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Multiomic characterization of pancreatic 
cancer-associated macrophage 
polarization reveals deregulated 
metabolic programs driven by the GM-
CSF–PI3K pathway
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Abstract The pancreatic ductal adenocarcinoma microenvironment is composed of a variety 
of cell types and marked by extensive fibrosis and inflammation. Tumor-associated macrophages 
(TAMs) are abundant, and they are important mediators of disease progression and invasion. TAMs 
are polarized in situ to a tumor promoting and immunosuppressive phenotype via cytokine signaling 
and metabolic crosstalk from malignant epithelial cells and other components of the tumor micro-
environment. However, the specific distinguishing features and functions of TAMs remain poorly 
defined. Here, we generated tumor-educated macrophages (TEMs) in vitro and performed detailed, 
multiomic characterization (i.e., transcriptomics, proteomics, metabolomics). Our results reveal 
unique genetic and metabolic signatures of TEMs, the veracity of which were queried against our 
in-house single-cell RNA sequencing dataset of human pancreatic tumors. This analysis identified 
expression of novel, metabolic TEM markers in human pancreatic TAMs, including ARG1, ACLY, and 
TXNIP. We then utilized our TEM model system to study the role of mutant Kras signaling in cancer 
cells on TEM polarization. This revealed an important role for granulocyte–macrophage colony-
stimulating factor (GM-CSF) and lactate on TEM polarization, molecules released from cancer cells 
in a mutant Kras-dependent manner. Lastly, we demonstrate that GM-CSF dysregulates TEM gene 
expression and metabolism through PI3K–AKT pathway signaling. Collectively, our results define 
new markers and programs to classify pancreatic TAMs, how these are engaged by cancer cells, and 
the precise signaling pathways mediating polarization.
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This paper performs a comprehensive mechanistic and genomic evaluation of the impact of macro-
phage polarization on metabolic changes in pancreatic cancer. It provides an important advance to 
the understanding of the role of the microenvironment in the context of this disease.

Introduction
Pancreatic cancer is the deadliest major cancer (Siegel et al., 2020). Early metastasis and insufficient 
detection methods compound an inability to effectively treat the disease, subjecting patients to a 
poor prognosis and high mortality rate (Rhim et al., 2012; Chan et  al., 2013). The tumor micro-
environment (TME), composed of a dense fibroinflammatory stroma, has been shown to contribute 
to the difficulty in treating this disease (Feig et al., 2012). In fact, the numbers of malignant cancer 
cells within pancreatic tumors are typically exceeded by the immune and fibroblast populations (Feig 
et al., 2012). Accordingly, recent efforts have sought to characterize these nonepithelial components 
of the TME in pursuit of identifying new and improved detection and treatment modalities. A predom-
inant cell type of interest in the pancreatic TME are tumor-associated macrophages (TAMs), a myeloid 
cell population that mediates therapeutic resistance and disease aggression (Di Caro et al., 2016; 
Halbrook et al., 2019; Zhang et al., 2017; Zhu et al., 2014; Zhu et al., 2017; Beatty et al., 2015; 
Candido et al., 2018).

The impact of pancreatic TAMs on tumor growth and aggression has been relatively well estab-
lished. As the major inflammatory component of solid tumors (Balkwill and Mantovani, 2012), TAM 
abundance correlates with worse response to pancreatic ductal adenocarcinoma (PDA) therapy 
(Di Caro et al., 2016). The mechanisms by which TAMs mediate this outcome are rather diverse. 
For example, TAMs promote cancer cell proliferation and metastasis (Qian and Pollard, 2010) and 
protect malignant cells from antitumor T-cell activity through immunosuppression (Zhang et al., 2017; 
Candido et al., 2018). TAMs have also been linked to promoting chemoresistance (Zhu et al., 2014), 
and recent work by our groups demonstrated that these pancreatic TAMs are capable of directly 
inhibiting the effect of chemotherapy agent gemcitabine on cancer cells through their release of the 
pyrimidine nucleoside deoxycytidine (Halbrook et al., 2019). These unique immunosuppressive and 
metabolic characteristics of TAMs are attributed in part to the phenotypic rewiring macrophages 
experience in response to the pancreatic TME.

TAMs have long been considered anti-inflammatory ‘M2-like’ macrophages, with in vitro models 
occasionally polarizing naive macrophages with type-2 cytokines to study TAMs (Yuan et al., 2020). 
Although overlap exists between the phenotypes of M2 and TAMs, including oxidative metabolism 
(Halbrook et  al., 2019) and immunosuppressive properties, such as the expression of Arginase-1 
(Arg1) (Arlauckas et  al., 2018), the diverse molecular stimuli found throughout the TME polarize 
TAMs into macrophages with properties not shared with other classical subtypes. The focus of this 
study aimed to define the mechanistic aspects relating to TAM polarization by directly interrogating 
tumor cell–macrophage communication.

To recapitulate the signaling and metabolic factors present in the pancreatic TME, we polarized 
murine bone marrow-derived macrophages (BMDMs) in vitro with conditioned media from a PDA cell 
line in which we can regulate the activity of mutant Kras. We refer to macrophages polarized under 
these conditions as tumor-educated macrophages (TEMs) to distinguish them from TAMs arising in a 
tumor. We then utilized a systems biology approach integrating our multiomic profiling (i.e., transcrip-
tomics, proteomics, metabolomics) to define biomarkers for, and the properties of, TEMs. Contrasting 
this with data from proinflammatory ‘M1-like’ and ‘M2-like’ macrophages revealed a panoply of markers 
and pathways that illustrate distinct functional characteristics of TEMs relative to classical subtypes. 
We then queried our in-house, single-cell RNA sequencing (scRNA-seq) datasets (Steele et al., 2020) 
and verified the expression of several of these markers in human pancreatic TAMs, demonstrating 
persistence of the TAM phenotype across different species and pancreatic cancer models.

Further inquiry into the role of cancer cell mutant Kras activity in TEM polarization led us to observe 
an important function of a Kras-driven signaling protein (i.e., granulocyte–macrophage colony-
stimulating factor, GM-CSF) and a metabolite (i.e., lactate) for the expression of several unique TEM 
markers. Finally, we show that GM-CSF instructs TEM gene expression and metabolism through the 
PI3K–AKT pathway. Together, these data provide new insights into the crosstalk pathways between 

https://doi.org/10.7554/eLife.73796
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cancer cells and macrophages and establish a mechanism by which malignant epithelial cells promote 
some of the most distinguishing features of TEM function.

Results
In vitro modeling and multiomic analysis of tumor-associated 
macrophages
To model pancreatic TAMs in vitro, we modified the classical BMDM differentiation and polarization 
paradigm (Celada et al., 1984), as follows (Figure 1A). First, we isolated and plated bone marrow in 
media containing macrophage colony-stimulating factor (M-CSF) to differentiate and expand macro-
phages for 5 days. These naive macrophages (M0) were then polarized to a tumor-associated pheno-
type for 2 days in conditioned media from PDA cells. Fresh media was included at a ratio of one to 
three parts conditioned media to account for nutrients consumed by the cancer cells. The resultant 
in vitro-derived cells are herein defined as TEMs, as they are educated by, and not directly associ-
ated with, cancer cells. Furthermore, the pancreatic cancer-conditioned media was generated from 
a cell line (iKras*3) derived from our murine pancreatic tumor model in which reversible mutant Kras 
expression is under the control of doxycycline (dox) (Collins et al., 2012). Growth of these cells in 
dox drives mutant Kras expression, MAPK pathway activity, and the malignant phenotype in vitro and 
in vivo (Collins et al., 2012; Ying et al., 2012). We also assessed how the removal of Kras from the 
cancer cells, via dox withdrawal for 3 or 5 days, impacted TEM polarization. In parallel with the TEM 
polarization strategies, we also polarized M0 macrophages into the canonical in vitro phenotypes 
with 2-day treatment of either lipopolysaccharide (LPS; proinflammatory ‘M1’) or interleukin-4 (IL4; 
anti-inflammatory ‘M2’). M0 macrophages were maintained in the naive state by 2-day treatment with 
M-CSF (Figure 1A). M1 and M2 phenotypes were independently validated via quantitative polymerase 
chain reaction (qPCR) of classic proinflammatory (Interleukin 12b, Il12b; Tumor necrosis factor alpha, 
Tnfa) and anti-inflammatory (Found in inflammatory zone protein 1, Fizz1; Chitinase-like 3, Chil3; Arg1) 
genes (Murray, 2017; Orecchioni et al., 2019; Figure 1—figure supplement 1A, B). Importantly, we 
observed that TEMs did not fit into either the M1 or M2 marker profiles, suggesting that an unbiased 
approach would be needed to better define PDA-programmed macrophage populations.

We then performed multiomic profiling on each of the macrophage subtypes to achieve a compre-
hensive characterization of genetic and metabolic activity by (1) bulk RNA sequencing (RNA-seq) in 
triplicates, (2) proteomic profiling by mass spectrometry (MS) in duplicates, and metabolomic analyses 
on (3) intracellular and (4) extracellular metabolites by liquid chromatography (LC)/MS in triplicates. 
Principal component analysis (PCA) from each omics dataset demonstrated clustering of the biolog-
ical replicates reflecting high-quality data (Figure 1B). From this global analysis, we also observed that 
the M1 subtype has the most distinct molecular profile on all triomics levels. The TEM subtype exhib-
ited molecular profiles more similar to the M2 subtype than the M1, in line with previous publications 
from our groups and others (Halbrook et al., 2019; Arlauckas et al., 2018).

Metabolism and cytokine signaling are distinctive features of 
pancreatic TEMs
As a means for further validation, we first directed our attention to known markers of each macro-
phage subtype in the transcriptomics data. We selected a group of five canonical macrophage genes, 
which were assessed in the primary data. The proinflammatory macrophage markers, Nitric Oxide 
Synthase 2 (Nos2) and the glucose transporter Slc2a1 (GLUT1), displayed increased expression in 
LPS-treated macrophages compared to the other macrophage subtypes (Figure 1C, Figure 1—figure 
supplement 1C). Likewise, IL4-treated macrophages exhibited increased expression of classical anti-
inflammatory/tissue remodeling markers, including Interleukin 4 Induced 1 (Il4i1), Arg1, and Chil3 
(Figure 1D, Figure 1—figure supplement 1B). Next, we performed differential expression or abun-
dance analysis to identify markers that distinguish each subtype (Figure 1E, Supplementary file 1). 
The largest number of differential markers occurs in the M1 subtype across all triomics datasets, in 
agreement with the PCA analysis. We performed pathway analyses of each set of differential markers 
by gene set enrichment analysis (GSEA) (Subramanian et al., 2005) of KEGG gene sets for the tran-
scriptomics data and Enrichr (Xie et al., 2021) for the proteomics data comparing TEMs to M0, M1, 
and M2 macrophages (Figure 1—figure supplement 1D, Supplementary files 2 and 3). Here, we 

https://doi.org/10.7554/eLife.73796
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Figure 1. In vitro modeling and characterization of pancreatic tumor-educated macrophages (TEMs). (A) Schematic of bone marrow-derived 
macrophage (BMDM) differentiation and polarization. (B) Left: principal component analysis of transcriptomics and proteomics of BMDMs treated 
with macrophage colony-stimulating factor (M-CSF; M0), lipopolysaccharide (LPS; M1), interleukin-4 (IL4; M2), or conditioned media from Kras-Off (3 
or 5 days) or Kras-On (TEM) pancreatic ductal adenocarcinoma (PDA) cells; right: intracellular and extracellular metabolomics from media (Dulbecco’s 
modified Eagle medium, DMEM + 10% FBS), M0, M1, M2, or TEM (Kras-On media was mock treated or boiled before TEM culture). Transcriptomics 
and metabolomics samples were collected in biological triplicate; proteomics in biological duplicate. (C) RNA sequencing (RNA-seq)-measured mean-
centered expression of classical M1 genes Nos2 and Slc2a1 across M0, M1, M2, and TEM phenotypes; n = 3. (D) RNA-seq-measured mean-centered 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.73796
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observed several metabolic pathways that follow our previous characterization of TEM metabolism 
(Halbrook et  al., 2019), including catabolic pathways (arginine and proline metabolism), anabolic 
pathways (nucleotide sugar metabolism), and functional pathways (fatty acid metabolism and glycol-
ysis). This analysis also showed enrichment in the mTOR signaling pathway in TEMs, and the MAPK 
pathway in the other macrophage subtypes (Figure 1—figure supplement 1D). The top pathways 
among the upregulated TEM protein markers include neutrophil-related immune response and glyco-
lipid/fatty acid metabolism.

Focusing further on the components driving TEM programming, pathway-centric approaches 
revealed two prominent features in TEMs relating to (1) cytokine signaling and (2) metabolism. Differ-
ential cytokine signaling is relatively well described for pancreatic TAMs (Zhang et al., 2020; Aldi-
nucci et  al., 2020). Indeed, C-C Motif Chemokine Receptor 1 (Ccr1) and Ccr5 were significantly 
upregulated at the transcript level in TEMs, compared to M0, M1, and M2 macrophages (Figure 2A, 
Figure 2—figure supplement 1A). The patterns of differences in mRNA expression were maintained 
in the proteomics analysis (Figure 2—figure supplement 1B). Of note, our previous assessment of 
pancreatic TAMs identified CCR1 as a key mediator of immune suppression in pancreatic tumors 
(Zhang et al., 2020). Further, despite TAMs having long been described as M2-like/anti-inflammatory 
macrophages, due to their expression of ARG1 and oxidative metabolism (Halbrook et al., 2019; 
Arlauckas et al., 2018; Binnemars-Postma et al., 2018), pancreatic TEMs lack expression of important 
IL4 targets, demonstrating a clear difference in cellular activity between TEMs and type-2 cytokine-
activated macrophages (Figure 1D, E, Figure 1—figure supplement 1B).

The second differentially enriched pathway in pancreatic TEMs is related to metabolism, and meta-
bolic states have been shown to be key features distinguishing M1 and M2 macrophages (Jha et al., 
2015). Indeed, by focusing on markers that are metabolic enzymes from both proteomics and tran-
scriptomics, we find that TEMs contain the greatest proportion of upregulated metabolic enzymes, 
while M1 has the largest number of downregulated markers that are metabolic enzymes (Figure 2B, 
C).

Among the differential expressed TEM metabolic enzymes, we further narrowed our focus to three 
for follow-up analysis (Figure 1C and Figure 2D, E; Figure 2—figure supplement 1C, D). The first is 
Thioredoxin-interacting protein (TXNIP), an inhibitor of glucose import (Lee et al., 2017; Wu et al., 
2013). Txnip emerged as the top upregulated TEM marker at both the gene and protein levels. 
The second was ATP Citrate Lyase (ACLY), a well-known enzyme with multifunctional roles in several 
biological pathways, including serving as a nexus between cellular metabolism and the regulation of 
gene expression by way of histone acetylation (Zaidi et al., 2012). Finally, we observed Arg1 to be 
highly expressed in TEMs (Figure 1D), and even greater than that in ‘M2-like’ macrophages.

Next, we aimed to identify proteins that coexpressed with these three markers. We focused on 
correlated proteins, given the more proximal relevance to cellular functions and phenotypes than 
transcript expression. We selected the top 20 proteins according to both positive and negative 
correlations with ACLY, ARG1, or TXNIP (Figure 2E). Among those positively correlated with ACLY is 
SLC25A1, the mitochondrial citrate transporter. Citrate is a substrate of ACLY and highly abundant in 
TEMs based on our intracellular metabolomics data (Figure 2—figure supplement 2A), suggesting 
that the pathway of citrate-SLC25A1-ACLY is a TEM signature feature, as has been recently reported 
in inflammatory macrophages from atherosclerotic plaques (Baardman et  al., 2020). Among the 
proteins positively correlated with ARG1 is PIK3CD, which endcodes for p110 delta, the catalytic 
subunit of PI3K (Chen et al., 2019; Figure 2E), suggesting a role for this signaling pathway in TEMs. 
We also investigated functional associations among those correlated proteins using Search Tool for 
Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et  al., 2019). A particularly strong 

expression of classical M2 genes Il4i1, Chil3, and Arg1 across M0, M1, M2, and TEM phenotypes; n = 3. (E) Heat map array of differential markers of 
each subtype from proteomics (1916 proteins), transcriptomics (9470 transcript), and intracellular (82 metabolites) and extracellular (46 metabolites) 
metabolomics. We highlight TEM markers in the black boxes. Error bars in (C) and (D) are mean ± standard deviation (SD); significance comparisons are 
relative to TEM subtype and were calculated using one-way analysis of variance (ANOVA) with Dunnett’s post hoc test; **p < 0.01, ***p < 0.001, ****p < 
0.0001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Transcriptomic analyses of macrophages markers.

Figure 1 continued

https://doi.org/10.7554/eLife.73796
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Figure 2. Metabolism and cytokine signaling are distinctive features of pancreatic tumor-educated macrophages (TEMs). (A) RNA sequencing (RNA-
seq) mean-centered expression of TEM cytokine-related signatures, Ccr1 and Ccr5; n = 3. (B) A bar plot of the numbers of up- and downregulated 
markers that are metabolic enzymes, present in both protein and gene analyses, for each subtype. (C) Table of 18 upregulated TEM markers from B 
and their corresponding KEGG (Kyoto Encyclopedia of Genes and Genomes) class. Note Acly as an enzyme of interest. (D) RNA-seq-measured mean-

Figure 2 continued on next page

https://doi.org/10.7554/eLife.73796
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functional association (enrichment p value ~0.0001) was found among the TXNIP-correlated proteins, 
which are mostly involved in metabolism (Figure 2—figure supplement 2C). This is not the case for 
those Txnip-correlated transcripts (Figure 2—figure supplement 2D).

TEM markers distinguish pancreatic TAMs in human tumors
To demonstrate biological relevance of the pancreatic TEM phenotype, we queried our in-house 
scRNA-seq datasets from human tumors (Steele et  al., 2020), paying particular attention to the 
myeloid populations (Figure 3A). We identified expression of several TEM markers in human pancre-
atic TAMs, such as ACLY and TXNIP (Figure 3B, Figure 3—figure supplement 1A). We are unable to 
provide sufficient data supporting ARG1 expression in human pancreatic tumors as it experiences high 
rates of drop-out during scRNA-seq. However, we note expression of the strongly Arg1-correlated 
gene, PIK3CD, in macrophage populations in human pancreatic tumors (Figure 3B, Figure 3—figure 
supplement 1A).

In further support of PI3K relevance in TAMs, we found several PI3K-related TEM signatures 
(Figure  2—figure supplement 2B) also expressed in human TAMs (Figure  3C, Figure  3—figure 
supplement 1B). Those signature genes are indeed enriched in PI3K–Akt signaling pathway, as well 
as integrin signaling and the unfolded protein response by the Enrichr analysis (Supplementary file 
3). These data suggest that PI3K signaling in TEMs is relevant in human TAMs, along with potential 
contributing factors both upstream and downstream of this signaling pathway.

Pancreatic TAM polarization is dependent on mutant Kras activity in 
pancreatic cancer cells
The data from our profiling analyses revealed a distinction between the TEMs generated in media 
from Kras-expressing and -extinguished pancreatic cancer cells (Figure 1B, E). As noted in Figure 1, 
we polarized naive BMDMs with Kras-On and Kras-Off PDA cell-conditioned media (Figure  4A). 
Western blot of iKras*3 cell lysates for MAPK pathway activity demonstrated the expected decrease 
in ERK phosphorylation in dox-withheld iKras cells (Figure 4B). We turned our attention to differential 
markers in Figure 1E and their expression patterns in Kras-On and 5-day Kras-Off TEMs (Figure 4C). 
The data revealed broad differences in macrophage gene and protein expression, indicating that 
inducing mutant Kras in pancreatic cancer cells modifies both the extracellular environment and 
consequent phenotypes of macrophages exposed to these changes. Performing GSEA of KEGG gene 
sets between the Kras-On and Kras-Off macrophages (Supplementary file 4), we again observed 
enrichment in metabolic pathways, in line with our previous study of TEM metabolism (Halbrook 
et al., 2019). These include glycolysis, arginine catabolism, and pentose phosphate pathway. In addi-
tion to these metabolic pathways, we also see enrichment of the JAK–STAT pathway and activation of 
chemokine signaling/cytokine–cytokine receptor interactions. Furthermore, the top pathways among 
the protein markers in the Kras-Off condition include exosome/transport/apoptotic processes and 
macromolecule/nucleobase/phosphate metabolic processes (Figure 4—figure supplement 1A and 
Supplementary file 3). Specifically, we determined that macrophage expression of Arg1, Acly, Txnip, 
Ccr1, and Ccr5 were all decreased when PDA cell Kras* was turned off (Figure 4D, Figure 4—figure 
supplement 1B).

Mutant Kras activity in pancreatic cancer cells polarizes TEMs through 
GM-CSF and lactate
Upon recognizing the importance of PDA mutant Kras signaling for achieving the TEM phenotype, we 
considered the specific downstream factors of Kras activity that may contribute to TEM polarization. 

centered expression of TEM enzyme signatures Txnip and Acly; n = 3. (E) Heat map of the top 20 positively and negatively correlated proteins from the 
proteomics data for TXNIP, ACLY, and ARG1. Error bars in (A) and (D) are mean ± standard deviation (SD); significance comparisons are relative to TEM 
subtype and were calculated using one-way analysis of variance (ANOVA) with Dunnett’s post hoc test; ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Transcriptomic and proteomic analyses of macrophage markers.

Figure supplement 2. Multiomic pathway analyses.

Figure 2 continued

https://doi.org/10.7554/eLife.73796
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Macrophage expression of ARG1 and TXNIP has been shown to be responsive to lactate and extracel-
lular acidification (Zhang et al., 2019; El-Kenawi et al., 2019). In addition, studies have demonstrated 
that macrophage expression of ARG1 may be regulated by signaling downstream of GM-CSF (Jost 
et al., 2003). Furthermore, previous work from our groups and others have also implicated mutant 
Kras activity in the activation of glycolysis and lactate excretion and the release of GM-CSF (Ying 
et al., 2012; Tape et al., 2016; Bayne et al., 2012; Pylayeva-Gupta et al., 2012).

Based on these leads, we determined if Kras expression promotes GM-CSF and lactate release 
in our isogenic, mutant Kras-inducible cell line model and the subsequent role of these factors on 
TEM polarization. Analysis of GM-CSF expression by qPCR and release by ELISA indicated that loss 
of mutant Kras expression reduced Csf2 expression and GM-CSF release by more than 10- and 1000-
fold, respectively (Figure 5A). Further, we found that GM-CSF secretion is abundant in two additional 

Figure 3. Expression of tumor-educated macrophage (TEM) markers in human pancreatic tumor-associated macrophages. (A) UMAP plot of 
myeloid populations in a human pancreatic tumor. (B) UMAP plots of TEM markers ACLY, TXNIP, and PI3KCD in human pancreatic tumor-associated 
macrophages (TAMs). (C) UMAP plots of PI3K-related genes expressed in human pancreatic TAMs (DDIT4, PRKAB1, LAMB3, LAMB2, THBS1, VEGFA, 
PLCB2, and ITGB7). (D) Expression of murine pancreatic TEM markers in macrophages from human tumors (pancreatic ductal adenocarcinoma [PDAC] 
TAMs) compared to macrophages from adjacent ‘normal’ tissue (AdjNorm), as analyzed by single-cell RNA sequencing.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression of pancreatic tumor-educated macrophage (TEM) markers in human tumors.

https://doi.org/10.7554/eLife.73796
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murine pancreatic cancer cell lines; that is, KPC cell lines, KPC7940 and KPCMT3 (Figure 4—figure 
supplement 1C). Next, we analyzed mutant Kras-dependent extracellular metabolism, including 
lactate production, by metabolomics. Metabolome profiling of the spent media from Kras-expressing 
PDA cells revealed profound alterations to the extracellular metabolome (Figure 5—figure supple-
ment 1A, B), including a Kras expression-dependent increase in lactate release (Figure  5B). The 

Figure 4. The polarization of pancreatic tumor-educated macrophages (TEMs) is dependent on mutant Kras signaling in pancreatic cancer cells. (A) 
Schematic of bone marrow-derived macrophage (BMDM) differentiation, iKras*3 cell Kras-On and Kras-Off conditioned media generation, and Kras-On 
and Kras-Off TEM polarization. (B) Western blot of MAPK pathway proteins ERK and pERK in Kras-expressing and 5-day Kras-extinguished iKras*3 cells. 
(C) Transcriptomics and proteomics heat maps of the differential markers in Figure 1E for Kras-On and 5-day Kras-Off TEMs. (D) RNA sequencing (RNA-
seq)-measured mean-centered expression of TEM signatures Arg1, Acly, Txnip, Ccr1, and Ccr5; n = 3. Error bars are mean ± standard deviation (SD); 
significance was calculated using using a Student’s t-test; ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Regulation of tumor-educated macrophage (TEM) gene expression by mutant Kras in pancreatic ductal adenocarcinoma (PDA) 
cells.

https://doi.org/10.7554/eLife.73796
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Figure 5. Kras in pancreatic ductal adenocarcinoma (PDA) polarizes pancreatic tumor-educated macrophages (TEMs) by way of granulocyte–
macrophage colony-stimulating factor (GM-CSF) and lactate. (A) Quantitative polymerase chain reaction (qPCR) measurement of Csf2 expression 
and ELISA for GM-CSF release; n = 3 in murine PDA cell line iKras*3. (B) Liquid chromatography (LC)/mass spectrometry (MS)-measured extracellular 
lactate abundance from Kras-expressing and -extinguished iKras*3 cells plotted as median-centered values; n = 3. (C) RNA sequencing (RNA-seq)-
measured expression of myeloid GM-CSF-responsive genes, Cish, Pim1, and Ccl17 in Kras-On and Kras-Off TEMs; n = 3. (D) RNA-seq-measured 
expression of lactate-responsive genes, Il1b and Il6 in Kras-On and Kras-Off TEMs; n = 3. (E, F) RNA-seq-measured expression of genes responsive to 
acidic extracellular pH in Kras-On and Kras-Off TEMs; n = 3. (G) qPCR-measured expression of TEM markers Arg1, Txnip, Acly, Ccr1, and Ccr5 in M0 
macrophages treated with either lactate, GM-CSF, or the combination; n = 3. Error bars are mean ± standard deviation (SD); significance values in (A–F) 
were calculated using a Student’s t-test; in (G), comparisons are relative to TEM subtype, and significance was calculated using one-way analysis of 
variance (ANOVA) with Dunnett’s post hoc test; *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effects of mutant Kras on extracellular metabolism in pancreatic ductal adenocarcinoma (PDA) cells.

https://doi.org/10.7554/eLife.73796
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Kras-dependent release of lactate was also analyzed and quantitated using an enzymatic assay-based 
approach (Figure 5—figure supplement 1C).

To confirm that these Kras-dependent differences in PDA cell activity impact activation of macro-
phages, we queried several differentially expressed genes in TEMs that are regulated by PDA mutant 
Kras and have been documented as responsive to GM-CSF, lactate, or pH. GM-CSF signaling in myeloid 
cells activates expression of Cish, Pim1, and Ccl17 (Lehtonen et al., 2002). Indeed, we demonstrate 
that expression of these transcripts is significantly upregulated in macrophages exposed to Kras-On 
PDA cell-conditioned media, compared to those exposed to Kras-Off PDA cell-conditioned media 
(Figure 5C).

Il1b and Il6 were previously identified as lactate-sensitive genes in macrophages (Samuvel et al., 
2009). We demonstrate from our RNA-seq data that Kras-On media causes macrophages to express 
Il1b and Il6 significantly more than macrophages exposed to Kras-Off media (Figure 5D). Further-
more, IL6 production has been shown to control macrophage Arg1 expression in an autocrine–para-
crine manner (Dichtl et al., 2021), supporting the notion that Kras-dependent increases in lactate 
production impact the TEM phenotype.

Lactate is chiefly responsible for acidification of both the TME and the media used in tissue culture; 
the latter is well appreciated by the yellow shift of the pH-sensitive phenol red reagent. Multiple 
genes expressed by macrophages have been categorized as dependent on extracellular pH, with 
Cxcl14, Il4ra, and Il18 shown to be increased in acidic extracellular conditions, and Il7r, Cxcr4, Tlr7, 
Ccl3, and Ccl4 shown to be decreased in acidic conditions (El-Kenawi et al., 2019). Our RNA-seq 
data of Kras-On vs. Kras-Off TEMs support these patterns. Each of the aforementioned genes that 
are increased in acidic conditions are upregulated in Kras-On TEMs, and each of these genes that are 
decreased in acidic conditions are downregulated in Kras-On TEMs (Figure 5E, F). These data collec-
tively support the hypothesis that increased cancer cell production of GM-CSF and lactate is depen-
dent on mutant Kras, and that the differential production of mutant Kras-dependent factors modifies 
both the extracellular environment and subsequent phenotypes of neighboring macrophages.

To further confirm that extracellular GM-CSF and lactate are important contributors to the TEM 
phenotype, we treated naive macrophages (M0) for 48 hr with either GM-CSF, lactate, or the combi-
nation. A naive macrophage culture was maintained with M-CSF as a control. In order to more closely 
mimic the cancer cell-conditioned media, and to assess effects that lactate-induced extracellular 
acidity may have on TEM polarization, we maintained media supplemented with lactate at a lower pH. 
We then collected cell lysates and performed qPCR for our TEM markers. These results demonstrated 
that Arg1 and Txnip are not significantly increased by GM-CSF or lactate as independent treatments. 
In contrast, these two factors in combination impose a synergistic effect on the expression of both 
genes (Figure 5G). We also identified increases in Acly, Ccr1, and Ccr5 expression in macrophages 
treated with GM-CSF. These results, in combination with the increased levels of lactate and GM-CSF 
observed in Kras-On media, provide strong supporting evidence for the essential role of these factors 
in TEM polarization.

PDA-derived GM-CSF promotes TEM polarization through the PI3K–
AKT pathway
GM-CSF has pleiotropic effects on signal transduction, dependent on signal strength and context 
(Zhan et  al., 2019; Hamilton, 2019). Classic downstream pathways activated by GM-CSF include 
NF-κB, PI3K/AKT, and the MAPK pathway. The data presented in Figure 2E and Figure 2—figure 
supplement 2B suggested that TEM polarization was marked by an increase in the PI3K pathway. To 
test the role of PI3K signaling in TEM polarization downstream of GM-CSF, we activated BMDMs with 
Kras-On media in the presence or absence of either the pan-PI3K inhibitor, BKM120, the pan-AKT 
inhibitor, MK-2206, or vehicle control. Western blotting for ARG1 revealed a strong activating role for 
the PI3K/AKT pathway in pancreatic TEMs (Figure 6A). AKT is known to phosphorylate ACLY, which 
has been shown to then modify histone acetylation that impacts Arg1 expression in IL4-stimulated 
macrophages (Covarrubias et al., 2016). In support of these findings, we also demonstrate that PI3K/
AKT inhibition decreases ACLY phosphorylation in our TEM model (Figure  6A, Figure  6—figure 
supplement 1A).

Because GM-CSF is secreted by Kras-expressing PDA cells, impacts macrophage Arg1 expression 
(Park et al., 2019), and activates PI3K (Hamilton, 2019), we postulated that cancer cell GM-CSF may 

https://doi.org/10.7554/eLife.73796
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Figure 6. Pancreatic ductal adenocarcinoma (PDA)-derived granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor-educated 
macrophage (TEM) polarization and dictates their metabolism through the PI3K–AKT pathway. (A) Western blot of pACLY/ACLY, pAKT/AKT, TXNIP, 
and ARG1 in bone marrow-derived macrophages (BMDMs) treated with either macrophage colony-stimulating factor (M-CSF), iKras*3 cell-conditioned 
media + vehicle, iKras*3 cell-conditioned media + pan AKT inhibitor MK-2206, or iKras*3 cell-conditioned media + pan-PI3K inhibitor BKM120. (B) 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.73796
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be activating macrophage Arg1 expression through the PI3K–AKT pathway. To test this hypothesis, we 
treated BMDMs with Kras-On conditioned media and either a GM-CSF-neutralizing antibody or IgG 
control. Indeed, blocking GM-CSF resulted in a dramatic decrease in ARG1 expression, as measured 
by immunoblotting (Figure 6B). GM-CSF neutralization also resulted in decreased phosphorylation 
of both AKT and ACLY, confirming that GM-CSF activates macrophage Arg1 expression through PI3K 
signaling (Figure 6B, Figure 6—figure supplement 1A). Finally, GM-CSF neutralization also led to 
a modest decrease in expression of ACLY and TXNIP (Figure 6B, Figure 6—figure supplement 1B). 
Taken together, these data support an activating role of GM-CSF on TEM polarization.

Lastly, to analyze how these changes in gene expression impact metabolism, we used our LC/
MS-based metabolomics profiling approach in TEMs treated with anti-GM-CSF relative to control 
antibody (Figure 6C). The anti-GM-CSF-treated groups displayed an increase in citrate, potentially 
reflecting decreased ACLY activity, in treated cells (Figure 6D). In contrast to citrate, other TCA cycle 
and associated metabolites, including malate, itaconate, glutamate, and aspartate, were decreased 
following GM-CSF neutralization (Figure  6D), which suggests that GM-CSF blockade disrupts the 
TCA cycle and metabolism of associated amino acids. Collectively, these data demonstrate that TEMs 
are functionally coordinated by GM-CSF stimulation of PI3K signaling in order to maintain their meta-
bolic homeostasis (Figure 6E).

Discussion
The pancreatic TME consists of a heterogenous mixture of cells and extracellular matrix. TAMs are 
one of the most abundant cell types in PDA and participate in therapeutic resistance through a variety 
of mechanisms, including resistance to chemotherapy, immunosuppression, and promotion of tumor 
growth. However, the factors that contribute to the unique functional properties of TAMs remain 
insufficiently characterized.

Here, we employed a multiomic approach to molecularly define pancreatic TAMs. Bulk RNA 
sequencing, MS-based proteomics, and LC/MS-based metabolomics revealed several distinctions 
between TEMs and classical macrophage subtypes. Our focus on metabolism and cytokine signaling 
as two primary drivers of cellular function revealed Txnip, Acly, and Arg1 as unique contributors to 
TEM metabolism. The top 20 proteins correlated with Txnip showed enrichment in metabolism. Acly 
revealed strong correlation with Slc25a1, the mitochondrial citrate transporter, along with an increase 
in citrate abundance with respect to other macrophage subtypes, suggesting an important role for 
this pathway in TEM function. Arg1 was strongly correlated with Pik3cd, a catalytic subunit of PI3K, 
suggesting a role for this pathway in TEM polarization. Indeed, we also observe upregulation of 
several PI3K-related genes.

Next, we queried our in-house scRNA-seq dataset of human tumors, from which we observed 
expression of several important TEM markers in human TAMs. We also note expression of PI3K-related 
genes in human TAMs, indicating persistence of this pathway in macrophage polarization in clinically 
relevant models. As confirmation of the general understanding of TAMs, we see that proinflammatory 
markers are not substantially expressed in human TAMs, while anti-inflammatory markers are more 
abundant.

We then directed our attention to the features of pancreatic cancer cells that drive TEM polar-
ization. Using our isogenic, dox-inducible mutant Kras PDA model, we polarized TEMs with condi-
tioned media from either Kras-expressing or -extinguished cells. Indeed, we observed that the most 

Western blot of pACLY/ACLY, pAKT/AKT, TXNIP, and ARG1 in BMDMs treated with either M-CSF, iKras*3 cell-conditioned media + vehicle, iKras*3 
cell-conditioned media + MK-2206, iKras*3 cell-conditioned media + BKM120, iKras*3 cell-conditioned media + IgG control, or iKras*3 cell-conditioned 
media + GM-CSF-neutralizing antibody. (C) Heat map of differentially abundant metabolites in TEMs treated with either anti-GM-CSF or IgG control; 
n = 3. (D) Bar graph of TCA and related metabolites in TEMs treated with either anti-GM-CSF or IgG control; n = 3. (E) Schematic of TEM polarization 
model. Replicates and quantitation of the westerns in (A, B) are presented in Figure 6—figure supplement 1A. Error bars are mean ± standard 
deviation (SD); significance was calculated using a Student’s t-test; *p < 0.05.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Granulocyte–macrophage colony-stimulating factor (GM-CSF) neutralization disrupts the tumor-educated macrophage (TEM) 
metabolic phenotype.

Figure 6 continued
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distinct markers of TEM metabolism and cytokine signaling are reliant on Kras expression in PDA cells. 
Kras is known to impact cancer cell glucose metabolism and growth factor expression. Specifically, 
lactate and GM-CSF are known to be released from cancer cells in greater abundance when mutant 
Kras is expressed. By querying our bulk RNA-seq dataset, we observed several GM-CSF- or lactate-
responsive genes differentially expressed in Kras-On TEMs compared to Kras-Off TEMs. We then 
investigated how these factors may affect the expression of significant TEM markers and found that 
naive BMDMs treated with GM-CSF displayed increased expression of Ccr1, Ccr5, and Acly. Further, 
BMDMs treated with both lactate and GM-CSF displayed increased expression of Arg1 and Txnip. 
These data suggest that TEM and TAM polarization occurs in response to both metabolic crosstalk 
and growth factor signaling, and build upon previous reports of the role of tumor-derived lactate in 
TAM polarization (Colegio et al., 2014).

In consideration of the GM-CSF–PI3K pathway, and the strong correlation between Arg1 and 
Pik3cd, we treated BMDMs with either a PI3K inhibitor, AKT inhibitor, or GM-CSF-neutralizing anti-
body, and observed that both PI3K–AKT inhibition and GM-CSF neutralization reduced Arg1 expres-
sion relative to vehicle and IgG control, respectively. We also note changes in TEM metabolism in 
response to GM-CSF neutralization, most notably an increase in citrate, which may potentially be 
correlated with reduced Acly expression. Collectively, these data demonstrate an important role for 
mutant Kras in TEM and TAM polarization, and suggest that mutant Kras exhibits its most significant 
effects through increased release of GM-CSF and lactate from pancreatic cancer cells. This improved 
an understanding of epithelial–myeloid communication and distinct features of tumor-associated 
macrophages will hopefully provide new insights into potential pathways for exploitation to improve 
pancreatic cancer therapy.

Finally, it is important to note a few limitations in our current investigation of TEM activation in the 
pancreatic TME. First, the epithelial–myeloid axis provides only one node of the complex network 
of interactions in pancreatic tumors. In particular, fibroblasts make up a significant part of the overall 
cellularity of pancreatic tumors, and the heterogeneity of fibroblast populations are only now begin-
ning to be understood (Helms et al., 2020; Garcia et al., 2020). Among these populations, many 
are noted to be strongly immunosuppressive, potentially providing another source of GM-CSF for the 
myeloid cells. Further, the pancreatic TME is characterized by poor vasculature (Kamphorst et al., 
2015). Future studies will be needed to address the impact of the resulting hypoxia and low-nutrient 
availability on the epithelial–myeloid signaling axis, features that were not well recapitulated using the 
cell culture-based approaches presented herein.

Materials and methods
Cell culture
The dox-inducible (iKras*3) primary mouse PDA cell line used in this study was described previously 
(Zhang et  al., 2017). Cells were maintained in high-glucose Dulbecco’s modified Eagle medium 
(DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) (Corning) at 37°C. iKras*3 cells were 
also maintained in 1 μg/ml dox. In certain conditions, iKras*3 cells were deprived of dox, for either 3 
or 5 days before conditioning media, to turn mutant Kras expression off and assess Kras-dependent 
effects on macrophage polarization. Cells were routinely checked for mycoplasma contamination with 
MycoAlert PLUS (Lonza).

Conditioned medium generation
PDA cell-conditioned medium was generated by changing the media of >50% confluent iKras*3 
plates, removing media after 48 hr, and filtering through a 0.45-μm polyethersulfone membrane 
(VWR). Fresh media was added at a ratio of one to three parts conditioned medium to replenish nutri-
ents consumed by cancer cells. L929-conditioned media was prepared for BMDM differentiation, as 
described (Halbrook et al., 2019). L929 mouse fibroblasts were maintained in fresh DMEM for 48 hr, 
after which the conditioned media was filtered through a 0.45-μm polyethersulfone membrane.

BMDM Differentiation
Bone marrow was isolated from the femurs of C57B6/J mice as described (Celada et al., 1984) and 
maintained in macrophage differentiation media (high-glucose DMEM with 10% FBS, penicillin/

https://doi.org/10.7554/eLife.73796
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streptomycin [Gibco], sodium pyruvate [Gibco], and 30% L929-conditioned media) for 5 days. Media 
was refreshed on day 3, and naive macrophages were polarized on day 5.

Macrophage polarization
BMDMs were polarized with either 10 ng/ml murine M-CSF (Peprotech), 10 ng/ml LPS (Enzo), 10 ng/
ml murine IL4 (Peprotech), 2 ng/ml murine GM-CSF, or 75% Kras-On or Kras-Off PDA cell-conditioned 
media. In certain conditions, macrophages were spiked with 5 mM lactic acid to assess the effects 
of extracellular lactate and acidic pH on macrophage gene expression. Each macrophage subtype 
was polarized from matched biological replicates. Macrophages were maintained in the presence of 
polarization factors for 48 hr.

GM-CSF neutralization and PI3K/AKT inhibition
BMDMs were differentiated over 5 days then treated for 48 hr with either 10 ng/ml murine M-CSF or 
75% Kras-On PDA-conditioned media with either vehicle control, 1 nM MK-2206 (Selleck Chemicals), 
1 nM BKM120 (Selleck Chemicals), 1 µg/ml anti-GM-CSF-neutralizing antibody (BioLegend), or IgG 
control. Compounds were maintained in dimethyl sulfoxide. Macrophages polarized in the presence 
of the PI3K and AKT inhibitors were pretreated with the respective compound for 30 min.

RNA isolation and reverse transcription
Polarized BMDMs were lysed with RLT Plus buffer with β-mercaptoethanol, lysates were homogenized 
using a Qiashredder, and RNA samples were isolated according to the RNeasy Plus Mini Kit (Qiagen) 
protocol, which included gDNA eliminator spin columns. All RNA samples were tested for concentra-
tion and purity via NanoDrop (Thermo Scientific). RNA samples were stored in −80°C until needed for 
reverse transcription. Complementary DNA (cDNA) reverse transcription was performed following the 
iScript cDNA Synthesis kit protocol (BioRad), and cDNA samples were used for qPCR.

Western blotting
Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich) and supplemented 
with phosphatase inhibitor (Sigma-Aldrich) and complete Ethylenediaminetetraacetic acid (EDTA)-free 
protease inhibitor (Sigma-Aldrich). Lysates were quantified by Bicinchoninic acid (BCA) assay (Thermo 
Fisher Scientific Inc), and equivalent protein amounts were run onto sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS–PAGE) gels. Proteins were transferred from the SDS–PAGE gel 
to an Immobilon-FL PVDF membrane, blocked, and incubated with primary antibodies. After washing, 
membranes were incubated in secondary antibody, washed, then exposed on a Biorad Chemidoc with 
West Pico (Thermo Fisher Scientific) or West Femto ECL (Thermo Fisher Scientific). Quantitation was 
performed using Image Lab software.

Protein Antibody name Catalog # Company Dilution

ACLY ATP-Citrate Lyase Antibody #4332 Cell Signaling *1:1000

p-ACLY
Phospho-ATP-Citrate  
Lyase (Ser455) Antibody #4331 Cell Signaling *1:500

AKT Akt Antibody #9272 Cell Signaling *1:1000

p-AKT
Phospho-Akt (Ser473)  
(D9E) XP Rabbit mAb #4060 Cell Signaling *1:1000

ARG1
Arginase-1 (D4E3M)  
XP Rabbit mAb #93,668 Cell Signaling *1:1000

TXNIP
TXNIP (D5F3E)  
Rabbit mAb #14,715 Cell Signaling *1:1000

pERK

Phospho-p44/42 MAPK  
(Erk1/2) (Thr202/Tyr204)  
(E10) Mouse mAb #9106 Cell Signaling *1:1000

ERK
p44/42 MAPK (Erk1/2)  
(137F5) Rabbit mAb #4695 Cell Signaling *1:1000

 Continued on next page
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Protein Antibody name Catalog # Company Dilution

Vinculin Vinculin (E1E9V) XP #13,901 Cell Signaling *1:5000

Anti-rabbit  
IgG HRP-linked  
Secondary

Anti-rabbit IgG, HRP- 
linked Antibody #7074 Cell Signaling *1:5000

Anti-mouse  
IgG HRP-linked  
Secondary

Anti-mouse IgG, HRP- 
linked Antibody #7076 Cell Signaling *1:5,000

Lactate measurement
Lactate measurements were carried out using the lactate fluorescence assay kit (Biovision #K607). 
Assays were performed according to the manufacturer’s instructions. Lactate levels were measured 
using a SpectraMax M3 Microplate reader (Molecular Devices).

RNA-seq and data analysis
RNA-seq and data analysis were performed as described (Zhang et al., 2020). Upon isolation of RNA 
samples, and determination of RNA concentration and quality, the University of Michigan Sequencing 
Core prepared strand mRNA libraries that were sequenced using 50-cycle paired-end reads via a 
HiSeq 4000 (Illumina) sequencing system. Raw data were generated and analyzed by the Univer-
sity of Michigan Bioinformatics Core. A quality control (QC) was performed using FastQC software 
(Babraham Bioinformatics) for both pre- and postalignment. Raw sequencing reads were aligned to the 
University of California Santa Cruz (UCSC) mm10 assembly mouse genome browser with Bowtie2 and 
TopHat tools of the Tuxedo suite RNA-seq alignment software. Quantification of gene expression was 
performed with HTSeq to generate TPM values. Relative expression was graphed as mean-centered 
abundance, in which each sample’s raw expression value was divided by the mean expression value of 
all samples. The primary data are available at GEO (GSE189354).

Quantitative polymerase chain reaction
Samples for qPCR were prepared with 1× Fast SYBR Green PCR master mix (Applied Biosystems). 
Primers were optimized for amplification under the following conditions: 95°C for 10 min, followed 
by 40 cycles of 95°C for 15 s and 60°C for 1 min. Melt curve analysis was performed for all samples 
upon completion of amplification. Hypoxanthine phosphoribosyltransferase (Hprt1) primer was used 
as a reference gene. Relative quantification was calculated using the 2−ΔΔCT method, in which the cycle 
threshold (CT) value of a target sample’s target gene is normalized to the expression of a reference 
gene in both a reference sample and the target sample.

Gene 5' Primer 3' Primer

Acly ​GAGGGGAAGCTGATCATGGG ​GAGCCACAGTTCCTGAGCAT

Arg1 ​CAGAAGAATGGAAGAGTCAG ​CAGATATGCAGGGAGTCACC

Ccr1 ​AGGAATTGGCCACTGGTGAG ​TTGCTGAGGAACTGGTCAGG

Ccr5 ​AGACATCCGTTCCCCCTACA ​GCAGCATAGTGAGCCCAGAA

Chil3 ​CAGGGTAATGAGTGGGTTGG ​CACGGCACCTCCTAAATTGT

Fizz1 ​CCTGCTGGGATGACTGCTAC ​GTCAACGAGTAAGCACAGGC

Gmcsf ​ATGC​CTGT​CACG​TTGA​ATGAAG ​GCGGGTCTGCACACATGTTA

Gmcsf ​AGAT​ATTC​GAGC​AGGG​TCTAC ​GGGA​TATC​AGTC​AGAA​AGGTT

Hprt1 ​TCAG​TCAA​CGGG​GGAC​ATAAA ​GGGG​CTGT​ACTG​CTTA​ACCAG

Il12b ​TGGT​TTGC​CATC​GTTT​TGCTG ​ACAG​GTGA​GGTT​CACT​GTTTCT

Il1b ​CGCAGCAGCACATCAACAAG ​GTGCTCATGTCCTCATCCTG

 Continued
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Gene 5' Primer 3' Primer

Il4i1 ​GCCATTCCCCAGAGGACATC ​GGCTGTACCGGAGTCTATCG

NOS2 ​GTTC​TCAG​CCCA​ACAA​TACAAGA GTGGACGGGTCGATGTCAC

Slc25a1 ​TGCGACTGTACTGAAGCAGG ​GTAGAATGCCTTTGGCCCCT

Slc2a1 ​GTGACGATCTGAGCTACGGG ​GAGAGACCAAAGCGTGGTGA

Tbp ​CCCCACAACTCTTCCATTCT ​GCAGGAGTGATAGGGGTCAT

Tnfa ​GACG​TGGA​ACTG​GCAG​AAGAG ​TTGG​TGGT​TTGT​GAGT​GTGAG

Txnip ​CCCTGACCTAATGGCACCAG ​AGTGTGTCGGGCCACAATAG

Proteomics
Sample preparation
Six total samples from six macrophage subtypes were prepared in duplicate for MS-based proteomics. 
The supernatant of each sample’s cell lysate was collected to obtain >70 µg of total protein or a protein 
concentration of 2 µg/µl per sample. Samples were stored at −80°C until the proteomics experiments.

Tandem mass tag (TMT) quantification
Protein identification and TMT quantification were performed using Proteome Discoverer (v2.1, 
Thermo Fisher Scientific). MS2 spectra were searched against Mus musculus protein database 
(UniProt, 25,510 entries, downloaded on 10/03/2017) using the following search parameters: MS1 
and MS2 tolerance were set to 10 ppm and 0.6 Da, respectively; carbamidomethylation of cysteines 
(57.02146 Da) and TMT labeling of lysine and N-termini of peptides (229.16293 Da) were consid-
ered static modifications; oxidation of methionine (15.9949  Da) and deamidation of asparagine 
and glutamine (0.98401 Da) were considered variable. Percolator PSM validator was used to filter 
Identified proteins and peptides to retain only those that passed ≤2% FDR threshold. Quantita-
tion was performed using high-quality MS3 spectra (average signal-to-noise ratio of 6% and <50% 
isolation interference). A total of 6919 proteins were quantified and 5437 proteins were common in 
the two TMT experiments. The mean and median of Pearson’s correlation coefficients between the 
abundance profiles of individual proteins in both TMT datasets were 0.68 and 0.84, respectively. 
There were 3631 proteins whose abundance profile correlations were greater than the mean, which 
we considered consistent between the two TMT experiments. For downstream analysis, the mean-
centered normalized data were used.

LC-MS3 analysis
For raw data acquisition from a total of 28 runs (14 in duplicate), an Orbitrap Fusion (Thermo Fisher) 
and Rapid Separation Liquid Chromatography (RSLC) Systems UltiMate 3000 nano-Ultra Performance 
Liquid Chromatography (UPLC) (Dionex) were used. To increase accuracy and confidence in protein 
abundance measurements, a multinotch-MS3 analysis method was employed for MS data analysis. Two 
microliters from each fraction were resolved in 2D on a nanocapillary reverse phase column (Acclaim 
PepMap C18, 2 µm particle size, 75 μm diameter × 50 cm length, Thermo Fisher) using a 0.1% formic/
acetonitrile gradient at 300 nl/min (2%–22% acetonitrile in 150 min, 22%–32% acetonitrile in 40 min, 
20-min wash at 90% acetonitrile, followed by 50-min reequilibration) and sprayed directly onto the 
Orbitrap Fusion with EasySpray (Thermo Fisher; Spray voltage (positive ion) = 1900 V, Spray voltage 
(negative ion) = 600 V, method duration = 180 min, ion source type = nanoelectrospray ionization 
(NSI)). The mass spectrometer was set to collect the MS1 scan (Orbitrap; 120 K resolution; automatic 
gain control [AGC] target 2 × 105; max injection time [IT] 100 ms), and then data-dependent Top 
Speed (3 s) MS2 scans (collision-induced dissociation; ion trap; NCD 35; AGC 5 × 103; max IT 100 
ms). For multinotch-MS3 analysis, the top 10 precursor ions from each MS2 scan were fragmented by 
high-energy collisional dissociation, followed by Orbitrap analysis (NCE 55; 60 K resolution; AGC 5 × 
104; max IT 120 ms; 100–500 m/z scan range).

 Continued
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Tandem mass tag (TMT) data analysis
Raw MS data preprocessing and TMT protein quantification were performed using MSFragger (Kong 
et  al., 2017) (peptide identification), the Philosopher toolkit (da Veiga Leprevost et  al., 2020) 
(peptide validation and protein inference, FDR filtering, and extraction of quantitative information 
from MS scans), and TMT-Integrator (protein quantification and normalization) as previously described 
(Djomehri et al., 2020). A total of 6919 proteins were quantified and 5437 proteins were common 
in the two TMT experiments. The mean and median of Pearson’s correlation coefficients between 
the abundance profiles of individual proteins in both TMT datasets were 0.68 and 0.84, respectively. 
There were 3631 proteins whose abundance profile correlations were greater than the mean, which 
we considered consistent between the two TMT experiments. For downstream analysis, the mean-
centered normalized data were used. The candidate markers of differentially abundant proteins for 
each macrophage subtype were identified by a one-tailed t-test for each direction of up- and/or 
downregulation against the remaining subtypes with a p value threshold of 0.001. No multiple testing 
correction was made in favor of downstream functional analysis.

The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository with the dataset identifier PXD028632.

Metabolite sample preparation
Intracellular metabolite fractions were prepared from cells grown in nontissue culture-treated 6-well 
plates (Corning) that were lysed with cold (−80°C) 80% methanol, then clarified by centrifugation. 
Metabolite levels of intercellular fractions were normalized to the protein content of a parallel sample, 
and all samples were dried via speed vac after clarification by centrifugation. Media samples were 
prepared by collecting 200 µl of conditioned or basal media and adding to 800 µl of cold 100% meth-
anol. The resultant was clarified by centrifugation and lyophilized via speed vac. Dried metabolite 
pellets from cells or media were resuspended in 35 μl 50:50 HPLC grade methanol:water mixture for 
metabolomics analysis.

Metabolomics
Agilent 1290 UHPLC and 6490 Triple Quadrupole (QqQ) Mass Spectrometer (LC–MS) were used 
for label-free targeted metabolomics analysis, as described previously (Lee et  al., 2019). Agilent 
MassHunter Optimizer and Workstation Software LC–MS Data Acquisition for 6400 Series Triple Quad-
rupole B.08.00 was used for standard optimization and data acquisition. Agilent MassHunter Worksta-
tion Software Quantitative Analysis Version B.0700 for QqQ was used for initial raw data extraction 
and analysis. For RPLC, a Waters Acquity UPLC BEH TSS C18 column (2.1 × 100 mm, 1.7 µm) was used 
in the positive ionization mode. For HILIC, a Waters Acquity UPLC BEH amide column (2.1 × 100 mm, 
1.7 µm) was used in the negative ionization mode. Further details are found in our previous study (Lee 
et al., 2019). The unprocessed metabolomics data are presented in Supplementary file 5.

Bioinformatics and statistical analysis
Bioinformatics analyses were performed using R/Bioconductor. Differential expression or abundance 
analysis for either up- or downregulation was done using a one-tailed t-test for each subtype against 
all the others. Differential markers were identified using a p value threshold of 0.001. p values were 
not adjusted for multiple testing in favor of flexibility in downstream analyses and biological interpre-
tations. Heat maps were made using R and Morpheus (https://software.broadinstitute.org/morpheus). 
Metabolomics pathway analyses were performed using MetaboAnalyst 5.0 (Pang et al., 2021). Bar 
plots were created using GraphPad Prism 9. GSEA was performed using GSEA 4.1.0 (Subrama-
nian et al., 2005; Mootha et al., 2003), relevant parameters including the ​c2.​cp.​kegg.​v7.​4.​symbols 
gene set, and gene names converted with Mouse_ENSEMBL_Gene_ID_Human_Orthologs_MSigDB.
v7.4. Statistical analyses were performed using GraphPad Prism 9. Comparisons of two groups were 
analyzed using unpaired, two-tailed Student’s t-test. Comparisons with more than two groups were 
analyzed with one-way analysis of variance with Tukey’s post hoc test. All error bars represent mean 
with standard deviation.
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