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Abstract

The Photometric Properties of Extragalactic Globular Cluster Systems

by

Zachary Grove Jennings

Globular Clusters (GCs) are powerful tools for understanding the formation of galaxies.

GCs are located in the halos of galaxies and, due to their age and density, have borne

witness to the major formation events of a galaxy’s lifetime. One may study these

objects using a wide array of techniques and datasets, including wide-field ground-based

imaging, deep space-based imaging, and spectroscopy. All approaches involve tradeoffs,

and in this work we consider a variety of ways to study GC systems in imaging data.

We examine a wide-field HST/ACS mosaic of the nearby lenticular galaxy NGC 3115,

selecting a high-quality GC sample using the superior resolution of the ACS data. We

find strong color bimodality in the GC system of NGC 3115 and examine a number

of trends in the properties of the GC system. Next, we consider the situation where

one is limited to ground-based imaging, where contaminants to the GC population are

a major concern. We detail a novel statistical methodology in which we treat the GC

population and the contaminant population as a mixture model, and evaluate the model

in a Bayesian context. We demonstrate the performance of the model on mock data, and

note some areas where current analysis of GC systems may be missing information using

traditional selection techniques. We also apply this Bayesian methodology to a subset

of SLUGGS survey galaxies with high-quality photometry from either the MegaCam

xv



instrument on the Canada-France-Hawaii Telescope or the SuprimeCam instrument

on the Subaru Telescope. In most cases, the mixture model recovers the GC system

well, often finding the traditional bimodality and providing well-calibrated statistical

uncertainties for the global parameters of the GC system. Finally, we examine the object

NGC 3628 UCD1, a star cluster slightly more massive than the largest GCs. We identify

that UCD1 is located in a stellar stream around the galaxy NGC 3628, and therefore is

in the process of being accreted. We characterize UCD1 both in wide-field SuprimeCam

imaging and in Keck/ESI spectroscopy, and identify a number of interesting parallels

between UCD1 and ωCen, the largest Milky Way GC.
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Chapter 1

INTRODUCTION

Globular clusters, or GCs, are among the oldest and most dense objects in

the universe. Taken together, these two properties imply that GCs are powerful tool

to probe the assembly histories of galaxies. Since GCs are predominantly old (the vast

majority have ages greater than 10 Gyr), GCs have borne witness to most of the epochs

of galaxy assembly. In addition, because of their high densities, GCs are capable of

remaining gravitationally bound during merger events which would disrupt less-dense

stellar systems. Furthermore, because they are so dense, GCs are also extremely easy

to observe in extragalactic contexts where the light of galaxy field stars is far too faint.

Understanding the origin and assembly of GC systems is akin to understanding the

basics of how galaxies grow and assemble over their cosmic lifetimes. See Brodie &

Strader (2006) for further discussion of the above points.

GCs have been used to infer information about galaxy formation at all sorts

of different scales. For example, Forbes et al. (2011) examined GC color profiles as a
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function of radius in the galaxy NGC 1407. They interpreted flattening of color profiles

at distance as indicative of two-phase galaxy formation, in which an inner gradient is

formed in a dissipative collapse and outer flattening is created during steady accretion

of other GC systems.

On the other hand, there is evidence of a link between GC system evolution and

evolution on extremely small scales at the central supermassive black holes of galaxies.

Strong correlations exist between the mass of a galaxy’s central black hole and both

the number of GCs, Ngc (e.g. Burkert & Tremaine 2010, but see also Harris et al.

2014) and the kinematics of the GC system Pota et al. (2013a). Explanations for these

observations are still being made, but clearly understanding the global properties of GC

systems ties directly in to understanding processes of galaxy evolution at all scales. GCs

are also linked to galaxy properties at all scales in between, and it is clear that the GC

systems of galaxies are evolutionarily related to all sorts of other galaxy properties.

Over the past decade, the Study of the Astrophysics of Globular Clusters in

Extragalactic Systems (SAGES)1 collaboration has undertaken the SAGES Legacy Uni-

fying Globulars and Galaxies (SLUGGS)2 Survey (Brodie et al., 2014). The SLUGGS

survey has targeted a representative sample of 25 early-type galaxies spanning a wide-

range in galaxy parameter spaces. The chief advantage of the SLUGGS survey is its

combination of photometric and spectroscopic data.

Photometry has the advantage of probing much deeper detection thresholds

and covering a much larger spatial area on the sky than spectroscopic data. Further-

1http://sages.ucolick.org/
2http://sluggs.swin.edu.au/Start.html

2



more, the acquisition of good quality photometry is what allows for target selection for

spectroscopic follow-up. While this of course means that our imaging data must be

acquired before our spectroscopic data, this also means that the imaging data is not

subject to the same selection effects that must be employed to create a high-confidence

spectroscopic target catalog.

Despite the difficulty in acquisition, spectroscopy has several advantages as

well. First, a spectroscopic sample features essentially zero contamination; GC velocities

in extragalactic systems are much greater than foreground stars in our own Milky Way,

and much smaller than distant background galaxies. Spectroscopically-confirmed GCs

thus offer a pristine sample of sources that one can perform analysis on. Furthermore,

spectroscopy offers a much richer dataset than is available with photometry. Redshifts

of GCs from spectra allow for extensive analysis of the kinematics of GC systems,

providing information both about the potential well in which GCs exist as well as their

potential infall channels into their host galaxies (e.g. Strader et al. 2011; Agnello et al.

2014; Pota et al. 2015).

1.1 Bimodality in GC Systems

One of the most striking features of GC systems is the fact that they exhibit

color bimodality. When one examines the color distributions of extragalactic GC sys-

tems the distributions often clearly separate into two distributions, or at least what

appear to be two distributions. This bimodality was first noticed in HST studies (e.g.,

Zepf & Ashman, 1993; Ostrov et al., 1993), where the precise photometry made this
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property stand out. Evidence for bimodality has since been found in many other studies

in a wide range of GC contexts, including in the Milky Way.

This color bimodality has since been shown, in several systems, to also be seen

in other parameter spaces. Blue GCs are frequently found to be more extended than red

GCs, which tend to be more associated with the stellar light of the galaxy, (e.g. Foster

et al. 2011; Strader et al. 2011; Blom et al. 2012b; Pota et al. 2013b, 2015). Red

GCs also tend to have kinematics matched with the stellar kinematics of their galaxies,

(e.g. Strader et al. 2011; Pota et al. 2015), and are typically more centrally-concentrated

than the blue GCs.

It is unclear to what degree the bimodal models typically fit in the literature,

usually bimodal normal distributions, are actually representative of the underlying dis-

tributions. Such distributions are typically chosen out of computational convenience.

Some studies have found data that are inconsistent with such a simple bimodal model.

Harris et al. (2017) examined distant GC systems in very massive galaxies using deep

HST data. They found that, for these most massive systems, the GC color distributions

appear much less distinct than a simple red and blue division. While unimodal normals

are clearly poor fits to the data, other models may fit well without explicitly invoking

a bimodal normal.

Other studies have found evidence that GC color distributions may be better-fit

by trimodal distributions over unimodal distributions. For example, Blom et al. (2012b)

found evidence for three populations in the galaxy NGC 4365, and Agnello et al. (2014)

presented evidence for a very centrally-concentrated red population around NGC 4486.
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Without a physically-motivated model for GC color distributions, linking these pieces

of evidence to a physical third population is difficult. However, they do show that in

some situations, the bimodal normal model may not do as effective job of fitting the

data as other models. These difficulties in fitting motivate the development of more

physically-motivated models.

Spectroscopicly measured metallicites, in systems where they exist, typically

confirm that the GC bimodality is due to underlying differences in the metallicity of the

different GC populations (Strader et al., 2007; Beasley et al., 2008; Brodie et al., 2011;

Usher et al., 2012) (although others have proposed mechanisms by which non-linear

color-metallicity relationships can produce the observed bimodality, c.f. Yoon et al.

2006, 2011). It is generally accepted that this underlying bimodality implies different

channels by which the red and blue clusters have assembled. The simplest picture is

one in which the red GC population is mostly formed from metal-enriched gas in more

massive systems, while the metal poor GCs are predominantly formed from accretion

of smaller dwarf systems with GCs which have been formed from their galaxy’s more

metal-poor gas.

1.2 Discussion of Bimodality Tests

Given the clarity with which bimodality has been observed in extragalactic GC

systems, and the fact that it manifests itself in a wide range of measured parameters, it

seems fairly reasonable that this bimodality is a real effect. However, it is important to

clarify what is actually meant when one claims that a distribution is bimodal. Ashman
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et al. (1994) originally proposed a likelihood ratio test (LRT). The likelihood ratio com-

pares likelihoods for both a mixture model with two normally-distributed distributions

(with identical variances) and a model with a single normal distribution. This ratio can

be shown to asymptotically approach a transformed χ2
ν distribution, and therefore in

the limit of infinite datapoints, can be assigned a probabilistic p-value in the typical

frequentist approach to the problem.

Muratov & Gnedin (2010) proposed an updated version which allows for differ-

ent variances in the proposed normal distributions, evaluating the chance of bimodality

through bootstrapping algorithms. They also propose additional test-statistics including

the relative difference of the bimodal distributions (scaled to the variances of the two dis-

tributions) and the measured kurtosis of the full distribution. They also note additional

non-parametric means of detecting bimodality, such as the dip-test (see also Hartigan

& Hartigan 1985; Gebhardt & Kissler-Patig 1999). Approaches from a Bayesian per-

spective, such as calculation of Bayes factors, have also been employed (Agnello et al.

2014, although see Gelman et al. 2013 for discussion of how Bayes factors can often lead

to incorrect conlcusions).

However, an important caveat for all these methods (as noted by Muratov

& Gnedin 2010) is that they mostly test whether the data are well-described by a

single normal distribution, as opposed to definitively testing whether the data are likely

to have been specifically drawn from two distributions. To put it another way, the

standard LRT format of a test proposes a very specific alternative distribution, the

bimodal normal, and then tests whether the single normal fails to describe the data
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relative to this alternative. One could imagine writing down all sorts of distributions

(for example, a t-distribution with stronger tails) that might better describe the data.

While the null distribution might not be a good descriptor of the data, this does not

necessarily give strong evidence that the alternative is the ”correct” distribution.

Similar observations by Muratov & Gnedin (2010) motivate them to consider

the additional test statistics, such as the measured kurtosis and the relative differences

of the means. However, these test statistics still suffer from the above problems. More-

over, these additional test statistics are certainly not independent quantifications of

bimodality; a dataset which is actually unimodal but which returns a significant result

for bimodality under the LRT would also be expected to fail the other tests in a similar,

although not identical, way.

Bayesian methods are not immune to this treatment; indeed, Bayes factors are

typically very sensitive to priors, both on parameters and over the models themselves,

and are often poorly-suited to problems featuring continuous data (Gelman et al., 2013).

In general, it is a lot to ask from our data and our statistics that we are able to cal-

culate a single number which can accurately compare the entire range of all possible

“unimodal” distributions to the entire range of all “bimodal” distributions. Rather, we

ought to look for areas where our current models perform well, and where it could be

improved. It seems fairly convincing, from the evidence, that most GC color distribu-

tions are poorly described by single-mode normals. Making stronger conclusions than

this requires additional treatment than is common in the literature. The general prob-

lem would benefit greatly from clear functional predictions from GC formation theories,
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which might then be fit using modern Bayesian techniques and checked to see how well

they fit the data.

As a final point on this subject, we emphasize that, for ground-based pho-

tometry studies, unimodal normals are essentially guaranteed to be wrong due to the

contamination present in ground-based data. We know that the “true” model of a GC

system must account for this contamination. Otherwise, even a perfectly unimodal GC

sample would have artificially- wide tails created by this contamination. Note that

these wide tails will have have the same effect as a truly bimodal distribution in terms

of rejecting a null, although the degree to which this will happen will depend on the

amount of contamination relative to GCs.

1.3 ULTRA-COMPACT DWARF GALAXIES

Ultra-compact Dwarfs (UCDs) lie in a region of parameter space between the

most massive GCs and the smallest dwarf galaxies, both in terms of total mass and in

terms of angular size. A rough definition of a UCD is an object with an effective radius

larger than 10 pc, with a luminosity of roughly Li > 105L� (Brodie et al., 2011).

The precise nature of UCDs is an open question. However, in the broadest

sense, the primary point of interest is whether UCDs represent the largest star clusters

or the smallest galaxies. This question essentially focuses on the formation channel

by which most UCDs are created. Arguments have been put forward that UCDs may

be formed within their galaxies (Fellhauer & Kroupa, 2002; Kissler-Patig et al., 2006;

Murray, 2009), or they may be the central core remnants of dwarf galaxies that have
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fallen into the potential wells of larger galaxies and been disrupted (Bekki et al., 2001;

Pfeffer & Baumgardt, 2013). Recent observations with adaptive optics instruments have

confirmed that some UCDs contain embedded supermassive black holes (Seth et al.,

2014; Ahn et al., 2017), essentially guaranteeing that at least some galaxies are stripped

down to the sizes of large star clusters. Stellar population analysis has suggested that

there may be a dividing line around ∼ 107 M�at which the formation channel for UCDs

may become dominated by one process over the other (Janz et al., 2016).

A better understanding of the processes that create UCDs will have important

implications both in understanding cluster formation physics, and in understanding the

nature of galaxy accretion in a ΛCDM context.

1.4 OUTLINE

This work explores the photometric properties of GC systems using a wide

range of data and methods. In Ch. 2, we explore the GC system of the galaxy NGC

3115 using a wide-field HST/ACS mosaic, which we supplement with ground-based

Subaru/Suprime-Cam data. The use of HST/ACS data allows us to achieve a better

target selection than is available in simple ground-based imaging. NGC 3115 is a prime

target for study due to its nearby distance and its clearly bimodal GC system. We also

investigate X-ray counterparts to likely GC candidates in the system. We explore this

system in Ch. 2.

While HST imaging and spectroscopy are ideal datasets for investigating glob-

ular clusters, they are also typically biased (in spatial coverage and/or luminosity) and
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expensive to acquire. Wide-field ground based photometry is typically very efficient to

acquire, at the cost of introducing potentially great levels of contamination from fore-

ground stars in the MW and background galaxies. In Ch. 3, we consider a Bayesian

mixture model formalism which attacks the problem of contamination in wide-field

ground-based imaging. We demonstrate the method on mock data and verify that the

inferences returned from the model are reliable. Following this, in Ch. 4, we apply the

Bayesian mixture modeling to a selection of galaxies in the SLUGGS survey for which

we have good-quality wide-field imaging. We present both our GC selection and our

global parameter inference for each galaxy.

Finally, in Ch. 5, we switch gears somewhat and consider a UCD embedded in

a stellar stream around the nearby spiral galaxy NGC 3628. We argue that this UCD

represents the core of an infallng dwarf galaxy in the process of being disrupted in the

potential well of NGC 3628. The combination of the stellar stream and this UCD allow

us to establish an evolutionary link in parameter space between the infaling galaxy and

this star cluster.
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Chapter 2

The SLUGGS Survey: HST/ACS

mosaic imaging of the NGC 3115

Globular Cluster System

2.1 INTRODUCTION

Globular clusters (GCs) serve a valuable role in the study of extragalactic sys-

tems. Due to their old ages, the properties of GCs trace the earliest stages of galaxy

formation (see the review by Brodie & Strader 2006). In addition, due to their high

luminosities, they are more easily observable than faint galaxy starlight, allowing for

detailed inferences of galaxy formation and evolution in nearby systems at large galac-

tocentric distances.

Extensive multi-wavelength investigation of nearby early-type galaxies has re-
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vealed a number of interesting properties in their GC systems. It has been well es-

tablished for decades that early-type GC systems display clear color bimodality (e.g.,

Zepf & Ashman, 1993; Ostrov et al., 1993). It is generally accepted that this color

bimodality corresponds to an underlying metallicity bimodality, with the red clusters

metal-enhanced when compared to the blue clusters. This metallicity bimodality has

been spectroscopically confirmed for a limited, but growing, number of systems (Puzia

et al., 2002; Strader et al., 2007; Beasley et al., 2008; Alves-Brito et al., 2011; Usher

et al., 2012; Brodie et al., 2012).

In addition, it is well established that a disproportionate number of low-mass

X-ray binaries (LMXBs) in early-type systems are found in GCs (Fabbiano, 2006). The

host GCs tend to be the most dense and compact clusters, where dynamical interac-

tions are capable of creating LMXB systems. The exact properties of GCs that host

these LMXBs are not well understood. It is generally established that the metal-rich

subpopulation contains a significantly greater number of LMXBs, but it is not known

how these properties may depend on other galaxy environmental factors (e.g., Sivakoff

et al., 2007; Kundu et al., 2007).

In this paper, we investigate the GC system of the nearby S0 galaxy NGC 3115

with a six pointing Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS)

mosaic in the F475W and F850LP filters (hereafter g and z). HST observations of

nearby GC systems have critical advantages over ground based imaging. The high

resolution afforded by HST means that GCs will be partially resolved, allowing for

measurements of their half-light radii (Rh). Extensive studies of partially-resolved GCs
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in HST imaging have revealed that red clusters are typically smaller than blue clusters,

an observation that may be explained by either projection effects (Larsen & Brodie,

2003) or intrinsic differences (Jordán, 2004a).

However, while HST observations are powerful due to their resolution, they

also feature a limited field of view. Ground based imaging is generally able to probe

the halos of nearby galaxies out to many effective radii (Re), but HST requires multiple

mosaiced images to achieve similar radial coverage. In general, while numerous studies

have investigated GC properties in ACS imaging (e.g., Jordán et al. 2005, 2007a), there

has been only limited exploration of GC trends out to several Re (e.g Spitler et al.,

2006; Forbes et al., 2006; Nantais et al., 2011; Blom et al., 2012b; Strader et al., 2012;

Usher et al., 2013; Puzia et al., 2014). In particular, there have been few studies of

the GC systems of lenticular galaxies in HST/ACS imaging, especially in non-cluster

environments (e.g. Spitler et al., 2006; Cantiello et al., 2007; Harris & Zaritsky, 2009;

Harris et al., 2010; Forbes et al., 2010). Finally, cluster size information has the added

benefit of allowing us to search for ultra compact dwarf (UCD) candidates in our images.

NGC 3115 is of particular interest due both to its proximity and the proper-

ties of its GC system, and we are studying it as part of the SAGES Legacy Unifying

Globulars and GalaxieS survey (SLUGGS; Brodie et al. 20143). It is highly inclined

and located at D = 9.4 Mpc (Tonry et al. 2001, with recommended correction of

(m − M) = −0.06 from Mei et al. 2007). Both the galaxy as a whole, as well as

its GCs, have seen previous discussion in the literature. Elson (1997) identified a color

bimodality in the stellar halo of NGC 3115 in HST/WFPC2 data. Kundu & Whitmore

3http://sluggs.ucolick.org
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(1998) subsequently analyzed the GCs seen in the WFPC2 data and identified a color

bimodality in this population as well.

The GC system has also been analyzed spectroscopically. Puzia et al. (2002)

identified a metallicity bimodality in the GC population using VLT/ISAAC spectro-

scopically, and found both populations consistent with being coeval, albeit with large

uncertainties. Kuntschner et al. (2002) confirmed the GC bimodality in VLT/FORS2

spectroscopy of 24 GCs and found evidence for multiple formation epochs in the GC

system. Brodie et al. (2012) demonstrated the metallicity bimodality to high confidence

using a sample of 71 GCs with CaT-derived metallicities from DEIMOS spectra. Norris

et al. (2006) found kinematic links between the NGC 3115 stellar spheroid component

and the red GC population, as well as overall rotation in the GC population. Arnold

et al. (2011) considered combined GC and stellar spectra and found that the proper-

ties of both the GC system and overall galaxy light favor a distinct 2-phase formation

scenario wherein the halo of the galaxy is built through a series of minor mergers. The

overall inferences from previous studies are that the color and metallicity bimodality

in the GC systems are unambiguous, and that the GC system is clearly evolutionarily

linked to the build up of the overall galaxy light. If there are intrinsic differences be-

tween the red and blue GC populations other properties (i.e. size or X-ray frequency),

the NGC 3115 GC population is an ideal place to look.

For the remainder of this work, we adopt the Re = 57′′ value for the bulge

of NGC 3115 from Capaccioli et al. (1987) for consistency with Arnold et al. (2011),

equivalent to ≈2.6 kpc projected distance. We also adopt the flattening value of q = 0.5
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from Arnold et al. (2011) and a heliocentric recessional velocity of 663 km s−1 from

Norris et al. (2006).

In §2.2, we discuss our methodology, particularly our methods for carrying out

photometry and Rh measurements in our ACS images. In §2.3, we discuss our findings,

including confirmation of color bimodality in the ACS data, the discovery of a “blue

tilt,” trends in color and Rh with galactocentric distance, and the results of a search

for UCD candidates in our sample. In §2.4, we match our ACS catalog with Chandra

X-ray detections and identify clusters with associated X-ray emission. Finally, in §2.5

we summarize our results.

2.2 DATA ANALYSIS

In this section, we discuss the methods employed to create our GC catalogs,

consisting primarily of photometry and Rh measurements in our ACS mosaic. We also

supplement our analysis with spectral catalogs of NGC 3115 GCs from Arnold et al.

(2011) and Pota et al. (2013b), as well as a catalog of Subaru/Suprime-Cam g, r, and

i photometry of the GC system initially analyzed in Arnold et al. (2011) but not fully

published. We include the full catalog in this paper for reference.

2.2.1 Initial Data Reduction

The primary dataset analyzed in this work is the ACS/WFC mosaic of NGC

3115 from HST Program 12759 (PI: Jimmy Irwin). The mosaic consists of six pointings

of the galaxy, extending out to ∼ 5Re. Exposures are 824 s in g and 1170 s in z, with
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Figure 2.1: Combined g, r, and i Suprime-Cam image of NGC 3115. g is colored blue,
r green, and i red. The locations of our six HST/ACS pointings are overlaid. North
is up and east is left. Each box approximately represents the ACS field of view and is
200′′ on a side.
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the exception of the POS-3 pointing (labelled 3 in Fig. 2.1), which was observed with

exposures of 722 s in g and 1137 s in z. A simple line dither was used to cover the

ACS chip gap, with 2 total exposures in g and 3 in z at each pointing. The two central

pointings overlap significantly in the center in order to increase the signal-to-noise ratio

(S/N) for the innermost GCs, where galaxy light adds additional noise. In Fig. 2.1,

we overlay our six ACS pointings on the combined g, r, and i Subaru/Suprime-Cam

mosaic.

We downloaded the .flc files of the exposures from the MAST website. These

files have been flat-fielded and corrected for charge transfer efficiency problems in the

ACS instrument. We then used the astrodrizzle 4 package to drizzle the separate im-

ages into distortion-corrected mosaics for each filter at each pointing. We performed a

conservative CR rejection during the drizzling process to reject obvious cosmic rays.

2.2.2 Initial Photometry Measurements

We created our initial catalog for analysis using SExtractor (Bertin & Arnouts,

1996), selecting all candidates that were 3σ above background. We also required that

each selection have at least 10 connected pixels. Photometric zeropoints were calculated

using the ACS PHOTPLAM and PHOTFLAM keywords, placing the magnitudes on

to the AB system. It is worth noting that while the HST/ACS filters are very close

to the SDSS filters, they do not have precisely the same response functions, and slight

systematic offsets are not unexpected.

We performed aperture photometry on this full list using the daophot package

4http://www.stsci.edu/hst/HST overview/drizzlepac
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in IRAF. We measured magnitudes within a 5 pixel (0.25′′) aperture to maximize S/N,

which we corrected to a 10 pixel (0.5′′) aperture based on average photometric mea-

surements of bright GCs in our data. The values of these corrections are 0.175 in g and

0.249 in z. Finally, we corrected these magnitudes to pseudo-infinite apertures (5.5′′)

using the values from Sirianni et al. (2005), who measured corrections of 0.095 is g and

0.117 in z. We also corrected for galactic foreground reddening using the Schlegel et al.

(1998) reddening maps with updated calibrations from Schlafly & Finkbeiner (2011,

AV = 0.130 for NGC 3115).

For the largest GCs in our sample, the above aperture corrections will system-

atically underestimate the final magnitudes due to additional light falling outside the

10-pixel corrected aperture. To correct for this, we employed size-dependent aperture

corrections as described in §2.2.3. Based on the consistency of our photometry with

matched Subaru/Suprime-Cam photometry (see §2.2.5), we conclude that our photo-

metric methods are reasonable. It is worth noting that the size-dependent corrections

are less well-constrained for the largest clusters due to the low S/N in the wings of the

ACS PSF. As a result, while the size-dependent corrections are an appropriate first-

order correction for the luminosities of the largest clusters, there will still be lingering

systematic uncertainties.

None of our results depend strongly on the actual measured luminosities of the

GCs, and systematic errors in the aperture corrections of GCs have little effect on the

measured color of our sources. The latter point has also been emphasized in previous

ACS studies of extragalactic GC systems (Jordán et al., 2009; Strader et al., 2012).
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After photometry was performed, we pruned our catalog down to a list of

reasonable GC candidates. First, we required that each object was detected in both

filters by matching the coordinate lists within 2 pixels. We also rejected objects fainter

than g = 26 or z = 25 to remove spurious noise detections and objects significantly

fainter than we would expect for the GC population (typical turn-over magnitudes for

GC populations will be g ∼ 22.5 at the distance of NGC 3115, see Jordán et al. 2007b).

Several of our pointings feature overlap, especially across the center of NGC 3115. We

measured a simple astrometric shift to transform all pointings to the same WCS. We

then matched sources across both pointings to within 3 pixels to combine photometry

from sources imaged in multiple pointings. For all such sources, our final magnitudes

are a weighted average of the separate photometric measurements. The median offset

between sources detected in multiple images is 0.023 mag.

2.2.3 ishape Rh Measurements

The principal advantage of ACS GC imaging is the superior angular resolu-

tion of the instrument, which allows us to resolve the angular size of globular clusters.

Throughout the paper, we quantify this size in terms of a half-light radius (Rh) and

use the terms interchangeably. At the distance of NGC 3115, GCs of typical radius

(∼ 2–4 pc) will be partially resolved. The point spread function (PSF) of a partially

resolved cluster is a convolution of the intrinsic PSF of the ACS instrument and the

light profile for GCs, which we assume to be described by a King profile. We measured

the PSF empirically using bright, unsaturated stars in the ACS field. The PSF was

measured separately for each filter, but the same PSF was used across all pointings for
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each filter. We then used ishape (Larsen, 1999) to measure the FWHM of the King

profile of the GC, which is easily converted to a half-light radius Rh using the rela-

tion Rh = 1.48(FWHMKing30) (Larsen, 1999). The cluster concentration c (defined as

c ≡ rt/r0, where rt is the tidal radius and r0 is the core radius) cannot be measured

reliably for most clusters; as a result, we adopted a King profile with a fixed value of

c = 30 for all cluster measurements, consistent with other partially resolved GC studies

(e.g., Harris & Zaritsky, 2009; Strader et al., 2012).

We made measurements of Rh using both filters. In Fig. 2.2, we plot the

difference between sizes measured in both filters, Rh,g − Rh,z. We measure precisely

zero median offset between the filter measurements. The standard deviation of the

differences is 0.55 pc, indicating good agreement between the filters with some scatter

in Rh measurements for the same source. In general, the scatter of the difference is

larger both for more extended clusters and for fainter sources. Note that some clusters

have exactly the same measurement in multiple filters due to internal resolution limits

in ishape. For the remainder of the paper, we adopt the weighted average of the Rh

value measured in the two filters. Previous studies of ACS-measured GC sizes have

found systematic uncertainties on the level of ∼20%, or ∼0.4 pc for a typical cluster

size of 2.0 pc, when measuring sizes with ishape (Spitler et al., 2006; Harris & Zaritsky,

2009).

Harris (2009a) argued that measurements of Rh are only reliable for candidates

with S/N above 50, which roughly corresponds to limits of g ∼ 24 and z ∼ 23 in our

data. While we measure sizes for all candidates in our sample, when we examine trends
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Figure 2.2: Plot of difference in Rh as measured in each of our two filters, g and z.
We find a median offset of (Rh,g − Rh,z)med = 0.00 pc. The standard deviation of the
differences is 0.55 pc. We interpret this as good agreement between the two filters, and
use the weighted average of the two individual Rh measurements for the remainder of
this work.
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in the sizes of the GC subpopulations, we only consider those clusters with S/N above

50, around 65% of our sample.

Size-Dependent Aperture Corrections

To correct for additional light outside the 10 pixel aperture, we employed size-

dependent aperture corrections for the full sample using a similar method to Strader

et al. (2012). We convolved the empirically measured PSF from the ACS imaging with

King profiles of fixed concentration 30, the same as used for the ishape measurements.

We varied the FWHM of the King profile to create a series of fake clusters from Rh = 0

pc out to Rh = 40 pc. Using aperture photometry, we measured the light excess outside

the 10 pixel aperture as a function of input cluster size, which we then used to correct

our measured photometry. Representative corrections in g are 0.004 mag for Rh = 2 pc,

0.30 mag for Rh = 10 pc, and 0.94 mag for Rh = 30 pc. These values are larger than

those in Strader et al. (2012) because NGC 3115 is ∼ 7 Mpc closer than NGC 4649.

As a result, clusters of similar size occupy a much larger angular area in the NGC 3115

data, requiring larger aperture corrections.

We performed corrections separately for the g and z filters, using the em-

pirically measured PSF for both. However, since the excess light for large clusters is

dominated by the King profile, the influence of the empirical PSF is minimal and thus

the difference in the corrections between the two filters is small. As a result, the colors

of the clusters are essentially unchanged by these corrections, as discussed in §2.2.2.

Note that uncertainties in the measured sizes of clusters are neglected in these

photometric measurements. For GC-sized objects, these uncertainties are negligible
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given the small magnitudes of the corrections. However, for the larger objects in our

sample, uncertainties in the measured sizes of objects can be large, especially for objects

which are not actually well-parameterized by King profiles (i.e. background galaxies).

2.2.4 Catalog Selection

We performed ishape5 (Larsen, 1999) measurements on the remaining ACS

detected sources, as explained in §2.2.4. We considered any source with a measured size

less than 0.3 pc a likely point source and removed it from the final GC candidate catalog.

A color cut was applied to the catalog, selecting sources between 0.5 ≤ (g−z) ≤ 1.7. We

also performed a by-eye rejection of obvious background galaxies with visible features.

Finally, we used our measured ishape sizes to remove extended objects, as described in

§2.4.2. After all cuts, we were left with 360 GC candidates in our final catalog.

Table 1 summarizes the number of GC candidates in our various catalogs. We

also list the number of GCs in the red and blue subpopulations, the division of which

is explained in §2.3.1.

Use of Rh Measurements in Catalog Selection

Our use of ishape size measurements in pruning our final catalog merits further

discussion. In any catalog cuts we may consider, we must make a trade-off between

rejecting as much contamination as possible while preserving bona fide clusters. This

motivates the use of different cuts in size for different scientific measurements of interest.

We investigate three different catalogs in §2.3.

5http://baolab.astroduo.org/
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First, for investigation of trends in cluster color and magnitude, we are chiefly

interested in rejecting contaminating foreground stars and background galaxies that

happen to fall in our GC color-magnitude space. As a result, we reject any source with

a measured Rh < 0.3 pc as being a point source, and therefore either a foreground star or

background AGN. In addition, any source with a measured Rh > 8.0 pc was rejected as

being a possible background galaxy. While these cuts may also reject a few actual GCs

from our sample, this rejection will simply increase random uncertainties from having

fewer clusters. Note that, for these rejections, we still incorporate Rh measurements for

clusters with S/N below 50. These are probably not very reliable for the larger sized

objects, but there is no obvious selection bias introduced in the colors by their removal.

Many extended sources tend to be in the magnitude range where ishape is not

as useful for rejection of galaxies. These sources will be extended, but with measured

sizes that are still consistent with the largest GCs and luminosities that are consistent

with the faint end of the globular cluster luminosity function (GCLF). To deal with

such sources, we employ an aperture difference measurement: we reject any object with

g5pix − g10pix > 0.4 as being extended, allowing us to cull down our final candidate list

to a reasonable selection of GCs. We plot this selection criterion, which rejected 28

sources, in Fig. 2.3. We consider this catalog, containing 360 sources, as our final GC

candidate list.

For §2.3.4, dealing with specific Rh measurements, we also reject all objects

with a S/N below 50. For this analysis, we are interested in more precise measurements

of GC Rh, rather than crude rejection of point sources or highly extended objects. This
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Figure 2.3: Illustration of our aperture-difference galaxy rejection method. We plot
the difference in g as measured in 5 and 10 pixel apertures against the full corrected g
value. We consider those clusters with g5pix − g10pix > 0.4 as being extended sources
and remove them from our highest confidence GC catalog. Spectroscopically-confirmed
GCs are plotted in green.
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list of high S/N GCs contains 235 objects.

Finally, for §2.3.5, we are interested in finding ultra compact dwarf (UCD)

candidates, as well as other clusters with sizes more extended than typical for GCs. As

we are interested in reliably measured sizes for larger objects, we still require that the

S/N of these candidates be greater than 50. However, as we are specifically interested

in identifying sources with large Rh, we remove all constraints on the maximum size of

the clusters, including both Rh measurement rejection and aperture difference rejection.

This list of large UCD candidates contains 31 sources. Note that this list still discards

objects rejected in our by-eye step that have obvious morphological features of galaxies.

2.2.5 Ground Based Photometry and Spectroscopy

To provide comparison with earlier work and improve our catalog selection,

we supplement our ACS data with ground based imaging and spectroscopy. Arnold

et al. (2011) presented a photometric and spectroscopic study of GCs around NGC 3115

using a combination of Subaru g, r, and i photometry and DEIMOS, LRIS, and IMACS

spectroscopy. In this work, we publish the full catalog of Surpime-Cam(Miyazaki et al.,

2002) photometry from the Arnold et al. (2011) study. The full spectroscopic sample

was subsequently published in Pota et al. (2013b), and we include these velocities where

available. The catalog includes 176 GCs with measured radial velocities consistent with

NGC 3115 membership. In addition, there are 421 point-sources without measured

velocities but with g, r, and i colors consistent with GCs. The color cuts adopted by
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Arnold et al. (2011) correspond to

0.5 ≤ (g − i)0 ≤ 1.4 (2.1)

and

0.45× (g − i)0 − 0.026 ≤ (g − r)0 ≤ 0.45× (g − i)0 − 0.08. (2.2)

The Arnold et al. (2011) catalog also removes objects fainter than i = 23.

We display the color–color diagram in Fig. 2.4, with the entire point source

catalog (∼ 20000 objects) in black and those which passed the color–color cut in blue. In

addition, we plot the location of GCs with ACS measured sizes in red and spectroscop-

ically confirmed GCs in green. It is clear that color-color selections from ground based

imaging reject a number of strong GC candidates, which is a necessary trade-off given

the contamination of foreground and background sources away from the GC color-color

sequence. Note that some spectroscopically confirmed GCs are outside the color-color

selection as well. These GCs were placed on DEIMOS slitmasks as “low-confidence”

GCs outside the main color selection, but ended up being confirmed regardless, further

indicating the incompleteness of any sample selected with simply unresolved photome-

try.

Note that this catalog likely includes significant contamination from foreground

stars and background galaxies, which are difficult to reject in ground-based imaging

without measured radial velocities. We matched this GC catalog with our ACS data

and identified 187 sources consistent with both catalogs.
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Figure 2.4: SuprimeCam (g − i)0 vs. (r − i)0 color–color diagram. All detected point
sources are plotted in black, while those that pass our color–color and FWHM cuts are
plotted in blue. We also plot GCs with ACS-measured sizes in red and spectroscopically
confirmed GCs in green.
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We did not use the Suprime-Cam catalog g, r, and i color–color photometry

to reject any ACS objects that otherwise passed our ACS CMD and size cuts. While

this would allow us to reduce background galaxy contamination in the ACS catalog, it

would also introduce additional selection biases into our sample and reject a number of

true GCs. We have greater confidence in ACS identified selections with consistent sizes

than in non-spectroscopically confirmed Suprime-Cam color–color selections. However,

we still include the measured Suprime-Cam photometry for these cases in our data table

for reference.

Note that significant selection biases factor into which catalog a source will be

found in. The Suprime-Cam catalog will be less complete very close to the nucleus of

NGC 3115, and will also not reach as faint as the ACS catalog. In addition, brighter

GCs were preferentially selected for spectroscopy due to observational constraints; it is

difficult to get reliable spectra for GCs fainter than i ∼ 22, and essentially impossible

for objects fainter than i ∼ 23. Finally, as the Suprime-Cam catalog was used to select

spectral targets, no GCs unique to the ACS catalog have spectral confirmation.

It is worth noting that better selection can be achieved from color-color se-

lections if NIR photometry is incorporated. Muñoz et al. (2014) demonstrated that

incorporation of K-band photometry in color-color selections provides a much better

discriminant between GCs and contaminants. There are still difficulties with identify-

ing real GCs outside typical color-color selections. However, as more NIR photometric

datasets of nearby galaxies become available (e.g. NGVS-IR), contamination of fore-

ground and background objects in purely photometric GC studies can be significantly
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reduced.

We briefly detail our methods for Subaru/Suprime-Cam photometry below.

Methodology for spectroscopic data analysis was presented in Arnold et al. (2011).

Subaru/Suprime-Cam Photometry

NGC 3115 was imaged in g, r and i-band filters on January 4th, 2008 using

Suprime-Cam on the 8.2-m Subaru telescope. The camera’s 34′-by-27′ field-of-view

consists of a mosaic of ten 2k-by-4k CCDs, separated by an average gap width of 16′′.

A series of short exposures were taken with each filter (g: 5x40s, r: 5x15 s, i: 5x15 s)

using a pre-defined 5-point dither pattern to account for bad pixels and to fill in chip

gaps. Seeing varied between 0.5′′ and 0.7′′.

Suprime-Cam data were reduced using the SDFRED1 pipeline6. Standard

aperture Photometry was performed using IRAF, with zero points computed from SDSS

sources in the field of view of a different galaxy observed the same night. This is

necessary as NGC 3115 is not in the SDSS footprint. We also performed a color-

correction to place our measurements onto the SDSS filter system7. Our apertures were

selected to maximize the S/N. We then performed an aperture correction using a larger

aperture and several bright stars located in the field. Astrometry was calibrated using

the USNO-B catalog.

We compared our ACS measured g magnitudes to those from Subaru imaging.

In Fig. 2.5, we plot gacs − gsub against gacs. For GC candidates in both catalogs, we

found a median difference of gacs − gsub = −0.018 with the standard deviation of the

6http://www.naoj.org/Observing/Instruments/SCam/sdfred/sdfred1.html.en
7http://www.sdss.org/dr7/algorithms/jeg photometric eq dr1.html#usno2SDSS
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Figure 2.5: Difference between gacs and gsub for GC candidates common to both the
ACS catalog and the Subaru Suprime-Cam catalog. The median offset between the
photometry is 0.018 mag and the standard deviation of the differences is 0.078 mag,
indicating good agreement.
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differences being 0.078. Thus while there is some scatter in our measured photometry for

a given source, in general g magnitudes can be compared without regard for any sizable

systematic offset. Since GCs are unresolved point-sources in the Subaru photometry, a

size-dependent aperture correction is not applicable to the Subaru imaging. ,

Use of Radial Velocities in Catalog Selections

For purposes of our catalog, we rejected any sources with measured radial

velocities less than 350 km s-1 as being Milky Way foreground stars. While there will

likely be a small amount of GCs with radial velocities smaller than this, Milky Way star

contamination becomes dominant for velocities below this. For reference, the systematic

radial velocity of NGC 3115 is 663 km s−1, with a typical rotational velocity of ∼240

km s−1 and a dispersion of ∼100 km s−1 (Norris et al., 2006). Naturally, the latter

two quantities vary with radius. We did not use radial velocities to reject background

objects. Only six of our photometrically selected GCs have measured radial velocities

greater than 1000 km s-1, the highest of which is 1210 km s-1. As there are no objects

with velocities drastically inconsistent with NGC 3115 measurement, we included all

these objects in our GC catalog. Inclusion of these six objects ultimately makes no

difference to our overall conclusions.

2.2.6 Globular Cluster Luminosity Function

As a check on the reasonableness of our catalog selection criteria, we plot and

fit the measured g-band GCLF for GC candidates observed for our ACS sample in

Fig 2.6. We recover a reasonably well-defined GCLF. A Gaussian fit returns a peak
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Figure 2.6: Histogram of GC candidate absolute magnitudes, with Gaussian fit plotted.
The luminosity function peaks at Mg = −7.4, consistent with studies of the GCLF
around other early-type galaxies. We take this as evidence that our selection criteria
produce a reasonable GC catalog, and that our data are reasonably complete down
to the faintest magnitudes at which we would expect to find GCs. The poor fit at
low luminosities is indicative of the level at which background contamination sets in
(roughly g ∼ 23 in apparent magnitude).
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located at Mg = −7.4, σg = 0.97, which is consistent with that observed in ACS studies

of other early-type galaxies (Jordán et al., 2007b). As we recover reasonable parameters

for GCLF, we conclude that our catalog selection criteria produce a well-selected GC

candidate list. Note that we have neglected any sort of contamination or completeness

correction in the fitting of the GCLF. The ACS mosaic is deep, so it is likely that we are

quite complete down to low luminosities. However, the GCLF fits more poorly at lower

luminosities. This is an indication of the level at which contamination of the sample by

background galaxies sets in, around roughly g ∼ 23 in apparent magnitude.

It is worth noting that the selection biases in the Suprime-Cam catalog and

the ACS catalog are different. In color-color space, background galaxies overlap little

with GCs, and as a result the 3-filter Suprime-Cam catalog offers an effective means of

background galaxy rejection. However, foreground star contamination is still prevalent

in this catalog. Since GCs are partially resolved in ACS images, it is fairly easy to

differentiate between unresolved foreground stars and partially resolved GCs in the

ACS catalog. However, background galaxy rejection is somewhat ambiguous in the

ACS data (although still reasonably achieved with color and size selections).

2.2.7 X-Ray Observations

The HST/ACS mosaic examined in this study was acquired to provide com-

panion optical photometry to a ∼ 1 Msec Chandra observation of NGC 3115. The full

details of the Chandra data analysis are presented in Lin et al. (2015a). In this work,

we match the observed X-ray sources from this catalog to GC candidates in the ACS

mosaic to find GCs which may harbor LMXBs. To treat uncertainty on the position,
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we adopt the 3-σ uncertainty on the X-ray position source position; we assume that

the uncertainties on the ACS-measured positions are small in comparison to the uncer-

tainties on the X-ray-measured positions. A more thorough investigation of the choice

of selection annulus will be included in the companion paper. Typical values of this

uncertainty are ∼ 0.4′′. If any ACS GC candidates are found within the 3-σ uncertainty

of the X-ray detection, we classify the closest ACS GC candidate as having an X-ray

match. We did not encounter any situations in the ACS data where multiple GCs were

within the 3-σ radius.

For Suprime-Cam detections far from the center of the Chandra pointing,

the Chandra PSF is large, and there are a handful of Chandra sources where the 3-σ

uncertainty overlaps with multiple Suprime-Cam sources. As we do not perform any

analysis of the Suprime-Cam/X-ray matches in this work, we do not attempt to resolve

these ambiguities further in this work and simply associate the single nearest source to

the X-ray centroid as matching the X-ray detection. We briefly comment on apparent

features of those GCs that hosts X-ray sources, specifically the coincidence fractions, in

§2.4.

2.3 RESULTS AND DISCUSSION

In this section, we examine the photometry and sizes measured for our GC

candidates. To explore trends in these values as a function of galactocentric radius, we
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adopt an equivalent ”elliptical radius”, defined as

Rg =
√
qX2 + Y 2/q, (2.3)

where q = 1 − b/a = 0.5 is the flattening parameter for NGC 3115 and X and Y are

cartesian coordinates measured along the major and minor axes of an ellipse centered

on NGC 3115. While magnitudes of various gradients do change slightly (as would be

expected) if we instead parameterize our radial trends using a simple circular radius,

none of our overall conclusions are changed. Unless otherwise noted, Rg is measured in

kiloparsecs for the remainder of the paper. We adopt the same P.A.= 43.5◦ as Arnold

et al. (2011). Unless otherwise noted, we quote 1 σ uncertainties on any fitted relations.

In a few sections, we will discuss GC masses in place of luminosities. For these

conversions, we must naturally use a mass-to-light ratio. We adopt a constant M/L =

1.45 from the arguments presented in Sivakoff et al. (2007) for all such conversions in

the remainder of the paper.

In Table 2, we list a sample of our full catalog. HST/ACS objects are listed

first, with objects only detected in Subaru Suprime-Cam imaging following. The entire

catalog is available online in a machine readable format.

2.3.1 Color Bimodality

In Fig. 2.7 we present the measured ACS color-magnitude diagram (CMD) of

the GC system in NGC 3115. The color bimodality of the NGC 3115 system, while

well established, is particularly obvious in the ACS catalog. Using Gaussian Mixture
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Figure 2.7: Top Panel: Observed CMD of GCs in our catalog, following application
of our various quality cuts. Metal-poor and metal-rich subpopulations are plotted in
blue and red respectively. Spectroscopically confirmed GCs from Arnold et al. (2011)
are plotted as solid symbols, while those without spectroscopic confirmation are plotted
as open symbols.. The well-studied bimodality of the GC system is clear in our data.
The color dividing line is located at g − z = 1.13 and marked with a red dashed line.
The “blue-tilt” mass-metallicity relation is clear in the blue subpopulation. There are
also hints of an opposite trend in the very brightest metal-rich clusters, but it is of low
significance. Bottom Panel: Color histogram of GC candidates, with Gaussian kernel
density estimate overplotted. The Gaussian density plot and histogram are scaled to
containe the same total number of GCs. The bimodality of the system is clearly visible.
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Figure 2.8: Top Panel: CMD of Suprime-Cam detected GCs. GCs with spectroscopic
confirmation are plotted as sold symbols, while those without spectroscopic confirmation
are plotted as open symbols. Bottom Panel: (g − i)0 histogram for Suprime-Cam
imaging, with Gaussian kernel density estimate overplotted. The division between blue
and red subpopulations is located at (g − i)0 = 0.93 and is marked with a dashed red
line. The Gaussian density estimate is normalized so that the total number of GCs is
the same as the histogram.
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Modelling (Muratov & Gnedin, 2010), we find that a unimodal distribution is rejected

at greater than 99.9% confidence. It has also been shown that the color bimodality of

the system directly corresponds to a metallicity bimodality in the GC subpopulation,

with the blue subpopulation being more metal-poor than the red subpopulation (Brodie

et al., 2012). The clear division between the red and blue subpopulations implies that

differences between the two subpopulations in other properties should be particularly

obvious. Using a Gaussian kernel density estimate, we find that the subpopulations are

separated at g− z = 1.13 (adopting a smoothing kernel of 0.07). We adopt this color as

the dividing line between the two subpopulations, color the metal-poor subpopulation

blue and the metal-rich subpopulation red, and retain this scheme in our subsequent

figures. We also plot extended objects Rh > 8 pc as purple points. These objects are

not included in our fits nor our kernel density estimate.

Many of our candidate GCs have corresponding radial velocity measurements

from Arnold et al. (2011). As mentioned in §2.2, we discard those candidates with mea-

surements which exclude NGC 3115 membership. Those spectroscopically confirmed

candidates with correct radial velocities are plotted with solid symbols, while those

without spectroscopic confirmation are plotted as open symbols in Fig. 2.7.

To compare our measured colors with metallicities, we adopt the following

conversions from Peng et al. (2006a):

[Fe/H] = −6.21 + (5.14± 0.67)× (g − z) (2.4)
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if 0.7 < (g − z) ≤ 1.05, and

[Fe/H] = −2.75 + (1.83± 0.23)× (g − z) (2.5)

if 1.05 < (g − z) < 1.45.

Using these conversions, the divide between metal-poor and metal-rich GCs is

located at [Fe/H] ∼ −0.8 dex.

For comparison, in Fig. 2.8, we plot the (g−i)0 CMD from our photometrically-

selected Suprime-Cam catalog. Again, bimodality is clear in the data; a Gaussian kernel

density estimate places the dividing line between the red and blue subpopulations at

(g − i)0 = 0.93. As before, we plot spectroscopically confirmed candidates as solid

symbols, while those without spectroscopic confirmation are plotted with open symbols.

In addition, for comparison, we include spectroscopically confirmed foreground stars,

which were not included in the Gaussian kernel estimate. A similar histogram is also

displayed in the lower panel.

It is interesting to note the increased prevalence of blue GC candidates in

the Suprime-Cam catalog, compared to the ACS CMD (see also Table 1). This is

likely due to a combination of two effects. First, the spatial distribution of blue GC

candidates around NGC 3115 is more extended than that of the red GC candidates. As

the Suprime-Cam FOV is much larger than the ACS FOV, this extended population is

preferentially sampled by the larger Suprime-Cam catalog. However, it is also apparent

that most of the spectroscopically confirmed foreground stars are blue. There will

certainly be more foreground contaminants in the purely photometrically selected GCs,
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and this will increase the relative number of blue GCs. Disentangling these two effects

is difficult without spectroscopic confirmation, and in reality both effects will contribute

to the larger relative number of blue GC candidates in the Suprime-Cam photometric

catalog.

In Fig. 2.9, we plot the locations of all the blue and red GC candidates in our

sample. ACS detected GCs are plotted with solid circles, while those with open circles

are only detected in the Suprime-Cam imaging. The blue GC subpopulation is clearly

more spatially extended than the red subpopulation. We mark the locations of extended

(Rh > 8 pc) clusters in our sample with X symbols.

2.3.2 The Blue Tilt

Blue tilts, wherein blue GCs tend to become increasingly red with increasing

brightness, have been observed in many extragalactic GC systems (e.g., Strader et al.

2006; Harris et al. 2006; Mieske et al. 2006b). These gradients are typically taken

as evidence of a mass-metallicity relationship among the clusters. This is likely due

to self-enrichment; brighter, more massive clusters are able to retain more of their

enriched material, producing redder (more metal-rich) photometric measurements. We

find evidence for a blue-tilt in the GC system in ACS photometry. A least squares fit

to the blue subpopulation gives a relation of

(g − z)blue = (−0.017± 0.006)× z + (1.31± 0.14), (2.6)
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which we plot in Fig. 2.7. If we restrict our fit to only those GCs which are spectro-

scopically confirmed, we find a slope of −0.024 ± 0.012, indicating that even our most

conservative sample still displays evidence for a blue-tilt.

The existence of corresponding red-tilts in extragalactic GC subpopulations

is on somewhat shakier observational ground. In our sample, a linear fit to the red

subpopulation gives

(g − z)red = (0.006± 0.009)× z + (1.23± 0.20), (2.7)

indicating that the red subpopulation may tilt in the opposite direction (brighter clus-

ters are slightly bluer than dimmer clusters). However, the slope is not significant and is

dependent on the degree of rejection of background galaxies, which almost always tend

to be contaminants on the red end of the GC subpopulation. Fitting only the spectro-

scopically confirmed red clusters gives a slope of 0.012 ± 0.17, again not significantly

constrained.

The strength of the blue tilt we measure for NGC 3115 is actually less than is

typically seen for other galaxies (e.g. Strader et al. 2006; Usher et al. 2013). Typical

measured slopes from similar ACS filter sets have found blue tilt slopes around −0.040

mag mag−1 for similar filters. Our measured value is roughly half of this. A plausible

explanation for this smaller slope is the proximity of NGC 3115. While our data reach

similar limiting apparent magnitudes as other extragalactic ACS GC studies, we are

looking a magnitude further down the GCLF compared to other studies. If we convert

the measured luminosity to a mass estimate, we are probing GCs of roughly half the
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mass in our ACS data.

Bailin & Harris (2009) proposed a quantitative self-enrichment model for GCs.

The principle result was that GCs above the mass of ∼ 2× 106 M�(roughly z = 19.2 in

our sample) will display a mass–metallicity correlation, while GCs less massive will not.

In addition, a weak red tilt in the same direction as the blue tilt was also predicted.

We attempted to measure the slope of the blue tilt for only the brightest clusters in our

sample. While the slope became more negative as we restricted our sample to brighter

and brighter GCs, we found that once we cut out clusters with magnitudes fainter than

z = 22, the blue tilt detection becomes of marginal significance. For GCs brighter than

z = 21, the detection is less than 1-σ. Thus while the magnitude of the blue tilt does

appear to approach the slopes seen in previous studies for our brightest GCs, we cannot

make this observation with any statistical significance.

Looking for a blue tilt in the photometrically selected Suprime-Cam sample

instead gives a tilt in the opposite direction, with brighter candidates appearing bluer,

in both color subpopulations. However, as mentioned in §2.3.1, we believe the purely

photometric Suprime-Cam catalog contains significant contamination from foreground

stars and does not constitute a sample of pure GCs. Given that the spectroscopic sample

still displays a standard blue tilt, we consider this merely indicative of the degree of

foreground contamination in the Arnold et al. (2011) sample.

2.3.3 Trends in Color with Radius

In Fig.2.10, we plot the observed color of the GCs in (g − z) against their

galactocentric elliptical radius Rg from the center of NGC 3115. For illustrative pur-
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Figure 2.10: Plot of GC color vs. elliptical distance from NGC 3115 for our clusters.
Clusters are colored according to their subpopulation. We also plot the median g − z
colors of both subpopulations for 7 equal number bins in each subpopulation. 68%
uncertainties on the median colors from bootstrapping are also included. Both subpop-
ulations display a color gradient, with clusters becoming bluer as they get farther away
from NGC 3115. The blue clusters decrease uniformly, while the red clusters appear to
display visible substructure in color as a function of distance. Least squares fits to both
subpopulations are also plotted.
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poses, we plot median colors for GCs in each subpopulation for 7 equal-numbered bins,

binned as a function of distance. The red bins each contain 24 GCs, while the blue bins

each contain 27. We also plot 68% uncertainties on these medians, estimated through

bootstrapping. Both subpopulations appear to display gradients, with clusters becom-

ing bluer farther out from the center of NGC 3115. To evaluate the color gradients in

both subpopulations, we perform a least squares fit to the individual data points for the

two subpopulations. We find the following relations:

(g − z)Red = (−0.05± 0.04)× logRg + (1.38± 0.02) (2.8)

for the red subpopulation and

(g − z)Blue = (−0.06± 0.02)× logRg + (0.97± 0.02) (2.9)

for the blue subpopulation. These relations are plotted in Fig 2.10.

We also compute simple linear gradients from least squares fitting, giving

(g − z)Red ∝ (−0.004 ± 0.003)Rg and (g − z)Blue ∝ (−0.005 ± 0.002)Rg. We convert

our measured colors to metallicities using the Peng et al. (2006a) relations above and

estimate metallicity gradients in [Fe/H] of −0.10± 0.07 dex dex-1 for the red subpopu-

lation and −0.29 ± 0.11 dex dex-1 for the blue subpopulation, neglecting uncertainties

on the conversion factors. The two gradients are clearly very comparable in color, while

the [Fe/H] gradient is stronger for the blue subpopulation due to the relationship be-

tween color and metallicitiy for GCs. The decrease in color for the blue subpopulation
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is essentially monotonic, while the medians in the red subpopulation instead display

some visible substructure, a trend seen in radial color studies in other GC systems

(Strader et al., 2012). However, the uncertainties on the median quantities for the red

subpopulation are large, and the change in color in the medians is comparable to these

uncertainties.

It is interesting to compare our measured HST/ACS color profile to that found

from Subaru photometry in Arnold et al. (2011), which extends roughly twice as far

in radius from NGC 3115 but with reduced precision. We recover the jump in color

in the red subpopulation located around Rg ∼ 6 kpc seen in Arnold et al. (2011),

corroborating the visible features in the red color gradient we see in our data. Arnold

et al. (2011) found gradients of −0.17 ± 0.04 dex dex−1 and −0.38 ± 0.06 dex dex−1

for the red and blue GCs, respectively. Thus, our color gradients agree to within the

uncertainties on the quantities, although there is scatter. It is worth noting that the

Arnold et al. (2011) values must also use an empirical correction from (g− i) to (g− z)

to compare metallicities (equation A1 from Usher et al. 2012); the uncertainties on this

filter conversion are also neglected in the Arnold et al. (2011) values. The photometric

data from Arnold et al. (2011) extended roughly twice as far in radial distance from the

center of NGC 3115 revealing, further structure in the red subpopulation including a

large decrease in color around 15 kpc and a flattening of the color gradient farther out.

It is likely that these two effects cancel out somewhat in the measured gradient from

Arnold et al. (2011), leading to comparable values from both studies.

We also consider the Gaussian kernel density color distribution as a function
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Figure 2.11: Gaussian kernel density distributions of color for the GC subpopulation
in a series of 2.8 kpc projected galactocentric radius bins. The blue peak is fairly
consistent in location, and decreases in color monotonically with the exception of the
second farthest bin. In addition, the strength of the blue peak consistently increases
with distance from NGC 3115. The red peak, on the other hand, displays possible color
substructure. There is no consistent trend with galactocentric radius, and indeed the
red peak disappears entirely in the second farthest radial bin.
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of Rg. In Fig. 2.11 we plot the Gaussian kernel distribution evaluated at five 2.8 kpc

distance bins. The blue peak is located fairly consistently and, with the exception of the

second farthest bin, decreases in color monotonically. On the other hand, the red peak

again displays visible color substructure. The peak moves around without a clear trend

and indeed disappears completely in the second farthest bin, even though the overall

subpopulation still displays a color gradient.

Generally speaking, declining galaxy metallicity gradients with a flattening

at large galactocentric radii are a standard prediction of two-phase assembly scenarios

(Naab et al., 2009; Bezanson et al., 2009; Hirschmann et al., 2013). An early monolithic

collapse produces the inner gradient, while the outer flattening is produced by repeated

accretion events. The existence of the outer flattening is unclear in our data, probably

due to the limited radial coverage provided by the ACS mosaic. Smaller accreted satel-

lites should be metal-poor in comparison to the central galaxy. Given the consistency

of our measured profiles to those inferred in Arnold et al. (2011) from Suprime-Cam

and spectroscopic data, we refer the reader to that paper for a more in-depth discus-

sion of this point in the context of NGC 3115, including the incorporation of velocity

information both in the GC population and integrated starlight.

2.3.4 Trends in Size

In Fig. 2.12, we plot the measured Rh as a function of projected galactocentric

distance from the center of NGC 3115. Measurements of Rh tend to show a large vari-

ance. Many clusters of both subpopulations display Rh values significantly larger than

those common for clusters, which are close to Rh ∼ 2−4 pc. As we are chiefly interested

50



in the trends of the most-likely GCs, we remove these outliers by only including GCs

with Rh < 8 pc in this subsection, as explained in §2.2.3. In general, inclusion of larger

GCs does not affect the overall trend of Rh with distance, but the uncertainties on the

medians and gradients increase.

It is well documented in the literature that Rh values tend to increase with

galactocentric distance, and that the blue GCs tend to have larger sizes than red GCs,

with differences typically on the order of ∼20% (Kundu & Whitmore, 1998; Larsen

et al., 2001; Jordán et al., 2005). We find median sizes of 2.25+0.10
−0.04 pc for the blue

subpopulation and 2.06+0.11
−0.14 pc for the red subpopulation. 68% confidence intervals

are estimated through bootstrapping. These median values correspond to a fractional

difference of ∼10%. This fraction is somewhat low compared to the above literature

values, but the uncertainties on the medians and scatter of the measurements is large.

Trends in Rh with radius are typically parameterized in the form

Rh = a(R/Re)
b. Performing a least squares fit to our data, we find the following

relations:

Rh,blue = (0.31± 0.02)(Rg/Re)
0.14±0.05 pc (2.10)

for the blue GCs and

Rh,red = (0.30± 0.02)(Rg/Re)
0.08±0.07 pc (2.11)

for the red GCs. We plot these best fitting relations on Fig 2.12. In the literature, as

with the median sizes of the respective subpopulations, differences are typically observed
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in the power-law slopes of the best-fitting Rh vs R/Re relations, with blue GCs typically

featuring smaller slopes than the red GCs. Our slopes are broadly consistent with those

found in the literature (Spitler et al., 2006; Gómez & Woodley, 2007; Harris & Zaritsky,

2009; Harris et al., 2010; Strader et al., 2012), although literature studies have typically

found the slopes of the red and blue subpopulations to be distinct. Instead, we find

power-law slopes to be fairly consistent between the two subpopulations.

For completeness, we also performed a simple linear least squares fit to the

data. We find best fit relations of the form

Rh,blue = [(0.17± 0.09)Rg/Re + (2.0± 0.2)] pc (2.12)

for the blue clusters and

Rh,bed = [(0.11± 0.07)Rg/Re + (2.0± 0.2)] pc (2.13)

for the red clusters. Thus, while the strengths of the gradients are roughly consistent,

the significance of the red gradient is much lower than that of the blue.

We also plot the median values of each subpopulation in 4 radial bins of ∼ 3

kpc. 68% uncertainties on the medians from bootstrapping are included on the median

values. We bin in radius instead of number here because we are interested in comparing

the properties of the two subpopulations at the same distances, as opposed to look-

ing at internal gradients. For the blue subpopulation, the median Rh values increase

monotonically with radius out to the final bin. Uncertainties on the values tend to
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be small, and the points are well clustered around the best-fitting relation. The red

subpopulation, on the other hand, displays significant scatter around the best-fitting

line, especially at large galactocentric distances, where there are very few clusters. It is

questionable whether the red subpopulation displays any increase at all, given the few

clusters located at large Rg and the large scatter of the subpopulation.

The small difference in median cluster size and the lack of a distinction in

power-law slopes is somewhat interesting. The color-bimodality is especially pronounced

in the GC system of NGC 3115, and it is well established that this bimodality also

corresponds to a metallicity bimodality (Brodie et al., 2011). However, despite the

distinct differences in color and metallicity of the subpopulations, they are not nearly

as distinct in their sizes.

There is discussion in the literature about whether the observed size difference

between red and blue clusters is due to an intrinsic, metallicity-dependent process (e.g.,

Jordán 2004a, or a projection effect due to the fact that red clusters tend to be more

centrally concentrated (e.g., Larsen & Brodie 2003). The main prediction of the projec-

tion explanation is that the difference between the red and blue clusters will disappear

at large radii, while the intrinsic explanation predicts that the separation will remain at

all radii. While inferring broad trends in the data is questionable given the scatter, we

do not see any evidence for a decreasing difference between red and blue Rh at larger Rg.

This observation would seem to favor the intrinsic, metallicity-dependent explanation.

However, this inference is tenuous, and the fact that the power-law slopes and median

sizes of the two subpopulations are so similar is also peculiar in this context.
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Observational support has been found for both the intrinsic explanation (Har-

ris, 2009a; Paolillo et al., 2011; Blom et al., 2012b; Strader et al., 2012) and the pro-

jection hypothesis (Spitler et al., 2006). It is worth emphasizing that those studies

that have found support for the intrinsic metallicity explanation have generally focused

on giant elliptical galaxies. However, Spitler et al. (2006) examined M104, an edge-on

SA galaxy in a group environment. Interestingly, M104 also displayed an unusually

small difference (14%) in median values between the red and blue GC subpopulations,

consistent with those we have measured for NGC 3115. The environmental and morpho-

logical conditions of M104 are quite similar to NGC 3115. Further investigation of GC

Rh measurements across a wider range of morphological and environmental properties

will serve to shed light on the full importance of cluster vs. group/field environments,

morphology, and inclination in the size differences between the red and blue GC sub-

populations. Given the similar trends in Rh with Rg and the consistency in the median

size difference between this work and Spitler et al. (2006), we suppose that inclination

and morphology in particular may play a role in the relative importance of projection

effects compared to intrinsic size differences. In the end, there is only a limited amount

we may infer about the NGC 3115 GC system other than that the two subpopulations

are not very distinct in their sizes.

2.3.5 Ultra Compact Dwarf Candidates and other Extended Objects

There is significant discussion in the literature regarding the dividing line be-

tween the largest star clusters and the most compact galaxies. This division is typically

explored in the parameter space of Rh and absolute magnitude. In the past, obser-
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Figure 2.12: Plot of cluster half-light radius vs. projected galactocentric distance from
NGC 3115. We also plot median half-light radii for equal number bins of clusters,
measured separately for both subpopulations. 68% uncertainties on the medians from
bootstrapping are also plotted. Rh measurements for both subpopulations of GCs be-
come larger with increasing distance from NGC 3115. In general, the blue subpopulation
displays slightly larger half-light radii than the red subpopulation.
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vational searches of this parameter space have revealed ultra compact dwarfs (UCDs),

which are brighter and more extended than typical GCs (Hilker et al., 1999; Drinkwater

et al., 2000; Phillipps et al., 2001). They occupy a middle ground in size between GCs

and dwarf elliptical galaxies. A traditional view of UCDs was that they represent the

continuation of the size-luminosity trend to larger and brighter clusters, a view moti-

vated by the fact that the first UCDs to be discovered were naturally the brightest. An

apparent luminosity gap was also observed between UCDs and other extended objects,

such as Local Group extended clusters (ECs) (e.g., Huxor et al., 2005), extragalactic

“faint fuzzies” (FFs) (e.g., Brodie & Larsen, 2002), and “diffuse star clusters” (e.g., Peng

et al., 2006b). No universal definition of a UCD exists, but a “traditional” definition

of a UCD might be an object with luminosity ∼ 107 L� (Mz ∼ −13) and Rh ∼ 20 pc,

with significant scatter around these values.

However, as optical studies have continually probed lower luminosities, the

boundaries of the UCD population have become somewhat ill-defined. Brodie et al.

(2011) adopted provisional criteria of MV < −8.5 and Rh > 10 pc to account for the

presence of new spectroscopically confirmed objects around M87 at lower luminosities.

Forbes et al. (2013) noted a number of new spectroscopically confirmed objects which

fully bridge the gap between the UCD and FF populations. In light of recent obser-

vational data, it is unclear that performing any luminosity cut on the extended object

population is observationally motivated. There may still be interesting theoretical mo-

tivations, such as the 2 × 106 M� boundary for self enrichment estimated by Bailin &

Harris (2009) or relaxation timescale arguments such as that presented in Misgeld &
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Hilker (2011). However, for our brief consideration in this paper, we ultimately choose

to employ no selection criteria aside from a size cut of Rh > 8 pc. We wish to include all

interesting extended objects, including traditional UCDs, FFs, and intermediate transi-

tion objects, in a catalog for potential future spectroscopic follow-up, and the proximity

of NGC 3115 offers an ideal target for studying precisely these sorts of objects. Through-

out this section we will frequently refer to all of these objects as “UCD candidates,”

despite the fact that many are not in traditional UCD parameter space and are instead

more similar to FFs and other extended objects.

UCDs have primarily been studied in cluster environments, where targets tend

to be more dense. Mieske et al. (2004) examined UCD-like objects in Fornax and found

their formation was consistent both with a stripping scenario and a cluster merger sce-

nario. Haşegan et al. (2005) and Price et al. (2009) studied UCD-like objects in Virgo

and Coma, respectively, using HST/ACS imaging and found several strong candidates

in each. Their results favored tidal stripping scenarios based on extrapolations of scaling

relations. However, other studies have found cluster merger scenarios to be more plau-

sible scenarios for UCD formation (e.g., Mieske et al. 2006a; Kissler-Patig et al. 2006).

There is increasing evidence that multiple scenarios are necessary to fully explain the

observed properties of UCDs across multiple environments (Taylor et al., 2010; Norris

& Kannappan, 2011; Da Rocha et al., 2011; Penny et al., 2012).

It is unclear how environmental effects will affect the formation of UCD objects.

If the stripping of galaxies is the primary mechanism, then naturally these objects will

be more likely to form in denser environments. Only a few studies have investigated the
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properties of UCDs found in group/field environments (e.g., Evstigneeva et al. 2007;

Hau et al. 2009; Norris & Kannappan 2011; Da Rocha et al. 2011, Norris et al. 2014

(MNRAS, Submitted)). Given the potential environmental dependence, the detection

of candidates in non-cluster environments such as NGC 3115 is of value for future

investigations of UCD formation.
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Figure 2.13: Plot of measured GC half-light radii against absolute z magnitude, Mz.
We identify all clusters with Rh > 8.0 pc as potential UCD candidates. Six candidates
have measured radial velocities from Arnold et al. (2011) that confirm NGC 3115 mem-
bership; we highlight these as green triangles. We recover a number of candidates that
have luminosities consistent with faint GCs, but larger sizes. We also plot the median
measured Rh values for 8 equal-number bins of clusters for only those clusters with
Rh < 8.0 pc, with 68% uncertainties on these medians from bootstrapping included.
The vertical line represents a 106 M�cut, the horizontal line represents the adopted
Rh < 0.8 pc size cut, and the diagonal line represents the dividing line for objects which
will have undergone significant dynamical evolution within one Hubble time.
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As our ultimate goal in this section is inclusion of as many candidate UCDs as

possible, we relax the size restrictions used in creating our catalog and no longer employ

any maximum size cuts. We still include the depth cuts employed for our measured Rh

sizes by only considering candidates with signal to noise greater than 50.

In Fig. 2.13, we plot the measured Rh against the absolute magnitude of clus-

ters. Traditionally, UCDs are thought of as occupying the parameter space of bright

clusters with Mz < −11. However, as we are specifically interested in investigating faint

candidates, we consider everything with measured Rh > 8 pc a UCD candidate. We

identify 31 such candidates, which we list in Table 3. Six of the brightest candidates

have measured DEIMOS radial velocities from Arnold et al. (2011) consistent with NGC

3115 membership. We plot these with solid green triangles.

We include three potential definitions for what one might consider a UCD. The

horizontal line is the size cut we adopt for our table of UCD candidates, Rh = 8 pc.

The vertical line is a luminosity cut which corresponds to a mass of M = 106 M� (∼

7 × 105 L�). Finally the diagonal line is the size–mass relation from Misgeld & Hilker

(2011) (adapted from Dabringhausen et al. 2008) for an assumed relaxation timescale.

Objects below the line will have been able to undergo significant dynamical evolution

over a Hubble time, while those above would be expected to show a mass-size relation.

We identify a number of fainter UCD candidates, which would populate the

parameter space occupied by the faint UCD sequence parallel to the GC population.

However, it is unclear how distinct this population is from the normal GC sequence in

our data. These candidates are also all towards the fainter end of the GC sequence,
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where background galaxy contamination will become most prevalent. Indeed, objects in

this region of parameter space are in the regions where we would have expected clusters

to undergo significant dynamical evolution, making it more likely that sources here are

contaminants. The fact that many have red colors (see Fig. 2.7) reinforces this caveat.

Further spectroscopic follow-up of UCD candidates will allow a more thorough investi-

gation of this parameter space through rejection of background galaxy contamination.

In addition, we note that several of these objects have significant discrepan-

cies between ground-based Suprime-Cam imaging and ACS photometry, as large as a

couple magnitudes for a few objects. Such an offset is likely due to an object having a

size-dependent correction applied which is either too large (i.e. the object is actually

significantly smaller than what we measure using our King profile fit and therefore we

overestimate the correction) or too small (the opposite case). For these large, extended

objects, the S/N towards the edges of the profile is small, and so the uncertainties on

measured sizes can be large. In addition, for any object which is in fact a background

galaxy, the King profile is likely a poor parameterization of the light profile to begin

with. For the reason of background contamination, we caution against inferring too

much from non-spectroscopically confirmed candidates.

Six candidates, UCD1, UCD5, UCD 8, UCD15, UCD16, and UCD23, are

spectroscopically confirmed to have NGC 3115 membership. While UCD1 occupies

traditional UCD parameter space, the remainder extend to the fainter luminosities typ-

ically occupied by faint fuzzies. These additional confirmed candidates do support an

interpretation that a similar population of extended clusters exists parallel to a tradi-
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tional GC sequence, perhaps the result of a distinct formation mechanism. However,

more spectroscopically confirmed clusters are necessary to evaluate the full extent of

this population; some significant number of the unconfirmed candidates may still be

contaminants.

In addition, object A1, not in the UCD catalog, is noteworthy for its density.

Its size is large for, but not inconsistent with, a GC (Rh ∼6 pc). However, it also

features an extremely high luminosity, with Mz ∼ −12.7, corresponding to a mass of

1.18 × 107 M�. This object is located very close to the center of NGC 3115, perhaps

indicating some systematic effect from the galaxy light on the ishape measurement.

We also plot median Rh values for eight equal-numbered magnitude bins. We

do not see a strong trend in Rh with absolute magnitude. Other studies have typically

found correlations between Rh and absolute magnitude for the brightest clusters. We

do find a monotonic increase in Rh with increasing luminosity for Mz < −9. However,

the median values below this point display significant scatter. The hints of a trend we

see do match that found in other studies, wherein the Rh of a typical cluster appears

to be larger both for the faintest and brightest candidates, and smallest for those of

intermediate luminosity (Haşegan et al., 2005; Evstigneeva et al., 2008; Dabringhausen

et al., 2008; Harris, 2009a; Harris et al., 2010; Misgeld & Hilker, 2011; Strader et al.,

2012). However, the trend is very weak in our data.
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2.4 X-ray/GC Matching

In this section, we discuss those GCs identified in §2.2.7 which are coincident

with X-ray sources. We identify 45 X-ray sources within 3-σ X-ray PSF distances from

our GC catalog. For those sources in the ACS FOV, we adopt the ACS (g − z) color

division between the red and blue subpopulations. Otherwise, we adopt the Supime-

Cam photometry (g − i)0 color division. We color-code and plot the two distributions

in Fig 2.14. In general, the red X-ray GCs appear to be more centrally concentrated

than the blue X-ray GCs, matching the trend in the population of GCs without X-ray

sources.

Of the 45 sources, 29 are associated with red GCs, while 16 are associated with

blue GCs. Given a total of 291 unique red and 490 unique blue GC candidates across

both optical catalogs, we find a ∼10% chance that a red GC hosts an X-ray source

and a ∼3% chance that a blue GC hosts an X-ray source. These fractions are broadly

consistent with those reported in the literature (Jordán, 2004b; Fabbiano, 2006; Kim

et al., 2006; Sivakoff et al., 2007) although they are certainly on the high side for both

values (typically ∼5% for red GCs and ∼2% for blue GCs). If we match to only the

more reliable ACS sources, the fraction of each increases to ∼14% for red GCs and to

∼ 7% for blue GCs, both extremely high for X-ray/GC coincidence. If we restrict our

analysis to just those GCs which are ACS imaged and spectroscopically confirmed, rates

increase further to ∼ 14% for both the red and blue subpopulations. Note, however,

that the spectroscopically confirmed sample is naturally biased to the brightest clusters

due to observational constraints. Brighter clusters are expected to be more likely to
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host LMXBs (Sivakoff et al., 2007). It is likely that these higher rates of X-ray/GC

coincidence are due to the depth of the X-ray observations compared to similar studies,

as well as the smaller distance of NGC 3115 compared to most other early-type galaxy

GC studies.

In Fig. 2.14, we also note one particular feature in the blue matched GC

subpopulation, a linear structure of X-ray associated GCs located at RA ∼ 151.31,

Dec ∼ −7.65. It is unclear exactly how to interpret this organized structure of X-ray

GCs. They are all detected in the ACS mosaic, but apart from this they do not have any

truly distinguishing features. They have typical sizes, colors, and luminosities typical

of blue GCs. Three of the GCs in the line have measured radial velocities, all in the

same direction as the rotation of NGC 3115’s disk. The existence both of the plane of

blue GCs and the overabundance of X-ray sources in the blue GCs may be linked, but

given our current analysis, such an inference is speculative, with unclear implications.

We do not discuss further the properties of the X-ray hosting GCs beyond

initial rates of incidence, nor the properties of the X-ray sources themselves. Analyses

of these properties are presented in (Lin et al., 2015a,b)
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2.5 SUMMARY

We have performed photometry and size measurements for 360 GC candidates

in HST/ACS imaging of NGC 3115. We have also presented Suprime-Cam photometry

for 421 additional candidates. The bimodality of the system is very obvious in our data.

There is evidence for a blue-tilt in the blue subpopulation, and we see weak hints of

an opposing trend in the red GCs. Both subpopulations display a color gradient as a

function of distance from the center of NGC 3115, and the magnitude of the gradient

is similar to that found at larger radii in Arnold et al. (2011). The blue GCs display

monotonic behavior, decreasing in color uniformly. However, the red GCs display visible

color substructure in addition to the overall gradient. The size behavior of the two

subpopulations is somewhat unusual. While the blue GCs are larger on average than

the red GCs, the ratio of the average sizes is closer to unity than is typical for a GC

system. We are unable to clearly confirm either a projection or an intrinsic explanation

for the size distinction, but given the similarity of our result to that found in Spitler

et al. (2006) for M104, we suppose that the morphology and inclination of the galaxy

may have a significant effect on the measured relative sizes of the two subpopulations.

We identify 31 candidate UCD objects, including six with spectroscopic con-

firmation. Given their colors, it is possible that many candidates without measured

velocities are in fact background contaminants. In addition, after matching our ACS

sources with companion X-ray data, we find 29 X-ray sources associated with red GCs

and 16 with blue GCs. The fraction of X-ray hosting GCs is larger for both subpopula-

tions than is typical in the literature, especially for blue GCs, likely due to the increased
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depth of the X-ray data. We also observe an interesting linear spatial distribution in

the blue X-ray hosting population. The implications of this distribution and its link to

the overabundance of X-ray sources in blue GCs are unclear.
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Chapter 3

A Bayesian Method For

Simultaneous Globular Cluster

Selection and Inference of Global

Properties from Photometric

Data

3.1 INTRODUCTION

When one is attempting to create a GC catalog from ground-based photometric

data, one is typically interested in distinguishing GCs from two primary sources of

contaminants: foreground stars located within the Milky Way, and distant galaxies in
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the background of the FOV.

When one has additional data besides simple ground-based photometry, these

selections become much easier. The resolution of HST imaging is sufficient that, for

galaxies within several tens of Mpc, GCs are marginally resolved and no longer point-

like, allowing them to be clearly separated out from foreground star contamination.

Background galaxies can often be selected-out based on morphological cuts or size-

distinctions, although some ambiguity will exist about the dividing line between large

GCs and small/distant galaxies. Spectroscopy also offers an outstanding means to select

GCs. In most extragalactic contexts, a simple radial velocity cut cleanly separates GCs

from foreground stars and background galaxies, allowing a pristine sample of GCs.

However, while both of these approaches offer significant improvements in GC

selection over pure ground-based photometry, they are also limited in their own right.

Spectroscopy of GCs is expensive, requiring significant time on 8m-class telescopes, and

is still limited to probing the brightest GCs. HST data are also expensive to acquire,

and the HST imagers have FOVs of order 100 times smaller than those of wide-field

imagers on modern telescopes. If one is interested in inferring global properties about

extragalactic GC systems, spectroscopy provides a small dataset baised towards the

brightest clusters, and HST data provides a dataset baised towards the inner radii of

galaxies. Neither of these are really suitable for purposes of cataloging and measuring

GC systems at large Re, leaving ground-based photometric data as the only effective

means. In short, what wide-field imaging lacks in quality, it makes up for in quantity

and feasibility of acquisition.
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GCs are typically selected in ground-based imaging by first cutting extended

sources, as GCs are almost completely point-like in such imaging (although note that

such cuts may also exclude large, partially resolved star-clusters located these systems,

e.g. Brodie et al. 2011; Jennings et al. 2015; Sandoval et al. 2015). Cuts are then made

in color-color space. This may be done with methodology as simple as drawing a box

around the location of the GC locus and selecting everything inside such a box, or may

be done in a more sophisticated fashion by assigning GCs closer to the center of the

locus a higher-probability of being a GC. Other cuts may perhaps be applied, such as

in luminosity or projected distance away from the galaxy. While this methodology may

be modified on a study-to-study basis, the basic concept of applying color-color cuts to

select GCs is very standard across the field (e.g. Foster et al. 2011; Hargis & Rhode 2012;

Blom et al. 2012b; Usher et al. 2012; Pota et al. 2013b; Kartha et al. 2014; Jennings

et al. 2014; Kartha et al. 2016).

3.1.1 Motivation for a Probabilistic GC Model

This paper considers a Bayesian method of selecting GCs. Rather than relying

on binary cuts in parameter space, we aim to construct a fully probabilistic model of the

photometric and spatial properties of the GC and contaminant system. The advantages

of such a system are two-fold: first, our selection of GCs is now probabilistic. By using

our model, we are able to assign a probability to every source in an image as to whether

it is part of a contaminant or science distribution. Having meaningful probabilities

attached to sources allows any follow-up selection to be much more nuanced. Selection

strategies can be optimized in a more nuanced way and can feature higher overall return
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rates.

Second, and perhaps more importantly, by writing down a model, we are able

to fit the free parameters of this model to the data at hand. This allows for the GC

selection to be naturally fit to each galaxy. In addition, the distributions of these free

paramaters are also of great interest for understanding the overall GC system of a

galaxy. Properties such as the number of GCs in a system, the fraction of red and blue

GCs, and the locations of GCs in color and magnitude space cannot be fully evaluated

without folding in selection errors. Old methods of accounting for these uncertainties

rely on post-fitting corrections for contaminant level and incompleteness of data. A full

probabilistic model of all sources in the system provides much more reliable inferences

on the global properties for the system.

One of the chief advantages of constructing our GC selection problem in a

Bayesian context is that we may begin with a simple model and add increasing com-

plexity as is necessary. We do not make the claim that our model is a perfect description

of the process that created the data. The actual processes that generate GC systems

are obviously much more complex than can be described with a model as simple as this

one. However, the model is a useful tool in which to gain insight into the problem, and

areas where the model fails to perform satisfactorily offer roads to expand the model in

future studies

3.1.2 Outline

In this paper, we introduce our fully probabilistic model for photometric GC

systems. We first outline the basics of a Bayesian mixture model and then add in
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complexity to the model until it is a reasonable description of a real GC system. In

§3.2, we first consider a simple mixture model as an instructive illustration of our basic

methodology. In §3.3, we add complexity to this model to account for the specific

difficulties of our problem. We apply our methodology to mock datasets in §3.4 to

investigate any biases in our method, followed by an application to real photometry of

the GC system around NGC 3115 in §3.5. Finally, we discuss future applications of our

method in §3.6, as well as potential areas the model could be improved.

3.2 A SIMPLE MIXTURE MODEL

Mixture models, as their name implies, are probabilistic models in which the

full data are assumed to have been drawn from a mixture of two or more other distri-

butions. Mixture models are commonly used in statistical analysis to model situations

with data drawn from multiple populations. In the context of GC selection, the two

populations to be mixed are a model describing the distribution of the contaminant

sources, and a model describing the distribution of the GCs. The combined likelihood

of the two distributions can then be used to perform inference on the free parameters

in the models of both distributions.

In §3.2, we consider a toy mixture model consisting of idealized data. We write

down very simple distributions for both the GC and contaminant distributions so we

can introduce the framework for our model. The discussion that follows draws heavily

from Jordán et al. (2007a), Fraley & Raferty (2002), and Hogg et al. (2010).

74



3.2.1 Writing the Mixture Distribution

In general, we may treat a random variable Y as a linear combination of any

number of other random variables,

Y1 ∼ d1(θ), ..., Yi ∼ di(θ),Y(θ) = f1d1 + ...+ fidi, (3.1)

where di(θ) is the (normalized) distribution function for the ith component, taking

parameters θ and relative weight fi. To make the function a valid probability distri-

bution function (PDF), we must also require that the relative weights sum to one, i.e.∑I
i=1 fi = 1.

The likelihood for such a mixture model may be written as:

L(Y|θ) =
I∑
i=1

fidi(Y|θ), (3.2)

i.e. the likelihood of observing a specific data vector Y given parameters θ is equal to

the sum of the individual likelihoods di(Y|θ) multiplied by the individual weights fi of

each mixture.

We are interested in calculating the full likelihood for our entire dataset, which

will consist of J data vectors, i.e. Y = {y1,y2, ...,yJ}

If we make the standard assumption that each data vector is independent and

identically distributed (each data point is drawn from the full mixture distribution), the
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full likelihood will simply be the product of the individual likelihoods for each yj :

L(Y|θ) =
J∏
j=1

I∑
i=1

fidi(Yj|θ). (3.3)

As is standard in probabilistic modeling, we will work with the log of the likelihood to

change this product into a sum, giving

l(Y|θ) =

J∑
j=1

log
[ I∑
i=1

fidi(Yj|θ)
]
. (3.4)

At this stage, we have the complete likelihood of observing data Y given parameters θ

and mixture weights fi. Note that, for convenience, we will sometimes parameter vector

θ as including the weights fi and sometimes with the weights written explicitly out of

the parameter vector. There shouldn’t be any locations in the paper where ambiguity

in whether the weights are part of the parameter vector θ or outside of it affects the

interpretation of the paper.

As an aside, mixture models such as these are frequently written using a

hidden-variable formalization in which each data point has an un-observed parameter zi

corresponding to the mixture the parameter is drawn from. In expectation maximiza-

tion (EM) strategies or in Gibbs sampling strategies, this zi vector must be explicitly

simulated. In the Gibbs sampling case in particular, the vector is marginalized over in

the course of sampling as one constructs the posterior simulations for the parameters

of interest. However, we employ the Affine Invariant sampler emcee to perform our

simulations. The emcee sampler performs in a similar way to a Metropolis-Hastings
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algorithm in that it evaluates an entire vector of parameter proposals at once. Since

we have an explicit formula for our posterior distribution up to a constant, we are free

to draw samples from the distribution directly without employing our hidden variable

formulation.

3.2.2 Specifying the Distributions

It is apparent that all complexity in how one models the full mixture depends

on how one specifies the distribution functions used. In this section we consider sim-

plistic distributions that still contain reasonable astronomical interpretations, assuming

3-filter g, r, i photometry.

As discussed above, after performing some basic point-like cuts on our pho-

tometry, we consider five total measurements for each source: two measured colors, a

measured magnitude, and the spatial coordinates of the source. For purposes of our

discussion in this paper, we consider a measured i band brightness, measured g− i and

r − i color, and measured RA and DEC of the source. Note that any brightness and

color combinations can be chosen without affecting the actual model, only the various

parameters that will be inferred for the model.

Note that the specific bands used in the model aren’t actually important, as

long as one can write down a reasonable model for them. We will consider g, r, i as all of

the SLUGGS Survey data consists of these three filters. For purposes of our discussion

in this paper, we will speak explicitly of g, r, i magnitudes, but the methodology can be

generalized to whatever filters are of interest, and indeed to any number of filters for

which the data have detections.
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As an aside on this last point, recent work has shown that incorporating u-

band and z-band photometry can offer excellent leverage in selecting GC populations

from contaminant sources (Muñoz et al., 2014). All of our methodology can easily be

applied to whatever filter combinations are on-hand, provided reasonable contaminant

distributions can be created. Future application of our work to galaxies with deep u

and z band data will be an exciting tool to further investigate GC populations.

To introduce the simple mixture model, for the remainder of §3.2, we consider a

simplified toy problem. We model only one single GC population (most GC populations

are bimodal in color at some level). We also neglect any complexity in the distribution

of contaminant sources; we simply make the poor assumption that the contaminant

sources are uniformly distributed over the parameter spaces considered in the problem.

Our GC distributions in color, magnitude, and spatial coordinates will be given simple

probabilistic distributions. We will expand these simplistic distribution choices in §3.3.

Finally, this toy model ignores incompleteness of the data, which we discuss how to

incorporate into the model in §3.4.

This formulation requires us to define the allowable parameter spaces for all

data involved in the problem. For purposes of this section, we simply define hard limits

on the bounds of our data in RA/DEC space, color-color space, and magnitude space.

We select approximately-realistic boundaries for our toy model to make the comparisons

with the real problem easier. We define the magnitude boundaries to be between 18

and 25 in i-band magnitude, 0.0 to 1.0 in r− i space, and 0.0 to 1.5 in g − i space. We

bound the RA/DEC with a circle of radius 0.3 degrees. As mentioned above, we simply
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consider the contaminants to be uniformly distributed over this space.

For our GCs, we will assume that they are distributed in color as a multivariate

normal (MVN) distribution with mean vector µ and covariance matrix Σ. We will

parameterize the g-band distribution as a normal distribution with mean µ and variance

σ2. Finally, we will parameterize the spatial distribution of the sources as an exponential

distribution, with free parameter Re describing the effective radius of the system. We

neglect any ellipticity of the spatial distribution in this model, although it is incorporated

in the full model in §3.3.

The full log likelihood for this model looks like:

l(Y|θ) (3.5)

=
J∑
j=1

log
[ I∑
i=1

fidi(Yj|θ)
]

(3.6)

=

J∑
j=1

log
[
f MVN(Yj|µ,Σ) Exp(Yj|Re) N(Yj|µ, σ2) (3.7)

+ (1− f)C)
]
. (3.8)

C here represents the distribution of the contaminant sources. Since we have assumed

the contaminants are uniformly distributed in all spaces, C is a constant. We may cal-

culate C by requiring that it’s distribution over all five measured dimensions integrates

to one. In other words, C is equal to the area of our allowed RA and DEC space times

the area of our allowed color distribution space times the area of our allowed magnitude

space.

In general for a mixture model, care must be taken for that all distributions are
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normalized correctly to one. While this is true by definition for well-defined PDFs, our

chosen GC spatial distribution is not a well-defined PDF; it instead has been truncated

at some fixed radius chosen to match that of the contaminant distribution. We neglect

this detail in our toy model and address it fully in §3.3.4, where we will introduce other

distributions which are not normalized by definition.

3.2.3 The Bayesian Inference Problem

At this point, we have a functional form for the likelihood distribution of the

data. However, writing a likelihood is only part of the problem of performing Bayesian

inference.

Here we describe the general problem of Bayesian inference. We observe data

Y, which we believe to have been generated by some process. The process in question

can be modeled with the likelihood function L(Y|θ). In other words, given parameters

θ, we can calculate the likelihood of the observed data being drawn from this model.

We are interested in inference on the posterior distributions of our parameters,

θ. These posterior distributions encode all information and uncertainty on the GC

distributions we are interested in measuring, conditional on the data we have observed,

our prior knowledge of our parameters, and the model we have specified.

Bayes theorem provides the formula for the posterior distribution:

P (θ|Y) =
L(Y)|θ)× P (θ)

P (Y)
. (3.9)

P (Y) is typically referred to as the evidence, and can be thought of as marginalizing
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over all possible values of the various parameters θ. As is standard in Bayesian inference,

we note that the evidence has no dependence on the particular parameters of θ from

the model and therefore has no information on the posterior distribution of θ. We are

thus free to write Bayes theorem as a proportionality:

P (θ|Y) ∝ L(Y)|θ)× P (θ). (3.10)

The prior distribution, P (θ), represents our information on the distributions of the

parameters θ before we see any data. We consider our prior specifications in the next

section.

3.2.4 Prior Specification

Specification of priors, as well as testing of prior sensitivity, is a vital step in

Bayesian analysis. For purposes of this work, we choose to specify minimally-informative

priors where possible. However, note that the need to specify a prior in Bayesian analysis

ought to be seen as a strength of the method. Specifying a prior allows the researcher

to incorporate information about where certain parameters ought to be concentrated,

and also allows the researcher to specifically asses sensitivity of prior selection on final

inference.

For the mean vector µ, we adopt a simple uniform prior, which is Jeffrey’s

prior for the mean of a multivariate normal. We adopt a Symmetric−Dirichlet(1/2)

distribution for the weights of the model, which is Jeffrey’s prior for the multinomial

distribution. For the scale parameter of the exponential distribution, we use a 1/λ prior,
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which again is Jeffrey’s prior for the exponential. There is not necessarily an agreed-

upon uninformative prior for the covariance matrix. We parameterize the prior with an

inverse Wishart distribution with hyper parameters Ψ =

0.03 0.00

0.00 0.03

 , ν = 3.

3.2.5 Summary of the Full Model

To summarize, our mixture model now consists of two distributions: a con-

taminant distribution defined to be uniform over specified ranges in color-color space,

magnitude space, and spatial distribution over a specified circle. We also have a GC

distribution consisting of a multivariate normal in color-color space, an exponential dis-

tribution in radius, and a normal distribution in i-band magnitude. This distribution

features nine total free parameters: five parameters describe the location and covariance

matrix of the multivariate normal, one describes the radial exponential distribution, two

describe the scale and location of the i-band normal distribution, and one describes the

relative strength of the two mixing distributions. The full model

3.2.6 Performing Inference on the Full Model

Once we have a full likelihood for the model, we are free to use standard

Bayesian inference techniques to fit the model to our data. Markov Chain Monte

Carlo (MCMC) sampling techniques are typically applied to these sorts of Bayesian

inference problems, and we employ MCMC methods to sample our parameter poste-

rior distributions. Many effective MCMC codes are available in the literature; we use

emcee(Foreman-Mackey et al., 2013)8 to perform our sampling. emcee is commonly

8https://github.com/dfm/emcee
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used throughout the astrophysics literature, offers a fully-Python implementation that

is easy to incorporate in the rest of our Python analysis code, and can be applied to

any likelihood function that the user supplies.

emcee is an Affive-invariant ensemble sampler. Briefly, emcee works by initial-

izing an ensemble of ”walkers” to explore the parameter space. These walkers can be

somewhat thought of as each executing a Metropolis-Hastings walk through parameter

space, with some additional complexity.

In simple Metropolis algorithms, a new vector in parameter space is proposed,

which is a random walk from the chain’s current parameter location. The new location

is accepted with probability unity if the likelihood at this new parameter location is

higher than at the current one. If the likelihood is not higher, this new location is

rejected with probability equal to the ratio of the likelihood at the new location and the

ratio of the likelihood at the current location.

emcee is an extension of this simple algorithm. In each step of the chain, the

algorithm randomly pairs off each walker with another. It then proposes a move in which

it asks whether one of the walkers should move to the location of the other walker, with

some additional jitter added. The use of walkers and the interpolative/extrapolative

steps allows emcee to explore complicated posterior distributions more efficiently than

with simple Metropolis algorithms.

3.2.7 Demonstration of the Model on Mock Data

As a demonstration of our methodology, we apply our toy model to some simple

mock data. The mock data are drawn directly from the distributions that are being

83



used in the model, so we would expect our model to fit these data well. However, it is

both an important sanity check and a useful illustration of how the model works.

We create a mock data set consisting of 500 contaminant sources and 500

mock GCs. The contaminant sources are drawn from a uniform distribution in color

with bounds g − i ∈ [0.0, 1.5], r− i ∈ [0.0, 1.0] and a uniform distribution in magnitude

with i ∈ [18, 26].

GCs are drawn from a MVN distribution in color-color space, with parameters

µ =

0.75

0.5

 , Σ =

 0.04 0.015

0.015 0.03

 . (3.11)

In magnitude space, GCs are drawn from a normal distribution with µ = 22, σ = 1.5.

Finally, GCs were drawn from a 2D circular exponential distribution with scale radius

Re = 0.3.

Drawing GCs for the mock spatial distribution merits a bit more explanation,

as definitions can differ and there is no simple scipy.stats distribution for a 2D ex-

ponential. We use the Python astropy.modeling package to parameterize and fit all

our spatial distributions. The modeling package includes a sersic2D class that pro-

vides two-dimensional spatial distributions with arbitrary effective radius, position angle

(PA), flattening parameter, and Sersic index. Fixing the Sersic index to n = 1 gives

an exponential distirbution. In principle any of these parameters can be left free, and

indeed in our full methodology, we fit for the PA and the flattening parameter. For this

demonstration, we keep both parameters at zero, i.e. a symmetric circular exponential
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distribution.

The distributions from astropy.modeling are not, in general, normalized, and

indeed the strength of the distribution is changed with the amplitude parameter, which

we fix to one. To use the distribution as a probability distribution, we need to normalize

the distribution so that it integrates to one over the parameter range of interest. We

do this over a spatial grid with radius equal to the maximum radius of the contaminant

distribution. Finally, to actually select points for this distribution, we use standard

accept-reject methodology. We generate points from a uniform circle and accept or

reject them with probability equal to the density of the exponential distribution at that

particular point in space. This accept/reject methodology is then repeated until the

number of desired sources are drawn. Such a method is not always efficient, but for

generating mock distributions with less than many thousands of sources, this method

runs very quickly.

We display a sample draw from these contamnant and GC distributions in

Fig. 3.1.

After generating this sample draw of data, we are free to fit our model to

these data and verify that the inferences returned are reasonable. As mentioned above,

the toy model consists of nine free parameters: the two means of the color MVN, the

three covariance terms if the MVN matrix, the mean of the luminosity distribution,

the standard deviation of the luminosity distribution, the scale radius of the spatial

distribution, and the fraction of GCs in the system.

We initialized 100 emcee walkers in small Gaussian balls around the specified
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values of our distributions and ran the full ensemble sampler for 2000 steps. Note that

even if we hadn’t started the walkers at the known values, they would have quickly

walked into the typical probability set in only a few hundred steps for a distribution as

simple as this one.

In Fig. 3.2, we plot the trace plots for 30 of our 100 walkers (walkers are

omitted to make plots easier to see). It is clear that the chains are burnt in and are

mixing well after just a couple hundred steps; indeed, 2000 steps is significant overkill

for this particular model.

We also plot our full posterior distributions in standard corner-plot format

in Fig. 3.3. In this plot, we only plot the second 1000 steps from our sampler to

remove absolutely any burn in. We see that the posterior distributions appear very

well-behaved, with all distributions approximately normally distributed. The “truth”

parameters that we used for the distributions from which we drew data are plotted with

blue lines. Note of course that any one particular draw of data can potentially be quite

far away from the “truth” value for a particular parameter. For example, roughly one

out of every two draws should contain a 2σ outlier from the truth, and a well-calibrated

model should have some parameters for which the truth points are out in the wings of

the marginal distributions.

3.2.8 Generating GC Probabilities

For analyzing general properties about a galaxy’s GC system, one should use

distributions which incorporate uncertainty in GC contamination and do analysis using

the full posterior distributions for all model parameters. However, there are applications
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Figure 3.2: Trace plots for the nine free parameters in the model. Each plot features 30
of the 100 walkers. The full ensemble sampler was run for 2000 steps. It is clear that
the chains burn in and walk around the typical set after a very short time.
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Figure 3.3: Corner plot showing 1000 steps of 100 walkers from our toy model. Solid
lines through the plots indicate the ”truth” lines. All distributions are well behaved,
and the marginals appear to all be approximately normal. 0.025, 0.16, 0.50, 0.84, and
0.975 quantiles are plotted over the marginal distributions. While no 2σ outliers appear
to be present in for this particular dataset, note that roughly one out of every two
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for which having a probability for each source as to whether it is a GC or not can be

useful, e.g. for optimizing selection of GC candidates for future spectroscopic follow-up.

We term this probability PGC.

Once one has posterior distributions, computing a point estimate for a source’s

PGC value is trivial. It is simply equal to the likelihood that the source is a GC divided

by the total likelihood of the source, i.e.

Pi(GC|Yi, θ) =
LGC(Yi|θ)

LGC(Yi|θ)× LCont(Yi|θ)
, (3.12)

where θ is taken to be the point estimate for each of our free parameters, i.e. the median

of the posterior distribution of each free parameter. However, note that the value PGC

is itself a random variable; one may calculate a posterior distribution for PGC for every

source in the dataset. This can be done directly by simply calculating the right hand

fraction for each step in the posterior distribution chain. In other words, the posterior

distribution of every PGC,i is completely defined once the posterior of θ is sampled. In

general we default to simply providing a point-estimate of PGC for each source in our

dataset, as the utility of having the full posterior is not immediately obvious. However,

they can be calculated trivially from the chains if needed.

In Fig. 3.4, we display the color-color and spatial distributions of the dataset

generated in §3.2.8. However, we now color-code each point by the probability that the

source is a GC given the posterior inferences sampled by the MCMC chain. Redder

points are more likely to be contaminant sources, while bluer points are more likely

to be GCs. Note that while the trends of the two distributions are clear, there is not
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a defined boundary between samples in any given space. Each source is assigned its

own probability based on where it lies in the full multidimensional dataset. As the

histogram no longer makes sense to include when considering probability PGC as a

continuous variable, we omitted the magnitude information in these plots.
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3.3 A REALISTIC MODEL FOR GC SELECTION

The model considered in §3.2, while not entirely disconnected from real GC

distributions, has some significant flaws. In this section, we improve the model and

make it a more accurate description of a realistic GC dataset.

Perhaps most importantly, in the §3.2 toy model, we assumed contaminant

sources were uniformly distributed over the allowable parameter ranges. In fact con-

taminants have significant structure in both color-color and luminosity space. Section

§3.3.1 deals with creating a realistic distribution of contaminants in color-color space,

and section §3.3.2 considers the same problem in luminosity space.

Finally, we also wish to expand our model to include more than one GC pop-

ulation. Most GC systems display significant evidence of bimodality. If this bimodality

is apparent in the system, it must be included in the model in order to achieve a reason-

able fit to the data. In addition, characterization of GC bimodality is a useful insight

into the formation of the GC system. Section §3.3.3 explains including an additional

GC population as an additional part of the mixture model.

Finally, in section §3.3.5, we apply this realistic model to an illustrative mock

dataset and verify that we can still realistically recover GC system parameters given

these more realistic models.

One additional complication which we neglect in this section is the issue of

incompleteness in our dataset due to sources below our detection threshold. Due to the

complexity of incompleteness, we discuss how we incorporate incompleteness in §3.4.
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3.3.1 Modeling the Contaminant Population Color

In §3.2, we discussed the contaminant population as though it was uniformly

distributed in spatial distribution, color, and luminosity. The spatial assumption is

likely reasonable: on the sorts of sub-degree image scales we are dealing with, there

is unlikely to be a significant gradient in the distribution of sources across the field of

view. However, contaminant populations are most certainly not uniformly distributed in

color. Instead, foreground star contaminants follow a stellar locus in color-color space,

while background galaxies populate their own tracks. Significant work has been done

on parametric modeling of the distribution of stars in all sorts of photometric bands.

However, any parametric model naturally makes significant assumptions. Furthermore,

the sorts of photometry performed by the study of interest will not perfectly mirror

those methods adopted for our work.

Instead, we make use of NGVS control fields to model the distribution of con-

taminants in color-color space. As part of NGVS, four background fields were observed

away from the actual Virgo cluster. As of submission of this work, three of these fields

feature three-band g, r, i photometry, appropriately named NGVS BG 1, 2, and 3. To

build our contaminant catalogs, we analyzed these three fields in an identical manner

to our science catalogs. We downloaded the full MEGAPIPE-stacked images (Gwyn,

2008) for each filter from the Canadian Astronomy Data Centre9.

We then performed photometry on these fields and applied our standard quality

and extended-object cuts, as described in Chapter 5. Since we are actually modeling

9http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/
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our science distributions, we emphasize that the goal of these cuts is only to eliminate

sources which are clearly not GCs because of their shapes and extended sizes. The

entire point of modeling the distributions is to handle cases where the identity of the

source is ambiguous. It is far more important that any photometry cuts be performed

consistently across both science and background fields than it is for the cuts to achieve

a precise elimination of contaminants.

After photometry is performed for each field, we combine all three fields into

one large catalog to represent our contaminant distributions. Photometry across all

three fields was remarkably consistent (see Fig. 3.5), indicating that all three fields can

be combined into one single representative catalog of contamination.

We use the Python package scikit-learn’s implementation of kernel density

estimation (KDE) to perform a 2D KDE on the g − i and r − i distributions. We plot

a contour plot of the KDE in Fig. 3.6. The scikit-learn KDE module can be queried to

return the log-density of a given sample of data points. We will denote this distribution

as dFG(Y ), indicating the probability of observing a data vector Y under the trained

KDE model. The KDE model behaves just like any other probability distribution and

represents the color distribution of the contaminant population in the mixture model.

KDEs have a single free parameter, the bandwidth, which represents the width

of the kernel applied to each data point. We experimented with 5-fold cross-validation in

scikit-learn to evaluate this parameter; however, the best-fit bandwidht from cross-

validation, 0.02, was not smooth and appeared to contain some noise from the data.

This added noise could occasionally throw off our Bayesian inference, as sometimes
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Figure 3.6: KDE of our contaminant population in g−i, r−i space. The density estimate
is created using scikit-learn’s KDE implementation with a bandwidth parameter of
0.05. The distribution is smooth while still retaining all information about the expected
color distribution. We use this KDE as the contaminant distribution in all our inference.

the GC distribution “walked” in to one of these noisy, underpopulated regions. We

found a bandwidth of 0.05 produced a reasonable and smooth contaminant distribution.

Bandwidths greater than this began to wash out detail in the distribution.

An additional normalization must be applied to the KDE probability to ac-

count for the fact that we define color-color boundaries in our dataset. This is straight-

forward to calculate to arbitrary precision by simply calculating the KDE probabilities

on a grid across the color-color space and summing them. We found that a grid resolu-

tion of ∼ 0.02 mags in color normalized the contaminant KDE to a range of less than
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0.1%, which was sufficient for our purposes.

The full model for the contaminant distribution, including the normalization

therm, looks like

PFG(Y) =
dFG(Y)

C
, (3.13)

C =

x2∑
i=x1

y2∑
j=y1

dFG(i, j)∆x∆y, (3.14)

where [x1, x2] and [y1, y2] are the color limits over which the KDE is defined and ∆x and

∆y are small enough to achieve good approximation. This probability plugs directly

in to our mixture model likelihood function, providing the distribution function for the

contaminant distribution.

One important computational note is that this distribution in the context of

the mixture model contains no free parameters. This means that the contaminant

likelihood doesn’t change as the MCMC runs, and therefore can be calculated at the

beginning of the model. Querying the KDE probability takes a significant amount of

time, and so if it was performed at every step in the chain, the time to run a chain of a

given length would be drastically increased.

An implicit assumption of this method is that the color-color distribution of

contaminant sources, i.e., Milky Way stars and background galaxies, is consistent across

all our target galaxy fields. While this assumption is likely to be broadly reasonable,

one important caveat will be if a science field overlaps with any halo substructure.
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3.3.2 Modeling the Contaminant Distribution in Luminosity

In addition to creating a more realistic color-color contaminant distribution, we

also wish to consider a more realistic distribution in luminosity. The constant luminosity

model used in §3.2 is a very poor description of the luminosity of a random selection of

astronomical sources. In fact, the luminosity of a random photometric sample increases

significantly towards fainter magnitudes approaching the detection limit, then falls off

sharply as sources become too faint to detect. Fig. 3.7 includes a histogram of point

sources in the background field NGVS BG 2, which is the deepest of the three NGVS

background fields we use.

As a first step, we make a KDE of this i-band luminosity histogram. As

usual, this KDE can be queried to return the likelihood given an i-band magnitude.

This histogram also needs to be corrected for the incompleteness in the NGVS BG 2

data. We quantify completeness in our standard manner as described in §3.4. We

then create a completeness-corrected density estimate at each magnitude by dividing

the KDE density by the probability of the source being observed at that point. This

corrected distribution must be normalized so that it integrates to one over the range

of the data under consideration. We display the steps in creating this distribution in

Fig. 3.7, along with a comparison to the luminosity distribution of M87 (see Ch. 4).

3.3.3 Bimodality in GC Distributions

It is well established that most GC systems display some evidence of GC

bimodality in their color and mellaticity distributions. Accounting for this bimodality
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Figure 3.7: The blue histogram is the i-band luminosity histogram of sources in the
contaminant field NGVS BG 2. Green, we plot our recovered completeness function for
this image. Note that the right y-axis applies to the completeness function. The solid
black line represents a KDE of this luminosity histogram, while the dashed line is a
scaled version of this KDE. This scaled version accounts for sources that are missed due
to incompleteness. Finally, the green histogram is our measured i-band histogram from
M87. The bump around i ∼23 from M87’s large GC population is clearly visible, and
the data are clearly more shallow than in NGVS BG 2.
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is important for correctly modeling the GC systems, and measuring this bimodality also

offers interesting scientific insights of its own.

Conceptually, color bimodality is easy to incorporate: we simply specify a

second multivariate normal mixture component in our color distribution. Adding a

second component means that the GC component of the likelihood now has additional

free parameters, including a second mean vector and a second covariance matrix. In

addition, we now have two mixture strength components, fGC,blue and fGC,red.

One important complication introduced by a second mixture component is

identifiability. Now that we have two mixture components with identical distributions,

there is no intrinsic difference between the parameters for one distribution and the

parameters for the other. If we were to run our sampler with no further information,

the parameters for both distributions would switch places continuously in the course of

sampling. To provide identifiability to the distributions, we adopt a simple prior of a

specified value for the g − i mean. In other words, the prior for the g − i mean of the

blue population is uniform from some low cut off value to a specified divider value, and

the prior for the g − i mean of the red population is uniform from that same specified

divider value up to high cut-off. The g− i divider value is difficult to know a-priori for a

galaxy, so our usual procedure was to experiment for each galaxy to find a division that

produced well-sampled chains. Strictly speaking, determining the g− i cut-off in such a

way is not in the true spirit of “prior” information. However, we consider the strongest

prior information simply being the fact that we enforce a strict division between the

two populations, i.e. a strong prior that there is both a red and a blue subpopulation.

101



While a prior requiring the mean of one distribution to be less than the mean of the

other would not require experimentation for each galaxy, such a prior actually violates

detailed balance and therefore the MCMC chains derived from such a prior would not

be truly representative of the posteriors.

In the interest of simplicity, we ultimately decided not to extend the bimodal

model to the spatial and luminosity distributions. In principle it is straightforward to

write these distributions into the model; we simply allow for additional free parameters

for both the red and blue GCs. If we were to do this, we would include total of five ad-

ditional free parameters (luminosity mean, luminosity variance, scale radius, ellipticity,

and position angle).

3.3.4 Bounding of the Mixture Distributions and Normalization

In order for the mixture distributions used in this model to provide valid infer-

ence, it is vital that they be normalized correctly. For distributions with common PDFs

like exponentials and multivariate normals, such normalization is true by definition.

However, in photometric analysis of GC datasets, we are usually dealing with a dataset

that has been trimmed in some way, usually by applying some cut in color, luminosity,

or radial space. Bounding one’s dataset in such a way has important consequences when

applying models to said dataset, and inferences drawn when such models are applied can

be biased if these data selection rules are not taken in to account. The relative fractions

of populations in mixture models are particularly prone to bias if normalization is not

accounted for.

As discussed in §3.3.1, normalization of the contaminant color-color dataset can
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be accomplished numerically by summing the distribution over an appropriately-sized

grid, and an identical procedure can be applied to the contaminant luminosity distribu-

tion in §3.3.2. While such grid approaches can be computationally intensive, they are

completely tractable to evaluate to high precision as they must only be performed once,

at the beginning of the MCMC chain.

Normalization of the GC luminosity distribution is also trivial: since the GC

distribution is described by a normal distribution, the normalization term is simply equal

to the value of the CDF at the faint luminosity cutoff minus the CDF of the bright

luminosity cutoff. However, this normalization term depends on the free parameters

µLum and σLum and therefore must be recalculated for every step in the MCMC chain.

Since the normal CDF is known as an easily evaluated distribution, this re-calculation

adds negligible computation time.

A more complicated issue is normalization of the multivariate normal distri-

bution. While one could calculate this normalization term with a grid approach, the

GC color MVNs are dependent on both the means and covariance matrices and there-

fore normalization must be recalculated at each step in the chain. While there is no

such documented routine in scipy.stats, a hidden implementation of Genz (1992)’s

MVNDST routines exists in scipy.stats. These routines allow calculation of the CDF

of a multivariate normal. In the course of this work, we wrote a wrapper module for

these routines10, allowing quick calculation of normalized truncated multivariate normal

distributions within our MCMC chains.

Finally, the spatial distribution must also be normalized. Our standard pro-

10https://github.com/zachjennings/truncMVN
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cedure for the spatial distribution of GCs is either to perform a radial cut or to take all

sources on the image, which essentially amounts to a rectangular cut. Since we treat

the contaminant distribution as being uniformly distributed spatially, the normalization

of this distribution is simply equal to the inverse of the area of the region considered.

However, the GC distribution is treated as having a 2D exponential radial distribution,

which we model using the astropy.modeling Sersic implementation. Depending on

our radial cut, it is straightforward to define grid either circularly or rectangularly dis-

tributed over the region of interest. We then evaluate the model at every point in this

grid and sum to approximate the total probability contained within the bounds. Note

that, while there are closed-form solutions for the normalization of a 1-D exponential

distribution, even with ellipticity, we are unaware of any implementations that allow for

the sorts of circular or rectangular bounding considered in this problem. As a result,

we adopt a grid approach to normalize the spatial distributions.

Unlike the above normalization problems, this grid-based approach must be

performed at every point in the MCMC chain since the GC spatial distribution con-

tains free parameters that are being fit in the model. This normalization therefore adds

significant computational overhead to the inference, with the amount of overhead essen-

tially corresponding to the number of grid spaces where the model must be evaluated.

We found adopting a grid of width 0.005 deg provided accuracy of the normalization

constant to within 99.9% for an effective radius of 0.1 deg, which we deemed sufficient

for our purposes (and significantly smaller than the general scatter in the posterior of

the mixture fractions). 0.1 deg is typical of the sorts of effective radii seen in our GC
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analysis. The MCMC inference naturally proceeds slower with this grid-based approach,

but at less than a factor of two increase.

3.3.5 Application of the Full Model to a Mock Dataset

In this section, we present an example of the full model applied to a mock

dataset generated from the distributions outlined above. We consider a distribution of

1000 contaminants, 500 blue GCs, and 500 red GCs. The GC colors are drawn from

red and blue multivariate normal distributions with parameters

µBlue =

0.75

0.2

 , ΣBlue =

 0.01 0.003

0.003 0.005

 (3.15)

for the blue GCs and

µRed =

1.0

0.3

 , ΣRed =

 0.02 0.005

0.005 0.01

 (3.16)

for the red GCs. GC spatial coordinates are drawn from an elliptical exponen-

tial distribution with Re = 0.5 deg, ε = 0.5, and PA = π
4 . GC i-band magnitudes are

drawn from a normal centered at µi = 22 mag, σ = 1.0.

1000 contaminant colors are drawn by re-sampling from our contaminant KDE.

Spatial coordinates for the contaminant distributions are drawn from a uniform circular

distribution with radius 1.0 deg. Finally, contaminant i-band distributions are drawn

from our completeness-corrected i-band KDE. This final sample must be drawn using

accept/reject sampling method, since the corrected distribution is the ratio of two other
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Figure 3.9: Traces of walkers for the sampler applied to the mock dataset shown in
Fig. 3.8, plotted for each of the 17 free parameters in the model. We initialized 100
walkers and ran the sampler for 4000 steps. For clarity in the plot, we only plot 30
walkers from the ensemble. Walkers are clearly burnt-in after just a few hundred steps,
and the chains appear well-mixed. For this simple mock dataset, the traces are not sig-
nificantly influenced by the priors, aside from the boundary necessary for identifiability
in the mixture model.
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distributions at every point.

After our distributions are generated, we make the standard cuts we would

apply when considering an extragalactic photometric dataset. We cut the colors to be

within the ranges

0.0 mag < (g − i) < 1.5 mag (3.17)

and

−0.2 mag < (r − i) < 0.7 mag. (3.18)

Spatial coordinates are required to be within one degree of the center of our distribution,

and the i-band magnitudes are restricted to the range

18 mag < i < 25 mag. (3.19)

We plot the generated catalog in Fig. 3.8.

After generating the data, we sampled the posteriors using emcee. We ran the

sampler for 4000 steps using 100 walkers. Traces from 30 of these walkers are plotted

in Fig. 3.9. We discard the first 2000 samples from each walker as burn in and plot

distribution plots for all 17 free parameters in Fig. 3.10. Finally, in Fig. 3.11, we plot

the color-color and RA/DEC values of our sources. We color-code the points by the

probability that they are a GC given our model inferences, just as was done in §3.2.8.

Note that this plot could also be made for the probability that each source is a member

of either the red GC population or the blue GC population, as these probabilities are

also trivially available to be calculated in an identical manner.
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Figure 3.10: Corner plot for the ensemble show in Fig. 3.9. We discard the first 2000
steps of each walker as burn-in. While this is more than necessary, posterior distributions
still each contain two million samples. The posterior distributions in general appear well-
behaved, and match the truth values well. Outliers are within what would be expected
for a calibrated model. Note that for data initialized in this way, there are significant
covariances, such as between the fGC,Blue and fGC,Red parameters.
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Figure 3.11: Color-color and spatial distributions of the mock dataset analyzed in §3.3.5.
Points are now color coded with the probability that they are GCs; bluer points are
more likely to be GCs, while redder points are more likely to be contaminants. Prob-
abilities are calculated based on point estimates from the posterior distributions that
were sampled in §3.2.8. While we consider the blue and red GCs to be the same class for
this plot, probabilities may also be calculated based on source’s membership probability
to any of the three classes.

3.3.6 Discussion of the Posterior Distributions of the Mock Data

All plots indicate that our sampler is well-mixed and that our truth values

are recovered well. As noted previously, al well-calibrated model ought not to recover

perfectly true values for all its free parameters; indeed, with this many free parameters,

it is very likely to see at least one ”two-sigma” outlier in a dataset realization such as

this one.

There are many parameters that display significant covariances in the corner

plots. For example, the fGC,Blue and fGC,Red parameters display a nearly diagonal corner

plot. This indicates that the total number of GCs can be known to greater precision

than total number of either population. In other words, uncertainty over which GC

population a source belongs to is great than than uncertainty as to whether a source
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is a GC or a contaminant. Note that this isn’t necessarily true for all GC populations;

populations with either narrower distributions and/or more widely separated means

would show easier separation between the two populations.

g − i and r − i mean for each population also show a large amount of covari-

ance. This also makes logical sense: since the distributions from which the data were

drawn were multivariate normals with covariance, there are preferred directions for the

posterior distributions of the mean vectors. Covariances also exist among many of the

parameters within the multivariate normal covariance matrix. Finally, interesting co-

variances exist between the fGC,Blue and fGC,Red parameters and the parameters of their

distributions. These again make intuitive sense: in general, if there is probability among

a scale parameter that leads to a wider distribution, it will also lead to an increase in the

fractional weight attached to that distribution. The opposite is true for the fractional

weight attached to the opposite distribution.

These covariances among the parameters indicate that there is a great deal

more information encoded in a full GC distribution model than can be gleaned just

from simple sample selection. Quantities such as the total number of GCs in a system

can be known to greater precision than would be learned examining each GC distribution

individually. Furthermore, this also reinforces the obvious notion that uncertainty in the

parameters of GC distributions also contributes correlated uncertainty to the relative

number of GCs in either population.
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3.4 ACCOUNTING FOR INCOMPLETENESS

In astronomical surveys, we are naturally working with data that are incom-

plete at some level. Above some luminosity threshold, we expect to recover sources

with near 100% efficiency, while below some threshold we expect one unable to detect

sources, with some sigmoid-like functional form in the middle. Accounting for this in

our Bayesian context can be accomplished by using a modified likelihood function.

3.4.1 Estimating Completeness Functions with Fake Star Tests

To estimate our completeness function, we employ fake star tests. Fake star

tests are conceptually straightforward: into each image, we insert a series of stars of

known magnitude using a model PSF. We then attempt to recover these stars, using the

same photometric procedure applied to our science data. The rate at which stars are

recovered as a function of magnitude through this procedure gives the incompleteness

function of the data.

To quantify completeness, we used scikit-learn’s logistic regression classifier.

Logistic regression is a form of generalized linear model, where a logistic function is used

to link an underlying linear releationship to a binary outcome. As our training set to

our logistic regression model, we take as our training set the recoveries and failures from

our fake star tests, with the feature as the input magnitude of the source. We then train

a one parameter model to get our optimal completeness curve. An advantage of logistic

regression is that it is fundamentally probabilistic, so its outputs directly map to the

probability that a source of a given magnitude is recovered. An example of a trained
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completeness curve can be seen in Fig. 3.7.

3.4.2 Single-Band Incompleteness

Much of the formalism below comes from Weisz et al. (2013), who considered

the problem of incomplete data in the context of evaluating the mass function of resolved

star clusters in the Panchromatic Hubble Andromeda Treasury HST dataset of M31

(Dalcanton et al., 2012). In this section, we adapt the formalism derived by Weisz et al.

(2013) to our particular problem.

When we allow for the possibility of not observing the data, our likelihood

becomes P (Y |θ, obs), i.e. the probability of observing data Y given both the current

value of θ and the fact that the object was observed. Using Bayes theorem, we can

write this probability as

P (Y|θ, obs) =
p(Y|θ) p(obs|Y)

p(obs|θ)
. (3.20)

P (Y|θ) is the previous likelihood function before completeness of the data was

considered. P (obs|Y ) is our completeness function, the chance of actually observing a

particular source given the measurements of our source. This function may, in principle,

be evaluated to whatever precision we need through the use of fake star tests. We insert

a number of sources into our image of known brightness, and attempt to recover them

through an identical photometry procedure as that used to measure the data. We discuss

our specific procedure for this work in §3.4.1.

P (obs|θ) requires additional consideration. This is essentially a normalization
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term for the full likelihood. The fraction of data that we expect to have missed is itself

dependent on the parameters of our model. This term can be calculated explicitly,

given a parameter vector θ. The problem is most easily explained in a single band, for

a single population of GCs; we will generalize to multi-band photometry with multiple

populations in the next section.

We may write P (obs|θ) asl

P (obs|θ) =

∫ ∞
−∞

P (obs|m) P (m|θ) dm, (3.21)

where m is the measured magnitude, P (obs|m) is the measured complete-

ness at a given magnitude, and P (m|θ) is the likelihood of observing a magnitude for

given luminosity parameter vector θ. In practice, we assume the completeness function

P (obs|m) is approximately sigmoid-shaped, and therefore will be ≈1 for sources brighter

than some magnitude m1 and ≈0 for sources fainter than some magnitude m2. This

makes the integral

P (obs|θ) =

∫ m1

m0

P (m|θ)dm) +

∫ m2

m1

P (obs|m) P (m|θ) dm, (3.22)

where m0 is the lowest magnitude of interest in the problem (i.e. where we integrate

our luminosity PDFs down to).
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We now substitute in our mixture-model likelihood function:

P (obs|θ) = fGC

∫ m1

m0

PGC(m|θ) dm + (1− fGC)

∫ m1

m0

PFG dm

+ fGC

∫ m2

m1

P (obs|m) PGC(m|θ) dm + (1− fGC)

∫ m1

m0

PFG P (obs|m) dm.

(3.23)

The first two integrals are simple to evaluate: since we assume a normally distributed

luminosity function for the GCs, the first integral is just the CDF of a normal distribu-

tion with parameters θ evaluated at location m1. The second integral is just m1 −m2,

since we have assumed a constant distribution of contaminant sources.

The latter two terms require P (obs|m), which is not available in a functional

form. Instead, we can attempt to approximate them using a simple summation:

fGC

∫ m2

m1

P (obs|m) PGC(m|θ) dm ≈ fGC

I∑
i=1

P (obs|mi)PGC(mi|θ)
m2 −m1

I
(3.24)

where we choose I to be large enough that we get a precise answer. An essentially

identical functional form exists for the normalization of the contaminant distribution

function.
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Plugging these equations in to our full posterior, we get:

P (θ|Y, obs) ∝ P (Y|θ) P (obs|Y)P (θ)

P (obs|θ)

∝ P (Y|θ) P (obs|Y)P (θ) ×[
Φ(m2|θ) + (m1 −m2) +

fGC

I∑
i=1

P (obs|mi)PGC(mi|θ)
(m2 −m1

I
) +

(1− fGC)
I∑
i=1

P (obs|mi)PCON(mi)
(m2 −m1

I

)]−1
,

(3.25)

where Φ(m|θ) is the CDF of a normal distribution with parameters θ.

We now have a formula for our posterior, incorporating incompleteness of the

data. Given our likelihood function P (Y|θ), our completeness function P (jobs|m),

and our specified priors P (θ), we may use our standard MCMC algorithm to draw

samples from our posterior. As before, note that formulas which don’t depend on θ,

i.e. PCON(mi) and P (j, obs|m), need not be evaluated in each step of the MCMC chain.

They may be calculated before beginning the MCMC chain, making every step of the

chain more efficient.

3.4.3 Correcting for Incompleteness in Mock Datasets

In this section, we demonstrate that our corrections for incompleteness accu-

rately recover our input parameters. Furthermore, we illustrate the drastic effect that

incompleteness that is not accounted for can have on inference.

In this section, we consider a mock dataset shown in Fig. 3.12. These data
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Figure 3.13: Trace plots for 4000 steps for inference applied to our incomplete dataset,
ignoring corrections for incompleteness in our model. As we typically do, we only
plot 30 walkers for illustrative purposes. While all walkers were initialized around the
truth values for this dataset, for several parameters they quickly walked off these truths
into different values. The difference is especially obvious for the µi, σi, fblue, and
fred parameters. The walkers appear reasonably well-mixed around these parameter
distributions, indicating that the differences are due to the fact that the model has been
misspecified, rather than computational difficulties.
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Figure 3.14: Corner plots for the traces in Fig. 3.13. We discard the first 2000 steps
of each walker as burn in, leaving around 2 million total samples for each distribution.
Truth values are plotted with blue lines; however, several parameters are so far away
from their truth values that the blue lines are not visible.
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originally consisted of 500 blue GCs, 500 red GCs, and 1000 contaminant sources. The

sources were drawn from distributions identical to those considered in §3.3.5, except for

the GC luminosity, which was drawn from a normal with µi = 24 mag. We also limited

our distributions to be brighter than i = 25.5, after which point our contaminant i-band

magnitude distribution is no longer well-defined. The fainter mean was selected to make

the effects of incompleteness more extreme, and would be a reasonable magnitude for

the GC distributions from the most distant galaxies in our sample. After generation,

the data were then made incomplete using M87’s measured completeness function (see

Ch. 4). We made the data incomplete by conducting 2000 Bernoulli trials in which the

probability of success, p, was given by the value of the completeness function at the

i-band magnitude of this source. For this particular dataset, 256 blue, 271 red, and 699

contaminant sources survived incompleteness.

After generating these data, we fit our full model to this distribution twice. For

one inference, we ignored corrections for incompleteness in our model. For the second,

we included these corrections. 100 walkers were initialized around the true values for

each parameter, and the sampler was then run for 4000 steps in each case. For our

corner and posterior distribution plots, we discarded the first 2000 steps of each walker

as burn in.

In Fig. 3.13, we plot trace plots for our inference ignoring incompleteness of

the data. Despite being initialized at true values, walkers quickly moved off of these

to other parameter values that more correctly fit the incomplete data. The luminosity

parameters µi and σi are both clearly off. However, other parameters such as the fblue

120



0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.2

0.3

0.4

0.5

f r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

f b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.85
0.90
0.95
1.00
1.05
1.10

µ
gi
,r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.22
0.24
0.26
0.28
0.30
0.32
0.34

µ
ri
,r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

σ
2 gi
,r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020
0.022

σ
2 ri
,r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

σ
gi
,r
ed
σ
ri
,r
ed

0 500 1000 1500 2000 2500 3000 3500 4000
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

µ
gi
,b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25

µ
ri
,b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.000
0.005
0.010
0.015
0.020
0.025

σ
2 gi
,b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

σ
2 ri
,b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.000
0.002
0.004
0.006
0.008
0.010
0.012

σ
gi
,b
lu
e
σ
ri
,b
lu
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

R
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

ε

0 500 1000 1500 2000 2500 3000 3500 4000
0.5
0.6
0.7
0.8
0.9
1.0

P
A

0 500 1000 1500 2000 2500 3000 3500 4000
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0

µ
i

0 500 1000 1500 2000 2500 3000 3500 4000
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

σ
i

Figure 3.15: Trace plots for 4000 steps for inference applied to our incomplete dataset,
ignoring corrections for incompleteness in our model. As we typically do, we only
plot 30 walkers for illustrative purposes. While all walkers were initialized around the
truth values for this dataset, for several parameters they quickly walked off these truths
into different values. The difference is especially obvious for the µi, σi, fblue, and
fred parameters. The walkers appear reasonably well-mixed around these parameter
distributions, indicating that the differences are due to the fact that the model has been
misspecified, rather than computational difficulties.
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Figure 3.16: Corner plots for the traces in Fig. 3.15. We discard the first 2000 steps
of each walker as burn in, leaving around 2 million total samples for each distribution.
Truth values are plotted with blue lines. Posterior distributions are now all located near
their truth values.
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Figure 3.17: Histogram comparing inferred values for µi and σi for the mock dataset con-
sidered in §3.3.5. The blue histograms correspond to inferences when incompleteness
is ignored, while the green histograms correspond to inferences for which the incom-
pleteness is corrected for. Ignoring corrections for the incompleteness clearly leads to
significant bias in the final results.

and fred parameters also have clearly moved off from their true values. Inference about

all parameters is affected by fitting what is ultimately an incorrect model. The point can

be seen more clearly in the corner plots, which we show in Fig. 3.14. Truth values are

plotted with blue lines; however, some parameters have walked so far off that they are

no longer visible on the plot. The covariance matrix distributions are fairly consistent

with truth values, and the means of both the color distributions also appear to recover

values reasonable given the inputs.

Fig. 3.15 is the same as Fig. 3.13, but now for our model incorporating incom-

pleteness. Walkers now appear to stay fairly close to their truth values, indicating that

our incompleteness corrections perform inference on the missing data well. Fig. 3.16 is

the corner plot for the traces show in Fig. 3.15. Values now correctly stay in their truth

regions, and inferences on all parameters are reasonable.
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Figure 3.18: Histogram comparing inferred values of fRed, fBlue, and NGC for the
mock dataset considered in §3.3.5. The blue histograms correspond to inferences when
incompleteness is ignored, while the green histograms correspond to inferences for which
the incompleteness is corrected for. Similar biases to the luminosity are observed here:
when incompleteness is ignored, fewer GCs are found than are expected.

Figs. 3.17 and 3.18 display posterior histograms for the GC population fraction

free parameters and the luminosity distribution free parameters, respectively. For these

free parameters, when incompleteness is not considered, the inferred distributions are

extremely far off. Clearly not accounting for incompleteness in the data when performing

inference that depends on the luminosity will produce biased posterior distributions.

While this behavior is trivially expected for the luminosity histogram (one will naturally

infer biased values for a normal distribution if the distribution is severely truncated at

one end), it is perhaps worth emphasizing that even estimates for the number of GCs

in the system might be severely estimated if incompleteness is not considered in the

selection and modeling of GC systems.

Note that the magnitude of this bias will, in general, be dependent on the

values chosen to create our initial mock data catalog. We intentionally selected a value

for the mean of the i-band magnitude distribution very close to the turnover magnitude

for standard GC systems, making the bias very large in our mock dataset. Real-world
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galaxies may have more or less bias, depending on the depth of the data and the distance

of the galaxy under consideration.

3.4.4 Interpretation of fBlue, fRed, and NGC in the Context of Incom-

pleteness

As is evident from the fits to mock data, the values for fBlue and fRed in the

completeness-corrected inference don’t correspond only to the data observed, but to the

original distributions from which the data were drawn. There is subtlety here when

applying these inferences in the context of what is observed in data.

Values inferred for fBlue and fRed correspond to distributions that have been

completeness-corrected down to the limits of our incompleteness function. For most of

our analysis, this corresponds to a fiducial limit of. 24.5, the limit down to which our

foreground distributions are defined.

Converting from values of fGC, fBlue, and fRed to actual values of NGC, NBlue,

and NRed requires extrapolating the total number of sources according to the incom-

pleteness of the data. This value is essentially given by the P (obs|θ) term in Eqn. 20.

This quantity must be calculated the same as any other random variable in the problem.

We can use our chain for θ to calculate the normalization chain. We then divide the

number of actual sources, NObs, by the chain of this normalization term to get a poste-

rior distribution for the total number of sources, NTotal. To emphasize, since the total

number of sources a quantity affected by incompleteness, and the degree of incomplete-

ness is dependent in free parameters on the model, we must treat the NTotal number of

sources in the system as another random variable, rather than a fixed quantity. After
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the PDF of the total number of sources has been determined, it is straightforward to

get PDFs for NGC, NBlue, and NRed by just multiplying the NTotal chain by the chains

of fGC, fBlue, and fRed.

3.4.5 Extension to Multi-band Datasets

An important caveat to the above formulation is that it underestimates the

true extent of sources lost to incompleteness due to the requirement that objects be

detected in all three filters. Objects at the tail end of the luminosity distribution must

pass completeness thresholds for detection in all three filters of our multi-band dataset.

Furthermore, there will be subtle effects on the color distribution due to this

multi-band incompleteness. As an example, for two sources of equivalent i-band lumi-

nosity but different g−i colors, the source that is redder (i.e. fainter g-band magnitude)

will, in general, be more difficult to detect. As such, it should be weighted more in

the model. Correcting for incompleteness on the color distributions must be done by

marginalizing over completeness corrections for a given color.

One approach to this problem is to compute chance of incompleteness condi-

tional on a specified color. In other words, we can calculate the chance of a source of a

given color being undetected by fixing the color and integrating over our full range of

magnitudes for our incompleteness functions for both bands, with the bands offset by

the amount given by the color. This marginalized completeness can be calculated over

the full 2D grid specified in our color-color region of interest.

The problem is fully tractable given specified boundaries of the color-color

space, and an appropriate magnitude range in all three filters. However, this problem
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comes at the expense of significant computational overhead. Furthermore, we found

inferences on mock data became more unstable when this grid approach was imple-

mented. As above, for the GC distributions, the P (obs|θ) must be calculated at each

step in the model over the entire color-color distribution, and we found that this nor-

malization was dependent on the grid resolution, especially for very narrow covariance

distributions. Grids that can produce sufficiently accurate normalizations for small dis-

tributions became intractably slow and large. Given these difficulties, we ultimately

decided to neglect color-dependent incompleteness in our model. It is possible different

ways of gridding, or perhaps some sort of adaptive grid model, could produce more

stable fits. However, such investigation is beyond the scope of this work.

In practice, neglecting this incompleteness is not nearly as big a factor as it

might appear initially. Throughout our model, we are always treating our GC distri-

butions as excess density on top of our measured color-color distribution. We generate

our contaminant KDE using an identical procedure to our GC photometry, and there-

fore any color-dependent incompleteness is also present in the contaminant distribution.

Color-dependent incompleteness would only have a major effect on our inferences if the

relative incompleteness of the different bands was significantly different from our science

fields of interest.

3.5 DISCUSSION AND SUMMARY

In this section, we discuss our model and its application to fake data, and

consider what we have learned about the modeling of GC systems. We also consider
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important assumptions made in the model and how restrictive these assumptions are to

the modeling process. Finally, we examine ways in which the model could potentially

be expanded in the future.

3.5.1 Noteworthy Assumptions Made in the Modeling Process

A beneficial side-effect of Bayesian modeling is that one must be quite specific

about how one approaches their science task. Assumptions and approximations are

explicitly shown in the modeling formalism. In our methodology, we have noted where

we have made specific assumptions in the modeling. Here briefly summarize what we

believe are the key assumptions in our model. We note these not to minimize their

importance, but rather to note that our inferences (as in any study) are conditional on

our modeling choices and assumptions made. We also wish to to highlight areas where

our modeling procedure could be improved, as a guide for future work.

1.) Assumption of constant contaminant spatial distributions. In

all our analysis, we treat the contaminant distributions as simply being uniformly dis-

tributed across the entire space under consideration in our model. In most cases, we

believe this assumption to be well-justified. For foreground stars especially, we don’t

expect extremely strong over-densities of stars on scales as small as those in our image.

There is definitely the potential for background galaxy clusters to have over-densities

on the scales of our imaging; however, in general background galaxies will be fairly well-

rejected during point source selection, and indeed the bulk of the background galaxy

population will be around or below the completeness limit for most of our galaxies

(e.g. Jordán et al. 2009). Nevertheless, there are situations where we know background
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galaxy clusters may exist; M87, for example, is known to have a background galaxy

cluster (Huchra & Brodie, 1984).

Moreover, any such over-densities wouldn’t bias our inference greatly, with the

potential exception of the spatial parameters. It is certainly possible that a spatially

correlated group of contaminant sources with colors and sizes comparable to GCs can

lead to a more extended inferred Re, or an inflated ellipticity/biased PA. However, it is

questionable whether the magnitude of such an effect will be comparable to changes in

detection threshold across the image due to the presence of bright stars, other galaxies,

scattered light, and other miscellaneous artifacts. Overall, we believe our assumption

uniform contaminant spatial density is unlikely to have a major effect on our inference.

2.) Assumption of Identical Color and Luminosity Distributions

Across Fields Unlike our previous assumption, the assumption of identical color and

luminosity distributions is almost wrong, with the potential to have a fairly significant

effect on our final inference. As we noted above, the actual level of contamination is a

free parameter in the model. However, if there are significant differences in the relative

density of the contaminants in color-color space, our inference could be biased. For

example, if a particular pointing had an overabundance of red stars with g − i ∼ 1.3

relative to the number of to main sequence stars when compared to our contaminant

populations, we would expect to infer an overabundance of red GCs instead (and a red

GC distribution more expanded in color).

Perhaps giving more weight to this concern, the NGVS background fields are

located near (and in some cases directly on) the Sagittarius stream (Lokhorst et al.,

129



2016). The presence of this stream could both increase the relative amount of total

contamination, as well as contribute a coherent stellar population to our contaminant

fields. In general, most of the Sagittarius stellar population seems to not overlap signifi-

cantly with GC parameter space in a color-color plot. Again, however, the concern is the

relative number of stars with g− i > 1.2 compared with the main sequence population.

Training additional contaminant populations, perhaps at different galactic lat-

itudes, would allow us to assess the effects of varying contaminant stellar populations on

the inferences drawn from our modeling. However, at this point we would no longer be

comparing like-to-like in terms of relative inference on the number of GCs. The relative

effect of this trade-off could be assessed in future work.

3. Assumptions of various levels of normality in GC distributions.

This assumption, while being quite restrictive, is perhaps less interesting. Indeed, the

vast majority of GC studies will typically model GC distributions using normal mod-

els. We actually expand our models greatly by even allowing for multivariate normal

distributions in color-color space, a step most GC studies don’t take. Assumption of

normality is, in general, a good default, as normal models tend to be well-behaved and

make an assumption of maximum entropy (Hogg et al., 2010).

However, to assume normality is still to make a strong assumption about the

strength of tails in the GC distributions, and a strong assumption about the symmetry of

the two models under consideration. Furthermore, there is not necessarily a link between

the parameters of normal models and direct physical interpretation. The actual physical

processes that go in to creating GC systems are assured to be extremely complex. While
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there is no real statistical problem with assuming normality in the absence of a realistic

alternative distribution, it is assuredly incorrect at some level.

3.5.2 Potential Expansion of the Model

In this section, we consider straightforward ways the model could be expanded

to both better fit and to glean more information about GC systems.

1.) Incorporation of bimodality in the GC system spatial distribu-

tions. In general, it is fairly well-established that the blue GC population tends to be

more spatially extended then the red GC population. The usual interpretation of this

is that the red GC population tracks bulge light, while the blue GC population more

tracks the galaxy halo. The blue GCs are typically more spherical as well, where the

ellipticity can be reliably measured.

We neglected GC spatial bimodality in our model simply out of a desire for a

simpler model. However, the mixture model is straightforward to expand. We simply

move the spatial distribution to being within the same mixture as the color distribution,

and expand the number of free parameters. As usual, we would wish to confirm that

we can recover differences in the distributions that are similar to those observed in real

data, and differences in the scale radii of the GC systems are often quite small (Strader

et al., 2011).

2.) Easing assumptions about normality. Another potential avenue for

expansion of the model is to move beyond the assumed normality of the dataset. This

model expansion could be as simple as considering, for example, multivariate t distri-

butions instead of multivariate normals. Furthermore, if a parametric model for GC
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distributions is proposed that maps a physically motivated quantity into photomet-

ric colors, it is straightforward to fit this more physical model instead and bypass the

necessity of assuming a specific distribution in color.

An even more speculative avenue for expansion might be to eschew the neces-

sity of specifying any parametric distribution at all. Non-parametric Bayesian methods

could be applied to model the GC color distribution. These methods allow for the dis-

tribution chosen for the GCs to be arbitrarily complex in color-color space while still

treating it probabilistically. A non-parametric Bayesian model would allow for the use

of a fixed contaminant mixture model with an arbitrarily shaped GC distribution on

top of it.

3.5.3 Summary of Results Inferred from Mock Dataset Analysis

Finally, in this section, we summarize some key takeaways from our analysis

of mock datasets, as well as their implications for further studies of GC systems.

First, the first general takeaway is that mixture modeling can be effective at

selecting GC systems and inferring the free parameters. Furthermore, the modeling

can be performed with no assumptions about any sort of functional form for the con-

taminant populations and without assuming any specific location in GC space. Levels

of contamination in GC systems may be directly modeled, and other methods of esti-

mating contaminant level (such as fitting binned spatial distributions with contaminant

offsets) can be avoided with direct modeling.

Second, there is often more information available in the inference than can

be gleaned through simple box-cuts in various parameter spaces. For example, the
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large negative covariance between red and blue GCs indicates that the total number of

GCs maybe known to a much greater precision than the fractional population of either.

Similar covariances exist for many other parameters in the system.

Third, we noted that correct normalization of the GC PDFs is vital for correct

inference on the parameters and relative strength of the GC and contaminant distri-

butions. One must take into account that one is performing inference on distributions

that are usually truncated to some fixed values; these normalization factors are, in many

cases, non-negligible, and often will depend on the free parameters which are being fit

in the model. Existing GC mixture modeling codes do not take this truncation into

account.

Fourth, completeness ends up having a significant effect in various inferences

in the problem. It is likely not surprising that completeness corrections will affect the

inferred GC luminosity distributions, but they can also have a very large effect on

the total number of GCs in the system. Performing accurate inference on the relative

number of GCs to contaminants must take these corrections into account.

All these conclusions lend credence to adopting fully-probabilistic mixture-

model approaches to GC system selection and inference. We have demonstrated that

one can correctly recover GC systems and obtain good estimates for the posterior distri-

butions of the parameters that went in to creating these distributions, all while correctly

accounting for selection effects in the GC datasets.

Other ways of approaching the problem of GC system analysis all revolve

around a series of sequential selection rules to obtain a sample for analysis before per-
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forming inference. Such approaches essentially never fully model the selection proce-

dures that go into creating their catalogs, and therefore are not able to obtain calibrated

probabilistic estimates for the free parameters in a GC system. Any approaches to doing

so will involve approximations which at best will fail to correctly estimate uncertainties,

and at worse will lead to significant bias. Probabilistic modeling instead offers estimates

of these uncertainties that, while not devoid of assumptions, are at least explicit about

these assumptions and will create well-calibrated estimates of the parameter distribu-

tions of interest.
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Chapter 4

Bayesian Analysis of the GC

Systems of SLUGGS Survey

Galaxies

4.1 INTRODUCTION

The SLUGGS Survey is a combination photometric-spectroscopic survey of

the globular cluster systems of 25 nearby early-type galaxies (Brodie et al., 2014). A

key feature of the survey is the complimentary nature of wide-field photometry and

multi-object spectroscopic follow-up. Data acquisition has been continuous since 2008,

when the first wide-field images were taken using the SuprimeCam instrument on the

Subaru telescope.

Many previous SLUGGS survey papers have published photometric analysis
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of a wide range of galaxies. However, the datasets published in previous works have not

necessarily been undertaken with photometric methods and analysis techniques con-

sistent across studies. Previous work has often featured methods tailored to specific

galaxies of interest, and has stitched together data from a wide range of sources includ-

ing wide-field imaging, available archival HST data, and potentially any spectroscopic

follow-up.

In this study, we instead focus on a few specific goals:

First, we use consistent photometric methods across all galaxies in the sample.

These consistent methods should reduce any galaxy-to-galaxy variation introduced by

modifications to methods for particular galaxies or studies.

Second, we only consider wide-field imaging of our galaxies of interest. Many

galaxies feature at least one pointing of HST imaging, with some featuring large HST

mosaics (e.g. Usher et al. 2012; Blom et al. 2012b; Pota et al. 2013b; Jennings et al.

2014; Kartha et al. 2014). In addition, the SLUGGS galaxies now have several thousand

spectroscopically confirmed GCs (Pota et al., 2013b; Forbes et al., 2017b). However,

while these additional observations are powerful, they are fundamentally biased. HST

data only probe the central parts of galaxies. Spectroscopic data are even more biased,

since one can only get spectra of the brightest GCs in a system. Furthermore, in order

to place spectroscopic candidates on a DEIMOS slit mask, one necessarily must already

perform a photometric selection, introducing additional bias.

This leads into our third goal in this study: apply Bayesian mixture modeling

to the photometry of these GC distributions and their contaminants. Approaching the
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problem from the perspective of modeling allows us to go beyond simple target selection

and actually directly perform inference on the parameters of interest in our GC systems.

Modeling these galaxies using heterogeneous datasets adds another layer of complexity,

and makes the problem much less tractable. For this reason, we only consider homo-

geneous datasets consisting of wide-field, ground-based photometry. While modeling

can in principle account for HST or spectroscopic data sets, incorporating such data

into a Bayesian model requires a very thorough and quantitative understanding of the

selection effects which go into creating these datasets.

Throughout this paper, we use Forbes et al. (2017a) for general information

about our galaxies of interest. Unless otherwise noted, stellar mass measurements,

effective radii, distances, and galaxy morphological classifications come from Table 1 of

Forbes et al. (2017a). For convenience, we reproduce the table in Tables 4.1 and 4.2.

4.1.1 Data Acquisition and Selection

In this work, we consider wide-field photometry of several galaxies in the

SLUGGS survey. Data for these galaxies comes from one of two instruments: the

MEGACAM square-degree camera located on the Canada-France-Hawaii Telescope

(CFHT), and the SuprimeCam wide-field camera on the Subaru telescope, with a 27x34

arcmin field of view. For all galaxies in our survey, we searched both the CFHT11 and

Subaru SMOKA archives12 for deep imaging for our galaxies of interest. All MEGA-

CAM imaging was downloaded as stacked MEGAPIPE images from the CFHT archives

11http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/
12http://smoka.nao.ac.jp/
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(Gwyn, 2008), while all Subaru imaging was reduced using standard methods (see the

next section for details).

Generally speaking, for most of the SLUGGS galaxies located in the Virgo

cluster, the deepest imaging was from the NGVS Survey (Ferrarese et al., 2012), while

most other galaxies had imaging taken directly by the SLUGGS survey over the years.

This was mostly intentional, as doubling up on galaxies with imaging from different

telescopes isn’t explicitly useful if there is no reason to do so. However, there are

situations in which galaxies were imaged with multiple telescopes. In these situations,

we take the deepest data acquired for those galaxies.

We list the pointings analyzed in this work in Table 4.3.

4.1.2 Subaru/SuprimeCam Reduction

We performed reduction using modified versions of the standard SDFRED

pipelines13. SuprimeCam underwent a CCD upgrade in mid 2008, offering a large

improvement in quantum efficiency over the previous chips. Pre- and post-upgrade

data require different versions of the pipeline.

In general, we use the usual tasks from the SDFRED reduction process. How-

ever, the default astrometry solutions from the SuprimeCam imaging are frequently

poor. Instead, we use our own custom process to calibrate the astrometry of our im-

ages, which we describe in 4.1.3. Final image stacking was performed using the Montage

software package 14.

13https://www.naoj.org/Observing/Instruments/SCam/sdfred/sdfred2.html.en
14http://montage.ipac.caltech.edu/
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Table 4.3: Imaging Analyzed in Chapter 4

Galaxy Filter Target Name Obs. date Telescope Exp. time
(NGC) (if ambiguous) (s)

1400/1407 g 2006 Sep. 22 Subaru 14640
r 2006 Sep. 22 6240
i 2006 Sep. 22 5600

2768 g 2011 Jan. 03 Subaru 4320
r 2011 Jan. 04 1860
i 2011 Jan. 04 1296

3115 g 2008 Apr. 02 Subaru 200
r 2008 Apr. 02 75
i 2008 Apr. 02 75

3607/3608 g 2011 Jan. 04 Subaru 1200
r 2011 Jan. 04 1560
i 2011 Jan. 04 1200

4111 g 2010 Apr. 12 Subaru 994
r 2010 Apr. 12 295
i 2009 Apr. 21 425

4278 g 2009 Mar. 27 CFHT 588
r 2011 Jan. 04 Subaru 450
i 2009 Mar. 27 CFHT 476

4365 g NGVS-2-5 2009 Mar. 23 CFHT 3170
r NGVS-2-5 2009 Feb. 22 2061
i NGVS-2-5 2009 Feb. 22 2055

4486 g G003.187.706+12.391 2004 Mar. 21 CFHT 3840
r G003.187.706+12.391 2004 Mar. 21 3300
i G003.187.706+12.391 2004 Mar. 19 3300

4459 g NGVS-1+2 2009 June 26 CFHT 3170
r NGVS-1+2 2009 June 26 4374
i NGVS-1+2 2009 June 26 2055

4494 g 2010 Apr. 12 Subaru 1014
r 2010 Apr. 12 355
i 2010 Apr. 12 540

4697 g 2010 Apr. 12 Subaru 300
r 2010 Apr. 12 300
i 2010 Apr. 12 300
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4.1.3 Bayesian Astrometric Calculation

If our pointings overlap with the SDSS field of view, then we cross-reference

with SDSS stars for astrometric calibration. Otherwise we cross-reference with the

USNO-B catalog. We first define a rough astrometric solution by hand for each ex-

posure’s full mosaic. We match six sources across the full mosaic and calculate rough

offsets. After a rough solution has been defined, we create a fine calibration on a chip-

by-chip basis. Using SExtractor, we create a quick photometric catalog for each chip

and cross-reference this catalog with the reference catalogs. We then use a Bayesian

procedure to sample posterior distributions for the astrometric parameters of our im-

ages. Point estimates derived from the medians of these posterior distributions then

represent the astrometric solution of our images.

For the Bayesian problem, we are interested in defining five free parameters:

X and Y offsets (the CRPIX WCS parameters), a rotation angle for the chip, and

delta parameters defining the arcseconds per pixel (the CDELT WCS parameters). We

neglect the final WCS parameter as we found we could easily attain sufficient astrometry

for image stacking without it.

To map from these free parameters into actual data, we use the astropy WCS

package. We plug the free parameters into a new astrometric solution. We then pass

the image coordinates of the sources on our chip through the solution to get new WCS

values. Finally, we calculate the difference between the WCS source location given by

the parameter values and the referenced source location from the catalog. We assume

this differences are normally distributed with a mean of zero. This normal distribution
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thus serves as our likelihood function, linking the unknown WCS parameters of the

image to the measured data on the chip.

There is motivation to consider the ∆X and ∆Y distributions jointly as a

multivariate normal, with a mean vector of zero and a covariance matrix describing the

approximate scatter of the relation. However, we found we attained excellent astrometric

solutions by considering the ∆X and ∆Y distributions as independent normals, which

we ultimately used as our final model for simplicity.

One final complication regards the treatment of outliers in our distribution.

The model we have laid out is essentially a squared-error loss function, wherein we

penalize errors in source astrometry according to the square of the difference. However,

such methods are prone to outliers. Instead, we write down the likelihood as a mixture

model consisting of a narrow distribution and a wide outlier distribution. The outlier

distribution allows for sources which are not well-matched between the photometry and

the data to be naturally down-weighted in the fit.

To summarize, we use the following likelihood distribution for our data:

L(∆X,∆Y |θ) = (4.1)

f(N(∆X|µ = 0, σ = 4)×N(∆Y |µ = 0, σ = 4) (4.2)

+(f − 1)(N(∆X|µ = 0, σ = 10)×N(∆Y |µ = 0, σ = 10). (4.3)

As with our photometric modeling, we use emcee to sample from our posterior

distributions to determine our astrometric solutions. Our general procedure was to run

our sampler for 600 steps with 100 walkers, then discard the first 400 steps for each
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walker as burn-in. We found that running the samplers in this manner was more than

sufficient to produce accurate astrometric solutions for stacking our images.

4.2 FULL PHOTOMETRIC CATALOG PROCEDURES

One of the primary goals in this work is to perform consistent reduction and

photometric procedures across all our scientific fields. In this section, we detail those

procedures.

4.2.1 Galaxy Subtraction

Our goal in this work is the analysis of a galaxy’s GC system. As such, we

didn’t attempt to perform reliable modeling of the galaxy light using tools like galfit

(Peng et al., 2002). However, GCs are frequently located within the galaxy light. In

ground-based imaging especially, this light can cover up a significant fraction of the

GC population. As a result, at least some rudimentary galaxy subtraction is necessary

to sample from the full GC population. We elected to use the simple iterative fitting

procedures from iraf.ellipse to subtract of the galaxy light.

We used the pyraf version of ellipse to perform galaxy subtraction. Masking

of bright sources is important to not throw off the fitting procedure. All obvious bright

sources (usually bright foreground stars and dwarf/background galaxies) are masked out

by hand in ds9, and these regions are then converted to a pixel mask using standard

iraf tasks.

In general, ellipse fitting is fairly robust to choice of initial conditions, as
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long as they are reasonable. We estimate starting coordinates, ellipticity, and position

angle just by eye on the image; all these quantities are then re-fit as ellipse runs. The

maximum semi-major axis to be fit for is important; we estimate this value by identifying

the approximate point at which the galaxy light reaches sky background, and check in

the residuals that the fit is not being thrown off. We then make the maximum semi-

major axis lager if the fits have not reached sky background levels, or make it smaller

if the ellipse twists heavily or eats significantly into sky background levels. We set 20

pixels as the minimum fitting level; fits usually fail at semi-major axes below 50 pixels,

but there are generally hardly any GCs located that close to the galaxy center, and they

wouldn’t be suitable to measure reliable photometry regardless.

We emphasize that these methods are not well-suited for actual analysis of

the galaxy light, if that was our science goal. In order to perform actual analysis of

the galaxy light, one should write down a model for the light and then use sampling

methods to evaluate the posterior distributions of the parameters of this model; indeed,

approaching modeling tasks in such a way is central to this work’s approach to GC

analysis. Our fitting methods fail at small radii, and don’t provide properly-calibrated

uncertainties at any semi-major axis radius. However, our only goal in galaxy subtrac-

tion is to remove most of the galaxy light to enable us to perform reliable photometry

of the hidden sources, and these methods are sufficient for that.

4.2.2 Photometric Details

We make use of SExtractor (Bertin & Arnouts, 1996) to perform photometry.

SExtractor offers a wide range of options for photometry, background estimation, and
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other parameters. Since accurate color measurements are very important for our work,

we use simple aperture photometry for measurements, which we describe in more detail

in the aperture correction section.

In general, our astronomical images are not completely flat. For one, reduction

of SuprimeCam imaging is not perfect, and the degree to which this is true depends on

the observing conditions. There are also varying degrees of background light throughout

our images, caused by both residual galaxy light and other bright sources in our imaging.

SExtractor creates an estimate of the background in the image using a sophisticated

smoothing algorithm. We found that setting the background estimate size to 64 pixels

achieved a smoothly varying background without subtracting off light actually from our

point sources of interest. We used this background size, along with a filter width of 3,

throughout our photometric procedure.

4.2.3 Aperture Correction

We use standard curve-of-growth measurements to calibrate aperture correc-

tions. In general, for aperture photometry, one wants to measure photometry from

within a small radius to maximize S/N, and then correct this value to a larger aperture

to account for the light missed in the wings of the PSF. To calibrate these aperture

corrections, we select the brightest, non-saturated stars in our imaging.

We perform an initial SExtractor run using a wide range of pixel diameters

for apertures. First, we We make measurements at a wide range of pixels, typically

4, 5, 6, 8, 10, 12, 15, 25, 40, 50, 60, 70, 80, 90, and 100 pixels (although the precise

values may be modified slightly). Using a plot of aperture difference vs. apparent
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magnitude, we identify bright, point-like, unsaturated objects. We make simple cuts

in FWHM and magnitude to select suitable stars. We then make plot of SExtractor’s

magnitude error vs. pixel diameter to select our optimal S/N pixel. In almost all our

images, this optimal aperture is either at 8 or 10 pixels, which typically corresponds

to 2x the FWHM of our imaging, depending on seeing. Note that the Megacam and

SuprimeCam imaging have slightly different pixel scales (0.2́’ pix−1 vs. 0.187́’ pix−1).

Since the aperture corrections are always measured on an image-by-image basis, the

actual precise spatial scales of the measurement apertures are not hugely important.

All photometry is self-consistent on its own image.

Since crowding is not an issue for our GC data, aperture photometry is an

appropriate choice of method. PSF photometry would essentially accomplish the same

task as the aperture correction step while incorporating additional complexity through

the step of PSF fitting. We favor aperture photometry for consistency and simplicity,

although in practice for this task we would expect both photometric methods to perform

well.

4.2.4 Calibrating Zero-Points

Data from the MegaPipe data stacking pipeline comes pre-calibrated to a zero-

point of 30 mags for all filters. Our SuprimeCam images are not calibrated, and while in

photometric conditions zero-points won’t be significantly different from image to image,

they still need to be calibrated to achieve reasonable photometry.

We make use of the recent Pan-STARRS survey data to calibrate our zero-

points (Chambers et al., 2016). Pan-STARRS is a survey conducted from a dedicated
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telescope at Haleakala on Maui in Hawaii, and therefore has nearly identical sky coverage

to the Subaru and CFHT telescopes on Mauna Kea. The survey uses the standard

SDSS u, g, r, i, z filters for its photometry and therefore overlaps completely with our

imaging data. All of the SLUGGS survey galaxies feature PanSTARRS observations,

and there is significant overlap between between the magnitude coverage ranges of our

non-saturated Suburu/CFHT bright sources and well-measured Pan-STARRS sources,

making the Pan-STARRS dataset ideal for calibration of our images.

Our procedure for calibration is straightforward. We query the PanSTARRS

database on MAST for all sources within the field of view of our pointing on the galaxy.

We require that the PanSTARRS source be detected in all three g, r, i filters. We then

make cuts to select only point-like, bright stars for comparison. As suggested on the

Pan-STARRS webpage, we make a cut for point sources by comparing the difference of

their provided PSF magnitudes and their Kron magnitudes. Since the Kron magnitudes

correspond to a specific aperture, for a point-like object, the Kron magnitudes are

slightly fainter than PSF magnitudes. However, for extended sources have larger Kron

apertures and therefore are brighter than in their PSF magnitudes. We also impose

a brightness cut to only select well-measured sources; we found cutting at g and r at

21 mags and i at 20.5 mags to be effective cuts. We also found cutting at a aperture

difference value of exactly 0.0 did an excellent job selecting out point-like sources.

In Fig. 4.1, we plot an illustration of these cuts applied to Pan-STARRS data

around NGC 3115. Sources plotted in green passed these cuts in all three Pan-STARRS

filters. We consider these stars appropriate to match to our SuprimeCam photometry.
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We apply identical cuts to our SuprimeCam photometry that we did to calculate our

aperture corrections. Finally, we match our cut SuprimeCam Photometry with our cut

Pan-STARRS photometry and calculate the median offset to determine our zero-points.

Typically there are around 25 matched sources across the images, and a scatter of ∼ 0.05

mag is typical for the differences.

For consistency, we also re-calibrate zero-points for the downloaded MegaPipe

data using the identical procedure to the above. In general, we find excellent agreement

between the MegaPipe calibrations and our re-calibrated zero-points. Offsets are rarely

larger than 0.02 mags, with scatter generally similar to the SuprimeCam photometry at

∼ 0.05 mags. The consistency of our zero-point and the MegaPipe zero-point indicates

that our aperture corrections and zero-points are well-calibrated and our photometric

procedures are effective.

4.2.5 Final Catalog Matching and Completeness Corrections

Once zero-points are calibrated and aperture corrections are applied, assem-

bling the final catalog is trivial. We cross-reference all three catalogs and require that

sources be located within 0.5′′ of each other to be considered a match. A source is

only included in the final catalog if it is detected in all three filters; given that all

our modeling methodology is contingent on using all three filters, this requirement is

necessary. We also apply foreground extinction corrections from Schlafly & Finkbeiner

(2011), assuming a uniform foreground extinction across the entire field. While there

may be slight variations in foreground extinction across the field, the variations are

small compared to other uncertainties in the problem. We also require that the source
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Figure 4.1: Pan-STARRS point-source selection. The horizontal axis is the Pan-
STARRS PSF magnitudes, while the vertical axis is the difference between the PSF
magnitude and the Kron magnitude. Since the Kron magnitude is measured over a
fixed aperture, a point source’s Kron magnitude will be slightly fainter than its PSF
magnitude. However, the opposite is true for extended sources, which will have ex-
panded profiles not captured by the PSF. We found a difference cut of 0.0 achieved good
separation between point and extended sources. We also institute a lower magnitude
cutoff at the specified values, where measurements become noisy and clean point-source
selection becomes difficult.

have no SExtractor flags, indicating that it has well-measured photometry.

After assembling final catalogs, we calculate completeness curves for the i-

band imaging of each pointing, as described in 3. These completeness curves allow us

to correct for data below detection thresholds in our datasets. In general the i-band

data tend to be the shallowest in our catalogs, and therefore it makes the most since to

perform completeness corrections on the i-band.

4.2.6 Point-source Selection

To achieve point-source selection, we use plots of FWHM vs magnitude. We

identify the filter that has the best seeing, as that filter should be the one that offers

the most discrimination between point-sources and extended sources. Once this filter

is identified, we make a simple box cut in this parameter space. We place an upper
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limit on this box to remove obvious saturated stars, although most of these are already

flagged by SExtractor anyway. The point-source locus is usually obvious in these plots.

Note that this simple box selection offers a prime area where one can im-

prove selection through modeling methods. As we emphasize many times, our modeling

methodology is designed to offer improvements on simple color-color and luminosity

cuts, and yet we still employ a similar cut to identify point-sources. At the faint end

especially, there can be significant ambiguity as to whether a source is point-like or

extended.

4.2.7 Ad-hoc Cuts

For all galaxies, we considered only sources within 0.25 degrees of the galaxy in

question. This 0.25 degree limit was motivated by the width of our Subaru/SuprimeCam

imaging; while the SuprimeCam imager is only 27 arcmin wide, our galaxies are observed

in a dither pattern which can increase this effective area. We found 0.25 degrees generally

included all our sources.

4.2.8 Bayesian GC Procedures

As much as possible, we attempted to set default procedures for our galaxies

which would allow our Bayesian inference to be performed in a consistent manner.

In practice, many galaxies required some special procedures to be adopted, which we

note below in 4.3. However, in all cases, the procedures below were tried before any

modifications were performed.

We typically began by attempting to assume very uninformative priors. How-
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ever, we often found that we were forced to modify these somewhat in order to achieve

reasonable fits.

To start, we usually just ran a sampler with values initialized at reasonable

values for all parameters. After this initial run, we would see which regions of parameter

space the walkers would like to inhabit, and if any seemed to be dependent on priors.

After this, we would usually change our starting values so that our walkers were close

to their typical sets, and modify priors to try to assess prior sensitivity. In general,

the choice of starting value was fairly irrelevant, as long as our starting values were in

allowed regions of prior space. We found running our sampler for 2000 steps with 100

walkers produced well-sampled posteriors in the majority of cases.

The priors we most frequently were forced to modify were the µgi red limit.

and the g − i division prior. We modified the g − i division prior when either the blue

or red µgi walkers began running up against the middle, but we were in almost all cases

able to find a value for which both distributions would stay on their sides of the dividing

line.

The µgi limit was more difficult to deal with. We sometimes found that the

red distribution wished to have µgi parameter greater than 1.4, which would be nearly

unheard of for the red GC distribution in a galaxy. In addition, in these cases, the red

GC distribution would simply expand in g− i space until the spread of the distribution

basically covered the entire available parameter space. In these situations the blue GC

distribution sometimes became a highly dense probability distribution located with in

an expanded probability distribution intended to represent the ”red” GCs. In these
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situations, we simply chose to impose strict priors on the red distribution, where we

restricted the prior to be within a physically motivated range of values for this dis-

tribution. One galaxy, NGC 3115, produced excellent fits once this informative prior

was imposed, and we have confidence that our inference is performing well despite the

informative prior.

To keep our models simple, we didn’t include information about the ellipticity

of GC systems, instead preferring to treat our galaxies as circular symmetric. However,

one exception to this is NGC 2768; we found that including this elliptical information

was critical to achieve good fits to the galaxy; without the free parameters for ellipticity,

fits to the GC system were poor and didn’t recover the GC distributions correctly.

Two other galaxies, NGC 4111 and 4459, simply had too few GCs to obtain any

reasonable inference. For this galaxy, we ultimately disregarded spatial and luminosity

information and fixed the GC color distributions to be identical to NGC 3115. As a

result, the fits to this galaxy only include two free parameters, the relative strengths of

both the red and blue populations.

4.3 RESULTS BY GALAXY

The SLUGGS Survey constitutes a photometric sample of 25 galaxy in a wide

array of environments and observing conditions. In this section, we present our analysis

on a galaxy-by-galaxy basis.

For each galaxy, we produce some representative plots to illustrate both our

the catalog of sources around the galaxy, and our inference on these sources. The figures
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show the same data for each galaxy. In the top panel, we plot a color-color diagram

of sources in our color range of interest. Points are color-coded by the probability that

the source is a GC. The bottom left panel displays an i-band histogram of all modeled

sources, while the line line displays our inferred GC i-band magnitude distribution.

The bottom right panel displays the spatial distribution of all modeled sources, again

color-coded by the probability that they are GCs. The color bar displays the color

mapping for these probabilities. Finally, the histograms along both the top and side

of the color-color plot represent the color distributions of all sources with PGC > 0.5.

While naturally such a binary cut ignores all complexity in the distributions, it can be

useful to compare our inferred color distributions with other studies.

We also include a table for each galaxy with representative summary statistics

from the modeling. We include percentiles for each parameter which correspond to 95%

and 68% credible probability regions, as well as the median 50% of each parameter. For

information about the fits may be found in the appendix, where we provide both full

trace plots and full corner plots for all parameters.

Galaxies are listed in order of NGC number, with the exception of NGC

1407/NGC 1400 and NGC 3607/3608, which are both companion galaxies.

4.3.1 NGC 1407

NGC 1407, an E0 galaxy, is roughly the second most massive galaxy in our

sample after NGC 4486. Its stellar mass is 1011.6 M�, comparable with the galaxy NGC

4649 (Forbes et al., 2017a). It is also one of the most distant in our sample. NGC 1400

is a nearby, less massive companion galaxy located roughly ∼ 100 kpc to the south west.
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Figure 4.2: Inferences from modelling
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Table 4.4: NGC 1407 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.216 0.229 0.243 0.258 0.272
fblue 0.104 0.114 0.126 0.138 0.15
µgi,red 0.792 0.801 0.81 0.82 0.829
µri,red 0.28 0.281 0.283 0.287 0.292
σ2gi,red 0.021 0.023 0.025 0.027 0.029

σ2ri,red 0.009 0.009 0.01 0.011 0.012

σgi,redσri,red 0.008 0.009 0.01 0.011 0.012
µgi,blue 0.543 0.55 0.556 0.564 0.571
µri,blue 0.228 0.231 0.233 0.236 0.239
σ2gi,blue 0.004 0.005 0.006 0.007 0.008

σ2ri,blue 0.001 0.001 0.001 0.002 0.002

σgi,blueσri,blue 0.001 0.001 0.002 0.002 0.002
Re 0.091 0.095 0.098 0.102 0.106
µi 23.29 23.332 23.379 23.427 23.476
σi 0.867 0.898 0.934 0.97 1.011

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 2554.6 2565.3 2576.5 2589.5 2602.8
NGCs 882.8 917.5 952.2 990.2 1027.0

NRedGCs 553.6 590.1 627.2 665.5 704.3
NBlueGCs 266.9 293.9 325.2 356.0 388.4

NGCs (Extrapolated) 1139.7 1206.1 1273.7 1353.4 1433.2
NRedGCs (Extrapolated) 722.6 779.7 839.4 904.5 971.1
NBlueGCs (Extrapolated) 351.8 391.0 435.5 480.8 531.4

fred/fblue 1.49 1.69 1.93 2.21 2.54
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We consider NGC 1400 separately in §4.3.2.

Our data for NGC 1407 are among the deepest in our sample. As a result,

NGC 1407 is one of the only galaxies for which our contaminant luminosity distribution

is actually fainter than our science luminosity distributuon. As a result, we are forced

to trim off all sources below i = 25 mag, as we don’t have information from about what

the contaminant distribution ought to look like in our sample.

In Fig. 4.2, we plot the results of our inference on our galaxy. We found NGC

1407 was well-fit by a bimodal population, as has been noted in previous studies (Pota

et al., 2013b, 2015). We also provide our inferred values for the model parameters of

the GC distribution in Table 4.4.

4.3.2 NGC 1400

NGC 1400 is a smaller E1/S0 galaxy located nearby to the much larger NGC

1407. As mentioned above, to analyze the system, we only examined sources within

0.11 deg (∼ 6.5 arcmin, or ∼ 50 kpc). This has the advantage of allowing us to include

spatial information for this galaxy; furthermore, while the radial restriction means we

are not investigating the full extent of the system, it has the advantage of creating a

catalog which will likely have a small amount of contamination. We display the results

of the fit to this galaxy in Fig 4.3.2, and provide the inferred model parameters in

Table 4.5.

We note that the NGC 1407/1400 system could benefit from adding additional

radial profile information. A natural solution is to expand the mixture model and allow

for both galaxies to have their own radial distribution parameters. However, such an
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expansion is beyond the scope of this work.

4.3.3 NGC 2768

NGC 2768 is a medium-sized E6/S0 galaxy, and is fairly distant at ∼21 Mpc.

Pota et al. (2013b) analyzed SuprimeCam photometry from the galaxy and identified

an apparent color bimodality. However, it is clear that the color bimodality essentially

disappears when examining just spectroscopically confirmed sources. Kartha et al.

(2014) performed an updated analysis of the same data and reached similar conclu-

sions, although the spectroscopically confirmed sample seems to suggest a much flatter

distribution.

We were initially unable to derive good fits for NGC 2768, with bimodality

not fitting without very strong priors. However, we were able to get better fits to

the data when we allowed for ellipticity in the spatial distribution of GCs. When

this was including in the fitting, we now recovered very reasonable inference for all

values, including a fairly clear bimodal distribution. NGC 2768 suggests that when GC

distributions are highly elliptical, including this ellipticity in the fitting can be important

for correctly identifying the distributions, especially when galaxies are distant and GC

signal is not as strong. Given the clear improvement from allowing for elliptical fitting,

we chose to include it in the final results for this galaxy, something we didn’t include

for the others. We provide the results of this fit in Fig. 4.3.3, as well as the inferred

model parameters in Table 4.6.
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Figure 4.3: Same as for Fig. 4.2, but for NGC 1400. The NGC 1400 catalog is restricted
to sources within 0.11 degrees of the galaxy to minimize contamination from NGC 1407.
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Table 4.5: NGC 1400 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.354 0.475 0.529 0.575 0.617
fblue 0.195 0.232 0.271 0.322 0.439
µgi,red 0.933 0.949 0.967 0.988 1.049
µri,red 0.319 0.327 0.334 0.343 0.377
σ2gi,red 0.02 0.026 0.029 0.033 0.036

σ2ri,red 0.006 0.009 0.01 0.011 0.012

σgi,redσri,red 0.007 0.011 0.013 0.014 0.016
µgi,blue 0.754 0.762 0.77 0.779 0.791
µri,blue 0.274 0.282 0.288 0.293 0.299
σ2gi,blue 0.003 0.004 0.005 0.006 0.007

σ2ri,blue 0.001 0.001 0.002 0.002 0.004

σgi,blueσri,blue 0.001 0.002 0.002 0.003 0.003
Re 0.087 0.096 0.107 0.121 0.137
µi 23.65 23.787 23.959 24.183 24.486
σi 1.047 1.123 1.216 1.329 1.468

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 670.5 674.1 677.8 681.6 685.2
NGCs 510.9 526.3 543.3 559.5 574.7

NRedGCs 237.7 321.2 358.1 390.4 419.8
NBlueGCs 132.5 156.9 184.0 218.1 297.9

NGCs (Extrapolated) 841.8 931.5 1058.7 1236.1 1508.6
NRedGCs (Extrapolated) 441.4 584.3 697.0 838.6 1025.4
NBlueGCs (Extrapolated) 245.1 296.4 363.3 456.6 612.6

fred/fblue 0.79 1.49 1.95 2.47 3.1
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Figure 4.4: Same as for Fig. 4.2, but for NGC 2768.

161



Table 4.6: NGC 2768 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.145 0.178 0.217 0.259 0.301
fblue 0.106 0.132 0.162 0.195 0.228
µgi,red 1.006 1.028 1.06 1.092 1.127
µri,red 0.335 0.35 0.367 0.388 0.416
σ2gi,red 0.012 0.017 0.023 0.032 0.041

σ2ri,red 0.006 0.008 0.011 0.017 0.023

σgi,redσri,red 0.003 0.005 0.008 0.013 0.017
µgi,blue 0.729 0.747 0.768 0.789 0.812
µri,blue 0.241 0.249 0.259 0.268 0.277
σ2gi,blue 0.004 0.006 0.009 0.014 0.019

σ2ri,blue 0.001 0.001 0.002 0.003 0.004

σgi,blueσri,blue 0.001 0.002 0.004 0.005 0.007
Re 0.179 0.213 0.264 0.345 0.478
ε 0.472 0.559 0.643 0.719 0.785
PA -0.14 -0.053 0.027 0.108 0.188
µi 23.029 23.144 23.259 23.385 23.502
σi 0.869 0.936 1.012 1.089 1.176

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 592.1 597.8 605.1 613.5 624.2
NGCs 178.7 203.6 230.6 259.4 290.4

NRedGCs 86.2 106.8 131.3 157.6 185.4
NBlueGCs 63.9 79.5 98.0 118.9 140.1

NGCs (Extrapolated) 220.0 257.5 300.8 349.8 410.1
NRedGCs (Extrapolated) 107.3 135.9 171.3 211.9 260.4
NBlueGCs (Extrapolated) 80.6 102.6 127.8 157.4 193.6

fred/fblue 0.74 0.97 1.34 1.83 2.45
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4.3.4 NGC 3115

NGC 3115 is a nearby, fairly isolated S0 galaxy. At sim10 Mpc away, it

is the closest galaxy in the SLUGGS survey. Because of its proximity, NGC 3115 is

a frequent target for studies of GC systems, and a variety of useful datasets exist.

Extensive spectroscopic datasets (Arnold et al., 2011) and an HST/ACS mosaic exist

of this galaxy (Ch. 1). As noted in Ch. 1, bimodality is clear in box-selection ground-

based imaging, size-selected ACS imaging, and even in spectroscopic estimates for GC

metallicity (Brodie et al., 2012).

We found we were able to obtain reasonable fits for bimodality; however, we

were forced to include a fairly restrictive prior on the mean distribution of the red

GC distribution. We found that when the high end of the red GC population was left

unbounded, it tended to run off to very high values, well beyond what would be expected

in a typical GC system. We imposed a prior that the red mean must be less than 1.1.

While this was certainly informative (the traces indicate that the walkers do touch this

edge), we still see a reasonably-peaked PDF for the this mean vector. In addition, the

rest of the parameters appear to be reasonably well-sampled.

We plot our inferences for NGC 3115 in Fig. 4.3.4. With the informative

prior, we recover the bimodal GC distribution for this galaxy extremely well. Both

distributions appear well-behaved, with a slightly more extended red GC distribution,

as is typical for most systems. We also provide our inferred values for the distribution

parameters in Table 4.7.
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Figure 4.5: Same as for Fig. 4.2, but for NGC 3115.
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Table 4.7: NGC 3115 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.092 0.111 0.131 0.154 0.186
fblue 0.104 0.13 0.153 0.176 0.202
µgi,red 0.956 0.986 1.011 1.032 1.046
µri,red 0.329 0.343 0.355 0.367 0.377
σ2gi,red 0.008 0.01 0.013 0.017 0.025

σ2ri,red 0.004 0.005 0.006 0.007 0.008

σgi,redσri,red 0.004 0.006 0.007 0.009 0.012
µgi,blue 0.691 0.707 0.723 0.739 0.758
µri,blue 0.232 0.239 0.246 0.253 0.26
σ2gi,blue 0.006 0.007 0.01 0.013 0.019

σ2ri,blue 0.003 0.003 0.004 0.004 0.005

σgi,blueσri,blue 0.003 0.004 0.004 0.006 0.008
Re 0.071 0.075 0.08 0.085 0.091
µi 21.725 21.829 21.944 22.071 22.219
σi 1.079 1.155 1.243 1.34 1.446

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 1618.6 1620.4 1623.6 1626.5 1629.8
NGCs 413.7 419.7 404.9 401.4 391.2

NRed GCs 169.8 176.2 193.0 195.1 190.3
NBlue GCs 243.9 243.5 211.9 206.3 200.9

NGCs (Extrapolated) 428.3 436.8 423.1 421.6 414.0
NRed GCs (Extrapolated) 175.8 183.4 201.7 204.9 201.4
NBlue GCs (Extrapolated) 252.5 253.4 221.4 216.7 212.6

fred/fblue 0.7 0.72 0.91 0.95 0.95
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4.3.5 NGC 3607/3608

As with NGC 1407 and 1400 above, NGC 3608 and 3607 are companion galax-

ies. NGC 3608 is officially a galaxy in the SLUGGS survey, as it was chosen for its

location in galaxy parameter space. However, 3607 is actually the larger of the two

galaxies. Kartha et al. (2016) examined the photometric properties of both GC systems.

They discovered significant bimodality in both systems under GMM, once various cuts

were performed. Kartha et al. (2016) used the relative light profiles of both galaxies

to separate out GCs belonging to either system in order to assign catalogs to the two

galaxies. After doing this, they were able to analyze the two GC profiles separately and

found clear bimodal results for both. In general, analysis of either GC system is difficult

simply because the two galaxies are located so close to each other.

We found that the NGC 3607/3608 system posed a fair amount of difficulty in

attempting to get reasonable inference with our standard fitting procedure. To begin

performed galaxy subtraction on both galaxies independently, then performed our pho-

tometry on the galaxies to create one full catalog. While 3608 is the official SLUGGS

galaxy, our imaging is actually centered on NGC 3607, which is in fact the larger of the

two galaxies. The galaxies are also extremely close together, seperated by only ∼ 5.5

arcmin. The close proximity of the two systems means that the GC distributions of

the two galaxies certainly overlap and, depending on their relative projection, likely are

interacting.

For 1407/1400, we simply cut sources within a certain distance from NGC 1400,

which we justified by the fact that NGC 1407 is significantly larger than NGC 1400.
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Figure 4.6: Same as for Fig. 4.2, but for NGC 3607.
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Table 4.8: NGC 3607 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.314 0.409 0.497 0.564 0.622
fblue 0.144 0.198 0.266 0.35 0.436
µgi,red 1.042 1.073 1.104 1.134 1.166
µri,red 0.326 0.34 0.354 0.367 0.381
σ2gi,red 0.028 0.034 0.043 0.053 0.068

σ2ri,red 0.007 0.008 0.009 0.011 0.014

σgi,redσri,red 0.007 0.009 0.013 0.016 0.021
µgi,blue 0.758 0.805 0.85 0.919 0.971
µri,blue 0.217 0.233 0.251 0.283 0.304
σ2gi,blue 0.009 0.017 0.031 0.045 0.061

σ2ri,blue 0.001 0.002 0.005 0.008 0.01

σgi,blueσri,blue 0.003 0.006 0.012 0.018 0.023
Re 0.062 0.07 0.081 0.095 0.113
µi 23.626 23.854 24.219 24.663 24.941
σi 1.124 1.262 1.445 1.639 1.785

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 325.4 327.9 330.6 333.5 336.1
NGCs 220.0 236.5 252.2 266.6 279.9

NRedGCs 103.7 135.1 164.0 187.2 206.4
NBlueGCs 47.3 65.5 88.0 115.9 143.8

NGCs (Extrapolated) 378.6 449.2 575.9 750.6 903.2
NRedGCs (Extrapolated) 192.6 272.6 369.5 502.1 623.8
NBlueGCs (Extrapolated) 96.2 138.9 203.4 286.5 377.1

fred/fblue 0.76 1.18 1.88 2.78 4.16
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Figure 4.7: Same as for Fig. 4.2, but for NGC 3608.
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Table 4.9: NGC 3608 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.161 0.212 0.28 0.384 0.481
fblue 0.259 0.353 0.445 0.511 0.566
µgi,red 1.038 1.094 1.151 1.184 1.197
µri,red 0.319 0.339 0.363 0.382 0.401
σ2gi,red 0.008 0.011 0.022 0.044 0.067

σ2ri,red 0.005 0.006 0.008 0.01 0.013

σgi,redσri,red 0.002 0.005 0.008 0.014 0.022
µgi,blue 0.847 0.862 0.879 0.896 0.917
µri,blue 0.253 0.261 0.269 0.276 0.286
σ2gi,blue 0.005 0.008 0.011 0.015 0.021

σ2ri,blue 0.002 0.002 0.003 0.004 0.005

σgi,blueσri,blue 0.002 0.003 0.005 0.007 0.009
Re 0.052 0.057 0.064 0.072 0.083
µi 23.795 24.024 24.34 24.693 24.929
σi 1.122 1.239 1.376 1.528 1.661

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 339.2 341.8 344.5 347.2 349.8
NGCs 223.9 237.4 251.2 264.7 278.4

NRedGCs 55.1 72.9 96.3 132.5 165.7
NBlueGCs 89.1 121.2 153.1 176.2 195.8

NGCs (Extrapolated) 418.2 495.9 626.1 791.7 936.1
NRedGCs (Extrapolated) 116.9 168.9 245.1 349.3 479.7
NBlueGCs (Extrapolated) 197.7 277.4 372.9 490.4 612.8

fred/fblue 0.29 0.42 0.62 1.08 1.79
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However, NGC 3607 is in fact the larger galaxy, although the two are of comparable

masses. For our analysis of these two galaxies, we first attemted to use a simple distance

cut: any sources closer to NGC 3608 are assumed to correspond to its GC distribution,

and sources closer to NGC 3607 are assigned to that model instead.

Dividing the GCs is this manner is logical, but it does present difficulties

with normalizing the spatial distributions. Both the GC and contaminant distributions

must now be normalized over an irregular polygon in this space. Furthermore, logical

priors for the GC spatial distribution are more difficult to determine with this irregular

truncation of the distribution. As a result of these difficulties, we experimented with

turning off any spatial information about the galaxies. We simply used the above

distance cut to divide the source distributions of the two systems.

We ultimately encountered a lot of difficulty obtaining fits in this manner.

Without spatial information for these galaxies, distributions tended to simply walk in

to parameter space. We typically inferred GC distributions which were far too wide in

g− i space for both reds and blues, and with a µgi,red value which would walk until the

prior limit at the far red end. The fits were recovering GC distributions without clear

bimodality, and for which sources far too red were likely to be GCs.

We had considerably more success by drastically restricting the spatial regions

over which we were performing our fitting. We restricted our catalogs for each galaxy to

just the 0.1 degrees immediately surrounding the galaxy. Making a range this restrictive

only includes a couple hundred total sources in our fitted sample; however, the vast

majority of these sources would be expected to be GCs. In addition, restricting the
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catalogs in this way still allowed us to use the spatial information to fit these galaxies.

We display the results of this fit to the GC system of NGC 3607 in Fig. 4.3.5 and NGC

3608 in Fig. 4.3.5, with tables of the inferred parameters in Table 4.8 and Table 4.9

respectively.

4.3.6 NGC 4111

NGC 4111 is a small S0 galaxy, located roughly 10 Mpc away. It is among

the least massive galaxies in our sample, and as such we expect it to have a very small

GC population. Furthermore, analysis of this galaxy is complicated by the presence of

a bright foreground star just to the north east of the galaxy. NGC 4111 is also known

for its association with a prominent stellar stream.

In general, we found that there were simply far too few sources to get any sort

of reasonable fits out from this galaxy. Walkers for all sorts of different free parameters

were unable to converge, and routinely ran up against specified prior ranges. We adopted

the strategy of not fitting any spatial or luminosity information, and setting the color

distribution parameters to be fixed to those we inferred for NGC 3115. NGC 3115 was

selected due to its similar morphology and clear bimodality, and while it is more massive

than NGC 4111, almost all galaxies in our sample are.

After fixing these two parameters, the only free parameters in the sample are

the fredand fblueparameters which control the strength of the two mixing distributions.

Both parameters mixed well for a model this simple. We display the resulting inference

in Fig. 4.3.6, and give our inferred values for the free parameters in Table 4.10.

While we were unable to get reasonable fits for the NGC 4111 distribution,
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Table 4.10: NGC 4111 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fRed 0.066 0.085 0.104 0.125 0.145
fBlue 0.018 0.033 0.049 0.065 0.083

this galaxy does represent an example of using our fitting methodology purely for GC

selection. In this sense, fixing the values of the color distributions is akin to setting

hard boundaries in color-color space and performing simple box selection. We still

get probabilities for every source in the image being a GC, but conditional on the fixed

values. In addition, while we chose to just neglect spatial and luminosity information, we

could have fixed these values too if we had reasonable guess for what these distributions

looked like. This would have folded additional information into the system.

NGC 4111 is thus an example of how our methodology will still be comparable

to simple box selection, even in situations where we can’t fit our full model. In addition,

the parameters controlling the number of GCs in the system may still be fit for, but the

posterior distributions will be conditional on the other fixed parameters.

4.3.7 NGC 4278

NGC 4278 is a medium-sized E1-2, also in the Virgo cluster. Usher et al. (2013)

examined Subaru/SuprimeCam data of this galaxy, combined with HST/ACS data, and

identified clean color bimodality with classic results for the differences in the reds and

blues. Usher et al. (2013)’s dataset covered different filters than our data; however, the

overall color distribution (see Fig. 4.9) looks very similar, with a potentially depressed
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Figure 4.8: Same as for Fig. 4.2, but for NGC 4111. Note that spatial and luminosity
information was not fit for NGC 4111, and color distributions were fixed to match those
of NGC 3115. The only free parameters in the inference are the fredand fbluemixture
distribution strengths. Because there is no i-band fit, we don’t display any fit in the
bottom left panel.
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red stellar population.

We found we were able to get reasonable fits for NGC 4278 using our method-

ology, with the caveat that bimodality, while not a poor fit, seemed to be driven entirely

by prior choice. We found that both distributions seemed to want to lie on top of one

another, with a narrow, well-peaked blue distribution surrounded by a higher variance

”red” distribution at nearly the same mean. Results for the other quantities in the

model, and indeed the individual GCs selected by the model, are essentially unchanged

whether a bimodal or unimodal fit is used. This finding is consistent with the appear-

ance of the marginalized color distribution both in Fig. 4.9 and in Usher et al. (2013).

While the model clearly seems to be poorly fit by a unimodal normal distribution, the

second peak isn’t obvious in the histogram. We ultimately adopt the unimodal model

for simplicity; however, if we wished to apply stronger prior information (for example,

the peaks from the ACS data or from spectroscopic data), we could include the second

distribution and constrain its relative strength. We display the resulting fits to the GC

population in Fig. 4.9, and provide our inference on the free parameters of the galaxy

in Table 4.11.

4.3.8 NGC 4365

NGC 4365 is one of the most massive galaxies in the SLUGGS survey. It is

a fairly distant galaxy that has been studied previously in the literature. Blom et al.

(2012b) examined the galaxy in wide-field imaging, and found evidence for a potential

third population among the GC system. Blom et al. (2012a) followed up on this finding

with expanded velocity information for spectroscopically confirmed GCs, and found
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Figure 4.9: Same as for Fig. 4.2, but for NGC 4278.
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Table 4.11: NGC 4278 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fgc 0.583 0.61 0.638 0.666 0.692
µgi 0.761 0.768 0.776 0.784 0.791
µri 0.217 0.221 0.225 0.23 0.234
σ2gi 0.023 0.024 0.026 0.028 0.031

σ2ri 0.007 0.008 0.008 0.009 0.01
σgiσri 0.01 0.011 0.012 0.013 0.014
Re 0.082 0.086 0.09 0.095 0.099
µi 22.727 22.843 22.99 23.169 23.399
σi 0.965 1.029 1.105 1.193 1.295

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 1997.0 2103.7 2245.1 2429.9 2683.8
NGCs 1189.8 1296.3 1430.9 1602.0 1819.7

NGCs,extrapolated 1325.51 1497.67 1744.94 2103.12 2659.23
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distinct kinematic behavior for the multiple subpopulations.

We had difficulty getting a successful two-population fit without informative

priors. Fits to two populations were well-behaved, but the red GC distributions tended

to have inferred values for µgi,red and µri,red which were quite high. Fits to the blue

population expanded to fill the middle ground, leading to large σ2blue terms in the co-

variance matrix. As a result of this, the value for fbluegrew to encompass most of the

GC population, also leading to very small values for fred/fblue. However, this is fairly

artificial, as really the blue population in our fits is simply expanding to fill much of the

region that one would typically think of as red GCs. If the underlying GC population is

indeed trimodal (or at least if a bimodal normal is a very poor model), behavior such as

this is what we expect to see. It would be interesting to expand the GC color distribu-

tion model of this galaxy to investigate if a third population would be well-fit, especially

given previous studies of this galaxy. Even if the third population isn’t necessarily phys-

ically meaningful, the inclusion of distributions with additional free parameters might

mean the color distribution fits the data better. This also invites the exploration of

non-normal color distributions, which might similarly replicate the improvement in fit

from including a third population.

We experimented with restricting the values for µri,red to be below 0.4, as

an informative prior. However, this still resulted in essentially identical values for the

fredand fblueparameters, indicating that the blue population does indeed ”want” to be

this large. Our difficulties fitting this galaxy may be more due to the poor match

of bimodal multivariate normals to the GC color-color distribution, especially given
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previous results on the NGC 4365 color distribution. We display the results of this

restrictive prior fit in Fig. 4.3.8, and give our inference on the model parameters in

Table 4.12.

4.3.9 NGC 4486

NGC 4486 is the brightest cluster galaxy in Virgo, and as such has an extremely

large GC population. It is also the most massive galaxy in the SLUGGS sample. We

found our model fit very well the observed source distributions with no modification.

Outside of fixing a precise value for the g− i division parameter, no real fine-tuning was

needed. NGC 4486 has long been a target of GC surveys due to its large GC system,

and extensive photometric and kinematic studies of the galaxies are in the literature

(Harris, 2009b; Strader et al., 2011; Agnello et al., 2014). Most studies confirm typical

trends of GC bimodality, with the usual dichotomy between reds and blues.

Given the number of sources in the NGC 4486 system, we would expect to see

our parameters be very well-constrained, and indeed that is what we find. Our posterior

distributions are among the narrowest we have encountered in our inferences, indicating

that we have a high degree of confidence in the values inferred for this system. We

display the results of our fits to the GC system in Fig. 4.3.9, and the inferred values for

the posterior distributions in Table 4.13.

It is worth noting that NGC 4486 represents what is probably the ideal case

for our model, given how it is formulated. Since our contaminant fields are all taken

from NGVS, in the proximity of the Virgo cluster, we expect these fields to be very

well-matched to the contaminant population around NGC 4486. The data are also all
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Table 4.12: NGC 4365 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.027 0.048 0.073 0.095 0.125
fblue 0.385 0.424 0.454 0.484 0.512
µgi,red 0.912 0.93 0.941 0.953 0.965
µri,red 0.371 0.387 0.406 0.439 0.478
σ2gi,red 0.002 0.003 0.004 0.005 0.008

σ2ri,red 0.002 0.004 0.006 0.007 0.009

σgi,redσri,red 0.0 0.001 0.002 0.003 0.005
µgi,blue 0.715 0.731 0.743 0.757 0.771
µri,blue 0.256 0.263 0.269 0.275 0.281
σ2gi,blue 0.021 0.024 0.027 0.03 0.033

σ2ri,blue 0.005 0.006 0.006 0.007 0.007

σgi,blueσri,blue 0.008 0.009 0.01 0.011 0.013
Re 0.105 0.11 0.116 0.123 0.129
µi 22.407 22.446 22.485 22.527 22.571
σi 0.776 0.809 0.845 0.885 0.926

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 1521.6 1522.9 1524.4 1525.9 1527.6
NGCs 742.7 771.4 802.9 833.3 862.0

NRedGCs 41.6 73.2 111.3 145.0 190.2
NBlueGCs 588.1 646.1 692.6 737.7 779.7

NGCs (Extrapolated) 767.0 799.3 833.5 867.9 901.3
NRedGCs (Extrapolated) 43.2 75.9 115.7 150.9 197.5
NBlueGCs (Extrapolated) 609.2 670.5 719.3 767.2 813.3

fred/fblue 0.05 0.1 0.16 0.22 0.32
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Figure 4.10: Same as for Fig. 4.2, but for NGC 4365.
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MEGACAM data, and are of comparable depth, which is important given how our

luminosity distribution was trained.

Our chief takeaway from our application to NGC 4486 is that our model per-

forms extremely well in situations that are ideal for it.

4.3.10 NGC 4459

NGC 4459 is another Virgo cluster galaxy, with a fairly average mass for our

survey at ∼ 1011M�. The galaxy is located in close proximity to two other SLUGGS

galaxies, NGC 4473 and 4474. The difficulties here are similar to other systems, like

NGC 1400/1407 and NGC 3607/3608, where we expect the GC systems to potentially

overlap with each other. We apply our standard methods of making radial cuts, wherein

we only include sources within 0.25 degrees, and remove any sources that are closer to

either NGC 4473 or NGC 4474 than NGC 4459. Unfortunately, these cuts prevent us

from applying our usual spatial modeling procedures, so as with NGC 4111, we disregard

spatial information for our fits in NGC 4459.

Despite the intermediate mass of the galaxy, we were unable to get well-

behaved fits for this galaxy. Walkers were poorly mixed and influenced heavily by

prior information. Given this, we ultimately adopted a procedure similar to NGC 4111,

where we took fixed color distributions from NGC 3115. NGC 3115 has very similar

mass and morphology to NGC 4459, so it is likely a reasonable choice for this galaxy,

although the environment is different (cluster vs. field). After these quantities are fixed,

the only free parameters in the model are fredand fblue. We show the fitting results for

this galaxy in Fig. 4.12 and include the inferred values for the parameters in Table 4.14.
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Figure 4.11: Same as for Fig. 4.2, but for NGC 4486.

183



Table 4.13: NGC 4486 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.237 0.251 0.267 0.286 0.314
fblue 0.327 0.354 0.373 0.39 0.405
µgi,red 0.949 0.967 0.979 0.988 0.997
µri,red 0.327 0.336 0.341 0.346 0.351
σ2gi,red 0.011 0.012 0.013 0.015 0.018

σ2ri,red 0.003 0.004 0.004 0.005 0.005

σgi,redσri,red 0.005 0.006 0.006 0.007 0.009
µgi,blue 0.714 0.717 0.721 0.724 0.727
µri,blue 0.228 0.23 0.231 0.233 0.234
σ2gi,blue 0.004 0.005 0.005 0.006 0.006

σ2ri,blue 0.002 0.002 0.002 0.002 0.002

σgi,blueσri,blue 0.002 0.002 0.002 0.003 0.003
Re 0.143 0.147 0.15 0.154 0.159
µi 22.321 22.347 22.374 22.401 22.429
σi 1.085 1.104 1.125 1.146 1.167

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 5779.6 5799.8 5820.6 5841.9 5863.4
NGCs 3623.7 3675.5 3730.2 3783.0 3836.2

NRed GCs 1380.9 1463.1 1555.1 1666.0 1827.6
NBlue GCs 1906.4 2062.5 2171.3 2267.6 2356.2

NGCs (Extrapolated) 3883.2 3952.5 4028.5 4105.4 4184.0
NRed GCs (Extrapolated) 1487.6 1578.5 1679.9 1801.8 1980.7
NBlue GCs (Extrapolated) 2061.1 2224.8 2344.6 2452.7 2556.5

fred/fblue 0.59 0.65 0.72 0.8 0.96

Table 4.14: NGC 4459 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fRed 0.013 0.031 0.048 0.067 0.086
fBlue 0.101 0.122 0.145 0.169 0.193
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Figure 4.12: Same as for Fig. 4.2, but for NGC 4459. Note that spatial and luminosity
information was not fit for NGC 4111, and color distributions were fixed to match those
of NGC 3115. The only free parameters in the inference are the fredand fbluemixture
distribution strengths. Because there is no i-band fit, we don’t display any fit in the
bottom left panel.
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4.3.11 NGC 4494

NGC 4494 is a medium-sized E1/2 galaxy, also located in the Virgo cluster.

(Foster et al., 2011) presented a combined photometric and spectroscopic analysis of

the NGC 4494 GC system, finding typical GC system properties. Bimodality was sta-

tistically favored, and kinematical evidence for a third GC population was found.

We display the results of our fits to NGC 4494 in Fig. 4.3.11, and the inferred

values for our model parameters in Table 4.15. Fits to the red population of NGC

4494 are complicated by the fact that the distributions for the red population wish to

expand to be quite large, beyond where we would typically expect GCs to be found.

We experimented with more informative priors, but the red GC distribution would still

expand to fill much of this space. Given the possibility of a more complex, non-bimodal

GC color distribution, it is possible the model is not well suited to fit NGC 4494. It is

also possible that underlying differences between the

4.3.12 NGC 4697

NGC 4697 is a mid-sized, fairly nearby E6 galaxy. While the field was very

well populated with sources, the actual number of GCs is expected to be smaller given

the size of the galaxy. We found a typical bimodal population fit the NGC 4697 system

well, with two distinct, well-separated populations. We show our fits to the system in

Fig. 4.3.12. NGC 4697 is a good indication that our method is capable of recovering

good GC populations even when the field has a good population of contaminants, as

long as the populations are well-described by the model. We also give the inferred values
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Figure 4.13: Same as for Fig. 4.2, but for NGC 4494.
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Table 4.15: NGC 4494 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.185 0.219 0.25 0.282 0.313
fblue 0.097 0.11 0.125 0.141 0.157
µgi,red 1.028 1.049 1.073 1.097 1.121
µri,red 0.388 0.394 0.398 0.399 0.4
σ2gi,red 0.037 0.046 0.055 0.065 0.076

σ2ri,red 0.012 0.014 0.016 0.018 0.021

σgi,redσri,red 0.007 0.01 0.013 0.016 0.02
µgi,blue 0.745 0.761 0.777 0.793 0.808
µri,blue 0.229 0.235 0.24 0.246 0.252
σ2gi,blue 0.009 0.011 0.014 0.017 0.022

σ2ri,blue 0.001 0.002 0.002 0.002 0.003

σgi,blueσri,blue 0.002 0.003 0.004 0.005 0.006
Re 0.169 0.192 0.219 0.254 0.296
µi 23.252 23.328 23.409 23.487 23.567
σi 0.872 0.925 0.986 1.054 1.125

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 1641.5 1656.3 1672.2 1690.1 1709.9
NGCs 512.1 572.9 628.7 685.2 744.3

NRedGCs 305.3 362.5 419.1 475.2 531.4
NBlueGCs 161.4 183.7 209.0 236.7 264.0

NGCs (Extrapolated) 668.4 768.6 866.8 973.1 1090.3
NRedGCs (Extrapolated) 401.2 488.1 578.1 670.6 774.1
NBlueGCs (Extrapolated) 217.2 250.1 288.2 329.8 373.0

fred/fblue 1.3 1.62 2.01 2.44 2.92
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for our model parameters in Table 4.16.
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Figure 4.14: Same as for Fig. 4.2, but for NGC 4697.
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Table 4.16: NGC 4697 Parameters

Modelled Parameters

Parameter 2.5% 16.0% 50.0% 84.0% 97.5%

fred 0.045 0.053 0.061 0.069 0.08
fblue 0.086 0.097 0.108 0.119 0.131
µgi,red 1.026 1.054 1.076 1.094 1.11
µri,red 0.358 0.371 0.383 0.393 0.403
σ2gi,red 0.006 0.008 0.01 0.013 0.017

σ2ri,red 0.003 0.004 0.005 0.006 0.007

σgi,redσri,red 0.002 0.003 0.005 0.006 0.009
µgi,blue 0.744 0.752 0.761 0.769 0.777
µri,blue 0.244 0.247 0.251 0.254 0.258
σ2gi,blue 0.003 0.005 0.006 0.008 0.01

σ2ri,blue 0.001 0.001 0.002 0.002 0.002

σgi,blueσri,blue 0.001 0.002 0.002 0.003 0.004
Re 0.071 0.076 0.081 0.087 0.093
µi 21.68 21.751 21.826 21.909 21.994
σi 0.911 0.968 1.03 1.1 1.177

Derived Quantities

Quantity 2.5% 16.0% 50.0% 84.0% 97.5%

NSources 2446.2 2450.4 2455.0 2459.8 2464.0
NGCs 358.9 385.7 415.1 443.0 474.1

NRedGCs 111.3 128.9 149.0 170.4 196.1
NBlueGCs 211.1 238.5 264.6 292.7 320.4

NGCs (Extrapolated) 363.5 391.9 422.8 453.4 487.6
NRedGCs (Extrapolated) 112.8 131.1 151.9 174.0 200.9
NBlueGCs (Extrapolated) 214.0 242.5 269.8 298.8 328.1

fred/fblue 0.38 0.46 0.56 0.68 0.85
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4.4 SUMMARY AND DISCUSSION

We reduced Subaru SuprimeCam wide field imaging for a subset of 13 SLUGGS

galaxies, supplemented with additional CFHT MegaCam imaging. We then created full

photometric catalogs using aperture photometry through SExtractor. After combining

the catalogs, we have full three-filter photometric data for thousands of sources in each

mosaic. We performed point-source cuts, then measured completeness curves for all

data and applied our Bayesian fitting methodology from Chapter 3 to the photometric

catalogs for these systems.

We in general had mixed-success applying the Bayesian fitting methodology to

the GC systems of galaxies. While we were ultimately able to obtain fits to all galaxies

using the model, it frequently had to be modified slightly to obtain reasonable fits for the

GC system, often by fixing certain parameters or including stronger priors. Ultimately,

we were able to obtain reasonable bimodal fits for NGC 1400, 1407, 2768, 3607, 3608,

3115, 4486, 4494, and 4697. NGC 3115 and 4494 both required strong priors to obtain

these fits, and even then the fits to NGC 4494 were not perfect; when covariance matrices

were left free, we found that some very red sources were still considered likely GCs due to

the width of the red GC distributions. However, despite these difficulties, the resulting

fits appeared well mixed, and the inferences (especially for which sources are likely to be

GCs) appear to be strong. Difficulties may arise when directly interpreting the inferred

values for the GC color distributions especially.

NGC 4365 suffered from the opposite problem to NGC 4494; the blue GC

distribution tended to become very wide, and even though the red GC distribution
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was positioned in a reasonable location, the large values for the spread of the blue

population meant that the ratio of fred to fblue was unusually small. NGC 4365 has been

noted in the past for its strange color distribution (Blom et al., 2012b), with previous

suggestions of trimodality in the GC system. While our model, as currently specified,

cannot test whether a trimodal fit is a good one for this system, the difficulties of the

bimodal multivariate normal distribution in fitting the system indicates that expanding

the model is a reasonable step. Trimodality could be an avenue to pursue here, although

other model-expansion methods might also work.

NGC 4278 has been previously claimed to have a strong detection of bimodality

(Usher et al., 2012; Pota et al., 2013b). However, we found that we were unable to get

reasonable fits with a bimodal model. Specifying informative priors simply meant that

the posterior distributions for the means of the red distribution ran right up to the

edge of the allowed space, and the width of the red distribution would then expand

to compensate. We ultimately elected to simply use a unimodal distribution to fit

this galaxy, for which we achieved reasonable fits. While a bimodal model might still

ultimately be a reasonable description of the GC system, our current methodology

couldn’t achieve strong fits for it.

Finally, NGC 4111 and 4459 both suffer from having extremely small GC pop-

ulations. We attempted to leave various parameters free, but fits were never satisfactory

for either galaxy, with distributions often expanding to fill all available parameter space.

We ultimately decided, for these galaxies, to neglect spatial and luminosity information

and fixed the color distributions to those values from NGC 3115. This essentially is plac-
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ing extremely strong prior information on the distributions of these galaxies, and any

inferences gleaned from these galaxies must incorporate that information. In addition,

by neglecting luminosity information, we are unable to correct for the incompleteness

in these galaxies in our current formulation of the fitting model, which requires param-

eterization of the GC luminosity distribution. While the distribution could in principle

be fixed to a certain value and then corrected for incompleteness, the values to fix the

distribution to are distance dependent, and it is unclear that our uncertainties on the

completeness correction would be meaningful anyway in that case.

Overall, the fitting methodology produced at least some information about all

13 galaxies analyzed. We felt the full model performed well in nine of the 13 cases,

and in the remaining ones, the inference is still meaningful, but must be viewed with

larger caveats. The ability of the model to infer values for the GC distributions of

these galaxies, while simultaneously incorporating contamination and incompleteness of

the data, offers a powerful tool for GC photometry analysis. Application of the model

to more galaxies will allow for better galaxy-to-galaxy comparisons in the context of

other galaxy properties, allowing a better understanding of the link between GC system

evolution and galaxy assembly.
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Chapter 5

NGC 3628-UCD1: A possible

ω Cen Analog Embedded in a

Stellar Stream

5.1 INTRODUCTION

Since the discovery of ultra-compact dwarfs (UCDs) a decade and a half ago

(Hilker et al., 1999; Drinkwater et al., 2000), there has been considerable discussion in

the literature regarding their origin. The conversation can be distilled down to a simple

question: are UCDs the largest star clusters, or the smallest galaxies?

The earliest UCDs discovered have Rh∼20 pc and luminosities > 107 L�.

These objects represent a middle-ground between globular clusters (GCs), with Rh of

∼3 pc and luminosities of ∼ 106 L�, and dwarf galaxies, with Rh> 100 pc. Expanded
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observational studies have found that UCDs occupy a sequence with similar luminosity

to GCs, but larger Rh (Brodie et al., 2011; Misgeld & Hilker, 2011; Norris et al., 2014).

We adopt the definition of UCDs from Brodie et al. (2011): UCDs are objects with

Rh ranging from ∼10 to 100 pc, and luminosities Mi < −8.5 mag (or Li > 105L�).

The simplistic galaxy vs. cluster distinction breaks down further. UCDs could

include objects resulting from mergers of globular clusters (e.g. Fellhauer & Kroupa

2002; Kissler-Patig et al. 2006), or objects formed primordially in intense star forma-

tion episodes (Murray, 2009). Characterizing the UCD population would have impli-

cations for cluster formation physics. In the galaxy scenario, these objects could form

primordially in association with distinct dark-matter halos, or they could be the rem-

nant nuclei of larger galaxies which have undergone tidal stripping during accretion onto

larger galaxy halos (e.g. Bekki et al. 2001; Pfeffer & Baumgardt 2013). Understand-

ing the origins of the UCD population has important implications for understanding

sub-halos in a ΛCDM context.

The most massive Milky Way (MW) GC, ω Cen, is an outlier among the MW

population and may be an example of a sripped dwarf-galaxy nucleus. The cluster has

a large velocity dispersion (e.g. Anderson & van der Marel 2010), rapid rotation leading

to flattening (e.g. Merritt et al. 1997), unusual abundance patterns revealing multiple

populations (e.g. King et al. 2012), and odd orbital properties (e.g. Dinescu et al. 1999).

However, definite confirmation of this formation scenario has remained elusive.

In this work, we identify and describe a star cluster, which we call NGC 3628-

UCD1 (hereafter UCD1), embedded in a stellar stream around the nearby spiral galaxy
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NGC 3628. NGC 3628 is an Sb galaxy with MV = −21.37. It is located in the Leo

Triplet, a loose group with two other large companions, NGC 3623 and NGC 3627. An

obvious stellar stream extends ∼140 kpc away from the galaxy, shown in Fig. 1. UCD1

is located within the plume nearest to NGC 3628. As shown in §5.2, UCD1’s size and

luminosity are very similar to those of ω Cen.

The stream itself has been studied extensively since its first characterization

(Zwicky, 1956; Kormendy & Bahcall, 1974). The stream contains significant neutral

hydrogen (Rots, 1978; Haynes et al., 1979). Chromey et al. (1998) identified two blue

clumps along the stream and estimated young ages for both.

There are several known examples in the literature of UCDs connected with

tidal stripping events. Norris & Kannappan (2011) identified a young UCD around

NGC 4546 and argued, based on the properties of the galaxy, that it is a result of

stripping. Foster et al. (2014) identified an object likely to be the nucleus of the dwarf

galaxy forming the ”umbrella stream” around NGC 4651. Mihos et al. (2015) identify

a nucleus of an ultra diffuse galaxy in Virgo, which they argue is in the process of tidal

threshing.

Using Subaru/Suprime-Cam imaging, we measure photometry and size of both

UCD1 and the full stellar stream. We propose that UCD1 is an example of a UCD in

formation through tidal stripping. By measuring the UCD and inferring the proper-

ties of the potential progenitor galaxy, we are able to draw an evolutionary line in

size/luminosity parameter space between the original parent galaxy and the stripped

cluster. In §5.2, we explain our imaging analysis and results, and in §5.3, we do the

198



same for our spectroscopy. We discuss our results in §5.4.

NGC 3627 has a Cepheid distance measurement of 10.6 Mpc (Kanbur et al.,

2003). We adopt this value for NGC 3628 and include an approximate distance uncer-

tainty of ±1 Mpc on distance-dependent properties, given the potential offset of NGC

3628 from NGC 3627.

5.2 Imaging

5.2.1 Data Reduction

We imaged NGC 3628 in r-band for 425s on 2009 April 20th with the Suprime-

Cam instrument on the Subaru Telescope. UCD1, a marginally-resolved source in the

center of plume just east of NGC 3628, was first noticed in this pointing. We sub-

sequently acquired imaging centered on UCD1 in the i-band on 2014 March 3 (425s

exposure time) and in the g-band on 2014 December 19 (1225s exposure time). Seeing

was ∼ 0.80′′, ∼ 0.70′′, and ∼ 0.75′′ in g, r, i respectively. We employed a modified ver-

sion of the SDFRED-2 pipeline15 to reduce our Suprime-Cam data. AB Zeropoints were

calculated by comparing photometry for bright, unsaturated stars in both the SDSS cat-

alog and the Suprime-Cam imaging. We used the Schlafly & Finkbeiner (2011) values

from NED to correct for Galactic extinction.

15http://subarutelescope.org/Observing/Instruments/SCam/sdfred/sdfred2.html.en
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UCD1 Properties
Parameter Value Uncertainty

R.A. (J2000, from SDSS) 170.25493 -
Dec (J2000, from SDSS) 13.60813 -

Suprime-Cam Photometry
g 19.98 mag 0.05 mag
r 19.57 mag 0.04 mag
i 19.29 mag 0.04 mag

(g − r) 0.41 mag 0.05 mag
(g − i) 0.69 mag 0.05 mag

Rh, r-band 10 pc 3 pc
Ellipticity 0.9 -

Luminosity Li = 1.4× 106 L� ±0.2× 106 L�

ESI Spectroscopy
Vel. 815 km s−1 4 km s−1

Vel. Dispersion <∼ 23 km s−1 -

Age 6.6 Gyr +1.9
−1.5 Gyr

[Z/H] -0.75 0.12
[α/Fe] -0.10 0.08

MODS Spectroscopy

Age 6.6 Gyr +1.4
−1.2 Gyr

[Z/H] -0.77 0.16
[α/Fe] -0.08 0.15

Surface Photometry
Filter Apparent Mag Luminosity

Full Stream
g 14.15 mag (2.7± 0.5)× 108 L�
i 13.14 mag (4.1± 0.8)× 108 L�

(g − i) 1.01 mag -
Plume Containing UCD1

g 15.34 mag (9.+1.8
−1.7)× 107 L�

i 14.19 mag (1.6± 0.3)× 108 L�
(g − i) 1.15 mag -
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5.2.2 Photometry and Size of UCD1

We performed aperture photometry of UCD1 using an aperture roughly twice

the size of the FWHM for each image, chosen to maximize the S/N. Aperture correc-

tions were measured using several bright, unsaturated stars in the field. Uncertainties

in aperture corrections were 0.04 mag in g and 0.03 mag in r and i. Choice of sky

subtraction annulus introduced systematic uncertainties of 0.03 in all filters, with no

effect on color. Our photometry is listed in Table 1. At our assumed distance, the

luminosity of UCD1 is Li = (1.4± 0.2)× 106 L�with the uncertainty dominated by the

distance. The color measured for UCD1 is dependent on the aperture selected. When

an aperture equal to the FWHM is used, the color is g − i = 0.86, which is comparable

to g−i = 0.91 inferred from the stellar populations in the ESI spectrum (see §5.3). Note

that the seeing FWHM in our imaging is roughly comparable to the width of the ESI

slit used. Using the max S/N aperture results in bluer colors (g− i = 0.69). This effect

may be due to contamination by the stream, or could be caused by some gradient in-

trinsic to UCD1. Robust determination of UCD1’s color will require more sophisticated

stream/source decomposition. Given the varying quality of our ground-based images,

our current dataset is not well-suited to this task.

UCD1 is marginally resolved in our imaging; we used ishape (Larsen, 1999)

to measure Rh, exploring Sersic and King profile fits. ishape convolves a model light

profile with an empirical PSF and fits it to the source. We measured the PSF from

bright, unsaturated stars in the FOV. Both Sersic and King profiles feature a param-

eter to describe the shape of the profile. When left completely free, the resulting fits
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featured unphysical values for shape parameters. However, we found that varying these

parameters over a reasonable range changed Rh at roughly the 20% level.

Across all filters, a model+PSF was always a better fit than the PSF-only

model. As the r-band imaging features the best seeing, we adopt our r-band fits for

UCD1’s fiducial Rh. In general, fits to the i-band data tended to be ∼10% smaller,

while fits in g-band data tended to be ∼10% larger than r-band measured Rh.

We find a size of 7.5 pc for a c = 15 a King profile and 12.5 pc for an n = 4

Sersic profile The differences in residuals are not large between the two assumed models.

We ultimately choose to adopt the average of the two values and note a ±2 pc systematic

uncertainty on this measurement depending on the choice of profile. We also note the

10% uncertainty from our assumed distance, as well as ∼20% scatter for choices of

concentration parameter. Our final r-band Rh estimate for UCD1 is thus 10± 3 pc.

5.2.3 Surface Photometry of NGC 3628 Stream

One possible explanation for the stellar stream is the accretion of a dwarf

galaxy. If this scenario is true, then the total luminosity of the NGC 3628 stream offers

a useful constraint on the luminosity of this accreted dwarf.

The Suprime-Cam reduction pipeline subtracts a constant sky brightness off

the image. We use SExtractor to model any remaining varying background, adopting a

mesh size of 512 pixels. This size was chosen to be significantly larger than the stream.

We inspected the background maps to verify the stream was not being included. Bright

objects were masked in the imaging. We then use adaptsmooth (Zibetti, 2009; Zibetti

et al., 2009) to perform adaptive smoothing to a uniform signal to noise ratio (S/N) on

202



the background-subtracted images. We select a S/N threshold of five (limiting surface

brightness of µi ∼ 28.5 mag arcsecond−2).

We performed aperture photometry of the stream in this smoothed image using

a custom aperture (the same for all filters) and the polyphot task in IRAF, with pixels

below the S/N threshold excluded from the measurement. The resulting measurements

are listed in Table 2.

We measure a total apparent i-band magnitude of 13.14. Statistical uncertain-

ties are small (a few thousandths of a magnitude), but doubling or halving the required

signal-to-noise modifies the final answer by around 0.1 mag. We adopt ±0.1 mag as a

rough estimate of the systematic uncertainty in the measurement, which is smaller

than the distance uncertainty (±0.2 mag). The total luminosity of the stream is

Li ' (4.1 ± 0.8) × 108 L�. We emphasize that this estimate could miss additional

starlight below our detection threshold or behind NGC 3628, or could include con-

tamination from faint contaminant point sources, and therefore should be regarded

with caution when interpreted directly as the accreted galaxy luminosity. We measure

g − i = 1.01 for the color of the full stream.

The plume which contains UCD1 has i = 14.19 and g = 15.34, giving (g− i) =

1.15. The approximate area used for the aperture photometry is marked in Fig. 1. Using

the galaxy stellar population models of Into & Portinari (2013), the corresponding i-

band stellar mass-to-light ratio (M/L∗) is 2.5–2.9. This color may be more representative

of the stellar population of the progenitor dwarf galaxy, as the full-stream measurement

can be more sensitive to contaminants and choice of aperture. Both the plume and
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full stream color and luminosity measurements fall on the red side of galactic scaling

relations from Janz & Lisker (2009), but they still are broadly within the scatter.

5.3 SPECTROSCOPY OF UCD1

A 3600s KECK/ESI spectrum of NGC3628 UCD1 was acquired on 2014 March

20th with the 0.75′′ longslit, with a S/N of ∼23 Å−1. We subsequently acquired a

2400s LBT/MODS spectrum on 2015 June 6th with the 0.80′′ longslit, with a S/N

of ∼15 Å−1. We follow the same procedure as Janz et al. (2015) to measure stellar

populations. Briefly, we measure all Lick indices. These are then compared to the single

stellar population models of Thomas et al. (2011), which give the best age, metallicity

and alpha element abundance via a χ2 minimization process. Poorly fitting lines are

excluded from the analysis in an iterative way. The final fit and residuals to both the

observed spectra are shown in Fig. 5.2.

For the ESI spectrum, we find an old age of 6.6+1.9
−1.5 Gyr and a metal-poor

population of [Z/H] = −0.75± 0.12, and alpha-element abundance of [α/Fe] = −0.10±

0.08. The MODS spectrum gives consistent results, with an age of , 6.6+1.4
−1.2 Gyr, [Z/H] =

−0.77±0.16 and [α/Fe] = −0.08±0.15. Using the relation [Fe/H] = [Z/H]−0.94×[α/Fe]

(Thomas et al., 2003), we find [Fe/H] = −0.84 for the ESI data.

As the ESI spectrum has higher resolution, we use it to measure kinematics

(MODS is limited to σ ∼55 km s−1). We measure a heliocentric velocity of 815±4 km

s−1. While we find a best-fit velocity dispersion of 10.5 km s−1, this measurement is

significantly below the resolution of the ESI spectrograph (σ =23 km s−1). Velocity
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Figure 5.2: Keck/ESI and LBT/MODS spectra of UCD1. ESI data are shown in dark
blue, while MODS data are shown in dark green. Light blue and light green represent
model fits to both spectra. Residuals are shown at the bottom. The MODS scale is
offset from the ESI scale.
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dispersions so low include unquantified systematics, and it is unclear if meaningful

constraint can be obtained that low (see also Geha et al. 2002; Janz et al. 2015). As a

result, we adopt σ =23 km s−1 as the upper limit for the velocity dispersion.

We may make an estimate of the dynamical mass of UCD1 using the expression

Mdyn = CG−1σ2R, where R is taken to be the half-light radius and C is the viral

coefficient. We follow Forbes et al. (2014) and adopt a value of 6.5, although values

between 4 to 7.5 are reasonable. Given this expression and using our measured size of

10 pc, we estimate Mdyn to be less than ∼ 8× 106 M�.

There is a significant offset of ∼75 km s−1 between the measured heliocentric

velocity of UCD1 and the heliocentric velocity measured from the HI gas in the stream.

Nikiel-Wroczyński et al. (2014) found a gas velocity of ∼890 km s−1 in the vicinity of

UCD1. While this could indicate that UCD1 is not associated with the stream, we find

this unlikely. UCD1 appears directly at the center of the brightest plume in the stream,

and displays a blotchy morphology similar to that in the stream itself. UCD1 is the

brightest point in the stream, with the surface brightness of the stream falling off slowly

in all directions away from UCD1. It is unclear that we would expect the velocity of

the HI gas to follow that of the stream; the gas obeys different physics than the stars

in the stream (e.g. ram pressure stripping), and so it would not be surprising to see

a velocity offset between the two. UCD1 is blue-shifted by ∼30 km s−1 compared to

NGC 3628, while the gas is red-shifted by ∼45 km s−1.
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5.4 DISCUSSION AND SUMMARY

5.4.1 The Origin of the Tidal Stream

In the literature, this stellar stream has often been considered the result of an

interaction between NGC 3628 and another galaxy in the group, typically NGC 3627.

However, the properties of UCD1 give us cause to consider a potential dwarf galaxy

minor-merger scenario as the source of the stream.

Rots (1978) carried out a restricted 3-body simulation of a tidal interaction

between NGC 3627 and NGC 3628. The simulation did a reasonable job of reproducing

some features but also had some discrepancies with observations, such as a smaller

velocity difference between the two large galaxies than was actually observed (a full list

of issues is enumerated in Haynes et al. 1979). This early simulation also did not take

into account other bodies in the system, an important caveat given that the galaxies

share a group environment with NGC 3623 to the south east.

Now that we have identified and characterized UCD1, a successful simulation

must be able to explain the presence of a ∼ 106 M� compact star cluster with a ∼6 Gyr,

metal-poor stellar population. It is not immediately obvious how such an object could

result simply from the interaction of NGC 3627 and NGC 3628, as we would expect

objects resulting from such an interaction to be younger, metal-rich, and less compact.

It is important to note that, in this work, we are not making any direct comment on the

tidal interaction. We have not yet conducted dynamical modeling of our own, and so we

are not in a firm position to endorse a minor-merger picture for this tidal interaction over

the NGC 3628/NGC 3627 interaction model currently in the literature. The study of this
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system would benefit greatly from more sophisticated dynamical modeling, exploring

the possibility of minor mergers and including the dynamical effects of all three group

galaxies. For the moment, we consider the nature of the merger an open question.

5.4.2 UCD1 compared to other UCDs

It is informative to consider the properties of UCD1 in the context of other

UCDs. In the left panel of Fig. 3, we plot the measured half-light radius in pc against

the absolute V-band magnitude for a large collection of distance-confirmed dispersion-

supported stellar systems across a wide range of sizes and luminosities (Brodie et al.,

2014).

In the right panel of Fig. 3, we plot the age and metallicity of various star

clusters including confirmed UCDs, MW GCs, nuclear star clusters (NSCs), and early-

type galaxy (ETG) centers. We also hightlight an assortment of metal-rich UCDs with

a likely tidal stripping origin (e.g. M60-UCD1, see Sandoval et al. 2015).

ω Cen represents an interesting analogue to UCD1 in these parameters. Its size

and luminosity are very similar to UCD1 and both are low metallicity compared to other

clusters with a likely tidal origin. The Harris 1996 (2010 edition) catalog lists values of

σ = 16.8 km s−1 (e.g. McLaughlin & van der Marel 2005), MV = −10.26, and Rh= 7.5

pc (e.g. van den Bergh et al. 1991), all comparable to UCD1 within the uncertainties

(note that we only estimate an upper limit for σ for UCD1). ω Cen is even more metal-

poor than UCD1, [Fe/H] = −1.53 (e.g. Johnson et al. 2009) vs. −0.84, and, generally

speaking, is alpha-enhanced (e.g. Johnson & Pilachowski 2010). Such differences are

not unexpected, since UCD1 is only currently being stripped. Given that ω Cen was
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likely accreted several Gyr ago, UCD1 is naturally expected to have a more extended

SF history, enhancing its metallicity and potentially erasing any alpha-enhancement. In

this context, objects like UCD1 may be reasonable modern-day examples of accretion

events which, Gyr ago, would have resulted in ω Cen-like star clusters. These clusters

offer interesting contrasts in size, luminosity, and metallicity compared to more metal-

rich, tidally stripped UCDs.

5.4.3 Properties of a Potential Dwarf Galaxy Progenitor

In this section, we consider the implications if UCD1 did indeed result from

a minor merger. Using the stellar stream luminosity to estimate the stellar mass in

the stream is straightforward. As discussed in §5.2.3, for a stream of this color, a

M/L∗ ∼ 2.7 is reasonable. Given the measured luminosity of (4.1 ± 0.8) × 108 L�, we

estimate a stellar mass of ∼ 1.1×109 M�. We take this value as a rough estimate of the

stellar mass of a potential accreted dwarf galaxy, also noting neglected systematics from

the mass-to-light estimate. This mass is comparable to the spheroid mass estimated

in Norris & Kannappan (2011) for the progenitor of the confirmed stripped nucleus

NGC 4546 UCD1 (3.4+1.2
−1.5 × 109 M�). Following the specific frequencies of Peng et al.

(2008), such an accretion event would have contributed ∼9 GCs to the halo of NGC

3628, which could possibly be found as a discrete GC population in phase space.

To estimate a width for the stream, we use a region to the east of UCD1 ∼100

arcseconds wide and sum up the light horizontally along the direction of the stream,.

We identify the peak of the light distribution as the stream center, and mark the outer

end of the stream as the point where the light profile approximately flattens. Finally,
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we define the distance from the center that contains half the total integrated light of

the region as the half-light width of the stream. We find a value of ∼ 60′′, or ∼3000 pc.

We then adopt this half-light width as a proxy for the Rh of the accreted parent galaxy.

In Fig. 3, we plot the estimated location of this dwarf galaxy in the same parameter

space. We emphasize that the connection between stream-width and progenitor size is

unclear, and will at the very least depend on viewing angles and orbital phase.

If a minor-merger picture is correct, it is natural to compare UCD1 to nuclear

star clusters (NSCs). NSCs typically have effective radii of a few to tens of parsecs, and

luminosities from a few times 105 L� to ∼ 108 L� (Georgiev & Böker, 2014). Early-

type galaxies in particular may have more compact NSCs; Côté et al. (2006) found a

median Rh of 4.2 pc for prominent NSCs in early-type galaxies. The precise effects of

the stripping process on NSC Rh are complicated and depend on a wide range of orbital

parameters and initial conditions, but for most scenarios, we wouldn’t expect drastic

changes in cluster Rh (Pfeffer & Baumgardt, 2013). Bianchini et al. (2015) found that,

as galaxies are stripped, central clusters expand to reach the sizes they would have in

isolation, i.e. similar to GC/UCD-sized objects. A late-type nucleated galaxy could be

a possible source, though presumably the bulge would need to be red enough to explain

the colors seen in UCD1’s plume.

For UCD1, if the properties remain roughly comparable, then the stripping

process has, at the order of magnitude level, resulted in a decrease of roughly 100 in

size and 1000 in luminosity. Similar factors of stripping have been seen in simulations

of dwarf-elliptical galaxies (Pfeffer & Baumgardt, 2013), although the precise amounts
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of mass loss depend on the orbital parameters. In any case, we find the properties

of UCD1 consistent with the cluster being the final result of a minor merger, offering

support that some portion of the large star cluster population may be created through

the tidal stripping of dwarf galaxies.
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Chapter 6

Summary and Future Direction

6.0.1 Summary

We have presented a wide array of studies of extragalactic GC systems in

various contexts. First, in Ch. 2, we analyzed the NGC 3115 GC system using high-

quality HST/ACS imaging, supplemented with Subaru/SuprimeCam photometry of

the galaxy. NGC 3115 is a well-studied bimodal galaxy, and the bimodality has been

spectroscopically confirmed to arise from an underlying non-unimodal metallicity dis-

tribution (Brodie et al., 2011). Since GCs are partially-resolved in HST/ACS imaging,

they are able to be selected with a higher degree of confidence than is possible in ground-

based imaging, and we are able to analyze GCs to much greater depth than is possible

with spectroscopically. We find a monotonically decreasing radial gradient in the blue

GC system color, but a much more chaotic behavior in the red GC system. The red

GC system also decreases in relative fraction as a function of radius when compared

to the blue GCs, as is often found in extragalactic GC studies. The red GC behavior

213



radial behavior matches radially with some of the behavior also noted by Arnold et al.

(2011) in the kinematic profile of the red GC system, possibly indicating a shift in ac-

cretion around NGC 3115. Finally, we identify a number of extended clusters. While

most of these are likely contaminant background galaxies, some of these objects will be

UCD or ”faint-fuzzy” type star clusters. Indeed, three have spectroscopically-confirmed

velocities.

In Ch. 3, we introduced a method for improving some of the difficulties with

GC analysis in ground-based data, chiefly the issue of contamination from foreground

and background sources. We created a Bayesian formalism in which we treat the dis-

tribution of photometric sources in color, luminosity, and position as a mixture model

including a fixed contaminant distribution and parameterized distributions for the GCs.

The free parameters of these distributions are then inferred using standard MCMC tech-

niques. We also demonstrated how incompleteness in the data can be incorporated in

the model by modifying some of the formalism of Weisz et al. (2013). Finally, we verified

the inference from this model on mock datasets drawn from realistic models of GC dis-

tributions. We discover that certain parameters, such as fred and fblue, have significant

covariance, depending on the other parameters in the distributions. This covariance

means that quantities like NGC maybe known to greater precision than the number of

GCs of small distributions, and values like the relative ratio of red GCs to blue GCs

can only be known to limited precision. Finally, we identify a number of areas where

the model can be expanded to produce better inference for GC systems.

In Ch. 4, we perform photometry on a subset of SLUGGS survey galaxies
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in wide-field imaging data from both Subaru/SuprimeCam data and CFHT/MegaCam

data. The SuprimeCam data are reduced by us, while the MegaCam data are down-

loaded from the MegaPipe stacked archives. We perform standard aperture photometry

using SExtractor, and create point-source catalogs of sources around our selected galax-

ies. After full catalogs are created, we apply the Bayesian fitting methodology in Ch. 3

to these galaxies. We find most galaxies give reasonable fits when the Bayesian mixture

model is applied. Bimodality is recovered in most cases, although there are some, such

as NGC 3115, in which we need to specify informative priors to recover such bimodality.

We commonly find that the ratio of red to blue GCs is a very uncertain quantity due to

the covariance of the two parameters, while the NGC quantity can be known to a high

degree of precision, at least with respect to statistical uncertainties. Galaxies with very

sparse GC systems were often poorly-fit by the model, likely simply due to having such

a low GC “signal” compared to contamination. Systems such as NGC 4111 and 4459

are limited in what can be inferred about the systems with no prior information. We

elected to fix most of the parameters in the model for these systems and simply leave

the fred and fblue parameters free, allowing inference on the relative number of red and

blue GCs as well as the total number of GCs in the system.

Finally, in Ch. 5, we have identified the object NGC 3628 UCD1, an object

slightly larger than a typical GC. Using Subaru/SuprimeCam imaging, we analyze NGC

3628 UCD1 and find the object to be partially-resolved, allowing us to infer a physical

size for the object of ∼10 pc. More importantly, we identified that NGC 3628 UCD1

is embedded in a stellar stream, indicating that the object is in the process of being
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accreted onto NGC 3628. The overlapping discovery of UCD1 with the stellar stream

confirms that at least some UCD-like objects will be placed in to the halos of galaxies

through accretion events. We also identify a number of interesting parallels between

NGC 3628 UCD1 and ωCen, the MW’s largest GC. ωCen has long been considered an

outlier among the MW GC population due to its size and bizarre chemical enrichment

and other strange properties (e.g. King et al. 2012). Keck/ESI spectroscopy of UCD1

confirms that it is located in the NGC 3628 system, and reveals that it also displays

some of the same strange enrichment patters among certain elements. Finally, we are

able to infer rough information about the stellar system by measuring the luminosity

of the stellar stream. We are able to extrapolate that the galaxy in which UCD1 was

originally embedded in was a small dwarf galaxy, and that its luminosity will be reduced

by a factor of ∼100 when UCD1 is ultimately stripped to just its cluster.

6.0.2 Future Directions

The most important future direction is to complete Bayesian inference for

the remaining SLUGGS galaxies. After the full set of SLUGGS galaxies has been

analyzed in a consistent way, there are interesting lines of inquiry regarding trends in

GC system properties vs. galaxy properties. For example, the relative fractions of

reds and blues and the total number of GCs as a function of galaxy stellar mass, halo

mass, and supermassive black hole mass are all correlations that have been noted in the

literature, and investigating such correlations with the inference presented here will be

powerful. Previously, these quantities as measured on the GC systems didn’t always

feature well-calibrated uncertainties, which were often estimated in ad-hoc ways. Our
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Bayesian methodology of inference for these quantities means that, at least statistically,

our uncertainties are well-calibrated. Better understanding of systematic uncertainties

still remains to be precisely quantified.

Another possibility to investigate is the use of µi of the GC system as a distance

indicator. Since the peak luminosity of a GC system is thought to generally remain fixed

from galaxy to galaxy, the GC luminosity function is often used as a distance indicator

for nearby galaxies (e.g. Villegas et al. 2010). The uncertainties on µi provided by our

inference mean that our ground-based imaging could be used to help constrain distances

to the galaxies we investigate. However, it is debatable whether such an approach will be

competitive with current HST photometric approaches, which have the dual advantage

of probing much deeper data and having a less-contaminated dataset. While GCLF

measurements from ground-based imaging might not ultimately be as well-suited as

space-based imaging, the methodology laid out in Ch. 3 might still be applied in other

contexts.

Finally, a useful future direction will be in expansion of the models considered

here. One of the biggest advantages of considering the problem of GC system inference

in a Bayesian context is that we are free to expand our model in any way we are able

to parameterize. One expansion of immediate interest is extending GC bimodality into

spatial distributions, as it is already well-established that there are different degrees of

spatial concentration between red and blue GCs. Further expansion might allow for

third populations in the GC color distribution, or perhaps other non-normal distribu-

tions entirely. Ultimately, we would like to move past the specification of arbitrary
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distributions towards more physically motivated models, which actually link the pro-

cesses of GC system formation and assembly to observables. If such models may be

written down in a probabilistic manner, they can be folded in to the analysis performed

here in a straightforward manner, and therefore direct inference on the physical param-

eters of interest can be performed. Such an approach will allow theory and observation

to be directly linked together, leveraging all the observed data to directly inform our

knowledge of GC assembly in a probabilistic way. Ultimately, the methods discussed

here are simply a first step, and we should always seek to find areas where our proposed

model performs poorly and be open to updating our inference to reflect both better

data and superior approaches to the problem.
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Appendix A

Full Bayesian Fits for Each

Galaxy

In this Appendix, we include traces and corner plots for all free parameters for

all SLUGGS galaxies analyzed in Ch. 4. Refer to §4.3 for discussion of the results for

each galaxy.
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Figure A.1: Full trace plots for all free parameters in NGC 1407
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Figure A.2: Full corner plots for all free parameters in NGC 1407
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Figure A.3: Full trace plots for all free parameters in NGC 1400
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Figure A.4: Full corner plots for all free parameters in NGC 1400
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Figure A.5: Full trace plots for all free parameters in NGC 2768

224



0.0
8

0.1
6

0.2
4

0.3
2

f b
lu
e

1.0
5

1.1
0

1.1
5

1.2
0

µ
gi
,r
ed

0.3
5

0.4
0

0.4
5

µ
ri
,r
ed

0.0
2

0.0
4

0.0
6

σ
2 gi
,r
ed

0.0
08

0.0
16

0.0
24

0.0
32

σ
2 ri
,r
ed

0.0
08

0.0
16

0.0
24

σ
gi
,r
ed
σ
ri
,r
ed

0.7
2

0.7
6

0.8
0

0.8
4

µ
gi
,b
lu
e

0.2
4

0.2
6

0.2
8

0.3
0

µ
ri
,b
lu
e

0.0
08

0.0
16

0.0
24

0.0
32

σ
2 gi
,b
lu
e

0.0
01

5

0.0
03

0

0.0
04

5

0.0
06

0

σ
2 ri
,b
lu
e

0.0
03

0.0
06

0.0
09

0.0
12

σ
gi
,b
lu
e
σ
ri
,b
lu
e

0.2

0.4

0.6

0.8

R
e

0.3
0

0.4
5

0.6
0

0.7
5

ε

0.2

0.0

0.2

0.4

P
A

23
.00

23
.25

23
.50

23
.75

µ
i

0.1 0.2 0.3 0.4

fred

0.8

1.0

1.2

1.4

σ
i

0.0
8

0.1
6

0.2
4

0.3
2

fblue

1.0
5

1.1
0

1.1
5

1.2
0

µgi, red

0.3
5

0.4
0

0.4
5

µri, red

0.0
2

0.0
4

0.0
6

σ2
gi, red

0.0
08

0.0
16

0.0
24

0.0
32

σ2
ri, red

0.0
08

0.0
16

0.0
24

σgi, redσri, red

0.7
2

0.7
6

0.8
0

0.8
4

µgi, blue

0.2
4

0.2
6

0.2
8

0.3
0

µri, blue
0.0

08
0.0

16
0.0

24
0.0

32

σ2
gi, blue

0.0
01

5

0.0
03

0

0.0
04

5

0.0
06

0

σ2
ri, blue

0.0
03

0.0
06

0.0
09

0.0
12

σgi, blueσri, blue

0.2 0.4 0.6 0.8

Re

0.3
0

0.4
5

0.6
0

0.7
5

ε

0.2 0.0 0.2 0.4

PA
23

.00
23

.25
23

.50
23

.75

µi

0.8 1.0 1.2 1.4

σi

Figure A.6: Full corner plots for all free parameters in NGC 2768
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Figure A.7: Full trace plots for all free parameters in NGC 3115
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Figure A.8: Full corner plots for all free parameters in NGC 3115
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Figure A.9: Full trace plots for all free parameters in NGC 3607
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Figure A.10: Full corner plots for all free parameters in NGC 3607

229



0 500 1000 1500 2000
0.0
0.1
0.2
0.3
0.4
0.5
0.6

f r
ed

0 500 1000 1500 2000
0.1
0.2
0.3
0.4
0.5
0.6
0.7

f b
lu
e

0 500 1000 1500 2000
1.00

1.05

1.10

1.15

1.20

µ
gi
,r
ed

0 500 1000 1500 2000
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

µ
ri
,r
ed

0 500 1000 1500 2000
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

σ
2 gi
,r
ed

0 500 1000 1500 2000
0.000

0.005

0.010

0.015

0.020

0.025

σ
2 ri
,r
ed

0 500 1000 1500 2000
0.000
0.005
0.010
0.015
0.020
0.025
0.030

σ
gi
,r
ed
σ
ri
,r
ed

0 500 1000 1500 2000
0.75

0.80

0.85

0.90

0.95

1.00

µ
gi
,b
lu
e

0 500 1000 1500 2000
0.20
0.22
0.24
0.26
0.28
0.30
0.32

µ
ri
,b
lu
e

0 500 1000 1500 2000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

σ
2 gi
,b
lu
e

0 500 1000 1500 2000
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

σ
2 ri
,b
lu
e

0 500 1000 1500 2000
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

σ
gi
,b
lu
e
σ
ri
,b
lu
e

0 500 1000 1500 2000
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

R
e

0 500 1000 1500 2000
22.5

23.0

23.5

24.0

24.5

25.0

µ
i

0 500 1000 1500 2000
0.8
1.0
1.2
1.4
1.6
1.8
2.0

σ
i

Figure A.11: Full trace plots for all free parameters in NGC 3608
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Figure A.12: Full corner plots for all free parameters in NGC 3608

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

f r
ed

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

f b
lu
e

Figure A.13: Full trace plots for all free parameters in NGC 4111
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Figure A.14: Full corner plots for all free parameters in NGC 4111
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Figure A.15: Full trace plots for all free parameters in NGC 4278
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Figure A.16: Full corner plots for all free parameters in NGC 4278
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Figure A.17: Full trace plots for all free parameters in NGC 4365
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Figure A.18: Full corner plots for all free parameters in NGC 4365
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Figure A.19: Full trace plots for all free parameters in NGC 4459
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Figure A.20: Full corner plots for all free parameters in NGC 4459
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Figure A.21: Full trace plots for all free parameters in NGC 4486
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Figure A.22: Full corner plots for all free parameters in NGC 4486
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Figure A.23: Full trace plots for all free parameters in NGC 4494
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Figure A.24: Full corner plots for all free parameters in NGC 4494
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Figure A.25: Full trace plots for all free parameters in NGC 4697
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Figure A.26: Full corner plots for all free parameters in NGC 4697
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