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Abstract 

Neutron stars are studied in the framework of nuclear relativistic 
field theory. Hyperons and pions significantly soften the equation of 
state of neutron star matter at moderate and high density. We con­
jecture that they are responsible for the softening that is found to be 
crucial to the bounce scenario in supernova calculations. Hyperons 
reduce the limiting mass of neutron stars predicted by theory by one 
half solar mass or more, which is a large effect compared to the range 
in which theories of matter predict this limit to fall. 
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1 Introduction 

In this paper we extend our study of the influence of hyperons and pions on 

the equation of state of neutron star matter, and on neutron star structure 

[1,2,3]. There are two motivations for this. The first has to do with the 

theory of nuclear matter, and the second with developments in the under-

standing of supernova. We discuss these in turn. 

Much has been learned in nuclear theory since the pioneering work of 

Bethe and Johnson [4] and of Pandharipande [5] on neutron stars. Those 

calculations were done at a time when it was considered an achievement 

to obtain the binding and saturation density of nuclear matter correctly. 

Among the seven criteria that Bethe and Johnson list as being important 

constraints on a theory of matter, the only properties of matter mentioned 

are the binding and saturation density. Pandharipande was content with a 

minimal constraint, that liquid H e3 and H e4 should come out about right. 

No mention is made of the compression modulus of nuclear matter, nor the 

symmetry energy, even though neutron stars are very dense and are the most 

isospin asymmetric objects known to exist. In addition to these particular 

problems with the early work as they relate to neutron star structure, is 

the more general one. We now know that the early many-body-calculations 

were not carried out to convergence. When the theory is more accurately 

calculated, both the Bethe-Breuckner and the variational approaches are in 

agreement and saturate at a density more than a factor two larger than the 

empirical value, and with too much binding [6]. We have also learned over 

the last several years that relativity is very important even at nuclear den-
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sity and therefore especially at higher density. For example, the relativistic, 

corrections calculated by Ainsworth et. al. [7] amount to 100 percent in 

both the saturation density and the binding energy of symmetric nuclear 

matter. Finally, theories of matter based on the Schroedinger theory violate 

causality at high density. Even if they do so above densities of interest for 

neutron stars, the fact that they do so means that the equation of states 

calculated in the non-relativistic approximation are too stiff even below the 

point where they actually cross the p = € causality limit, since this should 

be their asymptote. 

The approach used in this work is quite different than that in the early 

work on neutron star structure, and is one for which the list of successes in 

describing nuclear properties and scattering of nucleons from nuclei is grow­

ing. It is an effective relativistic nuclear field theory, that makes contact 

with data, not at the level of two-body scattering, but with the bulk proper­

ties of nuclear matter. When the coupling constants are determined by the 

bulk nuclear properties, it is then found that a large number of properties 

of finite nuclei are well accounted for [8], or conversely [9]. With the theory 

thus constrained by the important bulk properties, it can be appropriately 

generalized [1,2,3] and extrapolated to higher density. Of course the finite 

size of the nucleon and its internal structure places an upper limit on the 

domain of validity of an effective theory that employs hadrons as the degrees 

of freedom. The upper limit is so far not known. 

The second motivation arises from the problems surrounding supernova 

and the origin of neutron stars. Although for many years, supernova erup-
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tions have been thought to be the birthplace of heavy elements in the uni­

verse and of neutron stars, numerical simulations had not produced a suc­

cessful scenario in which most of the imploding material from the collapse of 

a massive star is ejected as a result of the bounce and the subsequent shock 

wave that are produced when matter compresses to supernuclear density. 

Failure to eject means that the stellar material will once more be accreted 

by gravity, and the massive remnant will subside into a black hole rather 

than a neutron star, as must be the case whenever the mass of the ac­

creted material exceeds a critical value of several solar masses. There have 

been two recent developments. Wilson [10] discovered that by continuing 

his simulation for more than ten times longer (several hundred milliseconds) 

after the bounce than had been done previously, the stalled shock was re­

vived by reheating due to absorption of a neutrino shower emitted by the 

cooling core. This scenario, if confirmed, requires the failure of the bounce 

to promptly eject most of the stellar material. The second development is 

that in a particular circumstance, the long anticipated scenario of prompt 

ejection by the bounce can succeed [11]. One crucial element is that the 

equation of state must be soft at high density [12]. The other element is 

a technical one, namely that the hydrodynamics of the collapse are treated 

in the frame of general relativity. In this work we advance an hypothesis 

concerning the physical origin of the softening at high density that is found 

to be crucial to the bounce scenario. We show that the equation of state of 

the high density neutron star matter involved in the collapse is substantially 

softened by the decay or scattering of energetic nucleons at the top of the 
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Fermi sea into hyperons, and at lower density, but less dramatically, by the 

condensation of negative pions. We show that gravity exploits this softness 

very effectively in neutron stars, by reducing the limiting mass predicted by 

theory by an amount equal to one half or more of the range in which theo­

ries that neglect these effects predict it to fall. The natural inference is that 

pions and hyperons are the agents that underlie the parameterized softness 

of the equation of state that is required by the stellar collapse simulations 

to achieve a successful ejection of the mantle. 

The presence of hyperons in neutron stars, although not observable, 

is hard to refute. A simple Fermi gas model predicts their presence [13], 

and studies with nuclear forces, support this finding [1,2,3,4,5,14,15]. The 

presence of pions is less certain, and ultimately depends on the magnitude 

of their effective mass in neutron star matter as compared to the electron 

chemical potential. Therefor, as regards pions, we shall consider two extreme 

cases, one for which pions do not condense because of an assumed effective 

mass which is too large, and one for which they condense at the vacuum 

mass. 

Star collapse is a dynamic process, but we note that the time scale is 

long in comparison with the hadronic interaction scale, so that the processes 

studied here can take place during the collapse phase of the evolution. 

2 Theory 

Matter at the density of neutron star cores is relativistic and we therefore 

employ a relativistically covariant field theory of hadrons based on the ex-
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change of scalar, vector, and vector-isovector mesons (a, w, p). Such a theory 

[16], augmented with scalar self-interactions [17], can describe very well both 

the bulk and single-particle properties of finite nuclei [8,9]. 

We must generalize the theory for neutron stars. Stars are essentially 

charge neutral because the repulsive Coulomb force is so much stronger than 

the gravitational one. A star composed solely of neutrons satisfies this con­

dition but is unstable against beta decay. The neutron at the top of the 

Fermi sea has enough energy to decay into a proton and electron. So pure 

neutron stars cannot exist. As the density further increases, other baryon 

thresholds will be reached and neutrons and protons with high kinetic en­

ergy will interact or decay to form hyperons, deltas, and excited nucleons. 

Therefor we should allow for a generalized beta equilibrium in dense neu­

tron star matter, allowing whatever baryons to participate as dictated by the 

equations of chemical equilibrium, which depend on the chemical potentials 

of the conserved baryon and electric charges, and on the baryon masses and 

interactions. This generalization was carried out previously, and we do not 

recount the details [1,2,3]. Concerning mesons, of all those that are known 

to exist, only the ones with quantum numbers of the three mentioned above, 

together possibly with the pion, can have finite mean values in the normal 

ground state of neutron star matter. We have given the full reason for this 

previously [2,3], but briefly mention here that the quantum numbers of other 

mesons, including the pion, are such that a phase transition is required to 

. endow the meson with a finite amplitude. In the absence of such a phase 

change, the meson satisfies the free Klein-Gordan equation and is free to 
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decay, thus lowering the star's energy. This is the normal fate of the strange 

mesons produced in association with the hyperons. Concerning the possi­

bility of phase transitions, only negatively charged mesons are energetically 

favored, because they can then replace relativistic electrons when the elec­

tron chemical potential attains the value of the meson effective mass. Being 

bosons they can all condense in the lowest energy state. This means that 

the electron chemical potential will saturate when such a meson of lowest 

mass, namely the pion, condenses. If this happens, all such phase transitions 

corresponding to higher mass mesons are foreclosed. Even if the pion does 

not condense, which would be the case if the net interaction (polarization 

operator) were repulsive in the relevant density range, the condensation of 

higher mass mesons is foreclosed by the hyperons. The reason is that the 

rate of increase of the electron chemical potential with density is lowered 

as it reaches a value near the mass difference between the Nand A. At 

that point it is more favorable for a neutron to be transformed into A than 

into proton and electron. Other thresholds are reached with increasing den-

sity, and again the electron chemical potential saturates, on a scale typical 

of the hyperon-nucleon mass difference. This is so much smaller than the 

mass of the other charged mesons, that again their condensation is fore-
, ' 

closed. Since, with increasing density, charge neutrality can be achieved 

mainly among baryons, eventually the pion condensate is quenched, if it has 

occurred at lower density. 

Following from the above discussion, we can write the Lagrangian in­

cluding all baryons and mesons that are relevant to neutron stars as, 
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(1) 

Here 1/JB denotes a baryon spinor and the sum is over all charge states of N, 

A, A,~, 3 ... until the solution converges over the range of densities relevant 

to the star. The (7- and w-mesons are Yukawa coupled to the baryons and the 

p-meson is coupled to the isospin current. The £0 are the free Lagrangians 

of the mesons. The last term is the lepton Lagrangian, with 1/J>. being the 

lepton spinor, and the sum is over the electron and muon. 

Negative pions will condense when the electron chemical potential attains 

the value of the pion effective mass in the medium. Under that circumstance 

they are energetically favored over leptons. When or if this happens, the 

equation of state will be softened, in general. We will consider two limiting 

cases, one for which the pions do not condense, because of an assumed too 

large effective mass. The other limiting case will allow free pions to condense 

with their vacuum mass. This case will be the opposite extreme, as concerns 

the effect of pions on the equation of state, and on neutron star masses [18]. 

When the field equations following from eq. 1 are solved with the sub-

sidiary condition of charge neutrality and chemical equilibrium, we obtain 

a solution corresponding to neutron star matter. When they are solved 

with the subsidiary condition of isospin symmetry, we obtain the solution 
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for symmetric nuclear matter. The five coupling constants in the theory, 

9(J'/m(J' , 9p/mp, 9w/mw, b, c are chosen to reproduce the bulk properties of 

uniform symmetric matter, and a nucleon effective mass of 0.8 at saturation. 

For N baryon species, the field equations and conditions of charge neu­

trality and chemical equilibrium at a chosen baryon density comprise a sys­

tem of 8 + N non-linear equations in the unknown meson field amplitudes, 

chemical potentials, and Fermi momenta, 

(2) 

If the electron chemical potential attains the value of the pion effective 

mass, it saturates at that value, and the pion number density replaces it as 
I 

an unknown which is to be determined by the condition of charge neutral-

ity. When the solution is obtained, the pressure and energy density can be 

calculated. They are given in this theory by the expressions [2,3], 

(3) 
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(4) 

In these equations, 0", p(=P03) and w(=wo) denote the mean values of the 

scalar meson, and the time-like components of the neutral P- and w-mesons. 

The space-like components vanish in.isotropic matter. The number density 

of pions is denoted by n1!", and becomes finite when the electron chemical 

potential attains the value m1!"' The last term of eq. 3 and 4 are the lepton 

contributions to the pressure and energy density. The hadron contributions 

are given by the other terms. 

The star structure is determined by the solution of the Oppenheimer-

Volkoff equations, to which the Einstein equations of general relativity re-

duce in the special case of static spherical bodies, 

_ GM(r)dM(r) ( per») ( 41l'r3p(r») ( _ 2GM(r») -1 (5) 
r2 1 + fer) 1 + M(r) 1 r 

I 

(6) 

The equation of state p = p( f) from above appears in them, and they express 

the condition of balance between pressure and gravitational force. They can 

be integrated from the origin with the initial conditions that M(O) = 0 

and an arbitrary value for the central density f(O), until the pressure, p( r), 

becomes zero. That point, R, defines the radius of the star, and M(R) its 

mass. For the given equation of state, there is a unique relationship between 

the mass and central density, f(O). For each central density the integration 
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also provides the density profile and composition of the star, through the 

connection between €( r) and the composition, as provided by the solution, 

eq. 2, to the theory of matter. 

3 Results 

The five coupling constants in the theory, gu/mu, gp/mp, gw/mw, b, c, are 

chosen so that the theory possesses the bulk properties of uniform sym­

metric matter [19], B/ A = 15.95 MeV, saturation density p = 0.145jm-3, 

symmetry energy coefficient asym = 36.8 MeV, the compression modulus 

J(, = 240 MeV, and the nucleon effective mass at saturation, which we as­

sume to be 0.8. The value of the compression modulus is consistent with 

the analysis of the giant monopole resonance [20], with the droplet model 

of atomic masses [19], with the charge-distribution differences in heavy iso­

topes [21] and it is also consistent with known neutron star masses [18]. The 

corresponding coupling constants are (gu/mu)2 = 9.637 Jm2, (gw/mw)2 

4.5316Jm2, (gp/m p)2 = 6.4792Jm2, b = 0.00895, c = 0.003689. 

The couplings guH, gwH and gpH of the hyperons to the mesons cannot 

be inferred from the saturation and ground state properties, and are chosen 

in accord with a suggestion of Moszkowski [14], depending on quark counting 

in the meson exchange, namely, gH / gN = 2/3. 

For neutron star matter (matter that is charge neutral and in chemical 

equilibrium), we compare in Fig. 1 the equations of state of matter in three 

cases, (1) only neutrons, protons and leptons are allowed to participate, 

(2) all baryons and leptons required by chemical equilibrium are allowed 
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to participate, and (3) in addition pions condense at their vacuum mass. 

This comparison is made again in Fig. 2 for the energy per baryon as a 

function of the baryon density. In all cases, the compression modulus of 

the corresponding symmetric nuclear matter is K = 240 MeV. Note that 

neutron star matter is not bound. The softening effect of the pions can be 

seen in these figures above their threshold density. They condense at a rather 

low density in neutron star matter when the constraint of charge neutrality 

makes them more energetically favorable than leptons. Further softening 

occurs at higher threshold densities, as the hyperons become successively 

populated. They quench the pion population at high density because there 

charge neutrality is achieved mainly among the baryons. 

The same comparisons as above are made in Fig. 3 for neutron star 

masses as a function of their central densities. Although on the scale shown 

for the equations of state, the differences between the three cases does not 

appear to be large, here we see that gravity is quite sensitive to the dif­

ferences. In particular the limiting mass (maximum neutron star mass for 

given equation of state), is reduced by about one half solar mass or about 25 

percent. We show below that this is even more significant than first appears. 

Pions effect the intermediate mass stars, because the pion threshold is at 

lower density, and they are quenched by hyperons at higher density [2,3]. 

For the latter reason, they have little effect on the limiting mass, though 

they effect the mass of intermediate stars, and by inference will play a role 

in stellar collapse. 

The evidence on the compression modulus from nuclear structure [19,20] 
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suggests that the above chosen value is optimum. Elsewhere, we have shown 

that neutron star masses place a lower limit of J( ~ 200 MeV [18]. Keeping 

the other nuclear matter properties fixed, the corresponding coupling con­

stants are (ga/ma)2 = 1O.2811jm2, (gw/mw)2 = 4.5316jm2, (gp/m p)2 = 
6.4792jm2 , b = 0.013265, c = -0.010695. Fig. 4 shows that the role of 

hyperons in this case is even stronger, reducing the limiting mass by 3/4 of 

a solar mass. 

The scale on which the effects of hyperons should be judged is now 

discussed. We know from Oppenheimer's classic work that the limiting· 

mass of a neutron star corresponding to an ideal gas equation of state is 

0.7 solar masses. As a lower theoretical bound this is unrealistic however, 

since the short range repulsion of the nuclear force will increase it. In fact 

the results for a large number of calculations fall in a range between about 

1.5 and 2.5 solar masses corresponding to various assumptions about the 

nuclear forces and constituents of matter [22,23]. So the relevant scale is 

one solar mass. We here find that hyperons can reduce the limiting mass by 

1/2 to 3/4 of a solar mass, depending on whether the nuclear compression 

modulus is assumed to be 240 or 200 MeV respectively. 

The effect of hyperons on the limiting neutron star mass found in this 

work is much larger than was found in the early work, and is typical of or 

larger than the effect of widely varying assumptions concerning the nuclear 

force. For example, Pandharipande finds a reduction due to hyperons of only 

a quarter of a solar mass [23]. From an examination of the baryon thresh­

olds in his calculation, we believe that the main source of the disagreement 
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between our result and his is the absence of a control in his work, on the 

symmetry energy, which we believe is too small. 

Bethe and Johnson [4] did not calculate star structures. This was done 

in another work [23] which compared models I and V. However the principle 

difference between these two cases are the nuclear forces, as is clear from an 

examination of table 7 in ref. [4]. The limiting masses are 1.85 and 1.65 solar 

masses respectively [23]. It is not possible to isolate the effect of hyperons 

on star structure from published work on Bethe and Johnson's calculation 

of the equation of state. 

4 Summary 

We have calculated the equation of state of neutron stars in a relativistically 

covariant field theory of interacting hadrons. The coupling constants of the 

theory are determined by the bulk properties of nuclear matter, including 

very importantly the compression modulus and the symmetry energy. In 

particular we studied the role of hyperons and pions. Our main conclusions 

are the following: 

1) Pions and hyperons substantially soften the equation of state of 

neutron star matter. The pion threshold occurs at the lowest density. They 

are quenched at higher density by hyperons, which introduce an even greater 

softening. Gravity integrates these effects over the range of densities found in 

neutron stars, with the consequence that star masses are reduced throughout 

the range in which these particles form a component of charge neutral stable 

dense matter, the effect being especially large for the star at the limiting 
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mass. The predicted effect of these particles on the limiting mass is large, 

amounting to one half or more of the range in which this limit falls for 

theories that ignore the hyperons and pions. This has an implication for 

theories of star structure that neglect hyperons. Since neutron stars of mass 

as large as 1.4 solar masses are known [24], the limiting mass of a theory of 

matter must exceed this, and by a large margin if the hyperon presence is 

not accounted for. 

2) The large effects that pions and hyperons have on the mass curve 

and limiting mass of neutron stars suggests that these may be the physical 

agents that cause the softening at high density that is found to be "crucial" 

[12] for obtaining a strong enough bounce during the collapse of a massive 

star to sustain the prompt ejection of mass into a supernova event. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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Fig. 1 Equation of state, pressure as a function of energy density, E, for 

three cases, 1) neutron and proton, 2) hyperons in addition, 3) pions in 

addition. In all cases leptons are present to complete the beta equilibrium. 

The compression modulus of the corresponding symmetric nuclear matter is 
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compression modulus of the corresponding nuclear matter is J( = 240 MeV. 
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FIg. 4 Neutron star masses as a function of central energy density for 

the three cases, 1) neutron and proton, 2) hyperons in addition, 3) pions in 

addition. In all cases leptons are present to complete beta equilibrium. The 

compression modulus of the corresponding nuclear matter is f( = 200 MeV. 
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