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ABSTRACT OF THE DISSERTATION

Effects of Channel Noise on Neural Networks

by

Brenton A. Maisel

Doctor of Philosophy in Chemistry

University of California, San Diego, 2018

Professor Katja Lindenberg, Chair

The human brain contains on the order of 109 neurons with each neuron having on

the order of 104 synaptic connections with other neurons. Within each neuron, there are

protein channels that dictate when ions can flow through them. It is the flow of these ions

that is the basis for action potential generation, and these action potentials are the source

of neural communication and information. These channels exist in various configurations

some of which are conducting (“open”) and some of which are non-conducting (“closed”).

Moreover, these channels can stochastically switch between the open and closed states. It

is nothing short of remarkable that the brain functions as it does despite the randomness

present within each neuron.
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What role these microscopic fluctuations, herein known as channel noise, have on

macroscopic neural network properties is an open area of neuroscience that has generated

a great deal of interest in recent years due to the advancement of computational methods.

In this thesis, we first introduce the Hodgkin-Huxley model and mathematical equations

which incorporate this channel noise in the Hodgkin-Huxley model. We then study the

role of channel noise on properties of small neural networks which begins in Chapter 3.

The first property we will look at is how channel noise affects the timing of the first action

potential after stimulus onset. This property, known as first spike latency, is believed to be

a coding mechanism used by neurons to communicate information between stimuli and

brain processing. We will then look at the role of channel noise on neural synchronization.

Abnormal synchronization has been strongly correlated with a number of neural disorders

such as Alzheimer’s disease and Parkinson’s disease.

One area of research in neuroscience that is of fundamental interest is the rela-

tionship between neural spiking and cognitive processing. For this thesis, in addition

to the small neural network models for first spike latency and synchronization, we will

consider a recently developed model for cognition and study the model’s behavior when

subjected to noise. We will conclude with a brief summary of the results obtained as well

as discuss ways to extend the research to larger neural network systems.

xvi



Chapter 1

Introduction

The human brain is a remarkable and highly complex organ. Despite being a

network composed of roughly 100 billion neurons with each neuron connected to roughly

104 other neurons, the brain is capable of encoding information about the environment

and making a decision within fractions of a second [RWDRvSB99, TFM+96]. For

example, we can instantly recognize the faces of our family members out of billions of

faces on the planet. How is such a thing even possible? Although the coding mechanism

used by neurons remains unclear, it is widely assumed that coding is based on action

potentials or spikes. However, exactly which aspects of these spike trains convey the

information about the environment? Does the exact timing convey important information

or is the rate at which a neuron produces spikes the only important aspect with everything

else just noise? The first major section of the thesis will be a study of the effects of

fluctuations on spike timing.

As an extension to action potential timing and rates, the study of neural synchro-

nization and how neural networks synchronize their action potential timing between

various brain regions arises in many areas of neuroscience such as learning [AM14],

both mental health disorders and neurological disorders [ACM14, HBB07, US06], lo-

1
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comotion [RF98], feeding [RES+97], and breathing [TK02]. These networks exhibit

oscillatory behavior and the frequencies of these oscillatory behaviors are believed to be

associated with various behaviors. For example, the gamma frequency range (25−100

Hz) is associated with sensory information processing in areas as seen in the the olfactory

system [LD+94] and visual system [GKES89]. The second major section of this thesis

will be a study of how fluctuations affect the ability of neurons to synchronize. In order to

study both spike timing and synchronization, we need to first understand the biophysical

basis of action potentials.

Action potentials are generated when the voltage of the neuron’s membrane

reaches a certain threshold. Typically, the neuron’s resting membrane potential is approx-

imately −65 mV and an action potential forms when the membrane potential reaches

a value between −50 and −55 mV [SSR05]. However, fluctuations in the voltage can

occur which affect the neuron’s spike timing. As we will discuss, this in turn affects

both neural coding and neural synchronization, which are strongly tied to mental health

disorders. The role of this thesis will be to understand what effects membrane voltage

fluctuations have on macroscopic neural network behavior through the study of small

neural networks. To understand this concept, we need a mathematical framework to study

action potential generation. We begin by reviewing the anatomy and electrophysiology

of a neuron.

1.1 Anatomy of the Neuron

A typical neuron can be divided into several regions: dendrites, cell body, axon,

and presynaptic terminal. As a simplistic overview, the cell body connects to the dendrites

which bring information to the neuron, and the axon which sends information to other



3

Figure 1.1: Schematic drawing of a neuron with emphasis on its major features. “Nerve
Cell” by ASU - Ask a Biologist is licensed under CC BY 3.0 [Szy11] (Used with
permission).

neurons. A schematic drawing of a neuron can be seen in Fig. 1.1. Perhaps the most

important function of the cell body, also called the soma, is that it contains the nucleus of

the neuron and is the site of protein synthesis. These proteins allow neurons to build new

axons and dendrites to make new connections with other neurons [LBZ+00].

Dendrites are the branched structures which extend outward from the cell body.

These structures receive electrical messages in the form of neurotransmitters from other

neurons which come in two forms: excitatory which increase the stimulation of a neuron

and lead to neural firing, or inhibitory which decrease neural activity and prevents neural

firing. After enough electrical stimulation, the neuron will fire its own action potential

which originates at the axon hillock, the junction between the soma and the axon.

Nearly every neuron contains an axon, which is the main conducting unit of the

neuron that conveys electrical signals across large distances. The axon also contains sev-

eral types of proteins (ion channels) which allow for the propagation of action potentials.

These will be explored in more detail in the next section. In some cases, the axon may be

covered in a mylein sheath which acts as an insulator to the neuron and helps to increase

the rate of action potential propagation.
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Lastly, the presynaptic terminal contains neurotransmitters enclosed in vesicles.

These neurotransmitters get released into an area between two neurons (called the synaptic

cleft) which then bind to the dendrites of another neuron. This causes the voltage of

this other neuron to change, leading to other action potentials. Further details about this

process will be discussed in Section 1.4.

1.2 Physiology of the Neuron

The neural membrane, like other membranes found in cells throughout the human

body, consists of a phospholipid bilayer with proteins embedded in it. Some of these

proteins act as ion channels which allow ions to flow through the membrane along

electrochemical gradients. Other proteins act as pumps and use energy to move ions

across the membrane against electrochemical gradients. The most common of these is

the sodium/potassium (Na+/K+) pump. The cellular membrane and the pump permits

the concentration of ions inside the membrane to be different from the outside of the

membrane, and this difference is referred to as the membrane potential of the neuron. At

equilibrium, the resting potential is typically around −65 to −70 mV.

The course of an action potential is as follows: Upon receiving stimulation

from another neuron which increases the membrane potential to a certain threshold, the

membrane potential rises quickly in a process called depolarization, and then returns to

rest during a repolarization state. Due to differing time scales, the membrane potential

overshoots the resting state and enters a hyperpolarized state. The sodium/potassium

pump then works to restore the membrane potential back to the equilibrium potential.

Since ions can’t pass through the membrane except through protein channels, the

membrane essentially acts like a capacitor and generates a current as the voltage changes.

The equation for such a current is given by
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Cm
dV
dt

= Icapacitor (1.1)

where Cm is the membrane capacitance (units of µF/cm2) and V is the membrane

potential in units of mV . Similarly, ionic currents will be generated as ions travel through

the proteins. These proteins therefore act as resistors with variable resistance (the reason

for variable resistance will be discussed in the next section) which we donate as Rion(V ).

Therefore using Ohm’s Law:

Iion =
1

Rion(V )
(V −Eion) (1.2)

By convention, 1
Rion(V ) is frequently written in terms of conductance gion(V ) as 1

Rion(V ) =

gion(V ) with units of mS/cm2, and Eion is the reversal potential of the ion channel. The

reversal potential is the potential at which there is no net current for that specific ion, and

this value is calculated from the Nernst equation [VISGR+12]. The ability to model a

neuron membrane as a capacitor with the protein channels as variable resistors allowed

for a quantitative biophysical model of a neuron known as the Hodgkin-Huxley model to

be developed. This model will be the one we use due to its close connection to biological

reality [HH52, BSRSR15, Izh04].

1.3 The Hodgkin-Huxley Model of an Action Potential

Hodgkin and Huxley [HH52] performed experiments on a squid axon and found

three types of ion currents: sodium, potassium, and a leak current mainly consisting of

chloride ions. These ions flow through the cell membrane of the neuron through specific

voltage-dependent ion channels which control the membrane’s voltage, one for potassium

and one for sodium. The leak current accounts for other channel types not described
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Figure 1.2: Schematic drawing of Hodgkin Huxley model represented as a circuit.
The electrochemical gradients driving the flow of ions are represented by batteries
(Eion), the protein channels are represented as variable resistors Rion(V ) or rather with
conductances gion(V ) = Rion(V )−1, and the membrane is represented by a capacitor
with capacitance CM.

explicitly. The equivalent circuit diagram is shown in Figure 1.2

Utilizing Ohm’s Law and Kirchoff’s Law, one obtains the following:

Iinput = Icapacitor +∑
ion

Iion

= CM
dV
dt

+gNa(V )(V −ENa)−gK(V )(V −EK)−gL(V −EL) (1.3)

where gL represents the conductance of the leak channel. The key feature of the Hodgkin
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Huxley model is that each channel is composed of four gates: the sodium channel is

composed of three identical fast-acting activating gates (known as m-gates) and one slow

inactivating gate (known as an h-gate). Each channel can be pictured as being a tunnel

with four gates arranged one-after-another within it. In order for the individual channel

to be open and conduct, all the gates within that channel must be simultaneously open. If

even one gate is shut, then the whole channel is shut.

Each gate transitions from an open to a closed state with rate constant α(V ) and

transitions back with rate constant β(V ). Let us consider the potassium resistor in Fig.

1.2. The net conductance of potassium channels would be given by ḡK× fK where ḡK

is the maximum potassium channel conductance when all channels are open and fK is

the fraction of open potassium channels. Defining n to be the fraction of open gates

n-gates and noting that a potassium channel contains four n-gates, the conductance of the

potassium channels in the above circuit should be given by ḡKn4. A similar expression

can be derived for the sodium channels.

Collecting everything, the Hodgkin-Huxley model of a neuron is given by the

following sets of differential equations:

CMV̇ = Iinput(t)− ḡNam3h(V −ENa)

− ḡKn4(V −EK)− ḡL(V −EL)

ṅ = αn(V )(1−n)−βn(V )n (1.4)

ṁ = αm(V )(1−m)−βm(V )m

ḣ = αh(V )(1−h)−βh(V )h,
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where

αn(V ) =
0.01(V +10)

exp[(V +10)/10]−1

βn(V ) = 0.125exp[V/80]

αm(V ) =
0.1(V +25)

exp[(V +25)/10]−1

βm(V ) = 4exp[V/18]

αh(V ) = 0.07exp[V/20]

βh(V ) =
1

exp[(V +30)/10]+1
.

The transition rate equations with numbers must be experimentally determined. Here,

Iinput(t) is the current input into the neuron and determines the dynamical behavior of

the membrane voltage. Frequently, this is decomposed into two terms: an applied current

refered to as Iapp(t), and Isyn(t) which is the current input from the potential due to

synaptic connections. The values of the parameters along with definitions are found in

Table 1.1 [HH52].

Table 1.1: Parameter values used for simulation of the Hodgkin-Huxley model.

Parameter Definition Value
C membrane capacitance 1µF/cm2

ENa sodium reversal potential 50mV
EK potassium reversal potential −77mV
EL leak reversal potential −54.4mV
ḡNa maximal sodium conductance 120mS/cm2

ḡK maximal potassium conductance 36mS/cm2

ḡL maximal leak conductance 0.3mS/cm2

A simulation of the set of equations (Eqn. 1.4) is shown in Fig. 1.3. Notice that

the dynamics match our earlier physiological description: at low voltage, the m-gates

are mainly closed, but upon depolarization, the m-gates open and the voltage increases

until the h-gate closes. The membrane then repolarizes as the n-gates open which allows



9

Figure 1.3: (Top) Voltage dynamics of a neuron spike with the different character-
izations of a spike: depolarization, repolarization, and hyperpolarization. (Bottom)
Dynamics for the gating variable of the Hodgkin-Huxley equation (Eqn. 1.4) during a
neuron spike.

potassium to flow through.

With a sufficiently strong applied current, the Hodgkin-Huxley model produces a

regular sequence of action potentials [MG01]. However, in vivo experiments of spike

trains show far more irregular behavior as shown in Fig. 1.4. Where this irregularity

comes from is an open question, but we will discuss several potential sources.
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Figure 1.4: (A) Plot of one Hodgkin-Huxley neuron (Eqn. 1.4) with Iapp(t) =
10µA/cm2 starting at resting state. (B) Plot showing irregular firing of action potentials
during tissue stretch of guinea pigs (Reproduced with permission from [KCBF99]).
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1.4 Neural Communication

The junction between two neurons is referred to as the synapse and is the site of

neural communication. The neuron which sends a signal is referred to as the presynaptic

neuron and the neuron receiving the signal is referred to as the postsynaptic neuron.

A single neuron often connects to more than 104 postsynaptic neurons, and estimates

place the number of synapses per cubic millimeter of cerebral cortex on the order of 109

[ANGSRD08]. There are two types of synapses: chemical and electrical. Neurons which

have electrical synapses are connected via gap junctions with impulse traveling in both

directions. These are typically found in areas requiring fast responses such as the retina

[HFM+04]. We will be more interested in chemical synapses, which are more commonly

found in the brain due to their flexibility in neural coding and learning [BWF+08]. A

detailed schematic figure of a synapse can be seen in Fig. 1.5.

The basic mechanism of the chemical synpase is as follows: Upon receiving an

electrical signal from an action potential, voltage-gated calcium ion channels open in the

presynaptic terminal of the neuron. This influx of calcium causes vesicles containing

neurotransmitters (chemicals) to fuse with the presynaptic membrane. Upon fusion,

neurotransmitter is released into the synaptic cleft via exocytosis. These transmitters

then bind to receptor molecules in the postsynaptic membrane which can either open or

close the postsynaptic channels. These channel conformation changes can either cause

inhibitory or exctitatory postsynaptic potential changes. Upon reaching a threshold,

the postsynaptic neuron fires. [MG11, PAF+97]. Although written here in a step-wise

fashion, the synapse involves many simultaneous processes such as the production and

degradation of neurotransmitter, the release and binding of neurotransmitters to the

postsynaptic membrane, and opening of the postsynaptic dendrite channels.
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Figure 1.5: Schematic drawing of a chemical synapse. As an action potential arrives,
calcium flows into the presynaptic neuron causing vesicles to release neurotransmitters
into the synaptic cleft. Upon binding to the postsynaptic neuron, the membrane potential
of the postsynaptic neuron changes as ions flow into the postsynaptic neuron from the
synaptic cleft. “The Synapse” by Openstax CNX is licensed under a Creative Commons
Attribution 4.0 License [Ope14] (Used with permission).
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In order to mathematically account for synaptic conduction, we keep things simple

by considering a synaptic current that has a Hodgkin-Huxley form, Isyn(t) = gsyn(t)(V −

Esyn) = ḡsynr(t)(V −Esyn) where r(t) is a synaptic gating variable (i.e. the fraction

of open channels), gsyn is the conductance, and Esyn is the synaptic reversal potential.

Following the arrival of an action potential at the presynaptic terminal, neurotransmitter

molecules, T, are released into the synaptic cleft. Let [T ] denote the concentration of

neurotransmitter. Since the postsynaptic neural receptors open when transmitter binds, the

transition rate for the receptor from a closed state to an open state should be proportional

to [T ]. The rate from open to closed is independent of [T ]. Thus we have the following

scheme:

R+T
αr[T]
�
βr

RT

where R is the unbound postsynaptic receptor and RT is the bound postsynaptic receptor.

Thus, an equation for r(t) can be written as [DMS94, DMS98, GKNP14].:

dr
dt

= αr[T ](1− r)−βrr (1.5)

The concentration of neurotransmitter should then be a function of the presynaptic

membrane voltage as well. When an action potential invades the presynaptic terminal,

the transmitter concentration rises rapidly, causing r to increase. Following the release

of transmitter, diffusion out of the cleft, enzyme-mediated degradation, and presynaptic

uptake mechanisms can all contribute to a reduction of the transmitter concentration

[DA+03]. Moreover, the time constant for receptors closing is typically much larger than

that of the opening time. Consequently, a common function to describe T is given by:

[T ](V ) =
Tmax

1+ e−(V−Vp)/K
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where Tmax is the max value of [T ], V is the voltage, K describes the steepness of

the sigmoid, and Vp is the value of V at which [T ](V ) reaches half its maximal value

[DA+03, KS98]. For small scale network models, this added synaptic term paints a fuller

picture of a neural network. However, for much larger networks, this synaptic term adds

extensively to the computational time as one would need to keep track of the voltage of

every presynaptic neuron. The tradeoff for an increase in extra information may or may

not be worth the longer computational time.

1.5 Membrane Voltage Fluctuations

Like many biological systems, fluctuations in neural systems are abundant. In

this section, we will discuss multiple sources of neuronal noise which can be divided into

extrinsic and intrinsic categories.

1.5.1 Extrinsic Noise

Extrinsic noise can affect action potential generation. Extrinsic noise is typically

thought of as noise from signal transmission between neurons and variability of spike

timing due to the neuron being embedded in a network. As an example which we will

look at in this work, some experiments suggest that only 10−30% of presynaptic action

potentials generate a postsynaptic response which can lead to irregular firing patterns

[HSM93, MT96]. In addition, the fact that the number of vesicles and neurotransmitters

involved is finite means that they are subject to fluctuations from trial to trial [FK52].

1.5.2 Intrinsic Noise

In addition to extrinsic noise, intrinsic fluctuations are those which cause devia-

tions in the expected voltage but are not associated with a response to stimuli. One such
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source of intrinsic noise is thermal noise since voltage across any electrical resistor fluc-

tuates at finite temperature. However, despite the presence of such noise, this noise is of

relatively minor influence compared to other neuronal noise sources [MK99a, MK99b].

An alternative source of intrinsic noise, and one which is the focus of this dis-

sertation, is referred to as channel noise. As previously discussed, the ion channels in

the Hodgkin-Huxley model transition randomly between an open and closed state with

voltage-dependent rate functions. In the Hodgkin-Huxley model, the number of ion

channels is assumed to be infinite so that voltage fluctuations due to fluctuations in the

number of open channels are neglected. In reality, neurons have finite size and thus have

a finite number of channels so that changes in conductivity due to fluctuations in the

number of open channels do in fact cause the voltage to fluctuate. To illustrate this fact,

let us consider a neuron with N identical stochastic channels in the membrane with the

probability of being open denoted as p. Each channel can be thought of as a Bernoulli

random variable with probability p of being open. Hence, if each individual channel

contributes a current i, then the mean current through the channels is given by iN p and

the variance of these current fluctuations is proportional to N p(1− p) [ON14].

Notice that the variance is maximized at p = 0.5. In the subthreshold regime, p is

typically less than 0.5, so upon depolarization of the neuron the absolute amplitude from

ion channel noise increases [H+01]. The relative amplitude, defined by the coefficient

of variation, is proportional to
√

N p(1−p)
N p =

√
(1−p)

N p , and hence the relative amplitude

of ion channel noise decreases as p increases upon depolarization. Additionally, the

absolute amplitude of fluctuations is on the order of
√

N whereas the relative amplitude

of fluctuations is on the order of N−1/2. Hence the relative amplitude of fluctuations

decreases for larger populations of ion channels and for infinitely many channels, the

relative amplitude of fluctuations is 0.

In the next chapter, we will look at how to adapt the Hodgkin-Huxley model to
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account for channel noise.

1.6 Is Channel Noise Important?

Even though we have discussed channel noise as a source of voltage fluctuations

in neurons, we have yet to discuss some general effects of this noise on neural network

behavior. As discussed by Schneidman with experimental observations, the presence of

these channel fluctuations leads to spontaneous spikes in the presence of subthreshold

inputs and missing spikes for suprathreshold inputs [SFS98, JA94]. In general, noise is

thought to degrade performance, although this is not always the case. For example, the

appearance of spontaneous fluctuations is a phenomenon known as stochastic facilitation

and has been shown to enhance information processing in neural systems [SM13, Ada03].

An example of a simulation showing this phenomenon is seen in Fig. 1.6. In addition

to the aforementioned effects of channel noise, modeling studies have suggested that

channel noise exherts influence on spike time reliability [SFS98], firing irregularity

[SLYH08, Row07], subthreshold dynamics [WKAK98], and action potential initiation

and propagation [CON10, FL07].

Additionally, channel noise has been considered as an important factor for un-

derstanding how auditory neurons encode information, and it has been suggested to use

channel noise to reproduce more natural responses in neural populations stimulated by

cochlear implants [ME96, MRMA04, IR09, GRSB12]. More recently, a study out of

Stanford University found experimental evidence that noisy neurons are a critical aspect

for learning [ECFW15]. Ultimately, the full range of what channel noise can do for

neural networks is an open question, but a plethora of evidence exists showing that micro-

scopic fluctuations from stochastic channel gating can have macroscopic consequences

[WRK00, SGH01, DW05, FWL05, WKAK98]. The aim of this thesis is to contribute to
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Figure 1.6: Simulations of the Fox and Lu model (Eqn. 2.1) for various membrane
area patch sizes. The injected current was 6.0µA/cm2. Resulting figures show that
decreased membrane area (increased magnitude of membrane voltage fluctuations)
causes spontaneous spiking for subthreshold input.

the understanding of the impact of channel noise on neural networks.



Chapter 2

Models for Channel Noise

While the Hodgkin-Huxley model is deterministic, real life neural systems are

often stochastic entities as noted in the previous chapter. How do we best adapt the

Hodgkin-Huxley model to account for these membrane voltage fluctuations due to the

channels? Recall that the Hodgkin-Huxley assumes infinitely many channels so that

fluctuations in the number of open channels don’t affect the membrane voltage. However,

since real neurons have finitely many channels due to size constraints, fluctuations in the

fraction of open channels can affect the membrane voltage. How noise is introduced into

the Hodgkin Huxley model (Eqn. 1.4) in order to capture these fluctuations can have

different effects on the dynamics of the model.

2.1 Markov Chain Model

In the Markov Chain Model, each ion channel is considered a distinct object

which can exist in several states where each state corresponds to a conformation of

the membrane protein. For example, a potassium channel can assume the following

configurations with the following transition rates:

18
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0
4αn
�
βn

1
3αn
�
2βn

2
2αn
�
3βn

3
αn
�
4βn

4

where each number corresponds to the number of gates in the channel in the ”open”

configuration. In this case, state 4 is the open state whereas the other states are the

“closed” states. The channel is considered memoryless (hence, having the Markov

property). In general, these transitions occur on a time-scale of nanoseconds, but for

modeling purposes, these transitions are considered instantaneous [H+01]. Simulation

methods for the Markov Chain Model are often based on Monte Carlo techniques. In

general, the simplest way to simulate this model is to first pick a small time step dt. The

next step is to convert the transition rate (k) to a transition probability (p∗) by assuming

p∗ ≈ kdt. At each time step, one then generates a random number r ∈ unif(0,1) for

each channel. If r < p, then the channel transitions between the open and closed states.

No transition occurs if r > p. Then, after each time step, one computes the fraction of

channels in the “open” configuration and updates the voltage according to the following

equation:

CMV̇ = Iinput(t)− ḡK
No,Na

NNa
(V −ENa)− ḡK

No,K

NK
(V −EK)−gL(V −EL)

where No,K (No,Na) is the number of open potassium (sodium) channels and NK (NNa)

is the total number of potassium (sodium) channels. This method is computationally

expensive because it requires the generation of a random number for each channel at

each time step.

An alternative method is to use the Gillespie algorithm [Gil77]. In this algorithm,

one generates two random numbers: one random number determines when the next

transition will occur, and the other number determines which transitions will occur
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[SW79, CW96, Gil77] . The simulation then proceeds in time and performs the state

transitions. However, the average time step generated is on the order N−1 so the algorithm

is inefficient for a large number of channels [MRW02].

If possible, one would hope to be able to conveniently place noise terms in order

to replicate the Markov Chain Model dynamics with enough accuracy to extract useful

information while cutting down on computational costs. We will next introduce several

proposed models that sought to do so.

2.2 Current Noise Model

To model fluctuations observed in the Hodgkin-Huxley model, a Gaussian term

is frequently added to the end of the voltage equation in Eqn. 1.4. This method is

commonly used by computational neuroscientists to model fluctuations in the spike timing

[NPR+99, WPDC10, TJ12, TW05, KHZ16]. This noise term is meant to represent the

combined stochasticity of the ion channels on the voltage dynamics of the neuron. While

this modification is nice for its simplicity, it seems likely that the added noise term

should also depend on the voltage or gating variables. As another drawback, there is

currently no method for determining how to use an appropriate function to describe the

noise intensity [GSB11]. However, for a large membrane area and a constant applied

current, the interspike interval distribution generated by the Markov chain model and the

distribution generated by the current noise model showed very close agreement [Row07].

2.3 Channel Noise Model

If we consider the case of finitely many potassium channels, for instance, one can

apply a system size expansion to the states of the channels. This method was first carried
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out by Fox and Lu and we will refer to this model as the Fox and Lu model [FL94]. They

derived the following system of stochastic differential equations to account for having

finitely many channels:

CV̇ = Iinput(t)− ḡNay31(V −ENa)− ḡKx4(V −EK)− ḡL(V −EL)

ẋ = AK(V )x+
1√
NK

SK(V,x)ξ̇K (2.1)

ẏ = ANa(V )y+
1√
NNa

SNa(V,y)ξ̇Na.

The matrices AK , ANa, SK , and SNa are defined as:

AK =



−4αn βn 0 0 0

4αn −3αn−βn 2βn 0 0

0 3αn −2αn−2βn 3βn 0

0 0 2αn −αn−3βn 4βn

0 0 0 αn −4βn



ANa =



−3αm βm 0 0 βh 0 0 0

3αm −2αm−βm−αh 2βm 0 0 βh 0 0

0 2αm −αm−2βm−αh 3βm 0 0 βh 0

0 0 αm −3βm−αh 0 0 0 βh

αh 0 0 0 −3αm−βh βm 0 0

0 αh 0 0 3αm −2αm−βm−βh 2βm 0

0 0 αh 0 0 2αm −αm−2βm−βh 3βm

0 0 0 αh 0 0 αm −3βm−βh


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SK and SNa are the square root matrices of the following diffusion matrices:

DK =



4αnx0 +βnx1 −4αnx0−βnx1 0 0 0

−4αnx0−βnx1 4αnx0 +(3αn +βn)x1 +2βnx2 −2βnx2−3αnx1 0 0

0 −2βnx2−3αnx1 3αnx1 +(2αn +2βn)x2 +3βnx3 −3βnx3−2αnx2 0

0 0 −3βnx3−2αnx2 2αnx2 +(αn +3βn)x3 +4βnx4 −4βnx4−αnx3

0 0 0 −4βnx4−αnx3 αnx3 +4βnx4



DNa =



d1 −3αmy00−βmy10 0 0 −αhy00−βhy01 0 0 0

−3αmy00−βmy10 d2 −2αmy10−2βmy20 0 0 −αhy10−βhy11 0 0

0 −2αmy10−2βmy20 d3 −αmy20−3βmy30 0 0 −αhy20−βhy21 0

0 0 −αmy20−3βmy30 d4 0 0 0 −αhy30−βhy31

−αhy00−βhy01 0 0 0 d5 −3αmy01−βmy11 0 0

0 −αhy10−βhy11 0 0 −3αmy01−βmy11 d6 −2αmy11−2βmy21 0

0 0 −αhy20−βhy21 0 0 −2αmy11−2βmy21 d7 −αmy21−3βmy31

0 0 0 −αhy30−βhy31 0 0 −αmy21−3βmy31 d8



and with diagonal entries:

d1 = (3αm +αh)y00 +βmy10 +βhy01

d2 = (βm +2αm)y10 +2βmy20 +3αmy00 +αhy10 +βhy11

d3 = (2βm +αm)y20 +3βmy30 +2αmy10 +αhy20 +βhy21

d4 = 3βmy30 +αmy20 +αhy30 +βhy31

d5 = 3αmy01 +βmyy11 +βhy01 +αhy00

d6 = (βm +2αm)y11 +2βmy21 +3αmy01 +βhy11 +αhy10

d7 = (2βm +αm)y21 +3βmy31 +2αmy11 +βhy21 +αhy20

d8 = 3βmy31 +αmy21 +βhy31 +αhy30

The vector x is composed of components xi, (i = 1,2,3,4), representing the

proportion of potassium channels with i open gates of type n. The entries of the vector
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y are denoted as yi j, (i = 0,1,2,3 and j = 0,1), representing the proportion of sodium

channels with i open m subunits and j open subunits of type h. Note that this implies

∑i xi = 1 and ∑ j ∑i yi j = 1. Moreover, ξK and ξNa are vectors of independent Gaussian

white noise terms. While this system is valid for a large number of channels, it has been

shown to be a very accurate representation of the Markov chain model even for a small

number of channels [GIFSB11]. However, the downside to this model is that closed states

are distinguishable and must be accounted for, greatly increasing the dimensionality of

the system.

2.4 Subunit Noise Model

In addition to the channel noise model, Fox and Lu derived a system of equations

from a system size expansion of the states of the populations of subunits [FL94]. Such a

system is given by the following:

CV̇ = Iinput(t)− ḡNam3h(V −ENa)− ḡKn4(V −EK)− ḡL(V −EL)

dn
dt

= αn(V )(1−n)−βn(V )n+σn(V )ξn(t) (2.2)

dm
dt

= αm(V )(1−m)−βm(V )m+σm(V )ξm(t)

dh
dt

= αh(V )(1−h)−βh(V )h+σh(V )ξh(t)

where the ξ’s are independent Gaussian white noises, and:

σ
2
x(V ) =

αx(1− x)+βxx
N

.

where N is either NNa when x is m or h, or NK when x is n. Despite the fact this model is

widely used due to its computational efficiency, numerical studies have revealed inaccu-
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racies such as weaker voltage fluctuations [Bru09], lower firing rates (and hence longer

mean interspike intervals), and overstating information transfer rates when subjected to a

brief pulse [SLN10], even as the number of channels increases.

2.5 Differences Between Channel and Subunit Noise Mod-

els

The principal difference between the channel noise model and the subunit noise

model is that in the channel noise model, one groups subunits together to construct a

channel, and then defines the dynamics based on the proportion of channels in each state.

In the subunit noise model, one defines the dynamics of the subunits first, and then groups

the subunits together to compute the channel conductance. As derived in [GIFSB11],

the expected fractions of open channels in the channel noise and subunit noise models

are the same in the Markov Chain model. What differs is the variance in the fraction

of open channels. Their simulations showed that the variance in the fraction of open

channels in the channel noise model is nearly identical to that of the Markov Chain model.

However, for the subunit noise model, the variance of the fraction of sodium channels

was less than that of the Markov Chain model, and the variance of the fraction of open

potassium channels was underestimated in the subthreshold regime and overestimated

during spiking.



Chapter 3

First Spike Latency

While it is widely accepted that information is encoded in neurons via action

potentials or spikes, it is far less understood what specific features of spiking contain

encoded information. Experimental evidence has suggested that the timing of the first

spike may be an energy-efficient coding mechanism that contains more neural information

than subsequent spikes. Therefore, the biophysical features of neurons that underlie

response latency are of considerable interest. In this chapter, we examine the effects of

channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random

input from many other neurons. Because the principal feature of a Hodgkin-Huxley

neuron is the stochastic opening and closing of channels, the fluctuations in the number

of open channels lead to fluctuations in the membrane voltage and modify the timing of

the first spike. The results will show that when a neuron has a larger number of channels,

(i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing

is greater. We also show that the mean, median, and interquartile range of first spike

latency can be accurately predicted from a simple linear regression by knowing only the

number of channels in the neuron and the rate at which presynaptic neurons fire, but the

standard deviation (i.e. neuronal jitter) cannot be predicted using only this information.

25
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We then compare our results to another commonly used stochastic Hodgkin-Huxley

model and show that the more commonly used model overstates the first spike latency

but can predict the standard deviation of first spike latencies accurately. We end the

chapter by suggesting a more suitable definition for the neuronal jitter based upon our

simulations and comparison of the two models.

3.1 Introduction

How information is encoded and decoded by neurons is a fundamental question

of neuroscience. Although the coding mechanism used by neurons remains unclear, it

is widely assumed that coding is based on action potentials or spikes. The most widely

assumed coding mechanism is known as rate coding which emphasizes that information

that neurons encode about the environment is found in the mean firing rates of neurons

[VGT05]. There are three ways to calculate the mean: as the average over the distribution

of firing rates over a population of neurons at a fixed time, or as an average of the

distribution of firing rates of a single neuron over a long time window, or as an average

over a large number of runs of a single neuron [GKNP14]. Such coding mechanisms are

not without flaws. Averaging over an extended time window is unfeasible: behavioral

experiments have shown that a fly can react to stimuli and change flight directions in

only 30-40ms [RWDRvSB99] and humans can recognize visual scenes in under 150ms

[TFM+96], so there is simply not enough time for the brain to average over an extended

time period. Furthermore, it is easier experimentally to record a single neuron and average

over N runs than it is to record N neurons in a single run, so experimental evidence rests

on the assumption that there are populations of neurons with similar properties. Based

on these issues of timing and the requirement that neurons in a population be essentially

identical, the idea of “rate coding” by all of these methods has been routinely criticized
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[BRVSW91, ABMV93, APBV94].

An alternative coding mechanism, known as first spike latency coding, has been

used as a meaningful strategy to understand information encoding by neurons. First spike

latency is defined as the time of the first spike relative to stimulus onset. In [TFM+96],

Thorpe argues that the brain does not have time to evaluate more than one spike from

each neuron for each step of processing behavioral responses to a stimulus. Therefore,

the first spike should contain most of the relevant information, and several groups have

shown that most of the information about a new stimulus is conveyed very quickly

[OR87, RT95, PPD01, Hei04]. In 2004, the first direct evidence showing first-spike

coding in humans was released [JB04]. In this experiment, Johansson et al. applied

objects of various shapes to fingertips at various angles and forces. They showed that

the first spikes contained reliable information about the direction of fingertip force and

object shape. Moreover, it provided information faster than rate coding did. While

we do not claim that either rate coding or first spike latency coding is the correct one

(and recent publications suggest that both methods are used for information encoding in

animals [APD06, ZSN+15, VHIAD07, DvHK+08]), we focus on first spike latency as

an informative mathematical problem and potential coding mechanism.

In this chapter, we investigate the first spike latency of a Hodgkin-Huxley neuron

with stochastic perturbations. Our goal is to understand how channel noise affects the

timing of first spike latency. Neurons in networks receive input from other neurons

within the network. Experimental studies have shown that synapses transmit signals in an

unreliable fashion due to stochastic release of transmitters, and so not every presynaptic

spike elicits a postsynaptic response [BS09, AS94, HL98]. Experimental evidence shows

that only 10− 30 percent of presynaptic spikes may elicit any postsynaptic response

[HSM93, MT96]. Thus the stochastic perturbations we will examine come from two

sources: the intrinsic channel noise due to the stochastic opening and closing of membrane
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protein channels, and extrinsic network noise as a result of other neurons sending signals

in an unreliable fashion.

This chapter is organized as follows: In Sec. 3.2 we give a mathematical descrip-

tion of the stochastic Hodgkin-Huxley neuron with unreliable synaptic input as well as

discuss how we analyze first spike latency from a statistical perspective. Then in Sec. 3.3

we analyze how the parameters of the model affect these first spike latency times and

the distribution of the times. In addition, we study what effect the number of channels in

a Hodgkin-Huxley neuron has on the first spike latency. We then conclude with some

closing remarks in Sec. 3.4.

3.2 The Model

The deterministic dynamics of the Hodgkin-Huxley model [HH52] were given

in Eqn. 1.4. The channel conductances ḡK and ḡNa are the products of two factors:

an individual channel conductance on the order of picosiemens and the number of

channels in the area A (given by NNa for the number of sodium channels and NK for

the number of potassium channels). The sodium channel density is therefore the value

NNa/A and likewise NK/A for potassium channel density which we will use when

discussing the stochastic model. For this chapter and the remainder of this dissertation,

we assume that the sodium channel density is given by 60µm−2 and the potassium

channel density by 18µm−2, where these values are derived from biophysical neuron

parameters [GIFSB11, FM85]. Note that this means that we can rewrite NNa = 60A and

NK = 18A in Eqn. 2.1 where A is the membrane area so we can simply vary this one

parameter and observe what effects this causes on neural networks.

As previously mentioned, we are interested in understanding how first spike

latency is affected by channel noise and stochastic input from other neurons in a network.
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Figure 3.1: Schematic network and first spike latency definition of stochastic Hodgkin-
Huxley neuron with unreliable synaptic input from a network of excitatory and inhibitory
neurons.

A schematic drawing of the model we will use is shown in Fig. 3.1.

Generally, a presynaptic neuron connects to over 104 postsynaptic neurons, and

estimates are that the brain is composed of 100 billion neurons, so each neuron connects

to many others and is connected to many others [GKNP14]. To simplify matters, we

assume that our Hodgkin-Huxley neuron receives current from presynaptic neurons

which spike at some rate λ. We let λ be the same for each presynaptic neuron. We

express such a presynaptic current as follows:

Isyn(t) = Q

[
Ne

∑
k=1

∑
l

hl
kδ(t− t l

k)−
Ni

∑
m=1

∑
n

hn
mδ(t− tn

m)

]
. (3.1)

In this equation, Ne is the number of excitatory presynaptic neurons, Ni the

number of inhibitory presynaptic neurons, Q = C∆V represents the charge associated

with each voltage change ∆V , t l
k is the discharge time of the lth spike at the kth excitatory

presynaptic neuron, and similar notation represents the inhibitory presynaptic neurons

[UOG12]. To account for the fact that not every presynaptic spike elicits a postsynaptic

response [BS09, AS94, HL98], we introduce the random variable hl
k where hl

k = 1 with

probability p (the probability of a successful postynaptic response) and hl
k = 0 with

probability 1− p (the probability of no postsynaptic response). As we indicated earlier,
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experimental evidence suggests that reasonable values for the parameter p are in the

range 0.1−0.3 [HSM93, MT96].

First we choose the values for the parameters in the Isyn(t) expression [Eq. (3.1)].

Each excitatory presynaptic neuron which induces a voltage change to our Hodgkin-

Huxley model instantaneously increases the voltage by a value of Q which for this model

will be set to 0.5mV . This value is near experimental observations for neurons in the

rat visual cortex and the cat visual cortex [Koc04, GGMK09, TLK07, RS99, JMPR71].

Experiments have shown that mammalian vestibular nucleus neurons fire spontaneously

in the awake animal at baseline firing rates of 30−100 Hz (and can increase to several

hundred Hz) [TS97, GMdL10] (in humans 40 Hz is considered a typical firing rate

associated with consciousness) [Gol99]. Thus in order to see the trend of first firing

times as a function of the spiking rate of presynaptic neurons, we focus on the interval of

30−100 Hz. We further assume that the number of presynaptic neurons is 2000 (since

only a fraction of the 104 presynaptic neurons will provide input) and the excitatory

to inhibitory ratio of the presynaptic neurons is Ne : Ni = 4 : 1, the ratio found in the

mammalian cortex [BS13]. While we do not claim that these parameter values are exact

across all species, they are biologically plausible values which allow us to examine how

the first spike latency time is affected by underlying parameters in the model.

In the limit of infinitely many channels, m3h and n4 accurately model the fraction

of open channels. Real neurons, on the other hand, only have finitely many channels, so

fluctuations in the number of open channels have an effect on the membrane voltage. The

channel noise model developed by Fox and Lu, which we will use here, is a stochastic

version of the Hodgkin-Huxley system which accounts for fluctuations in the fraction of

open channels. The Fox and Lu system to account for finitely many channels is given

by twelve stochastic differential equations shown in Eqn. 2.1[FL94, GIFSB11]. While

the Fox and Lu system is valid for a large number of channels, it has been shown to be
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a very accurate representation of the Markov chain model even for a small number of

channels [GIFSB11]. In addition to its accurate approximation of the Markov Chain

model, it is also computationally less expensive.

We are interested in understanding the time to first spike and the variability of this

spiking time across trials. A spike occurs when the voltage V (t) crosses some threshold

θ. Hence we define the random variable T as

T = inf{t ≥ 0|V (t)≥ θ} . (3.2)

We consider θ to be a fixed constant of approximately 35mV , although the exact value is

not important since it shifts the spike time by only a fraction of a milisecond. In order to

study typical first firing times, many studies have looked at the expectation of T , denoted

by 〈T 〉, and the trial-to-trial variability (or jitter) of T defined as the standard deviation of

T . These values generally provide useful information when the distribution is not skewed.

However, based on our simulations of Eq. (2.1), the distribution of spike times is heavily

skewed (see Fig. 3.2). For this reason, we choose instead to compare median values as a

better measure of the central tendency of data and to use the interquartile range (IQR)

as a better measure of trial-to-trial variability, where the interquartile range is defined

to be the difference between the first quartile and third quartile of a data set. Median

first spike latencies and IQRs have begun to be used more in biological experiments

[LM11, SSR15], but actual simulations comparing these values to those of means and

standard deviations have, to the best of our knowledge, not been done.

The parameters of Eq. (2.1) that we vary in these simulations are the presynaptic

firing rates, the probability of successful transmission of presynaptic spikes to our

Hodgkin-Huxley neuron, and the number of channels in the neuron. As the number of

channels grows, the dynamics of the stochastic Hodgkin-Huxley neuron converges to
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Figure 3.2: Examples of the distribution of first spiking times obtained from the set of
equations Eq. (2.1) showing positive skewness. Parameters used for low noise plots
(panels (a) and (c)) were NNa = 1800, and NK = 540 while for high noise plots (panels
(b) and (d)), they were NNa = 600, and NK = 180. For low rate plots (panels (a) and
(b)), the parameters for the synaptic input current were λ = 25 Hz and p = 0.10, while
for high rate plots (panels (c) and (d)), the parameters were λ = 100 Hz and p = 0.30.
Panel (e) shows no channel noise with high synaptic input.

that of the deterministic Hodgkin-Huxley model. From the structure of the stochastic

Hodgkin-Huxley model [Eq. (2.1)], it is clear that fewer channels lead to stronger

fluctuations since the magnitude of fluctuations changes as A−1/2. Furthermore,it is a

known fact that if X and Y are two independent Poisson random variables each have rates

λX and λY respectively, then X +Y is a Poisson random variable having rate λX +λY .

Hence in this case, we have Ne independent excitatory presynaptic neurons with each

firing at rate λ, and this is statistically equivalent to having one excitatory presynaptic

neuron firing at rate λNe. To account for the less than certain successful transmission from

the presynaptic neuron, we modify this rate term to be λNe p, where p is the probability of

a successful transmission. Since Ne is a fixed parameter, we can eliminate one parameter
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by considering λp as a single parameter and thus viewing the probability term p as

rescaling the rate. Thus, the two parameters we will look at are the product λp which

we will refer to as the “effective rate,” and the number of channels (NK and NNa) which

we showed can be controlled by the membrane area A. The parameters we use for the

numbers of channels can be found in Table 3.1.

Table 3.1: Membrane area and corresponding number of channels

Membrane Area Number of Channels
(µm2) NNa NK

5 300 90
10 600 180
20 1200 360
30 1800 540

3.3 Results and Discussion

All simulations were based on the system of stochastic differential equations

Eq. (2.1). We used the Euler-Maruyama method [Hig01, Gar88] with time step ∆t = 50µs

and with 2000 presynaptic neurons providing spike train inputs at rate λ. Initial conditions

were given by the resting state of the neuron shifted so that V (0) = 0 mV. The mean

first spike latency is defined as 〈t〉= 1
N ∑

N
i=1 ti, where N is the number of trials (we used

N = 1000) and ti is the time of the first spike for the ith trial. The standard deviation

(or jitter) is defined as J =

√
〈t2〉−〈t〉2 [UOG12, OUPG09, BDB+06]. The median is

defined as t(N
2 )

and the interquartile range is defined as t( 3N
4 )− t(N

4 )
where t( j) is the jth

order statistic.

We first discuss the behavior seen in Fig. 3.2. The histograms shown in Fig. 3.2

are based on 2,000 simulations of Eq. (2.1). The input current into the Hodgkin-Huxley

neuron determines its firing rate. Ignoring the stochasticity of the input current for the

moment, the neuron is in the silent regime (i.e. no firing) for I < 6.27µA/cm2, in a bistable
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regime where the fixed point coexists with a stable limit cycle for 6.27µA/cm2 < I <

9.78µA/cm2, and in a periodic firing regime for I > 9.78µA/cm2. Taking the stochasticity

into account, the average stimulating current Īinput determines the dynamical regime of

the neuron. Following Luccioli et al. [LKT06], the average stimulating current is given

by Īinput = Cλp∆V (Ne−Ni). With the parameters defined earlier, this simplifies to

Īinput = (0.6µA · s/cm2)λp. Therefore, the low input current panels in Fig. 3.2 [panels

(a) and (b)] present a stochastic neuron in the silent regime, and the high input current

[panels (c) and (d)] illustrate a stochastic neuron in the periodic firing regime.

In our model, there are two mechanisms that lead a neuron to fire: the stochastic

synaptic current and the intrinsic channel noise. Therefore, we expect to see some

juxtaposition of the distributions from both sources in the first spike latency distributions

in Fig. 3.2 [WR83, LKT06]. The multipeak distributions in panel (b) (low firing rate

panel) shows this clearly: each peak is primarily due to one or the other of the two firing

mechanisms. Further evidence of the reasoning behind the multipeaks can be observed

in panel (e) in which the channel noise has been eliminated. With the absence of this

extra source of noise, the histogram lacks a multipeaked distribution. The very small

fluctuations in the channel noise lead to a distribution with a very long tail as seen in

panel (a). This tail overlaps with and masks the low synaptic input peak. This behavior is

similar to that illustrated by Luccioli et al. for the low rate behavior [LKT06]. Increases

in the average synaptic current and in the amplitude of intrinsic channel noise lead to

faster first spike latency, which is consistent with the fact that a neuron fires as soon

as a threshold value is reached. The associated shift in the distribution toward a faster

first spike latency and less heavy tails is seen in panels (c) and (d) of Fig. 3.2. As both

of these current increases lead to a shortening of the first spike latency, the multipeaks

tend to merge at the low end and the resulting distributions are smoother than in the low

firing rate cases illustrated in panels (a) and (b). As we will see in the next sections,
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some statistical properties of these distributions can be accurately modeled by a linear

regression depending on the synaptic input rate and the intrinsic channel noise.

Our next goal is to compare the mean with the median and the IQR with the

standard deviation of the distribution of first spike latencies for different channel areas

and effective rates (recall that the effective rate is the quantity λp, where λ is the Poisson

rate of each presynaptic neuron and p is the probability of successfully producing a

postsynaptic response).

3.3.1 Mean/Standard Deviation vs. Median/IQR

As previously stated, the skewness of the data suggests using the median and

IQR to analyze typical first spike latencies and the IQR to study their variability rather

than using the mean and standard deviation. For each of the channel areas in Table 3.1,

we plotted the resulting values of means, medians, IQRs, and standard deviations, see

Fig. 3.3. We then calculated the Pearson Correlation Coefficients r [SJ60] to measure the

strength of linear correlation between the statistics of interest and the effective firing rate,

the results of which are shown in Table 3.2. Recall that values close to 1 (−1) indicate a

very strong positive (negative) linear relationship between two variables.

Table 3.2: Pearson Correlation Coefficients r of the relationship between Effective Rate
and Statistical Measures for various Membrane Areas

Membrane Area Mean Median IQR Standard Deviation
5 -.9376 -.9690 -.9070 -.6959

10 -.9783 -.9764 -.9362 -.6955
20 -.9583 -.9757 -.9515 -.6061
30 -.9659 -.9710 -.9529 -.7335

Since neuronal first spike latency is heavily determined by firing rates of input

neurons [BGB09], we would like to be able to predict the median firing time knowing the

effective rate. For this reason, the Pearson’s Correlation Coefficient gives us a quantitative
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idea about how linear the data is, and thus values close to r =−1 suggest we can closely

estimate that statistical property of the first spike latency. We first note that the mean and

median values are both strongly correlated with the effective rate, with the median first

spike time slightly more correlated with the effective rate. The values of the mean first

spike latency are greater than those of the median first spike latency, which results from

the positive skewness of the data. One naturally expects that when there is an increase

in input from the presynaptic neurons, the postsynaptic neuron should fire sooner. In

fact, that trend is observed in Fig. 3.3, where we show data from simulations when the

membrane area is 10µm2 and 30µm2 as a representative sample of statistical behavior. We

can therefore see that the effective rate can be used as a good predictor for determining

the values of the mean and median first spike latencies. This is a key result of this chapter:

despite the randomness of the presynaptic input and the randomness of the intrinsic

channel noise, a simple linear regression yields high accuracy for predicting a number of

statistical properties of the distribution of first spike latencies for a biologically plausible

range of values.

The results in Table 3.2 suggest that IQR is a better measure for the spread of the

first spike latencies than the standard deviation, and that the effective rate more accurately

predicts the spread of data in terms of IQR compared to the standard deviation because

of the proximity of the correlation coefficient to −1. The reason is that the combination

of the stochastic opening and closing of channels along with unreliable synaptic input

can cause large outliers due to noise being able to drive voltage away from the threshold

thereby delaying the time to first spike. These outliers have a much stronger effect on the

standard deviation than on the IQR. For this reason, the effective rate does a poorer job

estimating the neuronal jitter than it does estimating the IQR as a measure of the spread
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Figure 3.3: Plots of the mean, median, IQR, and standard deviation (STD) of the
first spike latency (FSL) based on results of 1000 simulations of the set of equations
Eq. (2.1) for each value of effective rate for two channel areas (10µm2 and 30µm2). The
plots show that the mean, median, and IQR are modeled exceptionally well by a linear
function, whereas the standard deviation is not.

of the data. We also see that for a fixed channel area, there is much more variability in

the measurements of standard deviation for smaller effective rates, but that the spread

decreases as the effective rate increases. This is due to the fact that when the effective

rate is higher, the postsynaptic neuron receives more input and therefore the voltage drifts

toward the threshold more quickly, thereby reducing the probability of an outlier.

3.3.2 Effect of Channel Number on FSL

We now explore the effect of changing the number of channels on the distribution

of first spike latencies. As a result of Eq. (2.1), increasing the number of channels

reduces the fluctuations in voltage due to the stochastic opening and closing of the gates.

Figure 3.4 shows the median first spike latency as the channel area increases for various

values of the effective rate. For clarity, we do not include every effective rate value used

in the previous section, but we use a sufficiently broad range in order to understand trends
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Figure 3.4: Median first spike latency and IQR for various effective firing rates as a
function of the change in the number of channels in the Hodgkin-Huxley neuron. For
clarity, only a subset of all the effective rates was used, but this subset was chosen to
give a representative sample for a range of effective rates. Lines show best fit linear
regression for various effective rates. Top line to bottom line show best linear fits for
circles, triangles, pluses, and stars respectively.

in the behavior of first spike latency times.

We recall that the number of sodium channels is 60×A where A is the channel

area (in units of µm2), and the number of potassium channels is 18×A. That is, the total

number of channels is directly proportional to the channel area. From the structure of

Eq. (2.1), we know that the Wiener processes are scaled by a factor of N−1/2, where N

is the number of channels. By increasing the channel area, the variance of the Wiener

processes decreases by a factor proportional to N−1 ∝ A−1, and so a larger number of
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channels of a neuron leads to a smaller effect of the stochastic opening and closing of the

gates within the channels.

We first discuss the effect of channel noise on the median first spike latency. From

Fig. 3.4, we see that as the number of channels increases, there is a delay in the median

time to spike as well as an increase in the spread of firing times. Conversely, when there

are fewer channels, the median times until first firing are close to each other regardless

of synaptic input rate. Because there are more excitatory than inhibitory neurons, and

because the extitatory presynaptic neurons provide a net positive voltage increase, there

is a net drift for the postsynaptic membrane voltage to increase from the resting states

towards the firing threshold. The simulations show that the presence of noise helps to

accelerate this voltage increase. Additionally, we note that when the noise is weaker

(i.e., when there is a larger number of channels), the median firing time can nevertheless

be short for strong enough synaptic input. Because there are two sources of stochastic

effects, the channel noise and the synaptic input fluctuations, it follows that when the

channel noise in the neuron is weak, the synaptic input becomes the primary factor for

voltage fluctuations. This effect is observed in Fig. 3.4 where we see larger gaps between

the median first spike latencies for larger membrane areas.

As discussed in the previous section, we find the IQR to be a better measure of

the spread of first spike latency statistics than the standard deviation. For this reason, we

show the IQR instead of the standard deviation in Fig. 3.4. The effects observed for the

median first spike latency are essentially the same as those for the IQR.

3.3.3 Comparison to Subunit Noise Model

An alternative model to incorporate stochasticity into each gating variable is

referred to as the subunit noise model, where each gating variable equation in the original

Hodgkin-Huxley model is perturbed by Gaussian white noise as shown in Eqn. 2.2. This
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set of stochastic differential equations was first proposed by Fox and Lu as a Langevin

equation description for the dynamics of the subunits, and was derived by applying a

system size expansion to the states of populations of subunits [FL94]. Such a system

is represented by the set of stochastic differential equations in Eqn. 2.2. The subunit

noise model has been used extensively to account for fluctuations in the gating variables

and hence in the fraction of open channels [SLYH08, Cas03, JKCK05, OE05, FVPB08].

One reason for its popularity is that it maintains the original structure of the Hodgkin-

Huxley model (with the addition of noise terms). Despite its widespread use, numerical

studies have revealed inaccuracies such as voltage fluctuations that are too weak [Bru09],

firing rates that are too low (and hence mean interspike intervals that are too long), and

overstated information transfer rates [SLN10]. Such discrepancies can be explained as

follows: the quantities m, h, and n represent the fraction of open subunits, whereas the

quantities that influence the membrane potential are the products m3h and n4, the fraction

of open channels. In the limit of infinitely many channels, m3h and n4 correctly model

the fraction of open channels, but for finitely many channels, there is no guarantee that

fluctuations in these terms will model fluctuations in the total fraction of open channels.

In other words, the subunit noise model assumes that
〈
m3h

〉
= 〈m〉3 〈h〉, which is not

correct for a neuron with only finitely many (small number of) channels.

Let us consider a case study of the subunit noise model Eq. (2.2) using an area of

30µm2. The plots of the median, mean, standard deviation, and IQR are shown in Fig. 3.5.

The Pearson correlation coefficients are: mean (-.9781), median (-.9694), standard

deviation (-.9714), and IQR (-.9528). The standard deviation for the subunit noise

model has a much stronger linear correlation with the effective rate λp of presynaptic

neuron firing than the channel noise model. As discussed in [Bru09], the fluctuations in

membrane voltage due to the intrinsic noise are much weaker than those resulting from the

synaptic input from presynaptic neurons. Because the inputs from the presynaptic neurons
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Figure 3.5: Plots of the subunit noise model Eq. (2.2) comparing the median (top
plot), IQR (second plot), mean (third plot), and the standard deviation (bottom plot)
for different values of the effective rates λp when noise perturbs subunit fractions. The
parameter for the area of the neuron is A = 30µm2.

cause the membrane voltage to have a net drift toward the threshold, the probability of

having a first spike time which deviates greatly from the mean spiking time is very small.

Therefore, we expect the values for the mean, median, IQR, and standard deviation to

have strong correlation values, which is observed in Fig. 3.5.

Moreover, for a membrane area A = 30µm2, the subunit noise model typically

has a larger mean, median, and IQR but a smaller standard deviation than the channel

noise model (with the value of the IQR larger than that of the standard deviation). As

pointed out in [SLN10], the subunit noise model has a longer mean spike interval (i.e.
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lower firing rate). For that reason, we expect an overall delay in the time until the first

spike and hence we see an increase in the mean and median first spike latency, and this

delay is observed in our simulations. We also observed that although some trials had

a large first spike latency, they did not deviate as far from the central tendency of the

distribution as they did in the channel noise model. The delay in the mean and median

first spike latency as well as the observation of large first spike latency times which are

relatively closer to the median of the distribution compared to the channel noise model

explains the increase in IQR and the lower value for standard deviation in the former.

Although the subunit noise model maintains the original structure of the Hodgkin-

Huxley neuron model, the subunit noise model and the channel noise model show widely

different behaviors for the standard deviation of first spike latencies for different effective

rates and channel areas. As previous literature has shown [Bru09, SLN10], the channel

noise model maintains high accuracy for predicting the original Markov Chain model

whereas the subunit model does not. Our numerical results imply that the traditional

definition of neuronal jitter (standard deviation) is not an appropriate statistical measure

of first spike latency. The fact that standard deviation is well-predicted in the inaccurate

subunit noise model and poorly predicted in the more accurate Fox and Lu model [Eq.

(4.1)] suggests that the traditional definition of neuronal jitter is ill-suited for describing

variations in the first spike latency.

3.4 Conclusions

In this chapter, we have sought to examine the effects of channel noise on first

spike latency. Because real neurons have finitely many channels, the stochastic opening

and closing of these channels leads to fluctuations in the membrane voltage that are not

accounted for in the deterministic Hodgkin-Huxley model. In order to account for these
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fluctuations, we used the Fox and Lu system size expansion model because (a) it is a

highly accurate approximation to the gold standard Markov Chain, and (b) it is a far

more computationally efficient model than the Markov Chain [FL94, GIFSB11]. We first

looked at statistical descriptions of the first spike latency, and we demonstrated that the

median/IQR were better statistical descriptions of the first spike latency distribution than

the mean/standard deviation. We noted that the distribution of spike times is positively

skewed, which leads to poor predictions of the neuronal jitter (defined as the standard

deviation of the spike latency distribution). Moreover, we established the surprising

result that statistics of the first spike latency distribution could be accurately predicted by

a simple linear regression despite the presence of both intrinsic channel noise and the

randomness of synaptic input from other neurons in the network. Our work suggests that

despite the randomness within the model, accurate measures of parameters of a stochastic

neural system can lead to highly accurate predictions of first spike latencies through a

simple linear function.

We then analyzed the effect of channel noise on the median first spike latency

and on the IQR of first spike latencies. We showed that as the channel number increases,

the effective firing rate becomes the determining factor in the distribution of first spike

latencies. This is due to the fact that increasing the channel number decreases the

amplitude of the fluctuations in the membrane voltage, so the residual fluctuations

in voltage are increasingly due to the randomness of presynaptic neural firing. The

results from our simulations agree with previous literature that channel noise contributes

importantly to spike timing by increasing fluctuations in spike timing but decreasing first

spike latency [VROS03]. An application of such a result is in “stochastic facilitation,”

or the improvement of information processing due to noise. As we previously noted,

we showed that the presence of channel noise in a neuron causes spiking to occur more

quickly. Bi and Poo showed that when the postsynaptic neuron fires within 20ms after the
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presynaptic neuron fires, the synaptic efficacy increases, leading to long-term potentiation

[BP98]. Our results would suggest that the fluctuations of the membrane potential due to

the stochastic opening and closing of membrane channels helps facilitate spike-timing

dependent plasticity.

Lastly, we showed that the standard deviation may be an inappropriate definition

for studying first spike latency variations. To understand why, we compared the channel

noise model to that of a subunit noise model in which the individual gating variables

themselves are perturbed with independent Gaussian white noise. The subunit noise

model was first introduced by Fox and Lu as a simplification of their system size

expansion [FL94]. The subunit noise model is more commonly used due to the fact that

it retains the original structure of the Hodgkin-Huxley model. As we noted earlier, the

subunit noise model assumes that
〈
m3h

〉
= 〈m〉3 〈h〉, which is generally not true when

the system contains finitely many channels. This assumption leads to weaker voltage

fluctuations and lower firing rates [SLN10, Bru09]. Our simulations show that compared

to the channel noise model, the subunit noise model increases the mean and median time

to first spike but decreases the neuronal jitter. The neuronal jitter can be predicted far

more accurately from knowing the effective rate in the subunit noise model than in the

channel noise model. In other words, using standard deviation as a definition for neuronal

jitter is accurate only for the subunit noise model and not for the channel noise model.

However, this may lead to serious errors in model applications because the channel

noise model is much more accurate (closer in replicatng dynamics of the Markov Chain

model) than the subunit noise model for describing neurons with biological channel noise.

For this reason, we suggest that the IQR rather than the standard deviation is a more

appropriate measure of the spread of first spike latencies.

To summarize, the main contributions of this chapter are (a) to demonstrate that

the median and IQR are better statistical measures to describe the first spike latency
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distribution than the mean/standard deviation, (b) to demonstrate that a simple linear

regression is highly accurate for estimating the IQR, mean, and median first spike latency

from knowing only the effective firing rate for different numbers of channels, and (c) to

provide evidence that using standard deviation as a measure of neuronal jitter may be

improperly applied as a result of using the more common subunit noise model despite

its inaccuracy by producing weaker voltage fluctuations than predicted by the Markov

Chain model.

In the next chapter, we will look at the effects of channel noise on the synchro-

nization of a small neural network. Research has shown a strong correlation between

abnormal synchronization and brain disorders including epilepsy, Parkinson’s disease,

Alzheimer’s disease, and schizophrenia. Studying the effects of channel noise on syn-

chronization provides a mathematical framework towards understanding how neurons

regulate synchronization in the presence of noise [US06, HBB07, ACM14].
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Chapter 4

Neural Synchronization in Channel

Noise Models

In the previous section, we were interested in the timing of the first spike and

how channel noise affected that value. The relative timing of neuronal spikes can also

matter for neural responses. In fact, some evidence points to synchronization as a

necessary component of neural networks since it is strongly tied to the implementation

of cognitive processes, whereas abnormal degrees of neuronal synchronization has been

linked to a number of brain disorders such as epilepsy and schizophrenia. Here we

examine the effects of channel noise on the synchronization of small Hodgkin-Huxley

neuronal networks. As a reminder, real neurons have finitely many channels which lead

to fluctuations in the membrane voltage and modify the timing of the spikes, which

may in turn lead to large changes in the degree of synchronization. In this chapter, we

demonstrate that with the addition of channel noise, neurons in the network reach a steady

state synchronization level that depends only on the number of neurons in the network.

The channel noise only affects the time it takes to reach the steady state synchronization

level. In addition, we supply the code used to study synchronization in Appendix C.

46
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4.1 Introduction

Neurons influence each other through excitatory and inhibitory synaptic con-

nections, and as a result, neurons in a network are rhythmically activated and inhibited

through their synaptic connectivity [Buz06]. Most of the brain’s cognitive functions are

based on synchronized interactions of a large number of neurons distributed across dif-

ferent brain areas [vWBD12, Fri05, FA11, SG05, Sin93]. For example, when monkeys

learn categorical information (e.g., how to distinguish between groups of negative and

positive objects), experiments have shown increased neural synchronization between the

prefrontal cortex and the striatum [AM14].

In addition to the cognitive roles of synchronization, abnormal synchroniza-

tion has been linked to a number of brain disorders such as epilepsy, schizophrenia,

Alzheimer’s disease, and Parkinson’s disease [ACM14, HBB07, US06]. For example,

epilepsy has commonly been associated with excessive synchronization of neural popula-

tions [JdCJ+13, US06] whereas schizophrenia has been associated with impaired neural

synchronization [SNN+03, US10]. In combination with cognitive function, it is clear

that the balance between synchronized and asynchronized neural oscillations plays a

pivotal role in healthy brain activity.

In order to model neuronal synchronization, many studies have focused on net-

works of Hodgkin-Huxley neurons. As we’ve previously noted, while the Hodgkin-

Huxley model assumes that there are infinitely many channels so that fluctuations in

the number of open channels remain undetected, real neurons have only finitely many

channels and hence experience intrinsic noise through the stochastic opening and closing

of sodium and potassium protein channels in the neural membrane. This stochasticity

leads to fluctuations in the membrane potential which can alter spike timing of neurons.

We refer to this stochasticity as channel noise, and its role in neural synchronization is
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the focus of this chapter.

In this study, we investigate the synchronization of a small network of noisy

Hodgkin-Huxley neurons. In order to account for perturbations in the Hodgkin-Huxley

model, some studies have used the current noise model (Eqn. 2.2) and added an external

perturbation to the Hodgkin-Huxley equations to assess the role of noise in synchro-

nization [BBL+16, LBB+12, PYT13]. This method, however, lacks justification that it

accurately models the stochastic opening and closing of channels. As an alternative, we

will use the Fox and Lu model (see Eqn. 2.1) to understand how channel noise affects

the synchronicity of neurons in a network.

This chapter is organized as follows: In Sec. 4.2, we present a mathematical

description of the stochastic Hodgkin-Huxley neuron with a synaptic connectivity term.

Then in Sec. 4.3, we analyze how channel noise affects the synchronization of a network

of neurons, and derive a formula to estimate the degree of synchronization based upon

the size of the neural network. We then conclude with some closing remarks.

4.2 Model

To study synchronization of neurons influenced by channel noise, we will again

use the Fox and Lu system size expansion to describe the voltage of each neuron. The

Fox and Lu equations are given by:

CV̇ = Iin j(t)+ Isyn(t)− ḡNay31(V −ENa)

− ḡKx4(V −EK)− ḡL(V −EL)

ẋ = AK(V )x+
1√
NK

SK(V,x)ξK (4.1)

ẏ = ANa(V )y+
1√
NNa

SNa(V,y)ξNa
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where the matrices AK,ANa,SK, and SNa are defined in Eqn. 2.1. We are interested

in a neural network in which the connections between neurons are unidirectional and

the local dynamics are described by the Fox and Lu system size model (Eqn. 4.1). The

Isyn term represents current input from the chemical synapses of other neurons in the

network. Such a term is given by the following set of ordinary differential equations

[DMS94, BBL+16, GR93]:

Isyn =
(Vr−Vi)

ω

N

∑
j=1

εi js j

ṡi =
5(1− si)

1+ exp(−Vi+3
8 )
− si

Here, Vr is the synaptic reversal potential set to 20mV [PYT13], si is the post-synaptic

potential, εi j represents the synaptic coupling strength between the jth presynaptic neuron

and the ith postsynaptic neuron, and ω is the number of presynaptic connections. The

remaining parameter, Iin j, determines whether or not action potentials occur [LKT06].

For small values of Iin j,(Iin j < 6.27µA/cm2), the deterministic Hodgkin-Huxley model

resides in a silent regime in that action potentials are not generated. When the injected

current is greater than 9.78µA/cm2, the deterministic Hodgkin-Huxley model enters the

repetitive firing regime. Between these values, known as the excitable region, the model

shows bistability between silence and repetitive firing.

In this chapter, we are interested in how channel noise affects the synchronicity

of neuron spiking at different firing rates. In order to study neural synchronicity, we need

a quantitative measure of synchronization.
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4.2.1 Kuramoto Order Parameter

Recall that we previously discussed that a neuron starts in a resting state, proceeds

through an action potential, and returns to rest. The important aspect of this process is

that the neuron proceeds through a periodic orbit to return to the state it once was in. In

this view, we can think of the neuron as a phase oscillator. In a phase oscillator model,

we view the state of the system as going around a simple loop, in this case the unit circle.

The phase, denoted by θ, exists in the interval [0,2π]. We shall consider the phase to

be θ(t) = 2πm+2π
t−tm

tm+1−tm
where m enumerates the spikes and tm is the time of the mth

spike. Note that this equation means that the phase starts at 0 when the first spike occurs,

and the phase increases linearly until the next spike occurs at θ = 2π.

A simple way to describe the unit circle is to embed it into the complex plane. If a

complex number is on the unit circle, then it can be expressed as eiθ where i =
√
−1 and

θ is the angle between the positive real axis and the vector from the origin to the point on

the unit circle. We define the order parameters simply by averaging the complex numbers

that represent the phase of the oscillators on the unit circle. For N phase oscillators with

phases θ j, j = 1,2, . . . ,N, the position of each oscillator is given by eiθ j . The average of

these positions is given by the complex number z = 1
N ∑

N
j=1 eiθ j .

Consider the simple case of N = 2. We’d like to consider mapping the complex

number z into a value on [0,1] so that 0 represents neurons completely asynchronous and

1 represents completely synchronized. If two neurons are completely synchronized, their

positions on the unit circle would be the same, and hence the length of the vector that

points from the origin to the average location of the points on the unit circle would be 1.

Likewise, if they are completely asynchronous, then they are on exact opposite sides of

the unit circle, and the average length of the vector would be 0.

Thus, the appropriate mapping we will use is given by the following order

parameter:
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R(t) = |z|=

∣∣∣∣∣ 1
N

N

∑
j=1

exp(iθ j)

∣∣∣∣∣ (4.2)

where θ j(t) is the phase of the jth neuron defined by 2πm+ 2π
t−t j,m

t j,m+1−t j,m
[ABV+05,

BBL+16]. In this equation, t j,m denotes the time when neuron j emits spike m (m =

0,1 · · ·). Eqn. 4.2 is designed in such a way that the first spike begins at θ = 0 and

the phase increases linearly until the next spike occurs at θ = 2π. If all neurons are

completely synchronized, then θ1(t) = · · ·= θN(t), and hence: R =
∣∣∣ 1

N ∑
N
j=1 exp(iθ j)

∣∣∣=∣∣ 1
N N exp(iθ1)

∣∣ = |exp(iθ1)| = 1. Therefore, as discussed above, R values are closer to

unity when neurons have more synchronized spike times.

4.3 Results

All simulations were based on the system of stochastic differential equations Eq.

4.1. We used the Euler-Maruyama method [Hig01, Gar88] with time step ∆t = 10µs.

Unless noted otherwise, initially each neuron in the network was assumed to be in the

resting state.

4.3.1 Frequency-Current Relationship

To understand how the number of channels affects the firing rate of a Hodgkin-

Huxley neuron, we analyze the relationship between firing frequency of a stochastic

neuron and the input current. In the squid axon modeled by Hodgkin and Huxley,

the ratio of sodium channel density to potassium channel density is approximately

60µm−2 : 18µm−2, and we use these values for our simulations [FM85]. Defining A to be

the membrane area, the total number of sodium channels is given by 60×A and the total

number of potassium channels is 18×A. From Eqn. 4.1, the parameter A controls the
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Figure 4.1: Relationship between input current and firing frequency for varying mem-
brane areas. Solid lines show the mean firing frequency averaged over 50 simulations.
Shaded areas show one standard deviation of firing frequency from the mean.

magnitude of fluctuations from the channel noise as A−1/2. Therefore, smaller membrane

area results in larger fluctuation magnitude whereas larger membrane area results in

smaller fluctuation magnitude. The resulting firing frequencies as a function of input

current for different membrane areas are given in Figure 4.1.

The results show that in the absence of input current, the size of the membrane

area is what primarily determines the rate of spontaneous firing. As the input current

increases, the firing rates for all different areas converge towards each other and the

firing rate becomes independent of the membrane area. With an increase in current, the

neurons enter the repetitive firing regime so fluctuations in the membrane voltages should

produce only minor changes in the frequency of spikes. Therefore, channel noise has a

larger effect on the firing rate at low input currents in agreement with previous literature

[SW79, CD83, SD93].
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Figure 4.2: Schematic drawing showing three unilaterally connected excitatory neurons
with coupling strengths ε13,ε21, and ε32

4.3.2 Channel Number Effect on Synchronization

To understand how the number of channels affects the synchronicity of neu-

rons, we consider a simple three member neural network with unidirectional excitatory

connections and local dynamics given by Eqn 4.1. Such a system is shown in Figure

4.2. In this example, we assume the connections to have identical coupling constants

ε13 = ε21 = ε32 = 0.10 and zero otherwise.

Because the neurons all start with the same initial condition, we have that R(0)= 1

regardless of the value of the membrane area, i.e. all the neurons begin completely

synchronized. However, as time passes, the degree of synchronization changes. Fig.

4.3 shows simulations of the three neuron neural network with varying membrane area.

Although the degree of synchronization for smaller area changes more rapidly than in the

case of larger membrane area, the degree of synchronization appears to reach the same

steady state value and hover around this value. From this simulation, the channel area

only affects the time to reach the steady state synchronization value but not the steady

state synchronization value itself. Since changing membrane area changes the firing rate

(see Fig. 4.1), this suggests that there is an inverse relationship between the firing rate

and time it takes to reach a steady state synchronization level (and consequently, a direct
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Figure 4.3: Simulations of Eqn. 4.1 using the system shown in Fig. 4.2 for varying
membrane areas. Bold lines represent the mean after 50 simulations while shaded areas
show one standard deviation from the mean. Injected current was 10.0µA/cm2.

relationship between membrane area and time to reach steady state.)

4.3.3 Comparison to Independent Poisson Neurons

We wish to compare the observed steady state value in Fig. 4.3 with the predicted

value of Eqn. 4.2 when the neurons are completely independent Poisson neurons. We

will then extend this result to a larger network afterwards. In large network modeling,

the distribution of spike times is highly irregular, and modeling neurons in the network

as a Poisson process is widely used [Zad96, GKNP14, Izh03]. As shown in Figure 4.1,

for a given input current, channel noise affects the firing rate of a neuron. Therefore, we

can understand the relationship between channel noise and synchronization by studying

the relationship between synchronization and firing rate.

To compare the steady state synchronization level observed in simulations with

that of independent Poisson neurons, our aim is to calculate the expectation of our order

parameter R(t), which we denote as 〈R(t)〉. For simplicity, let us initially assume we

have two neurons N1 and N2 whose spike times follow a Poisson distribution with rate

parameter λ, and
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〈R(t)〉= 〈
√

R(t)2〉 =
1
2
〈
√
|eiθ1(t)+ eiθ2(t)|2〉

=
1
2
〈
√

2+2cos(θ1(t)−θ2(t))〉

To compute this expectation, we are required to find the joint distribution of θ1

and θ2. Since we are assuming the Poisson neurons are independent, we only need to

find the density function of θ1.

From the definition of θ, only the random term t−tm
tm+1−tm

has any bearing on the

order parameter. Therefore to understand the distribution of θ, we only need to understand

the distribution of t−tm
tm+1−tm

. Since we observe some steady state of synchronization in the

simulations after time passes, consider a time t where t is large enough so that at least

one spike has occurred before time t. Let X be a random variable describing the length

of time between our time t and the time of the most recent spike before time t. Moreover,

let Y be the length of time between time t and the next spike after time t. Notice that

the ratio X
X+Y corresponds directly with the t−tm

tm+1−tm
term in the definition of θ. We need

to add one constraint to X . Because X is the length of time between t and the previous

spike, the maximum value X can take is t (otherwise a spike had to occur before time

0, which can not happen). Therefore, t−tm
tm+1−tm

can be modeled by min{X ,t}
min{X ,t}+Y . Since the

spike times of the neurons are being treated as Poisson processes, the wait time between

spikes is an exponential distribution with rate parameter λ. Therefore, we have that Y has

an exponential distribution with rate parameter λ, X also has an exponential distribution

with rate parameter λ, and X and Y are independent of each other.

Let us employ a small trick to simplify matters. Exponential distributions have

the scaling property, which means that if X has an exponential distribution with rate λ,

then X has the same distribution as λ−1ξ where ξ is an exponential random variable with
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rate 1. Thus, Y also follows the distribution λ−1η where η is an exponential random

variable with rate 1. Putting everything together, we have:

t− tm
tm+1− tm

∼ min{X , t}
min{X , t}+Y

=
min

{
λ−1ξ, t

}
min{λ−1ξ, t}+λ−1η

=
min{ξ,λt}

min{ξ,λt}+η

Assuming λt is large enough, we can approximate the distribution of θ to be that

of ξ

ξ+η
where ξ and η are independent exponential random variables with rate parameter

1. To find the density function of θ, we only need to determine the density function for

ξ

ξ+η
. This is known to be a uniform distribution, but we will provide a short proof for

the purpose of completeness [S+02]. To calculate this density function, we will find the

cumulative distribution function and take its derivative. Note that 0 < ξ

ξ+η
< 1, so let us

pick an arbitrary a ∈ (0,1) to use for calculating the distribution function. We use fξ(x)

to mean the density function of ξ in the derivation. We have:

P
(

ξ

ξ+η
≤ a
)

= P
(

ξ+η

ξ
≥ 1

a

)
= P

(
η≥ ξ

(
1
a
−1
))

=
∫

∞

0
P
(

η≥ s
(

1
a
−1
))

fξ(s)ds

=
∫

∞

0
e−s( 1

a−1)e−sds

=
∫

∞

0
e−

s
a ds

= a

This means that ξ

ξ+η
has the exact same distribution as a uniform random variable
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on (0,1) as expected. Consequently, the density function of θ is just 1. Returning to our

calculation of the expectation of synchronization:

〈R(t)〉 =
1
2
〈
√

2+2cos(θ1(t)−θ2(t))〉

=
1
2

∫ 1

0

∫ 1

0

√
2+2cos(2πx1−2πx2)dx1dx2 (4.3)

This double integral can be solved exactly by utilizing a simple substitution and

recognizing that we are integrating over one period of the cosine function,

〈R(t)〉 =
1
2

∫ 1

0

∫ 1

0

√
2+2cos(2πx1−2πx2)dx1dx2

=
1

8π2

∫ 2π

0

∫ 2π

0

√
2+2cos(x1− x2)dx1dx2

=
1

4π

∫ 2π

0

√
2+2cos(x1)dx1

=
2
π

Remarkably, we have shown that in the long-term limit of weakly coupled neurons,

the expected steady state synchronization level has no dependence on the firing rate

(membrane area) of the neurons and will confirm, as already implicit, that it only depends

on the number of neurons in the network. In order to obtain a solution for the two-

neural-network system, we needed to make a few assumptions: (a) the neurons in the

network were weakly coupled to approximate them as independent of each other, and

(b) the quantity λt is sufficiently large. Expanding on the second point, recall that we

approximated min{ξ,λt} by ξ. Since ξ is exponentially distributed with rate parameter

1, then P(ξ≤ λt) = 1− exp(−λt). Because of the exponential decay dependence on λt,

this means that λt does not have to be very large before one can approximate min{ξ,λt}
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by ξ with high probability. With the application to neurons, this implies that when the

firing rate of neurons is higher (small membrane area), we should expect less time to

reach a steady state synchronization level. Conversely, with a lower firing rate (large

membrane area), we should expect a longer time to reach steady state synchronization.

The high and low firing rates correspond with lower and higher channel noise magnitude

respectively. Therefore, this derivation provides justification for the observation in Fig.

4.3 that larger channel noise magnitude in neurons results in faster desynchronization.

To expand the result above to a larger neuron network, note that the only place

where changes will occur is in the term under the radical. That term results from

simplifying
√

R(t)2, and a formula for 〈R(t)〉 as follows:

〈R(t)〉= 1
N

∫ 1

0

√√√√√N +
N

∑
j,k=1
j 6=k

cos
(
2πx j−2πxk

)
dx1 . . .dxN (4.4)

Unlike the two neural network case, higher dimensional cases of Eqn. 4.4 must

be evaluated numerically. Numerical estimations for the steady state synchronization

predicted by Eqn. 4.4 for different numbers of neurons N can be found in Table 4.1

Table 4.1: Steady state synchronization values estimated from Monte Carlo simulations
of Eqn. 4.4

Number of Neurons (N) Steady State Synchronization Value
2 0.636
3 0.525
4 0.450

The comparison between the values obtained above and numerical simulations is

shown in Fig. 4.4. As shown in Fig. 4.4, our estimation of the steady state synchronization

values as determined by Eqn. 4.4 is quite accurate, demonstrating that in the presence

of channel noise, the synchronization of our neural network behaves just as that of

independent Poisson neurons.
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Figure 4.4: Simulations showing synchronization parameter behavior for neuron net-
works of 2,3, and 4 neurons. Straight lines show estimated steady state synchronization
values as determined by Eqn. 4.4. Each neuron in the network had an area of 40µm2 and
an injected current of 8.0µA/cm2. Bold lines represent the mean after 100 simulations
while shaded areas show one standard deviation from the mean.

It is also worth noting that based on our results, the connectivity of neurons in

the network has no bearing on the steady state synchronization as long as the coupling

is weak. To emphasize, the importance of synchronization of the network is not on the

connectivity of neurons, or the initial states of the neurons, but only in the number of

neurons involved in the network. The role of noise is to help change the rate at which

the network reaches a steady state synchronization level but does not appear to change

the level itself. To generalize this result a bit further, we will consider two additional

cases. We will examine what happens if we change the connectivity strengths so that the

connections are no longer equal, and we will change the areas so each one is affected by

a different magnitude of channel noise. These results are shown in Fig. 4.5.

For the case of asymmetric coupling constants, we considered the network in

Fig. 4.2 with all neurons having a membrane area of 40µm2 and coupling constants of

ε21 = 10,ε32 = 10−1, and ε13 = 10−3. For the case of various channel noise magnitudes,

we considered all synaptic connections to be 0.10, and each neurons 1, 2, and 3 had

membrane area of 10µm2, 40µm2, and 90µm2 respectively. In both cases, the expected
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Figure 4.5: Simulations of the network shown in Fig. 4.2 to control for symmetrical
parameters. For the coupling constant plot, we use the parameters ε21 = 10,ε32 = 10−1,
and ε13 = 10−3 with each neuron having a membrane area of 40µm2. For the membrane
area plot, we considered each neuron having a different membrane area with either
10µm2, 40µm2, and 90µm2. All coupling constants for the different membrane area
simulation were set to 0.10.
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steady state deviation again approaches that of independent Poisson neurons, and this

was observed over a wide range of value. This result suggests that the resulting formula

for the expected steady state synchronization obtained for independent Poisson neurons

is applicable not just to Poisson neurons or a symmetric Hodgkin-Huxley network, but

generalizes to Hodgkin-Huxley networks which have asymmetric coupling and differing

membrane areas.

4.3.4 Large Membrane Area

In the derivation of our formula, we have approximated the spiking pattern as a

Poisson distribution due to the irregularity of spike times in neural networks. One might

expect that if the area of the neurons is very large so that the magnitude of fluctuations

is very small, and hence the dynamics of the stochastic model align very closely with

the deterministic behavior, then the synchronization would not reach the steady state but

instead retain a synchronization value close to 1 (i.e. completely synchronized) due to

how close the stochastic and deterministic dynamics are and the fact that the neurons

are coupled. It feels as if one could ignore the fluctuations due to channel noise when

the number of channels is extraordinarily large. Surprisingly, the answer to this is no.

To examine this, we have considered an area of 300µm2 (equivalent to 18,000 sodium

channels and 5,400 potassium channels) whose results are shown in Fig. 4.6.

Despite the similarity of the the stochastic and deterministic dynamics (Fig. 4.6),

there are slight mismatches in spike timing due to the stochasticity of the Fox and Lu

model. These slight mismatches accumulate over a lengthy period of time, and hence

the order parameter decreases over time, albeit slowly. Even with the magnitude of

the fluctuations from the channel noise being very small so that the spike timing is

reasonably predictable, the degree of synchronization still decreases to the steady state

value predicted by Eqn. 4.4. Our simulations and results suggest that channel noise
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Figure 4.6: (a) Comparison of membrane voltages for the deterministic Hodgkin-
Huxley model and Fox and Lu model with membrane area of 300µm2. Both plots
were conducted with input current of 10.0µA/cm2. Membrane voltage for the Hodgkin-
Huxley model was offset by 10 mV for clarity. (b) Order parameter for the system shown
in Fig. 4.2 where all three neurons are either deterministic or stochastic with an area of
300µm2. The bold line shows the mean order parameter value over 50 realizations, and
the shaded area shows one standard deviation from the mean.

should be accounted for in the modeling of real neuron synchronization regardless of the

magnitude of fluctuations.

4.3.5 Current Noise Model

We next model the network shown in Fig. 4.2 where each neuron is described by

the current noise dynamical equations (Eqn. 2.2). The input current in this equation can

be thought of as two components: a deterministic input current and a noisy input. Since

there is no noise intensity term, one may not expect the steady state synchronization of

the current noise model, if there even is one, to match the steady state synchronization

for the Fox and Lu channel noise model. While a steady state synchronization value

appears to exist as shown in Fig. 4.7, it is vastly greater than the synchronization value

predicted by the Fox and Lu channel noise model. In addition, the time to reach the steady

state synchronization is extraordinarily fast relative to the channel noise synchronization.
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Figure 4.7: Plots of the synchronization parameter as a function of time for the network
shown in Fig. 4.2 under different conditions. The three conditions shown are where
each neuron is modeled by the current noise model with Iin j = 6µA/cm2 and 10µA/cm2,
and the channel noise model with area 90µm2 and injected current of 10µA/cm2. Solid
lines show the mean synchronization over 200 simulations, and shaded regions represent
one standard deviation from the mean.

Despite the similarities of the interspike interval distributions of the current noise model

and Markov Chain model, the synchronization behavior is significantly different. Our

simulations suggest that while the current noise model may be useful measures for some

neural properties such as interspike interval [Row07], it is not an accurate measure for

studying synchronization properties of stochastic Hodgkin Huxley neurons.

4.3.6 Subunit Noise Model and Expected Time to Reach Steady State

In this section, we compare the synchronization results of using the subunit

noise model compared to that obtained by the Fox and Lu channel noise model. In

the channel noise model, a system size expansion is applied to the dynamics of the

channels. Alternatively, one can apply a system size expansion to the dynamics of the

subunits which leads to the system of equations given by Eqn. 2.2. Here, the dynamical

equations closely resemble those of the deterministic Hodgkin Huxley model. In the
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Figure 4.8: (Top) Order parameter dynamics for the subunit noise model as a function
of time for changing membrane area. Solid lines show the mean order parameter over 50
simulations where shaded regions show one standard deviation from the mean. (Bottom)
Comparison of the order parameter dynamics for channel noise and subunit noise models
for different membrane areas. Lines show that mean dynamics over 50 realizations.

limit of infinitely many channels, both the subunit noise model and channel noise model

dynamics converge to that of the Hodgkin-Huxley model. Despite inaccuracies in the

spike timing exhibited by the subunit noise model we discussed earlier [Bru09, SLN10],

it remains possible that the order parameter for a network of neurons represented by the

subunit noise model reaches the same steady state value predicted by Eqn. 4.4 that was

calculated for the channel noise model. To test this, we simulated the network in Fig. 4.2

where each neuron is modeled by the stochastic differential equations in Eqn. 2.2. The

results of these simulations are shown in Fig. 4.8.
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For the channel noise model, the expected steady state synchronization for the

three neuron network was calculated to be 0.525 based on Eqn. 4.4. The subunit noise

model, despite the differences in spike timing, remarkably reaches the same steady

state synchronization level as the channel noise model regardless of the magnitude of

fluctuations (dictated by the membrane area). In other words, Eqn. 4.4 is valid not just

for the channel noise model but the subunit noise model as well. However, Eqn. 4.4

only predicts the value that the long-term synchronization reaches, and tells nothing

about the time it takes to reach that steady state value. As shown in Fig. 4.8, when the

fluctuation magnitude is large (i.e. smaller membrane area), the time to reach the steady

state synchronization is similar between both subunit and channel noise models. As the

membrane area grows larger, it takes the channel noise model significantly more time

to reach the steady state synchronization level, even though both models will eventually

reach that level. A more detailed analysis of the time to reach the steady state can be seen

in Fig. 4.9

For these simulations, we consider the time to reach the steady state when our

order parameter is within 0.02 of the value calculated by Eqn. 4.4. Most notably, the time

to reach the steady state increases with increasing membrane area for both the subunit

and channel noise models but at substantially different rates. Therefore in both cases,

the stochastic order parameter dynamics converge to the deterministic order parameter

dynamics in the limit of infinitely many channels. The rate of convergence is what is

different between these two models. Based on previous literature, the subunit noise model

has lower firing rates compared to the Markov Chain model, and hence the relative timing

in spiking across several neurons is much further apart, and hence the neurons become

desynchronized much more quickly, a notion confirmed by Fig. 4.9 [SLN10]. It also

worth noting that these lower firing rates persists even as the number of channels grows

very large which helps to explain why the time to reach the steady state synchronization
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Figure 4.9: Plots comparing the time to reach the steady state synchronization value
(defined as within 0.02 of the value calculated by Eqn. 4.4) for both the subunit and
channel noise models. The subplot shows a zoomed version of the subunit noise model
plot. Error bars indicate one standard deviation away from the mean.

value is much faster than the Fox and Lu model, even when the number of channels is

very large [ZJ04, Bru09].

4.4 Conclusion

In this chapter, we have sought to examine the effects of channel noise on

neural network synchronization. Because real neurons have finitely many channels, the

stochastic opening and closing of these channels leads to fluctuations in the membrane

voltage that are not accounted for in the deterministic Hodgkin-Huxley model. In order

to account for these fluctuations, we used the Fox and Lu system size expansion model

because (a) it is a highly accurate approximation to the gold standard (but computationally

expensive) Markov Chain model, and (b) it is a far more computationally efficient model

than the Markov Chain model [FL94, GIFSB11]. We first looked at the relationship
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between firing frequency and input current in the presence of different magnitudes of

channel noise. These simulations showed that channel noise had a larger effect on the

firing rate in the absence of input current, but the effect was weakened as input current

increased. We then looked at numerical simulations to qualitatively describe the effect of

channel noise on neural network synchronization. We observed in Fig. 4.3 that (a) the

neural networks hovered around a steady state synchronization level after some time, and

(b) that increasing channel noise shortened the time it took to reach that synchronization

level. In addition, we were able to derive a formula based on independent Poisson neurons

to accurately estimate the long term expected steady state synchronization level. The

key result is that even with a tiny amount of channel noise in coupled Hodgkin-Huxley

equations, the steady state synchronization behaves identically to independent Poisson

neurons. In addition, the derivation required λt to be large where λ is the firing rate.

This requirement illustrates two features: that (a) as firing rate decreases (i.e. number of

channels increases), the time to reach the steady state synchronization level increases,

and (b) as firing rate increases, the steady state synchronization is reached faster. This

observation was confirmed by the simulations shown in Fig. 4.3. Our work suggests that

despite the randomness within the model, channel noise causes neural networks to reach

a steady state level of synchronization, and the steady state value only depends on the

number of neurons in the network as suggested by Fig. 4.4.

We next considered two cases, one where the coupling constants were all different

and one of them was much stronger than the others, and one where the membrane areas

of each neuron were different but the coupling constants were the same. In both of these

cases, we observed the same behavior of the synchronization level reaching the same

value as predicted by independent Poisson neurons. We then considered the network in

Fig. 4.2 where the membrane area was very large for each neuron, and each neuron was in

the repetitive firing regime. The purpose of doing this was to observe the synchronization
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behavior when the stochastic dynamics are very close to the deterministic dynamics.

Even when the dynamics are extremely similar, the small amount of channel noise causes

a big change in the degree of synchronization. While three coupled Hodgkin-Huxley

neurons (without noise) remain completely synchronized, the small amount of channel

noise causes them to desynchronize as observed in Fig. 4.6. The reason for this is that the

small variation in the timing of the spikes causes the phases of the neurons to gradually

drift apart.

We then considered two alternative models to account for fluctuations in the

membrane voltage due to stochastic ion fluctuations: the current noise model and the

subunit noise model. As noted by Goldwyn et al [GSB11], the subunit noise model

does two things: understates the variance of the fraction of open sodium channels and

overstates the variance in the fraction of open potassium channels during neuronal spiking.

Because of the increase in variance in the fraction of open potassium channels, the timing

between spikes can vary much more than the Fox and Lu model, and as previously noted,

the subunit noise model can also miss spikes that the Markov Chain model produces. The

combination of these factors leads to spike timing being much less regular, and hence

there is a faster decrease in the degree of neuronal synchronization.

Finally, we showed that there seems to be an approximately linear relationship

between the membrane area and the expected time to reach the steady state synchro-

nization level. This result shows that in the limit of infinitely many channels, the steady

state synchronization we expect to reach from Eqn. 4.4 is never reached. This is in

agreement with the simulation shown in Fig. 4.6 where as the channel number grows to

infinity, the stochastic dynamics converge to the deterministic dynamics, and the order

parameter doesn’t change for all time. However, for any finite number of channels, the

simulation suggests that the expected steady state will be reached eventually. Ultimately,

our work in this chapter strongly supports the notion that valuable insight can be gained
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by incorporating channel noise in the study of neural synchronization. In future work,

we hope to compare our results obtained for the Fox and Lu model to other stochastic

neuron models used to simulate channel noise.
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Chapter 5

Heteroclinics: A Model For Cognition

Much of the work done up to this point has been at the level of small neural

networks. One of the ultimate goals of computational neuroscience is to relate the

randomness observed in neural networks to actual cognitive processes. In general, this

is quite difficult to do, but some theoretical framework has been proposed as a possi-

ble explanation for experimental observations. The underlying guiding principle for

modeling cognition is called winnerless competition, a system described by a dynam-

ical set of equations in which each interacting unit or state in the system becomes a

“winner” for a temporary time interval. While we do not claim this model is absolute

for describing cognitive behavior, we have taken some initial steps to understand how

noise affects winnerless competition. We will first begin with biological motivation for

using winnerless competition as a model for neuroscience, followed by mathematical

definitions of structures we will use to study winnerless competition, and then study how

one-dimensional noise (e.g. environmental noise such as temperature fluctuations) affects

winnerless competition compared to four-dimensional noise (e.g. fluctuations as a result

of neurons being in different network environments) for a set of dynamical equations

which gives rise to winnerless competition.

70
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5.1 Biological Motivation

Many kinds of mental activities such as perception and cognition are sequential

in nature in terms of information processing[RKS03, ZSR+10]. Sensory signals from

the environment are processed through the activation of specific groups of neurons, and

how these neurons encode information is dependent upon both the quality and quantity

of the stimulus. After the neurons are activated, neural encoding has been observed

to occur in a sequential pattern. For example, in [AKR08, JFS+07], it was shown that

by using a Hidden Markov Model, an ensemble of neurons in the rat gustatory cortex

could be categorized into states where each state represents some firing pattern of the

neurons composing the ensemble. Surprisingly, when a specific stimulus was introduced,

the ensemble went through a sequence of various states, and although the time scales

of switching between these states differed from trial-to-trial, the sequence was always

preserved. Figure 5.1 shows the result of this experiment.

Consequently, this experimental evidence along with others [JFS+07, BKH+03,

LSF+01] has led to the recognition that nonlinear dynamics plays a key role in quali-

tatively modeling cognitive activities including decision making, attention, and work-

ing memory [Fri97, RHVA08, RHL08, RTV13, BR09]. Thus, some features that may

possibly be incorporated into a model of cognitive behavior should involve these bio-

logical features: 1) a sequential switching between states with fast transitions between

them, and 2) this sequential switching should occur regardless of the initial condi-

tions of the dynamical model (robustness). The sequential switching has been called

“winnerless competition” and has also been used as a model for cognitive behavior

[RHVA08, RMSB10, RVTA14]. A stable heteroclinic channel is a mathematical object

that utilizes these features for modeling a dynamical system that undergoes transitions

between various states [Fri97, RHL08, AZR04].
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Figure 5.1: Coherent state sequences in Gustatory Cortex (GC) ensembles. (A) Repre-
sentative single trials of the response of one GC ensemble to each basic taste stimulus
(top) reveal simultaneous changes in firing rates in several neurons. Each tick mark
represents an action potential, and each row is a different simultaneously recorded
neuron. Overlaying the population raster plots is the HMM output: black continuous
lines show the probability of each state occuring as a function of time (x axis), and
shaded regions are periods during which one particular state (each color represents a
specific state) exceeds 0.8 likelihood (horizontal dashed line). In nonshaded periods, no
state was dominant. (B) Four more trials of the response of the same ensemble to each
taste, showing reliability of state sequence and trial-to-trial variability of transition time.
Numbers within each colored region label the state number. (C) Histograms showing
firing rates of each neuron (open horizontal bars) in each state for each taste. Each
box summarizes the firing patterns of the neurons in each state for the above taste; the
number of the state is listed above. [Scale bars (below each shaded panel) show spikes
per sec; y axis shows neurons numbered from 1 to 10.] (Figure, and adapted caption,
used with permission from [JFS+07])
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5.2 Mathematical Description

We will define a heteroclinic cycle in terms of a heteroclinic sequence. Formally,

a heteroclinic sequence of a continuous time dynamical system ẋ = f (x) is the union of a

sequence of finitely many fixed points {Q1, · · · ,Qn} and a set of trajectories connecting

them. A heteroclinic sequence occurs when Q1 is a local source, Qn is a local sink, and

all other fixed points are saddles. The trajectory connecting the jth fixed point to the kth

we denote by γ jk. Thus the union of both the fixed points and the trajectories connecting

them, Γ ≡
⋃n

k=1
(
Qk∪ γk,k+1

)
, is defined to be the heteroclinic sequence. This union

is denoted as a heteroclinic cycle when the sequence is closed off, i.e. there exists a

trajectory connecting the first and last fixed point in the sequence, thereby requiring all

fixed points to be saddles.

5.3 The Model

Heteroclinic cycles generally arise in a limited number of dynamical systems

[Kru97], and this fact has been exploited outside of neural networks for the design and

fabrication of very sensitive sensor devices that operate at low power [BGP00, Pal03,

PILK12]. One particular interesting problem worth studying is whether or not noise

can cause trajectories to reach saddle points previously unattainable in a deterministic

dynamical system. This is an important question as it provides insight into the robustness

of heteroclinic cycles to biological sources of noise. The sample model of the heteroclinic

system we will look at can be seen pictorially in Fig. 5.2.

In order to actually write an equation from Fig. 5.2, we use the following result

from Hirsch as the basis for the model [Hir82, Hir85, Hir88]:

Suppose the system ẋi = xiMi(x), x ∈ Rn
+ = {x ∈ Rn|xi > 0 for each i} satisfies

the following:
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Figure 5.2: Schematic of a four-dimensional heteroclinic system in the positive R4

cone with two heteroclinic cycles sharing an edge (γ12). One cycle is formed by the
fixed points Q1,Q2, and Q3 (denoted as Q3 cycle) while the other is formed by Q1,Q2,
and Q4 (denoted as Q4 cycle). In the figure, Q2 acts as a decision point and the arrows
show the direction of flow.
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1. ∂Mi
∂x j

< 0

2. Mi(0)> 0

3. Mi(x)< 0 for |x| sufficiently large

Then there exists an invariant hypersurface Σ⊂ Rn
+ such that:

1. Σ attracts every point in Rn
+\{0}

2. Each line in K = [0,∞)n ⊂ Rn through the origin meets Σ at a unique point.

3. Σ is homeomorphic to the standard (n− 1)-dimensional unit simplex ∆n−1 =

{xi : xi ≥ 0,∑n
i=1 xi = 1}

Thus, we look for an equation of the form ẋi = xiMi(x) which satisfies the

conditions of Hirsch so that we may use the edges of the hypersurface as our heteroclinic

cycle. One such example is the following:

ẋ1 =
(
x1
(
1− x2

1− x2
2− x2

3− x2
4
)
− c21x1x2

2 + e31x1x2
3 + e41x1x2

4
)

ẋ2 =
(
x2
(
1− x2

1− x2
2− x2

3− x2
4
)
+ e12x2x2

1− c32x2x2
3− c42x2x2

4
)

ẋ3 =
(
x3
(
1− x2

1− x2
2− x2

3− x2
4
)
− c13x3x2

1 + e23x3x2
2− c43x3x2

4
)

ẋ4 =
(
x4
(
1− x2

1− x2
2− x2

3− x2
4
)
− c14x4x2

1 + e24x4x2
2− c34x4x2

3
)

(5.1)

with ci j,ei j > 0 for all i and j. In general, if the saddle value defined as ci j/e ji is

greater than unity at each fixed point, then the cycle is attracting. Many proofs involving

stochastic models which are similar in structure to Equation 5.1 require every interaction

parameter to be greater than 0 (see [MB12, ZY09] for examples). In order to study

fluctuations on Equation 5.1, we perturb the intrinsic growth rates of the activity levels
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of each interacting unit by additive white noise to model how units interact with the

environment [SFV03]. Thus, Equation 5.1 with noise becomes:

ẋ1 =
(
x1
(
1− x2

1− x2
2− x2

3− x2
4
)
− c21x1x2

2 + e31x1x2
3 + e41x1x2

4
)
+σ1x1Ẇt

ẋ2 =
(
x2
(
1− x2

1− x2
2− x2

3− x2
4
)
+ e12x2x2

1− c32x2x2
3− c42x2x2

4
)
+σ2x2Ẇt

ẋ3 =
(
x3
(
1− x2

1− x2
2− x2

3− x2
4
)
− c13x3x2

1 + e23x3x2
2− c43x3x2

4
)
+σ3x3Ẇt

ẋ4 =
(
x4
(
1− x2

1− x2
2− x2

3− x2
4
)
− c14x4x2

1 + e24x4x2
2− c34x4x2

3
)
+σ4x4Ẇt

(5.2)

where each σi represents the strength of noise. Due to the symmetry of white noise, we

can assume σi > 0 for all i. As in many biological models, only non-negative solutions

are physically relevant. Moreover, Eqn. 5.2 admits several interesting properties with

proofs found in Appendix B provided the following two properties are satisfied (referred

to as the hypothesis):

1. σi > 0 for each i

2. For all i, j with ci j > 0 and ei j > 0, we have ci j ≥ e ji−2

With the hypothesis satisfied, the following are true:

1. Under the hypothesis, for each x0 ∈R4
+ =

{
(x1,x2,x3,x4) ∈ R4 : x1,x2,x3,x4 > 0

}
,

there is a unique positive solution x(t) to equation (5.2) on t ≥ 0, and the solution

will remain in R4
+ with probability 1.

2. Under the hypothesis, for p≤ 2, E [|x(t)|p]≤ K < ∞

3. The solution x(t) is stochastically bounded
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5.4 Numerical Results

In this section, we provide some numerical results to complement the theorems

we prove in the appendix about the stability of Equation 5.2 as well as study the behavior

of switching cycles. The simulations were based on Equation 5.2 and the parameter

values shown in Table 5.1. Simulations were done using a fourth order Runge-Kutta

method adapted for stochastic differential equations with time step ∆t = 0.01 [Gar88].

We observed similar behavior for smaller time steps. Note that cases 1-4 satisfy the

hypothesis of the theorems we proved whereas case 5 does not. We include case 5

because Ambruster, Stone, and Kirk observed interesting behavior in the additive noise

case, namely that trajectories spent time going back and forth between cycles and spent

intermittent blocks of time in each cycle [ASK03]. In the figures, we show perturbations

by both a one-dimensional noise and where the system is perturbed by four independent

Brownian motions. For all plots, we used σi = 1.0 unless noted otherwise. Explanations

of how parameters affect the underlying ODE system (Equation 5.1) can be found in

[KS94].

Parameters Case #1 Case #2 Case #3 Case#4 Case#5
c13 4.2 0.5 4.8 6.2 6.2
c14 4.2 3.3 3.2 4.2 1.0
c21 4.3 4.3 1.3 7.3 7.3
c32 4.4 4.9 10.0 2.4 2.4
c34 4.4 3.8 2.0 12.7 12.7
c42 4.4 3.7 10.0 5.7 5.7
c43 4.4 3.0 2.8 5.0 5.0
e12 1.9 3.5 1.8 0.5 1.5
e23 2.5 2.5 2.5 2.5 2.5
e24 2.2 2.0 2.0 2.0 2.0
e31 2.0 1.0 1.0 1.0 3.0
e41 4.0 4.8 2.5 4.8 4.8

Table 5.1: Table of parameter values for differing cases of asymptotic behavior of the
two cycle system
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Figure 5.3: Plots of stochastic trajectories with parameters from Case 1 where Gaussian
white noise is one-dimensional (left figure) and four-dimensional (right figure).

Case 1 (Figure 5.3) gives an example of parameters where noise in the one-

dimensional case is not enough to cause a trajectory to switch cycles, but increasing

the dimension of the noise causes random switches between the cycles. Although the

underlying ODE is still attracted to the Q3-cycle, four-dimensional noise readily drives

trajectories to the other cycle when a trajectory passes near the Q2 fixed point.

In Case 2 (Figure 5.4), the parameters show a case where noise has minimal

long-term effects on trajectories switching. Although the trajectory begins within the Q4

cycle, it quickly switches to the Q3 cycle and noise is unable to bring it back to the Q4

cycle. The underlying ODE system with these parameters allows the Q3 cycle to attract

almost all trajectories starting near the network. In this instance, the Q3 cycle is called

essentially asymptotically stable, defined as follows [Mel91]:

A flow-invariant set X is essentially asymptotically stable (e.a.s) if there exists a

set C such that given any a ∈ (0,1) and any open neighborhood U of X , there is an open

neighborhood V ⊂U such that:

1. all trajectories starting in V\C remain in U and are asymptotic to X

2. µ(V\C)/µ(V )> a where µ is Lebesgue measure

In other words, the measure of initial conditions not asymptotically stable to the
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Figure 5.4: Plots of stochastic trajectories with parameters from Case 2 where Gaussian
white noise is four-dimensional. Here, σi = 1.5 for each i. Very similar behavior was
seen in the one-dimensional case in that we did not observe switching between cycles.

network is small. For the parameters of case 2, the Q3 cycle is e.a.s. and attracts almost

all trajectories near it even in the presence of noise. In this simulation, we show only

a four-dimensional noise as simulations with one-dimensional noise exhibited nearly

identical behavior.

In case 3, the Q3 cycle is not e.a.s. but almost all trajectories started anywhere

in the network are eventually attracted to it. The results of this simulation are shown in

Figure 5.5. Notice that even though almost all trajectories are eventually attracted to the

cycle, four-dimensional noise is strong enough to cause trajectories to briefly escape the

cycle whereas one-dimensional noise is not.

In case 4, neither cycle is e.a.s. but both cycles attract open sets of initial

conditions. We used an initial condition of [x1(0),x2(0),x3(0),x4(0)] = [0.2,0.5,0.2,0.6].

With these parameters and this initial condition, the Q3 cycle attracts the ODE trajectory,

but because both cycles attract open sets of initial conditions, we expect that noise may

cause a trajectory which is initially attracted to the Q3 cycle to spend longer periods of

time in the Q4 cycle. In fact, Figure 5.6 shows this behavior in the four-dimensional
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Figure 5.5: Plots of stochastic trajectories with parameters from Case 3 where Gaussian
white noise is one-dimensional (left figure) and four-dimensional (right figure).

Figure 5.6: Plots of stochastic trajectories with parameters from Case 3 where Gaussian
white noise is one-dimensional (left figure) and four-dimensional (right figure). Here,
σi = 1.5 for all i.

noise case where trajectories pass near Q4 and remain in the Q4 cycle for a period of time

before jumping back to the Q3 cycle.

In case 5, notice that the parameters do not satisfy our hypothesis. As we stated

before, there is a unique local solution x(t) on t ∈ [0,τε) where τε is the explosion time

because the coefficients are still locally Lipschitz continuous. We also are no longer

guaranteed finite first and second moments, and so the solutions may have a lot more

variability. With these parameters, both cycles attract large sets of initial conditions. An

example of an initial condition where the Q3 cycle is attractive is (0.2,0.3,0.7,0.2) and

the Q4 cycle attracts the initial condition (0.2,0.3,0.2,0.7). Figure 5.7 shows the results
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Figure 5.7: Plots of stochastic trajectories with parameters from Case 5 where Gaussian
white noise is four-dimensional. On the left, the initial condition (0.2,0.3,0.7,0.2) was
used leading to the Q3 cycled being favored in the underlying ODE. On the right, the
initial condition (0.2,0.3,0.2,0.7) was used leading to the Q4 cycled being favored.

of simulating Equation 5.2 with these two initial conditions. In both cases, trajectories

bounce back and forth between the two cycles and spend “blocks” of time in each

cycle, although each trajectory spends more time in the cycle that their respective ODE

is attracted to. Kirk and Silber noted similar behavior when additive noise was used

[ASK03].

5.5 Summary

The aim of this chapter was to study a simple example of a heteroclinic network

to determine if noise can cause trajectories starting near one cycle of the network to

switch and visit the other cycle for periods of time. Generally, for a heteroclinic cycle to

be stable, the ratio of the contracting eigenvalue to the corresponding unstable eigenvalue

must be greater than unity at each fixed point. We gave an example of an ODE system

for which a system of heteroclinic cycles sharing a common edge can be induced. We

showed that the stochastically perturbed system (Equation 5.2) admits a positive global

solution, the distribution of solutions has finite first and second moments, and the solution

is stochastically bounded.
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Moreover, we showed that when the stochastic perturbations is one-dimensional,

trajectories are unable to change cycles, but when the noise is four independent Brownian

motions, trajectories are more easily able to switch cycles. We hypothesize that higher

dimensional noise induces more variability in the solutions although it is surprising that

one-dimensional noise is incapable of causing solutions to change cycles. Unlike the

additive noise case, the strength of noise needs to be higher in order for switching to

occur. This is due to the fact that the size of the noise scales with the values of xi(t) but

along the shared edge, several of the xi(t)’s are near zero and a large strength of noise

constant is required to overcome this.

Relating these results back to neuroscience, this work suggests that noise modeled

as one-dimensional (e.g. temperature fluctuations on neuron activity levels) has minimal

effects on the ability for the dynamical system to reach an unreachable state, and this

fact is in agreement with previous theory showing that although it is a source of noise,

it is relatively minor in the scope of its effect [MK99a]. As stated earlier, an example

of a four dimensional noise source could be demographic stochasticity and variability

among the neural network itself. This is supported by theory and experiments showing

that in a network of neurons, there are fluctuations in spiking patterns generated by

the network itself [vVS97, KZ02]. Thus, there is biological justification that four-

dimensional fluctuations play a much larger role in causing trajectories to change cycles.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we first looked at the biology behind neurons and what causes them

to spike. We saw that this was caused by voltage-gated ion channels that open and close

as functions of the voltage. Moreover, we wrote down an equation which models such a

spike known as the Hodgkin-Huxley equation. This powerful equation representing a

conductance-based model is one of the hallmarks of computational neuroscience which

allows us to gain insight into the mechanisms which lead to neural spiking. However,

the Hodgkin-Huxley model assumes the presence of infinitely many ion channels so

that fluctuations in the fraction of open channels remain undetected by the model. Real

neurons only have finitely many channels; hence, the purpose of this thesis was to

understand what effects microscopic fluctuations in the fraction of open channels (channel

noise) has on macroscopic properties of small neural networks.

To study the role of channel noise in small neural networks, we first looked at

several models which account for these fluctuations. Generally, the protein channels

in the neural membrane can be found in various configuration states. In some of these

84
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configurations, the channel is considered “open” in that it is conducting while the channel

is considered “closed” in the remaining states. It is assumed that the state configurations

can be modeled as a Markov Chain so that the transition from one state to another is not

dependent upon its previous states. We then looked at several methods to simulate the

Markov Chain model; however, simulating such a model is computationally expensive

and is unfeasible for network simulations. For this reason we looked at several stochastic

differential equations which sought to approximate the Markov Chain model but were

much more computationally efficient. These models we referred to as the Fox and Lu

channel noise model (Eqn. 2.1), the subunit noise model (Eqn. 2.2), and the current noise

model (Eqn. 2.2). The majority of the thesis is based on the Fox and Lu model due to its

accurate approximation of the Markov Chain model.

We first looked at the first spike latency of a neuron modeled by the Fox and Lu

model when subjected to random synaptic input from other neurons. First spike latency

is an important aspect of neurons as it is believed to be strongly related to neural coding,

and unlike the deterministic models, the first spike latency of the stochastic neuron is now

a distribution of times rather than a fixed time that depends on both the membrane area

and the rate of synaptic input. Despite the two sources of randomness, certain statistical

properties (the mean, median, and IQR) of the first spike latency distributions could be

well predicted from a simple linear regression knowing solely the rate of synaptic input

and the membrane area. However, the standard deviation could not be well predicted. We

then compared these results to the subunit noise model. The two primary differences were

that the subunit noise model had a bigger delay in the mean and median first spike latency,

and the standard deviation of the first spike latency distribution could be accurately

predicted from a linear regression. Because of the known inaccuracies in the subunit

noise model, and the accuracy of the Fox and Lu model where the standard deviation of

the first spike latency distribution can not be readily predicted, we proposed that the IQR
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would be a better indicator of spike timing variation than the standard deviation.

One area where spike timing is important is in the study of neural synchronization.

Neural synchronization has been tied to a number of conditions such as epilepsy, Parkin-

son’s disease, and Alzheimer’s disease, and hence this is a blooming area of research.

Our goal was to study what role channel noise can induce on the synchronization of small

neural networks. In our work, we showed that when channel noise is introduced, the

long-term expected degree of synchronization matches that of completely independent

Poisson neurons. Moreover, we were able to derive an explicit formula to calculate this

synchronization value. We then compared our results to the subunit noise model and we

saw that while the same degree of synchronization is reached, it does so on a much faster

time scale.

Lastly, one of the major research areas of neuroscience is the buildup from indi-

vidual neurons to cognition. Here, we have introduced a mathematical structure known

as a stable heteroclinic channel which has been suggested as a potential mathematical

model for cognition. A stable heteroclinic channel is a collection of saddle points of

a dynamical system and the orbits that connect them. We then subjected the model to

noise and found that in the case of one-dimensional noise (such as an environmental

noise), noise maintains the behavior of trajectories in the stable heteroclinic channel. In

the case of high-dimensional noise, noise can actually cause the system to reach fixed

points (states of the system) unattainable in the deterministic system.

Ultimately, this thesis has helped shape the understanding of the role that micro-

scopic channel state fluctuations has on macroscopic neural network properties. Moreover,

this thesis should shed light on the idea that channel noise is an important biological

noise that should be incorporated into the study of neuron models.
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6.2 Future Directions

In this section, we will look at ways to extend our work of modeling channel

noise to include more features of neurons and to extend the work to larger networks.

6.2.1 Effects of Dendritic Noise

Throughout this dissertation, we looked at the role channel noise has in terms

of first spike latency and neural synchronization and noticed some large effects. The

channel noise we looked at is a result of sodium and potassium channels in the neural

membrane primarily found on the axon. Another important region of the neuron where

channels are found is in the dendrites which are the sites of neural communication with

the presynaptic neurons. Perhaps even more importantly, changes in dendritic connections

is a phenomenon known as synaptic plasticity and has been thought to be the basis of

human learning [GKNP14, BP98]. This leads to several questions. First, how does

the inclusion of dendritic channel noise affect first spike latency and synchronization?

For example, if dendritic noise on average delays the effects of post synaptic potential

changes, then that could effectively cancel out the increase in firing that our simulations

of channel noise predicted.

As an application of spike timing, how does channel noise affect learning? Based

on the study by Bi and Poo [BP98], spike timing is strongly tied to changes in synaptic

connections with neurons that fire closer together resulting in larger synaptic changes.

As we have shown, channel noise decreases the time it takes for a neuron to fire, and

hence may increase learning in a process known as stochastic facilitation. This however

ignored the role of stochasticity in dendritic channels, and the role of this source of noise

may be important.
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6.2.2 Improving the Fox and Lu Model

Despite the improvements in computational efficiency over the Markov Chain

Model, the Fox and Lu model is a challenge for large scale simulations due to the

computational costs of calculating the square root of the diffusion matrix. While the

subunit noise model was designed to help circumvent this problem, we have noted some

discrepancies where this subunit noise model does not accurately reflect the Markov

Chain model dynamics. Recently, a proposed model by Odio and Soudry was shown

to replicate the Markov Chain model with high accuracy and bypass the square root

computation [OS12]. This has the potential to expand the results from the Fox and Lu

model to larger scale networks where computational costs are frequently expensive.

The stochastic dynamics of the gating variables are given by the following matri-

ces:

CV̇ = Iin j(t)+ Isyn(t)− ḡNay31(V −ENa)− ḡKx4(V −EK)− ḡL(V −EL)

ẋ = AK(V )x+
1√
NK

SK(V,x)ξ̄K (6.1)

ẏ = ANa(V )y+
1√
NNa

SNa(V,y)ξ̄Na.

The matrices AK and ANa are identical to the Fox and Lu model. The diffusion

matrices SK(V,x) and SNa are different and hence are indicated with a bar to distinguish

them from the Fox and Lu definitions. The diffusion matrices are given by:
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SK(V,x) =



√
4αnx0 +βnx1 0 0 0

−
√

4αnx0 +βnx1
√

3αnx1 +2βnx2 0 0

0 −
√

3αnx1 +2βnx2
√

2αnx2 +3βnx3 0

0 0 −
√

2αnx2 +3βnx3
√

αnx3 +4βnx4

0 0 0 −
√

αnx3 +4βnx4


and
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S N
a(

V
,y
)
=
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+
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+
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+
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+
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1                     

Additionally, ξ̄K and ξ̄Na are vectors of four and ten independent Gaussian white

noise terms, respectively. We attempted to simulate this model to understand how the
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Kuramoto order parameter compares between this model and the Fox and Lu model.

While the results displayed similarities, we note that this particular stochastic differential

equation system was more susceptible to numerical integration errors. While these errors

were substantially reduced using a smaller time step, the necessity of using a smaller

time step negated the benefit of no longer needing to take a matrix square root of the Fox

and Lu model. However, it remains possible that an alternative integration scheme would

result in a faster simulation time for this model.

Alternative deterministic models exist which were designed to match the Hodgkin-

Huxley dynamics in exchange for lesser biological plausibility. For example, the adapa-

tive exponential integrate and fire model (AdEx) was shown to match the Hodgkin-Huxley

dynamics with 96% accuracy [BG05]. However, the equations remove the concepts of

sodium and potassium ion channels. It does remain possible that one could place an

additive noise term with a proper scaling term (similar to the current noise model in Sec.

2.2) such that the dynamics of a stochastic AdEx (or similar) model matches that of the

Fox and Lu model. This would be a tremendous advancement for studying channel noise

on larger neural network systems.



Appendix A

Simulation Schemes

Consider a stochastic differential equation of the form dx(t) = f (x(t))dt +g(x(t))dW (t)

with 0≤ t ≤ T and x(0) = x0. Here, x(t)∈Rm for all t, W (t) is a d-dimensional Brownian

motion, f : Rm→ Rm, and g : Rm→ Rm×d . The derivation of the following schemes

used in this thesis can be found in [Gar88], but we show the main result here.

A.1 Euler-Maruyama

The Euler-Maruyama method takes the following steps to approximate solutions to the

stochastic differential equation:

1. Partition the interval [0,T ] into N equal subintervals of width ∆t (∆t = T/N)

2. Define Y0 = x0

3. Recursively define Yk+1 =Yk+ f (Yk)∆t+g(Yk)∆Wk where ∆Wk =W (tk+1)−W (tk).

The random variables ∆Wk are independent and identically distributed normal random

variables of mean zero and variance ∆t.
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A.2 Fourth-Order Stochastic Runge Kutta

As before, divide the interval into N equal subintervals of width ∆t and let Y0 = x0. Then

define the following iteration:

Yk = Yk−1 +
1
6 {(F0 +2F1 +2F2 +F3)∆t +(G0 +2G1 +2G2 +G3)∆Wn}

with

F0 = f (Yk−1)

F1 = f
(

Yk−1 +
1
2

F0∆t +
1
2

G0∆Wn

)
F2 = f

(
Yk−1 +

1
2

F1∆t +
1
2

G1∆Wn

)
F3 = f

(
Yk−1 +F2∆t +

1
2

G2∆Wn

)
G0 = g(Yk−1)

G1 = g
(

Yk−1 +
1
2

F0∆t +
1
2

G0∆Wn

)
G2 = g

(
Yk−1 +

1
2

F1∆t +
1
2

G1∆Wn

)
G3 = g

(
Yk−1 +F2∆t +

1
2

G2∆Wn

)



Appendix B

Proofs

B.1 Proof of Existence of Unique, Global Solution of

Eqn. 5.2

We first prove that there exists a positive, global solution (i.e. Equation 5.2 does

not explode in finite time). To do so, we will need the following lemma: For any z > 0,

z2 ≤ 4
(1

2z2− logz+1
)
− (6−2log2).

Suppose each Wi(t) is a one-dimensional Wiener process independent of each

other and defined over the complete probability space (Ω,F,P) with a filtration {Ft}t≥0

satisfying the usually conditions (i.e. that is is increasing and right continuous, and F0

contains all P-null sets.) Since the coefficients of (5.2) are locally Lipschitz continuous,

for any initial value x0 ∈R4
+ =

{
(x1,x2,x3,x4) ∈ R4 : x1,x2,x3,x4 > 0

}
, there is a unique

local solution x(t) on t ∈ [0,τε) where τε is the explosion time [Lud73]. In order to show

that the solution is global, we must show that τε = ∞ a.s.

We choose a sufficiently large number k0 > 0 such that each xi(t) starts within

the interval
(

1
k0
,k0

)
. Thus we define the stopping time for all k ≥ k0:

94



95

τk = in f
{

t ∈ [0,τε) : min
1≤i≤n

xi(t)≤
1
k

or max
1≤i≤n

xi(t)≥ k
}

(B.1)

where inf /0 = ∞. Clearly τk is increasing as k→ ∞. Set τ∞ to be limk→∞ τk, whence

τ∞ ≤ τε a.s. Since our goal is to show that τε = ∞, it suffices to show that τ∞ = ∞ a.s.

Suppose the statement is false. Then there exists two constants, T > 0 and ε ∈ (0,1),

such that:

P(τ∞ ≤ T )> ε (B.2)

Then there exists an integer k1 ≥ k0 such that

P(τk ≤ T )> ε (B.3)

for all k ≥ k1.

Define a C2-function V: R4
+→ R+ by

V (x) =
n

∑
i=1

(
1
2

x2
i +1− log(xi)

)
(B.4)

By applying Ito’s Lemma to our function V (x) and (5.2), we get:
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dV (Xt) =
[(

x2
1−1

)(
1− x2

1− x2
2− x2

3− x2
4− c21x2

2 + e31x2
3 + e41x2

4
)

+
(
x2

2−1
)(

1− x2
1− x2

2− x2
3− x2

4 + e12x2
1− c32x2

3− c42x2
4
)

+
(
x2

3−1
)(

1− x2
1− x2

2− x2
3− x2

4− c13x2
1 + e23x2

2− c43x2
4
)

+
(
x2

4−1
)(

1− x2
1− x2

2− x2
3− x2

4− c14x2
1 + e24x2

2− c34x2
3
)

+
4

∑
i=1

σ2
i x2

i +σ2
i

2

]
dt +

4

∑
i=1

σi
(
x2

i −1
)

dWt

=

[(
5− e12 + c13 + c14 +

σ2
1

2

)
x2

1 +

(
5+ c21− e23− e24 +

σ2
2

2

)
x2

2

+

(
5− e31 + c32 + c34 +

σ2
3

2

)
x2

3 +

(
5− e41 + c42 + c43 +

σ2
4

2

)
x2

4

+ (e12− c21−2)x2
1x2

2 +(e31− c13−2)x2
1x2

3 +(e41− c14−2)x2
1x2

4

+ (e23− c32−2)x2
2x2

3 +(e24− c42−2)x2
2x2

4− (c43 + c34 +2)x2
3x2

4

+

(
−4+

4

∑
i=1

σ2
i

2

)]
dt +

4

∑
i=1

σi
(
x2

i −1
)

dWt

Under the assumption ci j/e ji > 1 for each i and j, we have:

dV (Xt)≤ a0 +a1x2
1 +a2x2

2 +a3x2
3 +a4x2

4dt +
4

∑
i=1

σi(x2
i −1)dWt (B.5)

where a0 =
(
−4+∑

4
i=1

σ2
i

2

)
, a1 = 5−e12+c13+c14+

σ2
1

2 , a2 = 5+c21−e23−e24+
σ2

2
2 ,

a3 = 5− e31 + c32 + c34 +
σ2

3
2 , and a4 = 5− e41 + c42 + c43 +

σ2
4

2 . Using the Lemma and

defining a5 = max{a1,a2,a3,a4}, we can write:

4

∑
i=1

aix2
i ≤ 4a5V (Xt) (B.6)

Combining this with (B.5), we can write:
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dV (Xt) ≤ (a0 +a5V (Xt))dt +
4

∑
i=1

σi(x2
i −1)dW (t)

≤ a6(1+V (Xt))dt +
4

∑
i=1

σi(x2
i −1)dW (t) (B.7)

where a6 = max{a0,4a5}. Therefore, if t1 ≤ T ,

∫
τk∧t1

0
dV (Xt)≤

∫
τk∧t1

0
a6(1+V (Xt))dt +

∫
τk∧t1

0

n

∑
i=1

σi(x2
i −1)dW (t) (B.8)

This implies that:

E [V (X(τk∧ t1))] ≤ V (X0)+E
[∫

τk∧t1

0
a6(1+V (Xt))dt

]
≤ V (X0)+a6t1 +a6E

[∫
τk∧t1

0
V (Xt)dt

]
≤ V (X0)+a6T +a6E

[∫ t1

0
V (X(τk∧ t))dt

]
= V (X0)+a6T +a6

∫ t1

0
E [V (X(τk∧ t))]dt (B.9)

Applying Gronwall’s Inequality, we get:

E [V (X(τk∧T ))]≤ (V (X0)+a6T )ea6T ≡ a7 (B.10)

Set Ωk = {τk ≤ T} for k ≥ k1. By our assumption (B.3), we have P(Ωk)> ε. Note that

for every ω ∈Ωk, there is at least one i for which xi(τk,ω) equals either k or 1
k , and hence

V (Xτk) is no less than the smaller of k2 + 1− logk and 1
k2 + 1− log 1

k = 1
k2 + 1+ logk.

Consequently, we have:
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V (Xτk)≥
(
k2 +1− logk

)
∧
(

1
k2 +1+ logk

)
(B.11)

It follows that from B.3 and B.10:

a7 ≥ E
[
1Ωk(ω)V (X(τk,ω))

]
≥ ε

[(
k2 +1− logk

)
∧
(

1
k2 +1+ logk

)]
(B.12)

where 1Ωk is the indicator function of Ωk. Letting k→ ∞, we obtain the contradiction

∞ > a7 = ∞, and hence τ∞ = ∞ a.s. Thus, (5.2) has a unique global positive solution and

never explodes in any finite time with probability 1.

B.2 Proof of Finite First and Second Moments of Eqn.

5.2

Our next goal is to prove that the distribution of all possible paths of Equation 5.2 has

finite mean and variance, and is bounded by a universal constant for all time.

Consider the function V (Xt , t) = et
∑

4
i=1 xi(t)2. Applying Ito’s Lemma to Equation 5.2

yields:

dV = 2et

[
1
2
+

4

∑
i=1

(
2+

1
2

σix2
i

)
+(e12− c21−2)x2

1x2
2

+ (e31− c13−2)x2
1x2

3 +(e41− c14−2)x2
1x2

4 +(e23− c32−2)x2
2x2

3

+ (e24− c42−2)x2
2x2

4 +(−c34− c43−2)x2
3x2

4−
4

∑
i=1

x4
i

]
dt

+ 2et
4

∑
i=1

σix2
i dWt (B.13)
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Using the hypothesis, there exists a K > 0 such that:

dV ≤ Ketdt +2et
4

∑
i=1

σix2
i dWt (B.14)

Integrating and taking expectations gives:

E

[
et∧τk

4

∑
i=1

xi(t ∧ τk)
2

]
−

4

∑
i=1

xi(0)2 ≤ E
[∫ t∧τk

0
Kesds

]
≤ E

[∫ t

0
Kesds

]
= K

(
et−1

)
(B.15)

The previous proof showed that limk→∞ τk = ∞. Thus, taking k→ ∞ gives:

E

[
et

4

∑
i=1

xi(t)2

]
−

4

∑
i=1

xi(0)2 ≤ K
(
et−1

)
(B.16)

This implies:

E

[
4

∑
i=1

xi(t)2

]
≤ e−t

4

∑
i=1

xi(0)2 +K
(
1− e−t)≤ K < ∞ (B.17)

Taking supt≥0 gives the desired result.

B.3 Proof of Stochastic Boundedness of Eqn. 5.2

We say the solution to Equation 5.2 is stochastically bounded if for any ε > 0, there is a

constant H ≡ Hε such that for any x0 ∈ R4
+, we have:

limsup
t→∞

P(|x(t)| ≤ H)> 1− ε (B.18)
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We prove that Equation 5.2 is stochastically bounded.

Note that E
[
|x(t)|2

]
≤ 4E

[
∑

4
i=1 xi(t)2] ≤ K < ∞. Using Chebyshev’s Inequality, we

have that for H > 0,

P(|x(t)|> H)≤
supt≥0E

[
|x(t)|2

]
H2 ≤ K

H2 (B.19)

By choosing H sufficiently large, the result follows.



Appendix C

Python Code

The following is the Python code used to study the synchronization of a small network of

Fox and Lu neurons. The code was run in Python version 2.7.10 and produces a plot of

the mean synchronization (and standard deviation) vs. time results.

import s c i p y as sp

import numpy as np

import p y l a b as p l t

from s c i p y import l i n a l g

import math

from math import f a c t o r i a l

NS=10 #Number o f S i m u l a t i o n s

NN=3 #Number o f Neurons i n Model

d t =0 .01

T = sp . a r a n g e ( 0 . 0 , 3 0 0 0 . 0 , d t )

n t = l e n ( T ) # t o t a l number o f t i m e s t e p s

# C o n s t a n t s

C = 1 . 0 # membrane c a p a c i t a n c e , i n uF / cm ˆ2
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gNa = 120 .0 # maximum conducances , i n mS / cm ˆ2

gK = 3 6 . 0

gL = 0 . 3

ENa = 5 0 . 0 # N e r n s t r e v e r s a l p o t e n t i a l s , i n mV

EK = −77

EL = −54.387

a r e a = 300 #Membrane Area

NK = 18∗ a r e a

NNa = 60∗ a r e a

# Coup l ing Terms

Vr = 20

w = 1

e12 = e23 = e31 = 0

e11 = e22 = e33 = 0

e21 = 0 . 1

e32 = 0 . 1

e13 = 0 . 1

E = np . a r r a y ( [ [ e11 , e12 , e13 ] , [ e21 , e22 , e23 ] , [ e31 , e32 , e33 ] ] )

def alpham (V) : re turn ( 0 . 1 ∗V+ 4 . 0 ) / ( 1 . 0 − sp . exp (−0.1∗V−4.0) )

def betam (V) : re turn 4 . 0∗ sp . exp (−(V+ 6 5 . 0 ) / 1 8 . 0 )

def a l p h a h (V) : re turn 0 .07∗ sp . exp (−(V+ 6 5 . 0 ) / 2 0 . 0 )

def b e t a h (V) : re turn 1 . 0 / ( 1 . 0 + sp . exp (−0.1∗V−3.5) )

def a l p h a n (V) : re turn ( 0 . 0 1∗V+ 0 . 5 5 ) / ( 1 . 0 − sp . exp (−0.1∗V−5.5) )

def b e t a n (V) : re turn 0 .125∗ sp . exp (−(V+ 6 5 . 0 ) / 8 0 . 0 )

def psp (V, s ) : re turn ( (5∗ (1− s ) ) / ( 1 + sp . exp (−(V+3) / 8 ) ) )−s

def mysqrtm (D) :
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S = [ ]

f o r d in D:

u , s , v = l i n a l g . svd ( d )

S . append ( u∗np . s q r t ( s ) ∗v )

re turn np . a r r a y ( S )

def ANa(V) :

P = np . z e r o s ( (NN, 8 , 8 ) )

P [ : , 0 , 0 ] = −3∗alpham (V)−a l p h a h (V)

P [ : , 0 , 1 ] = betam (V)

P [ : , 0 , 4 ] = b e t a h (V)

P [ : , 1 , 0 ] = 3∗ alpham (V)

P [ : , 1 , 1 ] = −2∗alpham (V)−betam (V)−a l p h a h (V)

P [ : , 1 , 2 ] = 2∗ betam (V)

P [ : , 1 , 5 ] = b e t a h (V)

P [ : , 2 , 1 ] = 2∗ alpham (V)

P [ : , 2 , 2 ] = −alpham (V)−2∗betam (V)−a l p h a h (V)

P [ : , 2 , 3 ] = 3∗ betam (V)

P [ : , 2 , 6 ] = b e t a h (V)

P [ : , 3 , 2 ] = alpham (V)

P [ : , 3 , 3 ] = −3∗betam (V)−a l p h a h (V)

P [ : , 3 , 7 ] = b e t a h (V)

P [ : , 4 , 0 ] = a l p h a h (V)

P [ : , 4 , 4 ] = −3∗alpham (V)−b e t a h (V)

P [ : , 4 , 5 ] = betam (V)
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P [ : , 5 , 1 ] = a l p h a h (V)

P [ : , 5 , 4 ] = 3∗ alpham (V)

P [ : , 5 , 5 ] = −2∗alpham (V)−betam (V)−b e t a h (V)

P [ : , 5 , 6 ] = 2∗ betam (V)

P [ : , 6 , 2 ] = a l p h a h (V)

P [ : , 6 , 5 ] = 2∗ alpham (V)

P [ : , 6 , 6 ] = −alpham (V)−2∗betam (V)−b e t a h (V)

P [ : , 6 , 7 ] = 3∗ betam (V)

P [ : , 7 , 3 ] = a l p h a h (V)

P [ : , 7 , 6 ] = alpham (V)

P [ : , 7 , 7 ] = −3∗betam (V)−b e t a h (V)

re turn P

def AK(V) :

P = np . z e r o s ( (NN, 5 , 5 ) )

P [ : , 0 , 0 ] = −4∗ a l p h a n (V)

P [ : , 0 , 1 ] = b e t a n (V)

P [ : , 1 , 0 ] = 4∗ a l p h a n (V)

P [ : , 1 , 1 ] = −3∗ a l p h a n (V)−b e t a n (V)

P [ : , 1 , 2 ] = 2∗ b e t a n (V)

P [ : , 2 , 1 ] = 3∗ a l p h a n (V)

P [ : , 2 , 2 ] = −2∗ a l p h a n (V)−2∗b e t a n (V)

P [ : , 2 , 3 ] = 3∗ b e t a n (V)
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P [ : , 3 , 2 ] = 2∗ a l p h a n (V)

P [ : , 3 , 3 ] = −a l p h a n (V)−3∗b e t a n (V)

P [ : , 3 , 4 ] = 4∗ b e t a n (V)

P [ : , 4 , 3 ] = a l p h a n (V)

P [ : , 4 , 4 ] = −4∗b e t a n (V)

re turn P

def DNa(V, Y,N) :

D = np . z e r o s ( (NN, 8 , 8 ) )

y00 = Y [ : , 0 ]

y10 = Y [ : , 1 ]

y20 = Y [ : , 2 ]

y30 = Y [ : , 3 ]

y01 = Y [ : , 4 ]

y11 = Y [ : , 5 ]

y21 = Y [ : , 6 ]

y31 = Y [ : , 7 ]

D[ : , 0 , 0 ] = (3∗ alpham (V) + a l p h a h (V) ) ∗y00 + betam (V) ∗y10 +

b e t a h (V) ∗y01

D[ : , 0 , 1 ] = −3∗alpham (V) ∗y00 − betam (V) ∗y10

D[ : , 0 , 2 ] = 0

D[ : , 0 , 3 ] = 0

D[ : , 0 , 4 ] = −( a l p h a h (V) ∗y00 + b e t a h (V) ∗y01 )

D[ : , 0 , 5 ] = 0

D[ : , 0 , 6 ] = 0

D[ : , 0 , 7 ] = 0

D[ : , 1 , 0 ] = D[ : , 0 , 1 ]
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D[ : , 1 , 1 ] = ( betam (V) +2∗ alpham (V) ) ∗y10 + 2∗ betam (V) ∗y20 + 3∗

alpham (V) ∗y00 + a l p h a h (V) ∗y10 + b e t a h (V) ∗y11

D[ : , 1 , 2 ] = −(2∗ alpham (V) ∗y10 + 2∗ betam (V) ∗y20 )

D[ : , 1 , 3 ] = 0

D[ : , 1 , 4 ] = 0

D[ : , 1 , 5 ] = −( a l p h a h (V) ∗y10 + b e t a h (V) ∗y11 )

D[ : , 1 , 6 ] = 0

D[ : , 1 , 7 ] = 0

D[ : , 2 , 0 ] = D[ : , 0 , 2 ]

D[ : , 2 , 1 ] = D[ : , 1 , 2 ]

D[ : , 2 , 2 ] = (2∗ betam (V) + alpham (V) ) ∗y20 + 3∗ betam (V) ∗y30 + 2∗

alpham (V) ∗y10 + a l p h a h (V) ∗y20 + b e t a h (V) ∗y21

D[ : , 2 , 3 ] = −(alpham (V) ∗y20 +3∗ betam (V) ∗y30 )

D[ : , 2 , 4 ] = 0

D[ : , 2 , 5 ] = 0

D[ : , 2 , 6 ] = −( a l p h a h (V) ∗y20+ b e t a h (V) ∗y21 )

D[ : , 2 , 7 ] = 0

D[ : , 3 , 0 ] = D[ : , 0 , 3 ]

D[ : , 3 , 1 ] = D[ : , 1 , 3 ]

D[ : , 3 , 2 ] = D[ : , 2 , 3 ]

D[ : , 3 , 3 ] = 3∗ betam (V) ∗y30 + alpham (V) ∗y20 + a l p h a h (V) ∗y30 +

b e t a h (V) ∗y31

D[ : , 3 , 4 ] = 0

D[ : , 3 , 5 ] = 0

D[ : , 3 , 6 ] = 0

D[ : , 3 , 7 ] = −( a l p h a h (V) ∗y30 + b e t a h (V) ∗y31 )

D[ : , 4 , 0 ] = D[ : , 0 , 4 ]

D[ : , 4 , 1 ] = D[ : , 1 , 4 ]
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D[ : , 4 , 2 ] = D[ : , 2 , 4 ]

D[ : , 4 , 3 ] = D[ : , 3 , 4 ]

D[ : , 4 , 4 ] = 3∗ alpham (V) ∗y01 + betam (V) ∗y11 + b e t a h (V) ∗y01 +

a l p h a h (V) ∗y00

D[ : , 4 , 5 ] = −(3∗ alpham (V) ∗y01 + betam (V) ∗y11 )

D[ : , 4 , 6 ] = 0

D[ : , 4 , 7 ] = 0

D[ : , 5 , 0 ] = D[ : , 0 , 5 ]

D[ : , 5 , 1 ] = D[ : , 1 , 5 ]

D[ : , 5 , 2 ] = D[ : , 2 , 5 ]

D[ : , 5 , 3 ] = D[ : , 3 , 5 ]

D[ : , 5 , 4 ] = D[ : , 4 , 5 ]

D[ : , 5 , 5 ] = ( betam (V) + 2∗ alpham (V) ) ∗y11 + 2∗ betam (V) ∗y21 + 3∗

alpham (V) ∗y01 + b e t a h (V) ∗y11 + a l p h a h (V) ∗y10

D[ : , 5 , 6 ] = −(2∗ alpham (V) ∗y11 +2∗ betam (V) ∗y21 )

D[ : , 5 , 7 ] = 0

D[ : , 6 , 0 ] = D[ : , 0 , 6 ]

D[ : , 6 , 1 ] = D[ : , 1 , 6 ]

D[ : , 6 , 2 ] = D[ : , 2 , 6 ]

D[ : , 6 , 3 ] = D[ : , 3 , 6 ]

D[ : , 6 , 4 ] = D[ : , 4 , 6 ]

D[ : , 6 , 5 ] = D[ : , 5 , 6 ]

D[ : , 6 , 6 ] = (2∗ betam (V) + alpham (V) ) ∗y21 + 3∗ betam (V) ∗y31 + 2∗

alpham (V) ∗y11 + b e t a h (V) ∗y21 + a l p h a h (V) ∗y20

D[ : , 6 , 7 ] = −(alpham (V) ∗y21 +3∗ betam (V) ∗y31 )

D[ : , 7 , 0 ] = D[ : , 0 , 7 ]

D[ : , 7 , 1 ] = D[ : , 1 , 7 ]

D[ : , 7 , 2 ] = D[ : , 2 , 7 ]
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D[ : , 7 , 3 ] = D[ : , 3 , 7 ]

D[ : , 7 , 4 ] = D[ : , 4 , 7 ]

D[ : , 7 , 5 ] = D[ : , 5 , 7 ]

D[ : , 7 , 6 ] = D[ : , 6 , 7 ]

D[ : , 7 , 7 ] = 3∗ betam (V) ∗y31 + alpham (V) ∗y21 + b e t a h (V) ∗y31 +

a l p h a h (V) ∗y30

D = D / ( N) ;

re turn D

def DK(V, X,N) :

D = np . z e r o s ( (NN, 5 , 5 ) )

D[ : , 0 , 0 ] = 4∗ a l p h a n (V) ∗X [ : , 0 ] + b e t a n (V) ∗X [ : , 1 ]

D[ : , 0 , 1 ] = −(4∗ a l p h a n (V) ∗X [ : , 0 ] + b e t a n (V) ∗X [ : , 1 ] )

D[ : , 1 , 0 ] = −(4∗ a l p h a n (V) ∗X[ : , 0 ] + b e t a n (V) ∗X [ : , 1 ] )

D[ : , 1 , 1 ] = (4∗ a l p h a n (V) ∗X[ : , 1 ] + ( 3 ∗ a l p h a n (V) + b e t a n (V) ) ∗X [ : , 1 ] +

2∗ b e t a n (V) ∗X [ : , 2 ] )

D[ : , 1 , 2 ] = −(2∗ b e t a n (V) ∗X [ : , 2 ] + 3∗ a l p h a n (V) ∗X [ : , 1 ] )

D[ : , 2 , 1 ] = −(2∗ b e t a n (V) ∗X[ : , 2 ] + 3 ∗ a l p h a n (V) ∗X [ : , 1 ] )

D[ : , 2 , 2 ] = (3∗ a l p h a n (V) ∗X [ : , 1 ] + (2∗ a l p h a n (V) + 2∗ b e t a n (V) ) ∗X

[ : , 2 ] + 3∗ b e t a n (V) ∗X [ : , 3 ] )

D[ : , 2 , 3 ] = −(3∗ b e t a n (V) ∗X[ : , 3 ] + 2 ∗ a l p h a n (V) ∗X [ : , 2 ] )

D[ : , 3 , 2 ] = −(3∗ b e t a n (V) ∗X[ : , 3 ] + 2 ∗ a l p h a n (V) ∗X [ : , 2 ] )

D[ : , 3 , 3 ] = (2∗ a l p h a n (V) ∗X [ : , 2 ] + ( a l p h a n (V) + 3∗ b e t a n (V) ) ∗X [ : , 3 ] +

4∗ b e t a n (V) ∗X [ : , 4 ] )

D[ : , 3 , 4 ] = −(4∗ b e t a n (V) ∗X[ : , 4 ] + a l p h a n (V) ∗X [ : , 3 ] )
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D[ : , 4 , 3 ] = −(4∗ b e t a n (V) ∗X[ : , 4 ] + a l p h a n (V) ∗X [ : , 3 ] )

D[ : , 4 , 4 ] = ( a l p h a n (V) ∗X[ : , 3 ] + 4 ∗ b e t a n (V) ∗X [ : , 4 ] )

M = 1 /N ∗ D

re turn M

# Take M at r i x squ ar e r o o t s n u m e r i c a l l y u s i n g SVD

def SNa (V, Y, NNa) : re turn mysqrtm (DNa(V, Y, NNa) )

def SK(V, X,N) : re turn mysqrtm (DK(V, X,NK) )

# Po tas s ium (K = e l e m e n t name )

def I KSDE (V, x ) : re turn gK ∗ x [ : , 4 ] ∗ (V − EK)

# Sodium C u r r e n t

def I NaSDE (V, y ) : re turn gNa ∗ y [ : , 7 ] ∗ (V − ENa )

# Leak C u r r e n t

def I L (V) : re turn gL ∗ (V − EL )

# E x t e r n a l c u r r e n t

def I i n j ( t ) :

re turn 1 0 . 0

# D e f i n e F a c t o r i a l F u n c t i o n

def nCr ( n , r ) :

i f r<=n :

n u m e r a t o r = f a c t o r i a l ( n )

d e n o m i n a t o r =( f a c t o r i a l ( r ) ∗ f a c t o r i a l ( n−r ) )

answer = n u m e r a t o r / d e n o m i n a t o r
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re turn answer

i f r>n :

re turn 0

# E q u i l i b r i u m E q u a t i o n s

def x0ba r (V) : re turn nCr ( 4 , 0 ) ∗ ( ( a l p h a n (V) ∗∗0) ∗ ( b e t a n (V) ∗∗(4−0) ) ) / ( (

a l p h a n (V) + b e t a n (V) ) ∗∗4)

def x1ba r (V) : re turn nCr ( 4 , 1 ) ∗ ( ( a l p h a n (V) ∗∗1) ∗ ( b e t a n (V) ∗∗(4−1) ) ) / ( (

a l p h a n (V) + b e t a n (V) ) ∗∗4)

def x2ba r (V) : re turn nCr ( 4 , 2 ) ∗ ( ( a l p h a n (V) ∗∗2) ∗ ( b e t a n (V) ∗∗(4−2) ) ) / ( (

a l p h a n (V) + b e t a n (V) ) ∗∗4)

def x3ba r (V) : re turn nCr ( 4 , 3 ) ∗ ( ( a l p h a n (V) ∗∗3) ∗ ( b e t a n (V) ∗∗(4−3) ) ) / ( (

a l p h a n (V) + b e t a n (V) ) ∗∗4)

def x4bar (V) : re turn nCr ( 4 , 4 ) ∗ ( ( a l p h a n (V) ∗∗4) ∗ ( b e t a n (V) ∗∗(4−4) ) ) / ( (

a l p h a n (V) + b e t a n (V) ) ∗∗4)

def y00bar (V) : re turn ( nCr ( 3 , 0 ) ∗ ( alpham (V) ∗∗0 ∗ betam (V) ∗∗(3−0) ) ∗ (

a l p h a h (V) ∗∗0 ∗ b e t a h (V) ∗∗(1−0) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y10bar (V) : re turn ( nCr ( 3 , 1 ) ∗ ( alpham (V) ∗∗1 ∗ betam (V) ∗∗(3−1) ) ∗ (

a l p h a h (V) ∗∗0 ∗ b e t a h (V) ∗∗(1−0) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y20bar (V) : re turn ( nCr ( 3 , 2 ) ∗ ( alpham (V) ∗∗2 ∗ betam (V) ∗∗(3−2) ) ∗ (

a l p h a h (V) ∗∗0 ∗ b e t a h (V) ∗∗(1−0) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y30bar (V) : re turn ( nCr ( 3 , 3 ) ∗ ( alpham (V) ∗∗3 ∗ betam (V) ∗∗(3−3) ) ∗ (

a l p h a h (V) ∗∗0 ∗ b e t a h (V) ∗∗(1−0) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y01bar (V) : re turn ( nCr ( 3 , 0 ) ∗ ( alpham (V) ∗∗0 ∗ betam (V) ∗∗(3−0) ) ∗ (

a l p h a h (V) ∗∗1 ∗ b e t a h (V) ∗∗(1−1) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )
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def y11bar (V) : re turn ( nCr ( 3 , 1 ) ∗ ( alpham (V) ∗∗1 ∗ betam (V) ∗∗(3−1) ) ∗ (

a l p h a h (V) ∗∗1 ∗ b e t a h (V) ∗∗(1−1) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y21bar (V) : re turn ( nCr ( 3 , 2 ) ∗ ( alpham (V) ∗∗2 ∗ betam (V) ∗∗(3−2) ) ∗ (

a l p h a h (V) ∗∗1 ∗ b e t a h (V) ∗∗(1−1) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

def y31bar (V) : re turn ( nCr ( 3 , 3 ) ∗ ( alpham (V) ∗∗3 ∗ betam (V) ∗∗(3−3) ) ∗ (

a l p h a h (V) ∗∗1 ∗ b e t a h (V) ∗∗(1−1) ) ) / ( ( alpham (V) +betam (V) ) ∗∗3 ∗ ( a l p h a h

(V) + b e t a h (V) ) )

# C re a t e I n i t i a l C o n d i t i o n s

V = np . z e r o s ( ( nt ,NN) )

X = np . z e r o s ( ( nt ,NN, 5 ) )

Y = np . z e r o s ( ( nt ,NN, 8 ) )

S = np . z e r o s ( ( nt ,NN) )

V [ 0 , : ] = −65.0

X[ 0 , : , 1 ] = x1ba r (V [ 0 , : ] ) # x1

X[ 0 , : , 2 ] = x2ba r (V [ 0 , : ] ) # x2

X[ 0 , : , 3 ] = x3ba r (V [ 0 , : ] ) # x3

X[ 0 , : , 4 ] = x4ba r (V [ 0 , : ] ) # x4

X[ 0 , : , 0 ] = 1−X [ 0 , : , 1 : ] . sum ( )

Y[ 0 , : , 1 ] = y10bar (V [ 0 , : ] ) # y1

Y[ 0 , : , 2 ] = y20bar (V [ 0 , : ] ) # y2

Y[ 0 , : , 3 ] = y30bar (V [ 0 , : ] ) # y3

Y[ 0 , : , 4 ] = y01bar (V [ 0 , : ] ) # y4

Y[ 0 , : , 5 ] = y11bar (V [ 0 , : ] ) # y5

Y[ 0 , : , 6 ] = y21bar (V [ 0 , : ] ) # y6

Y[ 0 , : , 7 ] = y31bar (V [ 0 , : ] ) # y7
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Y[ 0 , : , 0 ] = 1−Y [ 0 , : , 1 : ] . sum ( )

a l e f = 5 . 0 / ( 1 + sp . exp (−(V[ 0 , : ] + 3 ) / 8 . 0 ) )

S [ 0 , : ] = a l e f / ( a l e f +1)

R = np . z e r o s ( ( NS , l e n ( T ) ) )

# Euler−Maruyama method

f o r a in xrange (NS) :

p r i n t a

f o r i in xrange ( 1 , n t ) :

X[ i −1 , : , 0 ] = 1−X[ i − 1 , : , 1 : ] . sum ( a x i s =1)

Y[ i −1 , : , 0 ] = 1−Y[ i − 1 , : , 1 : ] . sum ( a x i s =1)

V[ i , : ] = V[ i −1 , : ] + d t ∗ ( I i n j ( i −1)−I NaSDE (V[ i −1 , : ] ,Y[ i −1 , : ] )

− I KSDE (V[ i −1 , : ] ,X[ i −1 , : ] ) − I L (V[ i −1 , : ] ) ) + d t ∗ ( ( Vr−V[ i

−1 , : ] ) /w ∗ np . d o t ( E , S [ i −1 , : ] ) )

# Po tas s ium Channe ls

ak = AK(V[ i −1])

z = np . a r r a y ( [ np . d o t ( ak [ l ] , X[ i −1][ l ] ) f o r l in xrange (NN) ] )

sk = SK(V[ i −1] ,X[ i −1] ,NK)

s = np . a r r a y ( [ np . d o t ( sk [ l ] , np . random . normal ( 0 , 1 , s i z e =5) ) f o r

l in xrange (NN) ] )

X[ i , : , : ] = X[ i −1 , : ]+ d t ∗ ( z ) +np . s q r t ( d t ) ∗ s

X[ i , : , 0 ] = 1−X[ i , : , 1 : ] . sum ( a x i s =1)

# Sodium Channe ls

ana = ANa(V[ i −1])

p = np . a r r a y ( [ np . d o t ( ana [ l ] ,Y[ i −1][ l ] ) f o r l in xrange (NN) ] )

sna = SNa (V[ i −1] ,Y[ i −1] ,NNa)

q = np . a r r a y ( [ np . d o t ( sna [ l ] , np . random . normal ( 0 , 1 , s i z e =8) )
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f o r l in xrange (NN) ] )

Y[ i , : , : ] = Y[ i −1 , : , : ] + d t ∗ ( p ) +np . s q r t ( d t ) ∗q

Y[ i , : , 0 ] = 1−Y[ i , : , 1 : ] . sum ( a x i s =1)

# Coup l ing Term

S [ i , : ] = S [ i −1 , : ]+ d t ∗ psp (V[ i−i , : ] , S [ i −1 , : ] )

V1 = V [ : , 0 ]

V2 = V [ : , 1 ]

V3 = V [ : , 2 ]

def s p i k e D e t e c t (V, t , s p i k e t h r e s h ) :

’ ’ ’

S p i k e t i m e g i v e n membrane p o t e n t i a l

’ ’ ’

s p k t = t [ sp . l o g i c a l a n d (V[ :−1] < s p i k e t h r e s h , V [ 1 : ] >=

s p i k e t h r e s h ) ]

re turn s p k t

s p k t 1 = s p i k e D e t e c t ( V1 , T , 0 ) # D e t e c t t i m e s o f s p i k e s o c c u r i n g o f

t h e $1 ˆ{ s t }$ neuron

s p k t 2 = s p i k e D e t e c t ( V2 , T , 0 )

s p k t 3 = s p i k e D e t e c t ( V3 , T , 0 )

spktN = [ spk t1 , spk t2 , s p k t 3 ]

# C a l c u l a t e S y n c h r o n i c i t y F u n c t i o n

def p h i ( spk t , t ) :

bx = spk t<t # C re a t e v e c t o r o f True / F a l s e

m = np . sum ( bx ) # Count t h e number o f True E l e m e n t s

t r y :
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p= 2∗np . p i ∗ (m−1)+2∗np . p i ∗ ( ( t−s p k t [m−1]) / ( s p k t [m]− s p k t

[m−1]) )

e xc ep t :

re turn 0

re turn p

def sync ( t ) :

r = 0

f o r i in xrange (NN) :

r = r + np . exp (1 j ∗ p h i ( spktN [ i ] , t ) )

r = abs ( ( 1 . 0 /NN) ∗ r )

re turn r

f o r i , t in enumerate ( T ) :

R[ a , i ] = sync ( t )

R avg = R . mean ( a x i s =0)

R var = R . v a r ( a x i s =0)

e r r = np . s q r t ( R var ) / np . s q r t (NS)

p l t . p l o t ( T , R avg , ’ p u r p l e ’ , l a b e l = ’Mean $R ( t ) $ ’ )

p l t . f i l l b e t w e e n ( T , R avg−e r r , R avg+ e r r , a l p h a = 0 . 5 , f a c e c o l o r = ’ #C165FA ’

)

p l t . show ( )
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