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ABSTRACT OF THE THESIS 

 
Orientation-dependent handedness of chiral plasmons 

 
By 

 
Kate Rodriguez 

 
Master of Science in Chemistry 

 
 University of California, Irvine, 2018 

 
Professor V. Ara Apkarian, Chair 

 
 

 

Optical activity has long been an area of interest in Raman scattering 

spectroscopy as it is a powerful tool for elucidating molecular chirality. Here, I provide 

details from an investigation into plasmonic (rather than molecular) optical activity in 

surface-enhanced Raman spectroscopy. The sample used is the prototypical dumbbell 

nano-antenna (nantenna) consisting of two gold nanospheres functionalized with 

bipyridyl ethylene molecular reporters. Previous analysis of the linear dichroism reveal 

that the structures scatter as dipolar antennas, with the molecular vibrations following 

the polarization patterns of the dumbbell on which they reside. Current investigations 

into circular optical activity of the nantenna reveal two notable observations. First, the 

Raman optical activity is at least two orders of magnitude larger than values typically 

observed for molecular species. Second, the observed handedness of the dumbbell is 

entirely dependent on its orientation in the plane perpendicular to excitation.  

 We attribute this counter-intuitive effect to the multipolar response of the 

plasmonic nantenna, which arises from its large size with respect to the excitation 

wavelength (~𝜆/2). Here, the long-wave approximation breaks down and retardation 
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effects can no longer be ignored, giving rise to the inclusion of the electric quadrupole 

and magnetic dipole modes in addition to the zeroth-order electric dipole. The observed 

ODH can be understood in terms of the electric and magnetic dipole terms, which 

appear to undergo a simultaneous time reversal operation upon in-plane rotation. These 

results are explained in the framework of Jones calculus and have important 

implications in the treatment of bi-isotropic media. 
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1. INTRODUCTION 

1.1. Surface enhanced Raman on plasmonic nantennas 

In the historic push toward single molecule detection, surface enhanced Raman 

spectroscopy (SERS) has emerged as a powerful and multifaceted technique due to its 

high enhacement factors (>108 in some cases) (1) and broad range of applicability to 

various samples (2). Although there are several ways of engineering SERS-capable 

systems, of particular interest is the so-called “dumbbell” dimer nano-antenna 

(nantenna), consisting of two metallic nanospheres functionalized with a molecular 

reporter (3). The nantenna nomenclature is a nod to the classical Hertzian dipole 

antenna to which the dumbbell serves as a nano-scale analog (4). Here, the metallic 

nanospheres confine incident radiation to the nm-scale inter-sphere junction; this high 

degree of spatial confinement of the fields contributes to the dramatic enhancement 

factors observed in these structures (3). 

The particular geometry utilized here is two gold nanospheres, ~100 nm in 

diameter each, linked with bipyridyl ethylene (BPE) molecular reporters. This puts the 

total size of the dimer at nearly 200 nm, or approximately 𝜆/2 for optical excitation 

wavelengths. At this size, the dipolar approximation fails – the dimer is large enough to 

experience field gradient effects and, as such, spatial dispersion must be taken into 

account. Doing so culminates in the inclusion of both magnetic dipole and electric 

quadrupole terms, in addition to the zeroth order (long-wavelength limit) electric dipole 

(5). Experimentally, the inclusion of these higher order multipoles is verified by 

polarization-resolved Raman scattering measurements – we find that all three terms are 

required to correctly reproduce the observed sample scattered intensity patterns. These 
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experiments (and their subsequent fits) will be discussed in more detail accordingly; 

here, we focus instead on the qualitative consequences that arise from plasmonic 

multipolar Raman. 

One immediate consequence of multipolar response is an additional 

enhancement: in general, the ratio of magnetic to electric dipolar transitions scale as 

|𝑚⃑⃑ |2/|𝑑 |2~|𝑘⃑ ∙ 𝑟 |2 = |2𝜋𝑟 /𝜆|2  (5). This ratio is approximately unity for a 𝜆/2 antenna 

such as our dimer; compared to the ratio in the long-wavelength limit (10-4), we gain an 

additional enhancement of 104 beyond strictly dipolar Raman scattering. This provides 

the basic mechanism by which phenomena such as linear dichroism and optical activity 

in SERS are made possible. The two proceeding sections will elaborate on these 

observations in more detail. 

 

1.2. Previous results: Linear dichroism 

The first set of polarization-resolved SERS experiments put forth by the Apkarian 

lab were investigations into linear dichroism. A halfwave plate (HWP) was used to 

sweep out incident linear polarization through 360° with Raman spectra recorded every 

few degrees. The scattered signal is decomposed into two orthogonal channels, one 

parallel and one perpendicular to the incident linear polarization, to allow for full 

characterization of the material response. The details of this experiment are presented 

elsewhere (6); here we note only that, as shown in Fig. 1, the dimers scatter as typical 

dipolar antenna. Although all polar plots presented in this document are integrated over 

the 1640 cm-1 molecular vibration of the reporter molecule (BPE), in all cases the 
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molecular reporter merely follows the dimer scattering pattern – i.e., it is the antenna 

polarization alone that is broadcast to the far-field. 

 

Figure 1.1: Linear optical activity. Results from three 

representative dimers under linear OA measurements. 

The first dimer is a symmetric dipolar antenna, while the 

following two display scattering asymmetry in the 

perpendicular channel. This asymmetry was the first 

evidence of OA exhibited by the dimers, and was the 

inspiration for the circular OA experiments that will be 

the focus of this thesis. 

 

 

 

 

 

 

Though the parallel channel shows symmetric dipolar response in all cases, 

unique asymmetry is sometimes observed in the perpendicular channel when the 

incident excitation is polarized along ±45° with respect to the antenna long 

(interparticle) axis. This is an interesting realization of plasmonic linear dichroism which 

lead us to believe that the dimers exhibit some inherent handedness, here with respect 

to ±45° light. The most natural extension of this experiment is to then use circularly 

polarized light (CPL) to investigate the chiral nature of these plasmonic nanoparticles. 
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1.3. Chirality, handedness, and optical activity 

Before we proceed further, it is useful to define the terms chirality and 

handedness both in general and as applied to plasmonic systems. The definition of 

chiral in the framework of optical activity (OA) refers to an object that is not 

superimposable onto its mirror image. For some chiral objects, such as a shoe, the 

handedness is immediately apparent – you can, for example, immediately tell if a shoe 

belongs on your left or right foot. For more complicated structures, such as molecules 

whose handedness is not immediately apparent, we instead must inspect their 

interactions with CPL (either right- or left-handed) as an object will interact preferentially 

with light of its same handedness (7).  

Traditionally, OA in Raman spectroscopy refers to studies of chiral molecules 

under right- (RCP) and left-handed (LCP) CPL. We distinguish this from our resulting 

OA experiments, as the chirality here arises from the optical response of the nantenna 

and is therefore plasmonic, rather than molecular, in nature. Nevertheless, the 

treatment of OA is equivalent in either case. The extent of OA is calculated by taking the 

difference in scattered intensity between SERS spectra collected under RCP and LCP, 

which is typically very weak (on the order of ppt) for molecular species (8). In terms of 

molecular OA, the phenomenon is attributed to the compound action of the polarizability 

and optical activity tensors, whereby scattered light contains explicit dependence on the 

degree of circular polarization of the excitation (9). 

The definition of chirality in terms of non-superimposable mirror images, since 

based on a discrete transformation (reflection), leads to difficulty when attempts are 

made to quantify the extent of chirality. This ultimately culminates in the issue of chiral 
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connectedness: based on the historical definition of chirality, quantification efforts 

indicate that a mirror symmetric object should have chirality of zero, while the two 

enantiomers of a chiral object should be of opposite sign so that the sign of one 

enantiomer exactly inverts upon reflection into the other. In reality, however, any 

continuous object may be taken continuously from one enantiomer to the other such 

that it reaches a state of zero chirality that is necessarily non-mirror symmetric. 

Additionally, some mirror-symmetric objects are able to exhibit clear handedness, for 

example, due to extrinsic chirality generated by the relative orientations of the 

intrinsically achiral structure and the excitation source (10). Such considerations 

constitute the paradox of chiral connectedness and for many years hampered efforts 

into the quantification of chirality. 

A more rigorous mathematical definition for quantifying chirality and handedness 

was given by Efrati and Irvine (11). In this work, the authors construct an object whose 

handedness depends entirely on the direction from which the object is viewed. In this 

way, the object can be made either RH or LH depending on how it is oriented in the 

plane parallel to excitation. By incorporating this orientation-dependence into the 

object’s handedness tensor, chiral connectedness is now fully accounted for: this 

treatment allows for the explanation of objects that both lack mirror symmetry/have no 

net chirality and have mirror symmetry/have net chirality. It is with these 

characterizations in mind that we now proceed to our own ODH experiments.  
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1.4. Optical activity in plasmonic nantennas 

The considerations undertaken in the series of experiments presented here differ 

from those of standard ROA and from previous orientation-dependent handedness for 

two critical reasons. First, as already mentioned, the chirality of the dimers arises from 

the multipolar Raman response of the plasmon, not of the molecular reporter – i.e., the 

chirality arises from the motion of the electrons comprising the plasmon. Though this 

initially seems far-removed from the structurally-derived handedness observed in many 

molecules, it is the very structure of the nantenna that, to large extent, dictates its 

plasmonic and scattering response. Second, the nantenna ODH is exhibited in the 

plane perpendicular to the excitation, rather than a plane parallel to it.  

Effectively, as a result of these we will see that the OA of a typical dimer is (1) 

several orders of magnitude larger than is typically seen, and (2) forced to undergo a 

change in handedness under 90° in-plane rotation. Furthermore, the dimers embody 

chiral connectedness insofar as their handedness can be continuously varied from RH 

→ achiral → LH meanwhile, even at their achiral orientation, they are still wholly chiral 

objects. This is analogous to a liquid cell filled with both RH and LH molecular 

enantiomers – the concentration can be varied continuously so that a predominantly RH 

mixture is eventually made racemic; though the racemic solution is not handed overall, it 

still cannot be superimposed onto its mirror image and thereby remains chiral.  

The distinct nature of plasmonic chirality requires brief further comment here as it 

is, at its core, chirality of motion. As we will see in Chapter 4, the dimers sustain three 

dominant multipolar modes under visible light excitation: namely, the electric dipole, 

electric quadrupole, and magnetic dipole terms are simultaneously excited. The electric 
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and magnetic dipole terms are the crux of the plasmonic OA which is rationalized as 

follows. The electric dipole, which implies translation of charge, couples to the magnetic 

dipole, which drives charge circulation. The net effect of the two motions, translation + 

circulation, is helical motion – an inherently handed effect which naturally couples 

preferentially with light of the same handedness. This simple model serves as the basis 

for the entire plasmonic OA treatment. 

Our goal is to describe a dimer in terms of its own 2D response function in SU(2), 

it’s so-called Jones matrix or, more formally, the familiar polarizability matrix of Raman. 

This matrix can be extracted directly from experimental data, working within the 

framework of Jones calculus. A more powerful treatment, however, comes from 

uniquely identifying the nature of each matrix element in terms of the direct multipolar 

modes – the generality of such a model allows for extensions to other systems and 

opens the door for a myriad of future applications.  
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2. EXPERIMENTAL 

2.1. Sample preparation and initial characterization 

 All experiments are carried out on individual dimers, consisting of two gold 

spheres (100±10 nm in diameter each) laced with trans-1,2-bis(4-pyridyl)-ethylene 

(BPE) molecular reporters and coated with a silica shell (~70nm) for thermal stability. 

The sample, which is obtained in a water-based suspension from Cabot, is sonicated 

and subsequently dispersed onto a silicon nitride transmission electron microscopy 

(TEM) grid. At this point, the sample will contain several geometries – monomers, 

dimers, trimers, etc. The grid surface coverage is controlled via the concentration of the 

original solution dispensed onto the grid. We typically aim for relatively low coverage, 

with all particles separated from their nearest neighbors by at least a micron. Scanning 

electron microscopy (SEM) is used first to map out the surface of the TEM grid, allowing 

for identification of particle location and geometry.  

 

2.2. Experimental geometry 

 SERS measurements are performed on a dual scan-probe/micro-Raman 

instrument (NT-MDT). The sample is mounted on an inverted optical microscope frame 

(Olympus, IX71) and illuminated with 532 nm CW laser excitation. The laser is focused 

using a variable 0.65-1.25 NA oil immersion objective lens. All scattered light is 

collected in the backwards direction with the Raman separated from the Rayleigh light 

via a pair of notch filters (Semrock, 1:106 extinction ratio) and subsequently dispersed 

onto a 0.5 m monochromator and recorded by a CCD array (Andor, V401-BV).  For 

sample mapping, the scan stage hosting the sample grid is raster scanned over the 
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stationary laser focus and the scattered light intensity is recorded pixel-by-pixel via a 

photodiode. This backscatter map, typically collected for a 50x50 μm range, is 

compared with the previously obtained SEM map in order to locate dimers of interest. 

As the laser spot size is ~1 μm diameter, dimers must be separated by 500 nm from all 

neighboring scatterers in order to be measured independently.  

 

 

 

 

 

 

Figure 2.1: Sample and experimental setup. (a) Cartoon and (b) transmission electron micrograph of a 

typical dimer. (c) Experimental setup. 532 nm light is directed through a linear polarizer, followed by a 

quarter wave plate. A notch filter is used as a mirror to direct the polarization-controlled excitation toward 

the sample. After interaction, the red- and blue-shifted Raman signal passes through the notch filter and 

toward the detector. 

 

2.3. Controlling polarization 

 To control polarization, two principle polarization optics are used:  linear polarizer 

(LP) and quarter-wave plate (QW). The LP is oriented such that its fast axis is initially 

along the vertical (in the lab frame) for all measurements. The QW is placed directly 

after the LP and, depending on the orientation of its fast axis relative to the LP, 

generates the polarization states shown in Fig. 3a. When the QW fast axis makes an 

angle of 𝜒 = 0°, 90°, 180°, 270°, w.r.t. the LP, vertically polarized light passes through 

unaltered. At 𝜒 = ±45°, however, the QWP converts linearly polarized light into LH and 
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RH CPL, respectively, via the introduction of a 90° phase-shift between orthogonal 

polarization components. At intermediate angles, elliptical polarization is generated, with 

the handedness determined by the respective quadrant as shown below. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Polarization generated in the QW experiment. (a) Polarization generated as a function of the 

angle of the quarter wave plate fast axis relative to the vertical polarization incident upon it. (b) 

Corresponding path of the polarization states on the Poincare sphere. The light begins at vertical 

polarization and subsequently maps out a figure eight, moving upward in a counter clockwise fashion, on 

the surface of the sphere. 

 

In many of our experiments, the QW is rotated continuously from 𝜒 = 0° to 𝜒 =

360°, with spectra typically recorded every 5°. The resulting path of such an experiment 

is depicted on the Poincare sphere in Fig. 3b. The Poincare sphere is a unit sphere in 

which each point on the surface represents a distinct polarization state. The three 

orthogonal axes of the sphere are defined by the Pauli matrices {𝜎1, 𝜎2,𝜎3} = {𝜎𝑧, 𝜎𝑥,𝜎𝑦} 

of spin notation, with 𝜎0 defining the size of the sphere as unity. These axes correspond 

to ℎ/𝑣, +45°/−45°, 𝑅𝐶𝑃/𝐿𝐶𝑃, respectively, and any polarization state is therefore 

determined by its projection into each axis (7). A point located at {-1, 0, 0}, for example, 
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would correspond to vertical polarization, while {0, 0, 1} corresponds to RCP. From this 

representation, we see continuously rotated the QW causes the polarization to evolve 

from vertical (red dot) → RCP (north pole) → vertical → LCP (south pole) as the QW is 

rotated through 180°; a 360° rotation simply retraces this figure-eight pattern once more. 

The results of subjecting various dimers to such continuous QW experiments are 

presented in the preceding chapter, at which time the full utility of the Poincare sphere 

will be realized. 
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3. RESULTS 

3.1. Surface-enhanced Raman optical activity 

 A series of dimers were first analyzed under stationary RCP and LCP excitation 

to verify plasmonic OA; results for two representative cases are show below in Fig. 4. In 

both cases, the SERS signal of the dimers exhibit strong preference for either RH or LH 

CPL. 

 

 

 

 

 

 

 

Figure 3.1: SERS OA on plasmonic nanodimers. Results of subjecting two dimers, (a) and (b), to LH 

(black) and RH (red) CPL. In both cases, the SERS spectra of the dimers show a clear preference to one 

CPL – LH in the case of (a), and RH in the case of (b). Note that the SERS spectra here consist of the 

discrete molecular vibrations atop a broad, continuous background that arises from the inelastic light 

scattering of the metal itself. 

 

 While ROA is normally a weak effect, the OA exhibited by the dimers is much 

more pronounced, on the order of parts per ten. Additionally, the effect is evident in both 

the molecular vibrational Raman lines (discrete peaks), as well as the metal electronic 

Raman scattering (continuous background). We define here the SERS circular OA as 

𝑂𝐴 =
𝐼𝐿−𝐼𝑅

𝐼𝐿+𝐼𝑅
      (3.1) 

(a) (b) 
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where 𝐼𝐿 and 𝐼𝑅 are the scattered intensity under LH and RH excitation, respectively. 

According to Eq. (1), positive values of OA indicate that the particle is left-handed, while 

negative values imply that it is right-handed. The resulting OA values for four example 

dimers are shown in Table 1. 

Dimer OA value OA value 

 Original (𝜑 = 0°) Rotated (𝜑 = 90°) 

1 0.73 -0.15 

2 -0.31 0.2 

3 0.8 -0.23 

4 -0.86 0.2 

 

Table 3.1: OA values for four selected dimers. Intensity here was integrated under the 1640 cm-1 

vibrational mode. 

 

 Here we noticed an interested trend – all of the dimers of a given handedness 

(e.g., right-handed) were oriented similarly on the grid (e.g., tilted towards the 

horizontal). To test if orientation had any effect on particle handedness, the entire 

sample substrate was subject to a 90° in-plane rotation. Remarkably, the measured 

values of OA exactly reverse in sign (though here, not in magnitude) for each particle 

analyzed (Table 1). This change in sign of the OA indicates a change in handedness of 

the dimers, indicating orientation-dependent handedness. The fact that the magnitudes 

are not fully recovered, however, is due to the random orientation of the particles, which 

will be elaborated on in great detail below. 

 These result highlight an interesting and counter-intuitive effect: namely, that 

particle handedness depends on its orientation in the plane perpendicular to excitation. 
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This effect has been observed in, to date, >50 dimers. Though most (>90%) show some 

degree of handedness, several remain entirely achiral regardless of their orientation. 

This we use in large part to argue that this is not an artifact (e.g., due to a tilt in the 

plane of the substrate). To rule out other sources of artifacts, we carry out the identical 

measurement on isotropic samples. We show in Fig. 5a that, as expected, identical 

Raman spectra are collected when liquid cyclohexane is excited by RCP and LCP light. 

We also not that the backscattered Rayleigh light on the dimers does not show the 

same degree of OA (Fig. 5b).  

 

 

 

 

 

 

 

Figure 3.2: Control experiments. CPL controls, showing the contrast of LH vs RH excitation for (a) liquid 

cyclohexane and (b) the Rayleigh line of dimer 1 (Fig. 4a). In both cases, there is no measurable 

difference in response to LH and RH CPL. 

 

3.2. Continuous polarization response 

 To further quantify the observed ODH, the Raman response of another dimer, 

dimer 5, was monitored continuously for a full 360° rotation of the QW, as discussed in 

Chapter 2. The polar plot of the SERS scattering intensity of dimer 5 as a function of the 

QW angle is shown in Fig. 6, at both is original (a) and rotated (b) positions. We will use 

(a) (b) 
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𝜑 to denote the orientation of the dimer within the substrate plane. Here, the original 

position corresponds to the dimer oriented horizontally (𝜑 = 0°), i.e., cross-polarized 

with the initial vertical polarization at QW orientation 𝜒 = 0°, while it’s rotated position 

puts it along the vertical (𝜑 = 90°).   

 

 

 

 

 

 

 

 

 

Figure 3.3: Results from QW rotation experiment, as performed on dimer 5. Plots trace the intensity of the 

1640 cm-1 vibrational line as a function of QW angle with respect to incident vertical polarization, 𝜒. Blue 

trace corresponds to the original position (𝜑~0°, with the dimer cross-polarized to the initial vertical light) 

and green to the rotated position (𝜑~90°, with the dimer aligned with the initial vertical light). Note here 

that the increased response around 𝜒 = 0°, 90°, 180°, 270° in the green plot is due to the dimer being 

aligned to the vertical polarization generated at these angles of the QW. Evidently, this particle underwent 

a change in handedness from RH → LH due to the in-plane rotation. 

 

The ODH in dimer 5 is recognized by noting the change in its angle of maximum 

scattering intensity. At its original orientation it displays a clear preference for RCP, near 

𝜒 = 45°. Upon rotated, the dimer now appears to be largely LH, peaking near 𝜒 = 110°. 
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Additionally, as this particle was orientated initially along 𝑥̂ and, after rotation, along 𝑦̂, 

its measured value of OA exactly inverts in both sign and magnitude (𝑂𝐴𝜑=0° =

0.6, 𝑂𝐴𝜑=90° = −0.6).  
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4. ANALYSIS 

4.1. Light-matter interaction 

 Given that an object is uniaxial and has dimensions on the order of the 

wavelength of excitation, such as the nanoparticle dimers of interest here, we argue that 

retardation effects alone are sufficient to explain a myriad of experimentally observed 

phenomenon including ODH. Though the objects have no net magnetization, the 

generation of helical surface currents (due to simultaneous excitation of electric and 

magnetic dipoles) allows for the generation of magnetic fields and responses.  

To verify that such modes are indeed sustained by the dimers, we present here a 

systematic, quantum mechanical treatment which, though formulated with the 

nanosphere dimers in mind, holds for any general uniaxial object with 𝑙~𝜆. We start with 

the standard light-matter action Hamiltonian, which describes the material response as 

a function of input field. We then substitute the subsequent interaction potential into 

Fermi’s Golden Rule (FGR) to determine the transitions allowed under such interaction. 

Though such a treatment is typically employed to determine molecular scattering 

processes, our treatment here is particularly to the electrons that comprise the metallic 

plasmon. We will see that simply expanding the interaction to first order in spatial 

dispersion, which only holds for objects with 𝑙~𝜆, the magnetic dipole and electric 

quadrupolar modes are excited simultaneously to and to the same order as the zeroth-

order electric dipole mode.  

 The general form of the light-matter interaction potential, which mediates material 

response, is given by (5):  

𝑉̂ =
𝑖ℏ𝑒

2𝑚𝑐
(∇⃑⃑ ∙ 𝐴 + 𝐴 ∙ ∇⃑⃑ ) +

𝑒2

2𝑚𝑐2 (𝐴 ∙ 𝐴 ).   (4.1) 
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Here, 𝐴  is the vector potential, ∇⃑⃑ ∙ is the divergence, and ℏ is reduced Planck’s constant, 

𝑐 is the speed of light, and 𝑒 and 𝑚 are the electron charge and mass, respectively. 

Taking only the inelastic scattering term (ignoring 𝐴 ∙ 𝐴 , which is just Rayleigh) and 

recognizing that ∇⃑⃑ ∙ 𝐴 + 𝐴 ∙ ∇⃑⃑ = 2𝐴 ∙ ∇⃑⃑  yields instead 

𝑉̂ =
𝑖ℏ𝑒

𝑚𝑐
𝐴 ∙ ∇⃑⃑ .      (4.2) 

If we assume oscillatory vector potential 𝐴 = 𝐴0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡) and substitute this into FGR, 

we find that the following transitions are allowed (i.e., excitable) between initial and final 

states n, m: 

⟨𝑚|𝑉(𝑡)|𝑛⟩ =
𝑖ℏ𝑒

𝑚𝑐
⟨𝑚|𝐴0𝑒

𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡) ∙ ∇⃑⃑ |𝑛⟩ =
𝑖ℏ𝑒

𝑚𝑐
𝐴0𝑒

−𝑖𝜔𝑡 ⟨𝑚|𝑒𝑖𝑘⃑ ∙𝑟 ∙ ∇⃑⃑ |𝑛⟩.  (4.3) 

For simplicity, assume that the incident field propagation is along 𝑧̂ (𝑘⃑ = 𝑘𝑧𝑧̂) and 

the polarization is in 𝑥̂  (∇⃑⃑ =
𝜕

𝜕𝑥
). Due to size considerations (2𝜋𝑟/𝜆~1) we expand the 

vector potential to first order in spatial dispersion: 𝑒𝑖𝑘𝑧 ≈ 1 + 𝑖𝑘𝑧 so that Eq. (4.3) 

becomes 

〈𝑉〉 =
𝑖ℏ𝑒

𝑚𝑐
(⟨𝑚|

𝜕

𝜕𝑥
|𝑛⟩ + ⟨𝑚|𝑖𝑘𝑧𝑧

𝜕

𝜕𝑥
|𝑛⟩).    (4.4) 

Working first with the zeroth order term (first term in parenthesis in Eq. (4.4)) – this is 

just the electric dipole term; the spatial derivative can be transformed here by utilizing 

the commutator between the Hamiltonian and position operator, recognizing that 

[𝐻̂, 𝑥̂] =  −
𝑖ℏ

𝑚
𝑝𝑥 = −

ℏ2

𝑚

𝜕

𝜕𝑥
  (where 𝑝𝑥 is the linear momentum along x) so that 

⟨𝑚|
𝜕

𝜕𝑥
|𝑛⟩ = −

𝑚

ℏ2
⟨𝑚|𝐻𝑥 − 𝑥𝐻|𝑛⟩ = −

𝑚

ℏ2
⟨𝑚|𝐸𝑚𝑥 − 𝑥𝐸𝑛|𝑛⟩ = −

𝑚𝜔𝑚𝑛

ℏ
⟨𝑚|𝑥|𝑛⟩.   (4.5) 

Now, working with the second term in the parenthesis of Eq. (4.4), let’s start by adding 

zero in the form of 𝑥
𝜕

𝜕𝑥
:  
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⟨𝑚|𝑧
𝜕

𝜕𝑥
|𝑛⟩ =

1

2
⟨𝑚|𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
|𝑛⟩ +

1

2
⟨𝑚|𝑧

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑧
|𝑛⟩.   (4.6) 

These terms correspond to the magnetic dipole and electric quadrupole, respectively. 

To see this more clearly, working first with the magnetic dipole term we substitute in 

𝑝𝑗 = −𝑖ℏ
𝜕

𝜕𝑗
: 

⟨𝑚|𝑧
𝜕
𝜕𝑥

− 𝑥
𝜕
𝜕𝑧

|𝑛⟩ = −
1

𝑖ℏ
⟨𝑚|𝑧 (−𝑖ℏ

𝜕
𝜕𝑥

) − 𝑧 (−𝑖ℏ
𝜕
𝜕𝑧

) |𝑛⟩ = −
1

𝑖ℏ
⟨𝑚|𝑧𝑝𝑥 − 𝑥𝑝𝑧|𝑛⟩ 

= −
1

𝑖ℏ
⟨𝑚|𝐿̂𝑦|𝑛⟩ (4.7) 

where we have replaced 𝑧𝑝𝑥 − 𝑥𝑝𝑧 with its quantum mechanical definition, orbital 

angular momentum operator 𝐿̂𝑦. For the quadrupolar term (second term in 4.6), we 

once again utilize the commutator [𝐻̂, 𝑗̂]: 

⟨𝑚|𝑧
𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑧
|𝑛⟩ = −

𝑚

ℏ2
⟨𝑚|𝐻𝑥𝑧 − 𝑧𝑥𝐻|𝑛⟩ = −

𝑚𝜔𝑚𝑛

ℏ
⟨𝑚|𝑥𝑧|𝑛⟩.  (4.8) 

Combining now all three multipolar terms (final terms in Eqs. (4.5), (4.6), and (4.7)), Eq. 

(4.4) becomes 

〈𝑉〉 =
𝐴0

𝑐
𝑒−𝑖𝜔𝑡 (−𝑖𝑒𝜔𝑚𝑛⟨𝑚|𝑥|𝑛⟩ −

𝑖𝑘𝑧𝑒

2𝑚
⟨𝑚|𝐿̂𝑦|𝑛⟩ +

𝑘𝑧𝜔𝑚𝑛

2
⟨𝑚|𝑥𝑧|𝑛⟩). (4.9) 

Noting that, for the magnetic dipole 𝜇𝑚 =
𝑒𝐿

2𝑚
 and for the electric terms 𝜇𝑒 = 𝑒𝑥 and 𝑞 =

𝑒𝑥𝑧, Eq. (4.9) can be written 

〈𝑉〉 =
𝐴0

𝑐
𝑒−𝑖𝜔𝑡(−𝑖𝜔𝑚𝑛⟨𝑚|𝜇𝑒|𝑛⟩ − 𝑖𝑘𝑧⟨𝑚|𝜇𝑚|𝑛⟩ +

𝑘𝑧𝜔𝑚𝑛

2
⟨𝑚|𝑞𝑥𝑧|𝑛⟩. (4.10) 

Recall the quantum mechanical definition for the orbital angular momentum operator is 

inherently complex as it contains a linear momentum term (𝐿̂ = 𝑟 × 𝑝 ). Forcing this term 

to be real by extracting the 𝑖 yields finally: 

〈𝑉〉 =
𝐴0

𝑐
𝑒−𝑖𝜔𝑡(−𝑖𝜔𝑚𝑛⟨𝑚|𝜇𝑒|𝑛⟩ + 𝑘𝑧⟨𝑚|𝜇𝑚|𝑛⟩ +

𝑘𝑧𝜔𝑚𝑛

2
⟨𝑚|𝑞𝑥𝑧|𝑛⟩. (4.11) 
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The derivation of (4.11) in three dimensions (propagation in 𝑧̂ and polarization in 𝑥̂, 𝑦̂) in 

shown explicitly in (5). Here, the polarization is generalized into the vector 𝜀̂ and the 

transition elements into corresponding vectors (𝑑 𝑚𝑛, 𝑚⃑⃑ 𝑚𝑛) and dyadic (𝑞̿𝑚𝑛); all 

prefactors remain the same. The final result gives 

〈𝑉〉 =
𝐴0

𝑐
𝑒−𝑖𝜔𝑡 (−𝑖𝜔𝑚𝑛𝜀̂ ∙ 𝑑 + 𝑘⃑ × 𝜀̂ ∙ 𝑚⃑⃑ +

𝜔𝑚𝑛

2
𝜀̂ ∙ 𝑞̿ ∙ 𝑘⃑ ).  (4.12) 

The quadrupolar dyadic in three dimensions is 𝑞𝑥𝑧𝑥̂ − 𝑞𝑦𝑧𝑦̂ =
𝑞⃑ 

2
. Given wavevector 𝑘⃑ =

|𝑘|𝑘̂ and multipoles 𝛼 = |𝛼|𝛼̂, Eq. (4.12) can be transformed into 

〈𝑉〉 =
𝐴0

𝑐
𝑒−𝑖𝜔𝑡 (−𝑖𝜀̂ ∙ |𝑑|𝑑̂ +

1

𝜔𝑚𝑛

|𝑘|𝑘̂ × 𝜀̂ ∙ |𝑚|𝑚̂ + 𝜀̂ ∙ |𝑞|𝑞̂ ∙ |𝑘|𝑘̂) 

= 𝐴 ′|𝑑| (−𝑖𝜀̂ ∙ 𝑑̂ +
|𝑘|

𝜔𝑚𝑛

|𝑚|

|𝑑|
𝑘̂ × 𝜀̂ ∙ 𝑚̂ + |𝑘|

|𝑞|

|𝑑|
𝜀̂ ∙ 𝑞̂ ∙ 𝑘̂) 

= 𝐴 ′′|𝑑|(𝜀̂ ∙ 𝑑̂ + 𝑖𝜁𝑚𝑘̂ × 𝜀̂ ∙ 𝑚̂ + 𝑖𝜁𝑞𝜀̂ ∙ 𝑞̂ ∙ 𝑘̂) (4.13) 

so that 

〈𝑉〉~|𝑑| (𝜀̂ ∙ 𝑑̂ + 𝑖(𝜁𝑚𝑘̂ × 𝜀̂ ∙ 𝑚̂ + 𝜁𝑞𝜀̂ ∙ 𝑞̂ ∙ 𝑘̂))  (4.14) 

where 𝜁𝑚 and 𝜁𝑞 scale 𝑚 and 𝑞 relative to 𝑑. Equation (4.14) represents the potential 

between the incident light and the matter with which it interacts. Our goal in the 

proceeding section will be to use this interaction potential to build a matrix to describe 

the scattering nature of our sample, in order to determine the origins of the elusive 

ODH. 
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4.2. Construction of the sample scattering matrix 

 As indicated in Eq. (4.14), electromagnetic cross-coupling is induced in the 

medium (e.g.,  𝑘̂ × 𝜀̂ ∙ 𝑚̂) which necessitates consideration of both the electric and 

magnetic field components. Since the measurements are made in the far field, the 

electric and magnetic fields are strictly transverse and therefore fully characterized by 

2D spinors; assuming again propagation along 𝑧̂ and polarization in 𝑥̂, 𝑦̂, the electric and 

magnetic field components are described as follows (12). 

𝜀̂ = (
𝜀𝑥

𝜀𝑦
)     (4.15a) 

ℎ̂ = 𝑘̂ × 𝜀̂ = (
−𝜀𝑦

𝜀𝑥
)       (4.15b) 

Our sample will be described by a 2x2 transformation matrix which acts on these 2x1 

input fields. The elements of the sample interaction matrix can be directly read from Eq. 

(4.14). Briefly,  

𝑘̂ × 𝜀̂ = −𝑘𝑧𝜀𝑦 + 𝑘𝑧𝜀𝑥 = ℎ𝑥 + ℎ𝑦   (4.16a) 

𝑟̂ × 𝑝̂ = |

𝑥̂ 𝑦̂ 𝑧̂
0 0 𝑧
𝑝𝑥 𝑝𝑦 𝑝𝑧

| = −𝑧𝑝𝑦 + 𝑧𝑝𝑥 = 𝑚𝑥 + 𝑚𝑦.  (4.16b) 

In a uniaxial system such as the nanosphere dimers, the multipolar moments are 

expected to lie along the quantization (inter-particle) axis, to the extent that a dimer 

oriented along the laboratory x-axis will have 𝛼𝑥 ≫ 𝛼𝑦 → 0. For a dimer oriented along 𝑥̂, 

Eq. (4.14) becomes 

𝑉𝑥 = 𝜀𝑥𝑑𝑥 + 𝑖𝜁 ((−𝑘𝑧𝜀𝑦)(−𝑧𝑝𝑦) + 𝜀𝑥𝑞𝑥𝑧) = 𝜀𝑥(𝑑𝑥 + 𝑖𝑞𝑥) + 𝑖𝑚𝑥ℎ𝑥. (4.17) 

In matrix form, the operator acting on the field is cast as follows: 

𝑉̂𝑥 = (
𝑑𝑥 + 𝑖𝑞𝑥 𝑖𝑚𝑥

0 0
) (

𝜀𝑥

ℎ𝑥
) = (

𝑑𝑥 + 𝑖𝑞𝑥 𝑖𝑚𝑥

0 0
) (

𝜀𝑥

𝜀𝑦
)  (4.18) 
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using ℎ𝑥 = −𝜀𝑦. Similarly, for a y-oriented particle,  

𝑉𝑦 = 𝜀𝑦𝑑𝑦 + 𝑖𝜁 ((−𝑘𝑧𝜀𝑥)(−𝑧𝑝𝑥) + 𝜀𝑦𝑞𝑦𝑧) = 𝜀𝑦(𝑑𝑦 + 𝑖𝑞𝑦) + 𝑖𝑚𝑦ℎ𝑦, (4.19) 

With corresponding matrix form 

𝑉̂𝑦 = (
𝑑𝑦 + 𝑖𝑞𝑦 𝑖𝑚𝑦

0 0
) (

𝜀𝑦

ℎ𝑦
).     (4.20) 

 The basis vector of Eq. (4.20) is rotated and of opposite handedness from that of 

Eq. (4.18). To put 𝑉𝑦 into the same basis as 𝑉𝑥, note that for a general handed vector 

(1 𝑖)𝑇, the rotation into the opposite handed form is achieved by 

(
1
𝑖
) = 𝑖 (

−𝑖
1

) =  𝑖 (
𝑖
1
)
∗

    (4.21) 

which, ignoring the overall phase, corresponds to a conjugate transpose. When applied 

to Eq. (4.20), this yields 

𝑉̂𝑦 = (
0 0

−𝑖𝑚𝑦 𝑑𝑦 − 𝑖𝑞𝑦
) (

𝜀𝑥

𝜀𝑦
).   (4.22) 

The general scattering matrix as a function of dimer orientation 𝜑, given here by 𝑂̂𝜑, is 

then 

𝑂̂𝜑 = (
(𝑑𝑥 + 𝑖𝑞𝑥) cos 𝜑 𝑖𝑚𝑥 cos𝜑

−𝑖𝑚𝑦 sin 𝜑 (𝑑𝑦 − 𝑖𝑞𝑦) sin 𝜑
).  (4.23) 

For a uniaxial object, Eq. (4.23) is a matrix of projections, whereby the multipolar modes 

are projected onto the particle long axis oriented at 𝜑: 

𝑂̂𝜑 = (
(𝑑 + 𝑖𝑞) cos𝜑 𝑖𝑚 cos𝜑

−𝑖𝑚 sin𝜑 (𝑑 − 𝑖𝑞) sin 𝜑
).   (4.24) 

 The corresponding excitation probability is found by taking the product of 𝑉 with 

is Hermitian conjugate. Although the Raman process is second order in the interaction, 

|𝑉†𝑉|2, the relevant physics is all contained within the first order excitation probability 
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𝑉†𝑉 = ⟨𝜀𝑠𝑐|𝑂̂𝜑
†𝑂̂𝜑|𝜀𝑖𝑛⟩ and, as such, it is a suitable quantity for this analysis (13). Here, 

the sample scattering probability matrix is defined as 

𝑂̂𝜑
†𝑂̂𝜑 = Σ𝜑 =

(
(𝑑2 + 𝑞2) cos𝜑2 + 𝑚2 sin𝜑2 (𝑚𝑞 + 𝑖𝑚𝑑) cos𝜑2 + (𝑚𝑞 − 𝑖𝑚𝑑) sin 𝜑2

(𝑚𝑞 − 𝑖𝑚𝑑) cos𝜑2 + (𝑚𝑞 + 𝑖𝑚𝑑) sin𝜑2 𝑚2 cos𝜑2 + (𝑑2 + 𝑞2) sin 𝜑2 ). 

            (4.25) 

 We recognize here the full sample scattering probability Σ𝜑 as the general material 

polarizability tensor, 𝛼. For a particle oriented along the x-direction (𝜑 = 0°), the matrix 

has the form 

Σ𝑥 = (
𝑑2 + 𝑞2 𝑚𝑞 + 𝑖𝑚𝑑

𝑚𝑞 − 𝑖𝑚𝑑 𝑚2 )    (4.26) 

while a particle oriented along the y-direction is described by  

Σ𝑦 = (
𝑚2 −𝑚𝑞 − 𝑖𝑚𝑑

−𝑚𝑞 + 𝑖𝑚𝑑 𝑑2 + 𝑞2 ).    (4.27) 

The pure polarization states of 𝑉†𝑉 = ⟨𝜀𝑠𝑐|𝑂̂𝜑
†𝑂̂𝜑|𝜀𝑖𝑛⟩ can be cast into the 

equivalent density form, whose expectation value is given by 

𝑉†𝑉 = 𝑇𝑟(Σ𝜑  |𝜀⟩⟨𝜀| ).    (4.28) 

The field density  

|𝜀⟩⟨𝜀| = (
𝜀𝑥𝜀𝑥

∗ 𝜀𝑥𝜀𝑦
∗

𝜀𝑦𝜀𝑥
∗ 𝜀𝑦𝜀𝑦

∗)    (4.29) 

and sample scattering matrix Σ𝜑 in this form are members of the SU(2) vector space. 

The space is completely spanned by the Pauli optical matrices: 

𝜎0 = (
1 0
0 1

),   𝜎1 = (
1 0
0 −1

) , 𝜎2 = (
0 1
1 0

) , 𝜎3 = (
0 −𝑖
𝑖 0

), (4.30) 
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which are sometimes condensed into the single vector 𝜎 = (𝜎0 𝜎1 𝜎2 𝜎3)𝑇. The field 

and scattering densities are subsequently decomposed into the Pauli matrices as 

|𝜀⟩⟨𝜀| = 𝑆 ∙ 𝜎 = ∑ 𝑆𝑖𝜎𝑖
3
𝑖=0     (4.31a) 

Σ𝜑 = 𝑠 ∙ 𝜎 = ∑ 𝑠𝑖𝜎𝑖
3
𝑖=0     (4.31b) 

where 𝑆  and 𝑠  are the vectors of the coefficients that weight the corresponding Pauli 

matrices. Any matrix 𝐽 in SU(2) is therefore describable by: 

𝐽 = (
𝑠0 + 𝑠1 𝑠2 − 𝑖𝑠3

𝑠2 + 𝑖𝑠3 𝑠0 − 𝑠1
).    (4.32) 

In the vector calculus of polarization specifically, these transformation in SU(2) proceed 

within the formalism of Jones calculus. Here, complex 2x2 Jones matrices describe how 

an optical element transforms light, which is given by a 2x1 complex vector. The 

strength of this formalism lies in its direct formulation from the Maxwell equations, which 

retains information about the relative phases of field components and material response 

(7). In analogy with the quantum mechanics of two-level systems, Jones vectors are 

confined to describing fully polarized states in the same way that wavefunctions 

describe pure states. 

 In its given form, Eq. (4.31) of the standard Jones matrix is readily compared with 

the sample scattering matrix, Σ𝜑. For a particle oriented along the x-direction (Σ𝑥), the 

coefficients that weight the Pauli matrices are as follows. 

𝑠0 =
𝑑2+𝑞2+𝑚2

2
= 𝑁     (4.33a) 

𝑠1 =
𝑑2+𝑞2−𝑚2

2
= 𝑁′     (4.33b) 

𝑠2 = 𝑚𝑞     (4.33c) 

𝑠3 = −𝑚𝑑     (4.33d) 
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These coefficients are known as the Stokes parameters. Transformations can be 

carried out directly with their Stokes vector equivalents (𝑆  and 𝑠 ) in the Mueller calculus 

formalism. Here, linear transformations are represented by scalings and rotations of the 

4-element Stokes vectors in O(3). Rather than the complex field vectors of Jones, 

Mueller calculus deals strictly with light intensities, with the general vector form (7) 

𝑆 = (

𝐼𝑥 + 𝐼𝑦
𝐼𝑥 − 𝐼𝑦

𝐼45° − 𝐼−45°

𝐼𝑅𝐶𝑃 − 𝐼𝐿𝐶𝑃

)     (4.34) 

where 𝐼𝑗 is the intensity of j-polarized light. With this in hand, we write Eq. (4.28) as  

𝑉†𝑉 = ⟨𝑠|𝑆⟩,     (4.35) 

whose true utility is realized when the interaction is visualized on the Poincare sphere. 

Recall that the three orthogonal axes of the sphere are defined by the Pauli matrices 

{𝜎1, 𝜎2, 𝜎3} = {𝜎𝑧 , 𝜎𝑥, 𝜎𝑦} of spin notation, with 𝜎0 setting the size of the sphere as unity. 

The Stokes parameters {𝑠1, 𝑠2, 𝑠3} give the projections of a vector onto each axis of the 

sphere, which again correspond to 𝑥/𝑦, +45°/−45°, 𝑅𝐶𝑃/𝐿𝐶𝑃, respectively. In this way, 

both the field and scattering vector can be directly cast onto the sphere; take, for 

example, the scattering matrix Σ𝑥 given by Eq. (4.26). Using the definitions of {𝑠𝑖} given 

in Eq. (4.33),  

𝑠 𝑥 = (

𝑠1

𝑠2

𝑠3

) =
1

𝑁
(
(𝑑2 + 𝑞2 − 𝑚2)/2

𝑚𝑞
−𝑚𝑑

)   (4.36) 

where 𝑠0 = 𝑁 = (𝑑2 + 𝑞2 + 𝑚2)/2 normalizes the vector to unity. This vector is 

illustrated in Fig.7 for {𝑑 = 𝑚 = 𝑞 = 1}. More generally, though, the physical meaning of 

the dimer Stokes parameters are elucidated from Eq. (4.33). Parameter 𝑠1 defines the 
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extent of the uniaxial nature of the dimer (e.g., differential long versus short axis 

scattering response). Parameter 𝑠2 is the ±45° scattering linear dichroism, and 𝑠3 is the 

scattering circular dichroism (i.e., optical activity). In accordance with its historical 

definition, we see that the chirality is determined by the product of an electric and 

magnetic dipole. Positive values of 𝑠3 direct the Stokes sample vector toward the north 

pole of the sphere, and correspond to right-handed scatterers. Conversely, overall 

negative 𝑠3 gives rise to left-handed objects. 

 As discussed in Chapter 2, the light vector for the continuous QW rotation 

experiment, defined here as 𝑆 𝑞𝑤, traces out a figure-eight on the surface of the Poincare 

sphere. Using the definitions for the optical elements that are standard within Mueller, 

we can express the functional form of the light path as follows. 

𝑆 𝑞𝑤 = 𝑅𝜒
𝑇 ∙ 𝑄𝑊𝑣 ∙ 𝑅𝜒 ∙ 𝑆 𝑣 = (

−cos(2𝜒)2

cos(2𝜒) sin(2𝜒)

− sin(2𝜒)

)  (4.37) 

Here, 𝑅𝜒 is the O(3) rotation matrix, 𝑄𝑊𝑣 the QW originally vertically-oriented, and 𝑆𝑣 is 

the incident vertical light. The resulting interaction of Eq. (4.37) with the sample Stokes 

vector, ⟨𝑠|𝑆⟩ = 𝑠 ∙ 𝑆 𝑞𝑤, projects the incident light vector onto the sample scattering 

vector. Geometrically, this corresponds simply to a scaling of 𝑠  – its direction does not 

change, though its magnitude is mediated by 𝑆 𝑞𝑤 as a function of QW orientation 𝜒. In 

the example given in Fig. 7 for 𝑠 𝑥, 𝑠 𝑥 ∙ 𝑆 𝑞𝑤 is maximum when the incident light is of the 

same handedness of the sample (here, LCP), and minimum when it is opposed. Note 

that it is the inclusion of the linear dichroism term, 𝑚𝑞, which dictates the survival of this 
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interaction. For the case 𝑑 = 𝑚 = 1, 𝑞 = 0, the vector 𝑠 𝑥(𝑞 = 0) = (0, 0, −1)𝑇 points 

directly at the south pole so that when light is perfectly RCP, 𝑠 𝑥(𝑞 = 0) ∙ 𝑆 𝑅𝐶𝑃 = 0. 

 

Figure 4.1: Stokes vectors and the Poincare sphere. 

Representation of an example sample scattering vector 

𝑠 𝑥 on the Poincare sphere. Sphere axes are defined by 

the Pauli spin matrices with corresponding polarization 

states as indicated by the given kets. The projections of 

the vector onto each axis are determined by the Stokes 

parameters, the forms of which are given in purple.  

 

 

4.3. Origins of ODH 

 The observed intensity patterns from continuous QW rotations, such as the one 

presented in Fig.6 for dimer 5, can be fit to the following equation to extract the Stokes 

parameters 𝑠𝑖 

𝐼(𝜒) = 𝑠 𝑥 ∙ 𝑆 𝑞𝑤 = 𝑠0 − 𝑠1 cos(2𝜒)2 + 𝑠2 cos(2𝜒) sin(2𝜒) − 𝑠3 sin(2𝜒) (4.38) 

which are then used to build the sample Jones scattering matrix: 

𝐽 = Σ𝜑 = (
𝑠0 + 𝑠1 𝑠2 − 𝑖𝑠3

𝑠2 + 𝑖𝑠3 𝑠0 − 𝑠1
).    (4.39) 

Fits to the original (𝜑 = 0°) and rotated (𝜑 = 90°) orientation of dimer 5 yield Stokes 

vectors 

𝑠 𝑥(𝜑 = 0°) = (

1
0.5
0.5
0.5

) , 𝑠 𝑦(𝜑 = 90°) = (

1
0.5
0.5
0.5

)   (4.40) 

with associated scattering matrices 
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𝐽𝑥 = Σ𝑥 = (
1.5 0.5 − 0.5𝑖

0.5 + 0.5𝑖 0.5
),   𝐽𝑦 = Σ𝑦 = (

0.5 −0.5 + 0.5𝑖
−0.5 − 0.5𝑖 1.5

) (4.41) 

These matrices reproduce the observed response very well (Fig. 8a, 8c). One would 

expect the effects of rotating the sample 90° in-plane to be given by a 90° rotation of the 

scattering matrix, such that 

Σ𝑦 = 𝑅𝑇(90°) ∙ Σ𝑥 ∙ 𝑅(90°) = (
0.5 −0.5 − 0.5𝑖

−0.5 + 0.5𝑖 1.5
)  (4.42) 

where 𝑅(𝜑) is the standard Euclidean rotation matrix 

𝑅(𝜑) = (
cos𝜑 sin 𝜑

− sin𝜑 cos𝜑
).    (4.43) 

This, of course, should not result in a change in handedness – indeed, the response 

predicted by a simple solid body rotation of the matrix Σ𝑥 is shown in Fig. 8b. 

Comparison of the requisite scattering matrices given in Eq. (4.41) reveal what has 

already been implied in Section 4.2: in order for the handedness to invert upon sample 

rotation, the sign of the complex parameter s3 must change upon rotation.  

 

 

 

 

 

 

Figure 4.2: Actual and predicted effects of sample orientation. (a) Response of dimer 5 at its original 

position 𝜑 = 0° (blue), overlaid with its reproduction using Σ𝑥 (purple). (b) Predicted response of dimer 5 

after its original position matrix, Σ𝑥, is subject to a 90° solid-body in-plane rotation (pink), overlaid with its 

actual response (green). (c) Response of dimer 5 at its rotated position 𝜑 = 90° (green), overlaid with its 

reproduction using Σ𝑦 (pink). 
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The only mechanism by which such a transformation is achievable is an 

additional complex conjugation upon rotation. This complex conjugation is immediately 

indicative of a particular type of symmetry – namely, that of time reversal. In order for a 

particle to remain invariant upon the coordinate transformation, it appears that time 

must simultaneously be inverted (14). This signals that the response is PT (parity-time) 

invariant, which can be understood by the following considerations. Here for simplicity 

we will work with the minimal system which reproduces the effect: an electric and 

magnetic dipole, represented here by a polar and axial vector, respectively. This pair is 

easily seen to be PT invariant if we recognize that parallel 𝑑 and 𝑚 describe a right helix 

𝜓(𝑅) while antiparallel  𝑑 and 𝑚 describe a left helix 𝜓(𝐿). Under the parity operator 𝑃̂, 

𝑑 is odd and 𝑚 is even, such that 𝑃̂(𝜓(𝑅)) = 𝜓(𝐿) (Fig. 9). Under time reversal, it is 

now 𝑑 is even and 𝑚 odd; similarly, 𝑇̂(𝜓(𝑅)) = 𝜓(𝐿). Under joint PT, this results in 

𝑇̂ (𝑃̂(𝜓(𝑅))) = −𝜓(𝑅). In this way, the complex conjugation is identified as the time 

reversal under the rotation, necessary to conserve the PT invariance of the dimer. 
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Figure 4.3: The effects of the parity and time reversal operators, here on a system consisting of an 

electric and magnetic dipole. A stationary observer sees a RH helix from the combined effect of an 

electric dipole along 𝑥̂ and a clockwise-circulating magnetic dipole. Under 𝑃̂, the electric dipole is now 

along −𝑥̂ while the magnetic dipole maintains its original clockwise circulation. From the same 

observation point, this construction now gives rise to a LH helix. The time reversal case is treated 

similarly, noting now that the electric dipole remains along 𝑥̂ while the sense of rotation of the magnetic 

dipole changes to counter-clockwise. The combined effect of a PT operation, then, is to leave the original 

handedness unchanged. 

 

4.4. Physical Equivalence 

 Using the preceding geometric considerations of 𝑠 ∙ 𝑆  and the form of the sample 

scattering matrix given in Eq. (4.25),  

𝑂̂𝜑
†𝑂̂𝜑 = Σ𝜑 =

(
(𝑑2 + 𝑞2) cos𝜑2 + 𝑚2 sin𝜑2 (𝑚𝑞 + 𝑖𝑚𝑑) cos𝜑2 + (𝑚𝑞 − 𝑖𝑚𝑑) sin 𝜑2

(𝑚𝑞 − 𝑖𝑚𝑑) cos𝜑2 + (𝑚𝑞 + 𝑖𝑚𝑑) sin𝜑2 𝑚2 cos𝜑2 + (𝑑2 + 𝑞2) sin 𝜑2 ), 

            (4.25) 
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we can also generate a physical equivalence for our uniaxial scatterer. For simplicity, 

we will first work with the minimal system which reproduces the ODH (𝑞 = 0). The 

excitation probability is then reduced to 

Σ𝜑 = (
𝑑2 cos𝜑2 + 𝑚2 sin 𝜑2 𝑖𝑚𝑑 cos𝜑2 − 𝑖𝑚𝑑 sin𝜑2

−𝑖𝑚𝑑 cos𝜑2 + 𝑖𝑚𝑑 sin𝜑2 𝑚2 cos𝜑2 + 𝑑2 sin 𝜑2 ).  (4.44) 

For the sake of transparency, and without loss of generality, we set 𝑑 = 𝑚 = 1 and 

decompose Eq. (4.44) into its orthogonal components: 

Σ𝜑 = (
1 𝑖
−𝑖 1

) cos𝜑2 + (
1 −𝑖
𝑖 1

) sin 𝜑2.   (4.45) 

The matrices given in Eq. (4.45) are nothing more than the right and left circular 

polarization projectors,  

Σ𝜑 = |𝑅⟩⟨𝑅| cos 𝜑2 + |𝐿⟩⟨𝐿| sin 𝜑2,    (4.46) 

so that the sample acts as a superposition of left and right circular polarizers, weighted 

by the sample orientation 𝜑. At 𝜑 = 0°, for example, the response is that of a pure right 

circular polarizer that passes RCP and fully reject LCP. The converse is true for 𝜑 =

90°, at which the sample acts as a left circular polarizer. At intermediate orientations, 

the relative strengths of the right and left projectors are given by cos𝜑2 and sin𝜑2, 

respectively.  

 Reinserting the full, general response {𝑑,𝑚, 𝑞}, we have 

Σ𝜑 = (
𝑑2 + 𝑞2 𝑚𝑞 + 𝑖𝑚𝑑

𝑚𝑞 − 𝑖𝑚𝑑 𝑚2 ) cos𝜑2 + (
𝑚2 −𝑚𝑞 − 𝑖𝑚𝑑

−𝑚𝑞 + 𝑖𝑚𝑑 𝑑2 + 𝑞2 ) sin𝜑2. (4.47) 

Eq. (4.47) is a superposition of two elliptical polarization projectors of opposite 

handedness (𝑚𝑑) and direction of tilt (𝑞/𝑚). This is a striking result, as it is the optical 

equivalent of a quantum mechanical superposition state, here made all the more unique 

as it implies two simultaneous measurements carried out on a single photon.  
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 Reinserting the full, general response of {𝑑,𝑚, 𝑞} active, we have 

Σ𝜑 = (
𝑑2 + 𝑞2 𝑚𝑞 + 𝑖𝑚𝑑

𝑚𝑞 − 𝑖𝑚𝑑 𝑚2 ) cos𝜑2 + (
𝑚2 −𝑚𝑞 − 𝑖𝑚𝑑

−𝑚𝑞 + 𝑖𝑚𝑑 𝑑2 + 𝑞2 ) sin𝜑2. (4.48) 

Working first with Σ𝑥 (first term of Eq. (4.48)), we find that the matrix has the following 

Eigenvalues and vectors: 

𝜆𝑥,1 = 0, 𝑣 𝑥,1 = (
1

−
𝑑+𝑖𝑞

𝑖𝑚

)    (4.49a) 

𝜆𝑥,2 = 1, 𝑣 𝑥,2 = (
1
𝑚

𝑞+𝑖𝑑
)    (4.49b) 

which reveals the basis vectors of Σ𝑥 are elliptical polarizations. To see this more 

clearly, working with the non-trivial Eigenvector 𝑣 𝑥,2: 

𝑣 𝑥,2 = (
1
𝑚

𝑞+𝑖𝑑
) = (

1
𝑚𝑞

𝑑2+𝑞2 − 𝑖
𝑚𝑑

𝑑2+𝑞2
) = (

1
𝑏 − 𝑖𝑐

).  (4.50) 

In general, any elliptical polarization vector is described by 

𝐸𝑒𝑙𝑙 = (
𝐴

𝐵 ± 𝑖𝐶
)     (4.51) 

Where 𝐴 and 𝐶 give the horizontal and vertical components, respectively, of the ellipse, 

and 𝐵 defines its tilt. The ± dictates the sense of rotation, with the convention + → 𝐿𝐶𝑃 

and − → 𝑅𝐶𝑃. Equation (4.50), then, describes a RH ellipse with major axis 𝐴 = 1, 

minor axis 𝐶 = 𝑚𝑑/(𝑑2 + 𝑞2), and tilt 𝐵 = 𝑚𝑞/(𝑑2 + 𝑞2). Conversely, the same 

manipulation of Σ𝑦 yields an identical solution set, with swapped non-trivial Eigenvectors 

𝜆𝑦,1 = 0, 𝑣 𝑦,1 = (
1
𝑚

𝑞+𝑖𝑑
)    (4.52a) 

𝜆𝑦,2 = 1, 𝑣 𝑦,2 = (
1

−
𝑑+𝑖𝑞

𝑖𝑚

)    (4.52b) 

identifying it as a LH elliptical projector with 𝐴 = 1, 𝐶 = 𝑑/𝑚, and tilt 𝐵 = −𝑞/𝑚. 
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5. IMPLICATIONS 

5.1. Wave propagation in bi-isotropic media 

We can now extend the previous treatment to direct comparison with well-known 

material parameters. As previously discussed, it is evident that the system generates 

significant electromagnetic cross-coupling in both linear (𝑚𝑞) and circular (𝑚𝑑) bases. A 

material consisting of such uniaxial scatterers will then be, in the most general case, bi-

isotropic (BI). For a general BI medium, cross coupling between the electric and 

magnetic field components within the medium is described by the well-known 

constitutive equations (15) 

𝐵⃑ = 𝜇𝐻⃑⃑ + (𝜒 + 𝑖𝜅)𝐸⃑ .     (5.1a) 

𝐷⃑⃑ = 𝜖𝐸⃑ + (𝜒 − 𝑖𝜅)𝐻⃑⃑      (5.1b) 

Here, 𝐷⃑⃑  and 𝐵⃑  are the electric displacement and magnetic inductance fields generated 

in the medium, and 𝐸⃑  and 𝐻⃑⃑  are the exciting external electric and magnetic fields. 

Parameters 𝜒 and 𝜅 are describe, respectively, the non-reciprocity and chirality of the 

material. These terms are what allows the application of an electric field to generate 

magnetic response (and vice-versa) within the medium.  

BI media are birefringent and consequently, the refractive index of light in the 

medium depends heavily on its polarization. Here, we present a straightforward 

derivation of the wave propagation and resulting split index in a BI material, which 

assumes no underlying basis. We start with the source-free Faraday and modified 

Ampere’s law (16) 

∇⃑⃑ × 𝐸⃑ = −
𝜕

𝜕𝑡
𝐵⃑      (5.2a) 
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∇⃑⃑ × 𝐻⃑⃑ =
𝜕

𝜕𝑡
𝐷⃑⃑ .      (5.2b) 

Inserting Eqs. (5.1a) into (5.2a) and (5.1b) into (5.2b) gives, respectively,  

∇⃑⃑ × 𝐸⃑ = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
𝐸⃑ − 𝜇

𝜕

𝜕𝑡
𝐻⃑⃑     (5.3a) 

∇⃑⃑ × 𝐻⃑⃑ = (𝜒 − 𝑖𝜅)
𝜕

𝜕𝑡
𝐻⃑⃑ + 𝜖

𝜕

𝜕𝑡
𝐸⃑ .    (5.3b) 

Now, taking the curl of Eq. (5.3a) and noting that [
𝜕

𝜕𝑡
, ∇ ×] = 0,  

∇⃑⃑ × ∇⃑⃑ × 𝐸⃑ = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × 𝐸⃑ −  𝜇

𝜕

𝜕𝑡
∇⃑⃑ × 𝐻⃑⃑    (5.4) 

and substituting in Eq. (5.3b) gives 

∇⃑⃑ × ∇⃑⃑ × 𝐸⃑ = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × 𝐸⃑ −  𝜇𝜖

𝜕2

𝜕𝑡2 𝐸⃑ − 𝜇(𝜒 − 𝑖𝜅)
𝜕

𝜕𝑡
(

𝜕

𝜕𝑡
𝐻⃑⃑ ).  (5.5) 

Rearranging Eq. (5.3a) in terms of 𝜇
𝜕

𝜕𝑡
𝐻⃑⃑  and inserting into Eq. (5.5) yields, finally, 

∇⃑⃑ × ∇⃑⃑ × 𝐸⃑ = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × 𝐸⃑ −  𝜇𝜖

𝜕2

𝜕𝑡2
𝐸⃑ − (𝜒 − 𝑖𝜅)

𝜕

𝜕𝑡
(−(𝜒 + 𝑖𝜅)

𝜕

𝜕𝑡
𝐸⃑ − ∇⃑⃑ × 𝐸⃑ ) 

= −2𝑖𝜅
𝜕

𝜕𝑡
∇⃑⃑ × 𝐸⃑ + (𝜒2 + 𝜅2 − 𝜇𝜖)

𝜕2

𝜕𝑡2 𝐸⃑ .    (5.6) 

Based on the definition of the Fourier transform, 
𝜕

𝜕𝑡
= 𝜔, Eq. (5.6) can be written 

0 = ∇⃑⃑ × ∇⃑⃑ × 𝐸⃑ + 2𝑖𝜔𝜅∇⃑⃑ × 𝐸⃑ − 𝜔2(𝜒2 + 𝜅2 − 𝜇𝜖)
𝜕2

𝜕𝑡2 𝐸⃑ .   (5.7) 

Eq. (5.7) describes the propagation of electromagnetic waves in the bi-isotropic 

medium, which is governed by the solutions 

𝑘± = 𝜔(√𝜇𝜖 − 𝜒2 ± 𝜅),     (5.8) 

with corresponding refractive indices 

𝑛± =
𝑘±

𝜔
= √𝜇𝜖 − 𝜒2 ± 𝜅.    (5.9) 

 

 



35 
 

5.2. Connecting material parameters with multipolar modes 

 In order to facilitate direct comparison of the material parameters with the known 

multipolar modes of the dimer antenna, Eqs. (5.1a) and (5.1b) are cast into matrix form 

as follows. 

(𝐷⃑⃑
 

𝐵⃑ 
) = (

𝜖 𝜒 − 𝑖𝜅
𝜒 + 𝑖𝜅 𝜇

) (𝐸⃑
 

𝐻⃑⃑ 
).   (5.10) 

Inspection alone allows us to immediately equate parameters {𝜖, 𝜇, 𝜒, 𝜅} of the matrix 

presented in Eq. (5.10) with multipolar modes presented in the matrix of Eq. (4.26) for 

the x-oriented particle. We find that 

𝜖 = 𝑑2 + 𝑞2     (5.11a) 

𝜇 = 𝑚2     (5.11b) 

𝜒 = 𝑚𝑞     (5.11c) 

𝜅 = −𝑚𝑑.     (5.11d) 

These definitions can then be used to recast the indices of Eq. (5.9) as 

𝑛± = √(𝑑2 + 𝑞2)𝑚2 − (𝑚𝑞)2 ∓ 𝑚𝑑 = √𝑚2𝑑2 + 𝑚2𝑞2 − 𝑚2𝑞2 ∓ 𝑚𝑑 (5.12) 

which, of course, simplifies to 

𝑛± = √𝑚2𝑑2 ∓ 𝑚𝑑 = 𝑚𝑑 ∓ 𝑚𝑑   (5.13) 

so that the final indices are 

𝑛+ = 0      (5.14a) 

𝑛− = 2𝑚𝑑 = −2𝜅    (5.14b) 

with corresponding propagation factors 𝑘+ = 0 and 𝑘− = 2𝜔𝑚𝑑 = −2𝜔𝜅. (Note that the 

sign convention is a little unusual here as the chirality term is negatively signed: 𝜅 =

−𝑚𝑑, based on the standard Jones convention of the sign of 𝑠3.) From this, it is evident 
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that only one Eigenmode (here, 𝑘−, usually distinguished as LCP) propagates in the 

medium with standard refractive index. The effect on non-reciprocity, while interesting in 

its own right, does not explicitly factor into the final index here – the index depends 

solely on the chirality of the medium, and its sign is determined by the relative signs of 

𝑚 and 𝑑. This is a very interesting case of chirality only defining the refractive index for 

this mode, one that is distinct from chiral nihility (where 𝜖 = 𝜇 = 0 but 𝜅 ≠ 0). In the case 

of chiral nihility, negative index is indeed achievable, but there are still two Eigenwaves 

that persist in the medium with equal but opposite propagation constants. Here, the 

other index is zero, indicating that a standing wave of constant phase is generated 

under RCP excitation.  

 Though the automatic generation of negative index here is interesting in its own 

right, the observed ODH of the dimers adds an additional layer of intrigue that is, as of 

yet, largely unheard of. As the handedness, determined by the relative signs of   𝑚 and 

𝑑, is controlled by the in-plane orientation of the dimer, so too is the sign of the index. 

Such an effect generates a novel system which, by simple rotation, can be continuously 

varied from positive → zero → negative index for a given CPL.  

 

5.3. Applications 

 The most immediate application for such a material is in the generation of 

orientation-dependent negative index films. In this case, the material would consist of 

stacked films, with each film containing an array of nanodimers embedded in a non-

interfering matrix such as silicon nitride or sol-gel. As the junction asymmetry is what 
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dictates handedness at a given orientation, nanodimers could feasibly be batch 

fabricated to have identical morphological features, e.g., via photolithography.  

 Though such a film would only display variable negative index under CPL, it 

shows a much broader spectral range than previous materials. As shown in Fig. 10, 

gold nanodimers have a large scattering cross sections (which are necessary to 

generate the large SERS OA) that extend throughout the near-UV and visible range. 

Particularly in the range of 300-400 nm, the cross section dominates the extinction 

spectrum, allowing for high scattering with relatively low loss and correspondingly high 

figures-of-merit. 

 

 

 

 

 

 

 

Figure 5.1: Typical dimer extinction specrum. Scattering (red solid) and absorption (red dashed) cross-

section and field enhancement (blue) spectrum of a symmetric nanodimer excited with light polarized 

along its long axis (17). 

 

 In addition to the negative index sustained in one CPL mode of the medium, the 

zero-index mode is of equal interest as it has promising applications in optical circuits 

and quantum computing. Further studies will verify the validity of these indices, but the 
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preceding treatment has provided a general proof-of-concept that illustrates the utility 

such plasmonic nantenna have in the world of applied optoelectronics.  
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6. SUMMARY AND CONCLUSIONS 

 Ultimately, we have experimentally verified orientation-dependent handedness of 

plasmonic nanodimer antennas, where the handedness itself is a consequence of the 

multipolar modes the dimer sustains. There are a number of notable implications that 

fall out of this treatment. First, we recognize that the typical dipolar Raman response (in 

which all four interactions are dipole coupled to the external electric field, valid only in 

the long-wave limit) is now replaced with a highly nonlocal response. Expanding the 

light-matter potential which mediates the interaction to first order in spatial dispersion 

naturally leads to additional magnetic dipolar and electric quadrupolar terms. Indeed, we 

see that all three multipolar terms are necessary to accurately reproduce both linear and 

circular optical activity observed. The superposition of {𝑑,𝑚, 𝑞} terms has no classical 

equivalent, and that all three transitions are simultaneously on resonance conveys that 

the system sustains angular momentum states. The relative magnitudes of the electric 

and magnetic dipoles |𝑚|2/|𝑑|2~1 are also of note – we now have a nonmagnetic 

sample that is capable of generating magnetic response to the same order as the 

electric. 

 Additionally, the observed symmetry breaking in the circular OA experiments 

provides further support for extension of the plasmonic hybridization model. In analogy 

with the linear combination of atomic orbitals utilized in the description of diatomic 

molecules, the composite dimer (molecule) may be decomposed into its two individual 

spheres (atoms). Each sphere, based on its size and aspherities, has its own 

associated plasmonic resonances, given by its angular momentum states. The 
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subsequent coupling of the states gives rise to split dimer energy states, much like the 

bonding and anti-bonding orbitals of molecular orbital theory (18). 

 These conclusions are all understood within the framework of the spin vector 

calculus of polarization, with the sample interaction matrix containing the full response 

of the dimer under all polarization-resolved experiments. Using the complete interaction 

matrix, the behavior of the antenna under a variety of experiments are accurately fit and 

predicted. The information uncovered in these experiments lends itself to a variety of 

applications, perhaps most notable the generation of broadband, controllable negative 

index films for the visible regime. Though this treatment was formulated with an eye 

toward the gold nanodimers specifically, it was presented in a general fashion that holds 

for any uniaxial plasmonic objects with dimensions on the order of the wavelength of 

excitation and has important implications for bi-isotropic media. 
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