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Abstract

In this paper we compare the relative efficiency of different methods of forecasting
the aggregate of spatially correlated variables. Small sample simulations confirm the
asymptotic result that improved forecasting performance can be obtained by imposing
a priori constraints on the amount of spatial correlation in the system. One way to do
so is to aggregate forecasts from a Space-Time Autoregressive model (Cliff et al., 1975),
which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with
VARs. We also show that ignoring spatial correlation, even when it is weak, leads to
highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition,

there is a benefit in forecasting the aggregate variable directly.
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1 Introduction

Many variables of economic interest are contemporaneous aggregates of variables observed
over time and across a number of different regions. When interested in forecasting the ag-
gregate across regions, the analyst might ask whether it will be more efficient to forecast
the aggregate series directly or to model the individual components separately and then
aggregate the forecasts. The literature that tries to answer the question is fairly large, but
does not provide clear guidelines; most papers focus on particular econometric models under
restrictive assumptions and the results of simulations and empirical investigations are often
contradictory. Whatever the model used for forecasting, it is plausible to think that the final
verdict on whether to aggregate or not will be sensitive to the degree of interdependence
assumed to exist among the variables measured in the different regions. The early literature
in the field restricts attention to the standard regression framework, where temporal and
cross-sectional dependence between the variables is ignored (Grunfeld and Griliches (1960),
Aigner and Goldfeld (1974)) or only generic contemporaneous correlation in the errors is
allowed (Pesaran, Pierse and Kumar (1989)). The case when the correlation between vari-
ables is due to the presence of a common factor is analyzed in Granger (1980, 1987), who
illustrates the implications of aggregating variables that depend on a common and an id-
iosyncratic factor. It is shown that, when aggregation is across a large number of units,
the common factors will dominate the process for the aggregate, even though they might
be relatively unimportant at the individual level. It follows that there might be a bene-
fit in forecasting the disaggregated variables, provided the common factor is appropriately
taken into account (a similar conclusion is reached in an empirical application by Zellner
and Tobias, (2000)). A different strand of literature conducts the analysis of contempora-
neous aggregation in the context of vector ARMA processes, that allow the variables to be
dependent in both time and cross-sectional directions. A comprehensive treatment of this
case and an extended bibliography can be found in Liitkepohl (1987). In the present paper,

we consider an ideal situation where the variable of interest is observed in a moderately large



number of regions and over a long time period. As the cross-sectional dimension increases,
modeling with vector ARMA processes becomes quickly infeasible, as the so-called ‘curse
of dimensionality’ makes it difficult to estimate the model accurately and raises the issue of
the effect of estimation uncertainty on the model’s forecasting performance. To restrict the
amount of interdependence in our system, we make use of the concept of ‘spatial autocor-
relation’, which arises when observations at one region are systematically dependent on the
observations at neighboring regions, while the dependence vanishes for regions far apart. In
some sense, we can say that our position is intermediate between the approaches taken in
the literature, where the cross-sectional dependence among the units to aggregate is either
ignored or assumed to be due to a common factor. The latter case, in particular, corresponds
to an assumption of constant spatial autocorrelation across regions, whereas our approach
assumes that the spatial correlation disappears for regions sufficiently distant in space. The
issue of spatial autocorrelation is relevant for a wide range of economic fields, such as envi-
ronmental economics, urban economics, industrial organization and international economics.
Econometric models that explicitly account for spatial dependence were originally proposed
by Cliff and Ord (1973) and Cliff, Haggett, Ord, Bassett and Davies (1975), but their appli-
cation in economics was initially restricted to a few specific fields such as regional science and
real estate economics. More recently, there has been a renewed interest for models of spa-
tial dependence in traditional economics, perhaps due to the growing attention in economic
theory for models that explicitly account for interaction among heterogeneous agents and,
on the empirical side, to the increasing availability of highly disaggregated and spatially ref-
erenced data from the Geographic Information Systems. An excellent review of the current
state of the field of spatial econometrics can be found in Anselin (1988). See also Haining
(1990) and references therein. In this paper, we will analyze contemporaneous aggregation
within a class of stochastic models known as Space-Time Auto Regressive (Space-Time AR)

models introduced by Cliff et al. (1975) and generalized by Pfeifer and Deutsch (1980).

1Both authors propose a general Space-Time ARMA class of models, which are a generalization of uni-

variate ARMA models that explicitly incorporate spatial dependence. For simplicity, we will only focus on



More recent discussions and applications of the Space-Time AR model in econometrics are
Elhorst (2000) and Szulc (2000), while a generalization of the model to continuous space is

proposed by Brown, Karesen, Roberts and Tonellato (2000).

2 A simple model of spatial dependence

To illustrate the issues involved with the aggregation of processes that are spatially depen-
dent, we will initially consider a very simple example in which a variable x; is measured over
time in three neighboring regions ¢ — 1, ¢ and 7 + 1. Because of the spatial proximity of the
regions, we can assume that the value of the variable at time ¢ in region ¢ depends on the

values of the variable at all three locations at time ¢ — 1

Ti—1t-1 Lit—1 Litlt—1
NS

Lt

Since we are not including in our analysis regions on either sides of the diagram, we have
that the time-t values of z in regions ¢ — 1 and ¢ + 1 are only functions of their own lag
and of the lagged variable in region i, which introduces the so-called ‘edge effect’ into our

framework.? Suppose that the dependence in the diagram can be expressed as
Tip = QTip1 + VL1 -1 + VoTip14-1 + Eig, (1)

where €;, is a zero-mean white noise process uncorrelated across regions. Denoting the

spatial aggregate measured in region i and time ¢t with S, ,(z) = 23;1171 Ty, we have

Sit(w) = ¢Sir1(x) + ¥1Sic1-1(2) + ¥oSer1-1(z) + Sin(e). (2)

the autoregressive subgroup
2The ‘edge effect’ results from excluding from the data set spatial units that are related to the units in

the sample. This problem can be compared to the issue of initial values in time series, but it presents further

complications due to the particular nature of spatial dependence (see Anselin, 1988, pp.172-176).
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If we assume that the edge effects are negligible, it follows that the aggregate variables S; 1,

Si—1¢—1 and S;41,-1are approximately equal and therefore (2) becomes

Si(x) = (¢ + ¥y + 1) Si-1(x) + Sife). (3)

In sum, the process for the aggregate is approximately an AR(1) and the coefficients of
spatial dependence ( ¢, and 1,) are incorporated in the autoregressive coefficient. Also, no
matter what the process describing z;; is, the aggregate process will be well approximated
by an AR(1) and we can thus conclude that aggregation causes in this case a ‘simplification’

of the dynamic properties of the variable.

3 The Space-time Auto Regressive model

A space-time model is a univariate time-series model that explicitly takes into account linear
dependence lagged both in time and in space. Suppose that the variable of interest z; is
observed at each of k fixed locations (i = 1,...,k) and over time (¢t = 1,...,7). In the
remainder of the paper, the locations will be referred to as ‘regions’, but they can represent a
variety of levels of data agglomeration, from city districts and counties to states and countries.
The construction of space-time models relies on the assumption that the relationship between
the variables in the various regions under examination depends in a systematic way on the
regions’ relative distance. The conditional mean of the variable z; is thus modeled as a
linear function of past observations at region ¢ and at neighboring regions. To be able to
relate a variable at one region to the observations for the same variable at other regions,
it is necessary to introduce the concept of spatial lag, which presents some complications
relative to the fairly intuitive definition of time lag. While the temporal lag operator shifts
the variable by one or more periods in time, in space the direction of shift is not unique
and the definition could change depending on the spatial arrangement of the data. Figure
1 shows the simplifying example of data collected over a regular grid. One of the possible

criteria to define the neighboring sets for a region 0 is to consider as first-order neighbors



the cells that share a border with it (region 1), in which case the second-order neighbors for

region 0 will be the first-order neighbors of the region 1 cells, and so on.

2

Figure 1. First and second order neighbors for region 0

The above definition of neighboring sets for a given region can be easily extended to
the more realistic setting of observations arranged irregularly in space. Once the sets of
neighbors for each region have been identified, the spatial lag operator can be defined as
the weighted average of all the observations in a given neighboring set (see Anselin 1988,
pp.22-26). Formally, if z; is the observation in region i and J, is the set of neighbors of order
s, we can define the spatial lag of order s as

LWz, = ngj)xj s=1,2,... (4)
JjeJs

We see that a spatial lag is in practice a distributed lag, rather than a shift in a given direction
(s)

like in the time series case. The choice of the weights w;;” in (4) is a crucial issue in spatial
econometrics. They are exogenous, nonstochastic and satisfy the following properties®:

1) w) >0,

2) wiy) =0,

3) Yjes, wly = L.

3The normalization of the weights (property n. 3) is usually motivated by an ease of interpretation of the

model’s coefficients. Anselin (1988, p. 24) points out that this assumption in some situations implies a view
of spatial interaction that is not economically meaningful. For example, if the weights for the N neighbors of
a given region are simply equal to 1/N, it follows that a higher number of neighbors implies less individual

influence, an assumption not always justifiable on economic grounds.
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Typically, the spatial weights are chosen a priori by the researcher to reflect geographical
characteristics of the regions under consideration (e.g., distance, length of common borders,
number of roads etc.), but alternative specifications, for example based on definitions of
economic distance, have also been used in the literature (Pinkse and Slade, 1998). When
economic theory is not helpful in guiding the choice of the appropriate weights, and if the
model is manageably small, one could alternatively conduct a model-selection search by
fitting different weight specifications and choosing the one that maximizes the likelihood.
The overwhelming majority of the spatial econometric literature assumes the spatial weight
matrix to be known in advance. As a consequence, any inference conducted with a spatial
model will be sensitive to the problem of misspecification of the weight matrix, with possi-
ble resulting inconsistency of the parameter estimates and misleading assessment of forecast
performance (Stetzer, 1982). Detailed references and a discussion of weight matrix specifi-
cation can be found in Anselin (1988). In the remainder of the paper, we will conform to
the standard practice in the spatial econometric literature of considering the weight matrix
to be correctly specified.

The central issue of the paper, forecasting with data that exhibit spatial dependence, can
be illustrated using the simplest form of space-time model, a Space-Time AR(1,1) for the

zero-mean variable x;;, which ignores dependence beyond the first temporal and spatial lags

k
Tt — QsCE,L‘t,l + @wazjmﬁ,l + Eit Z = 1, ceey k‘ t = ]_, ,T (5)

j=1
The weights w;; sum to one for each ¢ and are non-zero only for first-order neighbors of
region 4. The disturbance €; is a white noise. The weights w;; can be collected in a k x k
matrix W = (w;;) , the spatial weight matrix, which allows one to define the first spatial lag

for the k—dimensional vector x; as
L(l)xt = WXt.

Again, the spatial weight matrix has rows summing up to one and non-zero elements only

for first-order neighbors of the region in row 1.
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With this notation for the spatial lag, the Space-Time AR(1,1) model can be written in

vector form as
Xt:¢Xt_1+¢WXt_1+€t (6)

where €, is a k-dimensional white noise with covariance matrix!? E(e.}) = 3.. The first
element on the right hand side of equation (6) represents the first temporal lag of x;, while
the second element is the first spatial lag of the vector at time ¢t — 1. From equation (6) it
is clear that the Space-Time AR(1,1) model is just a special case of a vector autoregressive
model of order 1 (VAR(1)), where the autoregressive coefficient matrix is restricted to equal
oI + YW. The generalization to higher spatial and temporal orders is straightforward. A
Space-Time AR process can thus be obtained from a VAR by imposing a set of constraints
on the coefficient matrices. It is in this sense that a space-time model is a refinement of
a multivariate time-series model. Whereas a multivariate model allows all variables in a
system to be related to all other variables, a space-time model imposes a prior: restrictions
on this interdependence due to the spatial allocation of the variables, exploiting the fact that

contiguous regions could be related in a systematic way.

4 Forecasting aggregated space-time processes. Asymp-
totic results

Suppose that the goal is to forecast y; = Zle x4, the aggregate across regions of a set of
k variables z;;, possibly related by spatial dependence. In this situation, there are several

ways to form a forecast for the aggregate.

e f1. Forecast y; directly by an ARM A model fitted to the aggregate series

4The original formulation of the Space-Time AR model assumes uncorrelated disturbances across space
(Pfeifer and Deutsch, 1980). Since our focus of interest is forecasting performance, we can relax such

restrictive assumption and allow for contemporaneous correlation in the disturbances



e f2. Estimate and forecast univariate ARM A models for each variable x;, i = 1,..., k.

Aggregate the forecasts to obtain a prediction of the aggregate ;.

e f3. Estimate a VAR on all k variables, use it to form forecasts of the individual

components and aggregate.

e f4. Exploit the spatial relationships between the variables in the system and estimate
a Space-Time AR model for each variable x;;, i = 1, ..., k. Construct the forecasts for

each z; and aggregate them.

In the following, we will attempt to determine which method of forecasting the aggregate
is optimal. To simplify the analysis, we will restrict attention to the one-step-ahead optimal
linear forecast of y;, denoted by y;_1(1), and choose as a measure of forecast accuracy the
forecasts’ Mean Squared Error (MSE). In the remainder of the paper, we make use of the
assumptions listed below:

Assumption 1. The data-generating process is the Space-Time AR(1,1) in (6)

Assumption 2. The data-generating process is covariance stationary (i.e., the eigenval-
ues of the matrix ¢l + W are inside the unit circle)

Assumption 3. The orders of the estimated ARM A models are either known or esti-
mated consistently

A large part of this section is an extension to our space-time framework of the results

collected in Liitkepohl (1987).

4.1 Forecast comparisons with known parameters

To establish a benchmark, we will initially compare the relative efficiency of forecasting the
aggregate in scenarios f1-f4 under the assumption that the data-generating processes are

known.

Proposition 1 Let MSE®(y;_1(1)), i = 1,...,4 denote the asymptotic MSE of the one-

step-ahead optimal linear forecast for the aggregate y, obtained under each of the forecasting
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scenarios f1-f4, in the absence of parameter estimation uncertainty. The following ranking
between alternative forecasting methods can then be established

a) The aggregate of forecasts from a VAR is more efficient than the aggregate of univari-
ate ARM A forecasts for each component: MSE® (y,_1(1)) < MSE® (y,_1(1)).

b) The aggregate of forecasts from a VAR is (weakly) more efficient than the forecast
based on the aggregated data: MSE® (y, 1(1)) < MSEW (y, 1(1)).

c) The aggregate of forecasts from a VAR is as efficient as the aggregate of univariate
Space-Time AR forecasts for each component: MSE® (y,_1(1)) = MSE® (y,_,(1)).

Proof. The weak inequality results for part a) and b) are proven by Liitkepohl (1987),
Section 4.2 and Kohn (1982). The strong inequality in part a) follows from Corollary 4.1.3
in Liitkepohl (1987), which states that the inequality is strong for a non-diagonal VAR
operator, as is the case when the system exhibits spatial correlation. To prove part c),
notice that the forecast of the vector x; from the VAR and the univariate forecasts of each
component x;; from the Space-Time AR are based on the same information set {x,_;;j > 1}
and thus coincide if the parameters of the process are known. m

As pointed out by Wei and Abraham (1981) the relative efficiency of forecasting the
aggregate directly or aggregating univariate ARM A processes for the components (i.e., of
methods f1 and f2) cannot be established for a general data-generating process.

Kohn (1982) shows that the equality of MSE in Proposition (1)-b) holds for a VAR(p)

process B(L)x; = €, if and only if
UB(L) =b(L), (7)

where ¢ is a k x 1 vector of ones and b(L) is a scalar lag polynomial of order p. In other
words, condition (7) guarantees that the aggregate of a VAR(p) follows an AR(p) process,
in which case it will be equivalent to forecast the disaggregated system and then aggregate
the forecasts or to forecast the aggregate directly (we will therefore call (7) the ‘poolability’
condition). If the data-generating process is a Space-Time AR(1,1), condition (7) becomes

(ol + W) = b/, with b scalar, which corresponds to requiring the matrix ¢ + W to

10



have equal column sums. Since the typical column sum is of the form v; = ¢ 4 ¢ Zle Wj,
we have that poolability is attained when the spatial weight matrix has equal columns sums.
Loosely speaking, each column sum of W represents the total spatial ‘influence’ of region
j over all other regions and therefore condition (7) says that we can forecast the aggregate
directly if the total spatial influence is relatively uniform across regions (which will happen
for a set of regions that share similar spatial and/or economic conditions).

Kohn (1982) exploits condition (7) to devise a simple test for poolability of the variables
in the different regions, which in our case consists in regressing the aggregate variable 1; on
y:—1 and on k — 1 components of x;_1. Testing the null hypothesis of poolability is equivalent
to a test of zero coefficients on all the included components of x;_;.

To summarize the results, in the absence of estimation uncertainty and if the poolability
condition is not satisfied, it is optimal to forecast the fully disaggregated V AR system and
aggregate the forecasts or, equivalently, to aggregate the forecasts from a Space-Time AR
model. Under the same conditions, both the aggregation of univariate forecasts for the

components and a direct forecast of the aggregate will be sub-optimal.

4.2 Forecast comparisons with estimated parameters

In practice the data-generating process of the variable of interest is not known, and must
be estimated. We see next how the estimation variability affects the asymptotic results that
were discussed in the previous section. We further introduce the following assumptions.

Assumption 4. The coefficients of all the models considered are estimated by Maximum
Likelihood (ML). The ML estimator of the parameter 6 will be denoted as 0, where T is the
sample size.

Assumption 5. Estimation and forecasting are based on independent and identically
distributed processes.

For each model estimated in scenarios fl1-f4 above, and under standard conditions, the

estimated parameters of the forecasting models are asymptotically ‘well - behaved’.
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Proposition 2 For each of the models estimated in scenarios f1-f4 the ML estimator of the

parameters satisfies

or L0 (8)
and
VT(0r - 0) % N(0,%y), (9)
where X 1s the Hessian,
2ni]™"
Yo=T|-E——
b [ aaaa'}

Proof. See, e.g., White (1994). =

We use the estimated models to build forecasts and compare their relative efficiency in
terms of asymptotic MSE. In section 3 we showed how a Space-Time AR model can be
obtained from a VAR model by imposing linear restrictions on the coefficient matrices.
This implies that all models used for forecasting in f1-f4 are members of the (vector) ARM A
class, and thus we will first discuss the MSE measure of forecast performance for a general

k-dimensional vector ARM A process z. Liitkepohl (1987) proves the following result®

Proposition 3 (Prop. 3.1, Litkepohl (1987)). The forecast z;—1(1) obtained by replacing
the true parameter 6 = (01, ...,0n) of the optimal linear predictor of z (z1(1)) by its ML

estimator O , is a consistent estimator of z;_1(1) and

VT2 1(1) = 21 (1)] 5 N(0,Q.), (10)
where
L [024(1) A@zt,l(l)'
0= | = 55—y , (11)

5 Although the result was given for a general forecast horizon h, we will restrict our attention to 1-step-

ahead forecasts.
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aztfl(l) 83#1@(1) .
= =1,..,k n=1,..N.
80/ aen [/ ) Y ) n ) Y
Also, the asymptotic MSE of z,_1(1) is given by

MSE(: 1(1)) = MSE(z (1) + %Q (12)

Equation (12) shows that the presence of parameter estimation adds a positive definite
term %QZ (asymptotically vanishing) to the asymptotic MSE that would be obtained if
the data-generating process were known. When comparing the performance of forecasts
constructed in the different scenarios, one must thus take into account both components
of the asymptotic MSE. The general expression for €2, is rather complicated for general
stationary and invertible vector ARMA processes (see, e.g., Yamamoto, 1981 and Baillie,
1980), but it can be seen that its magnitude depends on the number of parameters estimated.
This fact can be proven explicitly for the asymptotic MSE of the aggregate forecast obtained

in situation f3.

Lemma 4 Let x¢ be the k-dimensional VAR (p) process B(L)xy = g, with E(ege)) = X..

Then we have
VIR (1) = 3 (1)] 5 N(0,2),
with Qx = kpX..
Proof. See, e.g., Akaike (1969, 1971). m

Proposition 5 Let x; be the process in (6). When a forecast for the aggregate y; is obtained
by estimating a VAR(1) model on a sample of size T and aggregating the forecasts of the

components, the asymptotic MSE of the aggregate forecast is
X : k
MSE(g,-1(1)) =¢ ZEH—?L Yt (13)

Proof. From (12), we have that MSE(g;_1(1)) = MSE(y;—1(1)) + 7€,. The first

component of the sum is derived in the following way: in the case of known data-generating
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process, the best one-step ahead linear forecast of x; from the VAR(1) model x;,= Bx;_1+&;
is x;_1(1) = Bx;_1, and therefore the forecast for the aggregate v, = ¢/x; is given by y;_1(1) =
Ux; 1(1) = ¢/Bx; ;1. The forecast error for y; (1) is then obtained as e;(1) =y, —y¢ 1(1) =

t'g;, which leads to
MSE(y, 1(1)) = E(e;(1)er(1)") = L E(gse})e = '3t (14)

From Lemma (4), it follows that for the forecast of the aggregate the asymptotic covariance

matrix will be

1 1 1 k
TQy = TL/QXL :TL/kZEL ZTL/EEL (15)

and therefore the asymptotic M SFE of the estimated aggregate forecast is obtained by sum-
ming (14) and (15). m

The above result indicates that in the presence of estimation uncertainty the forecast
scenario f3, which is optimal when the data-generating process is known, may lose its op-
timality properties. To see why, assume a diagonal covariance matrix for the disturbances,
E(ee}) = 0*I, in which case the asymptotic MSFE for the estimated aggregate becomes
MSE(;-1(1)) = 0%k + 70%k?. We see that the component of the MSE that is due to es-
timation error grows at the rate of k?, where k is the number of units to aggregate, while
the component that would be obtained in the absence of estimation uncertainty only grows
at rate k. This fact introduces a trade-off between the optimality of specifying the fully
disaggregated system (no information loss) and the reduction in efficiency due to estimation
error and thus the relationships between the M SE’s in Proposition 1 a) and b) are no longer
valid in general. Instead, for each given specification of the Space-Time AR(1,1) model, one
could find integers k; and ko such that the forecast of the aggregate from f1 is more efficient
than the forecast from f3 for £ > k; and the forecast from {2 is more efficient than the one

from {3 for £ > ky. The only rankings we can establish are the following.

Proposition 6 In the presence of estimation uncertainty, the following relative efficiency

results among forecasting methods f1-f4 can be established:
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a) The aggregate of univariate Space-Time AR forecasts for each component is (weakly)
more efficient than the aggregate of forecasts from a VAR. MSE® (,_1(1)) < MSE® (g,_1(1)).
b) If the poolability condition (7) is satisfied, it is more efficient to forecast the aggregate

directly rather than aggregate forecasts from a VAR. MSEM (g, 1(1)) < MSE®) (g, 1(1)).

Proof. a) From Proposition 1, ¢) and (12) it follows that

1

MSE (§i-1(1) = MSED (2 (1)) =

(Q§3> - Qg*)). (16)

For both forecasting scenarios f3 and f4, we have that g, 1(1) = ¢/Z¢ 1(1). In £3, 2, 1(1) is
obtained by substituting the true parameter vector 6 with its ML estimator 9T into z; (1)
and, similarly, #;_1(1) in f4 is obtained by substituting the true parameter vector 8 with
its ML estimator 67 into z; 1(1). We have shown that the Space-Time AR(1,1) model can
be seen as a VAR(1) model with restrictions on the parameters, which implies that 67 is a
restricted ML estimator of 3. If the restrictions are true, the estimator 07 is more efficient
than @T, i.e., X3 — Xy~ is positive semidefinite, where >y is the asymptotic matrix of the ML

estimator in (9). This, in turn, implies that

O0zy—1(1) Oxy 1(1)
B) _ W — bl Sy s SO » U Vot
is positive semidefinite, which gives
1 1
MSE®(§i1(1)) = MSE® (§i1(1)) = (27 — ) = Zo/(OF = ) > 0.

b) If condition (7) is satisfied, the aggregate y; follows an AR(1),
Y = L/Xt = L/BXt_l + L/€t = byt—l —+ vy
with E(v?) = ¢/S.t. Applying Lemma 4, it follows that
)7 (1) 1 ) L,
MSE“ (g 1(1)) = MSE" (y, 1(1)) + TQy =1 ZeH—TL Yet.

The asymptotic M SE for forecasting method f3 is derived in Proposition 5: MSE®) (g;_,(1)) =
VS.e+£0%, e and thus, for k > 1, we have that MSE®(g,_1(1)) < MSE®(§,_1(1)). m

15



To summarize the results of this section, we found that in the presence of estimation
uncertainty aggregating forecasts from the Space-Time AR(1,1) model is weakly more ef-
ficient than aggregating forecasts from a VAR(1). If the poolability condition (7) cannot
be rejected, it is also always preferable to forecast the aggregate directly than to aggregate
forecasts from the VAR(1), and the benefit increases proportionally to the number of regions

considered.

5 Monte Carlo experiment

5.1 Simulation design

In this section the small sample behavior of the forecasts of the aggregate obtained in sce-
narios fl1-f4 are investigated by means of a Monte Carlo experiment. The process used for

the simulation is the Space-Time AR(1,1) in (6)
X =¢X 1+ Y WXy_1+€,

where the disturbances are i.i.d.N (0, Ix). We consider the case of k = 4, 6, 9,16 regions

arranged on a regular grid as follows

1 12 |3 |4
11213
112 11213 5 |6 |7 |8
k=4 k=6 k=9:4|5|6| k=16
314 41516 9 [10] 1112
71819
13114 | 15| 16

Because of this particular spatial arrangement of the regions, the system will be affected
by edge effects. For k& = 9, for example, region 5 is the only one with all four first-order
neighbors in the system, while all other regions are situated on the edges and therefore are
plausibly affected by units not included in the system. We therefore perform the simulation

with two alternative specifications of the spatial weight matrix W. The first specification is
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obtained by dividing the weights equally between all first order neighbors of each unit. For

example, for k£ = 4 and 6, the matrices W will be

o 5 0 S5 0 0
— 0 5 5 0 _ 33 0 33 0 33 0
O S 0 0 5 W - o 5 0 0 0 .5 (17)
H 0 0 5 H5 0 0 0 S5 0
0 5 5 0 0 3 0 33 0 .33
- - 00 5 0 5 0

where row 1 contains the weights for region 1’s first order neighbors (2 and 3 in W®), 2 and
4 in W), row 2 the weights for region 2’s first order neighbors (1 and 4 in W®, 1, 3 and
5in W®)) and so forth. The matrix W for k = 9 and 16 is constructed in a similar fashion.
For this particular choice of weights, the spatial weight matrix W has equal column sums
only for £ = 4, in which case the process satisfies the poolability condition. For all other
values of k£ the poolability condition is not verified. The second specification of the spatial
weight matrix assumes that each region has four first-order neighbors, with weights equally
split among them. As a consequence, the weight matrices will be modified so that each entry
in the matrices in (17) above will equal 0.25.°

For each k, we generate data from four different processes, reflecting different assumptions
about the value of the autoregressive coefficient ¢ and of the spatial coefficient ). We consider

the four following specifications
o 1. ¢o=.451v=.45
e 2. ¢op=45¢Y=.1

3. ¢=.1¢=.45

6In some sense the second specification of the weight matrices can be thought of as being obtained from

a larger weight matrix in which a ‘buffer zone’ around the edges has been eliminated. This is similar to the
common practice of dropping a number of observations at the beginning of the series when generating time

series data, so that the influence of the initial value is reduced.
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e 4 o=1,¢9=.1

The predictors described above in scenarios f1-f4 are computed as follows

e fl1. A univariate ARM A model is fitted to the time series for the aggregate using a
BIC selection criterion with maximum number of lags k,.x = 4 and the model is used

to forecast.

e f2. A univariate ARM A model is fitted to each component using a BIC selection cri-

terion with k., = 4. The univariate forecasts for each component are then aggregated

f3. A VAR(1) is estimated and the forecasts for each component are aggregated

f4. A Space-Time AR(1,1) model is estimated and the forecasts aggregated

When estimating the VAR(1), especially for large k, a large number of coefficients will
not be significantly different from zero, due to the fact that the matrix W contains a large
number of zeros. We thus consider a further forecasting scenario f3* that tries to eliminate

this possible source of inefficiency;

e f3*. A VAR(1) is estimated equation by equation, the non-significant coefficients
dropped, and the system re-estimated only using the significant lags. Forecasts are

then formed for each component and aggregated.

For each of the above methods, we divide the sample in two parts; estimation is performed
using the first 7" = 200 observations, the estimated model is used to produce a sequence of
n = 100 forecasts for the out-of-sample observations and the relative MSE is computed. We
repeat the procedure for 1000 times for all four simulated processes and for all k. The results

are reported in Tables 1, 2 and Figures 2-5.
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5.2 Interpretation of the results

As the results are robust to both specifications of the weight matrix, we only discuss the
case of the first weight specification in (17). Figures 2-5 report the average MSE over the
1000 replications for each data-generating process and for the different forecasting methods
considered. The figures reveal that, in general, the aggregate of forecasts from the Space-
Time AR model has the lowest average MSE, while the aggregate of univariate forecasts
has the highest, with a gap widening as the number of regions increases. The inefficiency
of forming univariate forecasts of the components is not surprising when the data exhibit
high spatial dependence, since this dependence is ignored by the procedure. A less expected
result is the clear ranking that emerges from Figure 5, where the data are characterized by
weak spatial dependence. Even in this case, it is seen that forecasting with the Space-Time
AR outperforms all competitors, and that the aggregate of univariate forecasts leads to high
MSE. This result suggests that even though the spatial dependence among regions is weak,
ignoring it altogether will lead to inefficiencies, especially when the number of units in the
system increases. Table 1 reports the proportion of times each one of the five methods has
the lowest MSE in the Monte Carlo iterations. For each of the four model specifications
and for each of the four levels of k, both the best and the worst performing models are
emphasized. If forecasts from the five methods were all equally efficient, the number of
times one particular model has the lowest M.SE would be distributed as a Binomial(7’,0.2),
where T is the sample size. For T' = 1000, we can use the Normal approximation to the
Binomial and derive a 95% confidence interval p4-0.025 for each proportion reported in Table
1. Table 2 analyzes the performance of the Space-Time AR compared to each one of the
other methods. The benchmark of comparison is in this case a proportion of 0.5, indicating
that the two methods under examination are equally efficient (the confidence interval will
be in this case p £ 0.03).

The results in Table 1 reveal different dynamics for the various specifications of the data-

generating process. In the majority of cases, the aggregate forecast from the Space-Time AR
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model (f4) is seen to be the most efficient, and a similar conclusion emerges from Table 2.
Exceptions to the optimality of method f4 that can be seen in both Table 1 and Table 2 are
the data-generating process with high AR and low spatial coefficients and the case of k = 4,
for which the most efficient forecast is the direct forecast of the aggregate (f1). For k = 4
the process satisfies the poolability condition (7), and therefore the Monte Carlo result is a
confirmation of the asymptotic optimality of forecasting the aggregate when such condition
is satisfied (Prop. 6). For higher levels of k, the weight matrix has unequal column sums,
which in principle would make the process fail condition (7). When the spatial coefficient is
small and the AR coefficient is high, however, the stronger effect of the equal AR coefficients
dominates the heterogeneity in the spatial component, in which case the process would most
likely pass the test for poolability suggested by Kohn (1982).

Another conclusion that emerges from Table 1 is that the worst performing method is in
the majority of cases the aggregation of univariate forecasts for the components (f2). This
is not surprising, since forecasting each component separately ignores the interrelationships
between regions and thus causes a loss of information, as well as introducing a large amount
of parameter estimation uncertainty. In confirmation of the conclusion from Figure 5, notice
that even in the case of low spatial coefficient (and low AR coefficient) it is never advisable
to forecast with univariate models, a fact symbolized by entries in the table that are virtually
ZEro.

The relative performance of forecasting with the Space-Time AR model versus the VAR,
i.e., of f4 versus f3 can be analyzed by looking at Table 2. It is shown that f4 is more efficient
than f3, with only one exception for £ = 4. We can thus conclude that both asymptotic
results derived in Proposition 6 hold even in relatively small samples.

A surprising conclusion that emerges from the tables is the bad performance of method
£3*, the re-estimated VAR. From Table 2, we see that the Space-Time AR model is always
more efficient than the re-estimated VAR and the efficiency improvement from imposing the
spatial relationship instead of reducing the dimension of the system through a general-to-

specific search is in general greater for higher number of components. These results seem
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to shed a negative light on the procedure of model selection through a general-to-specific
search. It is known that this model selection criterion is not consistent, in the sense that
asymptotically it has a non-zero probability of overfitting (Hall, 1994), and our results might

in part be a reflection of this fact.

6 Conclusion

When forecasting the aggregate of variables measured over time and in different regions, it is
plausible to assume that the individual components will be spatially correlated. A system is
characterized by spatial correlation (Cliff and Ord, 1973) when data collected in neighboring
regions are related in a systematic way, while the correlation disappears for regions that
are far apart in space. In the present paper, we analyzed different methods of forecasting
the aggregate of spatially correlated disaggregates and compared their relative efficiency.
We presented both asymptotic results and small sample simulation results, that suggest
that imposing constraints dictated by economic theory (in this case in the form of a spatial
weight matrix) leads to improved forecast performance. One way to impose such constraints
is to aggregate forecasts from a Space-Time Autoregressive model (Cliff et. al., 1975), which
was shown to be a restricted VAR with constraints dictated by a priori considerations on the
amount of spatial correlation in the system. Forecasting with a Space-Time AR model offers
a solution to the ‘curse of dimensionality’ that arises when we try to model panel data with
a moderately large cross-sectional dimension using a VAR. The forecasting performance of
a VAR was revealed to rapidly deteriorate in our Monte Carlo simulation as the number of
regions increased. We also showed that ignoring spatial dependence, and simply aggregating
univariate forecasts for each region, leads to highly inaccurate forecasts. The same conclusion
was also reached in the case when the spatial dependence in the system is only weak, as has
been found in some empirical investigations (e.g., Bronars and Jansen, 1987). Another result
that was proven in the paper is that if the variables measured in different regions satisfy

the ‘poolability’ condition, and especially for a large number of regions, there is a benefit in
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forecasting the aggregate variable directly. The simple test for poolability suggested by Kohn
(1982) under the simplifying assumption of known data-generating process is applicable in
our framework, and it was seen to lead to similar inferences, even once estimation uncertainty
is taken into account. Finally, we analyzed aggregating forecasts from a parsimonious VAR
obtained through a general-to-specific search that eliminates the insignificant variables and
re-estimates the model, a procedure which was seen to lead to highly inefficient forecasts.

Our results support some of the recent findings in the literature on forecasting with heav-
ily parameterized econometric models. An example is Clements and Hendry (1998, Ch. 12),
who show that the forecast accuracy of a number of models can be improved by imposing
zero restrictions on coefficients that are close to zero, a procedure that in some situations
outperforms forecasting with the true data-generating process. This last finding, in particu-
lar, offers a hopeful answer to the concern of misspecification of the constraints embedded in
the Space-Time AR specification, since it implies that even invalid zero restrictions on some
coefficients can potentially improve forecast accuracy. The greater accuracy of forecasting
with parsimonious models could also explain the success in forecasting macro-variables with
Bayesian VAR, which has been documented, among others, by Doan, Litterman and Sims
(1984).

The analysis in the paper relied on many simplifications of the actual complexity of data
measured in space and time and therefore it does not claim to be exhaustive. Our hope is
that this paper will highlight issues of importance in the modeling of aggregates of variables
that are possibly spatially dependent. We believe accounting for even weak spatial effects

can lead to improved forecasts, and further econometric results in this direction are awaited.
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TABLE 1: Proportion of times each method haslowest M SE.

LOW SPATIAL COEFF. HIGH SPATIAL COEFF.
Numberof | 41 f2 13 fa 4 fL f2  f3 3 4
regions
Agor. Univ. VAR RVAR Space- Adgor. Univ. VAR RVAR Space-
TimeAR Time AR

LOW K=4 0317 0.003 0258 0.005 0417* 0352 0.012 0219 0175 0242
égEFF. K=6 0345 0.001 0202 0012 0.440* 0266 0.012 0149 0129 0.444*
K=9 0351 0.001 0.152 0.008 0.488* 0252 0.009 0113 0.088 0.538*
K=16 0395 0.000 0.078 0003 0.524* 0370 0.009 0.079 0.057 0485

K= 0352 0151 0178 0129 0.190 0.349* 0.014 0244 0185 0.208
TR(’;H K=6 0339 0172 0145 0.110 0234 0238 0.011 0142 0168 0.441*
o K=9 0382 0136 0.115 0121 0.246 0115 0.002 0114 0213 0.556*
K=16 0377 0147 0068 0.134 0274 0318 0.006 0.117 0.080 0479*

This table presents the proportion of times that each forecasting method has the lowest MSE. An* * * indicates that the
forecasting method in the corresponding column is the best the highest number of times, whilean ‘_’ denotes the worst
performing method. For example, for K = 4 and low spatial and AR coefficients the aggregate of Space-Time AR forecasts
(f4) isthe best, since it has the lowest M SE 41.7% of the time. For the same data-generating process, the aggregate of
univariate forecasts (f2) isthe worst, since it has lowest M SE 0.3% of thetime.




TABLE 2: Proportion of times Space-Time AR haslower M SE than other 4 methods.

LOW SPATIAL COEFF. HIGH SPATIAL COEFF.
Number of
regions fl f2 f3 f3* fl f2 f3 f3*
Agor. Univ. VAR RVAR Agor. Univ. VAR RVAR
LOW K= 0.580* 0.995* 0.636* 0.986* 0432 0.975* 0.585 0.708*
AR
COEFF K=6 0.569* 0.998* 0.724* 0.984* 0.611* 0.981* 0.730* 0.818*
K=9 0591* 0.998* 0.787* 0.989* 0.659* 0.981* 0800 0873
K=16 0.564* 1.000* 0.886* 0.991* 0562 0982 0.871* 0.921*
K= 0422 0673 0592 0.644* 0404 0976* 0494 0.670*
HIGH
AR K=6 0.458 0.682 0.693* 0.662* 0.661* 0.981* 0.696* 0.782*
COEFF
K=9 0431  0.690* 0.758* 0.694* 0712 0.99* 0.77/8 0.855*
K=16 0.437 0.689* 0.872 0.741* 0.595* 0.991* 0.780* 0.883*

Thistable presents the proportion of times that the aggregate of Space-Time AR forecasts has alower M SE than the other 4
methods. An‘ * ’ indicates that the Space-Time AR significantly outperforms the alternative method at the 5% level. For
example, for K =4 and low spatial and AR coefficients the aggregate of Space-Time AR forecasts has alower M SE than the
forecast based on the aggregate (f1) 58.0% of thetime.
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