamically Efficient Local Computation [108].

5.2. Quadratic models and quantum generators

In Section 4.2 we focused almost exclusively on linear process models—though we alluded to the

existence of quadratic observable operator models (OOMs).

As with any OOM, a quadratic OOM of a process µ is a quartet K = (H,X , {K(x)}, P ) composed

of a vector space H, an alphabet X , a set of X -labeled linear maps K(x) over H, and a mapping

P : H →M(XN) satisfying the equation:

P
(
K(x)ψ

)
= τ (x)P (ψ)

for each ψ ∈ H.

(The reader will notice we have changed quite a few letters, and even written the homomorphism

law of models (originally Eq. (4.3)) quite differently. Some of these changes are just intended to

start subtly shifting the reader’s intuitions for what is going on—others are foreshadowing for the

particularly quantum interpretation of these models which we will soon utilize.)

The difference between a quadratic OOM and its linear brethren is that the vector space H is

assumed to be a Hilbert space, and the mapping P , rather than being a linear map, is defined as:

PrPψ ( x1 . . . x` ) = 〈ψ|K(x1)† . . .K(x`)†K(x`) . . .K(x1)|ψ〉

The moniker “quadratic” arises from the quadratic norm-like nature of the mapping P . One

consequence which should immediately stand out to the reader from this form is that the resulting

measures are always positive. (This was not necessarily the case for linear OOMs, though it is of

course necessarily true on the cone spanned by the past-embeddings.)

Let us now take some time to consider what we can learn about our model, and in particular the

operators K(x). To start with, just as we defined unital vectors in linear OOMs as vectors v for

which Pv is a normalized probability distribution, we will do the same for quadratic OOMs. Note
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that unital vector does not necessarily mean unit vector (but just wait!). A unital vector ψ will be

one which satisfies ∑
w∈X `

〈ψ|K(w)† . . .K(w)†K(w) . . .K(w)|ψ〉 = 1

for words of every length ` (here we have abbreviated K(w) = K(x`) . . .K(x1)). Let us define the

object

K
(`)
2 =

∑
w∈X `

K(w)†K(w)

This is by construction a Hermitian and at least positive-semidefinite matrix. Consider its eigenvec-

tors, vi. It should be clear enough that whether a vector is unital is just a matter of scaling; so, let

us assume that each vi is unital. Then it must be the case that

λi 〈vi|vi〉 = 1

Immediately evident is that no eigenvalue λi can equal zero; K(`)
2 is actually positive definite.

Further, we can now characterize all unital vectors as having the form

|ψ〉 =
∑
i

ci
λi
|vi〉

where c = (ci) is a unit vector.

Well, at this point, there hardly seems any point in not just rescaling the direction of each eigenvector

by a factor of λi, which necessarily modifies the K(x) matrices but results in a quantum OOM where

the unital vectors are actually unit vectors. We shall therefore, without any loss of generality, make

it an additional requirement of quantum OOMs that unit vectors generate probability distributions

under P .

A by-product of this rescaling is that now it is simply the case that

∑
w∈X `

K(w)†K(w) = I

where I is the identity map on H. The reader can check that it is only necessary that the above

equation be true for ` = 1, and then it will be true for all `. The above constraint on a set {K(x)}
of Hilbert space operators is called the completeness relation.
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Operators satisfying such a relation are typically called Kraus operators and, incidentally, correspond

to a quantum positive operator-valued measure, or POVM. POVMs are, in essence, the most general

sort of measurement one can perform on a quantum system. They come about from allowing system

described by H to entangle with an auxiliary system before performing a projective measurement

on the auxiliary system and discarding it:

U |ψ〉 ⊗ |∅〉 =
∑
x

K(x) |ψ〉 ⊗ |x〉

The symbols x correspond to the outcome of the auxiliary system measurement and the operator

K(x) describes both the probability of outcome x given ψ and the altered quantum state after

measurement:

Pr ( x | ψ ) = 〈ψ|K(x)†K(x)|ψ〉

|ψ〉 〈ψ| 7→ K(x) |ψ〉 〈ψ|K(x)†

Pr ( x | ψ )

We can therefore consider every quadratic OOM to have an exact correspondence with a quantum

measurement system. This motivates us, now, to expand our interest to quantum generators.

Quantum generators are both an extension of quadratic OOMs and also a useful framework with

which to study them. We define a quantum generator as a triple Q = (H,X , {E(x)}), where H is a

Hilbert space, X is the alphabet, and each E(x) : B(H) → B(H) is a completely positive map on

the space of bounded operators on H, B(H), such that E = ∑
x E(x) is a completely positive and

trace-preserving (CPTP) map.

Recall that a positive map is any which maps all positive-definite operators to positive-definite

operators, and a completely positive map E : A→ B is one where Id⊗E : Ck×k⊗B(H)→ Ck×k⊗B(H)

is positive for all k, where Id is the identity. A map is trace-preserving if Tr [E(A)] = Tr [A] for all

A ∈ B(H).

Choi’s theorem for completely positive maps tells us that each completely positive map E can be

decomposed into Kraus operators:

E(ρ) =
∑
α

K(α)ρK(α)†
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If E is a CPTP, then these operators must be complete.

It should be evident that any quadratic OOM corresponds to a quantum generator where E(x)(ρ) =

K(x)ρK(x)†. Thus, we can see that quadratic models are a kind of extremal form of quantum

generator: those where the E(x) are pure Kraus operators.

One use of the quantum generator approach over that of the quadratic OOM is that each quantum

generator is, also, a linear OOM. By this we mean there is a model M = (B(H),X , {E(x)},P) where

P is given by

PrP(ρ) ( x1 . . . x` ) = Tr
[
E(x`) ◦ · · · ◦ E(x1)(ρ)

]
Note that the trace Tr plays the role here that 1 played before; formally, they accomplish the same

goal.

Because a quantum generator is also a linear OOM, we can apply our results from that domain.

Either it is decomposible into other linear OOMs, or it has a unique stationary state. We will

generally here suppose that we are only dealing with indecomposible quantum generators. There

must therefore exist a stationary density matrix ρπ such that E(ρπ) = ρπ.

Our results about embedding of pasts also holds. This means that there is a mapping EQ : XN →
B(H), sending each past ←−x to a density matrix, which we will denote as ρ←−x .

An interesting result then follows for quadratic OOMs. This is an extension of the embedding

theorem which ensures that for quadratic OOMs, the embedding is always a pure state. Proving this

requires some appeals to quantum Perron-Frobenius theory; we will direct the reader to appropriate

theorems in [213], but we will also encourage the reader to refresh their memory on classical

Perron-Frobenius theory in Section 1.4.

Theorem 13. Suppose K = (H,X , {K(x)}, P ) is a quadratic OOM, and further that it is indecom-

posible. Then the embedding map EK associated with the quantum generator in fact maps each past
←−x to a pure quantum state ψ←−x , satisfying

(1) EK(←−x ) is a homomorphism of the shift space:

(5.1) K(x) |ψ←−x 〉 = eiΦ(x,←−x )
√

Prµ ( x | ←−x ) |ψ←−x x〉

for some Φ : X × XN → R;
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(2) EK(←−x ) is predictively consistent:

(5.2) PrPψ←−x ( w ) = Prµ ( w | ←−x ) ;

(3) EK and Φ are essentially continuous;

(4) EK(XN) spans the cyclic subspace generated by {K(x)|x ∈ X} starting from any ψ←−x .

Proof. Most of this is just a direct application of Lem. 1 to the linear OOM associated with the

quantum generator. The key novel feature here is the fact that we are asserting the embedded states

must be pure.

Let us suppose for a minute we did not assume this. Then the cyclic subspace requirement of

embeddings would still require that, starting from any linear combination of embedded states ρ←−x , we

end up “arbitrarily close” to a (ray of) any other embedded state. However, it is also the case that

the space of pure states is invariant under the action of Kraus operators; thus, if any single linear

combination of embedded states is pure, then all embedded states are pure.

The question is whether it is possible that no linear combination of embedded states is pure. For this

we must invoke a result from the literature on completely positive quantum maps; we will essentially

draw from a result of the Perron-Frobenius theory of completely positive maps.

Suppose first that E = ∑
xK

(x) ·K(x)†, as a linear map, has only one eigenvalue of magnitude 1; i.e.

it is a primitive map. Then there is a result (see Theorem 6.8 of [213]) that the cyclic subspace of

Kraus operators acting on any item in B(H) is simply the entire space B(H) (recall we are assuming

finite-dimensionality!). Applying this cyclic subspace to ρπ directly means, however, that there must

be some embedding states whose linear combination gives rise to a pure state |ψ〉 〈ψ|.

Now let us suppose that E is not primitive. This is of little matter. Consider instead Ē = 1
p

∑
p Ep

where p is the period of E; the Kraus operators of this map are just the set of all composite Kraus

operators K(x1...x`) = K(x`) . . .K(x1) of length ` ≤ p. Ē is primitive, and its cyclic subspaces are

therefore still composed from the application of Kraus operators. We can therefore reach the same

conclusion as the previous paragraph, proving the theorem.

Thus, the linear OOM perspective of quantum generators provides a useful leverage point for proving

interesting results about quadratic OOMs.
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Let us now turn our attention back to the quadratic OOMs, and see what we can determine about

their structure and memory.

5.3. The q-machine

We have essentially just demonstrated that every quadratic OOM K actually embeds pasts as pure

states in its model, in a homomorphic manner. To stretch the meaning of the embedding relation %

from before, we have shown that Pµ - K, where Pµ is the past machine.

There is no particular reason why we should take special interest in Pµ, however. Let us tentatively

say that K embeds a classical generator G = (S,X , {T(x)}) whenever there is a set of pure states

{ψs|s ∈ S} such that

(5.3) K(x) |ψs〉 =
∑
s′

eiφx,s,s′
√
T

(x)
s′s |ψs′〉

where {φx,s,s′ |x ∈ X , s, s′ ∈ S} is some set of phases. (Watch those phases! They are physically

significant and, as we will see, can have a solenoid-like effect on the geometry of the states.)

What does this equation tell us? Essentially that—up to some phases—the amplitudes in the

superpositions of states induced by K(x) mirror the probabilities in the mixed states induced by

T (x).

However, we must not take Eq. (5.3) at face value. All quadratic OOMs must satisfy a completeness

relation. Let us consider its implications for the overlap between two states r, s ∈ S:

〈ψr|ψs〉 =
∑
x∈X
r′,s′∈S

ei(φx,s,s′−φx,r,r′ )
√
T

(x)
r′r T

(x)
s′s 〈ψr′ |ψs′〉 ,(5.4)

This equation provides a recursive constraint on the geometry of the embedded states; specifically,

what their state overlaps must be. We can solve this equation, if it has a solution, by finding the

matrix Ωrs := 〈ψr|ψs〉 which is the “eigenvector” for the superoperator described by the above

equation.

There is a quick way to check if a solution exists at all: let r = s, in which case we must have

Ωrr = 1. The reader will quickly notice that this does not generally work for Eq. (5.4). In fact,

there appear to be only two ways to guarantee that the solution can have Ωrr = 1 for all r ∈ S.
135



The first is to require that T (x)
r′r be either unifilar. For in that case, then for each x in the sum

r′ = s′ = f(x, r), and so a constant diagonal is a viable solution.

Another way to guarantee a solution exists is to suppose that T (x)
rs is co-unifilar and Ωrs = δrs.

In particular Ωrs = δrs constrains that two states r 6= s each map to different final states after

observing a specific symbol x, which is the condition of co-unifilarity.

Now we will pause and remember that the ε-machine and reverse ε-machine are the result of

state-merging unifilar and co-unifilar models, respectively; therefore, if we are constrained to embed

only unifilar and co-unifilar models but are concerned about memory efficiency, we can save ourselves

time by focusing our examination directly on embeddings of the ε-machine and the reverse ε-machine.

These are called the q-machine and reverse q-machine, respectively.

5.3.1. The forward q-machine. Let us suppose that there does exist a solution Ωrs which

is physically consistent, for a unifilar dynamic described by T (x)
r′r . It has in fact been proven that

under these conditions a unique solution exists for any choice of phases {φxs} [102]. The physical

properties of each quantum generator are entirely determined by its overlap matrix Ωrs = 〈ψr|ψs〉.
However, this in itself contains nonphysical degrees of freedom [106]. None of the invariant geometry

of our generators is modified when under the transformation |ψs〉 7→ eiΨs |ψs〉 on the signal states.

Thus, these represent a gauge transformation. In terms of the overlap matrix, this means that

our generators are invariant under the transformations Ωrs 7→ ei(Ψs−Ψr)Ωrs. We will discuss the

implications of this in a later section.

For now, it is enough to note that once Ωrs is determined, the encoding states and Kraus operators

can be explicitly constructed. Let √πrπsΩrs = ∑
α UrαU

∗
sαλα be the singular value decomposition

of √πrπsΩrs into a unitary Uiα and singular values λα > 0. Suppose α = 1, . . . , d. Then given any

computational basis {|α〉 : α = 1, . . . , d}, we can construct:

|ψs〉 =
∑
α

√
λα
πs
U∗sα |α〉 and(5.5)

K(x) =
∑
α,β,s

eiφxsU∗s′βUsα

√
λβπs
λαπs′

T
(x)
s′s |β〉 〈α| .(5.6)
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It is easy to check that 〈ψr|ψs〉 = Ωrs and that Eq. (5.3) is satisfied by this construction. Notice

that:

ρπ =
∑
s

πs |ψs〉 〈ψs| =
∑
α

λα |α〉 〈α| .(5.7)

So, the computational basis α is the diagonal basis of the stationary state ρπ.

When the process being generated is a Markov process, so that predictive states correspond to

symbols (S = X ), the Kraus operator K(x) always ends maps to the state |ψx〉. In this case, the

singular value decomposition approach may be overkill, and a simpler approach is justified: we are

seeking a set of states |ψx〉 and dual states |φx〉 such that

〈φx|ψy〉 = eiφxy
√
Txy

Here Txy = T
(x)
xy is a shorthand for Markov processes. Given these states the Kraus operators may

be written simply as K(x) = |ψx〉 〈φx|, and completeness corresponds to

∑
x

|φx〉 〈φx| = I

In this case we would not be so interested in the overlap matrix Ωrs as we are in the amplitude

matrix Axy = eiφxy
√
Txy, whose singular value decomposition Axy = ∑

α UxαsαV
∗
yα provides the

state representations as

|ψx〉 =
∑
α

sαV
∗
xα |α〉 and(5.8)

|φx〉 =
∑
α

U∗xα |α〉 .(5.9)

The reader can check that this satisfies the completeness relations. The dual-basis approach first

appeared in [4] for all q-machines, and remains particularly useful for the Markov chain case.

We will note lastly that the the quantum generator corresponding to the q-machine is a proper

embedding of the ε-machine, in the sense defined by our % relation in the previous chapter. Let

E(x) = K(x) ·K(x)† be the positive maps of the q-machine, and let P : S → B(H) be the mapping

from states to density matrices given by P(s) = |ψs〉 〈ψs|. One can straightforwardly check, as a
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result of Eq. (5.3) and the unifilarity of the ε-machine, that

E(x) ◦ P(s) =
∑
s′

P(s′)T (x)
s′s

So, for each q-machine K, we have K % E(µ).

5.3.2. The reverse q-machine. Let us now consider the case where the matrices are co-

unifilar, and Ωrs = δrs. Similarly to the unifilar case, we will focus exclusively on the reverse

ε-machine. Before we dive into this, let us remind the reader that every co-unifilar generator is just

the time-reverse of a unifilar generator, and in particular the time-reverse of the reverse ε-machine

is the ε-machine of the reverse process.

It stands to reason that for time-reversing the q-machine. Let ER(µ) be the reverse ε-machine of a

process µ. Its time reverse is the forward ε-machine of the reverse process, E(µR). From it, we can

construct a q-machine Q(µR), with Kraus operators expressed by
{
K̃(x)

}
. Recall that the generated

process of the q-machine is given by

PrQ(µR) ( x1 . . . xt ) := Tr
[
K̃(xt...x1)ρπK̃

(xt...x1)†
]
.(5.10)

This is the time-reverse of the process generated by ER(µ), expressed in the equation PrQ(µR) ( x1 . . . xt ) =

Prµ ( xt . . . x1 ). In terms of the q-machine, we can write:

Prµ ( xt . . . x1 ) := Tr
[
K̃(xt) . . . K̃(x1)ρπK̃

(x1)†K̃(xt)†
]

= Tr
[
K(xt) . . .K(x1)ρπK

(x1)† . . .K(xt)†
]
,

(5.11)

where K(x) = ρ
1/2
π K̃(x)†ρ

−1/2
π . This is, essentially, the Petz reversal of the POVM {K̃(x)}, and it

constitutes a formal time-reversal of the quantum process [37].

Computing K(x) is straightforward using Eq. (5.5), as this gives the Kraus operators in the diagonal

basis of ρπ, where it is easiest to compute ρ1/2
π and its inverse. We have:

K(x) =
∑
α,β,s

e−iφxsUs′βU
∗
sα

√
πs
πs′

T̃
(x)
s′s |α〉 〈β| .(5.12)

138



Now, take the basis |ψs〉 = ∑
α U
∗
sα |α〉. In this basis:

K(x) =
∑
s′

e−iφxs′
√
T

(x)
s′s |ψs′〉 〈ψs| .(5.13)

Now we can check and see that the basis {|ψs〉} and Kraus operators {K(x)} satisfy the equations

Eq. (5.1). Furthermore, it is evident that 〈ψr|ψs〉 = δrs when the number of nonzero singular values

λα is at least equal to the number of states; when it is less, the matrix 〈ψr|ψs〉 is still a projector.

This means that by following our intuition regarding time-reversal we have actually discovered

an additional way of solving equation Eq. (5.4) for co-unifilar T (x)
r′r without assuming Ωrs = δrs.

The possibility of “dimension-reducing” solutions to quantum models will play a key role in our

investigation of memory in quantum generators.

Note that the stationary state of a time-reversed q-machine is just the stationary state of the original

q-machine—this is not altered under time reversal. However, we find a new expression for the

stationary state, in terms of the basis {|ψs〉}:

ρπ =
∑
r,s,α

λαU
∗
rαUsα |ψs〉 〈ψr|(5.14)

=
∑
r,s

√
πrπsΩsr |ψs〉 〈ψr| .(5.15)

So, ρπ is generally not diagonal in the basis {|ψs〉}. The extent to which ρπ commutes with {|ψs〉}
is the extent to which Ωrs is block-diagonal.

For Markov chains, we can see clearly that every q-machine of a process is also a reverse q-machine.

This is evident in the dual-basis form: the |φx〉 states correspond to the retrodictive state embeddings

while the |ψs〉 states correspond to the predictive state embeddings.

Unlike the q-machine, the reverse q-machine is not actually a proper embedding of the reverse

ε-machine in the homomorphism sense; in fact, the opposite is the case. If we letM : B(H)→M(S)

be the mapping from states to distributions given by the projective measurementM(ρ)r = 〈ψr|ρ|ψr〉,
then we can check that Eq. (5.3) and the co-unifilarity of the reverse ε-machine imply that

T(x) ◦M =M◦ E(x)

So, for any reverse q-machine K we have ER(µ) % K.
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Figure 5.1. The 4-state MBW Process as a Markov chain (which is the ε-machine).

5.3.3. Examples of q-machines. In this section we will provide some examples of q-machine

construction; first, we will provide two examples of Markov chains and apply the dual construction to

demonstrate two distinct q-machines for each example. Then we will consider two more general sorts

of process, for which we will examine the gauge freedoms of the overlap matrix and parameterize all

(gauge-invariant) q-machines for those processes.

Example 9. First we will consider the “MBW Process” introduced in Ref. [133], where they

provided the first example demonstrated a machine whose q-machine with nonzero phases. Consider

the process generated by the 4-state MBW machine shown in Fig. 5.1.

This process’ HMM is simply a Markov chain, and its representation in Fig. 5.1 is its ε-machine.

Denote this classical representation by M4. If we take {|A〉 , |B〉 , |C〉 , |D〉} as an orthonormal basis
140



of a Hilbert space, we can construct the q-machine with the states:

|ψA〉 := 1√
2
|A〉+ 1

2 (|C〉+ |D〉) ,

|ψB〉 := 1√
2
|B〉+ 1

2 (|C〉+ |D〉) ,

|ψC〉 := 1√
2
|C〉+ 1

2 (|A〉+ |B〉) , and

|ψD〉 := 1√
2
|D〉+ 1

2 (|A〉+ |B〉) .

Since it is a Markov chain, we can write the Kraus operators as Kx := |ψx〉 〈φx|, where 〈φx|ψx′〉 ∝√
Px′|x. For q-machines of Markov chains, then, the dual basis is just 〈φx| = 〈x|. We denote the

q-machine model of the 4-state MBW Process as Q4.

It turns out that there is a smaller quantum model embedded in two dimensions, with states:

∣∣ψ′A〉 := |0〉 ,∣∣ψ′B〉 := |1〉 ,∣∣ψ′C〉 := 1√
2

(|0〉+ |1〉) , and

∣∣ψ′D〉 := 1√
2

(|0〉 − |1〉) .

In this case, 〈φ′x| = 1√
2 〈ψ

′
x| derives the q-machine. This gives the proper transition probabilities for

the 4-state MBW model. We denote this dimensionally-smaller model D4.

Example 10. Now consider the 3-state MBW model, denoted M3 and displayed in Fig. 5.2. This

is a generalization of the previous example to three states instead of four. We will compute the

corresponding q-machine Q3 and show that there also exists a dimensionally-smaller representation

D3. In this case, however, D3 is not smaller in its statistical memory.
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Figure 5.2. 3-state MBW Process as a Markov chain (which is the process’
ε-machine).

The q-machine Q3 of this Markov chain is given by the states:

|ψA〉 :=
√

2
3 |A〉+ 1√

6
(|B〉+ |C〉) ,

|ψB〉 :=
√

2
3 |B〉+ 1√

6
(|A〉+ |C〉) , and

|ψC〉 :=
√

2
3 |C〉+ 1√

6
(|A〉+ |B〉) ,

and Kraus operators defined similarly to before.

The lower-dimensional model D3 is given by the states:

|ψA〉 := |0〉 ,

|ψB〉 := 1
2 |0〉+

√
3

2 |1〉 , and

|ψC〉 := 1
2 |0〉 −

√
3

2 |1〉 ,

with 〈φ′x| =
√

2
3 〈ψ′x|. This gives the proper transition probabilities for the 3-state MBW model.

In this case, we can provide a simple proof that D3 is geometrically (that is, up to gauge invariance)

the only 2-dimensional model of the 3-MBW process. Let us set up the general equations for the
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states and dual states:

〈φA|ψA〉 = eiφAA
√

2
3 , 〈φA|ψB〉 = eiφAB 1√

6 , 〈φA|ψC〉 = eiφAC 1√
6 ,

〈φB|ψA〉 = eiφBA 1√
6 , 〈φB|ψB〉 = eiφBB

√
2
3 , 〈φB|ψC〉 = eiφBC 1√

6 ,

〈φC |ψA〉 = eiφCA 1√
6 , 〈φC |ψB〉 = eiφCB 1√

6 , 〈φC |ψC〉 = eiφCC
√

2
3

Now keep in mind the possible gauge transformation |ψx〉 7→ eiΨx |ψx〉 (accompanied by |φx〉 7→
eiΨx |φx〉). This means that the amplitude matrix Axy = 〈φx|ψy〉 can undergo the transformation

Axy 7→ ei(Ψy−Ψx)Axy without changing the invariant geometry.

That these states are embedded in a 2D Hilbert space requires that Axy be degenerate. One way to

enforce this to check that the characteristic polynomial det(A− λI3) has an overall factor of λ. For

simplicity, we compute the characteristic polynomial of A
√

6:

det(
√

6A− λI3) = (2− λ)3 +(
ei(φAB+φBC+φCA) + ei(φBA+φCB+φAC)

)
−

(2− λ)
(
ei(φAB+φBA) + ei(φAC+φCA) + ei(φBC+φCB)

)
.

To have an overall factor of λ, we need:

0 = 8 +
(
ei(φAB+φBC+φCA) + ei(φBA+φCB+φAC)

)
− 2

(
ei(φAB+φBA) + ei(φAC+φCA) + ei(φBC+φCB)

)
.

Typically, there will be several ways to choose phases to cancel out vectors, but in this case since

the sum of the magnitudes of the complex terms is 8, the only way to cancel is at the extreme point

where φAB = −φBA = φ1, φBC = −φCB = φ2, and φCA = −φAC = φ3 and:

φ1 + φ2 + φ3 = π .
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To recapitulate the results so far, A has the form:

A = 1√
6


2 eiφ1 −ei(φ1+φ2)

e−iφ1 2 eiφ2

−e−i(φ1+φ2) e−iφ2 2

 .

But we can see that this is exactly equal to Axy = ei(Ψy−Ψx)Âxy, where Ψx = (−φ1, 0, φ2) and

Â = 1√
6


2 1 −1

1 2 1

−1 1 2

 .

So, there is geometrically only one 2-dimensional solution, and its amplitude matrix corresponds to

the one we already discovered in D3.

The following examples will explore in more depth the nature of gauge invariance with respect to phase.

We have mentioned that the overlap matrix may undergo the transformation Ωrs 7→ ei(Ψs−Ψr)Ωrs

for some vector Ψs without changing the geometry between states.

It is helpful to consider these gauge properties in terms of how they act on the phases {φxs} that
determine the quantum generator. Applying the gauge transformation to the consistency formula

gives:

Ωrs =
∑
x

√
Pr(x|r) Pr(x|s)ei(φ̃xs−φ̃xr)Ωf(x,r)f(x,s) ,

where:

φ̃xs = φxs −Ψs + Ψf(x,s)(5.16)

is the induced transformation on the generator’s phases. Eq. (5.16) can be taken as a fundamental

description of the gauge transformation.

Using Eq. (5.16) allows us to determine the gauge invariants—that is, combinations of the phases

{φxs} that do not change under a gauge transformation. In this case, the gauge invariants are best

understood graphically, in terms of the hidden Markov models from before. Each phase {φxs} can
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Figure 5.3. ε-machine of the 3, 2-Golden Mean process.

be understood as being assigned to an edge, while each phase in the gauge transformation {Ψs} can
be seen as being assigned to a state.

For each loop of edges, we can take a linear combination of the constituent edges’ phases φxs, adding

positive and negative signs based on the direction of the edges. These loop sums are the gauge

invariants. For instance, the Nemo process has Φ0 = φ0A, Φ1 = φ1C−φ0C , and Φ2 = φ1A+φ1B+φ1C

as gauge invariants.

Example 11 ((R, k)-Golden Mean Generators). An R, k-Golden Mean Generator is one with R+ k

memory states. These states can be considered to belong to two groups: the A state, which is the only

nondeterministic state and the B-states B ≡ {B1, . . . , BR+k−1}. The B-states are further broken

down into a Markov part R ≡ {B1, . . . , BR−1} and a cryptic part K ≡ {BR, . . . , BR+k−1}. The
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dynamic on the generator is given by:

Pr
(
s′, 0

∣∣s) =



1− p s = A, s′ = B1

1 s = Br, s
′ = Br+1, 0 ≤ r < R

0 otherwise

and

Pr
(
s′, 1

∣∣s) =



p s′, s = A

1 s = Br, s
′ = Br+1, R ≤ r ≤ R+ k − 2

1 s = BR+k−1, s
′ = A

0 otherwise

.

We can check that:

Pr 0(s) =


1

1+(R+k−1)(1−p) s = A

1−p
1+(R+k−1)(1−p) s = A

is the stationary distribution. Letting Z = 1 + (R+ k − 1)(1− p), we have:

Pr
(
s′, 0, s

)
=



1−p
Z s = A, s′ = B1

1−p
Z s = Br, s

′ = Br+1, 0 ≤ r < R

0 otherwise

and

Pr
(
s′, 1, s

)
=



p
Z s′, s = A

1−p
Z s = Br, s

′ = Br+1, R ≤ r ≤ R+ k − 2

1−p
Z s = BR+k−1, s

′ = A

0 otherwise
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It is helpful to also have:

Pr(X = 0) = R(1− p)
Z

,

Pr(X = 1) = (k − 1)(1− p)− 1
Z

,

Pr
(
s′
∣∣0) =



1
R s = A, s′ = B1

1
R s = Br, s

′ = Br+1, 0 ≤ r < R

0 otherwise,

and

Pr
(
s′
∣∣1) =



p
(k−1)(1−p)−1 s′, s = A

1−p
(k−1)(1−p)−1 s = Br, s

′ = Br+1, R ≤ r ≤ R+ k − 2

1−p
(k−1)(1−p)−1 s = BR+k−1, s

′ = A

0 otherwise.

First, we wish to show that regardless of the chosen phases {φxs} we get the equivalent quantum

model. Recall that the formula defining the overlaps is given by:

Ωrs =
∑
x

√
Pr(x|r) Pr(x|s)ei(φxs−φxr)Ωf(r,s)f(x,s) .

In this case, we have:

ΩABR+k−1 = √pei(φ1BR+k−1−φ1A)

ΩBrBs = ei(φ1Br−φ1Bs )ΩBr+1Bs+1

ΩABr = √pei(φ1Br−φ1A)ΩABr+1 ,

which has the solution:

ΩABR+m√
pk−m

= e
i

(∑k−1
j=m φ1BR+j−(k−m)φ1A

)

ΩBR+mBR+n√
pm−n

= e
i

(∑k−1
j=n φ1BR+j−

∑k−1
j=m φ1BR+j−(m−n)φ1A

)
.
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Figure 5.4. ε-machine of the Nemo process.

Note that under the gauge transformation ΨA = kφ1A and ΨBm = ∑k−1
j=m φ1BR+j +mφ1A, we can

eliminate phases and end up simply with:

ΩABR+m =
√
pk−m

ΩBR+mBR+n =
√
pm−n

(5.17)

We note that this matrix only explicitly depends upon k and not R. This extends a result from

Ref. [160] to all R and k, as well as to all choices of phase {φxs}.

Example 12 (Nemo Process). For the Nemo Process, not all phases {φxs} give the equivalent

implementation. To analyze the situation in more detail, we make use of the gauge invariants.

The gauge invariants of the Nemo q-machines are:

Φ0 = φ0A

Φ1 = φ1C − φ0C

Φ2 = φ1A + φ1B + φ1C

.(5.18)

We work to express the overlap matrix in terms of these invariants.

The formula defining the overlaps, for the Nemo process, this gives the system of equations:

ΩAB =
√

1− pei(φ1C−φ1A)ΩBC

ΩBC = 1√
2
ei(φ1C−φ1B)ΩCA

ΩCA =
√
p

2e
i(φ0A−φ0C) +

√
1− p

2 ei(φ1A−φ1C)ΩAB

148



which has the solution:

ΩAB =
√
p(1− p)
1 + p

ei(φ1C−φ1A+φ0A−φ0C)

ΩBC =
√
p

1 + p
ei(φ1C−φ1A+φ0A−φ0C)

ΩCA =
√

2p
1 + p

ei(φ0A−φ0C)

Now, we gauge fix φ1A and φ1B so that ΩAB and ΩBC are phaseless. The result is:

ΩAB =
√
p(1− p)
1 + p

ΩBC =
√
p

1 + p

ΩCA =
√

2p
1 + p

ei(2Φ0+2Φ1−Φ2)

(5.19)

We see that the overlap matrix then only depends on the gauge invariants in the single phase

Φ = 2Φ0 + 2Φ1 − Φ2. This generalizes a result from Ref. [121] to all input phases {φxs}.

5.4. Quantum information and memory compression

Almost every concept and relation in Shannon information theory either has a direct analogue or—in

the most interesting cases—some subversion in the quantum realm. We will mostly be interested here

in quantum analogues of the Rényi entropies. Given a density matrix ρ with eigenvalue distribution

λ, the quantum Rényi entropy can be defined simply as

Hα,q[ρ] = Hα[λ]
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Generally these can be expressed with eigenvalues in the form Hα,q[ρ] = 1
1−αTr [ρα]. Some special

cases of interest are:

Hq[ρ] = lim
α→1

Hα,q[ρ] = H[λ] = −Tr [ρ log2 ρ]

Hmax,q[ρ] = lim
α→0

Hα,q[ρ] = Hmax[λ] = log2 rank(ρ)

Hmin,q[ρ] = lim
α→∞

Hα,q[ρ] = Hmin[λ] = − log2 inf { λ | ρ ≤ λI }

H1/2,q[ρ] = H1/2[λ] = 2 log2 Tr [√ρ]

The quantity Hq[·] is often called the von Neumann entropy. It is also necessary at this point to

address an unfortunate conflict of notation which occurs between Shannon and quantum information.

In quantum information, it is common to refer to H1/2,q[·] as the max-entropy and write it as

Hmax,q[·]. In classical information, this is reserved for the limit Hα[·] as α → 0. In the quantum

setting, this deviation arises from the fact that H1/2,q[·] and Hmin,q[·] have very interesting dual

relationships which we will in fact observe in the next chapter. However, due to the fact that we are

stepping so frequently between classical and quantum information theory, and since H0,q[·] proves
so important in this section, I will retain the Shannon notation throughout this thesis.

Now, each of these quantities has several operational interpretations in the setting of pure quantum

information theory, in the form of various quantum coding theorems, and these theorems often

mirror those of the corresponding quantities in Shannon information theory. We will not be terribly

concerned with those results here. Instead we will be more interested in how quantum systems

can be used as an intermediate step by encoding some classical information (say, a generator state)

and producing a classical output (say, a generated process). The question, then, is how quantum

information quantities relate to their Shannon information counterparts when we shift between

classical and quantum settings.

The question, then, is how quantum information quantities relate to their Shannon information

counterparts when we shift between classical and quantum settings. In making this comparison,

majorization will prove very useful.

Let us start with the task of embedding a classical random variable in a quantum state.
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Proposition 10. Let X be a random variable with values in X and distribution p, and let

{|ψx〉|x ∈ X} be an ensemble of pure states. Consider the eigenvalues λ of the density matrix

ρ =
∑
x∈X

px |ψx〉 〈ψx|

Then λ % p, with similarity λ ∼ p only when the ensemble {|ψx〉} is orthogonal.

Proof. We know that:

ρ =
∑
x∈X

px |ψx〉 〈ψx|

=
∑
x∈X
|ηx〉 〈ηx| ,

where |ηx〉 := √px |ψx〉. However, we can also write ρ in the eigenbasis:

ρ =
d∑
i=1

λi |i〉 〈i|

=
d∑
i=1
|θi〉 〈θi| ,

where |θi〉 :=
√
λi |i〉. Then the two sets of vectors can be related via:

|ηx〉 =
d∑
i=1

Uxi |θi〉 ,

where Uxi is a |X | × d matrix comprised of d rows of orthonormal |X |-dimensional vectors [74].

Now, we have:

px = 〈ηx|ηx〉

=
d∑
i=1
|Uxi|2λi .

Note that Uxi is not necessarily square, but we can take λi = 0 for i > d, and simply extend Uxi

into a square unitary matrix by filling out the bottom |X | − d rows with more orthonormal vectors.
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This leaves the equation unchanged. We can then write:

px =
n∑
i=1
|Uxi|2λi .

Then by the Schur-Horn criterion from Thm. 11, λ % p. Similarity (p % λ) requires that |Uxi|2

be a permutation matrix, and this only occurs if there is a one-to-one mapping between X and the

eigenvectors of ρ, so that the |ψx〉 are orthogonal.

The implication of this fact is that, for any entropy, we have Hα,q[ρ] ≤ Hα[X]. In other words, we

can only lose entropy by encoding a variable in a quantum state. Additionally, the reason for this

loss is evidently the non-orthogonality of the embedding states. There is an intuitive logic to this:

non-orthogonal states cannot be fully distinguished by quantum measurement, and so information

encoded in this way is fundamentally unrecoverable. The reduction in entropy reflects this loss.

A direct result of this is the following:

Corollary 5. Let E(µ) be the ε-machine of a process µ, and let Q be any q-machine which embeds

E(µ), with stationary state ρπ. Then for all α, Hα,q[ρπ] ≤ C(α)
µ , with equality only if the embedding

states |ψs〉 are orthogonal.

Proof. This simply follows from Prop. 10 and the fact that ρπ = ∑
s πs |ψs〉 〈ψs|, where πs is the

stationary distribution of the ε-machine.

The implication of this theorem is that every q-machine has a kind of memory advantage over the

ε-machine: they can generate the same process with less memory. Further, since state entropy is

unchanged under time-reversal, this also implies that every reverse q-machine has a lower memory

than the reverse ε-machine.

This memory compression does not come freely, however. The consequence is the non-orthogonality

of the embedded states, which means they cannot be recovered by measurement without disrupting

the system. Specifically, q-machines cannot be used as predictors, despite the fact that they are a

deterministic embedding of the past (which in the classical case is sufficient to guarantee unifilarity

and thus predictivity).
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Figure 5.5. (Left) Lorenz curves for the 4-state MBW ε-machine M4 and the
associated q-machine Q4. (Right) Lorenz curves for the 4-state MBW q-machine Q4
and a dimensionally-smaller model D4.

Generally speaking, however, the reduction in memory is quite significant, and thus far it appears

that q-machines frequently outperform non-predictive classical generators in memory reduction as

well.

One may reasonably wonder if there exists, among q-machines (since there are many, depending on

phase choices), a single strongly minimal q-machine, in the same way that the ε-machine strongly

minimized all predictors. Let us reconsider two examples—the 4-MBW process and the 3-MBW

process—to get an intuition for this. For clarity, when referring to the entropy of the stationary

state of two different models of the same process, we will use the model variable as the entropy

argument.

First, let’s examine the majorization between Q4 and the Markov model via the Lorenz curves of λ,

the eigenvalues of ρπ, and the stationary state of the Markov chain. See Fig. 5.5. This demonstrates

the “strong advantage” indicated by Cor. 5.

Figure 5.5 compares the Lorenz curve of its stationary eigenvalues λ′ to those of Q4. One sees that

it does not majorize the q-machine, but it does have a lower statistical memory: Hq[D4] = 1.0 and

Hq[Q4] ≈ 1.2 bit. (On the other hand, the q-machine has a smaller min-memory, with Hmin[D4] = 1.0

and Hmin[Q4] ≈ 0.46.)

We can also examine the majorization between the q-machine and ε-machine of the 3-MBW process

by plotting the Lorenz curves of λ, the eigenvalues of ρπ, and the stationary state of the Markov
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Figure 5.6. (Left) Lorenz curves for the 3-state MBW ε-machine M3 and the
associated q-machine Q3. (Right) Lorenz curves for the 3-state MBW q-machine,
Q3 and a dimensionally-smaller model D3.

chain, shown in Fig. 5.6. Again, we see a majorization curve indicating strong memory advantage

over the ε-machine.

Figure 5.6 compares the Lorenz curve of its stationary eigenvalues λ′ to that of Q3. We see

that it does not majorize Q3. And, this time, this is directly manifested by the fact that the

smaller-dimension model has a larger entropy: Hq[D3] = 1.0 and Hq[Q3] ≈ 0.61 bit.

The reader should note by now that none of the examples covered above are strong minima among

q-machines. One way to prove that no strong minimum exists for, say, the 3-state MBW process

requires showing that there does not exist any other quantum model in 2 dimensions that generates

the process. This would imply that no other model can majorize D3. But we already did this in

Example 10!

Counterexample (Weak Minimality of D3). The quantum model D3 weakly minimizes topological

complexity for all quantum generators of the 3-state MBW Process; consequently, the 3-state MBW

Process has no strongly minimal quantum model.

We have therefore demonstrated that while the ε-machine is a strong minimum among its own

class of predictive models, q-machines do not appear to have any strong minima among themselves;

nevertheless, they all provide strong advantage over the ε-machine in terms of memory costs for

generation of the process.
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Figure 5.7. Proposed majorization saddle structure of model-space: The ε-machine
(labeled ε) is located at a saddle-point with respect to majorization, where classical
deviations (state-splitting) move up the lattice and quantum deviations (utilizing
state overlap) move down the lattice.

5.5. Discussion

Our results on quantum models of processes complement our previous chapter’s results on the

memory costs of predictive models; namely:

(1) The ε-machine majorizes all classical predictive models of the same process and so simulta-

neously minimizes many different measures of memory cost.

(2) The q-machine, and indeed any quantum realization of the ε-machine, always majorizes

the ε-machine, and so simultaneously improves on all the measures of memory cost.

(3) For at least one process, there does not exist any quantum pure-state model that majorizes

all quantum pure-state models of that process. Thus, while an ε-machine may be improved

upon by different possible quantum models, there is not a unique one quantum model that

is unambiguously the “best” choice.

Imagining the ε-machine as an invariant “saddle-point” in the majorization structure of model-space,

Fig. 5.7 depicts the implied geometry. That is, we see that despite its nonminimality among all

models, the ε-machine still occupies a topologically important position in model-space—one that is
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invariant to one’s choice of memory measure. However, no similar model plays the topologically

minimal role for quantum pure-state models.

The quantum statistical complexity Cq has been offered up as an alternative quantum measure of

structural complexity—a rival of the statistical complexity Cµ [189]. One implication of our results

here is that the nature of this quantum minimum Cq is fundamentally different than that of Cµ.

This observation should help further explorations into techniques required to compute Cq and the

physical circumstances in which it is most relevant.

That the physical meaning of Cq—as a von Neumann entropy—involves generating an asymptotically

large number of realizations of a process may imply that it cannot be accurately computed by only

considering machines that generate a single realization. This is in contrast to Cµ which, being

strongly minimized, must be attainable in the single-shot regime along with measures like C(0)
µ and

C
(∞)
µ .

In this way, the quantum realm again appears ambiguous. Ambiguity in structural complexity has

been previously observed in the sense that there exist pairs of processes such that one process may

have a larger Cµ than the other while having a smaller Cq [5]. The classical and quantum paradigms

for modeling can disagree on simplicity—there is no universal Ockham’s Razor. How this result

relates to strong versus weak optimization deserves further investigation.

In general, what all these considerations tell us is that quantum models and q-machines occupy

an important but critically distinct role in the space of all models of a classical process. They

are in many ways incomparable to other classes of models, such as predictors and retrodictors. A

q-machine, like a unifilar predictor, operates “deterministically” (pure state to pure state), but due

to its non-orthogonality cannot practically function as one.

Further, while the class of predictors is organized hierarchically by state-merging relations, q-

machines are far more egalitarian, organized by the choice of phase parameters φxs, which imbues

the space of q-machines for a given process with the topology of a multi-dimensional torus. The

dimensionality of this torus is determined by gauge invariants, which are induced by a kind of

solenoidal action on the dynamical state space of the embedded ε-machine.

There is a fascinating structure to q-machine space which is as elegant as it is frustrating, for it

does not offer any clear direction to a “universally” advantageous q-machine, but instead offers
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us potentially different models for different practical considerations. A proper understanding of

quantum models of stochastic processes will, I think, require continued patience and thorough

analysis. Here especially Wiener’s maxim that there are “no answers, only cross-references” should

be kept at the forefront: we can only understand the full potential of q-machines by continuing to

relate them to, and distinguish them from, each other and our classical intuitions.

The methods and results here should also be extended to analyze more general (i.e. non-predictive

or non-retrodictive) classical generative models which, in many ways, bear resemblances in their

functionality to the quantum models [104,105,161]. These drop the requirement of unifilarity,

similar to how the quantum models relax the notion of orthogonality. Important questions to pursue

in this vein are whether generative models are strongly maximized by the ε-machine and whether

they have their own strong minimum or, like the quantum models, only weak minima in different

contexts.
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CHAPTER 6

Forgetful demons: Heat extraction with quantum simulation

Heat may be generated and destroyed by certain processes,

and this shows that heat is not a substance.

James Clerk Maxwell, Theory of Heat

6.1. Introduction

Richard Feynman [85] broached the notion that quantum computers would be singularly useful

for the simulation of quantum processes, without supposing that this would also make them

advantageous at simulating classical processes. Quantum information and quantum advantage

have recently benefited from the study of, on the one hand, quantum memory compression [17,66,

102,106,121,160,191,192], particularly for simulating stochastic processes, and, on the other,

quantum thermodynamics [30,45,48,55,71,116,117,206]. As a complement to their independent

contributions, here we explore the thermal efficiency of quantum memory compression in physical

implementations, illustrating a fruitful new cross over that elucidates how physical systems generate

and process information.

Quantum computational mechanics recently explored how to simulate and transform classical

stochastic processes using quantum systems [17,66,121,192]. Generally, quantum simulators of

complex processes require less memory (measured by the quantum-state von Neumann entropy) than

classical (measured by the statistical complexity—the classical-state Shannon entropy) [160,191].

While this quantum advantage holds for all memory metrics, from the single-shot to the asymptotic

[106], here an important contrast with the classical case arises: There is no quantum equivalent

to the ε-machine that simultaneously minimizes all metrics. Rather each process has a family of

quantum simulators that may each be relevant in different settings—some favorable in the asymptotic

regime, with others favorable in the single-shot [102,106].
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Quantum thermodynamics [206], though recently advancing via thermal resource theories [30,71,

116,117] and single-shot thermodynamics [29,45,48,55], has not yet been applied to examine

quantum simulators. However, it is known that Landauer’s lower bound, as given in the form

of Shannon and von Neumann entropies, is not generally attainable—a more nuanced view is

necessary [29,45]. As in quantum computational mechanics, transitioning from classical to quantum

regimes leads to a sharp separation between single-shot and asymptotic settings.

Using the laws of nonequilibrium thermodynamics, it is possible for physical systems to extract

useful work from heat baths while generating samples of some stochastic process. This is a

consequence of the information processing Second Law (IPSL) [24], which describes the minimal

cost of transforming a given stochastic process into another, and itself relies on Landauer’s principle

for memory erasure [97]. Previous work focusing on classical generators of stochastic processes has

extended the IPSL to the thermodynamics of modularity, which describes the thermodynamic costs

of operating locally on separate parts of a system, and provides more realistic bounds for the work

extraction of specific physical generators [27].

Here, we explore issues raised by the recent developments in quantum computing, focusing on the

problem of simulating classical stochastic processes via stochastic and quantum computers. To link

quantum memory compression with its associated thermodynamics, we calculate upper bounds on

the work cost of quantum implementations of classical simulators. Functionally, these become lower

bounds on the work that can be extracted while generating a process. These bounds—achievable in

the asymptotic limit of parallel generation—mirror classical results and show a direct relationship

between memory compression achieved by a quantum implementation and the change in extractable

work via the same. We also demonstrate the existence of a natural partial ordering on generators

which is monotonic in work extraction rate; that is, this mathematical ordering is also an ordering

of thermodynamic efficiency.

The physical setting of our work is in the realm of information reservoirs—systems all of whose

states have the same energy level. Landauer’s Principle for quantum systems says that to change an

information reservoir A from state ρA to state ρ′A requires a work cost satisfying the lower bound:

W ≥ kBT ln 2
(
Hq[ρA]−Hq

[
ρ′A
])
.(6.1)
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where Hq[ρA] is the von Neumann entropy [141]. Note that the lower bound

Wmin := kBT ln 2
(
Hq[ρA]−Hq

[
ρ′A
])

is simply the change in free energy for an information reservoir. Further, due to an information

reservoir’s trivial Hamiltonian, all of the work W becomes heat Q. Then the total entropy

production—of system and environment—is:

∆S := Q+ kBT ln 2∆ H[A]

= W −Wmin .
(6.2)

Thus, not only does Landauer’s Principle provide the lower bound, but reveals that any work

exceeding Wmin represents dissipation.

The efficiency ordering among generators points directly to a particular class of generators as the

optimally efficient, achieving the Landauer rate: these are classical retrodictive states. We prove

that any generator not in this class, including quantum compressions of retrodictive generators,

has a nonzero modularity dissipation over and above the Landauer cost. In other words, using

quantum computers to simulate classical processes typically requires nonzero thermodynamic cost,

while stochastic computers can theoretically achieve zero cost in simulating classical processes. This

supports the viewpoint originally put forth by Feynman—that certain types of computers would

each be advantageous at simulating certain physical processes—which challenges the current claims

of quantum supremacy. Furthermore, we show that in both classical and quantum simulations,

thermodynamic efficiency places a lower bound on the required memory of the simulator.

To accomplish these results, we must prove a new theorem on the thermodynamic efficiency of

local operations. Correlation is a resource: it has been investigated as such, in the formalism of

resource theories [35] such as that of local operations with classical communication [73], with public

communication [132], and many others, as well as the theory of local operations alone, under the

umbrella term of common information [59,95,214]. Correlations have long been recognized as

a thermal resource [25,26,97,103], enabling efficient computation to be performed when taken

properly into account. Local operations that act only on part of a larger system are known to
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never increase the correlation between the part and the whole; most often, they are destructive to

correlations and therefore resource-expensive.

Thermodynamic dissipation induced by a local operation—say on system A of a bipartite system

AB to make a new joint system CB—is classically proportional to the difference in mutual

informations [27]:

∆Sloc = kBT (I[A : B]− I[C : B]) .

This can be asymptotically achieved for quantum systems [107]. By the data processing inequality

[36,141], it is always nonnegative: ∆Sloc ≥ 0. Optimal thermodynamic efficiency is achieved when

∆Sloc = 0.

To identify the conditions, in both classical and quantum computation, when this is so, we draw

from prior results on saturated information-theoretic inequalities [68,136,137,149,150,151,166].

Specifically, using a generalized notion of quantum sufficient statistic [78,98,118,151], we show

that a local operation on part of a system is efficient if and only if it unitarily preserves the minimal

sufficient statistic of the part for the whole. Our geometric interpretation of this also draws on

recent progress on fixed points of quantum channels [8,14,33,67].

Paralleling previous results on ∆Sloc [27], our particular interest in locality arises from applying it

to thermal transformations that generate and manipulate stochastic processes. This is the study

of information engines [24, 25, 26, 60, 62, 122]. Previous work explored optimal conditions for

a classical information engine to generate a process. Working from the hidden Markov model

(HMM) [199] that determines an engine’s memory dynamics, it was conjectured that the HMM

must be retrodictive to be optimal. For this to hold, the current memory state must be a sufficient

statistic of the future data for predicting the past data [27].

Employing a general result on conditions for reversible local computation, the following confirms

this conjecture, in the form of an equivalent condition on the HMM’s structure. We then extend this,

showing that it holds for quantum generators of stochastic processes. Notably, quantum generators

are known to provide potentially unbounded advantage in memory storage when compared to

classical generators of the same process. Surprisingly, the advantage is contingent: optimally-

efficient generators—those with ∆Sloc = 0—must not benefit from any memory compression. We
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show this to be true not only for previously published quantum generators, but for a new family of

quantum generators as well, derived from time reversal [37,40,50,191].

Combining our two major results in this chapter—the positive relationship between embedding and

efficiency, and the negative relationship between compression and efficiency—one concludes that a

quantum-compressed generator is efficient with respect to the generator it compresses but, to the

extent that it is compressed, it cannot be optimally efficient. In short, only classical retrodictive

generators achieve the lower bound dictated by the IPSL. Practically, this highlights a pressing need

to experimentally explore the thermodynamics of quantum computing.

This chapter is a synthesis of material on the thermodynamics of quantum generators from the

publications Thermal Efficiency of Quantum Memory Compression [107], and Thermodynamically

Efficient Local Computation [108]. Our result on embedding and efficiency, Theorem 14, is a

generalization of the result we originally derived in Ref. [107], and similarly we have greatly

generalized our results from Ref. [108] in Theorem 19, which applies to all quantum generators,

though our original publication had only proven the same result for q-machines and reverse q-

machines.

6.2. Energy and information

To analyze the thermodynamics of physical generators, we must establish rules that circumscribe

what we consider physically allowed and the correspondence to thermodynamic quantities such as

work and heat.

Here, we consider the resource theory of thermal operations [30,71]. Generally, on a quantum

system S we allow operations of the form:

E (ρS) := TrB
(
UρS ⊗

e−βHB

ZB
U †
)
,(6.3)

where A and B are auxiliary systems with Hamiltonians HA and HB , B a thermal bath, and U acts

on the joint Hilbert space of HA and HB. The unitary operator U satisfies the rule of microscopic

conservation of energy, where we constrain [U,HS +HB] = 0.

In the special case of classical operations, thermal operations reduce to stochastic operations T

which satisfy Tγ = γ, where γ is the Gibbs distribution. This property is called Gibbs-stochasticity.
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As discussed in Section 1.5.2, this approach leads us into theory of relative majorization, which can

be used to determine the work costs for transforming one distribution into another [157]. Using

Hamiltonian control (which is a special case of relative majorization methods), Ref. [27] showed

that any stochastic channel can be implemented in a way which achieves the Landauer bound. That

is, applying a channel Pr(y|x) to a random variable X, resulting in Y , can be performed with the

work cost W = kBT (H[X]−H[Y ]).

The quantum regime is unfortunately not quite so simple; here the single-shot costs for applying a

stochastic channel rarely have simple expressions in terms of Shannon or von Neumann entropies,

and we must use entropies more suited to the single-shot domain in order to understand the complex

constraints of quantum nonequilibrium thermodynamics [29].

6.2.1. A single-shot form of Landauer’s bound. We have previously (Sec. 4.3) discussed

the min-entropy Hmin,q[·] and Rényi 1/2-entropy H1/2,q[·], which in the literature of quantum

information and thermodynamics is frequently called the max-entropy. There is an important

generalization of both these quantities to the bipartite domain. For two systems A and B with joint

state ρAB, the min- and max-entropies are given by:

Hmin [A|B]ρ ≡ min
σB

sup{λ : ρAB ≤ 2−λ1A ⊗ σB}

H1/2 [A|B]ρ ≡ max
σB

2 log2 F (ρAB, 1A ⊗ σB) ,

where F (ρ, σ) = Tr
(√√

ρσ
√
ρ
)
is the fidelity. The smooth entropies are optimizations of these

quantities over all ρ̃AB within the ε-ball Bε(ρAB); that is, all states such that
√

1− F (ρ̃AB, ρAB) < ε:

Hε
min [A|B] ≡ max

ρ̃AB
Hmin [A|B]ρ̃

Hε
1/2 [A|B] ≡ min

ρ̃AB
H1/2 [A|B]ρ̃ .

When B is decoupled from A, ρAB = ρA ⊗ ρB , the resulting quantities are independent of B and so

we have the marginal smooth entropies Hε
min [A] and Hε

min [A].

We import the following result from Ref. [48]: Given a system S correlated with an auxiliary A,

and any ε > 0, there is a procedure for erasing A while preserving S, with probability of failure ε,
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which has a work cost of no more than:

W

kBT ln 2 ≤ Hε2/16
1/2 [A|S] +O

(
log 1

ε

)
.(6.4)

We use this to prove a generalization of the “detailed” Landauer cost. Suppose we have a quantum

channel E we wish to implement and we do so on a system S with average state ρS . The target

state is ρ′S = E (ρS). We perform the map in the following way. Using the Stinespring dilation of E ,
we couple S to an auxiliary system A in state |0〉 〈0|A and perform a unitary operation on both

systems:

ρ′SA = UABρS ⊗ |0〉 〈0|A U
†
AB ,

such that E (ρS) = TrA (ρ′SA). At the end of the procedure we must erase A. This can be done with

cost Eq. (6.4). This form of the cost for implementing a channel is given in Ref. [55].

Now, we utilize a result on smooth entropies that generalizes the chain rule on von Neumann

entropy [207]. We state two somewhat streamlined versions of the theorem here. For any δ > 0 and

systems AB:

Hδ
1/2 [B|A] ≤ H4δ

1/2 [AB]−Hδ
min [A] +O

(
log 1

δ

)
(6.5)

Hδ
min [B|A] ≤ H4δ

min [AB]−Hδ
min [A] +O

(
log 1

δ

)
(6.6)

Applying (6.5) to (6.4), we have:

W

kBT ln 2 ≤ Hε2/4
1/2

[
S′A′

]−Hε2/16
min

[
S′
]
+O

(
log 1

ε

)

However, Hε2/4
1/2 [S′A′] = Hε2/4

1/2 [S] by unitary equivalence, so we have the erasure cost:

W

kBT ln 2 ≤ Hε2/4
1/2 [S]−Hε2/16

min
[
S′
]
+O

(
log 1

ε

)
.(6.7)

Since we can perform the initial unitary with no work, this is the only work cost involved in

implementing the channel. To summarize: The channel E can be performed on the system S with a

work cost not exceeding Eq. (6.7).
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Figure 6.1. Thermodynamics of locality: Suppose we have two bits XY in a
correlated state where 1/2 probability is in XY = 00 and 1/2 probability is in
XY = 11. (a) A thermodynamically irreversible operation can be performed to
erase only X (that is, set X = 0 without changing Y ) if we are not allowed to use
knowledge about the state of Y . (b) A reversible operation can be performed to
erase X if we are allowed to use knowledge about Y . Both operations have the
same outcome given our initial condition, but the nonlocal operation (a) is more
thermodynamically costly because it is irreversible. According to Thm. 17, operation
(a) is costly since it erases information in X that is correlated with Y .

Now, suppose we choose instead to implement parallel generation of our process. That is, we have

N independent systems on which we want to implement N independent copies of the channel E
with probability of error less than ε > 0. Naturally, the work cost becomes:

W

kBT ln 2 ≤ Hε2/4
1/2

[
S⊗N

]
−Hε2/16

min

[
S′⊗N

]
+O

(
log 1

ε

)
.

Significantly, the error term does not depend on N . When we further account for the Asymptotic

Equipartition Theorem of smooth entropies, we have the remarkable result for the work rate:

W

NkBT ln 2 ≤ Hq[S]−Hq
[
S′
]
+O

(√
1
N

log 1
ε

)
.(6.8)

With Landauer’s bound sandwiching the work from below, we find a tight result on the achievable

work cost. By scaling error with N , for instance ε ∼ 2−
√
N , Landauer’s bound can, in the limit

N →∞, be achieved for quantum channels. In the single-shot regime, the bound of Eq. (6.7) gives

us a somewhat less certain range of achievability.
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6.2.2. Thermodynamics of modularity. To derive useful results, we must place further

constraints on the system dynamics to see how Landauer’s bound is affected. Reference [27]

introduced the following perspective. Consider a bipartite information reservoir AB, on which

we wish to apply the local channel E ⊗ IB, where E : B (HA) → B (HC) maps the states of

system A into those of system C, transforming the initial joint state ρAB to the final state ρCB.

The Landauer bound for AB → CB is given by Wmin = kBT ln 2 (H[ρAB]−H[ρCB]). However,

since we constrained ourselves to use local manipulations, the lowest achievable bound is actually

Wloc := kBT ln 2 (H[ρA]−H[ρC ]). Thus, we must have dissipation of at least:

∆S ≥Wloc −Wmin

= kBT ln 2 (H[ρA]−H[ρAB]−H[ρC ] + H[ρCB])

= kBT ln 2 (I[A : B]− I[C : B]) .

(6.9)

where I[A : B] = H[ρA] + H[ρB]−H[ρAB] is the quantum mutual information. And so, we have a

minimal locality dissipation:

∆Sloc := kBT ln 2 (I[A : B]− I[C : B]) ,(6.10)

which arises because we did not use the correlations to facilitate our erasure. See Fig. 6.1 for a

simple example of this phenomenon.

This local form of Landauer’s Principle is still highly general, but the following shows how to

examine it for specific classical and quantum computational architectures The key question we ask

is: For which architectures can ∆Sloc be made to exactly vanish? We first we consider this problem

generally and then provide a solution.

6.3. Thermodynamics of generators

Generators, as we have defined them, are typically a triplet G = (S,X , {T(x)}) of a state space

S, an alphabet X , and a stochastic matrix T(x) = (T (x)
s′s ) which describes the probability, when

starting in state s ∈ S, of transitioning to the state s′ and emitting a symbol x ∈ X . To think

of generators as thermodynamic objects, we need a more concrete picture. One such approach is

to visualize generators as writing on a tape while continually erasing and rewriting their internal
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Figure 6.2. Information ratchet sequentially generates a symbol string on an
empty tape: At time step t, St is the random variable for the ratchet state. The
generated symbols in the output process are denoted by Xt−1, Xt−2, Xt−3, . . .. The
most recently generated symbol Xt (green) is determined by the internal dynamics
of the ratchet’s memory, using heat Q from the thermal reservoir as well as work
W from the work reservoir. (Ratchet interior.) The memory dynamics and symbol
production are governed by the conditional probabilities Pr(st+1, xt|st), where st is
the current state at time t, xt is the generated symbol and st+1 is the new state.
Diagrammatically, this is a hidden Markov model—a labeled, directed graph in which
nodes are states s and edges represent transitions s → s′ labeled by the emitted
symbol and associated probability: x : Pr(s′, x|s).

memory Fig. 6.2. To accomplish these tasks, they must exchange energy with a work reservoir and

heat bath.

Erasure generally requires work, drawn from the work reservoir, while the creation of noise often allows

the extraction of work, which is represented in our sign convention by drawing negative work from

the reservoir. Producing a process X1 . . . Xt ∼ Pr (x1 . . . xt) of length t has an associated work cost

W ≥ −kBT ln 2H (X1 . . . Xt). The negative sign, as discussed, indicates work kBT ln 2 H (X1 . . . Xt)

may be transferred from the thermal reservoir to the work reservoir. For large t, this can be

asymptotically expressed by the work rate W/t ≥ −kBT ln 2 hµ, where:

hµ := lim
t→∞

1
t

H[X1 . . . Xt](6.11)

is the process’ Kolmogorov-Sinai entropy rate [24]. This is a reasonable description of the average

entropy rate of a process that is stationary—that is, Pr(Xt . . . Xt+` = x1 . . . x`−1) is independent of
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t—and ergodic. Said differently, for large t a typical realization x1 . . . xt contains the word x̂1 . . . x̂`

approximately t×Pr(x̂1 . . . x̂`) times. Recurrent generators produce exactly these sorts of processes.

6.3.1. Thermodynamic implementations of quantum generators. For quantum gener-

ators Q = (H,X ,
{
E(x)

}
), we can offer quite a specific strategy for their implementation which

is well-suited to the resource theory of thermal operations. This approach involves a memory

space HS , symbol space HX , auxiliary space HA, and bath space HB; and a unitary acting on

HS ⊗HX ⊗HA ⊗HB, such that the channel:

TSX (ρSX) := TrAB
(
UρSX ⊗ |0〉 〈0|A ⊗ ρBU †

)
satisfies:

TSX (ρS ⊗ |0〉 〈0|X) =
∑
x

E(x)(ρS)⊗ |x〉 〈x|X .(6.12)

Suppose that there are HamiltoniansHS , HX , HA, HB for each system such that ρB = Z−1
B exp (−βHB)

is the Gibbs distribution of its Hamiltonian. If [U,HS +HX +HA +HB] = 0, then we say that the

implementation is thermal, as these implementations are those allowed by the resource theory of

thermal operations.

In quantum mechanics, the rule of microscopic conservation [U,HS +HX +HA +HB] = 0 brings

coherence with respect to the Hamiltonian into play as a resource [116,117]. The type of systems

we consider here are what are often, in the literature of information engines, called information

reservoirs: systems whose Hamiltonian is trivially flat, so that energetics does not play a direct

role in their dynamics. On such systems, tracking coherence is no longer at issue, as all operators

commute with a flat Hamiltonian.

The most well-developed class of quantum generators are the q-machine and reverse q-machine

[17,102,108], which belong themselves to the broader class of quadratic OOMs. We can implement

a quadratic OOM K = (H,X , {K(x)}, P ) as follows.
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In the first step, the evolution step, we act only on the memory and the output SX with the unitary

USX defined by the action:

USX |ψ〉 ⊗ |∅〉 =
∑
x

K(x) |ψ〉 ⊗ |x〉 .(6.13)

In the second step—the measurement step—the symbol is observed, sending the pure state

USX |ψ〉 〈ψ| ⊗ |∅〉 〈∅|U †SX to the mixed state in Eq. (6.12). This is done by coupling the system X

to the auxiliary system A and applying a unitary so that:

UXA |x〉X ⊗ |∅〉A ∝ |x〉X ⊗ |x〉A .

When the auxiliary is discarded (or, more realistically, reset) we are left with the state on SX, as

desired.

6.3.2. Dissipation in generators. Now, a given generator cannot necessarily be implemented

as efficiently as the minimal work rate Wmin := −kBT ln 2 hµ indicates. This is because a generator

acts temporally locally, only being able to use its current memory state to generate the next memory

state and symbol. That is, the generator only acts directly on S at a given time to produce S′X.

The true cost at time t must be bounded below by Wloc := Wmin + ∆Sloc, where in this case the

asymptotic locality dissipation is [27]:

∆Sloc = kBT ln 2 (I
[
S :←−X

]
− I
[
S′X :←−X

]
) .(6.14)

In this case, the dissipation does not represent work lost to heat but rather the increase in tape

entropy which did not facilitate converting heat into work. This minimal dissipation is also achievable

for quantum processes, due to Section 6.2.1:

∆Sloc = kBT ln 2 (Iq
[
S :←−X

]
− Iq

[
S′X :←−X

]
) .(6.15)

Henceforth we will drop the q from our entropies, as the formulae remain equivalent between the

quantum and classical domain.
169



Another form for the dissipation, starting not from the locality dissipation but directly from

Landauer’s bound, is

∆Sloc = kBT ln 2
[(

H[S]−H
[
S′X

])− hµ]
= kBT ln 2

[
I
[
S′ : X

]− (H[X]− hµ)
](6.16)

This form offers us an immediately useful insight into the structure of dissipation costs for classical

and quantum generators. Recall that we defined the partial order on generators, %, which defines

when one generator may be embedded into another. In particular, for F = (R,X ,
{

M(x)
}

) and

G = (S,X ,
{

T(x)
}

) be two generators of the same process. We say that G embeds F, written

G % F, if there is a stochastic matrix P = (Ps|r) such that

PM(x) = T(x)P

for all x ∈ X . We also extended this for quantum models; in particular, all q-machines embed

the ε-machine of a process. One implication to this rule is that it renders the chain S′ − R′ −X
Markov, where S′ and R′ are the updated states of G and F, respectively. This leads to the following

theorem.

Theorem 14. Let ∆Sloc(G) indicate the locality dissipation of a generator G. Suppose for two

generators that that G % F; then

(6.17) ∆Sloc(G) ≤ ∆Sloc(F)

Proof. The only generator-dependent part of ∆Sloc is the mutual information I[S′ : X]. By

the Markov chain S′ − R′ − X and the data processing inequality, whenever G % F, we have

I[S′ : X] ≤ I[R′ : X].

In particular, this means that the q-machine produces less dissipation than the ε-machine when

implemented thermodynamically.

Obviously, the minimal amount of dissipation that can be produced is ∆Sloc. It has been observed

that this is achieved by retrodictive generators [27]. These are generators for whose states the

Markov chain ←−X −−→X −S holds. But it is also the case that S −S′X −−→X (since the future depends
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only on the next symbol probabilistically); this means that ←−X − S′X − S. Therefore we must have

I
[
S :←−X

]
− I
[
S′X :←−X

]
≤ 0; since we cannot have ∆Sloc < 0, we must have ∆Sloc = 0.

In Ref. [27] it was also conjectured that retrodictive generators are the only generator which can

achieve zero dissipation. This conjecture was made in the classical context. Regardless, we will

not only prove that this statement is true among all classical generators, but that it also applies

to quantum generators. To accomplish this we will have to prove a new theorem regarding the

information- and resource-theoretic properties of local operations. Specifically, we will determine

necessary and sufficient conditions for a locally performed operation E ⊗ I mapping a quantum

system AB to CB to saturate the data-processing inequality: I[A : B] = I[A : C].

6.4. Efficient local computation

One of the most fundamental information-theoretic inequalities is the monotonicity of the relative

entropy under transformations. This is the data processing inequality [36]. For a quantum channel

E it says:

D ( E (ρA) ‖ E (σA) ) ≤ D ( ρA ‖ σA )(6.18)

where Dρ‖σ ( = ) Tr [ρ log2 ρ− ρ log2 σ] is the quantum version of the Kullback-Liebler divergence

from Section 1.5.2. The condition for equality requires constructing the Petz recovery channel:

Rσ(·) = σ1/2E†
(
E(σA)−1/2 · E(σA)−1/2

)
σ1/2 .(6.19)

It is easy to check that Rσ ◦ E (σA) = σA. A markedly useful result is that D ( E (ρA) ‖ E (σA) ) =

D ( ρA ‖ σA ) if and only if Rσ ◦ E (ρA) = ρA as well [149,150].

Two other forms of the data processing inequality are useful to note here. The first uses another

quantity for measuring distance between states called the fidelity:

F (ρ, σ) :=
(

Tr
[√√

ρσ
√
ρ

])2
.(6.20)
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AEADf ⊗ A′
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Df⊗

A(x=1)

A(x=0)

⊕

Figure 6.3. Quantum channel decompositions: Conserved measurement X
divides the Hilbert space “vertically” via an orthogonal decomposition, H(x=0)

A ⊕
H(x=1)
A , represented above by labels A(x=0) and A(x=1). For each value of x, there is

a “horizontal” decomposition into the tensor product of an ergodic subspace and a
decoherence-free subspace: H(x)

A = H(x)
AE
⊗H(x)

ADf
, represented respectively by the labels

AE and ADf . According to Theorem 16, information-theoretic reversibility requires
storing data in the conserved measurement and the decoherence-free subspace. Any
information stored coherently with respect to the conserved measurement (stored in
the ergodic subspace) will be irreversibly modified under the channel’s action.

It takes value F = 0 when the states ρ and σ are completely orthogonal and value F = 1 if and

only if ρ = σ. The data processing inequality for fidelity states that for any quantum channel E :

F (E(ρ), E(σ)) ≥ F (ρ, σ) .(6.21)

This is yet another way of saying that states map closer together under a quantum channel E .

The second form arises from applying Eq. (6.18) to the mutual information. Let EA : B (HA) →
B (HC) be a quantum channel. The local operation EA ⊗ IB maps a bipartite system AB to CB.

The data processing inequality Eq. (6.18) implies that we have I[C : B] ≤ I[A : B].

In these terms, our thermodynamic efficiency goal—∆Sloc = 0—translates into determining condi-

tions for equality—I[C : B] = I[A : B]—using the Petz recovery channel and channel fixed points.
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6.4.1. Reversible information processing. To understand our result on local channels, an

illustrative starting point is a key result on fixed points of quantum channels [14,33] that leads to

a natural decomposition, as illustrated in Fig. 6.3.

Theorem 15 (Channel and Stationary State Decomposition). Suppose E : B (HA) → B (HA)

is a quantum channel, Hilbert space HA has a transient subspace HT, and there is a projective

measurement X =
{

Π(x)
}
on H⊥T with countable outcomes X , such that HA = HT ⊕

(⊕
xH

(x)
A

)
,

where H(x)
A is the support of Π(x). Then:

(1) Subspace H(x)
A is preserved by E, in that for all ρ ∈ B

(
H(x)
A

)
, we have E (ρ) ∈ B

(
H(x)
A

)
.

(2) Subspace H(x)
A further decomposes into an ergodic subspace H(x)

AE
and decoherence-free

subspace H(x)
ADf

:

H(x)
A = H(x)

AE
⊗H(x)

ADf
,(6.22)

such that the Kraus operators of E|H⊥T decompose as [67]:

K(α) =
⊕
x∈X

K
(α,x)
AE

⊗ U (x)
ADf

(6.23)

and the map E(x)
AE

(·) := ∑
αK

(α,x)
AE

·K(α,x)†
AE

has a unique invariant state π(x)
AE

.
(3) Any subspace of H satisfying the above two properties is, in fact, H(x)

A for some x ∈ X .

Furthermore, if ρA is any invariant state—that is, ρA = EA (ρA)—then it decomposes as:

ρA =
⊕
x∈X

Pr (x)π(x)
AE
⊗ ρ(x)

ADf
,(6.24)

for any distribution Pr (x) and state ρ(x)
ADf

satisfying U (x)
ADf

ρ
(x)
ADf

U
(x)†
ADf

= ρ
(x)
ADf

.

Figure 6.3 gives the geometric structure implied by the theorem. The ergodic subspace of quantum

channel E has two complementary decompositions. First, there is an orthogonal decomposition

H⊥T = ⊕
xH

(x)
A induced by a projective measurement X whose values are conserved by E ’s action.

This conservation is decoherent: only states compatible with X are stationary under the action of

E . X is called the conserved measurement of E [8]. Then, each H(x)
A has a tensor decomposition

H(x)
A = H(x)

AE
⊗H(x)

ADf
into an ergodic (E) and a decoherence-free (Df) part. The decoherence-free
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subspace H(x)
ADf

undergoes only a unitary transformation [67]. The ergodic part H(x)
AE

is irreducibly

mixed such that there is a single stationary state.

This result’s contribution here is to aid in identifying when the data-processing inequality saturates.

That is, using Thm. 15 and the Petz recovery channel, we derive necessary and sufficient constraints

on the structures of ρA, σA, and EA for determining when D ( E (ρA) ‖ E (σA) ) = D ( ρA ‖ σA ).

To achieve this, we recall a previously known result [136,137], showing that it can be derived using

only the Petz recovery map and Thm. 15. The immediate consequence is a novel proof.

Theorem 16 (Reversible Information Processing). Suppose for two states ρA and σA on a Hilbert

space HA and a quantum channel E : B (HA)→ B (HA), we have:

D ( ρA ‖ σA ) = D ( ρC ‖ σC ) ,(6.25)

where ρC = EA (ρA) and σC = EA (σA). Then there is a measurement X on A with countable

outcomes X and orthogonal decompositions HE = ⊕
xH

(x)
A and H(x)

C such that:

(1) For all ρ ∈ B
(
H(x)
A

)
and E (ρ) ∈ B

(
H(x)
C

)
, the mapping E|H(x)

A

onto B
(
H(x)
C

)
is surjective.

(2) Subspaces H(x)
A further decompose into:

H(x)
A = H(x)

AE
⊗H(x)

ADf
and(6.26)

H(x)
C = H(x)

CE
⊗H(x)

CDf
,(6.27)

so that H(x)
CE

and H(x)
ADf

are unitarily equivalent and the Kraus operators decompose as:

L(α) =
⊕
x∈X

L
(α,x)
AE

⊗ U (x)
ADf

.(6.28)

Furthermore, states ρA and σA satisfy:

ρA =
∑
x∈X

Pr (x; ρ)π(x)
AE
⊗ ρ(x)

ADf
(6.29a)

σA =
∑
x∈X

Pr (x;σ)π(x)
AE
⊗ σ(x)

ADf
(6.29b)
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for some π(x)
AE

. And, their images are:

ρC =
∑
x∈X

Pr (x; ρ)π(x)
CE
⊗ ρ(x)

CDf
(6.30a)

σC =
∑
x∈X

Pr (x;σ)π(x)
CE
⊗ σ(x)

CDf
,(6.30b)

where π(x)
CE

= E(x)
AE

(
π

(x)
AE

)
, ρ(x)

CDf
= U

(x)
ADf

ρ
(x)
ADf

U
(x)†
ADf

, and σ(x)
CDf

= U
(x)
ADf

σ
(x)
ADf

U
(x)†
ADf

.

Proof. We know that Nσ := Rσ ◦ E must have both ρA and σA as stationary distributions. Let X

be the conserved measurement of Nσ. It induces the decompositions HA = HT ⊕
(⊕

xH
(x)
A

)
and

H(x)
A = H(x)

AE
⊗H(x)

ADf
, as well as the state decompositions Eq. (6.29).

Now, we leverage the fact that Nσ|H⊥T has Kraus decomposition of the form Eq. (6.23). The net

effect is summed up by two constraints:

(1) For each α, K(α) maps each H(x)
A to itself.

(2) Let K(α,x) be the block of K(α) restricted to H(x)
A . Let M be a complete projective measure-

ment on H(x)
ADf

with basis {|m〉} and define the transformed basis {|m̃〉 = U (x) |m〉}. Now,
let H(x,m)

A =
{
|ψ〉 ⊗ |m〉 : |ψ〉 ∈ H(x)

AE

}
and similarly for H(x,m̃)

A . Then, K(z,x) maps H(x,m)
A

to H(x,m̃)
A . This holds for any measurement M .

Proving Eq. (6.28) requires these two constraints. Each is a form of distinguishability criterion

for the total channel Nσ|H⊥T . Since Nσ can tell certain orthogonal outcomes apart, so too must E.
Or else, Rσ would “pull apart” nonorthogonal states. However, this is impossible for a quantum

channel. By formally applying this notion to constraints 1 and 2 above, we recover Eq. (6.28).

Let L(α) be the Kraus operators of E|H⊥T . Then K
(α) = σ1/2L(α)†E(σ)1/2L(z). Now, if L(α) did not

map each H(x)
A to some orthogonal subspace H(x)

C , then for some distinct x and x′ there would be

|ψ〉 ∈ H(x)
A and |φ〉 ∈ H(x′)

C such that F (E(|ψ〉 〈ψ|), E(|φ〉 〈φ|)) > 0; recall Eq. (6.20) defines fidelity.

However, we must also have F (Nσ(|ψ〉 〈ψ|),Nσ(|φ〉 〈φ|)) = 0, which is impossible by Eq. (6.21) since

as applying Rσ cannot reduce fidelity. So, it must be the case that L(α) maps each H(x)
A to some

orthogonal subspace H(x)
C . This proves Claim 1 in Thm. 16.

Let L(α,x) be the block of L(z) restricted to H(x)
A . Further, let M be a complete measurement on

H(x)
ADf

. Then E|H(x)
A

must map each H(x,m)
A onto orthogonal subspaces H(x,m)

C of H(x)
C , lest Nσ|H(x)

A
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could not map each H(x,m)
A to orthogonal spaces H(x,m̃)

A . This follows from fidelity, as in the previous

paragraph.

Now, let L(α,x,m) : H(x)
AE
→ H(x,m)

C , so that:

L(α,x) =
⊕
m

L(α,x,m) ⊗ 〈m| .(6.31)

Let N be another complete measurement on H(x)
ADf

such that |n〉 = ∑
mwm,n |m〉, with wm,n a unitary

matrix. And, let n, n′ ∈ N be distinct. We have for any |ψ〉 that:

E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) =
∑
α

⊕
m,m′

wm′,nw
∗
m,nL

(α,x,m) |ψ〉 〈ψ|L(α,x,m′)† and

E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|) =
∑
α

⊕
m,m′

wm′,n′w
∗
m,n′L

(α,x,m) |ψ〉 〈ψ|L(α,x,m′)† .
(6.32)

Now, it must be that E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) and E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|) are orthogonal. However:

Tr
[
E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|)] =

∑
α,α′

∑
m

wm,nw
∗
m,n′ 〈ψ|L(α,x,m)†L(α,x,m)|ψ〉 .

(6.33)

This vanishes for arbitrary N and |ψ〉 only if L(α,x,m)†L(α′,x,m) is independent of m for each α and

α′. This implies that L(α,x,m) = W (m)L
(α,x)
E for some unitary W (m).

All of which leads one to conclude that the H(x,m)
C for each m must be unitarily equivalent. And so, the

decomposition H(x)
C = ⊕

mH
(x,m)
C instead becomes a tensor product decomposition H(x)

C = H(x)
CE
⊗H(x)

CDf

and further that L(α,x) = L
(α,x)
AE

⊗ V (x)
ADf

.

Finally, the constraints Eq. (6.30) follow from the form of E and Eq. (6.29).

Theorem 16’s main implication is that, when a channel E acts, information stored in the conserved

measurement and in the decoherence-free subspaces is recoverable. Two states that differ in terms

of the conserved measurement and the decoherence-free subspaces remain different and do not grow

more similar under E ’s action. Conversely, information stored in measurements not compatible with

the conserved measurement or stored in the ergodic subspaces is irreversibly garbled by E .

The next section uses this decomposition to study how locally acting channels impact correlations

between subsystems. This directly drives the thermodynamic efficiency of local operations. Namely,
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for thermodynamic efficiency correlations must be stored specifically in the conserved measurement

and decoherence-free subspaces of the local channel.

6.4.2. Quantum sufficient statistics. Stating our result requires first defining the quantum

notion of a sufficient statistic. Previously, quantum sufficient statistics of A for B were defined when

AB is a classical-quantum state [98]. That is, when ρAB commutes with a local measurement on A.

They were also introduced in the setting of sufficient statistics for a family of states [78,151]. This

corresponds to the case where AB is quantum-classical—ρAB commutes with a local measurement

on B. Our definition generalizes these cases to fully-quantal correlations between A and B.

We start, as an example, by giving the following definition of a minimum sufficient statistic of a

classical joint random variable XY ∼ Pr(x, y) in terms of an equivalence relation. We define the

predictive equivalence relation ∼ for which x ∼ x′ if and only if Pr(y|x) = Pr(y|x′) for all y. The

minimum sufficient statistic (MSS) [X]Y is given by the equivalence classes [x]Y := {x′ : x ∼ x′}.
Let us denote Σ := [X]Y and let Pr(y|σ) := Pr(y|x) for any x ∈ σ.

This cannot be directly generalized to the quantum setting since correlations between A and B

cannot always be described in the form of states conditioned on the outcome of a local measurement

on A. If the latter were the case, the state would be classical-quantum, but general quantum

correlations can be much more complicated than these. However, we can take the most informative

local measurement that does not disturb ρAB and then consider the “atomic” quantum correlations

it leaves behind.

Let ρAB be a bipartite quantum state. A maximal local commuting measurement (MLCM) of A for

B is any local measurement X with projectors {Π(x)} on system A such that:

ρAB =
⊕
x

Pr(X = x)ρ(x)
AB ,(6.34)

where:

Pr(X = x) = Tr
(
(Π(x)

X ⊗ IB)ρAB
)

(6.35)
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and:

Pr(X = x)ρ(x)
AB = (Π(x)

X ⊗ IB)ρAB(Π(x)
X ⊗ IB) ,(6.36)

and any further local measurement Y on ρ(x)
AB disturbs the state:

ρ
(x)
AB 6=

∑
y

(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) .(6.37)

We call the states
{
ρ

(x)
AB

}
quantum correlation atoms.

Proposition 11 (MLCM uniqueness). Given a state ρAB, there is a unique MLCM of A for B.

Proof. Suppose there were two distinct MLCMs, X and Y . Then:

ρAB =
∑
y

(Π(y)
Y ⊗ IB)ρAB(Π(y)

Y ⊗ IB) .(6.38)

This can be written as:

ρAB =
⊕
x

∑
y

Pr(X = x)(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) .(6.39)

However, this means for each x:

(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) = ρ

(x)
AB .(6.40)

So, X is not a MLCM, giving a contradiction.

It will be helpful in our study of quantum generators to have the following fact as well:

Proposition 12 (MLCM for a classical-quantum state). Given a classical-quantum state:

ρAB :=
∑
x

Pr (x) |x〉 〈x| ⊗ ρ(x)
B ,(6.41)

the MLCM is the most refined measurement Θ such that:

ρ
(x)
B =

∑
θ

Π(θ)ρ
(x)
B Π(θ)(6.42)

for all x.
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Proof. Given that Θ is a commuting local measurement, the question is whether it is maximal.

If it is not maximal, though, there is a refinement Y that is also a commuting local measurement.

By Θ’s definition, there is an x such that ρ(x)
B 6= ∑

y Π(y)ρ
(x)
B Π(y). This implies ρAB 6=

∑
y(I ⊗

Π(y))ρAB(I ⊗Π(y)), contradicting the assumption that Y is commuting local.

Now, as in the classical setting, we define an equivalence class over the values of the MLCM via

the equivalence between their quantum correlation atoms. Classically, these atoms are simply

the conditional probability distributions Pr(·|x); in the classical-quantum setting, they are the

conditional quantum states ρ(x)
B . Note that each is defined as a distribution on the variable Y or

system B. In contrast, the general quantum correlation atoms ρ(x)
AB depend on both systems A and

B.

The resulting challenge is resolved in the following way. Let ρAB be a bipartite quantum state and

let X be the MLCM of A for B. We define the correlation equivalence relation x ∼ x′ over values of
X where x ∼ x′ if and only if ρ(x)

AB = (U ⊗ IB)ρ(x′)
AB (U † ⊗ IB) for a local unitary U .

Finally, we define the Minimal Local Sufficient Statistic (MLSS) [X]∼ as the equivalence class

[x]∼ := {x′ : x′ ∼ x} generated by the relation ∼ between correlation atoms. Thus, our notion of

sufficiency of A for B is to find the most informative local measurement and then coarse-grain its

outcomes by unitary equivalence over their correlation atoms. The correlation atoms and the MLSS

[X]∼ together describe the correlation structure of the system AB.

6.4.3. Reversible local operations. Finally, with the aid of the MLSS and Theorem 16 we

can prove our result on reversible local operations.

Theorem 17 (Reversible local operations). Let ρAB be a bipartite quantum state and let EA ⊗ IB
be a local operation with EA : B(HA) → B(HC). Suppose X is the MLCM of ρAB and Y , that of

ρCB = EA ⊗ IB (ρAB). The decomposition into correlation atoms is:

ρAB =
⊕
x

PrA (x) ρ(x)
AB and(6.43)

ρCB =
⊕
y

Pr C (y) ρ(y)
CB .(6.44)
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Then, I[A : B] = I[C : B] if and only if EA can be expressed by Kraus operators of the form:

K(α) =
⊕
x,y

eiφxyα
√

Pr(y, α|x)U (y|x) ,(6.45)

where φxyα is any arbitrary phase and Pr (y, α|x) is a stochastic channel that is nonzero only when

ρ
(x)
AB and ρ(y)

CB are equivalent up to a local unitary operation U (y|x) that maps H(x)
A to H(y)

C .

Proof. We can apply the Reversible Information Processing Theorem (Thm. 16) from the previous

section here. This demands that there be a measurement X and a decomposition of the Hilbert space

HA = HAE ⊗HADf such that:

ρAB =
∑
x

PrA (x) ρ(x)
(AB)E

⊗ ρ(x)
(AB)Df

(6.46)

ρA ⊗ ρB =
∑
x

PrA (x) ρ(x)
(AB)E

⊗
(
ρ

(x)
ADf
⊗ ρ(x)

BDf

)
,(6.47)

such that EA ⊗ IB conserves measurement X and acts decoherently on (AB)E and coherently on

(AB)Df . However, the local nature of EA ⊗ IB makes it clear we can simplify this decomposition to:

ρAB =
∑
x

PrA (x) ρ(x)
AE
⊗
(
ρ

(x)
ADfB

)
(6.48)

ρA ⊗ ρB =
∑
x

PrA (x) ρ(x)
AE
⊗
(
ρ

(x)
ADf
⊗ ρB

)
,(6.49)

where EA conserves the local measurement X on A and acts decoherently on AE and acts as a local

unitary UADf ⊗ IB on ADfB.

Suppose now, however, that given X the variable Yx is the diagonalizing measurement of ρ(x)
AE

and Zx

is the MLCM of ρ(x)
ADfB

. The joint measurement XYXZX—where X is measured first and then the

other two measurements are determined with knowledge of its outcome—is the MLCM of ρAB. Note

that for any x and z, the outcomes (x, y, z) and (x, y′, z) are correlation equivalent: measurement

YX is completely decoupled from system B. Then, the MLSS Σ := [XYXZX ]B is simply a function

of X and ZX .

Since XZX is conserved by the action of EA ⊗ I—where X is the conserved measurement, while ZX

is preserved through the unitary evolution—the MLSS Σ must be preserved and each correlation

atom is transformed only by a local unitary. This results in the form Eq. (6.45).
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This proves that I[A : B] = I[C : B] implies Eq. (6.45). The converse is straightforward to check.

Let Σ = [X]B and let I (A : B|Σ = σ) be the mutual information of ρ(x)
AB for any x ∈ σ. (This is the

same for all such x by local unitary equivalence.) Then:

I[A : B] =
∑
σ

Pr (Σ = σ) I[A : B|Σ = σ] .(6.50)

Similarly, let Σ′ = [Y ]B and let I (C : B|Σ′ = σ′) be the mutual information of ρ(y)
CB for any y ∈ σ′;

then:

I[A : B] =
∑
σ′

Pr
(
Σ′ = σ′

)
I
[
C : B|Σ′ = σ′

]
.(6.51)

Since E isomorphically maps each σ to a unique σ′, such that I[A : B|Σ = σ] = I[C : B|Σ′ = σ′] by

unitary equivalence, we must have I[A : B] = I[C : B].

The theorem’s classical form follows as a corollary.

Corollary 6 (Reversible local operations, classical). Let XY be a joint random variable and let

Pr(Z = z|X = x) be a channel from X to some set Z, resulting in the joint random variable ZY .

Then I[X : Y ] = I[Z : Y ] if and only if Pr(Z = z|X = x) > 0 only when Pr(Y = y|Z = z) = Pr(Y =

y|X = x) for all y.

6.5. Dissipation-free generators

With Theorem 17 in hand, we can proceed to demonstrate the conditions for a generator to achieve

∆Sloc = 0. We will begin by considering the case of classical-only generators, as this will provide us

the necessary intuition.

6.5.1. Classical generators. In the classical case, we will demonstrate that ∆Sloc(G) = 0

implies that the G is a retrodictor by utilizing the operational characterization of retrodictors which

we proved in Prop. 9 in Chapter 4. Specifically, we will use the fact that G = (S,X , {T(x)}) is a

retrodictor if and only if its retrodictive state-merging G|R is co-unifilar; that is, if T (x)
s′s > 0 only

when s = f(x, s′) for some function f .
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Theorem 18. A generator G = (S,X , {T(x)}) satisfies I
[
S :←−X

]
= I

[
S′X :←−X

]
if and only if it is a

retrodictor.

Proof. We already know that retrodiction implies I
[
S :←−X

]
= I

[
S′X :←−X

]
; we must prove the

forward direction.

To see this, recall from Cor. 6 that I
[
S :←−X

]
= I

[
S′X :←−X

]
only if Pr G (s1, x1|s0) > 0 implies that

s0 and s1, x1 generate the same conditional distribution over pasts. This means for every t ≥ 0,

Pr G (x−t . . . x0|s1, x1) = Pr G (x−t . . . x0|s0) .(6.52)

We use this to write:

Pr G (x−t . . . x1|s1) = Pr G (x−t . . . x0|s1x1) Pr (x1|s1)

= Pr G (x−t . . . x0|s0) Pr (x1|s1) .
(6.53)

Rearranging and using the retrodictive equivalence partitions σt := [st]∼, we have:

Pr G|R (x−t . . . x0|σ0) =
Pr G|R (x−t . . . x1|σ1)

Pr G|R (x1|σ1) .(6.54)

Define a function f : S × X → S as follows. For a given σ′ and x, let f(σ′, x) be the state of G|R
class such that:

Pr G|R

(←−
X |f(σ′, x)

)
=

Pr G|R

(←−
Xx|σ′

)
Pr G|R (x|σ′) .(6.55)

Such an state f(σ′, x) must exist by Eq. (6.54). It is unique since, by definition, equivalence classes

σ have unique distributions Pr
(←−
X |σ

)
. Then σ = f(σ′, x) is a requirement for Pr G|R (σ′, x|σ) > 0.

This means that G|R is co-unifilar, and therefore G is a retrodictor.

Our theorem confirms the conjecture from [27] that the necessary and sufficient condition for

∆Sloc = 0 is that the generator in question is a retrodictor. A similar result, for classical generators,

was presented in [62] where a lower bound on ∆Sloc was derived for predictive generators (Eq.

(A23) in [62]). A consequence of this bound is that ∆Sloc = 0 only when the predictor is also a

retrodictor. However, this bound does not extend to nonpredictive generators. In contrast, Thm.

18 applies to all generators.
182



Our result is complemented by another recent result [60], which demonstrated how from a predictive

generator one can construct a sequence of generators that asymptotically approach a retrodictor

and whose dissipation ∆Sloc asymptotically approaches zero. Helpfully, this result points to possible

perturbative extensions of Thm. 18.

These results bear on the trade-off between dissipation and memory for classical generators. As

we saw in Chapter 4, the reverse ε-machine, being a state-merging of any retrodictive generator, is

minimal with respect to the retrodictive generators via all quantifications of the memory, such as

the number of memory states |S| and the entropy H[S] [106]. We now see that the above showed

that any thermodynamically efficient generator must be retrodictive; consequently, thermodynamic

efficiency comes with a memory constraint, defined by the reverse ε-machine. And, when the memory

falls below that of the reverse ε-machine, dissipation must be present.

6.5.2. Quantum generators. The result for classical generators, Thm. 18, will form the

foundation for the equivalent result for quantum generators. However, in order to apply it, we will

need to gain additional insight into the quantum sufficient statistics at play in quantum generators.

In Section 6.3.1, we described how a quantum generator Q = (H,X , {E(x)}) could be physically

implemented using thermodynamically allowed operations. The implementation updates its state

system S while writing its output X1 . . . Xt onto a sequence A1 . . . At of auxiliary systems.

The state of the entire implementation at time t is given by

ρG(t) =
∑
x1...xt

PrQ ( x1 . . . xt ) ρx1...xt ⊗ |x1 . . . xt〉 〈x1 . . . xt|

where ρx1...xt = PrQ ( x1 . . . xt )−1 E(x1...xt)(ρπ). Now, by the Embedding Lemma (Lem. 1) applied to

quantum generators, for sufficiently large t this converges to an embedding of a past ρ←−x = EQ(←−x ).

Consider the full set of past embeddings {ρ←−x }. Let the most refined measurement which commutes

with all of these states be called Θ. By Prop. 12, we see that Θ is the MCLM of S in for the

asymptotic system S
←−
X , and further that ΘX is the MCLM of S′X for the system S′

←−
XX.

Theorem 19 (Maximally-efficient quantum generator). Let Q = (S,X , {E(x)}) quantum generator.

Then ∆Sloc(Q) = 0 if and only if Q is unitarily equivalent to a classical retrodictor paired with an

irrelevant quantum system.
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Proof. The quantum channel:

E (ρ) =
∑
x

E(x)(ρ)⊗ |x〉 〈x|(6.56)

can be expanded as

E (ρ) =
∑
x,α

K(x,α)ρK(x,α)† ⊗ |x〉 〈x|(6.57)

where K(x,α), indexed by α, are the Kraus operators for each E(x). This means that the whole channel

E has Kraus operators L(x,α) := K(x,α) ⊗ |x〉.

Let Θ denote the MCLM of S (so that ΘX is the MCLM of S′X). Then, if we require zero

dissipation, then Thm. 17 demands that the Kraus operators L(x,α) have the form:

L(x,α) =
⊕
θ,θ′

√
Pr(θ′, x, α|θ)U (x,θ′|θ)

=
⊕
θ,θ′

√
Pr(θ′, x, α|θ)U (x)

θ 7→θ′ ⊗ |x〉 .
(6.58)

This implies that the quantum-generator Kraus operators have the form:

K(x,α) =
⊕
θ,θ′

√
Pr(θ′, x, α|θ)U (x)

θ 7→θ′ .(6.59)

The values Pr(θ′, x|θ) must be positive only when θ′x ∼ θ.

Now consider the generator R = (R,X , {T̂ (x)
θ′θ }) with states θ ∈ R and transition probabilities

(6.60) T̂
(x)
θ′θ = Pr(θ′, x|θ) =

∑
α

Pr
(
θ′, x, α

∣∣ θ )
The equation (6.59) implies the following:

(1) The subspaces H(θ)
S associated with each θ must all be unitarily equivalent to one another;

(2) For any ρθ ≤ Π(θ) associated with a given subspace,

E(xt) . . . E(x1)(ρθ) = PrR ( x1 . . . xt | θ )UρθU †

for some unitary U ;
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(3) Consequently, R generates the same process as Q, and any information contained in ρθ

beyond its Θ-subspace is superfluous.

Thus we can decompose HS = HΘ ⊗HU , where HΘ is the space corresponding to the classical states

of R and HU is a superfluous system undergoing unitary rotations.

The Kraus operators K(x,α) in this format decompose as

K(x,α) =
∑
θ,θ′

√
Pr(θ′, x, α|θ) |θ′〉 〈θ| ⊗ V (x)

θθ′

for some unitary V (x)
θθ′ . Let

K̄(x,α) =
∑
θ,θ′

√
Pr(θ′, x, α|θ) |θ′〉 〈θ|

Now consider the quantum generator Q = (HΘ,X , {Ē(x)}) where

Ē(x)(ρ) =
∑
α

K̄(x,α)ρK̄(x,α)†

The embedded mixed states ρ̂←−x of this generator must, by the definition of Θ, commute with Θ. But

now Θ is a maximal projective measurement on HΘ; its projectors form the whole basis of the space.

Thus all the ρ̂←−x must commute with one another. It must therefore be the case that the Ē(x) are

decohering and have the form

Ē(x)(ρ) =
∑
θ,θ′

Pr
(
θ′, x

∣∣ θ ) 〈θ|ρ|θ〉 |θ′〉 〈θ′|
which tells us that Q is just a direct implementation of the classical (and retrodictive) generator R.

This completes the proof.

This result applies to all quantum generators, even those of classes which we have not yet considered.

However, it can be interpreted in light of our two key examples of quantum generators: the forward

and reverse q-machines.

We earlier found that, in the limit of asymptotically parallel generation, a q-machine is always more

thermodynamically efficient than its corresponding ε-machine, in that it has a lower dissipation; this

is a special case of Thm. 14. Yet this does not imply dissipation can be made to vanish for quantum

generators of a process. In fact, only for processes whose forward ε-machine is also a retrodictor
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Figure 6.4. (Left) Performance trade-offs for q-machines. Under all ways of quan-
tifying memory, the q-machines constructed from a predictor achieve nonnegative
memory compression, and they also have a smaller dissipation ∆Sloc, rendering them
more thermodynamically efficient. However, to achieve positive compression, they
must also have a nonzero ∆Sloc, rendering them less efficient than a classical retrodic-
tor. (Right) Performance trade-offs for reverse q-machines: Under all quantifications
of memory, the reverse q-machines constructed from a retrodictor achieve nonnegative
memory compression. However, to achieve positive compression, they must also have
a nonzero dissipation ∆Sloc. The latter renders them less thermodynamically efficient
than their classical counterparts. In both diagrams, the dependence of q-machine
properties on phases {φxs} is represented by a torus.

can dissipation be made to vanish: this follows from the fact that the proof of Thm. 19 requires

all embedding states commute, which we previously (in Chapter 4) demonstrated is only possible

when the ε-machine is also co-unifilar. A further consequence is that positive memory compression

is intrinsically tied to positive dissipation. The situation is heuristically represented in Fig. 6.4.

Similarly, reverse ε-machines which are memory-compressed by their reverse q-machine can no longer

be thermodynamically efficient; the only reverse ε-machines which can be quantally compressed

while remaining efficient are those which are also predictive generators. This also implies that

memory compression is tied to dissipation; see also Fig. 6.4.

Overall, this is a profound result on the efficiency of quantum memory compression. Distinct

from the classical case, where Thm. 18 established that every process has certain generators that

do achieve zero dissipation, Thm. 19 implies that only certain processes have q-machines which

are thermodynamically efficient; namely, those whose ε-machines are co-unifilar. Moreover, those

particular processes achieve no memory compression; the q-machine is isomorphic to the ε-machine.

The memory states, being orthogonally encoded, take no advantage of the quantum setting to reduce

their memory cost.
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6.6. Discussion

In single-shot quantum thermodynamics, von Neumann entropy is no longer the only meaningful

quantifier of cost [29,45]. In Chapter 5 we showed that using memory as a resource when quantally

generating stochastic processes (see also Refs. [102,106]). This makes comparing classical and

quantum resource costs for generating a process challenging. Despite this, we derived bounds on

the single-shot work cost of quantum generator implementations and showed that von Neumann

entropies can be recovered as physically attainable work costs in the asymptotic limit of parallel

generation. The first of these results opens the pathway for single-shot comparisons between classical

and quantum resources in process generation, while the second allows direct comparison in terms of

asymptotic quantities.

We identified the conditions under which local operations circumvent the thermodynamic dissipation

∆Sloc that arises from destroying correlation. We started by showing how a useful theorem can be

derived using recent results on the fixed points of quantum channels. We applied it to the setting of

local operations to determine the necessary and sufficient conditions for vanishing ∆Sloc in classical

and quantum settings, with the aid of a generalized notion of quantum sufficient statistic. We

employed this fundamental result to review and extend previous results on the thermodynamic

efficiency of generators of stochastic processes. We confirmed a recent conjecture regarding the

conditions for vanishing ∆Sloc in a classical generator. And, then, we showed the exact same

conditions hold for quantum generators, even to the point of requiring orthogonal encoding of

memory states. This implies the profound result that quantum memory compression and perfect

efficiency (∆Sloc = 0) are incompatible.

It is appropriate here to recall the lecture by Feynman in the early days of thinking about quantum

computing, in which he observed that quantum systems can only be simulated on classical (even

probabilistic) computers with great difficulty, but on a fundamentally-quantum computer they could

be more realistically simulated [85]. Here, we considered the task of simulating a classical stochastic

process by two means: one by using fundamentally-classical but probabilistic machines and the

other by using a fundamentally-quantum machine. Previous results generally indicated quantum

machines are advantageous in memory for this task, in comparison to their classical counterparts.
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Historically, this led to a much stronger notion of “quantum supremacy” than Feynman proposed:

quantum computers may be advantageous in all tasks [153].

We have demonstrated that any quantum generator of a classical process, though potentially

advantageous in memory, requires nonzero dissipation in order to cash in on that advantage.

Furthermore, not every process necessarily has a q-machine that achieves zero dissipation. This

is in sharp contrast to the classical outcome. And so, this returns us to the spirit of Feynman’s

vision for simulating physics, in which it may sometimes be the case that the best machine to

simulate a classical stochastic process is a classical stochastic computer—at least, thermodynamically

speaking.
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CHAPTER 7

Where the light is: Statistical physics in carbon footprinting

The ages that are past

Are now a book with seven seals protected:

What you “the Spirit of the Ages” call

Is nothing but the spirit of you all,

Wherein the Ages are reflected.

Goethe, Faust, transl. Bayard Taylor

7.1. Introduction

As our planet faces environmental catastrophe of unprecedented scope, it has become necessary to

address human impacts on the climate and global ecosystem through multilateral action by the

world’s governments. Warnings have been raised about the pitfalls of too short-sighted a response.

For instance, treaties that only address pollution at the point of production may effectively outsource

carbon-intensive activities from signatory nations to nonsignatories, a process known as carbon

leakage [47,148]. Instead, a holistic response that accounts for the multifaceted social relations

driving environmental impacts is required [15,70,84,159,179]. Acquiring the data needed to make

such holistic assessments, however, is a challenge in its own right.

Multiregional input-output (MRIO) tables provide data on the monetary transactions between

national-level industries, both within a nation’s borders and across them [92,99,100,169,211].

These can be used to construct models of the interconnected global economy. MRIO tables can be

ecologically extended (called EE-MRIO tables) by adding local data on the environmental impacts

that arise as byproducts of production.

Leontief analysis is a method frequently paired with EE-MRIO tables to attribute production-

level impacts to the (potentially distant) activities that they support—typically consumption

[9,15,16,46,47,49,54,94,101,134,135,143,144,147,148,152,178,212,215]. These attributed
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impacts are said to be embodied in the consumed product. The flows of embodied impacts computed

from EE-MRIO tables have been utilized in policy analysis by global and national government

institutions [1,2,3,65]. Leontief analysis makes key assumptions, however, whose accuracy has

been brought into question, particularly when applied to existing MRIO tables [92,169,170].

The following explores the consequences of these assumptions, through the lens of statistical

mechanics. Given the considerable importance of the questions being asked in Leontief analysis

and the potential for policy impact, it is important that we ensure the methods of data analysis

used provide us with actual insights into the hidden structures at play. Otherwise, we run the

risk of misidentifying the “spirit of our data” with the “spirit of our assumptions.” We identify in

this chapter that the assumptions of Leontief analysis are indeed strong drivers of the quantitative

metrics observed.

In particular, we find that when certain reasonable conditions hold on an EE-MRIO dataset—

namely, relatively small trade deficits among nations and geographically heterogeneous impact

intensities—the directionality of embodied impact flows to and from extremal regions is heavily

influenced by the impact intensities. Notably, the MRIO tables themselves have only a secondary

effect. We call the phenomenon mediating this eco-majorization.

Our analysis of eco-majorization relies on the general theory of majorization and Lorenz curves [123]

which have found wide application in economic and social analysis [115,203], statistical decision

theory [18, 19], and statistical physics [29, 30, 71, 73, 77, 116]. We have thus far encountered

majorization and Lorenz curves in Section 1.5 and Chapters 4 through 6. They are a means of

characterizing the differences between two distributions without reducing those differences to a

single parameter. The intuition of majorization has a natural foothold in the assumptions of Leontief

analysis and EE-MRIO tables. Due to this, heterogeneities in impact intensities drive embodied

flows in a manner directly analogous to physical diffusion.

Disentangling the results of a mode of analysis from mathematical artifacts that arise from the

assumptions entailed is a difficult and often overlooked practice when working with complex data.

For this reason, the use of specialized null models in network science has become increasingly

popular [10,56,154,155,171,210]. The null models are used to randomly generate networks with

special constraints designed to replicate the structural assumptions of a dataset while otherwise
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reducing structural biases via random connections. Following this, we use null models specifically

constructed to address the structures of EE-MRIO datasets, providing numerical confirmation of

how majorization mediates the relationship between the assumptions of Leontief analysis and the

embodied flows it detects.

This chapter is largely based on the manuscript Nonequilibrium Thermodynamics in Measuring

Carbon Footprints: Disentangling Structure and Artifact in Input-Output Accounting [110]. In

Section 7.2 we will provide an overview of the relevant features of input-output tables and Leontief

analysis. Following this, in Section 7.3 we will construct a null network model of an MRIO

and demonstrate that certain quantitative results of Leontief analysis are largely independed of

the generated network data. In Section 7.4 we will provide a mathematical explanation of this

phenomenon rooted using majorization theory, and define a particular form of majorization which

in this context may be called eco-majorization.

7.2. Input-output models and ecological footprints

The following describes the basic components of EE-MRIO analysis, focusing on aspects relevant

to the developments in Sections 7.3 and 7.4. Useful reviews of input-output methods are found in

Refs. [92,144,169].

7.2.1. Basic input-output analysis. An economy (I,V,D) is composed of finite sets of

industrial sectors I, value-added sectors V , and final demand sectors D. Value-added sectors usually

include factors of production, such as labor, capital, land, and natural resources. Final demand

sectors indicate the various forms of consumption: traditionally, private consumption, government

spending, and business investment.

An economy’s operation is cast as various kinds of flow between the sectors. To capture these for

an economy, an input-output table is defined as the triple (Z,V,D) of matrices with interindustry

flows Zij (i, j ∈ I); value-added flows Vui (i ∈ I, u ∈ V); and final-demand flows Dia, (i ∈ I,
a ∈ D). Interindustry flows describe transactions between industrial firms; value-added flows

describe factor returns such as wages, profits, and rent; final-demand flows describe the direct

spending by individuals, governments, and businesses on consumable commodities, services, and

fixed capital. By focusing on monetary flows, we are implicitly assuming that the necessary material
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requirements for each industry and demand are met, and that supply equals demand overall. The

effects of relaxing this assumption are beyond the scope of the present work.

Each matrix component describes the flow of money from the column sector to the row sector over a

given time period (typically a year). For instance, Zij describes the total flow of money from sector

j to sector i. Each industrial sector is assumed to be balanced, so that the total outlays equal the

total output:

∑
u∈V

Vui +
∑
j∈I

Zji︸ ︷︷ ︸
Outlays

=
∑
j∈I

Zij +
∑
a∈D

Dia︸ ︷︷ ︸
Outputs

(7.1)

We define, respectively, the total outlays zi of industry i, total value-added vi by industry i, and

total demand di of industry i as follows:

zi :=
∑
u∈V

Vui +
∑
j∈I

Zji =
∑
j∈I

Zij +
∑
a∈D

Dia,

vi :=
∑
u∈V

Vui, and di :=
∑
a∈D

Dia .

(7.2)

We additionally define the total income as Y := ∑
i vi, which is necessarily equal to the total

spending ∑i di by Eq. (7.1).

A primary use of input-output analysis is to attribute the impacts of various activities to each

of the final demand sectors. This provides a useful way to conceptualize the complex economy’s

interconnected causal relationships. To do this, we first define the technical coefficients Cij as

Cij := Zij/zj . These specify the outlays on activity i required to produce a single monetary unit

of output in sector j. Equation (7.1)’s balance condition can then be written in matrix form as

z = Cz + d, a linear algebra problem whose solution (for z) is:

z = (I−C)−1 d ,(7.3)

where I is the identity matrix and one uses the matrix inverse. Written more explicitly we have:

zi =
∑
a∈D

[
(I−C)−1 D

]
ia
.(7.4)
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This expresses the total output as a column-sum of the matrix (I−C)−1 D. The sum allows us to

break sector i’s total output into parts, each attributed to a particular final demand a ∈ D. The
attribution matrix A:

Aia :=

[
(I−C)−1 D

]
ia

zi
,(7.5)

describes, for each dollar of output in sector i, how much of that dollar is attributed to final demand

a. Determining these attributions is called Leontief analysis after its originator [99,100].

(Note how the value-added terms vi have been whisked away in this analysis; the approach may be

reversed to attribute outputs to factors Y rather than to final demands D. While not explicitly

considered here, the results derived for demand-based accounting apply symmetrically to factor-based

accounting.)

It will be important, later, to note that ∑aAia = 1. When this property holds for a matrix,

in addition to the condition of nonnegative components, we say the matrix is stochastic. It has

considerable importance for majorization.

The utility of Leontief analysis rests on two main assumptions [169]:

(L-1) Sectors produce homogeneous products: Due to this, we do not reweight the technical

coefficients to reflect differences between the purchasing sectors—they purchase the same

item.
(L-2) Sectoral products are homogeneously priced: Every buyer pays the same unit price.

This again allows using the technical coefficients without modification to reflect differences

in the inputs required per dollar for different purchasers.

These have been particularly singled out because of their crucial role in justifying the use of the

single matrix Ari,s to compute all attribution vectors. We will return to the assumptions later to

discuss how this constraint impacts the results of Leontief analysis.

For now, we mention two important reflections of these assumptions in the results above. First is

the fact that ∑sAri,s = 1 for all regions r and industries i. Additionally, because (I−C)−1 is a

positive matrix [188], Ari,s is also positive. These two facts give the matrix Ari,s the property of

stochasticity. That the direct impacts and attributed impacts can be related by a single stochastic
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matrix is a reflection of the homogeneity in each of these assumptions, and is the central factor at

play in our results.

Second, income itself can be treated as an impact. The value-added vector, when passed through

the attribution matrix, returns the regional spending vector:

x̂s =
∑
ri

vriAri,s ,(7.6)

While Sec. 7.2.2 explains the identity’s mathematical origin, conceptually it arises from assumption

(L-2): Impacts are attributed to demand in the exact same manner that incomes are attributed to

spending. Both the stochasticity of Ari,s and Eq. (7.6) will be critically important when applying

majorization.

7.2.2. Multiregional models. Multiregional input-output (MRIO) tables deepen the struc-

ture of input-output tables by dividing sectors into regions [99]. Specifically, we suppose there

is a finite set R of regions and each set of sectors is organized as I = R× I0, V = R× V0, and

D = R×D0, where I0, V0, and D0 are the regional-level industrial, value-added, and final-demand

sectors, respectively. An economy with this structure is said to be a multiregional economy.

The matrices and vectors described above can be adapted to this geographic picture by replacing

each individual index i ∈ I (or others) with the pair (r, i), r ∈ R and i ∈ I0. This corresponds to

re-envisioning the matrices and vectors as block-matrices and block-vectors, with rows and columns

organized by regional blocks. In a block matrix each row and column indicates a pair (r, i), so that

the first |I| indices correspond to all the industries in one region, and so on; Fig. 7.1 gives a visual

aid. Our notation indicates this through use of commas: Zri,sj is a compact way of denoting the

matrix element Zr×|I|+i,s×|I|+j , and similarly for vri and dri.

Additionally, simplifying constructs are often used in collecting and apportioning the data. For

instance, in the dataset GTAP 8 (discussed shortly), I contains a duplicate of each industry, one

for managing imports and the other for domestic industries. Cross-regional trade from r to s can

only go from the domestic copy of industry i in r to the import copy of industry i in s. That is,

cross-regional trade is not treated as cross-industry. This is represented visually by the diagonal

structure of off-diagonal blocks in Fig. 7.1.
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Zri,sj

vsj

dri

e
(α)
sj

(s, j)

α

(r, i)

Figure 7.1. Block-matrix structure of a typical EE-MRIO table with |I| = 2 and
|R| = 3. Blue and orange blocks are arranged into the single block-matrix Zri,sj ,
representing the value of all inter-industry transactions. Red blocks correspond
to the value-added vector vri, consisting of all returns to wages, profits, and rent.
And, the green blocks correspond to the final demand vector dri, consisting of all
expenditures by consumers, governments, and investors. Pink blocks represent two
separate ecological impact distributions e(α)

ri .

For another common simplification in trade datasets, while the inter-industry flows Zri,sj may

involve considerable inter-regional interaction, it is typically supposed that Vru,si = 0 and Dri,sa = 0

whenever r 6= s. In other words, regional factors are paid directly by a same-region industrial sector

and regional consumption purchases directly from a same-region sector. (The direct consumption of

imports is addressed by introducing intra-regional importing sectors to mediate the inter-regional

interaction, usually doubling the size of I0.) This makes V and D block-diagonal.

Three concepts are important when identifying majorization. First, while global income and global

spending equal one another, it is not necessarily the case that regional income and regional spending

are equal. In fact, this difference is directly related to the trade deficit, by Eq. (7.1). Denoting
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the regional income ŷr := ∑
i vri, the regional spending x̂r := ∑

i dri, and the inter-regional trade

Ẑrs := ∑
ij Zri,sj , we have:

ŷr − x̂r︸ ︷︷ ︸
Income – Spending

=
∑
s∈R

(
Ẑrs − Ẑsr

)
︸ ︷︷ ︸
Exports – Imports

.

We will refer to ŷ− x̂ as simply the regional deficit vector. Its properties will be important in our

study of majorization in Leontief analysis.

Second, when using MRIO tables to attribute economic activities to their corresponding demands,

considerably more focus is given to the region of demand than the actual sector. Presently, this is

our entire concern. We therefore define the regional attribution matrix Â as:

Âri,s :=
∑
a∈D0

Ari,sa ,

where A is the block-matrix form of the attribution matrix defined in Eq. (7.5). In Â, the rows

are block-structured by regions, while the each column directly corresponds to a unique region. Â

retains the stochastic property.

Third, a profoundly important identity emerges when applying the regional attributions matrix to

the value-added vector from Eq. (7.2): we arrive at the regional spending vector x̂r:

vÂ = x̂ .(7.7)

This follows from the relation:

vri
zri

= 1−
∑
s∈R
j∈I0

Csj,ri ,

that, in turn, is a consequence of Eq. (7.1). What Eq. (7.7) tells us is that the total value of the

income for which each region’s consumption is responsible is just that region’s spending. And, this is

the only consistent attribution if global income is to equal global spending. Leontiefian assumptions

(L-1) and (L-2) suppose that environmental impacts may be attributed along the same lines as

monetary flows. The fact that Âri,s accurately attributes income to spending is a reflection of these

assumptions and plays a central role in the appearance of majorization.
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7.2.3. Environmentally extended tables. As mentioned already, we wish to explore the

use of MRIO tables to attribute the impacts of economic activities to the demand sectors that

stimulate them. Impacts themselves are often accounted for by environmentally extending the

input-output table. A MRIO table with environmental extension is an environmentally-extended

MRIO (EE-MRIO) table.

In the multiregional setting, an environmental extension is a family of block vectors {e(α)}, indexed
by impact α, with the form e

(α)
ri , r ∈ R and i ∈ I0. The quantity e(α)

ri gives the total impact of the

activity in sector i and region r during the same time period as the other input-output matrices.

For instance, if α corresponds to greenhouse gas emissions, then e(α)
ri is the quantity of greenhouse

gases emitted measured in carbon dioxide equivalents. The regional impacts are then given by

ê
(α)
r = ∑

i e
(α)
ri and the total impacts are denoted E(α) = ∑

r ê
(α)
r .

Given impact α, we define the α-intensity f (α)
ri of sector (r, i) as the ratio of environmental impact

to economic impact. While there are many different definitions, for our needs we define it as:

f
(α)
ri := e

(α)
ri /vri
E(α)/Y

.

That is, we take the ratio of the impact e(α)
ri to the value-added vri by sector (r, i). This directly

relates the emission at a given stage of production to the value added to the region by that production.

(Not counted in this is the economic input from other industries, as this value has already been

counted as value-added in another industry.) To remove dependence on the units used, we normalize

the ratio by comparing it to the total ratio between emissions and income.

We can similarly define the regional intensity by

f̂ (α)
r := ê

(α)
r /ŷr
E(α)/Y

(7.8)

=
∑
i∈I0

vri
ŷr
f

(α)
ri .

As Eq. (7.8) indicates, this can be conceptualized either as a ratio of totals or the regional average

of sectoral intensities.

Impacts happen at the point of production, but this activity meets a demand somewhere potentially

geographically distant. Impacts may be thought of as becoming embodied in their product, which
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travels from production to demand [211]. EE-MRIO tables have been frequently used to compute

the flow of embodied impacts from production to final demand. While impact at the point of

production is described the impacts vector ê(α), the embodied impacts attributed to each region r

are given by the attribution vector:

â(α) := e(α)Â .(7.9)

In theory, the quantity â(α)
r describes the total impact, originating anywhere in the global economy,

required to meet the demands of region r. We again emphasize that this depends on the assumptions

(L-1) and (L-2). For now, it is sufficient to appreciate that these are the standard calculations

employed in Leontief analysis of EE-MRIO tables.

Embodied flows resulting from Leontief analysis are frequently quantified by one or both of the

following proxy measures [9,15,16,46,49,54,101,134,143,178,215]:

(1) The net export ξ(α) = (ξ(α)
r ) of attributed impact, as a share of total global impact:

ξ(α)
r = ê

(α)
r − â(α)

r∑
r ê

(α)
r

.

(2) Or, the ratio ρ(α) = (ρ(α)
r ) of attributed impact to direct impact:

ρ(α)
r = â

(α)
r

ê
(α)
r

.

Naturally, these are closely related, as they ultimately express the relationship between the relative

sizes of produced impacts and consumed impacts.

7.3. Data or artifact?: Consulting the null model

Null models, also configuration models, are a popular tool in the study of complex networks.

They are widely applied to social [93, 210], animal [56, 155], and biological [154] networks to

separate-out structures detected in empirical networks from those engendered by methodological

assumptions [10,171]. Often particular aspects of the networks—such as degree distribution—are

held constant while all remaining aspects are randomized.
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The following constructs a null model of global trade that maintains similar technical coefficients

between industries, but “social coefficients”—those determining the relations between nations,

dependency on imports, proportion paid to factors, and so on—are entirely randomized. This way,

structures that consistently arise from Leontief analysis of networks drawn from this model cannot

be attributed to social relations. They are, rather, artifacts of the assumptions of Leontief analysis.

7.3.1. Null models and GTAP 8. The Global Trade Aggregation Project (GTAP) [140]

offers an extensive collection of transaction tables over a large number of regions and sectors. GTAP

has been used as the EE-MRIO source data in many studies of embodied carbon emissions and

other impacts [15, 16, 46, 152, 215]. We used GTAP 8 covering 134 regions (114 of which are

countries), with 57 industrial sectors within each region, as well as 5 factor sectors (skilled and

unskilled labor, capital, land, and natural resources), the standard 3 final demand sectors, and

further sectors that fall outside the scope of our analysis. The data on these sectors was used to

construct a multiregional input-output table. GTAP 8 comes directly with environmental extensions

for carbon and energy use, and a number of satellite datasets exist providing further extensions. As

an additional point of comparison, we used the satellite GMig2 [208] that provides information on

labor inputs in human-years.

The carbon and labor data provided by GTAP 8 and GMig2 allowed us to compute the carbon and

labor intensities, f̂ (CO2) and f̂ (L), respectively, over 17 megaregions formed by aggregating the 134

GTAP standard regions.

We then constructed a null model for generating trade datasets over a reduced MRIO system with 4

factors, 16 industrial sectors, and 17 regions (aggregated from the GTAP sectors and regions). The

null model has two parameters: a scalar ζX and a vector ζC,i taking values over industrial sectors. It

makes liberal use of Dirichlet distributions as the source for drawing randomly-generated stochastic

matrices from which the input-output tables are procedurally constructed.

Recall that a Dirichlet distribution Dir(α1, . . . , αK) is defined on the simplex of probability vectors

over K elements. The density function of Dir(α1, . . . , αK) is given by:

d(p1, . . . , pK) ∝
K∏
i=1

pαi−1
i .
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Notably, when α1, . . . , αK all equal 1, the Dirichlet distribution draws from all probability vectors

with equal weight (a uniform Dirichlet). Otherwise, it tends to draw probability vectors whose

weight distribution is similar to that of the vector (α1 − 1, . . . , αK − 1), varying to a degree that is

inversely proportional to α0 := ∑K
i=1 αi (a nonuniform Dirichlet).

The null model uses nonuniform Dirichlet distributions to draw the values of the regional technical

coefficients so that they are similar to the global coefficients C̃(GTAP)
ij from GTAP 8 with a degree of

variation controlled by the parameter ζC,i for each industrial sector i. All other coefficients—which

we call social coefficients—are constructed from combining uniform Dirichlet distributions. Social

coefficients are those that depend on exogenous social parameters, such as acceptable wage levels,

trade agreements, and consumer ethics. Technical constraints, as calculated by the GTAP 8 dataset,

are emulated in the null model; social constraints are randomized entirely.

Using the technical and social coefficients, we can use another nonuniform Dirichlet to generate

the regional spending and income distributions so that the regional deficit is small, controlled by

parameter ζX . Baseline values ζ̄C,i and ζ̄X are derived to replicate the variation among regional

technical coefficients and deficits in the GTAP 8 data.

To begin, we define the regional technical coefficients Ĉi,sj and global technical coefficients C̃i,j to

be:

Ĉi,sj =
∑
r Zri,sj∑
r,i Zri,sj

, C̃i,j =
∑
r,s Zri,sj∑
r,i,s Zri,sj

.

The first characterizes the input requirements of regional industries relative to other industries.

Note that the social choice of from which regions to acquire inputs is not described by this matrix.

The second C̃i,j averages these industrial requirements over the entire globe.

Our null model is then constructed as follows:

(1) The global technical coefficients C̃(GTAP)
ij from GTAP 8 are used as a baseline to generate

regional technical coefficients. Namely, for each region r and industry j the technical

coefficients Ĉi,rj are drawn as:

Ĉi,rj ∼ Dir
(
αi = ζC,iĈi,rj

)
.
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This ensures that the technical composition of local industries is similar to that found in

the GTAP 8 database. The vector parameter ζC,i controls the degree of similarity.
(2) The regional spending distribution sa,r, consumption coefficients ci,ra, import coefficients

Mi,sj , regional supply coefficients Rr,si, value-added coefficients Uri, and factor coefficients

Fu,ri are all drawn from uniform Dirichlets:

sa,r ∼ Dir (αa = 1)

ci,ra ∼ Dir (αi = 1)

(Mi,sj , 1−Mi,sj) ∼ Dir (α1 = 1, α2 = 1)

Rr,si ∼ Dir (αr = 1)

(Uri, 1− Uri) ∼ Dir (α1 = 1, α2 = 1)

Fu,ri ∼ Dir (αu = 1)

.(7.10)

In order, these describe: the distribution of regional spending among the final demand

sectors; the distribution of spending by each final demand sector among its products of

consumption; the proportion by which a given industrial sector will import a particular

input instead of source it domestically; the regional probability of importing an input

from another specific region; the proportion of capital outlay towards factors by a given

industrial sector; and the distribution of that capital among the factors. These describe

socially-determined relations between the regions and sectors. These are the relationships

we seek to randomize in the null model.
(3) The full technical coefficients are constructed as:

Cri,sj =


(1− Uri)(1−Mi,sj)Ĉi,sj r = s

(1− Uri)Rr,siMi,sjĈi,sj r 6= s

.

From these we define the matrix:

Kr,s :=
∑
i,j,a

Uri (I−C)−1
ri,sj cj,sasa,s .
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This matrix describes the likelihood that money originating in a final demand sector in

region s ends up in a value-added sector in region r. Now, given any particular global

spending distribution x̂, the regional incomes are determined by ŷ = Kx̂. We calculate

the eigenvector π such that Kπ = π. (Its existence is guaranteed by the fact that L is

stochastic in its left index.) If spending matched this eigenvector, then no region would

hold a trade deficit or surplus. All trade would be equally balanced. The spending in our

model is drawn from a Dirichlet as:

x̂r ∼ Dir(αr = ζXπr) .

Thus, the parameter ζX controls the scale of trade imbalance.
(4) The multiregional input-output table can now be constructed as:

Dri,ra = ci,rasa,rx̂r

Zri,sj =
∑
t∈R
k∈I0
a∈D0

Cri,sj (I−C)−1
sj,tkDtk,ta

Vru,ri =
∑
s∈R
j∈I0
a∈D0

Fu,riUri (I−C)−1
ri,sj Dsj,sa

.(7.11)

From Zri,sj we compute the sector activities zri = ∑
s,j Zri,sj and finally the attribution

matrix:

Ari,sa =

[
(I−C)−1 D

]
ri,sa

zri
.

The parameters will be generally set at baseline values ζ̄C,i and ζ̄X , determined by:

ζ̄−1
C,i =

∑
r∈R
j∈I0

v
(GTAP)
ri∑
s v

(GTAP)
si

Ĉ
(GTAP)
j,ri log

 Ĉ(GTAP)
j,ri

C̃
(GTAP)
j,i



ζ̄−1
X =

∑
r∈R

x̂(GTAP)
r log

(
x̂

(GTAP)
r

π
(GTAP)
r

) .(7.12)

This uses the Kullback-Liebler divergence [36] as a proxy for the degree of difference between various

empirical distributions. This sets the baseline for similar variations within the null model.
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Additionally, we built a second, simpler null model for producing environmental extensions. It

generates impact intensities, with control over the heterogeneity of intensity across regions and

sectors. The imaginary resource that this impact represents is termed unobtainium or simply U.

The null model involves constructing a new parameter ζU . We sample unnormalized intensities,

denoted φ(U)
ri , as:

φ
(U)
ri ∼ Dir(αri = ζU ) .

ζU is set to a low value—our baseline is ζ̄U = 0.05—resulting in the Dirichlet sampling distributions

with high peakedness around randomly selected sectors and so assuring heterogeneity. By increasing

ζU , we can reduce heterogeneity. The normalized intensities, for a given MRIO, are then determined

as:

f
(U)
ri = φ

(U)
ri∑

s,j vsjφ
(U)
sj

.

Combining both null models allows generating a wide sampling of EE-MRIO tables with random so-

cial coefficients, while controlling for technical coefficients, regional deficits, and impact heterogeneity.

These last two attributes, in particular, are important for majorization, as we will show.

7.3.2. Flows in the null model. Leontief analysis of the null-model MRIO tables paired

with the empirical labor and CO2 distributions exposed a strong bias for high-intensity regions to

be net exporters and low-intensity regions to be net importers of embodied CO2 emissions. This

finding mirrors previous results [9,15,16,46,47,49,54,94,101,135,143,147,148,178,212,215].

The key difference is that our trade networks were entirely randomized. Importantly, this suggests

that our findings are not a consequence of global trade relations, but an artifact resulting from

pairing unequal intensities with Leontief analysis. Given that this is a natural research strategy for

the field, the conclusion is a cautionary lesson.

We drew 1000 samples from the null model with ζC,i and ζX set at the baseline values ζ̄C,i and

ζ̄X . For each sample from the null model, we juxtaposed the resulting attribution matrix with

the predetermined CO2 intensity f̂ (CO2) and labor intensity f̂ (L) to calculate the embodied flows

of these impacts. For each region and impact, we calculated the proportion of samples for which
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Figure 7.2. Embodied CO2 flows: Two sets of information for each of 17 megare-
gions. Regional color : Normalized intensity f̂ (CO2)

r for each region r with bright
yellow indicating higher intensities and dark blue indicating lower. Regional pie
charts: Proportion of null models for which the given region was a net exporter
(yellow) or a net importer (blue). A chart’s amount of yellow corresponds to the
quantity Ξ(α)

r —sample proportion of net positive exports; see text. This map uses
the Equal Earth projection [168].

the net exports ξ(α)
r were positive, denoting the proportion Ξ(α)

r . In addition to being a function

of the region r, Ξ(α)
r is dependent on the null model parameters as well as the impact distribution

ê(α), and may be termed the null likelihood of net exports for region r with respect to resource α.

Figure 7.2 displays the impact intensities in color and the null export likelihood as a pie chart for

each region with respect to CO2.

Despite the null model having no preferred directionality between regions or, for that matter, even

any preferred tendency between imported and domestic sources, one sees that high-intensity regions

have a strong tendency to export embodied CO2 while low-intensity regions have a strong tendency

to import embodied CO2. Moderately-intense regions do not exhibit bias.

The relationship between intensity f̂ (α)
r and export likelihood Ξ(α)

r can be expressed using a nonlinear

measure of correlation, such as Kendall’s τ [91]. We found that the correlation between the two

quantities for carbon was τ (CO2) = 0.68. While, for labor, the correlation was a remarkable
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τ (L) = 0.96. Likely, this is due to the fact that labor intensities are determined on the factor level—

consequently, there is no intra-regional variation in labor intensity that confounds the relationship

between intensity and global trade.

In this way, the null models demonstrate that complete randomization of social factors in MRIO

tables has little effect on the directionality of embodied flows: they are still directed from high- to

low-intensity regions. The following section offers an explanation, via majorization, for how the

assumptions underlying Leontief analysis itself drive the correlation between impact intensities and

embodied flows.

7.4. Eco-majorization: Visualizing the effects of Leontiefian assumptions

Section 7.3 discusses the primary results from our null-model MRIO table. In this section we will

provide a definition of eco-majorization. We show how, in the framework of Leontief analysis, it

drives global flows of trade, in a manner that explains the results of Section 7.3. This leads us to

analyze the conditions under which Leontief analysis is biased towards eco-majorized results. Lastly,

we alter the parameters of the null model to explore the consequences of relaxing these conditions.

This reveals a strong relationship between eco-majorization and the directionality of embodied CO2

flows.

7.4.1. Majorization and statistical mechanics. To fully appreciate the results coming

from the null models, we must compare various distributions. To this end, we introduce a tool with

a long tradition that recently gained traction and found significant development in information

theory and statistical physics. The tool in question is majorization—more specifically, relative

majorization [123,157,203]. We describe the necessary background below and also provide a primer

in Fig. 7.3.

Given two probability distributions p = (pi) and q = (qi) defined over a finite set S, we construct

their Lorenz curve `p,q : [0, 1] → [0, 1] as the piecewise convex function connecting the points

(xn, yn):

xn =
n∑

m=1
pim , yn =

n∑
m=1

qim ,
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Figure 7.3. Majorization Primer: (a) Example a Lorenz curve for a pair of distri-
butions (p,q) over 6 elements. We assume the elements are indexed so that pi/qi
is monotonically decreasing. p and q are not homogeneous with respect to one
another, and so the Lorenz curve bows out above the diagonal. (b) An example of
two pairs, (p,q) and (p′,q′), such that (p,q) � (p′,q′). Visually, this means that
the second Lorenz curve is fully beneath the first and, therefore, closer to the line of
homogeneity. (c) Example where majorization does not hold. The extent of failure
can be described by the dismajorization, defined as the total q′-probability associated
with the majorization-breaching vertices. “DM” stands for dismajorization.

where (im) = (i1, i2, . . . ) orders the set S so that pim/qim is monotonically decreasing in m.

Given two pairs of distributions (p,q) and (p′,q′), if `p,q(x) ≥ `p′,q′(x) for all x ∈ [0, 1], then we

say that (p,q) majorizes (p′,q′) [203]:

(p,q) � (p′,q′) .

An intuitive application of majorization in fact arose in its first use as an indicator of economic

inequality [115]. In this context, if p describes the population distribution and q the wealth

distribution, the Lorenz curve completes statements of the type “The richest x% of the population

holds `p,q(x)% of the wealth.” One country can be said to be definitively more unequal than another

if its Lorenz curve is always higher. Majorization generalizes this relationship.

The connection between majorization and nonequilibrium statistical mechanics, as well as its

connection to our work, arises as a consequence of the Blackwell-Sherman-Stein (BSS) theorem

[18,19]: (p,q) � (p′,q′) if and only if there exists a stochastic matrix T such that Tp = p′ and

Tq = q′. This connection is profound, given the frequent appearance of stochastic matrices in
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statistical mechanics, information processing, stochastic processes, game theory, and decision theory,

and far more.

It has quite recently found significant application in the intersection between information theory and

nonequilbrium statistical mechanics. Actions taken upon a thermodynamic system can be described

as stochastic matrices over a system’s microstates. In this setting, it can be shown that any action

(described by stochastic matrix t) that satisfies (i) energy conservation, (ii) Liouville’s theorem or

information conservation, and (iii) access to a thermal reservoir of temperature T must obey the

constraint:

∑
j

ti|jγj(T ) = γi(T ) ,(7.13)

where γi is the Boltzmann-Gibbs distribution:

γi(T ) = e−Ei/kT

Z(T ) , Z(T ) =
∑
i

e−Ei/kT

and E = (Ei) defines the energies of each microstate i [77].

The significance of this observation is that even when operating on a distribution p that is far from

equilibrium—that is, not equal to γ(T )—the actions we take must still satisfy Eq. (7.13). Using the

BSS theorem, we learn that a distribution p can be physically transformed into another p′ using a

bath at temperature T only if (p,γ(T )) � (p′,γ(T )). It is said in this case that p thermo-majorizes

p′ [71]. This connection between majorization and thermodynamics has been used to derive a

number of relations that leverage thermodynamic fluctuations to extract work in the nanoscale,

single-shot regime [29,30,71,116,157].

When majorization does not hold, it may hold approximately—a fact that can still result in many of

the same consequences of majorization. It will be useful to have a quantification of dismajorization

that allows us to distinguish between small and large violations of majorization.

We define the dismajorization DM [(p,q); (p′,q′)] of two pairs of curves in the following way. Let

(im) be the same ordering of indices used above and let x′n and y′n be defined in the same manner as

xn and yn but for the pair (p′,q′). Finally, let N be the set of n such that y′n > `p,q(x′n)). Then
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we define:

DM
[
(p,q); (p′,q′)

]
=
∑
n∈N

q′in

as the total probability associated with the points where the second Lorenz curve exceeds the first.

7.4.2. Eco-majorization and Leontief bias. Majorization’s key benefit is that it readily

explains the internal mechanics of input-output analysis. In this way, the present use is yet

another example of generalizing thermodynamic logic to new settings. Such applications have,

for instance, already been powerfully applied to develop quantum resource theories, which make

frequent use of majorization to study entanglement and other quantum properties as a nonfungible

resources [29,30,71,73,77].

The following, using it, shows that Leontief analyses tends to detect flows of embodied impacts

from high-intensity regions to low-intensity regions. The effect is physically analogous to particles

diffusing from high-density to low-density regions. In this way, majorization connects these two

settings.

Majorization is defined on probability vectors, whose total sum is normalized to 1, but we will for

simplicity write unnormalized vectors in the majorization pairs as a shorthand for the majorization

of their normalized forms. We will demonstrate that if the following conditions hold for an EE-MRIO

with impact α:

(MRIO-1) The regional impact intensities f̂ (α) are highly heterogeneous and

(MRIO-2) The regional deficit x̂− ŷ is small as a proportion of regional income across regions,

then with high probability Leontief analysis results in (or approximately results in) the majorization:

(
ê(α), ŷ

)
�
(
â(α), ŷ

)
.(7.14)

As this phenomenon links both ecological impacts and economic activity levels, we call this relation

eco-majorization, where the prefix may refer to either. We note that both assumptions hold for the

GTAP 8 dataset.

Since the regional income distribution ŷ plays a role similar to the thermodynamic Gibbs distribution,

the stated relation tells us that the embodied impacts â(α) are more similarly distributed to the
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Figure 7.4. Most intense regions must be net exporters: Graphical proof that, as
long as eco-majorization holds, the k most intense regions Rk will have â(α)

Rk ≤ ê(α)
Rk .

This rests on the fact that the partial Lorenz curve β corresponding only to the
regions Rk must be below the Lorenz curve `â(α),ŷ. And that, in turn, falls below
`ê(α),ŷ.

regional incomes than to the local impacts ê(α). This necessitates transferring embodied impacts

from high-intensity regions, where distributional imbalance is most positive, to low-intensity regions,

where it is most negative.

We quantify the previous statement using net exports ξ(α) and impact ratios ρ(α)
r . Let Rk be that

subset of regions containing the k regions with the highest values of f̂ (α)
r . Then it can be shown

that, if eco-majorization holds:

∑
r∈Rk

ξ(α)
r ≥ 0 and

∑
r∈Rk

ê
(α)
r

E
ρ(α)
r ≤ 1 .(7.15)

Both indicators then tell us that regions in Rk must be net exporting or, at least, never net importing.

Figure 7.4 presents a visual proof using Lorenz curves. Since a Lorenz curve is monotonically

decreasing in slope, the curve β(x) formed by taking only a subset of segments must always be

lower in height than the original curve. From this it can be seen that when
(
ê(α), ŷ

)
�
(
â(α), ŷ

)
,

we must have ∑r∈Rk âr ≤
∑
r∈Rk êr, from which Eqs. (7.15) hold.
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Eco-majorization, then, places rigid constraints on the directionality of trade flows. Our null model

simulation decisively demonstrates it is at play in the observed relationship between intensity and

exports: embodied labor flows were eco-majorized for 100% of the simulated networks and embodied

CO2 flows were eco-majorized for 72% of the simulated networks.

These results suggest that while eco-majorization is not guaranteed, it is a highly ubiquitous

phenomenon among randomly generated MRIO tables. The issue, we argue, rests in the presence of

the two conditions (MRIO-1) and (MRIO-2).

Due to Eqs. (7.6) and (7.9), the BSS theorem automatically entails:

(
e(α),v

)
�
(
â(α), x̂

)
.(7.16)

This differs from Eq. (7.14) in two key respects. First, the lefthand side refers to the sectoral impact

distribution e(α) and the factor income distribution v rather than the regionalized distributions

ŷ(α) and ŷ, respectively. We call this difference regionalization. Second, the righthand side uses the

spending distribution x̂ instead of the income distribution ŷ. This is of little concern issue when the

regional deficit is small, as assumed in (MRIO-2). By the nature of Lorenz curves, small changes in

the underlying distributions result in correspondingly small changes in curve’s shape.

The subtlety, and the only reason why 100% of simulated networks do not display majorization for

all impacts, arises from regionalization: Eq. (7.16) shows that majorization holds for the full sectoral

distributions, but does not say anything about regional distributions. It is entirely possible that

Eq. (7.16) may be true and Eq. (7.14) may be false. The crux of this issue is, in fact, the same as a

major point of thermo-majorization theory: namely, that when the majorizing pair of distributions

are coarse-grained, majorization might no longer hold. Notably, many recent results on the work

cost of driving systems away from thermodynamic equilibrium exploit this phenomenon [30,157].

We are not interested here in how to induce this phenomenon. Rather, we are interested in why it

does not appear to naturally arise in either the existing trade data or the null model. Our argument

is that condition (MRIO-1) significantly constrains the possible configurations that may result in a

violation of Eq. (7.14).
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The argument is as follows. For a set S of regions, define:

ŷS :=
∑
s∈S

ŷs , f̂
(α)
S :=

∑
s∈S ê

(α)
s /E

ŷS/Y
, and f̂ (α)′

S :=
∑
s∈S â

(α)
s /E

ŷS/Y
.

Further, let ŷk := ŷRk for simplicity. To violate majorization there must be a set S of regions such

that:

f̂
(α)′
S ≥

(
ŷS − ŷk
ŷk+1 − ŷk

)
f̂

(α)
Rk +

(
ŷk+1 − ŷS
ŷk+1 − ŷk

)
f̂

(α)
Rk+1

,(7.17)

where k is the unique integer such that ŷk ≤ ŷS < ŷk+1. (This simply restates the definition of

majorization via Lorenz curves.) We can actually suppose without loss of generality that ŷk = ŷS .

This can be achieved by splitting regions into smaller but structurally identical subregions. So,

Eq. (7.17) can be expressed more simply as f̂ (α)′
S ≥ f̂ (α)

Rk .

Now, we may rewrite f̂ (α)′
S as:

f̂
(α)′
S =

∑
r∈R
i∈I0

Âri,syri
ŷS

f
(α)
ri .(7.18)

This considerably constrains the structure of matrices Â that yield a large value for f̂ (α)′
S . Specifically,

if f̂ (α)′
S ≥ f̂ (α)

Rk , then Âri,s either must put great weight on the most intense sectors within the regions

of Rk or it must draw from similarly intense sectors that may, with small probability, have arisen in

less intense regions. In either case, Âri,s must give high weight to sectors (r, i) with intensities f (α)
ri

that exceed the average intensity of the highest k regions: fri > f̂
(α)
Rk .

The Markov inequality states that for any positive random variable X with mean value x̂, the

probability that an instance exceeds the mean by a proportion β is constrained [36]:

Pr(X≥βx̂) (≤ ) 1
β
.

Then for each region r, the weight (under v) that a given sectoral intensity exceeds f̂ (α)
k by a

proportion β is:

∑
i:fri>βf̂ (α)

Rk

vri ≤
qrf̂

(α)
r

βf̂
(α)
Rk

.
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Thus, due to the Markov inequality, high-intensity sectors are suppressed in weight, in a manner

determined by the relative proportions of intensities between regions. When condition (MRIO-2)

holds—that is, the regional intensities are highly heterogeneous—this suppression is strengthened.

To counter this suppression in Eq. (7.18), Âri,s must place extremely high relative weight on

high-intensity sectors. In this case, however, very little weight remains to distribute among other

sectors. Combinatorially, then, matrices Â violating regional majorization occupy a relatively small

niche in the space of all configurations.

To summarize, as a consequence of the BSS theorem and fundamental facts of Leontief analysis,

Eq. (7.16) must hold for any EE-MRIO table. When assumptions (MRIO-1) and (MRIO-2) hold,

implying heterogeneity of regional intensities and small regional deficits, Eq. (7.16) further supports

eco-majorization Eq. (7.14) by constraining the possible configurations which are not eco-majorized.

In the analogous thermodynamic setting, the experimenter (a Maxwell’s “demon”) may intentionally

configure matrices that violate majorization after coarse-graining. In the setting of global trade,

however, such a matrix must come about as the result of a strict bias among some regions to only

consume high-intensity products. This is hardly realistic: Even at a national level, imports are a

function of the variegated needs of multiple consumers and corporations. And, they necessarily

draw their consumption from high-intensity and low-intensity industries. Regions, in short, do not

operate as Maxwellian demons—at least, not in regards to their bulk imports.

Furthermore, as the null model is symmetrically generated without knowledge of local intensities,

the null model is not be likely to draw models from the small niche required significantly violate

majorization. Indeed, it is worth noting that our null model effectively acts as a Monte-Carlo model,

calculating the total probability mass of the configuration space where majorization is violated.

7.4.3. Relaxing assumptions. To verify that conditions (MRIO-1) and (MRIO-2) are indeed

responsible for the appearance of majorization and, consequently, the coupling between intensities

and embodied flows, we made two modifications to the null model. First, we introduced null-impact

intensities. Second, we varied parameters of both the MRIO null model and the impact intensity

null model to determine their effects. We performed these in two separate trials.
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Figure 7.5. Emergence of eco-majorization: The results of varying the conditions
that, when paired with Leontief analysis, result in eco-majorization. (a) Relaxing
trade balance: Four suites of ensembles where the trade balance parameter was taken
as ζX = σ−1ζX , σ = 20, 21, 22, 23. As σ grows, so does the ensemble’s overall trade
deficit. A Gaussian kernel density was computed for the dismajorization and the
null likelihood of net export over the null model samples. The left plot demonstrates
that trade deficit’s increase has the effect of increasing the average dismajorization.
The right plot demonstrates that this also has the impact of shifting the net export
density from being bimodal to unimodal. (b) Relaxing heterogeneity: Four suites
of ensembles where the impact heterogeneity parameter was taken as ζU = σζU ,
σ = 20, 21, 22, 23. As σ grows, heterogeneity decreases. This has similar effects on
the dismajorization density plot and the net export density plot.

For the first, we generated 1000 unobtainium intensity functions with parameter ζU = ζ̄U . For each

scaling factor σ = 1, 2, 4, 8, we generated 250 MRIO tables from the null model with ζC = ζ̄C and

ζX = σ−1ζ̄X . This results in 4 ensembles of 250, 000 EE-MRIO tables each, with increasing trade

imbalances from one ensemble to the next.

For the second, we flipped the structure of this approach, generating 1000 MRIO tables from the

null model with ζC = ζ̄C and ζX = ζ̄X . Then, for each scaling factor σ = 1, 2, 4, 8, we generated 250

unobtainium intensities with parameter ζU = σζ̄U . This results in the same number of ensembles,

but with decreasing heterogeneity of intensities.

To quantify the effect of the changes in parameter on majorization, we used dismajorization

DM
[
(ê(U), ŷ); (â(U), ŷ)

]
, as defined in Section 7.4.1. For the first suite of ensembles, for every

sampled MRIO table we calculated the average dismajorization over all unobtainum distributions.
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Then, a density plot of average dismajorizations over all samples with a given scaling factor σ was

computed. The resulting density functions are shown in Fig. 7.5. Similarly, for the second suite, for

every sampled unobtainium distribution we calculated the average dismajorization over all MRIO

tables. Density plots were similarly taken for each scaling factor σ. The resulting density functions

are also shown in Fig. 7.5. We find in each case that the likely dismajorization increases dramatically

as the assumptions (MRIO-1) and (MRIO-2) are relaxed.

For both suites, we also sought to examine the impact of the scaling factors on trade-flow directionality.

To this end, we calculated the null likelihoods of net exports Ξr for each region and each unobtainium

distribution ê(U). We made a density plot of observed values of Ξr for each value of σ = 1, 2, 4, 8.

At the baseline parameter values (σ = 1), this density plot is bimodal, with one mode close to

zero (countries that tend to be net importers) and one mode close to one (those that tend to be

net exporters). However, as the baseline values are altered to relax assumptions, the density of Ξr
becomes unimodal—the sharp distinction between exporters and importers vanishes. This is true as

either assumption is relaxed.

These results complement those of the previous section. In Section 7.4.2 we showed that that the

assumptions (MRIO-1) and (MRIO-2) are together sufficient for majorization to be predominant;

Fig. 7.5 shows that they are each necessary. Additionally, relaxing either assumption (and the

consequent irrelevancy of majorization) diminishes an initially strong dichotomy between exporting

and importing nations, as the density of Ξr goes from bimodal to unimodal.

7.5. Discussion

A common adage in the social sciences involves a man looking for his keys under a streetlamp.

When asked if that is where he lost them, he “No—but it’s where the light is!”

Despite the increasing abundance of input-output data, and the convenient applicability of Leontief

analysis, we should not be too hasty in drawing conclusions from its results. The two assumptions

of Leontief analysis, (L-1) and (L-2), are critically important for understanding (i) the emergence of

majorization in this setting and (ii) how exploring the validity of Leontiefian assumptions has great

merit in assessing its results’ usefulness. The “foothold” that majorization makes in our analysis
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begins with Eqs. (7.6) and (7.9):

vÂ = x̂ and e(α)Â = â(α) .

These equations relate factor incomes to the regional spending and production impacts to attributed

impacts. Since both use the same attribution matrix Â, the initial majorization relation Eq. (7.16)

holds. Our mathematical analysis rests on this fact.

In information theory, stochastic matrices act as lossy channels that transmit information in a

degraded condition. This leads distinct channel inputs to become more similar. While we sorted

out the subtleties here, it is primarily for this reason that embodied emissions become more similar

to global income: they are both channeled through the same lines of flow, determined by the single

matrix Â.

However, employing the same attribution matrix—whose primary determinant is monetary flows—to

also drive embodied impact flows is a possibility only allowed by (L-1) and (L-2). The homogeneity

of products and prices allows us to assume that monetary flows are entirely sufficient to reconstruct

the commodity chains in which embodied flows are materialized. Without these assumptions,

one would have a unique attribution matrix Â(α) for each impact α, distinct from the monetary

attribution matrix. Majorization would no longer necessarily hold. And so, it would no longer drive

the relationship between local intensities and embodied flows. In this way, our results suggest that

the outcomes of Leontief analysis are highly dependent on the assumptions made. Rather than a

neutral tool of analysis, Leontiefian methods embody significant ideological consequences.

Consider in this light the carbon leakage hypothesis. Essentially, firms from high-income countries

foist the direct carbon costs of their production (which feeds local consumption) onto lower-income

countries. This maintains consumption patterns while lowering compliance costs by superficially

adhering to climate treaties to which they are signatories [47,148].

When this extends beyond carbon to other environmental impacts, the flow of embodied impacts

from low- to high-income countries is ecologically unequal exchange—a major topic in modern

geography and ecological economics [70, 84, 159, 179]. One can even consider impacts such as

labor-time. This leads to the more traditional hypothesis of unequal exchange [52] of exploited labor
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from low- to high-income countries. Each of these hypotheses rests on fundamental assumptions

about the social and economic power relations between nations and regions.

Multiregional input-output tables and Leontief analysis have been put to use evaluating these

hypotheses previously, frequently in tandem with quantities such as the net exports ξ(α) and

consumption-to-production ratio ρ(α) which we have analyzed here [9,15,16,46,49,54,101,134,

143,178,215].

Our results directly bear on these previous studies. We showed that these quantities are, in fact,

strongly driven by the assumptions of Leontief analysis and are largely independent of the relational

data within the MRIO tables used. This calls into question the validity of Leontief analysis as

a tool for empirically verifying hypotheses of unequal exchange, contributing a new perspective

to previous critiques of this application [49]. Employing MRIO tables and Leontief analysis for

empirical purposes must be done with caution; it would be unwise to place undue faith in its results

merely because this is “where the light is.”

To this end, we recommend an approach based on that taken here. Specifically, for this we make

two contributions. First, use modern tools from information theory and statistical physics to better

understand the consequences of methods like Leontief analysis, embedded as they are with numerous

stochastic matrices and distributional relationships. Second, frequently consult with null models.

This will aid in disentangling data structures, mathematical artifacts, and hypotheses, as otherwise

these can be quite difficult to tease apart when using sophisticated modeling assumptions. This

recommendation, of course, extends beyond MRIO tables and Leontief analysis. However, applying

this approach to other studies of carbon accounting, environmental impacts, and ecologically unequal

exchange will remain for future work.
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