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Abstract

Tensor Network Wavefunctions for Topological Phases

by

Brayden Alexander Ware

The combination of quantum effects and interactions in quantum many-body systems

can result in exotic phases with fundamentally entangled ground state wavefunctions –

topological phases. Topological phases come in two types, both of which will be studied

in this thesis. In topologically ordered phases, the pattern of entanglement in the ground

state wavefunction encodes the statistics of exotic emergent excitations, a universal in-

dicator of a phase that is robust to all types of perturbations. In symmetry protected

topological phases, the entanglement instead encodes a universal response of the system

to symmetry defects, an indicator that is robust only to perturbations respecting the

protecting symmetry.

Finding and creating these phases in physical systems is a motivating challenge that

tests all aspects - analytical, numerical, and experimental - of our understanding of the

quantum many-body problem. Nearly three decades ago, the creation of simple ansatz

wavefunctions - such as the Laughlin fractional quantum hall state, the AKLT state,

and the resonating valence bond state - spurred analytical understanding of both the

role of entanglement in topological physics and physical mechanisms by which it can
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arise. However, quantitative understanding of the relevant phase diagrams is still chal-

lenging. For this purpose, tensor networks provide a toolbox for systematically improving

wavefunction ansatz while still capturing the relevant entanglement properties.

In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz

states for several proposed new phases. In the first part, we study a featureless phase of

bosons on the honeycomb lattice and argue that this phase can be topologically protected

under any one of several distinct subsets of the crystalline lattice symmetries. We discuss

methods of detecting such phases with entanglement and without.

In the second part, we consider the problem of constructing fixed-point wavefunctions

for intrinsically fermionic topological phases, i.e. topological phases contructed out of

fermions with a nontrivial response to fermion parity defects. A zero correlation length

wavefunction and a commuting projector Hamiltonian that realizes this wavefunction as

its ground state are constructed. Using an appropriate generalization of the minimally

entangled states method for extraction of topological order from the ground states on a

torus to the intrinsically fermionic case, we fully characterize the corresponding topolog-

ical order as Ising× (px − ipy). We argue that this phase can be captured using fermionic

tensor networks, expanding the applicability of tensor network methods.
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Chapter 0

Introduction

The classical understanding of many-body physics involves local order parameters and

their thermal and quantum fluctuactions. After the discovery of the fractional Quantum

Hall effect in 1982, it was realized that there exist a variety of phases of matter with fluc-

tuations remaining at zero temperature and with no local order parameters. These so

called topological phases were outside the purview of the existing Landau theory, and they

brought a number of surprising new features to the study of many body physics, such as

emergent collective excitations with fractional charge and statistics and backscattering-

free edge states. These exotic phenomena attracted a great amount of research interest,

in part driven by the hope of applications to new generations of electronics and super-

conductors. More importantly, this new field has transformed our understanding of the

quantum many-body problem by shifting the focus from correlations to quantum entan-

glement. The fractionalized excitations and edge states are ultimately consequences of
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patterns of entanglement in the ground state that exist independently from local corre-

lations, and moreover that cannot be modfied by local perturbations. For this reason,

topological phases could also be useful for applications in quantum computing.

The most striking aspect of topological phenomena was that macroscopic and unpris-

tine electronic systems adhered to rather simple predictions with unprecedented preci-

sion, such as in the fractional Quantum Hall effect, where the Hall conductance becomes

pinned to quantized values

σH =
p

q
× e2

h

with precision better than several parts in 108 [3] – a measurement so precise that it is

used to define the value of e2

h
. [78] The explanation for this extraordinary robustness is

in the existence of an energy gap above the ground state – which implies that the ground

state wavefunction changes continuously for small perturbations in the Hamiltonian –

and in topological protection, i.e the existence of distinct classes of wavefunctions that

cannot be connected continuously. The key to unlocking analytical and computational

understanding of topological phases is the ability to produce wavefunctions in the ap-

propriate topological class. In the study of the fractional Quantum Hall effect alone,

the ability to write down such a wavefunction (the Laughlin wavefunction [93]) spurred

the development of the low-energy field theory descriptions of this phase [19, 53] and

elucidated the essential flux attachment mechanism behind the phenomena. The com-

putational study of microscopic Hamiltonians for the fractional quantum Hall effect was

also bolstered; a Hamiltonian whose ground state is exactly the Laughlin state and thus

2



known to realize the appropriate phase was found [66], followed by numerical evidence

to show that it could be continously connected to more realistic Hamiltonians[65].

This thesis is concerned with how to identify these distinct topological classes of

wavefunctions with their corresponding gapped phases of quantum matter using the tools

of entanglement and symmetry. Additionally, we’d like to have good classes of variational

wavefunctions for the purpose of efficient numerical simulations. Both of these problems

have been largely solved in one dimension, so the scenarios we investigate will be in two

dimensions.

0.1 Topologically Ordered Phases

Unentangled quantum phases distinguished by patterns of spontaneous symmetry break-

ing generically lose their sharp distinctions when perturbations breaking the symmetry

are allowed. This motivates the consideration of a coarser notion of phase involving no

symmetry, or in other words, phases that are completely stable to all types of perturba-

tions. This notion can be formalized via the notion of gapped quasi-adiabatic evolution

or via low depth quantum circuits[72, 29]. Under this definition, there is precisely one

phase with an unentangled ground state (since any two different unentangled ground

states can be continuously connected). The other phases are the topologically ordered

phases, which by definition have global patterns of entanglement that cannot be gen-

erated locally. This situation is illustrated in Fig. 1(a). While we generally can break

all symmetries by considering arbitrary perturbations, one exception must be made for
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J1

J2

Gapped
Trivial
Phase

Topological
Order 1

Topological
Order 2

Gapless

(a) No symmetry

J2

J1

Trivial SPT1

SPT2

SET1.1

SET1.2
SSB1

SSB2
SSB3

SET2.1
Gapless

(b) With symmetry G

Figure 1: Generic phase structure in phase diagrams with and without symmetry. With-
out symmmetry, gapped phases are distinguished only by topological order or, for the
single short ranged entangled phase, lack of topological order. With symmetry, short
range entangled phases can be distinguished both by symmetry breaking patterns and
by symmetry protected topological (SPT) order. Distinctions between phases with the
same topological order also appear; these are denoted SET, for symmetry enriched topo-
logical order.

fermion parity, since local Hamiltonians can’t break fermion parity. In what follows,

we consider phases made of bosonic degrees of freedom only unless specifically specified:

phases made of fermions will be discussed separately in Chapter 2.

With symmetry considerations removed, the key property distinguishing various topo-

logical orders in two dimensions is the emergence of anyons, point-like excitations with

statistics differing from the usual bosons and fermions. These excitations also exhibit

mutual braiding statistics, universal Berry phases that occur for adiabatic processes that

wind the excitations around each other. An extensive physical and mathematical frame-

work has been developed for the understanding the self- and mutual- braiding statistics

4



of anyon systems [85, 20]. For the purpose of numerical simulations, it is often more con-

venient to work with the ground states than with the excitations and to consider periodic

boundary conditions. Topological order with emergent anyons guarantees the existence

of degenerate ground states. The argument goes as follows: for each anyon a, there is an

operator W a
x that creates a pair of anyons a and ā, drags them around the x cycle of the

torus, and reannihilates the pair on the other side. Since no excitations are left at the

end, this operator commutes with the Hamiltonian and maps ground states to ground

states. Similarly, the same operators exist for the other cycle y of the torus. These

operators don’t commute when a and b are excitations with mutual braiding statistics

θab:

W a
xW

b
y = eiθabW b

yW
a
x ,

as illustrated in Fig. 0.1. For the ground states to carry an action of this non-commutative

algebra, there must be multiple ground states. The minimal allowed number is given by

exactly the number of distinct anyon types, where anyons a and ã are considered to be

the same type if their braiding with other anyons is the same:

θab = θãb for all anyons b =⇒ a ≡ ã.

The degeneracy in these ground states cannot be split by local operators in the ther-

modynamic limit. Intuitively, the braiding phases could be measured using anyons far

separated in terms of correlation length from each other and from any given local dis-
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a

b

Figure 2: An illustration of W a
x W b

y acting on a ground state. The operations don’t
commute, as switching the order is differs by a braid of a and b.

turbance. Given one ground state |1〉, a basis for the full set of ground states is given

by

{W a
x |1〉 for each anyon type a}.

In finite size systems, perturbations generically cause small energy splittings between

the ground states via processes that tunnel between ground states as illustrated in Fig. 3.

Due to the one-dimensional support of the operator that tunnels between ground states,

the finite size splitting scales as

∆E ∼ e−L/ξ,

in contrast with the

∆E ∼ e−(L/ξ)2

in spontaneously symmetry broken phases.
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(a) in symmetry breaking phases

a

b

a

ā

(b) in topological phases

Figure 3: The degenerate ground states under periodic boundary conditions are useful for
distinguishing phases. In spontaneous symmetry breaking phases, in order for a ground
state with one value of the local order parameter to tunnel to a different ground state, a
domain must form and spread over the whole system, as shown in (a). In topologically
ordered phases, an anyon tunneling around a cycle will take you to a different ground
state, as shown in (b).

While this argument shows that emergent anyons lead to protected degeneracy, it is

believed that the argument reverses: 2D systems with robust degenerate ground states

in periodic boundary conditions have as many anyon types as degenerate ground states.

Furthermore, it is believed that topological order is completely characterized by anyonic

statistics along with a measure of edge modes called the chiral central charge [152]. (This

additional allowance is for the one known 2D topological order without anyons, known

as the E8 bosonic Quantum Hall state and copies of it [102].)

While formally topological order is about quantum phases in the absence of symmetry,

the question of how to find topological order in physical systems – in strongly correlated

electron systems, frustrated quantum magnets, cold atomic gases, or elsewhere - is often

7



intertwined with symmetry considerations, as the anyon excitations will ultimately be

made up of microscopic constituents that have conserved spin, charge, or particle num-

ber and that exist in a background potential with approximate crystalline symmetries.

Notably, since anyon excitations can only be created in pairs (more precisely, can only be

created in sets that fuse to the vacuum) the individual excitations do not have to come in

linear representations of the symmetry. This allows for symmetry fractionalization; for

example, quasiparticles in the fractional Quantum Hall effect carry electrical charge that

is a fraction of the charge of an electron. When these symmetries are restored to generic

phase diagrams, the broad groupings of topological phases split into distinct phases, each

with a unique pattern of symmetry fractionalization. These patterns are referred to as

symmetry enriched topological orders, or SETs. This situation is illustrated in Fig. 1(b).

0.2 Symmetry Protected Topological Phases

There can also be symmetry enforced distinctions between phases that are topologically

trivial and contain no symmetry breaking. The experimental discovery [91] of topo-

logical band insulators that cannot be adiabatically continued to the atomic limit as

long as time-reversal invariance is preserved [126, 69] has spurred the exploration of

a broad array of phases where symmetries protect subtle, non-local features that dis-

tinguish them from trivial, unentangled insulators. These phases, collectively known

as symmetry-protected topological (SPT) phases [27], have by now been observed in

several experimental realizations in one, two and three dimensions and an extensive

8



g
=

Figure 4: For a symmetric phase, applying the action of the symmetry in the bulk leaves
the wavefunction invariant. In open boundary conditions, a nontrivial SPT phase has
low energy states with that carry anomalous symmetry action.

mathematical framework has been developed for their characterization and classifica-

tion [133, 30, 137, 132, 28, 151, 150].

Unlike topologically ordered phases, these phases are often only subtly distinguished

from a trivial insulator in the bulk. Instead, the topological properties can be observed by

focusing on the boundary of a finite system. In many cases, the boundary exhibits gap-

less features such as the localized Majorana zero modes at the ends of one-dimensional

topological superconductors [84], the helical edge states of the quantum spin Hall ef-

fect [67, 81, 18] and the protected Dirac cones on the surface of three-dimensional Z2

topological insulators [56]. The unifying theme of these disparate edge phenomena is

anomalous symmetry action, a generalization of symmetry fractionalization to extended

objects [41].

In one dimensional phases, this can be illustrated simply with the AKLT chain, an

exactly solvable model of spin-1s [1]. The exact ground state wavefunctions in this

9



Figure 5: AKLT chain and charicature of 1D SPTs. An SO(3) symmetric and local
perturbation cannot couple the remaining spin-1/2s, the gapless edge states remain.

model can be formed by using a splitting of the spin-one on each site into a pair of

spin-1/2s, then by pairing the spin-1/2s into singlets between sites of the chain. When

the chain is cut open, dangling spin-1/2 edge states appear at the boundaries. This pair

of spin-1/2s represent a Hilbert space of size 4 and are the only remaining degrees of

freedom accessible below the energy gap – in the bulk, all the spins are paired. Due

to the integer spin representation of the spin at each site, these states as a collection

are SO(3) symmetric. However, in the low-energy Hilbert space represented by the

boundary modes, the symmetry action can only be recognized linearly by combining

both boundaries together. When the edges are far apart and the system has an energy

gap, local perturbations cannot effect both edge spins simultaneously. Thus, either the

edge perturbation breaks the symmetry or the spin-1/2 doublet at each edge remains

degenerate up to splittings exponentially small in the system size.

Considering not only local symmetries but also symmetries that relate the physical

locations of degrees of freedom, such as the spatial symmetries of rotation or reflection,

can lead to an even richer panoply of phases [54, 140, 39, 17, 120, 139]. This has been

well explored for the case of band insulators whose non-trivial structure is protected

by crystal symmetries [75, 142], which are referred to as non-interacting topological

crystalline insulators. However in these cases, the boundary modes often do not appear,

10



for a simple reason: any possible physical boundary of the system may break the relevant

symmetry. In order to distinguish these phases, we will turn to entanglement in the

ground state wavefunction.

0.3 Detecting Topological Phases with Entanglement

It has been shown that the features of topological order and symmetry protected topologi-

cal order manifest in the entanglement properties of the ground state wavefunctions. This

was first noted in studies of the entanglement spectrum of fractional Quantum Hall trial

wavefunctions, which generally take the form of gapless spectra that mirror the gapless

modes on a boundary. [97] In one dimensional SPT phases, the entanglement spectrum

features protected degeneracies that signify entanglement that cannot be removed while

preserving the symmetry, and can thus be used to establish that the phases are funda-

mentally distinct from trivial, non-entangled insulators. While the entanglement spectra

can signal non-triviality, additional work has shown that entanglement properties beyond

the spectra can be used to extract the precise symmetry fractionalization in one dimen-

sional SPT phases [121] and the precise braiding statistics of two dimensional topological

phases [80].

Additionally it was shown in the case of one dimensional SPT phases [121] protected

by spatial inversion that the non-trivial features can still be extracted from the entangle-

ment spectrum, even though the boundary degeneracy is not guaranteed. This suggests

that entanglement can be used for the complete (numerical) identification of topological
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phases generally, even when a necessary ingredient for the topological protection is a

non-local symmetry operation.

In this thesis, we will explore some problems related to this identification for wave-

functions in two dimensions. For this purpose, we developed numerical tools using the

framework of tensor network states, a memory efficient way of representing quantum

ground states. In Chapter 1, we study a featureless phase of bosons on the honeycomb

lattice and argue that this phase can be topologically protected under any one of several

distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting

such phases with entanglement and without.

In Chapter 2, we consider the problem of constructing wavefunctions for intrinsically

fermionic topological phases, i.e. topological phases contructed out of fermions with a

nontrivial response to fermion parity defects. A zero correlation length wavefunction

and a commuting projector Hamiltonian that realizes this wavefunction as its ground

state are constructed. Using an appropriate generalization of the minimally entangled

states method for extraction of topological order from the ground states on a torus to

the intrinsically fermionic case, we fully characterize the corresponding topological order

as Ising× (px − ipy).

12



Chapter 1

Tensor Networks for Crystalline

SPTs

In this Chapter, we compute the entanglement properties of an insulating state of inter-

acting bosons on the honeycomb lattice, and show that it constitutes a topological phase

protected by lattice symmetries. In particular, we show that the non-trivial entanglement

is not related just to the group formed by the lattice symmetries, but becomes tied to the

specific realization as a honeycomb lattice. Combined with the symmetry, this enforces

a non-trivial short-range entanglement structure.

The wavefunction we consider is an insulator of interacting bosons on the honeycomb

lattice at a filling of one boson per unit cell, or half filling per site. It forms one example of

a class of insulators that require a non-Bravais lattice, i.e. a lattice with multiple sites per

unit cell. The necessity for such a non-trivial unit cell arises due to higher-dimensional
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generalizations [115, 114, 70, 71] of the Lieb-Schultz-Matthis (LSM) theorem [99],which

forbids the existence of a featureless state — a state that neither spontaneously breaks

a symmetry, nor displays intrinsic topological order, nor has power-law correlations and

is thus “gapless” — in systems with a fractional filling per unit cell. While such a

featureless state at half-filling per site is allowed on the honeycomb lattice, the explicit

construction is challenging. Symmetry guarantees that a free-fermion spectrum is gapless

at certain high-symmetry points, and there is thus no basis of localized, symmetric and

orthogonal Wannier states. This implies that a featureless state on the honeycomb lattice

cannot be constructed by filling a permanent of localized Wannier orbitals [117], and

any construction of a quantum state thus must involve interactions. Ref. [83] pursued

an approach of constructing a permanent wavefunction by filling local and symmetric

orbitals that are not orthogonal and it was argued that that the resulting wavefunction

is indeed featureless. In particular, using numerical simulations it was found that the

state exhibits isotropic and exponentially decaying correlations, and arguments were

presented that it is not topologically ordered.

Here while we confirm the featureless bulk of the state, including the absence of intrin-

sic topological order, we show that nevertheless the entanglement of the state cannot be

removed while preserving certain symmetries — it is symmetry-protected. The relevant

symmetry is a combination of charge conservation and lattice symmetries, which together

protect universal features in the entanglement spectrum. In particular, we show that the

low-lying entanglement spectrum is to great accuracy described by that of a conformal
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field theory with central charge c = 1, and that there is an exact double degeneracy

throughout the entanglement spectrum for certain geometries, which is protected by the

symmetries of the state and thus serves as a topological invariant identifying the SPT

order. Since lattice symmetry is involved crucially, this provides one of the first examples

for an SPT of interacting bosons protected by lattice rather than on-site symmetries.

To further substantiate the robustness of these features, we obtain parent Hamiltoni-

ans for the phase in certain quasi-one-dimensional geometries and study the effect of

weak symmetry-preserving and -breaking perturbations on the ground states of these

Hamiltonians.

All of these features become accessible through a description of the state as a projected

entangled-pair state (PEPS) [73, 111, 57, 143]. These states form a specific class of tensor

network states that corresponds to a generalization of the well-known matrix-product

state (MPS) [153, 43, 116, 136] framework to higher dimensions. PEPS have been shown

to be a powerful description of many classes of gapped systems, including topologically

ordered and SPT phases. Here, we have an exact description of the state as a PEPS,

allowing us to extract properties such as the entanglement spectrum and the topological

invariants exactly on certain geometries; we emphasize that these properties of the state

are not accessible to other numerical methods.

The topological invariants extracted here form examples of a broad class of invari-

ants that provably must be constant throughout the phase. These differ from the order

parameters that measure local symmetry breaking in that they are not related to the

15



expectation values of local operators. Early examples of topological invariants for SPT

phases are the string order parameter for the one-dimensional AKLT phase [1, 2, 37, 120],

and the spin Chern number for the quantum spin Hall effect [138]. The invariants we con-

sider here measure how the action of the symmetry is implemented on the physical edge

states of open systems or on the Schmidt states of an entanglement decomposition [122].

These invariants feature heavily in the classification of SPT phases with on-site symmetry,

and similar invariants that apply to free-fermion states have been used for topological

crystalline insulators [55, 75]. In contrast, topological invariants for interacting states

protected by lattice symmetries in more than one dimension are poorly understood. We

will discuss the action of the symmetry on the edge of the state and progress towards the

goal of finding a topological invariant to identify the corresponding phase.

The rest of this chapter is structured as follows: in Section 1.1, we review the honey-

comb featureless boson insulator (HFBI) state, and introduce its PEPS representation.

In Section 1.2, we discuss results for the correlation functions of this state. In Section 1.3,

we discuss the entanglement spectra that we obtain numerically from the PEPS repre-

sentation and discuss in detail their connection to the spectrum of a free boson conformal

field theory. In Section 1.4, we describe the symmetry-protected topological invariants

that allow us to identify the symmetries that protect certain entanglement properties of

the state in quasi-one-dimensional geometries. Section 1.5 discusses the effect of weak

perturbations to a parent Hamiltonian in the same quasi-one-dimensional setup, and

Section 1.6 introduces a different perspective on the phase from the point of view of a

16



boson-vortex duality.

1.1 Construction of the featureless boson insulator

In the honeycomb lattice, each unit cell is associated with exactly one hexagon plaquette,

which respects the lattice point group symmetries. As shown in Ref. [83], this provides an

explicit construction of a bosonic insulator on the honeycomb lattice that is completely

featureless in the bulk, henceforth referred to as honeycomb featureless boson insulator

(HFBI). The state is succinctly described by the following expression:

|ψ〉 =
∏
7

(∑
i∈7

b†i

)
|0〉. (1.1)

Here, 7 denotes the elementary hexagons of the honeycomb lattice. Despite the de-

ceivingly compact expression, this many-body bosonic state is strongly correlated and

requires concrete computation for its properties to be unveiled.

We focus on two closely related variants of this state: a version of soft-core bosons

where b†i creates a boson on site i and obeys the usual bosonic commutation relations,

and a hard-core version of the same state where b†i also creates a boson but (b†i )
2 = 0.

In either case, the operator
∑

i∈7 b†i creates exactly one boson per hexagon; as there is

one hexagon per unit cell of two sites of the lattice, the state has one boson per unit cell,

or half a boson per site, thus allowing the existence of a featureless state. In the case of

soft-core bosons, the maximum number of bosons per site is three.

Ref. [83] examined properties of both the soft-core and hard-core variants of this state.
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In the soft-core case, ground-state correlations were mapped to those of a classical loop

model on the triangular lattice. A Monte Carlo analysis thereof revealed that the boson

Green’s function 〈b†ibj〉 decays exponentially – thereby ruling out the possibility that

the many-body wavefunction describes a superfluid – and further, that the correlation

functions of a variety of neutral operators (e.g., those describing charge- or bond-density

order) remained short-ranged. This loop model mapping also included a variational

parameter, m, that tunes the the soft-core boson wavefunction on the honeycomb lattice

into that of a trivial Mott insulator on a triangular lattice of fictitious sites placed at the

center of each hexagon. The absence of a transition under this perturbation was taken as

evidence that the ground state would remain unique on manifolds of nontrivial topology,

thereby ruling out the possibility that the wavefunction describes a topologically ordered

phase. For the case of hard-core bosons, a different quantum-classical mapping enabled

the efficient calculation of boson number correlations. This directly revealed that the

hard-core projection did not induce any long-range correlations in the neutral sector.

Although working in the number basis precludes direct access to ‘charged’ correlators such

as the boson Green’s function, on general grounds, the algebraic decay characteristic of

classical 2D superfluids 1 is expected to also infect density-density correlations, and thus

their exponential decay provides indirect evidence that the hard-core boson wavefunction

also lacks superfluid order. We note that none of these quantum-classical mappings can

readily provide insights into the entanglement properties of the wavefunction.

1Note that the quantum-classical mappings described map quantum correlations to classical ones in
the same dimension.
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Figure 1.1: Honeycomb lattice PEPS and zig-zag entanglement cut. In this PEPS of rank-
4 tensors, the top and bottom edges are identified, forming a cylinder with circumference
W = 3 unit cells. A one-dimensional MPS representation is constructed by contracting
the tensors in each cylinder slice (region marked by dotted lines). The entanglement cut
used (either one of the dotted lines) passes through the hexagon mid-points, preventing
the tight-binding lattice from gaining additional sites as long as crystalline symmetries
are preserved.

1.1.1 PEPS representation

In order to go beyond the properties accessible via these quantum-classical mappings of

the HFBI, and in particular in order to be able to study its edge properties, we now

derive a representation as a projected entangled pair state (PEPS). Importantly, this

PEPS description will respect all of the relevant symmetries of Eq. (1.1).

To obtain a PEPS construction, we first choose a local basis |n〉 of boson occupation

numbers, i.e. b†b|n〉 = n|n〉. The PEPS will thus describe the coefficients of |ψ〉 in

this basis, 〈n1 . . . nL|ψ〉. The PEPS representation is most easily obtained in a two-step

construction, where we first construct the state shown in Fig. 1.2. Here, the tensor
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Figure 1.2: Intermediate tensor network for HFBI state. Here, the tensors labeled D
are located on the sites of the honeycomb lattice, while the tensors labeled W are located
on the centers of each hexagon. Dotted lines thus represent the physical lattice, while
the solid lines indicate auxiliary bonds over which the tensor network is contracted.

labeled W = W n1...n6 , which is placed in the center of each hexagon, is a rank-6 tensor

given by

W n1...n6 =

{
1 :

∑
i

ni = 1

0 : else
, (1.2)

where each ni ∈ {0, 1}.

This tensor describes the coefficients of a so-called W -state in the occupation number

basis, i.e. W n1...n6 = 〈n1 . . . n6|
∑6

i=1 b
†
i |0〉. We note that this tensor is symmetric under

permutations of its indices.

On the sites of the physical lattice, we have placed a rank-4 tensor denoted as D,

shown in panel (a) of Fig. 1.3(a), which connects the W tensors from three adjacent

hexagons, and as fourth index has a physical index p. For a state of soft-core bosons,
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where p = 0, 1, 2, 3, this tensor is given by

Dsc
p,i0i1i2

=

{ √
p! : p = i0 + i1 + i2

0 : else
. (1.3)

We can also encode a state of hard-core bosons by replacing D by

Dhc
p,i0i1i2

=

{
1 : p = i0 + i1 + i2 ≤ 1
0 : else

. (1.4)

Other values for the D and W tensors that respect the charge and lattice symmetries

can also give rise to featureless insulators. Some of these variants are described in Ap-

pendix 1.9.

This tensor network wavefunction manifestly respects all the translational and point

group symmetries of the honeycomb lattice, since the tensors W and D are invariant

under rotations of their virtual indices in the plane. One can also check that the wave-

function is U(1) invariant with charge 1 per plaquette.

In order to convert the tensor network of Fig. 1.2 into a PEPS representation, we first

factor the W -tensor into a matrix-product state of six tensors as shown in Fig. 1.3(b).

We choose a form of the MPS that breaks the rotational symmetry of the W-state (which

appears as translational symmetry of the MPS). This allows us to obtain an MPS de-

scription with a small bond dimension of M = 2; a fully symmetric choice would require

bond dimension 6. Since these states are physically equivalent, all physical quantities are

unaffected by this choice. One possible decomposition is given by

W i1i2i3i4i5i6 =
∑
α1...α5

V i1
α1
W i2
α1α2

. . .W i5
α4α5

X i6
α5

(1.5)
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(e) PEPS tensor network for F.B.I. state

Figure 1.3: Construction of PEPS for HFBI state. The site tensors (shown in panels (c),
(d)) are constructed using the factors of the plaquette tensor W (panel (b)) combined
with the original vertex tensor D (panel (a)). The red line in panel (e) shows where the
entanglement cut considered in this chapter crosses the network.
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where V i1
α1

= δi1,α1 , X
i6
α5

= δi6,α5+1 + δi6,α5−1, and

W j
i0i1

=

{
1 : i0 + j = i1

0 : else
,

where each index takes values in {0, 1}. Applying this to each W -tensor yields the state

as shown in Fig. 1.3(e). By contracting the four tensors in each shaded region together,

we obtain a PEPS in the regular form as shown in Fig. 1.1. The resulting PEPS has

a bond dimension of M = 2 on the horizontal bonds, and a bond dimension of M = 4

on all other bonds. While it superficially breaks the rotational symmetry of the lattice,

it is an exact representation of the FBI state and does not break any symmetries after

contracting the indices.

This decomposition respects the physical U(1) charge conservation symmetry in that

all tensors are separately U(1)-invariant [14]. To make this manifest, we have indicated

in Fig. 1.3 arrows on each bond that show the flow of charge.

1.1.2 Representation on infinite cylinders

For the calculations presented in this manuscript, we consider the state |ψ〉 on a cylinder

of infinite length, but finite circumference of W unit cells. In Fig. 1.1, we have indi-

cated the choice of boundary conditions for the cylinder used in this chapter. For many

practical purposes, the PEPS on an infinite cylinder can be represented as an infinite,

translationally invariant matrix-product state of bond dimension χ = 2W and physical

dimension p = 42W (p = 22W ) for the soft-core (hard-core) case. The MPS is created by

blocking all tensors in each slice of the cylinder, as shown in Figure 1.1.
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With each cylinder slice blocked together and considered as an MPS, the procedures

we use for computing both correlation functions and entanglement properties are in

principle identical to those used previously in MPS [34, 122]. Due to the exponential

increase in the MPS bond dimension, this numerically exact approach scales exponentially

in the circumference of the cylinder. It is however computationally advantageous to

exploit the additional structure present in the PEPS transfer operator; by doing so, we

can compute correlation functions and the entanglement spectrum for the cut shown in

Figure 1.3(e) for the HFBI state on cylinders of circumference up to W = 10. These

computations are presented in the following Sections 1.2 and 1.3.

1.2 Correlation functions

In Ref. [83], certain real-space correlation functions of the featureless boson insulator state

were studied using a mapping to a particular classical statistical mechanical system which

was sampled using Monte Carlo techniques. Here, we go beyond this by employing PEPS

calculations on infinite cylinders that allow us to measure a broader class of correlation

functions and, in particular, allow us establish a strict upper bound on the exponential

decay of all two-point correlation functions for an infinite cylinder of given width.

In Fig. 1.4, we show both density-density and off-diagonal short-range correlation

functions for a cylinder of circumference W = 8. Comparing these to the Monte Carlo

results of Ref. [83], which have been computed for a different geometry, we find good

qualitative agreement. Crucially, while the boundary conditions we choose break the
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Figure 1.4: Short distance correlation functions 〈b†0bx〉 (top panels) and 〈(n0− 1
2
)(nx− 1

2
)〉

(bottom panels) for the soft-core HFBI (left panels) and the hard-core HFBI (right panels)
on the W = 8 cylinder. The magnitude of the correlation function at site x is proportional
to the radius of the corresponding circle.
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rotational symmetry by making the system periodic in one direction and infinite in the

other, the short-range correlations for distances up to half of the cylinder circumference

appear unaffected by this.

It is a well-known result that PEPS can, in the thermodynamic limit, exhibit power-

law correlation functions [144], while the correlation functions in an MPS of finite bond

dimension decay exponentially. The long-range correlations of an MPS are encoded in its

transfer operator T , which for an MPS of bond dimension M is a matrix of size M2×M2.

Denoting the spectrum of T as λi with |λ0| ≥ |λ1| ≥ . . ., we can normalize the state such

that λ0 = 1. If the largest eigenvalue is found to be non-degenerate, λ1 < λ0, we have that

all correlation functions of operators Oi that are supported on a finite number of sites

centered around a site i decay as 〈OiOj〉−〈Oi〉〈Oj〉 ∼ e−|i−j|/ξO . Crucially, the correlation

length ξO for any operatorO is bounded from above by−1/ log |λ1| [135]. In the following,

we thus evaluate the spectrum of the transfer operator of our PEPS along cylinders of

varying circumference W to establish an upper bound on the correlation length for each

circumference ξ(W ) Note that the possibility of having power-law correlations in a PEPS

can be reconciled with the above consideration if the correlation length ξ(W ) diverges as

W →∞; we will thus need to carefully consider the scaling of ξ(W ).

Our results for the correlation bounds ξ(W ) are shown in Fig. 1.5. Here, we show the

upper bound for the case of soft-core and hard-core bosons, and in each case consider

the spectrum of the full transfer operator as well as Sz = 0 sector, which encodes cor-

relations of operators Oi that do not change the boson number (such as density-density
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correlations). We find that in each case, the largest eigenvalue of the transfer operator

is non-degenerate. Furthermore, we find that the correlation length approaches a finite

constant as we increase W , as shown in Figure 1.5.

1.3 Entanglement spectrum

Here, the entanglement spectrum εi is defined through the spectrum ρi of the reduced

density matrices ρL/R obtained for a bipartition of the state, where we have εi = − log ρi.

The corresponding eigenvectors of the reduced density matrices are referred to as Schmidt

states |ψ(i)
L/R〉. The Schmidt decomposition

|ψ〉 =
∑
i

√
ρi|ψ(i)

L 〉|ψ
(i)
R 〉 (1.6)

relates the Schmidt states to the original wavefunction.

The quasi-1D cylinder geometry is convenient for calculating the entanglement spec-

trum for entanglement cuts transverse to the long direction of the cylinder. To extract

the entanglement spectrum exactly, we use a method proposed in Ref. [34]. In the setup

given here, the exact representation of the HFBI state as a PEPS of fixed bond dimension

implies an upper bound on the number of non-zero ρi; for the cut shown in Fig. 1.3(e),

this upper bound is χ = 2W .

Upon computation of the entanglement spectrum, we find that this bound is satu-

rated, so that there are precisely 2W contributing terms in Eq. 1.6. This fact can be

simply understood without reference to the PEPS representation: Each of the w plaque-

ttes on the cut can contribute its one boson either to the left or the right of the cut, and
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this is the complete source of the uncertainty of the state on one half of the cut when

ignoring the state on the other half.

We can form a set of 2W vectors |σ1, . . . , σW ) that correspond to the choices for

the auxiliary degrees of freedom of the PEPS across the cut, where σi ∈ {0, 1} is the

number of bosons contributed by the i’th hexagon the left of the cut. The PEPS defines

a map from these boundary vectors to physical states in the bulk of the semi-infinite

cylinder, which we denote as |ψ(σ1,...,σW )
L 〉; on the subspace of physical states spanned by

Schmidt states with non-vanishing contribution to the reduced density matrix, this map

is invertible and can be computed explicitly.

Translation around the cylinder acts in the natural way on the states |ψ(σ1,...,σW )
L 〉 by

permuting the values of σi, σi → σi+1. Although the boson number on the half-infinite

cylinder is infinite, we can define for each basis element a U(1) charge corresponding to

the number of bosons to the left of the cut relative to a uniform background charge,

QL =
∑
i

(σi −
1

2
). (1.7)

Only relative charges between states will be important for our conclusions, and the

precise way in which background charge is accounted for does not matter. Each state is

paired with a corresponding state on the right half of the cylinder with opposite charge.

We can block-diagonalize the reduced density matrix for a half-infinite cylinder in both

the U(1) charge and transverse momentum quantum numbers, allowing us to perform

more efficient calculations. In addition, we can assign quantum numbers to both the

Schmidt states and the entanglement spectrum. This property is generically true for
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U(1)-symmetric and translationally invariant PEPS on a cylinder, although not in general

true for arbitrary symmetry groups. This point is elaborated on in Section 1.4.2.

The entanglement spectra for the HFBI on cylinders with even and odd width cir-

cumferences are shown in Fig. 1.6, plotted against the transverse momentum eigenvalue

and colored by the U(1) charge eigenvalue of the corresponding Schmidt states. All the

numerical results in this section are obtained for the soft-core boson variant of the state.

We find that the entanglement spectrum looks like it has a gapless edge mode with linear

dispersion near momentum zero. To further substantiate this, we compare the lowest en-

tanglement energies for several cylinder widths and quantum number sectors in Fig. 1.7.

The finite-size scaling confirms in all cases that the entanglement gap closes as 1/W , as

one would expect for a gapless mode with linear dispersion.

The gapless edge is suggestive of the state having either topological or SPT order.

While topological order was already ruled out in Ref. [83], our PEPS representation

gives us additional tools to substantiate this assertion. In particular we can calculate the

entanglement between the two parts of the cylinder as a function of circumference S(W )

and check for a subleading term to the area law by performing a fit to S(W ) = αW +S0.

In a topological phase and in one of the minimally entangled states (MES) [159], one

would expect the subleading term to correspond to the topological entanglement entropy,

S0 = −γ [88, 95, 80]. In a non-minimally entangled state, one would instead measure

other values of S0 > −γ. However, since each MES exhibits long-range order of a specific

Wilson loop operator, such a superposition of MES represents a superposition of different
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Figure 1.6: Entanglement spectrum on the zig-zag edge of a cylinder of circumference
W = 10 (left panel) and W = 9 (right panel), as function of transverse momentum Ky.
Different colors indicate different U(1) charge sectors.
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Figure 1.7: The lowest five states above the ground state in Figure 1.6 show gapless
1/W scaling behavior. In this plot, fits for the entanglement energy versus 1/W (of the
form a+ b

W
+ c

W 2 ) to extract the gap are consistent with a gap value of 0.

ordering patterns and can thus be detected via a degeneracy of the largest eigenvalue of

the transfer matrix. Our results for the entropy are shown in Fig. 1.8. We find results

that are consistent with S0 = 0, which together with the fact that we also find that the

transfer matrix to be nondegenerate rules out topological order.

1.3.1 Conformal field theory description of the edge

In addition to the gapless behavior, we find that the low energy entanglement spectrum

can be completely described by the finite-size spectrum of a conformal field theory (CFT).
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Figure 1.8: The constant correction to the entanglement entropy, which measures the
topological entanglement entropy γ when the state is minimally entangled, is consistent
with 0.

Given the U(1) symmetry of the state, the simplest possible conformal field theory we

might expect to appear at the edge is that of a single free bosonic field - and indeed,

this is the CFT that matches the entanglement spectrum. We briefly review the relevant

properties of this CFT [49].

The free boson CFT is created from the Lagrangian

L =
g

2

∫
dt

W∫
0

dx
[
(∂tφ)2 − (∂xφ)2

]
(1.8)

with the compactified field identification

φ ≡ φ+ 2πR
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and placed on a circle of circumference W with periodic boundary conditions

φ(x) ≡ φ(x+W ).

The family of free-boson CFTs is parametrized by a single parameter κ = πgR2, also

known as the Luttinger liquid parameter [49, 58].

Upon canonical quantization, we find that the set of energy eigenstates consists of

U(1) Kac-Moody primaries |e,m〉, with integers e,m labeling the U(1) charge and the

winding number of the bosonic field respectively, and level n, n̄ descendants of each

primary for non-negative integers n, n̄, which we will collectively label |e,m;n, n̄〉. The

number of level (n, n̄) descendants of a given primary, all of which are degenerate in the

thermodynamic limit, is Z(n)Z(n̄), where Z(n) is the number of partitions of the integer

n.

The energies and momenta for the states |e,m;n, n̄〉 are given below on a finite size

system of circumference W :

P =
2π

W
(em+ n− n̄)

H =
2π

W
(
e2

4κ
+ κm2 + n+ n̄) + . . .

(1.9)

Here, the ellipsis (. . .) denotes further subleading contributions due to coupling to irrel-

evant operators.

By rescaling the energy and momentum, we find a system-size independent pattern

that can be matched to the low-energy, linearly dispersing part of the entanglement
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spectrum from Figure 1.6:

P ∝ (em+ n− n̄)

H ∝ e2 + 4κ2m2 + 4κ(n+ n̄) + . . .
(1.10)

The results of this match are shown in Figure 1.9. An estimate for κ can be obtained

from the energy of the first descendent |0, 0; 1, 0〉, which gives κ ≈ 1.6. The label e,

which measures the U(1) charge, is integer for even W and half-integer for odd W . The

degeneracy pattern 1, 1, 2, ... for the level-(n, 0) descendents along the edge of the cone

matches the prediction.

The states with odd winding number m, such as |0,±1〉, do not appear at the energy

and momentum predicted by the above formula. Instead, the primary states |e,m = ±1〉

can be found centered around momentum K = π. The identification of these states in the

spectrum is shown in Figure 1.10. Although the larger-m states are too high in energy

to be reliably distinguished at this system size, a natural conjecture is that all primaries

with odd m will appear around momentum π. (This is a standard side-effect of lattice

regularization.)

Given the PEPS representation, we can express the entanglement Hamiltonian HL

for the left semi-infinite cylinder, defined via ρL = exp(−HL), as a Hamiltonian acting

on the auxiliary degrees of freedom of the PEPS crossing the cut, which we have denoted

as |σ1, . . . , σW ). We expect this Hamiltonian to encode the universal properties of the

edge CFT, which should be invariant under local gauge choices in the PEPS. Its ground
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state is (up to normalization) given as

|Ψ0) =
∑

σ1,...,σW

〈Ψ(σ1,...,σW )|Ψ(0)
L 〉|σ1, . . . , σW ). (1.11)

In Fig. 1.11, we show the bipartite von Neumann entanglement entropy of this state for

a cut into l and W − l sites, which confirms the central charge c = 1 of the edge CFT. A

similar construction was considered in [101].

1.4 Symmetry protection

1.4.1 Overview

While the gapless entanglement spectrum observed above is consistent with a symmetry-

protected topological phase, it does not by itself guarantee the presence of such a robust

phase, and does not allow us to infer which symmetries are protecting the topological

properties of the phase. A key observation that allows us to make progress on these

crucial questions is that many points in the entanglement spectrum are degenerate. In

particular, we find that for cylinders of odd circumference, the entire spectrum is doubly

degenerate.

In this section, we will discuss how the corresponding degenerate Schmidt states are

related through the action of a symmetry of the HFBI wavefunction. As discussed in

Ref. [122] and reviewed in the Section 1.4.2, this symmetry action can be used to di-

agnose one-dimensional symmetry protected topological order, for which the degeneracy

throughout the entire entanglement spectrum is a robust feature. We will demonstrate
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that the odd circumference cylinders, considered as quasi-one-dimensional states, are in-

deed SPTs protected by a combination of lattice inversion and charge parity symmetries.

1.4.2 Symmetry protection of the HFBI

While the Schmidt eigenstates are uniquely defined for non-degenerate eigenvalues of

the reduced density matrix, they are not unique when the spectrum is degenerate and

any choice of orthonormal states in the degenerate subspace represents a valid choice of

Schmidt states. Applying a unitary transformation V ji, which respects
∑

i V
ji(V ki)∗ =

δjk, on the left Schmidt states must be accompanied by an appropriate transformation

(V ji)∗ applied to the right Schmidt states.

In particular, this allows the action of an on-site symmetry (or more generally, any

symmetry which commutes separately with the reduced density matrices for the left and

right half) to mix Schmidt states corresponding to degenerate eigenvalues. The action

of such a symmetry operator Ug takes the form

Ug|ψ(i)
L 〉 =

∑
j

|ψ(j)
L 〉V ji

g

Ug|ψ(i)
R 〉 =

∑
k

|ψ(k)
R 〉
(
V ki
g

)∗
,

(1.12)

where the V ji
g are unitary matrices that only act on degenerate blocks of Schmidt states.

Crucially, Ref. [122] describes a numerical procedure to calculate Vg for an on-site sym-

metry g within the MPS formalism, which we review in Section 1.4.2.

We can also analyze the effects of symmetries that preserve the entanglement cut but

swap the left and right halves of the cylinders. In general, we will consider any symmetry
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h that swaps the cylinder sides and squares to the identity, which we will call an inverting

symmetry. These satisfy a modification of Eq. (1.12):

Uh|ψ(i)
L 〉 =

∑
j

|ψ(j)
R 〉V ji

h

Uh|ψ(i)
R 〉 =

∑
k

|ψ(k)
L 〉
(
V ki
h

)∗
.

(1.13)

Note here that the left and right Schmidt states are exchanged in the transformation.

We can introduce a map S that acts as

S|ψ(i)
R 〉 = |ψ(i)

L 〉. (1.14)

Since a change in phase |ψ(i)
R 〉 → eiϕ|ψ(i)

R 〉 must be accompanied by the complex conjugate

|ψ(i)
L 〉 → e−iϕ|ψ(i)

L 〉 to preserve the Schmidt decomposition, S is antiunitary.

Combining the above, we see that

UhS|ψ(i)
R 〉 =

∑
j

|ψ(j)
R 〉V ji

h (1.15)

defines the action of the operator UhS on the right Schmidt states (of course an equivalent

action can be defined on the left Schmidt states). Since S is anti-unitary, the combined

action of UhS is also anti-unitary. Together with the requirement that the symmetry

squares to the identity, one finds that (where K represents complex conjugation in the

canonical basis)

VhV
∗
h = (VhK)2 = eiφhI = ±I, (1.16)

that is the inverting symmetry forms an anti-unitary projective representation of Z2.

The collection of Vg for on-site symmetries sometimes fail to satisfy the group mul-

tiplication laws, i.e. one may find Vg1g2 6= Vg1Vg2 . Instead, they may form a projective
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representation, where group multiplication laws are obeyed up to phases ω(g1, g2), i.e.

Vg1Vg2 = ω(g1, g2)Vg1g2 . Certain combinations of these phases, such as

eiφg1,g2 ≡ ω(g1, g2)

ω(g2, g1)
(1.17)

whenever [g1, g2] = 0, are symmetry protected topological invariants, which take discrete

values and hence cannot be changed continuously. Thus, φg1,g2 6= 0 signifies that the

entanglement degeneracy cannot be removed without breaking the symmetry or going

through a phase transition. Similarly, for the inverting (anti-unitary) symmetries h, the

phase φh = π in Eq. (1.16) signifies that the degeneracy cannot be removed without

breaking the symmetry [122].

Projective Representations on the edge of MPS

We can use the formalism of matrix-product states to determine the action of physical

symmetries on the Schmidt states. First, this will lead to the assignment of charge and

translation (which both act on-site in the MPS representation) quantum numbers to the

Schmidt states and corresponding entanglement spectrum as labeled in, e.g., Fig. 1.6.

Secondly, this will be used to numerically extract the topological invariants discussed in

Section 1.4. We now review this formalism briefly, including a discussion of the method

that allows us to numerically determine the symmetry action of inversion symmetry on

the Schmidt states. Both of these discussions follow Ref. [122].

We start by finding tensors Γ, Λ representing the so-called canonical form of the MPS,
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as detailed in Refs. [145, 147]:

|ψ〉 =
∑
{pi}

. . .ΛΓp0ΛΓp1ΛΓp2Λ . . . |...p0p1p2...〉. (1.18)

This canonical form provides the Schmidt decomposition at each site in the lattice. Here,

each physical leg of the MPS represents all 2W physical sites on a cylinder slice, and each

virtual leg represents all virtual indices that connect cylinder slices; the bond dimension

of the MPS is thus 2W . The change of basis to canonical form generally mixes the

Hilbert spaces from these virtual legs, so the resulting basis won’t be local around the

circumference of the cylinder.

For each on-site symmetry of the wavefunction Ug = ⊗iuig, with Ug|ψ〉 = eiΘg |ψ〉,

there is an operator Vg that acts on the virtual leg of the MPS and satisfies the equation

(1.19)Ug

Γ = eiθg ΓVg V †
g

.

This equation can be rewritten and solved as an eigenvector problem; for an MPS with

a nondegenerate largest transfer matrix eigenvalue, this equation is guaranteed have a

unique solution where the eigenvalue eiθg is the largest eigenvalue of the eigenvector

problem. These solutions Vg have two important properties: they are only defined up to

a phase, and they are guaranteed to commute with the diagonal matrix Λ of Schmidt

weights.

Due to the first property, these operators are not guaranteed to obey the group
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multiplication laws, i.e. one could find situations where

VgVh = ω(g, h)Vgh. (1.20)

It is not always possible to absorb these phases into the definitions of the Vg; in those

cases, the Vg do not form a linear representation of the group but rather a projective

representation. The set of equivalent classes of phases ω(g, h) under redefinitions Vg →

α(g)Vg is called H2(G,U(1)), the second group cohomology with U(1) coefficients.

For all the groups discussed in this chapter, the group cohomology classes are labeled

by elements of a discrete abelian group. These discrete classes cannot be connected

to each other continuously without undergoing a bulk phase transition or breaking the

symmetry. Additionally, the classification of projective representations for the on-site

symmetry group U(1) × ZW representing charge and translation around the cylinder

is trivial. Thus, these edge symmetries can be taken to act linearly, and all Schmidt

states can always be simultaneously assigned charge and momentum eigenvalues, as in

Figure 1.6.

The second property guarantees that the Vg only mixes exactly degenerate Schmidt

states. The action of Vg must have the same phases ω(g, h) on each degenerate block

of Schmidt states, so the projective representation can be nontrivial on any block only

if every Schmidt state throughout the entire spectrum is degenerate. The degeneracy

will be protected by the symmetry if and only if the Vg form a nontrivial projective

representation. Therefore this 1D SPT analysis can only potentially give a nontrival

answer for the odd W states of the HFBI, where this exact degeneracy is seen throughout
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the spectrum.

The MPS analysis of inversion symmetry proceeds similarly. We will consider in

general any symmetry h of the wavefunction that squares to the identity and that can

be written in the MPS as the product of an on-site symmetry action Uh and a transpose

of the site tensor. This will include an inversion of the honeycomb lattice - equivalent

to a 180 degree rotation about the center of any plaquette, which we label I = IyIx,

and the combination of inversion with on-site symmetries. In addition, by blocking two

site-tensors together, we can write the reflection symmetry Iy in this form as well. In

this scenario, the edge symmetry action satisfies

(1.21)Uh

ΓT = eiθh ΓVh V †
h

.

The map Vh is also computed from an eigenvector problem.

1.4.3 Results of symmetry calculation

The on-site symmetries of the featureless boson insulator considered here are the U(1)

charge symmetry and the anti-unitary time-reversal symmetry τ , which acts by com-

plex conjugation in the boson number basis. Despite being at half-filling, the hard-core

boson variant of the state does not have a particle-hole symmetry. Exploring the edge

action of these symmetries numerically, we find that they are all represented linearly

and thus do not protect the degeneracy of the entanglement spectrum on cylinders of
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odd circumference. In order to protect the degeneracy, we must therefore include lattice

symmetries.

By choosing a cylinder geometry, we explicitly break some of the lattice rotational

and reflection symmetries. The remaining symmetries are generated by translations Tx

parallel and Ty perpendicular to the cylinder axis as well as reflections Ix about a line

parallel and Iy about a line perpendicular to the cylinder axis. We also consider lattice

inversion I = IxIy, equivalent to a π rotation of the spatial plane about the center

of a hexagonal plaquette. These symmetries are illustrated in Fig. 1.12. We find that

a number of symmetry-protected topological invariants that are defined through these

symmetries take non-trivial values in the HFBI, thus protecting the doubly degenerate

entanglement spectrum on odd circumference cylinders. The complete list of non-trivial

invariants is summarized in Table 1.1.

The crucial ingredient underlying these SPT invariants is a spatial symmetry h

that swaps the two sides of the entanglement cut. By a general symmetry analysis

of Eq. (1.15), Vh must act as a particle-hole symmetry on the edge, since the Schmidt

pairing S (Eq. (1.14)) pairs states with opposite quantum numbers. In this case, the

symmetry action VIy is precisely that of a particle-hole transformation in the local PEPS

basis. Defining |~σ) = |σ1, . . . , σW ) and |1− ~σ) = |1− σ1, . . . , 1− σW ), we find that

VIy |~σ) = |1− ~σ) , (1.22)

since a state where the ith hexagon contributes σi bosons on the right is paired with a

state where the ith hexagon contributes 1− σi on the left. We can thus read off that VIy
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Group Generators Invariant i

ZP2 {ΠI} VΠIV ∗ΠI = −I −
ZP2 {ΠIy} VΠIyV

∗
ΠIy = −I −

Z2 × ZPT2 {Π, τI} VΠVτIV
−1
Π V −1

τI = −I +
Z2 × ZPT2 {Π, τIy} VΠVτIyV

−1
Π V −1

τIy = −I +

Z2 × ZPT2 {ΠIx, τI} VΠIxVτIV
−1
ΠIxV

−1
τI = −I +

Z2 × ZPT2 {ΠIx, τIy} VΠIxVτIyV
−1
ΠIxV

−1
τIy = −I +

Table 1.1: Summary of symmetry protecting invariants found for the HFBI state. The
last column indicates whether the symmetry acts unitarily (i = +) or antiunitarily (i =
−1) on the edge. The degenerate entanglement spectrum cannot be split unless all 6 of
the minimal protecting symmetry groups are broken.

acts like σx in the space spanned by the states {|~σ) , |1− ~σ)}.

When W is odd, these states have opposite charge parity. Specifically, if Π = eiπQ ∈

U(1) is the charge parity symmetry, we have

VΠ |~σ) = (−1)
∑
σi |~σ)

VΠ |1− ~σ) = (−1)
∑

(1−σi) |1− ~σ)

= (−1)W (−1)
∑
σi |1− ~σ) (1.23)

Therefore, for W odd, VΠ acts like σz in the space {|~σ) , |1− ~σ)}. It is thus reasonable to

expect that the combination of these two symmetries acts as VΠI = σxσz, which would

obey the property that VΠIV ∗ΠI = −I and thus form a topological invariant.

The local PEPS basis is not unitarily equivalent to the canonical form basis, so we

must check this numerically by performing an explicit calculation in the canonical form

of an MPS representation of the state, as outlined in Section 1.4.2.

We thus confirm SPT invariants for symmetries that involve such a spatial symmetry h
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and an on-site symmetry. There are several appropriate invariants, as listed in Table 1.1;

the simplest is

VΠIV
∗
ΠI = −I. (1.24)

From this we see that the charge, translation, and inversion symmetry can all be broken

without splitting the entanglement degeneracy, as long as the single combined symme-

try ΠI is preserved. In Section 1.5, we will discuss perturbations that preserve this

symmetry.

We note that there are also symmetries that act unitarily on the edge and yield

SPT invariants; however, these must form the group Z2 × Z2 as Z2 does not have uni-

tary projective representations. Examples for this are formed by involving time-reversal

symmetry; since Vτ and VI both act antiunitarily, VτI acts unitarily on the edge. The

Z2 × Z2 group generated by τI and Π has a projective representation characterized by

the topological invariant

VΠVτIV
−1
Π V −1

τI = −I. (1.25)

This symmetry protection gives a distinct class of perturbations that cannot split the

entanglement degeneracy. The complete set of symmetry groups we find is summarized

in Table 1.1.

We can form variants of the HFBI state, which are unitarily related to the original

state by an on-site unitary and thus share the same entanglement spectrum, where the

entanglement degeneracy can be protected by a lattice symmetry alone without involving

the on-site Π symmetry. Essentially, the protecting symmetries of the variant generated
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by a unitary U is obtained by conjugating the generators of the protecting symmetries

of the HFBI by U . These will be discused further in Appendix 1.9.

We also mention that the symmetry protected invariants produced above imply the

existance of non-local correlations in the form of ‘membrane’ order parameters that natu-

rally generalize the string order parameters from one-dimensional SPT phases [121]. For

example, the sign of VΠIV ∗ΠI can be detected by measuring the overlap of the state |ψ〉

and the same state with a partial application of the protecting symmetry, i.e.

lim
n→∞

〈ψ|(ΠI)1,2n|ψ〉 ∝ (−1)W , (1.26)

where (ΠI)1,2n is the restriction of ΠI to 2n cylinder slices. We leave open the question

of whether this ‘membrane’ order parameter generalizes in any way to regions that do

not wrap the cylinder.

For the HFBI, the symmetry group respected by the cylinder geometry is U(1)×(ZWo

Z2)×ZP2 ×ZT2 , where the factors refer to charge symmetry, translation around the cylinder,

Ix, Iy, and τ respectively. The P and T denote space-reversing and time-reversing

symmetries, and signify the antiunitary action on the Schmidt states. Many of the

non-trivial projective representations of such a complicated group will remain projective

when the symmetry is restricted to a subgroup - in this case, the full symmetry is not

needed to protect the entanglement degeneracy. As shown in Table 1.1, the projective

representation corresponding to the HFBI state can indeed be protected by any one of

a number of subgroups of the full symmetry group, all involving inversions and charge

parity.
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The symmetry actions – both on-site and inversion symmetries – are computed in the

Schmidt basis, but can be transformed into the basis |{σi}) determined by the virtual

legs of the PEPS in Figure 1.3(e). In this case, the symmetry action VIy is precisely a

particle-hole symmetry in the local PEPS basis, with coefficients

VIy |σ1, . . . , σW ) = |1− σ1, . . . , 1− σW ) ,

since a state where the ith hexagon contributes σi bosons on the right is paired with a

state where the ith hexagon contributes 1− σi on the left. Thus

VIy =
∏
i

σxiK,

where K is complex conjugation in the local PEPS basis, and σxi is the Pauli operator

acting on the ith site of the local PEPS basis.

Charge symmetry acts locally as well:

eiθQ |σ1, . . . , σW ) = eiθ
∑

(σi−1/2) |σ1, . . . , σW ) .

In particular, charge parity VΠ = eiθQ can be written as

VΠ = eiπ
∑

(σi−1/2) =
∏
i

σzi .
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The combined action of charge parity and reflection across the cut takes the form

VΠIy =
∏
i

(iσyi )K,

which is precisely the form that time-reversal acting on an ordinary spin-1
2

chain takes.

When the circumference of the cylinder W is odd, we see that

VΠIyV
∗
ΠIy = −I.

The degeneracy of the entanglement spectrum can be seen as an application of Kramer’s

theorem. Formally, this property is said to characterize the nontrivial projective repre-

sentation

H2(ZP2 ;U(1)) = Z2,

and remains true while ΠIy is a symmetry and no phase transitions have occurred.

Time reversal symmetry acts as complex conjugation in the local PEPS basis Vτ = K.

Translation and Ix act as permutations of the local PEPS basis:

VT |σ1, . . . , σW ) = |σ2, . . . , σW , σ1)

VIx |σ1, . . . , σW ) = |σW , . . . , σ1) .

These symmetries can be combined with VΠIy to create the additional topological in-

variants shown in Table 1.1. A non-trivial projective representation in

H2(Z2 × Z2;U(1)) = Z2
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is created whenever two unitary symmetries that commute in the bulk satisfy

Vg1Vg2V
−1
g1
V −1
g2

= −I.

Each new invariant is related to a new set of pertubations that can’t break the entangle-

ment degeneracy.

1.4.4 Tight-Binding Restriction

Before concluding this section, we comment briefly on the role played by the restriction

to a particular tight-binding model. Restricting to a particular tight-binding model

is a stronger condition than merely specifying a space group symmetry. For instance,

the triangular, honeycomb, and kagome lattices all share the same space group, but

encode it using one, two and three orbitals per unit cell, respectively. An example is

graphene: the electronic Dirac cones in graphene are protected (for vanishingly small spin-

orbit coupling) not solely by its space group symmetries, but rather by the tight-binding

representation of those symmetries [26] 2. A restriction to a tight-binding representation

is often well motivated by experiments. Choosing a tight-binding model amounts to

restricting to the class of models that can be represented using precisely the orbitals

we began with; if we are given the freedom to add sites, it may be possible to exit a

topological phase and enter a trivial one without closing the gap, while still preserving

lattice symmetry. For the HFBI, this would be accomplished by adding sites at hexagon

2For additional discussion of this point, see [117]
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centers, and adiabatically deforming the relative weights afforded to bosons placed at the

new sites and the original honeycomb lattice positions. The symmetry protection of the

entanglement structure is thus fairly subtle.

This subtlety is better understood for the simpler case of non-interacting fermions.

The classification of free-fermion topological phases is known to be richer if one removes

the freedom to add trivial bands [86]. The continuity between two phases which arises

upon the addition of such trivial bands is known as “stable equivalence” in accord with

a basic notion in K-theory [86]. We note that this tight-binding restriction also distin-

guishes the HFBI and related symmetry-protected short-range entangled states from the

ground states of “filling-enforced” topological band insulators introduced very recently

[119].

1.5 Quasi-local parent Hamiltonian and perturba-

tions

We now re-examine the question of whether the HFBI state is representative of a robust

phase of matter that is separated from conventional phases by phase transitions. One

way to demonstrate this – beyond the topological invariants discussed above – is to find

a local Hamiltonian with a unique ground state that is the HFBI wavefunction and study

the ground state properties under perturbations to this Hamiltonian. For many tensor

network states – those that satisfy an injectivity condition [118] — a frustration-free, local
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parent Hamiltonian with a unique ground state can be explicitly constructed. In our case,

this injectivity condition can be shown to not hold on any simply connected cluster of sites

that we can numerically access, and this specific construction of a parent Hamiltonian

is thus not possible. Given the challenges of numerical simulations of two-dimensional

systems, an exhaustive numerical search for such a Hamiltonian seems unfeasible.

To avoid these problems, we will focus on a quasi-1D approach in this section. This

is based on the observation that while the PEPS is not injective on simply connected

clusters, it does turn out to be injective on slices of an infinite cylinder. This gives rise to

a gapped Hamiltonian whose unique ground state is the HFBI. This ‘parent Hamiltonian’

is local in the non-compact direction of the cylinder, but non-local around the cylinder

and dependent on the circumference W . We believe that nevertheless, the insights gained

from these (partially non-local) Hamiltonians can serve as a starting point for identifying

the phase in more sophisticated numerical studies of fully two-dimensional boson systems.

Given the unperturbed Hamiltonian, we study the robustness of the entanglement

spectrum to perturbations. This depends on the class of perturbations allowed – SPT

phases are only distinct if perturbations that break the symmetry are forbidden, which

is reflected in the fact that the topological invariants that distinguish the phases are ill-

defined in the absence of the symmetry. According to the results discussed in Section 1.4,

it is not necessary for the perturbations to preserve the entire symmetry group of the

HFBI wavefunction to preserve the entanglement in the state. Instead, the entanglement

is robust to any perturbation that does not break all of the six protecting groups discussed
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in Table 1.1. This set of perturbations is much bigger than the set of perturbations

that preserve the entire symmetry group of the HFBI wavefunction. We will confirm

that the double degeneracy throughout the entire entanglement spectrum survives these

perturbations for odd-W cylinders, while it splits for other perturbations that break all

of the protecting symmetries.

1.5.1 Parent Hamiltonians for the W = 1 cylinder and equiva-

lence to the Haldane insulator

The W = 1 cylinder with hard-core bosons has a Hilbert space equivalent to a two-leg

spin-1
2

ladder. The HFBI state in this case has a natural MPS representation of bond

dimension d = 2, constructed by contracting the tensors around each cylinder slice. A

well-known property of MPS is the existence of a parent Hamiltonian – a frustration-free

Hamiltonian with its unique ground state given by the MPS, first introduced by Ref. [43].

The parent Hamiltonian is constructed in this case as a translationally invariant sum

of projectors, where each term projects the Hilbert space of two consecutive rungs of

the ladder to the d2 = 4 dimensional subspace of states form spanned by the nonzero

eigenvectors of the reduced density matrix of those two rungs. The result H0 of this

construction involves all possible terms that act on two rungs of the ladder and preserve

charge and reflection symmetry.

Using a local unitary transformation discussed in detail in Appendix 1.8, we can

transform the wavefunction of the HFBI on the W = 1 cylinder to that of the ‘Haldane
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insulator’ [17, 122], which is known to be the ground state of an extended Bose-Hubbard

model on the two-leg ladder in an appropriate parameter regime, and has also been shown

to be a 1D SPT with a doubly degenerate entanglement spectrum and a non-local string

order parameter protected by charge parity times inversion ΠI.

This extended Bose-Hubbard Hamiltonian that gives rise to the Haldane insulator

includes only hopping and density-density interactions; additionally, the range of these

interactions extends only to neighboring rungs of the ladder. It is thus clear that the

additional interactions present in the parent Hamiltonian for the HFBI can be tuned

away without undergoing a phase transition. The hard-core bosons should additionally

be considered to have infinite on-site density interactions, which can be tuned away from

infinity to make a state with soft-core bosons.

1.5.2 Perturbing the state on the W = 3 cylinder

Similar to theW = 1 cylinder, we can obtain a parent Hamiltonian for theW = 3 cylinder

as a sum of local projectors acting on adjacent slices of the cylinder. We then consider two

different perturbations to these quasi-local parent Hamiltonians. For each perturbation,

we use infinite time-evolving block decimation (iTEBD) [145, 146, 147, 113] to evolve

an initial wavefunction in imaginary time until it converges to the ground state of the

perturbed Hamiltonian. The two perturbations considered are the superfluid pairing

H ′ = ∆
∑
〈ij〉

bibj + h.c., (1.27)
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which breaks the U(1) charge symmetry down to the Z2 charge parity subgroup and the

uniform field

H ′ = h
∑
i

(
bi + b†i

)
, (1.28)

which fully breaks U(1) charge symmetry but preserves lattice symmetry. The pertur-

bation in (1.27) does not break the protecting symmetry ΠI, while the perturbation in

(1.28) breaks all of the protecting symmetries.

Figure 1.13 show the resulting entanglement spectra from the ground states obtained

with iTEBD. Indeed, the perturbation in (1.28) splits the degenerate entanglement spec-

trum, whereas the double-degeneracy of the entire spectrum is preserved for those per-

turbations that do not break all of the protecting symmetries. In the case of a symmetry-

breaking perturbation, the splitting is most easily observed for the higher levels, but –

as shown in the inset – also the lowest values of the entanglement spectrum are weakly

split by an amount that scales roughly linearly in the strength of the perturbation.

Unfortunately it is beyond the scope of this work to determine which perturbations

leave the CFT structure of the entanglement spectra intact. To assess this would require

a Hamiltonian that is local in two dimensions (rather than the Hamiltonians used here

which are only local in the non-compact direction of the cylinder). Furthermore, it would

require being able to perform accurate simulations for large cylinders, which is prohibitive

with the techniques used here.
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1.6 Boson-Vortex Duality

An alternative approach for examining the phase structure of two dimensional bosonic

systems is to use the boson-vortex duality, which rewrites the theory in terms of the

superfluid vortex degrees of freedom defined on the dual lattice. In this picture, the site

filling of bosons on the original lattice is mapped to an effective magnetic flux through

dual lattice plaquettes that modifies the vortex hopping via the usual Aharonov-Bohm

phases [36, 45]. In the dual description the superfluid and Mott insulating phases of the

bosons are respectively mapped into the gapped and condensed phases of the vortices.

It is instructive to see how this approach fares on the honeycomb lattice at half-site-

filling. The vortices move on the dual triangular lattice, and the original site filling of 1/2

corresponds to a π-flux for vortices for every triangular lattice plaquette. Each unit cell on

the triangular lattice contains a pair of triangles and hence 2π flux; as a consequence, the

vortices transform normally (rather than projectively) under lattice symmetries. Naively,

the π-flux has the effect of inverting the vortex band structure so that the vortex minima

are shifted to the Brillouin zone corners K, K ′ rather than the zone center Γ. Condensing

vortices at the zone corners would break lattice symmetries [158]. However, the fact that

the vortices transform regularly under lattice symmetries — in other words, that the flux

pattern does not lead to an enlarged magnetic unit cell — allows us to add additional

hopping while preserving symmetries to returns the vortex minimum to Γ. Condensing

vortices at Γ then restores the U(1) symmetry while preserving all lattice symmetries;

the resulting phase is an insulating phase of bosons at half-filling on the honeycomb
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lattice with no broken symmetries. This argument underscores the fact that such a

phase is fundamentally possible. It is not fully clear whether the result of this vortex

condensation picture is indeed the HFBI phase, as the argument does not shed light on

the entanglement structure of the insulating phase. As there are no known symmetry-

preserving insulating phases of bosons on the honeycomb lattice at this filling other than

the HFBI and its variants, we conjecture that this phase is adiabatically connected to the

HFBI. If instead it is a distinct phase, then it is separated by a phase transition from the

HFBI, as long as the symmetries and tight-binding structure of the honeycomb lattice

are preserved.

It is perhaps worth noting that the vortex-condensation picture also illustrates a

fundamental distinction between half-filling on Bravais and symmorphic non-Bravais lat-

tices. As an example, consider half-filling on the square lattice [8]; performing the duality

transformation, we arrive at a theory of vortices moving on the dual square lattice with π

flux through each plaquette. Crucially, this flux assignment on the square lattice doubles

the unit cell, and so vortices form a projective representation of the space group (related

to the magnetic translations familiar from studying particles in a magnetic field). This

projective structure cannot be removed and so guarantees that a single non-degenerate

minimum cannot be restored for any choice of vortex hopping parameters. Put differ-

ently, the vortices are (unlike in the honeycomb case) forced to carry non-trivial space

group quantum numbers, and the condensation of single vortices necessarily breaks the

symmetry [8]. Other approaches lead to more exotic alternatives, e.g. condensing vor-
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tices in pairs triggers fractionalization. This in accord with the expectation that a gapped

featureless insulator is absent on the half-filled square lattice [115, 114, 70, 71].

1.7 Concluding Remarks and Discussion

We have applied recently developed tensor network methods to study the edge properties

of a bosonic insulator that is featureless in the bulk. Our simulations are performed for an

infinitely long cylinder of finite circumference W . This allows us to numerically extract

the exact entanglement spectrum for up to W = 10. We find that the entanglement gap

closes as 1/W , and that furthermore the low-lying spectrum coincides to high accuracy

with the spectrum of a free boson conformal field theory. This is further corroborated

by observing a central charge of c = 1 in the entropy of the lowest Schmidt state.

While these observations are consistent with and strongly suggestive of a symmetry-

protected topological phase, where such a gapless spectrum would naturally emerge at

the edge, these calculations do not establish a rigorous connection between the edge

spectrum and symmetry-protection, i.e. they leave open the possibility that the gapless

entanglement spectrum is accidental. To make progress on this question, we analyze in

some detail the exact degeneracies in the entanglement spectrum for cylinders of odd

circumference W . Using recently developed tools based on matrix-product states, we

are able to establish a strong connection to the symmetries of the state by computing

topological invariants that detect the non-trivial action of certain symmetry operations.

These symmetry operations, whose action is non-trivial, consist of particular combina-
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tions of lattice and spin symmetries on the edge. This establishes in the affirmative

that the quasi-one-dimensional systems obtained for odd cylinder widths W represent

one-dimensional symmetry-protected topological phases.

We cannot establish with the same rigor that the symmetries that protect these one-

dimensional topological invariants also protect the gapless edge spectrum on the edge

of the two-dimensional system. However, several considerations are in favor of this.

Firstly, we observe that the symmetries that are shown to be relevant to the case of

odd W are not inherently one-dimensional and could apply equally well to the full,

two-dimensional system. The partial application of symmetry in the non-local order

parameter in Eq. (1.26) could be applied to arbitrary inversion-symmetric regions in

the plane, and not only to cylinder slices. Additionally, we can construct an argument

based on the picture of the edge physics provided by the tensor network representation.

As outlined in Section 1.3, the edge of the tensor network representation with the cut

chosen here can be represented using the Hilbert space of a model of hard-core bosons

hopping on a one-dimensional chain with one site per plaquette, where the occupation

of a site corresponds to whether the boson of that plaquette is found on the left or

right side of the cut. In this representation, the reflection symmetry about the cut

takes the special role of guaranteeing equal probability for the boson to be on the left

or right of the cut, and thus fixing the model for the edge to half-filling. Thus, if the

edge remains translationally symmetric, our model for the edge has fractional charge per

unit cell. If the entanglement Hamiltonian can be thought of as local, the Lieb-Schultz-
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Matthis theorem applies and guarantees that the entanglement edge is either gapless or

spontaneously breaks a symmetry. This suggests that the phase is a two-dimensional

symmetry-protected topological phase with a protecting group that includes translation

and ΠI.

The calculations presented here provide a case study where tensor network represen-

tations lead to novel insights into strongly correlated physics beyond what is accessi-

ble to more traditional methods, such as the quantum-to-classical mappings pursued in

Ref. [83] and reviewed in Section 1.1. The tensor-network techniques used in the present

approach allow us to strengthen the conclusions of Ref. [83], in particular on the ab-

sence of topological order, and reveal entanglement properties that are entirely out of

reach of quantum-to-classical mappings. It is amusing to note that this development in

theoretical methodology closely parallels the history of the prototypical SPT phase, the

AKLT phase of the spin-1 chain, where the existence of a quantum-to-classical mapping

was known well before the nontrivial entanglement structure was understood. As in that

example, we expect that here as well, the quantum-to-classical mappings are restricted

to rather special points within a broader SPT phase, whereas the tensor-network de-

scription and its corresponding entanglement structure are expected to be valid more

generally throughout the phase.

The question of a parent Hamiltonian, i.e. whether the HFBI can be established as the

unique ground state of a gapped local Hamiltonian, remains open. As reviewed briefly in

Sec. 1.5, the structure of the PEPS does not allow us to straightforwardly extract a local
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parent Hamiltonian in two dimensions. However, this by no means implies that such

a parent Hamiltonian does not exist, and future work will explore different numerical

approaches to find such a Hamiltonian.

Note: While completing this work, we became aware of related PEPS constructions of

featureless paramagnetic wavefunctions on the square lattice with spin 1 per site, and

on the honeycomb lattice with spin 1 or 1
2

per site [79]. The spin-1
2

honeycomb lattice

example corresponds to the same filling as the featureless insulating phase considered

here, but has higher symmetry (SO(3)) compared to the U(1) symmetry in the present

chapter. We note that even in the case where we consider spinful fermions (see Appendix

1.9.2) bound into Cooper pairs, the wavefunction we construct here is not a valid wave-

function for a spin-only model: projecting it to the case of single-fermion occupancy per

site (as appropriate to a spin model) annihilates the wavefunction. It will be interesting

to study if the spin-only wavefunctions constructed in Ref. [79] possess similarly rich

entanglement structure as the HFBI.

1.8 From the AKLT to the W = 1 HFBI

The AKLT state |ψAKLT〉 is a state of a spin-1 chain that has an exact representation as

an MPS of bond dimension 2 using site tensors Apij related to the Pauli matrices [136].

It is the exact ground state of the AKLT Hamiltonian

HAKLT =
∑
j

~Sj · ~Sj+1 +
1

3
(~Sj · ~Sj+1)2, (1.29)
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but it is known that the simpler Hamiltonian

HAF =
∑
j

~Sj · ~Sj+1 (1.30)

is in the same phase, i.e. the AKLT state lies in the Haldane phase of the spin-1

Heisenberg chain. By a series of transformations, we can find a representative MPS

wavefunction |ψHI〉 and a simple representative Hamiltonian that can be adiabatically

connected to the W = 1 HFBI and its corresponding parent Hamiltonian.

By using the unitary operator

U(π) =
∏
j even

eiπS
z
j (1.31)

which flips the x, y components of the spins on every other site, we create a wavefunction

representative of the Haldane insulator (HI) [17] phase, which is protected by UIU † =

ΠI [122]. This phase is obtained as the ground state of the Hamiltonian

H ′ = UHAFU
† (1.32)

=
∑
j

(
−1

2
(S+

j S
−
j+1 + h.c.) + SzjS

z
j+1

)
. (1.33)

Each spin-1 degree of freedom can be split into a pair of S = 1/2 spins to make a state

on a spin-1
2

ladder. An appropriate Hamiltonian can be found in terms of the new spin

variables ~Sj,A/B by adding a term to project out the spin-singlet component of ~Sj,A+ ~Sj,B.
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The spin-1
2
’s can then be treated as hard-core bosons. The Hamiltonian becomes

HHI =
∑
j

− t
2

((b†jA + b†jB)(bj+1A + bj+1B) + h.c.)

+ V (njA + njB − 1)(nj+1A + nj+1B − 1)

− J

2
(b†jAbjB + h.c.)− J(njA −

1

2
)(njB −

1

2
), (1.34)

where t = 1, V = 1, and J →∞. The J term projects the spin-singlet out of each rung,

and in practice only needs to be larger than all other relevant scales to drive the system

into the appropriate phase.

We can do the same transformations on the MPS |ψAKLT〉 to obtain a new MPS |ψHI〉

with bond dimension 2 and site tensor A′pij that represents a state in the phase of HHI on

the two-leg ladder. The site tensor Spij of the W = 1 HFBI also has bond dimension 2

and represents a state of hard-core bosons on the two-leg ladder. Numerically, these are
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represented by the (unnormalized) site tensors

A′p =



 0 0

2 0

 p = (00)

 1 0

0 1

 p = (01)

 1 0

0 1

 p = (10)

 0 2

0 0

 p = (11)
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and

Sp =



 0 0

1 0

 p = (00)

 2 0

0 1

 p = (01)

 1 0

0 2

 p = (10)

 0 5

0 0

 p = (11),

where p = (p1p2) represents the occupation numbers of the hard-core bosons on the two

sites on each leg of the ladder.

By linearly tuning the site tensors using

Spij(t) = tA′pij + (1− t)Spij, (1.35)

and checking that the transfer matrix of the resulting state is non-degenerate for all

t ∈ [0, 1], we confirmed that the W = 1 HFBI can be tuned in the space of bond

dimension d = 2 MPS to |ψHI〉 without passing through a phase transition, and the

representative Hamiltonian in (1.34) describes a state in the same phase.

By calculating the canonical form of the Spij site tensor, one can check that the W = 1

HFBI wavefunction has particle-hole symmetry, while the W > 1 states do not. This

particle-hole symmetry C can also be used as a symmetry protection via the Z2 × Z2
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group generated by {Π,C} or by the time-reversing symmetry ΠCτ . This fact is well

known in the context of the AKLT state, where Π and C are represented in the spin-

language as π rotations about the z and x axes, and ΠCτ is the time-reversing symmetry

iSyK that flips all components of the spins.

In the context of the argument laid out in the conclusion, it seems that particle-hole

symmetry can play the same role as inversion symmetry in ensuring the edge remains at

half-filling.

1.9 Variants on the HFBI wavefunction

1.9.1 Tuning soft-core bosons to hard-core

In Equations (1.3) and (1.4), the tensor D can be replaced by a more general form

Dp,i0i1i2 =

{
dp : p = i0 + i1 + i2
0 : else

, (1.36)

which the coefficients dp = 1, 1,
√

2,
√

6 for p = 0, 1, 2, 3 in the soft-core state and

dp = 1, 1, 0, 0 for p = 0, 1, 2, 3 in the hard-core state. We can continously tune the

coefficients d2 and d3 from the soft-core to the hard-core values. Upon doing so, we find

that the transfer matrix spectrum remains gapped, with the correlation length mono-

tonically increasing from the soft-core state to the hard-core state. Furthermore, the

low energy parts of the entanglement spectrum do not change significantly through this

tuning. Therefore we expect that the hard-core and soft-core phases can be adiabatically

connected with a path of local Hamiltonians, and all SPT results that apply to one state
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apply to the other. By choosing appropriate values of d2 and d3, we can also make a

state that is equivalent to replacing the vacuum |0〉 in Equation (1.1) with a constant

background of N bosons on each site, N →∞, and applying boson annihilation instead

of creation operators. We can also make a state of spin-S spins, which is however not

SU(2)-invariant, where Equation (1.1) becomes

|ψ〉 =
∏
7

(∑
i∈7

S+
i

)∏
i

|Szi = −S〉. (1.37)

Here, the hard-core state would most closely correspond to a state of S = 1/2 spins,

while the soft-core state corresponds to a state of S = 3/2 spins. All of these states have

the same symmetry protection properties.

1.9.2 Interpretation as a Fermionic Wavefunction

We can also interpret the hard-core variant of the HFBI as a wavefunction for spinful

fermions on the honeycomb lattice at half filling. Note that including the spin, ‘full

filling’ of a site corresponds to a pair of fermions on each site, so half filling occurs with

exactly one fermion per site, corresponding to two fermions per unit cell. Assuming no

spin polarization, there must be an equal number of ‘up’ and ‘down’ spins. We can bind

pairs of opposite-spin fermions into a Cooper pair, which yields one Cooper pair per unit

cell. As a Cooper pair is equivalent to a hard-core boson, we may place the Cooper pairs

into the hard-core variant of the HFBI. This is equivalent to the wavefunction

|Ψe〉 =
∏
7

(∑
i∈7

c†i↑c
†
i↓

)
|0〉. (1.38)
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As the Cooper pair is in a spin singlet state, this wavefunction preserves SU(2) spin

symmetry, in addition to the lattice and U(1) charge conservation symmetries. It is

therefore a symmetry-preserving wavefunction of spinful fermions (i.e., electrons) on the

honeycomb lattice at half filling. However, it is not a valid wavefunction for a pure SU(2)

symmetric spin model, as it has a vanishing projection onto the subspace where each site

has exactly unit occupancy. Note that the necessity to have ‘preformed pairs’ that can

then be put into a hard-core boson state vividly illustrates the fundamentally interacting

nature of this fermionic state.

1.9.3 Inversion Protected Phase

Additionally, the tensor W in Equation (1.2) can be replaced by the more general form

W n1...n6 =

{
px : nx = 1, ny = 0 ∀ y 6= x
0 : else

, (1.39)

which corresponds to modifying Equation (1.1) to

|ψ`〉 =
∏
7

(∑
i∈7

pib
†
i

)
|0〉. (1.40)

This does not in general preserve the rotational symmetry of the state, but it does if

the coefficients p0, . . . p5 are in an angular momentum mode

px = eix`

where ` ∈ {0, 2π/6, . . . , 5 · 2π/6}. These 6 discrete solutions can’t be continously tuned
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Group Generators Invariant i

ZP2 {I} VIV ∗I = −I −
ZP2 {Iy} VIyV

∗
Iy = −I −

Z2 × ZPT2 {Π, τΠI} VΠVτΠIV
−1
Π V −1

τΠI = −I +
Z2 × ZPT2 {Π, τΠIy} VΠVτΠIyV

−1
Π V −1

τΠIy = −I +

Z2 × ZPT2 {ΠIx, τΠI} VΠIxVτΠIV
−1
ΠIxV

−1
τΠI = −I +

Z2 × ZPT2 {ΠIx, τΠIy} VΠIxVτΠIyV
−1
ΠIxV

−1
τΠIy = −I +

Table 1.2: Summary of symmetry protecting invariants found for the |ψ`=π〉 state. The
degenerate entanglement spectrum cannot be split unless all 6 of the minimal protecting
symmetry groups are broken.

to one another while preserving all the lattice symmetries.

The state |ψ`=π〉 can be shown to be related to state |ψ`=0〉 discussed in the main text

by a on-site unitary operator U(π), where

U(ϕ) =
∏
j∈B

eiϕQ̂j . (1.41)

Due to this relation, |ψ`=π〉 and |ψ`=0〉 have identical correlation lengths and entangle-

ment spectra. However, the protecting symmetries from Table 1.1 are mapped using

conjugation by U(π) into a new set of protecting symmetries, shown in Table 1.2. No-

tably, since

U(π)ΠIU(π)† = I, (1.42)

this state has doubly degenerate entanglement spectra on odd cylinder sizes protected

by lattice inversion symmetry alone. Thus while the entanglement degeneracy in the
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HFBI state |ψ`=0〉 is not split under a staggered field

H ′ = hs
∑
i

(−1)i
(
bi + b†i

)
with (−1)i =

{
1 i ∈ A
−1 i ∈ B

(1.43)

(which fully breaks U(1) charge symmetry and inversion but not the combined symmetry

ΠI), the entanglement degeneracy in the state |ψ`=π〉 would be unsplit by a uniform field,

which may be physically more interesting.

A similar mapping for 1-D inversion protected states is discussed in Appendix A of

Ref. [122]. As discussed in Appendix 1.8, the state |ψ`=0〉 on the W = 1 cylinder is

adiabatically connected to the 1-D Haldane insulator state [17, 122]. Correspondingly,

the state |ψ`=π〉 on the W = 1 cylinder is adiabatically connected to the 1-D AKLT

state.
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Figure 1.9: The identification of the CFT primaries and level n, n̄ descendants in the
finite size spectrum of the soft-core boson entanglement Hamiltonian for cylinder cir-
cumferences W = 9 and 10. The primary states |e,m, n, n̄〉 with m = 0, n = 0, and n̄ = 0
are labeled in the plot with by their charge e. The lowest such two states for each system
size (e = 0, 1/2, 1, 3/2) are used to set the zero and scale of the numerical spectrum, while
the primaries with charges 2, 5/2, ...4 appear near the predicted energy e2. Additionally,
descendents of these primaries are labeled in the plot by their charge e and the levels
n, n̄ shown as subscripts. m = 0 for all states appearing in this plot - the m = ±1 states
are shown in Figure 1.10, appearing around momentum π, and the m = 2 states are too
high in energy to appear here. The best estimate for the Luttinger parameter from this
spectrum is κ ≈ 1.6 from the rescaled energy of the e = 0,m = 0, n = 1, n̄ = 0 state.
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Figure 1.10: The identification of primary states |e,m = ±1〉 and first descendants in
the low energy part of the spectrum near momentum π. Unlike the m = 0 states shown
in Figure 1.9, these primary states have shifted momentum K = π + em(2π/W ) and an
extra double degeneracy due to the two values of m = ±1. Using the estimate κ ≈ 1.6
from Figure 1.9, the predicted value of the entanglement energy for the |e = 0,m = ±1〉
states is 4κ2, which has been marked in the plot. The agreement is very good.
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Figure 1.11: Entanglement entropy within the entanglement ground state of the soft-
core boson state on 10 sites. For comparison, the Calabrese-Cardy formula [25] S(x) =
c/3 log sin(πx/L)+const. is shown with c = 1

2
, 1, and 2, with the const. fixed by matching

the maximum of the entanglement entropy data. c = 1 is a good fit.
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Iy

Ix

Figure 1.12: Lattice symmetries considered here: (i) Ix reflection about a line parallel to
the long direction of the cylinder, (ii) Iy reflection about a line perpendicular to the long
direction, corresponding to the entanglement cut shown in Fig. 1.3(e). These are both
chosen such that the reflection line crosses the hexagon center. Their product, I = IxIy,
thus represents (iii) the inversion about a hexagon center.
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Figure 1.13: Entanglement spectrum for the ground state of the parent Hamiltonian on
the W = 3 cylinder under a symmetry-breaking perturbation (1.28) (left panel) and a
symmetry-preserving perturbation (1.27) (right panel). Insets show the deviations of the
lowest eight entanglement energies from their unperturbed values. The initially degener-
ate entanglement energies are seen to split linearly in the size of the symmetry-breaking
perturbation (from the slope of the log-log plot) on the left, while the splittings on the
right are zero up to the accuracy of the simulation. Additionally, double degeneracy
throughout the entire spectrum remains on the right. These results were obtained using
an iTEBD simulation using a bond dimension of M = 24.

74



Chapter 2

Fermionic Topological Phases with

Majorana Dimers

2.1 Introduction

Since Anderson’s seminal work exploring the relation of high-temperature superconduc-

tivity and resonating valence-bond physics [5, 6], dimer models have served as a tool to ex-

plore the low-energy behavior of antiferromagnetic spin systems, where fluctuating pairs

of spin-singlets are expected to comprise the relevant degrees of freedom [130, 129, 48].

These dimer models describe bosonic degrees of freedom on the links of the lattice with

the additional constraint that a fixed number of such dimers emanate from each lattice

site. Due to the constrained nature of the Hilbert space, dimer models afford a large de-

gree of analytical control and have been immensely insightful in uncovering the physics of
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systems beyond the standard Landau symmetry-breaking paradigm, in particular topo-

logical spin liquids [106, 107].

Historically, dimer configurations have often been viewed as proxies for different ways

to pair neighboring spins on a lattice into singlets. We go beyond this paradigm by

introducing what we term Majorana-dimer models : in addition to the dimer degrees of

freedom on the links, we introduce Majorana modes [128, 84] on the sites of the lattice. In

the low-energy sector of our models, the Majorana modes adjacent to a bond are strongly

paired if a dimer is present on this bond. We will see that coupling the fermionic degrees

of freedom to dimers in this way generates novel phases of matter that cannot appear in

a purely bosonic model. These phases are realized as ground states of frustration-free,

and, in one of the settings, indeed exactly solvable Hamiltonians.

In the case of one Majorana mode per site of the lattice, we find realizations of Ising

topological order—i.e., an Ising phase—which we substantiate both by observing the

pattern of ground-state degeneracy on non-trivial manifolds and by computing modular

matrices. Known realizations of the Ising phase, such as Kitaev’s honeycomb model [85]

or the ν = 1 bosonic Pfaffian fractional quantum Hall state [59, 60], as well as the closely

related Moore-Read state for the ν = 5/2 plateau [109], exhibit chiral edge states (in fact

required by modularity in bosonic systems [85]). Our models, on the contrary, support

fully gapped edges. The resolution crucially relies on the fact that we are considering a

fermionic system: There is actually a “hidden” px − ipy superconductor, whose chiral

Majorana edge states [128] exactly “cancel” those of the Ising phase (see Fig. 2.1); at the
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same time, the px − ipy superconductor does not modify the universal bulk properties

since it is a short-range entangled state. Therefore, our models generate an intrinsically

fermionic topological phase of matter that does not exist in bosonic systems. By placing

more than one Majorana mode on each site, we can construct frustration-free parent

Hamiltonians for a more general class of models with gapped boundaries. For an odd

number of Majorana modes per site, we realize variants of the above Ising × (px − ipy)

phase, while for an even number per site we realize a series of Abelian topological phases

with four quasiparticles that are known from Kitaev’s 16-fold way [85].

Our construction starts from models of Z2 topological order, such as the dimer model

on the triangular lattice at the Rokhsar-Kivelson point [130] or the toric code on the

honeycomb lattice, and then couples their microscopic degrees of freedom to Majorana

modes [50, 51]. We first explore the triangular-lattice model [106], where Majorana modes

on the lattice sites couple to the dimers in such a way that if a bond is occupied by a

dimer, the complex fermion formed by the two adjacent Majoranas is, say, unoccupied.

We find that there exists a local Hamiltonian—very much akin to the Rokhsar-Kivelson

Hamiltonian for bosonic dimers—whose ground states are equal-weight superpositions of

all dimer configurations with the corresponding Majorana configurations formed accord-

ing to the above rule. The Hamiltonian is found to be frustration-free, i.e., the ground

state is a simultaneous eigenstate of all terms of the Hamiltonian. When the dimer model

is in the “resonating valence bond” (RVB) phase, deconfined monomer excitations (i.e.,

sites with no emanating dimers) harbor unpaired Majorana modes, which strongly hints
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px − ipy

Ising

γ1 γ2

γ3 γ4

Figure 2.1: Left panel: Bilayer of an Ising phase and a px−ipy topological superconductor
with opposite chirality, which together give rise to the topological phase discussed in this
chapter. This phase is characterized by three distinct topological sectors, but has a
fully gapped edge. Right panel: The Hilbert space of Majorana-dimer models consists
of bosonic dimers on the edges of the lattice and Majorana modes on the lattice sites.
In the low-energy subspace, the Majoranas are paired according to the placement of the
dimers: e.g., the fermion wavefunction corresponding to the dimer configuration shown
is the ground state of HF = −iγ1γ2 − iγ3γ4.

at the formation of an Ising-like topological phase.

In a complementary viewpoint, we describe the same phase through a model of fluc-

tuating loops. This perspective follows a recently established paradigm of enhancing

loop models by dressing the loops with one-dimensional symmetry-protected topologi-

cal phases (SPT’s). The approach gives a straightforward construction for symmetry-

enriched versions of the corresponding loop model [155, 98, 74, 16], since the ends of open

strings will carry the same projective representation of the symmetry group as the edge

modes of the SPT. The new ingredient here is to consider a one-dimensional fermionic

topological phase—the Kitaev chain [84]—that exhibits unpaired Majorana zero modes

at the ends. Excitations formed from open strings will thus carry Majorana zero modes.

By choosing the Hamiltonian such that the loops fluctuate, these excitations become

deconfined and a topologically ordered Ising phase emerges. We construct a commuting-

projector Hamiltonian on a Fisher lattice that exactly realizes this scenario.

A similar approach to ours, including the use of Kasteleyn orientations, was used
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in Ref. [141] to obtain exactly soluble parent Hamiltonians for all known fermionic

symmetry-protected topological phases with an on-site Z2 symmetry group. The phases

described in this chapter can be viewed as gauged versions of the phases described in [141],

and on the Fisher lattice a duality transformation—which we discuss in more detail in

the Conclusions—can be used to establish a correspondence between the models.

The remainder of this chapter is laid out as follows. Section 2.2 reviews the underlying

bosonic quantum dimer models that form the basis for our construction. We then dis-

cuss general properties of the Majorana-dimer model constructions in Secs. 2.3.1, 2.3.2,

and 2.3.3; the precise form of the dimer dynamics is presented in Secs. 2.3.4 and 2.3.5.

Section 2.4 presents ground-state degeneracy and entanglement calculations to determine

the precise nature of the topological order in these states. In Sec. 2.5, we discuss the

generalizations of our model to systems with more than one Majorana mode per site,

drawing on the results established in all the previous sections. Finally, we discuss our

results and provide an outlook in Sec. 2.6.

2.2 Review of Bosonic Dimer Models

Before introducing the parent Hamiltonians of the Majorana-dimer construction, we

briefly review the Rokhsar-Kivelson [130] Hamiltonian for bosonic dimer models on the

triangular lattice [106] and Fisher lattice [46]. In the former case, the Hamiltonian

H4RK =
∑
p

(
− tB4p + V C4p

)
(2.1)
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is the sum of dimer flip and potential energy terms, represented by (for one of the

plaquette orientations):

B4p =
∣∣∣ 〉〈 ∣∣∣+ h.c. (2.2)

C4p =
∣∣∣ 〉〈 ∣∣∣+

∣∣∣ 〉〈 ∣∣∣. (2.3)

One can similarly write down these terms for the other two plaquette orientations.

This Hamiltonian is known to form a Z2 topologically ordered phase for Vc < V <

t for some critical Vc > 0, and a staggered phase with broken translation symmetry

for V > t [107]. At the “RK point” t = V , the ground states are exact eigenstates

of each individual term of the Hamiltonian, i.e., the Hamiltonian is frustration-free.

On a torus, the ground states include equal-weight superpositions of all flippable dimer

configurations in each of the four topological sectors of dimers; these ground states extend

into the topological phase. Additionally, there are a number of perfectly staggered dimer

configurations that remain at zero energy, since they are not connected to other states

by the dynamics of the Hamiltonian. These states remain ground states in the staggered

phase, but are finite-energy states in the topological phase away from the RK point. The

excited states at the RK point are separated from the ground states by a gap of ∆ ≈ 0.2t.

One can view the dimer model as a spin model, with S = 1/2 spins living on the edges

of the lattice, and straightforwardly translate the above Hamiltonian into spin terms; in

particular, σze = 1 indicates the presence of a dimer on edge e while σze = −1 corresponds

to an empty bond. To enforce the dimer constraint in the language of spins, a vertex
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term of the form

J
∑
v

A4v = J
∑
v

(∑
e∈v

σze + 4

)2

(2.4)

must be added, where the sum v runs over the vertices of the lattice. When J → ∞,

the dimer constraint is enforced strictly.

We will also use a Rokhsar-Kivelson dimer model on the Fisher lattice [46, 47] obtained

by decorating the honeycomb lattice with a triangle on each site (see right panel of

Fig. 2.2). The Hamiltonian is given by

H9
RK = −t

∑
p

B9
p , (2.5)

B9
p =

∣∣∣∣∣∣
〉〈 ∣∣∣∣∣∣+ h.c.

+

∣∣∣∣∣∣
〉〈 ∣∣∣∣∣∣+ h.c.

 . . . (2.6)

Here the sum runs over all hexagonal plaquettes, and the . . . represents all possible (in

total 32) local flip moves involving 6 dimers adjacent to a plaquette. This dimer model

has the important property that all plaquettes are flippable in every dimer configuration,

so that the potential term acts as a constant and can therefore be omitted.

Despite the apparent complexity of the Fisher-lattice dimer Hamiltonian, it admits an

exceedingly simple description as a spin model. As with the triangular lattice, the spin

model is formed using spin-1/2 degrees of freedom to specify dimer states; however, it
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now suffices to place spins only on a subset of edges—the edges between triangles—since

the dimer configuration on the remaining edges is completely determined when the dimer

constraint is satisfied. We can thus map the model to one of dimer variables on the edges

of a honeycomb lattice, which are constrained such that either 1 or 3 dimers emanate

from each vertex of the honeycomb lattice. Using the spin-1/2 representation, the spin

Hamiltonian in these variables can be written as

H9
RK = −t

∑
p

B9
p − J

∑
v

A9
v , (2.7)

where the individual terms read

A9
v =

∏
e∈v

σze B9
p =

∏
e∈p

σxe . (2.8)

Here the A9
v term enforces the dimer constraint, and the B9

p term flips the dimer con-

figuration. We also notice that this Hamiltonian is the same as the toric code on the

underlying honeycomb lattice [89]. In fact, if we define an edge of the honeycomb lattice

not occupied by a dimer (σz = −1) as being occupied by a string, the dimer constraint

can be viewed as the closed-loop constraint for the strings. Thus, as in the toric code,

the minimal excitations—violations of a single plaquette term—are dispersionless and

carry energy 2t. On a closed manifold such as a torus, the plaquette terms can only be

violated in pairs, so the gap is 4t.

It is worth mentioning that dimer models have been generalized to describe other
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topological phases, such as the double semion phase [52, 96, 127, 77, 23]. The double-

semion ground-state wavefunction has a simple representation in the loop basis:

|ψDS〉 =
∑
L

(−1)n(L)|L〉. (2.9)

Here n(L) is the number of loops while {|L〉} denotes the set of closed-loop configurations.

A similar wavefunction can be written down in the dimer representation, where the

amplitude is (−1)n(D) with n(D) being of the number of loops in the transition graph of

D. Rokhsar-Kivelson-type models featuring the double-semion ground state were recently

found in Ref. [127].

2.3 Majorana-Dimer Models

In this section, we start from the dimer models for Z2 topological order described in

the previous section, and describe how to couple them to fermionic degrees of freedom

in a way that yields a new topologically ordered phase. We first review the common

ingredients for dressing dimer models with Majorana modes, and then discuss the specifics

of two models. We will see that dressing the dimer model on the Fisher lattice yields

an exactly solvable model with vanishing correlation length, while starting from the

triangular lattice yields a much simpler, but not fully analytically solvable model.

2.3.1 Majorana-Dimer Configurations

To define the Majorana-dimer models, we first associate a Majorana operator γi, with

γ†i = γi and {γi, γj} = 2δij, to each lattice site. The role of the dimers is to represent
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Figure 2.2: Kasteleyn orientation (arrows) and reference dimer configuration (blue bonds)
on the triangular lattice (left panel) and the Fisher lattice (right panel).

pairings of Majorana modes into fermionic states. To uniquely define the pairings, we

turn the lattice into an oriented graph by associating a direction to each edge of the

lattice. A dimer configuration is then given as a collection of oriented bonds D = {(i, j)}

populated by dimers. The corresponding Majorana wavefunction |F (D)〉 is the ground

state of the non-interacting Hamiltonian

HF (D) =
∑

(i,j)∈D
iγiγj. (2.10)

In order to write down the fermionic wavefunction |F (D)〉, it is helpful to fix a refer-

ence set of fermion operators from which we will define a fermionic Fock space. We do

that by picking a reference dimer configuration D0 on the lattice. We assign a complex

fermion fq for each dimer in the reference configuration in the following way, using the

previously fixed orientation: the Majorana at the tail of the arrow is taken to be γAq and
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the Majorana at the head of the arrow is taken to be γBq , where

γAq = fq + f †q

γBq = i(f †q − fq).

The total dimension of this Fock space is 2N/2, where N is the number of lattice sites.

Figure 2.2 shows examples of reference dimer configurations, illustrated by blue bonds,

for the triangular and Fisher lattices.

Following these rules for the definition of fermion dimers, we see that the reference

dimer configuration D0 corresponds to the fermion vacuum state |0〉. For some other

dimer configuration D, non-trivial correlations in these fermionic states arise from the

fact that for dimers in D that are not part of the reference state D0, the ground state

of HF will pair Majoranas associated with different fermion operators fq, fq′ . Relating

the configuration D to D0 by a transition graph, we see that these non-trivial fermion

pairs occur along the closed loops of the transition graph, as shown in Fig. 2.3. If the

fermions fq of the reference configuration are viewed as the “physical” fermions, the

coupling along such a loop resembles the pattern of entanglement between adjacent sites

in the topological phase of the Kitaev chain [84].

Schematically, the wavefunction we are interested in is an “equal-weight” superposi-

tion of Majorana-dressed dimer configurations,

|ψ〉 =
∑
D

|F (D)〉|D〉. (2.11)
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fq

γAq
γBqγB0

γA0

γA1

γB1

γB2
γA2

γA3

γB3

γB4
γA4

Figure 2.3: Illustration of Majorana pairings on the Fisher lattice. The green highlighted
strip illustrates part of a transition-graph loop. Away from the loop, Majorana modes
pair into the reference configuration; the corresponding fermion state has each of the fq
fermion unoccupied. Along the transition-graph loop, dimers are not in the reference
configuration, and the Majoranas instead pair between neighboring complex fermions
fq, fq′ . The precise state of the fermions along the transition graph loop is the ground
state of the Kitaev chain formed using Majoranas from neighboring sites. In the above
example, this chain has the form h = . . . + iγA0 γ

A
1 − iγB1 γ

B
2 − iγA2 γ

A
3 + iγB3 γ

B
4 + . . ..

The arrow orientation on the reference edges determines the identification of the two
Majoranas at each site as γAq or γBq . The other arrow orientations determine the sign of
the coupling between Majoranas.
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Note that the definition of |F (D)〉 does not fix the overall phase of each |F (D)〉, so we

will need to fix these phases in order to precisely define the “equal-weight” wavefunction.

We will also briefly consider a generalization of the wavefunction in Eq. (2.11) to

include the “double semion” signs:

|ψ〉 =
∑
D

(−1)n(D)|F (D)〉|D〉. (2.12)

Again n(D) is of the number of loops in the transition graph of D. As we will show,

this wavefunction represents a phase of matter distinct from that of Eq. (2.11).

2.3.2 Fermion Parity

A basic criterion for the consistency of such a fermion wavefunction is that the total

fermion parity is well-defined; for such a wavefunction to exist all superposed dimer con-

figurations must carry the same total fermion parity. We will show that if the orientation

for the bonds of the lattice is chosen correctly, this criterion can be met.

The fermion parity of each dimer state is described simply with a clockwise-odd rule:

if the number of arrows pointing clockwise along a transition graph loop is odd, then the

fermion parity of the corresponding state is even and vice versa. (For states with mul-

tiple loops in the transition graph, the total fermion parity is determined by combining

the fermion parities of each loop separately.) Appendix 2.7 provides a simple proof of

this fact. For planar graphs, a clockwise odd or Kasteleyn [82] orientation can always

be picked such that all transition graph loops have an odd number of clockwise-pointing

arrows; choosing this orientation guarantees all Majorana-dimer states have even fermion
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parity. Since their introduction in Ref. [82], these orientations have been used extensively

in the study of classical, bosonic dimer models. For a lattice on a higher-genus surface

such as a torus, one can only guarantee that topologically trivial transition-graph loops

are clockwise odd; an orientation with this property will be considered a Kasteleyn orien-

tation. For any such orientation, topologically non-trivial loops will be either clockwise

odd or even depending only on the Z2 winding numbers of the loop. Thus, the wave-

function in Eq. (2.11) will have definite fermion parity whenever the dimers in the sum

belong to the same topological sector.

Let us briefly discuss the effects of different Kasteleyn orientations on the parity of

each topological sector of dimers. Kasteleyn orientations related by a series of local flip

moves, where each flip move flips all of the orientation arrows adjacent to a single site

i, give equivalent fermion parities for each sector; this local flip move is equivalent to

a local Z2 gauge transformation on the Majoranas, γi → −γi, which preserves the Ma-

jorana operators’ commutation relations. To construct classes of Kasteleyn orientations

unrelated by local flip moves, one can flip all of the arrows on edges along one of the

non-trivial cycles of the torus. This leads to four inequivalent classes of Kasteleyn orien-

tations. Since flipping the arrows along a non-trivial cycle is equivalent to switching the

boundary conditions for the fermions from periodic to anti-periodic, the four classes of

Kasteleyn orientations will be labeled by the boundary conditions periodic (P) or anti-

periodic (A). The parity of the resulting Majorana-dimers depends only on the topological

sector of the dimers and on the boundary conditions as summarized in Table 2.1. Similar
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Dimer
Sector

Boundary Cond.
PP PA AP AA

(0, 0) +1 +1 +1 +1
(1, 0) −1 +1 −1 +1
(0, 1) −1 −1 +1 +1
(1, 1) −1 +1 +1 −1

Table 2.1: The fermion parity Pf = ±1 of a Majorana-dimer state depends on the topo-
logical sector of the bosonic dimers (rows) and the boundary conditions for the fermions
(columns). For the latter, ‘P’ and ‘A’ respectively denote periodic and antiperiodic
boundary conditions. For example, PP indicates periodic boundary conditions on both
cycles of the torus.

results can be derived for Kasteleyn orientations on higher genus surfaces, as detailed in

Appendix 2.7.

For the rest of this chapter, we will fix a translationally invariant orientation on

the torus and a reference dimer configuration for each lattice. In this case, the states

of Majorana-dimers in the three topologically non-trivial sectors (0, 1), (1, 0), and (1, 1)

have odd fermion parities, while the trivial sector (0, 0) has even fermion parity. Here,

the topological sectors are labelled by the parity of the winding numbers of the transition

graph loops from the reference configuration.

2.3.3 Phase Consistency and Ground-State Degeneracy

The Majorana-dimer models that we discuss in detail below will follow the same general

pattern consisting of terms that enforce the dimer constraint around a vertex, terms

that flip dimer configurations, and finally potential terms. We extend the vertex terms

to not only enforce the dimer constraint, but also to force the Majorana modes to pair

according to the dimer configuration and consistent with the orientation. The ground-
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state subspace Hr = {|F (D)〉|D〉} of these vertex terms is spanned by the set of allowed

Majorana-dimer configurations. Additionally, we must extend the flip term Bp of the

dimer model to include a fermionic part Bp that changes the Majorana pairings along

with the dimer configurations. This term provides dynamics to the Majorana-dimers

and will be constructed to ensure that the ground state of the full Hamiltonian forms an

equal-weight superposition of dimers as in Eq. (2.11).

Let Bp ≡ BpBp denote the combined boson-fermion flip term. (Here and below we use

bold font for those operators that act on both the bosonic and fermionic Hilbert spaces.)

Because of the bosonic part Bp, matrix elements 〈F (D′)|〈D′|Bp|F (D)〉|D〉 within the

restricted subspace Hr are non-zero only when dimer configurations D and D′ differ by

a single plaquette flip:

〈F (D′)|〈D′|Bp|F (D)〉|D〉 = eiϕp,DδD′,Dp , (2.13)

where dimer configurations D and Dp differ by flipping the plaquette p. Importantly, the

fermionic part of the flip term contributes phases eiϕp,D , which are absent in the bosonic

dimer model. We can characterize the effect of these phases by examining the matrix

elements of the Hamiltonian in the reduced Hilbert space Hr,

hDD′ ≡ 〈F (D′)|〈D′|H|F (D)〉|D〉

= V n(D)δD′,D − t
∑
p

eiϕp,DδD′,Dp . (2.14)

All of the off-diagonal matrix elements of h are generated by Bp, while the diagonal
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elements of h are the same as in the bosonic dimer model, i.e., the coefficient V times

the number of flippable plaquettes n(D). (In the Fisher-lattice dimer model, V appears

as an overall constant and can be dropped.)

Note that hDD′ can be viewed as a (possibly non-local) Hamiltonian acting on bosonic

dimers without the accompanying Majoranas. The spectrum of our Hamiltonian in the

restricted Hilbert space is the same as the spectrum of hDD′ and is clearly unaffected

by a redefinition |F (D)〉 → eiφD |F (D)〉. If such a redefinition could be made to satisfy

hDD′ = −t for all D,D′ that differ by a single plaquette flip, then the spectrum of the

Majorana-dimer model in the restricted Hilbert space would be identical to the bosonic

dimer model for arbitrary t, V . In that case we say that the hDD′ matrix is unfrustrated.

In the following models, we find that hDD′ is indeed unfrustrated in systems with open

boundary conditions—guaranteeing the existence of a choice of phases for |F (D)〉 where

the ground state is given by Eq. (2.11) at the RK point. As detailed in Appendix 2.8,

this choice is equivalent to adopting conventions for |F (D)〉 where the overlaps TODO

The situation is more subtle, however, on closed manifolds. On a torus we find that

non-trivial phases

Θ{Dk} = Arg (hD1D2hD2D3 . . . hDLD1) (2.15)

can be generated by a sequence of dimer flip moves that start and end with the same

dimer configuration. These phases cannot be removed by any redefinition |F (D)〉 →

eiφD |F (D)〉 and thus frustrate the hopping. Remarkably, for each of our models, these

non-trivial phases are occur only in one of the four topologically distinct sectors, namely
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the (0, 0) sector. As a result, the minimum energy for the (0, 0) sector is greater than

zero, while the other three sectors admit zero-energy ground states that are equal-weight

superpositions of Majorana-dimer configurations.

Thus, while the bosonic quantum dimer models on these lattices have 4 degener-

ate ground states formed by superpositions of dimer configurations in each topological

sector, the dynamics of the Majorana-dimers instead lead to three fermion-parity-odd

ground states corresponding to superpositions of Majorana-dimer configurations in the

(0, 1), (1, 0), and (1, 1) sectors, with a finite gap to the (0, 0) sector as well as to all other

states. This reduction in ground-state degeneracy from 4→ 3 is essential for reconciling

the anyonic content of the topological order for our Majorana-dimer models discussed

below. We also emphasize that the phases Θ{Dk} can only be reproduced in the pure

bosonic dimer model non-locally, while they appear from purely local dynamics in the

Majorana-dimer models.

The next two sections explain the precise form of the dynamics for a commuting-

projector model on the Fisher lattice and a frustration-free model on the triangular lat-

tice. We will then use the ground state(s) on the Fisher lattice to diagnose the topological

order.

2.3.4 Majorana Loop Model on a Honeycomb Lattice

Our construction on the Fisher lattice offers the advantage of having a vanishing correla-

tion length and therefore being most amenable to both analytical and numerical methods.
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As reviewed in Sec. 2.2, the quantum dimer model on this lattice is equivalent to a Z2

toric code on the associated honeycomb lattice. Dimer configurations on the Fisher lat-

tice are in one-to-one correspondence with loops on the honeycomb lattice, as illustrated

in Fig. 2.3. We will therefore formulate the model as a decorated toric-code model, where

the ground-state wavefunction is an equal-weight superposition of closed loops dressed

by Kitaev chains.

The fermionic degrees of freedom for the Majorana-dimer model on this lattice consist

of one complex fermion fe on each edge e of the honeycomb lattice, i.e., the complex

fermions lie on the sites of a Kagome lattice. We split each fermion into two Majoranas

via fe = 1
2
(γAe + iγBe ). The Majoranas now form a Fisher lattice, and we take γAe to sit

at the tail of the edge’s arrow. The Kasteleyn orientation in the right panel of Fig. 2.2

is such that all γA/B are naturally associated with A/B sublattices. In the reference

state all fermionic modes are empty f †efe = 0. We pair up Majoranas according to the

corresponding dimer configuration following the prescription sketched in Fig. 2.3 and

described in the previous subsections.

We now define a frustration-free Hamiltonian whose ground states are given by the

Majorana-loop wavefunctions introduced above. The Hamiltonian follows the same struc-

ture as the toric code Hamiltonian [Eq. (2.7)] in that one term penalizes configurations

that violate the loop or Majorana-pairing constraints, while the second term ensures that

the loops fluctuate and the ground state is an equal-weight superposition of all valid con-

figurations. The terms that enforce the constraints are given as the following projectors
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on the edges and the vertices of the honeycomb lattice:

A9
1,v =

1

2

(
1 +

∏
e∈v

σze

)

A9
2,v =

∑
e,e′∈v
e 6=e′

1− σze
2

1− σze′
2

1 + ise,e′γ
λ
e γ

λ
e′

2

A9
e =

1− σze
2

1 + iγAe γ
B
e

2
.

(2.16)

Here λ(v) in A9
2,v indicates the sublattice type of the vertex v; A9

1,v enforces the loop

constraint while A9
2,v, A9

e enforce the Majorana-pairing constraints; and se,e′ = ±1

encode the Kasteleyn orientation.

We then need the plaquette term to make the loops fluctuate, which in the purely

bosonic model is achieved by the first term in Eq. (2.7). However, in the present case,

we also need to change the Majorana pairings accordingly. This will be implemented

by a fermionic plaquette operator B9
p , which only involves the Majoranas along the

transition loop. We first define B9
p through its matrix elements between states in the

Fock space of valid Majorana-dimers corresponding to dimer configurations D and Dp

that are related by flipping plaquette p [all other matrix elements will vanish when we

include the contribution from the bosonic dimers and thus do not need to be specified;

see Eq. (2.23) below]:

〈F (Dp)|B9
p |F (D)〉 =

〈F (Dp)|F (D)〉
|〈F (Dp)|F (D)〉| , (2.17)

It is easy to see that B9
p is Hermitian and satisfies

(
B9
p

)2
= 1 when acting in the

restricted Hilbert space. Since D and Dp only differ locally, one can expect that such
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matrix elements can be generated by local operators.

Our specific choice of the B9
p operator moves Majoranas along the transition loop us-

ing a series of braids. Let us label the Majoranas along the transition loop as γ1, γ2, . . . , γn,

in counterclockwise order. Here the only requirement is that γ1 should be any of the Ma-

joranas on the edges of the plaquette. We define si,i+1 = ±1 according to the Kasteleyn

orientation on the dimer connecting γi and γi+1 (so that isi,i+1γiγi+1 = 1 either before or

after the move), and generally sij = si,i+1 · · · sj−1,j for 1 ≤ i < j ≤ n.

We can now define the fermionic part of the plaquette operator as

B9
p |F (D)〉 = U1,2n−1 · · ·U1,5U1,3|F (D)〉. (2.18)

Here, the unitary operator Uij exchanges two Majoranas γi and γj:

Uij =
1 + sijγiγj√

2
(2.19)

UijγiU
†
ij = sijγj UijγjU

†
ij = −sijγi. (2.20)

We show in Appendix 2.9 that the matrix elements of B9
p on the Majorana-dimer sub-

space indeed satisfy Eq. (2.17), and are therefore independent of the position of the

starting Majorana γ1 on the transition loop. As explained in Appendix 2.9, the form of

the B9
p operator is not unique; however, any choice generates the same matrix elements

given in Eq. (2.17).
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In the restricted Hilbert space Hr, the full plaquette operator B9
p acts as

B9
p |{σz}〉|F 〉 = B9

p |{σz}〉 ⊗ B9
p |F 〉

=

(∏
e∈p

σxe

)
|{σz}〉 ⊗ B9

p |F 〉.
(2.21)

The most important properties of these operators are that they commute with each

other within the restricted Hilbert space,

B9
p B9

p′ = B9
p′B

9
p , (2.22)

and moreover that each squares to the identity, (B9
p )2 = 1, as noted earlier. The

proof of the commutation relation is rather technical, so we refer interested readers to

Appendix 2.9 for details.

As described thus far, the Hamiltonian is frustration-free, i.e., the ground state is

a simultaneous eigenstate of all terms. Furthermore, since all terms commute on the

restricted subspace Hr, the stronger condition of a commuting-projector Hamiltonian

in the full Hibert space can be obtained by conjugating the plaquette flip term with

appropriate projectors into Hr. In summary, the full Hamiltonian for this model is

H = −Jv
∑
v

(
A9

1,v + A9
2,v

)
− Je

∑
e

A9
e

−t
∑
p

B9
p

∏
v∈p

A9
1,vA

9
2,v

∏
e∈p

A9
e .

(2.23)

We can also write down a Hamiltonian for the double-semion version of the wave-

function given in Eq. (2.12), by modifying the bosonic part B9
p of the plaquette term to
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the following [96]:

B9
p =

∏
e∈p

σxe · i
∑
l∈p legs

1−σzl
2 . (2.24)

Since this affects only the bosonic part, all properties related to the coupling to Majo-

ranas are preserved.

Spectrum

Since all B9
p commute with each other, they can be simultaneously diagonalized. The

eigenstates can then be labeled by the list of eigenvalues bp = ±1 of B9
p for all p, with

the energy E = −∑p bp. The ground state(s) would naively correspond to bp = 1,

and all we need to do is to determine the ground-state degeneracy. However, there

are additional constraints among the plaquette operators that must be fully taken into

account to correctly count the ground states—which turn out to depend on the topology

of underlying manifold and the global fermion parity.

First of all, let us consider placing the model in a disk. In this case, there are

no additional relations between the plaquette operators, and there are no topologically

nontrivial loop configurations. The restricted Hamiltonian hDD′ considered in Sec. 2.3.3

is unfrustrated. So the ground state is unique, with a completely gapped spectrum.

Now consider the system on a torus. Loop states are divided into four topological

sectors, distinguished by the parity of the winding number around the two non-trivial

cycles. As we have discussed in Sec. 2.3.2, all Majorana states in a fixed topological

sector of loops with given boundary conditions have the same fermion parity Pf . In
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particular, for periodic boundary conditions, there are three degenerate ground states

(1, 0), (0, 1), (1, 1) all having odd global fermion parity, and the (0, 0) sector has an even

fermion parity. Interestingly, we observe that the only frustrating phases in the restricted

Hamiltonian hDD′ arise from sequences of dimer flips in the (0, 0) sector that flip every

plaquette once. This can be translated into the following global constraint:∏
p

B9
p = −Pf . (2.25)

In the three fermion-parity odd sectors with Pf = −1 it is possible to have b9p = 1

for all plaquettes p simultaneously. This reproduces the expected three-fold ground-

state degeneracy. In the even-parity sector (0, 0), at least one of the b9p must be −1;

superpositions of dimers in the (0, 0) sector form the lowest excited states of the model,

with a degeneracy of Np, since there are Np different ways to violate exactly one plaquette.

We can also interpret this result in terms of the quasiparticle excitations of the model:

in the restricted Hilbert space on a closed manifold, a single fermion excitation is always

bound to a plaquette flip b9p = −1.

2.3.5 Majorana-Dimer Model on a Triangular Lattice

The Majorana loop model introduced in the previous section, albeit exactly solvable,

has quite complicated plaquette terms. In this section we describe a triangular-lattice

Majorana-dimer model that exhibits much simpler plaquette terms and naturally gener-

alizes the bosonic dimer Hamiltonian in Eq. (2.1). First we need to construct local terms

in the Hamiltonian that favor the correct Majorana pairing for a given dimer configu-
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ration. These are similar to the vertex and edge terms in the honeycomb lattice model

and will not be repeated here. In the following we mainly consider the limit where these

binding terms are dominant, allowing us to work within the restricted Hilbert space Hr.

The potential term is diagonal in the dimer basis and does not involve Majorana

operators; this piece therefore takes exactly the same form as in Eq. (2.1). The flip

term must, however, once again modify the bosonic dimers along with the accompanying

Majoranas, which can be accomplished by supplementing the bosonic flip operator with

braid matrices as follows:

B4p = eiθp



∣∣∣
1

2
〉〈

1

2
∣∣∣⊗ U12∣∣∣

2

1
〉〈

2

1
∣∣∣⊗ U12∣∣∣ 12

〉〈
12

∣∣∣⊗ U12∣∣∣ 12

〉〈
12

∣∣∣⊗ U12.

+ h.c. (2.26)

Here U12 = (1 + s12γ1γ2)/
√

2, with the γ1,2 operators labeled as above and s12 defined

by the Kasteleyn orientation. The phase factors eiθp are explained below — for now we

simply note that eiθp = eiπ/4 for plaquettes whose interior bond coincides with the position

of a reference dimer [blue bonds in Fig. 2.2], while for all other plaquettes eiθp = 1. One

can check that the braid operators indeed give the desired Majorana pairings.

The full Hamiltonian, constructed analogously to the Fisher-lattice model of Eq. (2.23),

reads

H = Jv
∑
v

A4v − Je
∑
e

A4e −
∑
p

(
tB4p − V C4p

)
, (2.27)
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where

A4e =
1− σze

2

1 + isijγiγj
2

(2.28)

is the Majorana-dimer projector at an edge e that connects vertices i, j. There are two

minor differences from Eq. (2.23): the additional potential term Cp from the bosonic

dimer model on the triangular lattice is needed, and additional projectors previously

tacked onto the flip term Bp no longer appear. This latter choice is made to simplify

the Hamiltonian and does not affect the existence of frustration-free ground states; how-

ever, neighboring Bp terms do not commute in this model independent of whether the

additional projectors are present or absent.

We include the phase factors eiθp in Eq. (2.26) for the following reason: As explained

in Appendix 2.8, with open boundary conditions (e.g., on a disk) the Majorana-dimer flip

term as written is unfrustrated in the sense described in Sec. 2.3.3. It follows that in open

boundary conditions the spectrum of the Majorana-dimer model within the restricted

subspace is identical to that of the bosonic dimer model for any t/V . This mapping

allows us to directly import known results for the bosonic dimer model to the present

case. For example, at the RK point t = V , the ground state wavefunction is the equal-

weight superposition of all Majorana-dimer states given in Eq. (2.11). Additionally,

we see that no gapless edge modes are present, as found for the commuting-projector

Majorana loop model discussed previously.

While these rigorous analytical statements do not simply extend to the torus, nu-

merical evidence from small clusters strongly suggests that the topological ground-state
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degeneracy also matches that of the Majorana loop model. We have checked numerically

on 4× 4, 6× 4 and 4× 6 lattices with periodic boundary conditions that the Majorana-

dimer model remains unfrustrated in the (1, 0), (0, 1), (1, 1) sectors, but not in the (0, 0)

sector. [More precisely, we verified by brute force that all non-trivial off-diagonal matrix

elements of hDD′ in Eq. (2.14) can be set equal to −t in the first three sectors but not the

last.] The frustration in the (0, 0) sector has a similar origin as the honeycomb lattice

model: flipping a collection of plaquettes that covers the entire torus yields a π phase

only in the (0, 0) sector, while all other loops of dimer moves accumulate no net phase.

We also performed exact diagonalizaton of our model on a 4 × 4 torus constrained

to the restricted Hilbert space. At the RK point, we find one ground state in each of

the (1, 0), (0, 1), (1, 1) sectors with exactly zero energy. The perfectly staggered states of

the triangular lattice dimer model remain zero-energy states at this point as well, but

only three ground states extend into the region V < t, as in the bosonic dimer model.

Assuming the unfrustrated condition persists all the way to the thermodynamic limit,

the ground states of the (1, 0), (0, 1), (1, 1) sectors are degenerate for the entire parameter

region Vc < V < t (where the bosonic dimer model is in the topological phase) when the

vertex constraints are strictly enforced with Jv, Je →∞. The lowest excited states in the

exact diagonalization are the lowest-energy states in the (0, 0) sector—which for the 4×4

lattice at the RK point are 6-fold degenerate with energy 0.14t. By analogy with the

Majorana loop model, these lowest excited states cost an energy comparable to inserting

a vison into the bosonic dimer model, and thus we expect they remain gapped away from
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the other ground states in the thermodynamic limit. For the range of parameters where

the ground state of the (0, 0) sector has higher energy than the other sectors, the model

will have three topologically degenerate fermion-parity-odd ground states on a torus as

well as gapped edges with open boundary conditions. Thus it is natural to expect that

the resulting topological order is identical to the above Majorana loop model.

2.4 Identifying Topological Order

We are now ready to analyze the universal properties of the gapped states obtained

above. We will present both analytical and numerical evidence that the topological order

indeed corresponds to an Ising phase together with a chiral px− ipy superconductor. For

theoretical expedience we primarily concentrate on the Fisher-lattice model, which allows

many exact statements to be made given the exact solvability. We stress, however, that

the results are expected to extend straightforwardly to the triangular lattice as well.

2.4.1 Ising topological quantum field theory review

We first review the Ising topological quantum field theory (TQFT). This topological

phase—which is realized, e.g., in Kitaev’s honeycomb model [85] or the ν = 1 bosonic

Pfaffian quantum Hall state [59, 60]—supports three types of anyons denoted by I, σ, ψ.
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The nontrivial fusion rules are given by

σ × σ = I + ψ

σ × ψ = σ

ψ × ψ = I.

(2.29)

It turns out that eight different bosonic topological phases exhibit these same fusion rules

yet are distinguished by the topological twist factor of σ:

θσ = e
πin
8 , (2.30)

where n is an odd integer. (For any n the ψ twist factor is θψ = −1.) Since the

corresponding chiral central charge is c− = n/2, we label these phases as Ising(n/2). It is

worth mentioning that the bulk-anyon braiding statistics is identical for n and n + 16.

The usual Ising phase [85] is Ising(1/2) in this notation.

The modular matrices on a torus, which have been conjectured to uniquely identify
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the topological phase [131, 21], are given by [85]

S =
1

2


1 1

√
2

1 1 −
√

2

√
2 −

√
2 0

 (2.31)

T = e−
πin
24


1 0 0

0 −1 0

0 0 e
πin
8

 . (2.32)

Here, T encodes the self-statistics (twist factors) of the quasi-particles, while S encodes

the mutual statistics.

The ground-state degeneracy (GSD) of a topological phase on a genus-g surface can

be obtained from the Verlinde formula [108]:

GSD =
∑
a

S2−2g
Ia (2.33)

with a running over all quasiparticle types. For the Ising TQFT, we have SII = SIψ = 1
2

and SIσ = 1√
2
, yielding

GSD = 2 ·
(1

2

)2−2g

+
( 1√

2

)2−2g

= 2g−1(2g + 1). (2.34)

The systems under consideration arise microscopically from fermionic matter, so it is

useful to consider Ising phases supplemented by physical fermions, whose particle content

is denoted by Ising(n/2) × {I, f}. Now the self-statistics of an anyon is only defined up

to ±1 since one can always attach a fermion f to the anyon. Therefore, the bulk anyon
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properties are identical in this case for n and n± 8.

2.4.2 Ground-State Degeneracy on Closed Surfaces

The first piece of evidence that our Majorana-dimer models support Ising topological

order comes from the ground-state degeneracy on closed surfaces. We have shown in

Sec. 2.3 that systems defined on a torus host a three-fold ground-state degeneracy. We

now further argue that on a genus-g surface the ground-state degeneracy is 2g−1(2g+1)—

exactly as for an Ising topological phase [see Eq. (2.34)].

Recall that the three-fold degeneracy on a torus arises because only odd-fermion-

parity states can maximally satisfy all Hamiltonian terms, implying that one of the

ground states of the pure bosonic dimer model is lifted to higher energy. Similar con-

straints hold on higher-genus surfaces. In fact, we will show that∏
p

B9
p = (−1)gPf , (2.35)

where g is the genus of the surface. This relation can be proven inductively. A surface

Σg with genus g can be obtained from a genus-(g−1) surface Σg−1 by making a hole and

gluing on an open torus T. Without losing generality, we can choose a trivalent graph

such that the gluing hole coincides with a plaquette p0. Assuming the relation (2.35)

holds for Σg−1, we have

B9
p0

∏
p∈Σg−1

p6=p0

B9
p = (−1)g−1Pf (Σg−1). (2.36)
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For the open torus (punctured at p0), using Eq. (2.25) we have

B9
p0

∏
p′∈T
p′ 6=p0

B9
p′ = −Pf (T). (2.37)

We then glue the open torus and Σg−1 together at p0 to get Σg−1; after gluing the

plaquette p0 no longer belongs to the surface Σg. Multiplying the two relations and

recalling that (B9
p0

)2 = 1 (in the restricted Hilbert space), we obtain∏
p∈Σg

B9
p = (−1)gPf (Σg−1)Pf (T) = (−1)gPf (Σg), (2.38)

yielding Eq. (2.35) as claimed. Therefore, on a genus-g surface all ground states must

have fermion parity equal to Pf = (−1)g in order to satisfy B9
p = 1 ∀ p. Using the result

of Appendix 2.7, the number of ground state on a genus-g surface is then 2g−1(2g + 1).

The fact that the ground states have global fermion parity equal to (−1)g can be

understood from the presence of the “hidden” px − ipy superconductor: it is known

that the ground state of a px − ipy superconductor on a torus with periodic boundary

conditions has odd fermion parity [128]. Generalizing to a genus-g surface (which can be

viewed as a connected sum of g tori), it is not hard to see that the ground state fermion

parity should be (−1)g. Since the Ising phase is purely bosonic, the ground state fermion

parity of the Ising× (px − ipy) topological phase is also (−1)g.

2.4.3 Fully Gapped Boundary to Vacuum

For the discussion of the edge physics, it is important to fix the background in which

the phase desribed here arises. In the following, we will take the Majorana degrees of

freedom in our model to arise microscopically from a medium with zero “background”
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central charge, such as an array of Kitaev chains. As an alternative setup, the Majoranas

could arise from a vortex lattice in a chiral p-wave superconductor with central charge

c = ±1/2; results for the latter case can be obtained straightforwardly from the setup

examined explicitly below.

Since we have shown that the Majorana loop state on the Fisher lattice is the ground

state of a commuting-projector Hamiltonian, on a manifold with boundary there can

not be any chiral edge modes [85]. We have also shown that the Majorana-dimer model

on a triangular lattice is fully gapped with open boundary conditions. A fully gapped

boundary implies the following: (a) The chiral central charge c− must vanish. For Ising×

(px − ipy) we indeed find that c− = 1
2
− 1

2
= 0. (b) The topological order must contain

a “Lagrangian subalgebra” [94, 87, 90, 40], namely a set of bosonic quasiparticles whose

condensation eliminates the topological order completely. For the Ising × (px − ipy)

topological phase, the particle content in the bulk can be conveniently represented by

{I, σ, ψ} × {I, f} where f represents physical fermions. One can easily identify the

Lagrangian subgroup as {I, ψf}. Condensing the combination ψf identifies ψ with f

and confines both σ and σf due to the nontrivial braiding statistics between σ and

ψ [7]; the result is a trivial fermionic phase with particle content {I, f}. Together with

the vanishing of the chiral central charge, this implies the existence of a fully gapped

edge [10].

We notice that the ψf boson can be identified with the “vison” excitation of the

lattice model. A vison in the Majorana loop model corresponds to a plaquette violation,
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i.e. Bp = −1 for a certain p. Such excitations can be generated with a string operator

along an open path P on the dual lattice:

Wv(P ) =
∏
j∈P

σzj . (2.39)

Here the product runs over all edges j intersecting with P . Notice that Wv does not

involve any Majoranas, and in fact takes the same form as the string operator that

generates plaquette excitations in the bosonic toric code. Therefore we expect the visons

are bosonic.

2.4.4 Modular Matrices

The above arguments illustrate the consistency of the Ising× (px − ipy) theory with the

numerical observations thus far. However, we should notice that there are in fact four

different types of topological order that are consistent with the ground-state degeneracy

counting and existence of gapped boundaries. Following the notation laid out above,

these correspond to Ising(n/2)× (px− ipy)n, where again n is an odd integer and Ising(1/2)

denotes the usual Ising phase. All such phases have c− = 0. Moreover, we should regard

n and n+ 8 as representing the same phase [9] since their bulk anyon content is identical

[recall Sec. 2.4.1]. Thus the four distinct states that we would like to discriminate amongst

correspond to n = 1, 3, 5, 7.

To affirmatively and unambiguously identify the topological order, we characterize the

topological properties of the bulk anyons through the modular S and T matrices, which

can be extracted using the entanglement properties of ground states on the torus [160].
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This calculation is done for the Majorana-dimer model on the Fisher lattice (Sec. 2.3.4),

since the vanishing correlation length for the ground states negates the need to perform

any finite-size scaling; for this reason, a minimal 2×2 lattice on a torus suffices. [For the

triangular lattice model (Sec. 2.3.5), analogous calculations on small clusters (e.g., 4×4)

were inconclusive most likely due to the system’s finite correlation length; we leave for

future work a thorough numerical investigation of this model using, for example, DMRG.]

Because the ground states preserve the C3 rotation symmetry of the Fisher lattice, we

adopt the method developed in Refs. [160, 33, 13] to extract the modular matrix ST−1

using the action of a 2π/3 rotation. This allows us to compute T and S individually

given minimal assumptions about the form of these matrices. Without this rotational

symmetry, we could instead use the methods of Ref. [161] to compute the S matrix and

constrain the T matrix.

The presence of fermions in our model forces us to slightly modify the algorithm of

Refs. [160, 33, 13] to determine the modular matrices S and T . There are two assumptions

of these previous works that no longer hold. The first is that the modular matrix ST−1,

which corresponds to a 2π/3 rotation, satisfies (ST−1)3 = 1, i.e., R3
2π/3 = 1. Naively,

one might define the rotation through its action on the the fermionic operator fq at site

q by R2π/3fqR
−1
2π/3 = fR2π/3(q). This would imply that the representation of R2π/3 on the

ground state manifold would have to satisfy R3
2π/3 = 1. In a fermionic topological phase,

however, rotations can act in more subtle ways.

To see this, we note that S and T matrices must be understood as the non-Abelian
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Berry phases associated with the degenerate ground states under adiabatic deformation

of the system [42], and thus we should view R2π/3 in the same way for the purpose

of extracting modular matrices. As demonstrated in Ref. [157] via explicit Berry phase

calculations, modular transformations of the ground state of a (px−ipy)n superconductor

with periodic boundary conditions along both directions are given by

S(px−ipy)n = e
πin
4 T(px−ipy)n = e−

πin
12 . (2.40)

In particular, the ground state on a torus with C3 symmetry satisfies

R3
2π
3

= (ST−1)3 = (e
πin
3 )3 = (−1)n. (2.41)

Similarly, a ground state on a torus with C4 symmetry satisfies R4
π
2

= S4 = (e
πin
4 )4 =

(−1)n. The nontrivial right-hand side is a direct consequence of the fact that the ground

state of a (px − ipy)n superconductor has odd fermion parity when n is odd, because a

2π rotation acting on a fermion yields a −1 phase factor—where again the 2π rotation

should be understood in the sense of an adiabatic Berry phase. We will need to account

for this subtle Berry phase effect in our calculation.

One can also obtain these relations by microscopic considerations in our setup: Adia-

batically rotating the system by 2π can be seen to be topologically equivalent to a series

of braids that for every Majorana operator sends γi → −γi, and thus the action of R2π/3

on the Majorana operators must be taken to be

R2π/3γiR
†
2π/3 = −γR2π/3(i). (2.42)
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Similar results can be obtained by viewing the system as a network of Majorana wires,

where a 2π rotation is known to have the same effect [68].

The second assumption that while valid for bosonic theories, must be reconsidered

in our case, is that the modular matrix S has a positive row and column corresponding

to the vacuum anyon of the topological theory. While this assumption holds for bosonic

topological orders, it can already be seen to fail for S(px−ipy)n above. The existence of a

positive row and column can be used to extract S and T from a combination of modular

matrices such as ST−1 [160], but without it some ambiguity in the precise values of S and

T persists. While these issues could be remedied by expensive adiabatic computations of

the S and T matrices, we will show below that the easier minimally entangled state (MES)

calculations indeed contain enough information to distinguish the Ising(n/2)× (px− ipy)n

phases. The key fact is that the modular matrices of these theories, which read

S = SIsing(n/2) ⊗ S(px−ipy)n

T = TIsing(n/2) ⊗ T(px−ipy)n
, (2.43)

will still have a row and column that are positive modulo a constant prefactor, since

the difference from a bosonic theory is completely due to an overall phase contributed

by the (px − ipy)
n sector. In the following, we will carefully step through the logic to

show that the Majorana-dimer model of this chapter produces the topological phase with

n = 1. Then we discuss how our construction can be modified to produce Hamiltonian

and wavefunction representatives for each of the other odd n as well.

To proceed we must first choose a basis {|i〉} for the three-dimensional ground-state

manifold. We employ the ground states |n1, n2〉 of the Majorana-dimer model in each
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topological sector with fixed winding numbers n1, n2 of the transition graph loops, where

(n1, n2) takes one of the three values (0, 1), (1, 0), (1, 1). Notice that the overall phase of

each ground state is arbitrary and that the winding number basis does not clearly specify

the phases.

The second step of the analysis is to compute the overlap matrix 〈i|R2π/3|j〉 for these

ground states. As discussed above, we choose the rotation to act such that

R3
2π/3 = Pf . (2.44)

One possible choice of phase convention is that the action of 2π/3 rotations in the

winding number basis takes the form

R 2π
3

=

0 1 0
0 0 −1
1 0 0

 , (2.45)

which indeed satisfies R3
2π/3 = −1. Other phase conventions for the ground states yield

a rotation matrix that differ from the above by conjugation with a diagonal matrix of

phases, but do not affect the final answers below.

Accessing the anyon properties requires changing to the MES basis, i.e., the states

that minimize the entanglement entropy with respect to a non-contractible cut of the

torus [160], which are known to have a definite topological charge through the torus.

The MES basis for the cuts shown in Fig. 2.4 was found by brute-force minimization of
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(1, 1)(1, 0)

Figure 2.4: Upper left: The entanglement cut (red dashed line) used for the numerical
calculations of the modular S and T matrices. Upper right: A dimer configuration
belonging to the (1, 0) topological sector. Bottom: The Dehn twist T permutes the
sectors (1, 0) and (1, 1) while preserving the sector (0, 1).
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the entanglement entropy. Using the phase convention defined in Eq. (2.45), we find

|1〉 =
1√
2

(|1, 0〉 − e 3iπ
8 |1, 1〉)

|2〉 =
1√
2

(|1, 0〉+ e
3iπ
8 |1, 1〉)

|3〉 = |0, 1〉.

(2.46)

The entanglement entropies of the three MES’s are respectively 3 ln 2, 3 ln 2, and 4 ln 2.

Generally speaking, a MES corresponding to anyon type a should have topological entan-

glement entropy γa = 2 ln D
da

, where da is the quantum dimension of a and D =
√∑

a d
2
a is

the total quantum dimension [160]. For Ising anyons, we have γI = γψ = 2 ln 2, γσ = ln 2.

Up to topological-sector-independent area law contributions, this is fully consistent with

the calculated entanglement entropies if we identify |3〉 with the non-Abelian σ anyon.

In the MES basis, the 2π/3 rotation becomes

R 2π
3

= e
3πi
8


1
2

−1
2

e
πi
4√
2

1
2

−1
2
− e

πi
4√
2

e−
3πi
8√
2

e−
3πi
8√
2

0

 . (2.47)

Following [33] and [13], in a topologically ordered phase a 2π/3 rotation of a torus is

represented by ST−1, up to conjugation by a diagonal phase matrix D and a permutation

matrix P :

R 2π
3

= PD
(
ST−1

)
D†P †. (2.48)

The undetermined matrices D and P are due to the freedom to rephase each MES and

reorder the MES’s with the same topological entanglement entropy. Here both T and D

are diagonal, while S is proportional to a matrix with all positive elements in the first

row and column. We will consider this equation for each possible permutation P .
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The above equation with P = I allows us to determine S up to an overall phase by

fixing the first row and column of R 2π
3

to be non-negative as in Eq. (2.45):

S = eiη


1
2

1
2

1√
2

1
2

1
2
− 1√

2
1√
2
− 1√

2
0

 . (2.49)

This is, not surprisingly, the S matrix of an Ising topological phase up to an overall

phase. By matching this to Eq. (2.48), we can solve for T :

T = ei(η−
3π
8

)

1 0 0
0 −1 0

0 0 e
πi
8

 . (2.50)

This form of T and the knowledge that c− = 0 pins down the topological order to be

Ising(1/2)×(px−ipy). In particular, upon selecting η = π
4

these S and T matrices precisely

agree with Eq. (2.43) with n = 1 1.

Suppose that we instead choose a permutation matrix P that swaps the states |1〉 and

|2〉 that possess identical topological entanglement entropies. While the same S results,

we find that the T matrix now takes the form

T = ei(η+ 5π
8

)

1 0 0
0 −1 0

0 0 e
9πi
8

 . (2.51)

Now the S and T matrices agree with Eq. (2.43) with n = 9 when η = 9π
4

. As discussed

above, the phases n = 1 and n = 9 have the same bulk anyon content and should be

identified; thus, this result is consistent with a unique identification of the topological

phase from the modular matrices and chiral central charge.

1 More generally, selecting η = πx
4 , one can check that the S and T matrices will agree with those

of Ising(1/2) × (px − ipy)x whenever x = 1 mod 6. This is due to the fact that 6 copies of (px − ipy)
contributes a factor of 1 to the ST−1 matrix — thus, the modular matrix ST−1 does not completely
determine the topological phase. Since 6 copies of (px − ipy) shift the chiral central charge c− by 3, the
additional knowledge that c− = 0 fixes the appropriate factor (px − ipy)x.
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Semion Variant

A similar calculation can be performed with the semion version of the dimer model

introduced in Sec. 2.3.4. In this case, we instead find the MES to be given by

|1〉 =
1√
2

(|0, 1〉+ e
7iπ
8 |1, 1〉)

|2〉 =
1√
2

(|0, 1〉 − e 7iπ
8 |1, 1〉)

|3〉 = |1, 0〉.

(2.52)

Using this MES basis, the rotation matrix is written as

R 2π
3

= e−
πi
8


1
2
−1

2
− e

πi
4√
2

1
2
−1

2
e
πi
4√
2

e
πi
8√
2

e
πi
8√
2

0

 . (2.53)

This leads to the same S matrix as Eq. (2.49), but a distinct T matrix:

T = ei(η+π
8

)

1 0 0
0 −1 0

0 0 e
5πi
8

 . (2.54)

With η = 5π
4

, the S and T now match the product of an Ising(5/2) theory and a (px−ipy)5

superconductor. Intuitively, the topological twist of σ shifts by i due to the attachment

of a semion with exchange statistics i to the Ising anyon.

2.5 Generalizations to multiple Majoranas per site:

8-fold way

The eight topological phases Ising(n/2) for n = 1, 3, 5, . . . , 15 discussed in Sec. 2.4.1 can

be generated using a procedure of tensoring and condensation of bosons [7, 110]. Specif-
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n Phase Twists

0 Toric Code 1,−1, 1, 1
2 U(1)4 1,−1, eiπ/4, eiπ/4

4 U(1)2 × U(1)2 1,−1, eiπ/2, eiπ/2

6 SO(6)1 1,−1, e3iπ/4, e3iπ/4

8 SO(8)1 1,−1,−1,−1

Table 2.2: Even-n phases from the 16-fold way.

ically, tensoring n layers of Ising topological phases and condensing all of the bosons

ψiψi+1 formed from the combined fermions of neighboring layers gives the above pro-

gression of phases for odd n. For even n ≤ 8, the phases listed in Table 2.2 occur. The

phases for 8 < n < 16 can be described as conjugates of the n′ = 16− n phases listed in

the table. The phase n = 16 has identical bulk particle content as Kitaev’s toric code,

and the pattern repeats with period 16. This is Kitaev’s 16-fold way for gauged topo-

logical superconductors [85]. A similar progression of phases occurs using the fermionic

Ising(1/2) × (px − ipy) of this chapter as a generating state. However, as mentioned in

Sec. 2.4.1, the pattern repeats after n = 8, since the topological twists are only well

defined up to an overall sign in the presence of physical fermions.

To create Majorana-dimer wavefunctions for these n > 1 phases, it suffices to accom-

pany each bosonic dimer with n Majorana-dimers instead of just 1. Specifically, each

lattice site i now has n Majorana modes γ
(α)
i , α ∈ {1, . . . , n}, and the n Majorana-dimers

(γ
(α)
i , γ

(α)
j ) are formed with the same orientation for each α. These wavefunctions can

be viewed as dressed loop wavefunctions with n copies of the Kitaev chain along each

loop. It is straightforward to write down an exactly solvable Hamiltonian for this state

by generalizing the construction in Sec. 2.3.4.
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To see that this procedure suffices, imagine n initially decoupled copies of the n = 1

model. Now add a coupling term between neighboring layers that energetically favors the

loops in each layer to reside at the same location. Since the vison is just the violation of

the plaquette term, and the simultaneous violation of plaquettes in two layers is invisible

if loops are forced to surround the same plaquette in each layer, each of these terms

drives a condensation transition that condenses the vison pairs ψiψi+1 from neighboring

layers (recall that the vison in each of the layer is the ψif particle). The end result of

this process is the same as a single layer of loops dressed by n copies of the Kitaev chain.

We bolster the above argument by repeating the calculation of the modular matrices

for the n = 2 case. Here we have four ground states—all with even fermion parity—that

are formed from the four topological sectors. Using a phase convention where the rotation

matrix takes the form

R 2π
3

=


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , (2.55)

the MES were found to be

|1〉 =
1√
2

(|1, 0〉 − e iπ4 |1, 1〉)

|2〉 =
1√
2

(|1, 0〉+ e
iπ
4 |1, 1〉)

|3〉 =
1√
2

(|0, 0〉+ |0, 1〉)

|4〉 =
1√
2

(|0, 0〉 − |0, 1〉).

(2.56)
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Using the same procedure as before, we find that the modular matrices satisfy

S =
eiη

2


1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

 , (2.57)

and

T = ei(η−
3π
4

)


1 0 0 0
0 −1 0 0

0 0 e
πi
4 0

0 0 0 e
πi
4

 . (2.58)

These are precisely the modular matrices of the U(1)4×(px− ipy)2 theory with η = π
2
.

As in Section 2.4.4, permutations of the MES produce different forms for the T matrix

with the same S matrix, but these can all be regarded as representing the same bulk

topological order. We note that a different exactly solvable model for this fermionic

topological phase was studied in Ref. [64].

In the above construction, each additional layer and condensation of Ising(1/2)× (px−

ipy) increases n by 1. We can also decrease n by using a layer of a conjugate phase. One

way to produce the conjugate phase is to act on the n = 1 state with an anti-unitary

operator T , such as

TiT−1 = −i (2.59)

TγiT
−1 = γi. (2.60)

This operation flips the sign of the coupling of all Majorana pairs, and so is equivalent

to reversing the orientation of all Majorana-dimers. A repeat of the modular matrix
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calculation confirms that this produces the n = −1 state, or equivalently the n = 7 state.

Similarly, reversing the orientation of the n = 5 semion variant in Section 2.4.4 produces

the n = 3 state. Thus our single-layer states and their conjugates suffice to generate all

four of the n-odd topological phases.

One final check on the arguments in this section is provided by considering a layer

construction of the n = 1 and n = −1 states. This is done similarly to the n = 2

construction, but with the orientation on one layer reversed. The modular matrix com-

putation for this state produces the S and T matrix of the toric code topological order,

which is the n = 0 phase of the 8-fold way.

2.6 Conclusion

In this chapter, we have introduced a new class of models, termed Majorana-dimer mod-

els. Starting from models of bosonic dimers, we introduce Majorana modes on the edges

of the lattice and couple them to the dimers such that the Majorana modes always pair

up according to the dimer configurations. We explicitly construct two frustration-free

Hamiltonians governing the dynamics of the dimers: an exactly solvable Hamiltonian

consisting of commuting projectors on the Fisher lattice, and a much simpler Hamilto-

nian on the triangular lattice. We characterize the universal topological properties of the

models using ground-state degeneracy on closed surfaces and modular transformations,

and show that the resulting gapped phases realize Ising × (px − ipy) topological order

in the simplest case, and phases related to Kitaev’s 16-fold way in the general case. All
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these phases have gapped boundaries and cannot arise in purely bosonic systems. We

note that similar results have been obtained by Walker and Wang [149]. It is interesting

to ask whether the phase described here is part of an even larger family of systems. A

natural extension of our work would be to replace the Majorana modes by parafermionic

generalizations [44, 11, 35, 31, 100, 4], and couple them to dimers to form a phase with

deconfined excitations that harbor parafermion zero modes.

The models we study can be viewed as gauged fermionic SPTs protected by an on-site

Z2 symmetry [125, 134, 156, 62]. This is particularly clear in the Fisher lattice model:

performing a duality transformation sends σze ↔ τ zp τ
z
q , where p and q label the two

plaquettes adjacent to e and τ ’s are Ising spins on the dual lattice. This dual model has

a global Z2 symmetry generated by
∏

p τ
x
p , and loops in the original model correspond

to Ising domain walls in the dual model. A commuting-projector model for this fermion

SPT was recently found in Ref. [141], which is closely related to the Fisher lattice model

studied in this chapter via the above duality transformation. Moreover, the generalization

to n Majoranas per site discussed in Sec. 2.5 can also be dualized to capture other Z2

fermionic SPT’s, and the 8-fold way precisely corresponds to the Z8 classification of

the SPT’s [134, 62]. These phases can also be realized with non-interacting fermions:

consider the n = 1 case and spin-1/2 electrons. Spin-up (down) electrons form px + ipy

(px − ipy) superconductors. The Z2 symmetry is generated by (−1)N↑ , i.e., conservation

of the fermion parity of spin-up electrons. Gauging the Z2 symmetry would turn the

px + ipy superconductor into an Ising phase, and therefore the gauged SPT is indeed

121



Ising× (px − ipy).

Our results have important consequences for the question of which topological phases

of matter can be represented with tensor network states of small bond dimension. Pre-

viously, it has been shown that all bosonic topological phases with fully gapped bound-

aries have exact PEPS representations [22, 63, 24]. At the same time, there is evidence

that topological phases with chiral edges and exponentially decaying bulk correlations—

including the Ising theory whose particle content is the same as the phase described

here—cannot be efficiently represented as tensor networks [148, 38, 154]. Crucially, given

that we have explicitly constructed frustration-free Hamiltonians, the phase of matter

discussed in this chapter is likely to be described exactly by a PEPS of relatively small

bond dimension. Our construction therefore suggests that the use of fermionic sys-

tems allows a broader class of topological orders to be desribed as tensor networks than

previously known. These phases may also be more susceptible to many-body localiza-

tion [76, 15, 124, 123].

Finally, it would be very interesting to realize the Majorana-RVB physics encapsu-

lated in Eq. (2.11), and the resulting Ising× (px− ipy)-type topological order, in a purely

fermionic microscopic setting (without the accompanying bosonic dimers). In this con-

text, our results highlight the possibility of a topological superconductor with p-wave

pairing that breaks time reversal symmetry, but nevertheless has a gapped edge. This

could be consistent with phenomenology observed in strontium ruthenates [105]. Bar-

ring the admittedly far-fetched possibility of relevance to this material, one could obtain
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more natural models for this phase in engineered quantum systems. As a concrete phys-

ical realization we imagine, for example, a triangular Abrikosov vortex lattice in a two-

dimensional px+ ipy superconductor where each vortex hosts a Majorana zero mode [128]

(for possible physics arising in such systems, see e.g., Refs. [61, 103, 92, 32]), or an ap-

propriately arranged array of Majorana nanowires [84, 104, 112, 12]. In each case, we at

least have the correct Majorana degrees of freedom at hand. In the former case, there

is also similar sign structure in the couplings of these Majoranas. The effective coupling

of Majorana vortex modes through the px + ipy superconductor determined by the over-

lap integrals of the mode wavefunctions have phases that satisfy the clockwise-odd rule,

which in this context has been labeled the Grosfeld-Stern rule [61, 32]. Furthermore, the

phase of individual tij depends on a choice of branch cuts of the underlying superfluid’s

order parameter which start and terminate at the vortices; these branch cuts play a role

similar to the reference dimer configuration in our chapter. The similarity suggests that

the Ising×(px−ipy) phase could appear in the phase diagram of the Majorana modes in a

vortex lattice with (beyond quadratic) interactions induced through the superconductor.

The question of whether one can design suitable interactions among these zero modes

to induce an Ising × (px − ipy)-type phase must be addressed in future work, but the

results presented here provide new motivation to address this problem.
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2.7 Fermion Parity Details: Clockwise-Odd Rule and

State Counting

Let us prove the clockwise-odd rule for fermion parity on a transition loop. Consider a

transition loop containing 2N Majoranas. Assume that the reference dimer configuration

corresponds to the pairings is2j−1,2jγ2j−1γ2j = 1 with j = 1, . . . , N , and that the new

configuration has is2j,2j+1γ2jγ2j+1 = 1. Denoting the loop fermion parity operator by

P̂loop, the fermion parity of the new state |Ψ〉 is

〈Ψ|P̂loop|Ψ〉 = 〈Ψ|
N∏
j=1

is2j−1,2jγ2j−1γ2j|Ψ〉

=iN
N∏
j=1

s2j−1,2j〈Ψ|γ1γ2 · · · γ2N−1γ2N |Ψ〉

=− iN
N∏
j=1

s2j−1,2j〈Ψ|γ2 · · · γ2N−1γ2Nγ1|Ψ〉

=−
2N∏
j=1

sj,j+1〈Ψ|
N∏
j=1

is2j,2j+1γ2jγ2j+1|Ψ〉

=−
2N∏
j=1

sj,j+1.

(2.61)

This is exactly the clockwise-odd rule quoted in Sec. 2.3.2.

We now consider the fermion parity of Majorana-dimer states on a high-genus sur-

face, assuming periodic boundary conditions. There are 22g topological sectors of dimer

configurations. Notice that a genus-g surface can be viewed as the connected sum of g

tori. Each torus inherits the periodic boundary conditions so there are three states with

odd fermion parity and one with even fermion parity. Therefore, the total number of
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states with even fermion parity is

k≤[g/2]∑
k=0

(
g

2k

)
32k =

1

2
[(3 + 1)g + (−1)g(3− 1)g]

=
1

2
[22g + (−1)g2g]

= 2g−1[2g + (−1)g],

(2.62)

and the total number of states with odd fermion parity is 22g − 2g−1[2g + (−1)g] =

2g−1[2g − (−1)g].

2.8 Majorana-Dimer Model with Open Boundary Con-

ditions

In Sec. 2.3.3 we defined a map from the Majorana-dimer model in the restricted Hilbert

space to the bosonic dimer Hamiltonian via the nonlocal transformation |F (D)〉|D〉 →

|D〉. Recall that matrix elements for the fermionic part of the flip term are given by

hDD′ = −〈F (D′)|Bp|F (D)〉. (2.63)

We fix the innate phase ambiguity for |F (D)〉 by the following convention. Define

|0〉 as the vacuum of fermions in the reference configuration. The overlap 〈0|F (D)〉 is

always non-zero with open boundary conditions: if we examine the transition graph be-

tween D and the reference dimer configuration, |F (D)〉 is essentially the ground state

of Kitaev chains on the transition loops, or in other words the state obtained by ap-

plying
∏

e=(i,j)∈l

1+isijγiγj
2

along each transition loop l. In our system with open boundary

conditions, the ground state of each Kitaev chain has even fermion parity, and it is a
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well-known fact that the wavefunction of such chains is an equal-weight superposition

(up to signs) of all fermion occupation numbers with given parity, including the vacuum.

Thus with open boundary conditions 〈0|F (D)〉 is indeed always non-zero, and we select

phase conventions for |F (D)〉 such that this overlap is real and positive.

Consider now the action of triangular-lattice flip term as defined in Eq. (2.26) for a

certain plaquette p, and let the dimer configurations before and after the dimer flip by

D and D′, respectively. (We assume that D is flippable.) Denote the fermionic part of

Bp by

Bp = eis1pθp
(

1 + s2pγp,1γp,2√
2

)
, (2.64)

where γp,1 and γp,2 sit opposite the interior bond of the plaquette and s1,2p are signs that

depend on the specific plaquette flip under consideration. [This expression is somewhat

schematic but all we need here; see Eq. (2.26) for the precise form]. The main objective

of this Appendix is to prove that with open boundary conditions

|F (D′)〉 = Bp|F (D)〉. (2.65)

Clearly |F (D′)〉 and Bp|F (D)〉 can at most differ by a phase factor, as they are both

normalized and correspond to the same pairings of Majoranas. So to prove the equality

it suffices to show that 〈0|Bp|F (D)〉 > 0.

One can prove this relation by examining the transition graph between the configu-

ration D and the reference dimer configuration. There are three possible situations:

1. The first case arises when two dimers in the plaquette p of the configuration D

belong to different transition loops, e.g.,
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,

and flipping them decreases the total number of loops in the graph by one. Recall

that the fermionic wavefunction of each transition loop in D can be viewed as

a Kitaev chain, and that the Kastelyn orientation guarantees that the fermion

parity of the wavefunction (only counting those Majoranas on the transition loop)

must be even. Applying a Majorana operator γi to a given loop flips the loop’s

parity and yields a wavefunction that is orthogonal to any wavefunction where

that loop has even parity—including the reference state. Therefore we conclude

that 〈0|γp,1γp,2|F (D)〉 = 0 in this case. We should also notice that eiθp = 1. In

our model the phase eiθp is nontrivial only when the interior bond in the flipped

plaquette coincides with a reference dimer. But if that is the case then the two

dimers that we flip must initially belong to the same transition loop, contradicting

our assumption. We thus conclude from Eq. (2.64) that

〈0|Bp|F (D)〉 =
1√
2
〈0|F (D)〉 > 0. (2.66)

2. When the two dimers in the plaquette p originate from the same transition loop,

the associated Kasteleyn arrows become important. From Fig. 2.2 we see that the

arrows on the two dimers can orient either parallel or antiparallel. The second case

we consider arises when these arrows are antiparallel, e.g.,
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Now the plaquette flip increases the number of loops by one. This is exactly the

inverse process of flipping two dimers belonging to different loops, so we can simply

adopt the argument in case 1 above to arrive at the same conclusion in Eq. (2.66).

3. The third case arises when two dimers with parallel Kasteleyn arrows belong to the

same loop, e.g.,

With open boundary conditions, such configurations can only arise when the tran-

sition loop connects the two dimers directly via the interior bond of the plaque-

tte, which in turn implies that the interior bond belongs to the reference dimer

configuration. (Notice that with periodic boundary conditions this assertion no

longer holds. The transition loop can wind around a non-contractible cycle to

accommodate two dimers with parallel Kasteleyn arrows). In this case we have

iγp,1γp,2|0〉 = ±|0〉 by definition and hence 〈0|Bp|F (D)〉 = e∓iθpe±iπ/4〈0|F (D)〉.

The additional phase factor e±iπ/4 is exactly cancelled by our choice of θp = π/4,

and again we have 〈0|Bp|F (D)〉 = 〈0|F (D)〉 > 0.

We have now demonstrated that Eq. (2.65) holds for systems with open boundary con-

ditions. Inserting this relation into Eq. (2.63) immediately yields hDD′ = −〈F (D′)|Bp|F (D)〉 =

−1 (again with open boundary conditions) whenever D is flippable to D′ by Bp. So the

corresponding dimer model is unfrustrated.
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We would like to remark that the proof here does not rely on the specific geometry

of the lattice in an essential way, and can be readily adapted to Majorana-dimer flips

on tetragonal plaquettes in other lattices provided one keeps track of the phase factor

appearing in the last case. Appendix 2.9.2 describes a procedure for adapting these tools

to the Fisher lattice.

2.9 Fermionic Plaquette Operators on the Fisher Lat-

tice

2.9.1 Matrix Elements of the Fermionic Plaquette Operator

Here we will show that the matrix elements of B9
p , again defined through

B9
p |F (D)〉 = U1,2n−1 · · ·U1,5U1,3|F (D)〉, (2.67)

indeed conform to Eq. (2.17) as claimed in the main text. It suffices to focus only

on Majoranas within a loop that is cycled by B9
p . Consider such a loop in the initial

configuration D that contains 2n Majoranas paired up as is2j−1,2jγ2j−1γ2j = 1 where

j = 1, . . . , n. Defining parity projectors

Pi,j =
1 + isijγiγj

2
, (2.68)

we then have

P2j−1,2j|F (D)〉 = |F (D)〉,∀ j. (2.69)
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A plaquette move initiated by B9
p (and its bosonic-sector counterpart B9

p ) sends D → D′

and yields a new Majorana dimerization pattern with

P2j,2j+1|F (D′)〉 = |F (D′)〉,∀ j. (2.70)

Next we deduce the action of the braid operators Ui,j in Eq. (2.67). Because is12γ1γ2 =

1 when acting on |F (D)〉 (and using s23 = s12s13), we have

U1,3|F (D)〉 =
1 + s13γ1γ3 · is12γ1γ2√

2
|F (D)〉

=
√

2P2,3|F (D)〉.
(2.71)

After the exchange, the state U1,3|F (D)〉 now has is23γ2γ3 = 1 and is14γ1γ4 = 1 owing

to the projector P2,3. Iterating this procedure for the remaining braid operators yields

B9
p |F (D)〉 = (

√
2)n−1P2n−2,2n−1 · · ·P4,5P2,3|F (D)〉. (2.72)

With the aid of Eq. (2.70) we therefore immediately obtain

〈F (D′)|B9
p |F (D)〉 = (

√
2)n−1〈F (D′)|F (D)〉. (2.73)

Finally, we note that while the phase of the overlap 〈F (D′)|F (D)〉 is ambiguous, the

norm is fixed:

|〈F (D′)|F (D)〉| = 2(1−n)/2. (2.74)

This relation allows us to rewrite Eq. (2.73) in the desired form,

〈F (D′)|B9
p |F (D)〉 =

〈F (D′)|F (D)〉
|〈F (D′)|F (D)〉| . (2.75)
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γ1

γ2γ3

γ4

γ5

γ6

γ7 γ8

γ9

γ10

Figure 2.5: An example of tetragonalization for t = 4. A flip operator for the original
10-sided polygon may be decomposed into a series of elementary flips for each tetragon.
In this representation the tetragonal plaquettes, from top to bottom right, respectively
correspond to U1,3, U1,5, U1,7 and U1,9 in Eq. (2.67).

2.9.2 Commutation Relations of Plaquette Operators

The goal of this section is to prove that B9
p B9

p′ = B9
p′B9

p in the restricted Hilbert space. As

a primer it is very useful to first develop a geometric understanding of the operator B9
p by

drawing an analogy to the plaquette operator in the triangular-lattice model. Imagine

we partition the polygon enclosed by a transition loop into t tetragons by connecting

site 1 with sites 4, 6, . . . , t − 1; see Fig. 2.5 for an illustration. One can view B9
p as

implementing a series of elementary dimer flips through the tetragons as defined precisely

as on the triangular lattice (first [1, 2, 3, 4], then [1, 4, 5, 6], and so on), provided we

allow dimers to occupy the auxiliary edges at intermediate steps. The advantage of this

‘tetragonalization’ is that we can easily track the phase of the fermionic state at each

step (by looking at the overlap with some reference state) using the rules explained in

Appendix 2.8.

With this geometric picture in hand, given a Majorana-dimer state |F (D)〉 one can
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write down a representation B9
p,T of the desired plaquette move acting on |F (D)〉 us-

ing some tetragonalization T of the polygon. In fact they are all equivalent in the

restricted subspace, in the sense that for arbitrary tetragonalizations T1 and T2 and

any dimer covering D, B9
p,T1
|F (D)〉 = B9

p,T2
|F (D)〉. One can see this as follows. By

construction, B9
p,T |F (D)〉 gives a state corresponding to the same pairing of Majoranas

for any tetragonalization T . Two tetragonalizations T1 and T2 thus generically give

B9
p,T1
|F (D)〉 = eiφp,DB9

p,T2
|F (D)〉. One can conveniently isolate the phase factor on the

right by taking an overlap with |F (D)〉:

eiφp,D =
〈F (D)|B9

p,T1
|F (D)〉

〈F (D)|B9
p,T2
|F (D)〉

. (2.76)

It turns out, however, that 〈F (D)|B9
p,T |F (D)〉 > 0 independent of the tetragonalization

T . We can view this expectation value as the overlap between B9
p,T |F (D)〉 and a ref-

erence state |F (D)〉. (Using this reference state instead of |0〉 is convenient here since

the former more efficiently captures local effects of B9
p,T .) In each elementary step, the

tetragon dimer flip term with associated braid operator U1,2j+1 changes the number of

loops in the corresponding transition graph—i.e., each step falls into either case 1 or 2

from Appendix 2.8. Thus the overlap with |F (D)〉 remains positive throughout so that

〈F (D)|B9
p,T |F (D)〉 > 0 generically as claimed. This property allows us to conclude that

φp,D = 0 in Eq. (2.76), which in turn proves that B9
p,T1
|F (D)〉 = B9

p,T2
|F (D)〉. We can

therefore safely drop the subscript T hereafter. The freedom of choosing any tetragonal-

ization greatly simplifies the proof below.

We turn now to commutation of B9
p ’s in the restricted subspace. Because the bosonic
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pieces of the flip term commute, one can readily see that B9
p B9

p′ |F (D)〉 and B9
p′B9

p |F (D)〉

give states with identical Majorana pairing. In other words, these states at most differ by

a complex phase factor. One can show that the phases are also the same by analyzing the

matrix elements 〈F (D)|B9
p B9

p′ |F (D)〉 and 〈F (D)|B9
p′B9

p |F (D)〉, in a spirit similar to the

proof in the previous paragraph. While there are naively many different configurations to

consider, several simplifications streamline the analysis. First, we only need to consider

the cases in which p and p′ are neighboring plaquettes, since the commutation relation

follows trivially otherwise. Second, we can focus exclusively on the Majoranas that may

be affected by both B9
p and B9

p′ , as shown in the following diagram:

γ3γ2

γ4γ1

γ9γ8

γ10γ7

γ5

γ6

p p′ .

And finally, it suffices to check only four different types of neighboring plaquette con-

figurations. For each one we tetragonalize the plaquette operators and keep track of the

phase factors that arise.

To see how the proof works, consider an initial configuration |F (D)〉 where neither p

nor p′ has any loop extending in the overlapping region. Figure 2.6 illustrates B9
p′B9

p for

this case. After applying B9
p , the overlap with |F (D)〉 is positive as shown in the previous

subsection. Then for B9
p′ we tetragonalize p′ as indicated by the shaded regions in Fig. 2.6.

As we can see from the illustration, the dimer flip at each step changes the transition
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|F (D)〉 B9
p |F (D)〉 B9

p′B9
p |F (D)〉

Figure 2.6: Illustration of B9
p′B9

p acting on an initial configuration without any loops in
the overlap area between neighboring plaquettes p and p′. The dashed lines in the middle
figure are auxiliary lines for tetragonalization.

loop number (again corresponding to case 1 or 2 from Appendix 2.8), and therefore the

overlap with |F (D)〉 remains positive. The reverse ordering B9
p B9

p′ works very similarly:

After applying B9
p′ , one can tetragonalize p such that each elementary dimer flip in

B9
p changes the loop number. So we have shown that both 〈F (D)|B9

p B9
p′ |F (D)〉 and

〈F (D)|B9
p′B9

p |F (D)〉 are positive.

Next we consider a slightly more complicated initial configuration |F (D)〉 in which

plaquette p is occupied by a loop; for an illustration of B9
p B9

p′ here see Fig. 2.7. After

applying B9
p′ the overlap with |F (D)〉 is positive as usual. However, when we then apply

B9
p , some of the elementary dimer flips fall into case 3 from Appendix 2.8 (see the

two shaded tetragons in the middle figure). It is then essential to carefully track the

phases accumulated. It turns out that the phases cancel so that the overlap with |F (D)〉

remains positive in the end. For the opposite ordering B9
p′B9

p one can tetragonalize

without running into case 3, yielding 〈F (D)|B9
p′B9

p |F (D)〉 > 0 as well.
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|F (D)〉 B9
p′ |F (D)〉 B9

p B9
p′ |F (D)〉

Figure 2.7: Variation of Fig. 2.6 in which the plaquette p is occupied by a loop.

The remaining two cases arise when the loop extends to both p and p′ plaquettes

beyond the overlapping region. By applying the same technique, one can see that for

those cases both 〈F (D)|B9
p B9

p′ |F (D)〉 and 〈F (D)|B9
p′B9

p |F (D)〉 encounter one elementary

dimer flip that falls into case 3 and that 〈F (D)|B9
p′B9

p |F (D)〉 = 〈F (D)|B9
p B9

p′ |F (D)〉 =

|A|e±iπ4 .

Putting these results together, we see that B9
p B9

p′ = B9
p′B9

p in the restricted subspace,

which is a key ingredient for obtaining a commuting-projector Hamiltonian on the Fisher

lattice.
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texts in contemporary physics. Springer, New York, 1997.

[50] Michael Freedman, Matthew B. Hastings, Chetan Nayak, and Xiao-Liang Qi.
Weakly coupled non-abelian anyons in three dimensions. Phys. Rev. B, 84:245119,
2011.

[51] Michael Freedman, Matthew B. Hastings, Chetan Nayak, Xiao-Liang Qi, Kevin
Walker, and Zhenghan Wang. Projective ribbon permutation statistics: A remnant
of non-abelian braiding in higher dimensions. Phys. Rev. B, 83:115132, 2011.

[52] Michael Freedman, Chetan Nayak, Kirill Shtengel, Kevin Walker, and Zhenghan
Wang. A class of p,t-invariant topological phases of interacting electrons. Annals
of Physics, 310(2):428 – 492, 2004.

139



[53] J Frhlich and A Zee. Large scale physics of the quantum hall fluid. Nucl. Phys. B,
364(3):517–540, 28 October 1991.

[54] Liang Fu. Topological crystalline insulators. Phys. Rev. Lett., 106:106802, Mar
2011.

[55] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys.
Rev. B, 76:045302, Jul 2007.

[56] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
Phys. Rev. Lett., 98:106803, Mar 2007.

[57] A. Gendiar, N. Maeshima, and T. Nishino. Stable Optimization of a Tensor Product
Variational State. Progr. Theor. Phys., 110(4):691–699, 2003.

[58] Thierry Giamarchi. Quantum Physics in One Dimension. International Series of
Monographs on Physics. Oxford University Press, USA, February 2004.

[59] M. Greiter, X. G. Wen, and F. Wilczek. Phys. Rev. Lett., 66:3205, 1991.

[60] M. Greiter, X. G. Wen, and F. Wilczek. Nucl. Phys. B, 374:567, 1992.

[61] Eytan Grosfeld and Ady Stern. Electronic transport in an array of quasiparticles
in the ν = 52 non-abelian quantum hall state. Phys. Rev. B, 73:201303, 2006.

[62] Zheng-Cheng Gu and Michael Levin. Effect of interactions on two-dimensional
fermionic symmetry-protected topological phases with Z2 symmetry. Phys. Rev. B,
89:201113, May 2014.

[63] Zheng-Cheng Gu, Michael Levin, Brian Swingle, and Xiao-Gang Wen. Tensor-
product representations for string-net condensed states. Phys. Rev. B, 79:085118,
Feb 2009.

[64] Zheng-Cheng Gu, Zhenghan Wang, and Xiao-Gang Wen. Lattice model for
fermionic toric code. Phys. Rev. B, 90:085140, Aug 2014.

[65] F D Haldane and E H Rezayi. Finite-size studies of the incompressible state of the
fractionally quantized hall effect and its excitations. Phys. Rev. Lett., 54(3):237–
240, 21 January 1985.

[66] F D M Haldane. Fractional quantization of the hall effect: A hierarchy of incom-
pressible quantum fluid states. Phys. Rev. Lett., 51(7):605–608, 15 August 1983.

[67] F. D. M. Haldane. Model for a quantum hall effect without landau levels:
Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–
2018, Oct 1988.

140



[68] Bertrand I. Halperin, Yuval Oreg, Ady Stern, Gil Refael, Jason Alicea, and Felix
von Oppen. Adiabatic manipulations of majorana fermions in a three-dimensional
network of quantum wires. Phys. Rev. B, 85:144501, 2012.

[69] M. Z. Hasan and C. L. Kane. Colloquium : Topological insulators. Rev. Mod.
Phys., 82:3045–3067, Nov 2010.

[70] M. B. Hastings. Lieb-schultz-mattis in higher dimensions. Phys. Rev. B, 69:104431,
Mar 2004.

[71] M. B. Hastings. Sufficient conditions for topological order in insulators. Europhysics
Letters, 70(6):824, 2005.

[72] M B Hastings and Xiao-Gang Wen. Quasiadiabatic continuation of quantum states:
The stability of topological ground-state degeneracy and emergent gauge invari-
ance. Phys. Rev. B Condens. Matter, 72(4):045141, 25 July 2005.

[73] Yasuhiro Hieida, Kouichi Okunishi, and Yasuhiro Akutsu. Numerical renormaliza-
tion approach to two-dimensional quantum antiferromagnets with valence-bond-
solid type ground state. New Journal of Physics, 1(1):7, 1999.

[74] Ching-Yu Huang, Xie Chen, and Frank Pollmann. Detection of symmetry-enriched
topological phases. Phys. Rev. B, 90:045142, 2014.

[75] Taylor L. Hughes, Emil Prodan, and B. Andrei Bernevig. Inversion-symmetric
topological insulators. Phys. Rev. B, 83:245132, Jun 2011.

[76] David A. Huse, Rahul Nandkishore, Vadim Oganesyan, Arijeet Pal, and S. L.
Sondhi. Localization-protected quantum order. Phys. Rev. B, 88:014206, 2013.

[77] Mohsin Iqbal, Didier Poilblanc, and Norbert Schuch. Semionic resonating valence-
bond states. Phys. Rev. B, 90:115129, Sep 2014.

[78] B Jeckelmann and B Jeanneret. The quantum hall effect as an electrical resistance
standard. Rep. Prog. Phys., 64(12):1603, 7 November 2001.

[79] Chao-Ming Jian and Michael Zaletel. The existence of featureless paramagnets on
the square and the honeycomb lattices in 2+1d. 2015.

[80] Hong-Chen Jiang, Zhenghan Wang, and Leon Balents. Identifying topological order
by entanglement entropy. Nat. Phys., 8(12):902–905, 11 November 2012.

[81] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett.,
95:226801, Nov 2005.

[82] P W Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer
arrangements on a quadratic lattice. Physica, 27(12):1209–1225, December 1961.

141



[83] Itamar Kimchi, S. A. Parameswaran, Ari M. Turner, Fa Wang, and Ashvin Vish-
wanath. Featureless and nonfractionalized mott insulators on the honeycomb lattice
at 1/2 site filling. Proceedings of the National Academy of Sciences, 110(41):16378–
16383, 2013.

[84] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi,
44(10S):131, 2001.

[85] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals Phys.,
321:2, 2006.

[86] Alexei Kitaev. Periodic table for topological insulators and superconductors. arXiv
preprint arXiv:0901.2686, 2009.

[87] Alexei Kitaev and Liang Kong. Models for gapped boundaries and domain walls.
Comm. Math. Phys., 313(2):351–373, 2012.

[88] Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev.
Lett., 96(11):110404, Mar 2006.

[89] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys.,
303(1):2 – 30, 2003.

[90] Liang Kong. Anyon condensation and tensor categories. Nucl. Phys. B, 886(0):436
– 482, 2014.

[91] M König et al. Quantum spin hall insulator state in hgte quantum wells. Science,
318(5851):766–770, 2007.

[92] Ville Lahtinen, Andreas W. W. Ludwig, Jiannis K. Pachos, and Simon Trebst.
Topological liquid nucleation induced by vortex-vortex interactions in kitaev’s hon-
eycomb model. Phys. Rev. B, 86:075115, Aug 2012.

[93] R B Laughlin. Anomalous quantum hall effect: An incompressible quantum fluid
with fractionally charged excitations. Phys. Rev. Lett., 50(18):1395–1398, 2 May
1983.

[94] Michael Levin. Protected edge modes without symmetry. Phys. Rev. X, 3:021009,
May 2013.

[95] Michael Levin and Xiao-Gang Wen. Detecting topological order in a ground state
wave function. Phys. Rev. Lett., 96:110405, Mar 2006.

[96] Michael A. Levin and Xiao-Gang Wen. String-net condensation: A physical mech-
anism for topological phases. Phys. Rev. B, 71:045110, 2005.

142



[97] Hui Li and F. D. M. Haldane. Entanglement spectrum as a generalization of
entanglement entropy: Identification of topological order in non-abelian fractional
quantum hall effect states. Phys. Rev. Lett., 101:010504, Jul 2008.

[98] Wei Li, Shuo Yang, Meng Cheng, Zheng-Xin Liu, and Hong-Hao Tu. Topology
and criticality in the resonating affleck-kennedy-lieb-tasaki loop spin liquid states.
Phys. Rev. B, 89:174411, 2014.

[99] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of an
antiferromagnetic chain. Annals of Physics, 16(3):407 – 466, 1961.

[100] Netanel H. Lindner, Erez Berg, Gil Refael, and Ady Stern. Fractionalizing majorana
fermions: Non-abelian statistics on the edges of abelian quantum hall states. Phys.
Rev. X, 2:041002, Oct 2012.

[101] Jie Lou, Shu Tanaka, Hosho Katsura, and Naoki Kawashima. Entanglement spectra
of the two-dimensional affleck-kennedy-lieb-tasaki model: Correspondence between
the valence-bond-solid state and conformal field theory. Phys. Rev. B, 84:245128,
Dec 2011.

[102] Yuan-Ming Lu and Ashvin Vishwanath. Theory and classification of interacting
integer topological phases in two dimensions: A Chern-Simons approach. Phys.
Rev. B Condens. Matter, 86(12):125119, 14 September 2012.

[103] Andreas W W Ludwig, Didier Poilblanc, Simon Trebst, and Matthias Troyer. Two-
dimensional quantum liquids from interacting non-abelian anyons. New Journal of
Physics, 13(4):045014, 2011.

[104] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma. Majorana fermions and a topo-
logical phase transition in semiconductor-superconductor heterostructures. Phys.
Rev. Lett., 105:077001, 2010.

[105] Y. Maeno, T. M. Rice, and M. Sigrist. The intriguing superconductivity of stron-
tium ruthenate. Physics Today, 54:42, 2001.

[106] R. Moessner and S. L. Sondhi. Resonating valence bond phase in the triangular
lattice quantum dimer model. Phys. Rev. Lett., 86:1881–1884, 2001.

[107] R. Moessner, S. L. Sondhi, and Eduardo Fradkin. Short-ranged resonating valence
bond physics, quantum dimer models, and ising gauge theories. Phys. Rev. B,
65:024504, Dec 2001.

[108] G. Moore and N. Seiberg. Lectures on rational conformal field theory. In M. Green,
R. Iengo, S. Randjbar-Daemi, E. Sezgin, and A. Strominger, editors, Superstring
’89, Singapore, 1990. World Scientific.

143



[109] Gregory Moore and Nicholas Read. Nonabelions in the fractional quantum hall
effect. Nuclear Physics B, 360(2):362–396, 1991.

[110] Titus Neupert, Huan He, Curt von Keyserlingk, Germán Sierra, and B Andrei
Bernevig. Boson condensation in topologically ordered quantum liquids. Phys.
Rev. B, 93(11):115103, 1 March 2016.

[111] T. Nishino, Y. Hieida, K. Okunushi, N. Maeshima, Y. Akutsu, and A. Gendiar.
Two-Dimensional Tensor Product Variational Formulation. Progr. Theor. Phys.,
105(3):409–417, 2001.

[112] Yuval Oreg, Gil Refael, and Felix von Oppen. Helical liquids and majorana bound
states in quantum wires. Phys. Rev. Lett., 105:177002, 2010.
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