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A Quantum Algorithm to Efficiently Sample from Interfering Binary Trees

Davide Provasoli,∗ Benjamin Nachman,† and Christian Bauer‡

Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Wibe A. de Jong§

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Quantum computers provide an opportunity to efficiently sample from probability distributions
that include non-trivial interference effects between amplitudes. Using a simple process wherein all
possible state histories can be specified by a binary tree, we construct an explicit quantum algorithm
that runs in polynomial time to sample from the process once. The corresponding naive Markov
Chain algorithm does not produce the correct probability distribution and an explicit classical
calculation of the full distribution requires exponentially many operations. However, the problem
can be reduced to a system of two qubits with repeated measurements, shedding light on a quantum-
inspired efficient classical algorithm.

I. INTRODUCTION

Quantum algorithms are promising for various indus-
trial and scientific applications because of their capac-
ity to explore exponentially many states with a polyno-
mial number of quantum bits. One of the most well-
studied classes of quantum algorithms is the quantum
walk [1]. Like the classical random walk, the quantum
variants have found widespread use for enhancing a vari-
ety of quantum calculations and simulations [2, 3]. While
quantum walks are fundamentally different from classi-
cal random walks, there are limits in which the quantum
algorithm approaches the classical one [4].

A useful feature of a classical random walk is that it
can be efficiently simulated using a Markov Chain Monte
Carlo (MCMC) because subsequent motion depends only
on the current position and not the prior history. This
MC property is at the core of some algorithms that sim-
ulate many-body physical systems where the generative
process is approximately local. For such physical systems
that also have important quantum properties, the speed
from the MCMC is traded off against the accuracy of an
inherently quantum simulation. One such physical sys-
tem is the parton shower in high energy physics [5], where
a quark or a gluon radiates a shower of nearly collinear
quarks and gluons. Genuine quantum effects can be ap-
proximated as corrections to the MCMC [6], but cannot
be directly implemented efficiently in a classical MCMC
approach.

Consider the following quantum tree: at every step, a
spin 1/2 particle can move one unit left or one unit right.
After N steps, this system forms a binary tree with 2N

paths. In contrast to a traditional quantum walk, we
assume that the path is observable, so moving left and
then right is not the same as moving right and then left.
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For this reason, there is a 1-1 correspondence between the
leaves of the tree and the path taken, and the space of
measurement outcomes is more naturally {L,R}N than
Z.

When the quantum amplitude for moving left is inde-
pendent of the spin or if the spin changes deterministi-
cally with time, this tree can be efficiently and accurately
simulated with a classical MCMC. However, when either
of these conditions are violated, a naive classical MCMC
fails to produce the correct probability distribution over
final states. While quantum walks with time/space de-
pendence have been studied in the literature [4, 7–10]
and there are some similarities to quantum algorithms
for decision trees [11], our quantum tree requires a new
approach.

In order to efficiently sample from the quantum tree,
we introduce a new quantum algorithm that achieves an
exponential speedup over an efficient classical calcula-
tion of the full final state probability distribution. In
addition, we provide an explicit quantum circuit which
implements the algorithm and demonstrate its perfor-
mance on a quantum computer simulation. Interestingly,
an equivalent quantum circuit involving only two qubits
can be obtained if we use repeated measurements, and
this shed light on a quantum inspired classical algorithm
that is indeed an efficient MCMC.

This paper is organized as follows. Section II intro-
duces the quantum tree and illustrates how naive classical
algorithms cannot efficiently sample from its probability
distribution. A solution to this problem is introduced in
Sec. III using a quantum algorithm. An explicit imple-
mentation of the quantum circuit is described in Sec. IV
and numerical results are presented in Sec. V. An effi-
cient quantum-inspired classical MCMC is introduced in
Sec. VI. The paper ends with conclusions and future out-
look in Sec. VII.
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II. A CLASSICAL CHALLENGE

Consider a tree like the one shown in Fig. 1, where the
quantum amplitude of a node n is given by AL(n) when
going left and AR(n) when going right. The amplitude
for reaching a given leaf is the product over the nodes

from its history λ ∈ {L,R}N : Aleaf =
∏N
n=1Aλn(n).

The probability of paths through the tree (uniquely spec-
ified by a leaf) are distributed according to Pr(path) ∝
|Aleaf|2. One can efficiency sample from this distribution
in linear time classically using a MCMC algorithm: at
each step, move left or right with a probability given by
|AL/R(n)|2.

Now, consider the following change to the tree: there
is a spin state associated with each depth. Only the
spin at the leaf is observable and the amplitudes AL and
AR depend on the state of the spin. Now, there are
many possible paths that correspond to reaching a single
leaf. One way to visualize this is illustrated in Fig. 2.
There are two copies of the tree, one for spin up and
one for spin down. At each step, the system can move
between trees or stay on the same tree and then move left
or right. The observable final state is the leaf location
and the final tree (spin). The amplitudes for going left
and right are now spin-dependent. At a given step, the
eight possible amplitudes are As1,s2h (n) for h ∈ {L,R}
and si ∈ {↑, ↓}, where s1 is the initial spin and s2 is the
final spin. Since only the final spin is observable, the
amplitude to transition from spin s0 to sN is given by

As0,sN =
∑

~s′∈{↓,↑}N

s′0=s0,s
′
N=sN

N∏
n=1

A
s′n−1,s

′
n

λn
(n) . (1)

While there may be multiple applications of this quan-
tum tree, one motivation is the parton shower in quantum
chromodynamics (QCD) where quarks or gluons radiate
gluons (going left in the tree) at decreasing angles (deeper
n). The connection with QCD is not exact but the work
presented here is a step toward an inherently quantum
parton shower algorithm.

ARAL

FIG. 1: The rightmost nodes of the above binary tree
(leaves) uniquely correspond to trajectories in {L,R}N

where L represents going left and R represents going right at
a given node. As a generative model, trajectories are

sampled according to the square of the quantum amplitude
of the path through the tree.

The quantum tree including the full interference effects
caused by cross-terms in the sum over all spin histories
for a given leaf cannot be implemented in a naive MCMC
that extends the one from Fig. 1 where each possibility

A↑↑L A↑↑RA↓↓L A↓↓R

A↑↓L A↑↓R A↓↑L A↓↑R

FIG. 2: The same setup as in Fig. 1, except that now there
is a spin state associated with every depth in the tree. This
can be represented by two trees: one for spin down (left) and
one for spin up (right). The system can move between trees,

but only the final tree (spin) and leaf are observable. The
eight possible amplitudes for a given step are indicated with
As1,s2L/R , where s1 is the initial spin and s2 is the final spin.

was sampled at each step. One method for correctly sam-
pling from the distribution of leafs and final spins is to
sum over all paths to compute the probabilities for each
state. For a tree of depth N , the calculation of the to-
tal amplitude would naively scale as 4N since there are
4 possibilities at every node: move left and flip the spin,
move right and flip the spin, move left and do not flip
the spin, move right and do not flip the spin.

One way to efficiently calculate the probability distri-
bution is to represent the problem as a set of matrix mul-
tiplications. To see this, consider the leaf corresponding
to never taking the left branch. The probability for the
two possible states (spin up or spin down) requires sum-
ming over all possible spin trajectories. If the initial spin

is |i〉 for |↓〉 =

(
1
0

)
and |↑〉 =

(
0
1

)
, then one can com-

pute the full probability distribution of the final spin |f〉
by matrix multiplication:

|f〉 =

N∏
n=1

∆(n) |i〉 ,∆(n) =

(
A↓↓R (n) A↑↓R (n)

A↓↑R (n) A↑↑R (n)

)
. (2)

Therefore, the amplitude for the right-move only case can
be computed with O(N) multiplications. The same logic
applies to the calculation of the amplitude for exactly
one left branch at step k:

|f〉 =

N∏
n=k+1

∆(n)×A(k)×
k−1∏
n=1

∆(n) |i〉 , (3)

where

A(k) =

(
A↓↓L (k) A↑↓L (k)

A↓↑L (k) A↑↑L (k)

)
. (4)

Equation 3 is also inefficient when considering all 1 ≤
k ≤ N , because many products can be reused from one
k to another. However, even with the maximal amount
of reuse, there must be at least one matrix multiplica-
tion per k value. By the same logic, there must be at
least one matrix multiplication for every fixed number
of left branchings. There are a total of 2N leaves and
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therefore the minimum number of matrix multiplications
scales exponentially with N . Particular re-use schemes
can be deployed to show that the scaling is 2N and to
calculate the coefficient of the exponential scaling. In
the next section will show that there exists a quantum
algorithm that can distribute events from this probabil-
ity distribution, where a single event can be generated in
polynomial time. This therefore provides an exponential
speedup over the naive classical approach.

III. A QUANTUM SOLUTION

A. Rotating to a new basis

Let us write the evolution in Eq. (1) in terms of the
following two unitary transformations, pertaining to one
step starting on the |↓〉 tree and one step starting on the
|↑〉 tree:

|↓〉 → A↓↓L |L〉 |↓〉+A↓↑L |L〉 |↑〉+A↓↓R |R〉 |↓〉+A↓↑R |R〉 |↑〉

|↑〉 → A↑↑L |L〉 |↑〉+A↑↓L |L〉 |↓〉+A↑↑R |R〉 |↑〉+A↑↓R |R〉 |↓〉 ,
(5)

where the amplitudes must satisfy the unitarity condi-
tions:

A↓↓L
2

+A↓↑L
2

+A↓↓R
2

+A↓↑R
2

= 1 (6)

A↑↑L
2

+A↑↓L
2

+A↑↑R
2

+A↑↓R
2

= 1 .

This evolution will produce interference terms, since we
can reach the same state in more than one way, and as
previously mentioned it cannot be implemented with a
simple naive MCMC. We would like to rotate to a new
basis

|↓′〉 = cosλ |↓〉 − sinλ |↑〉
|↑′〉 = sinλ |↓〉+ cosλ |↑〉 , (7)

such that one evolution step looks like

|↓′〉 → Ã↓↓L |L〉 |↓
′〉+ Ã↓↓R |R〉 |↓

′〉

|↑′〉 → Ã↑↑L |L〉 |↑
′〉+ Ã↑↑R |R〉 |↑

′〉 , (8)

with unitarity conditions

(Ã↓↓L )2 + (Ã↓↓R )2 = 1

(Ã↑↑L )2 + (Ã↑↑R )2 = 1 . (9)

In the new basis the two trees decouple and the evolu-
tion becomes simple, meaning our quantum states evolve
at each step by going either right or left, but they can
no longer go in between trees. The original system had
six degrees of freedom (8 amplitudes and two unitary
conditions given in Eq. (6)) while the new system has
only three degrees of freedom (one from λ, four ampli-
tudes and two unitary conditions given in Eq. (9)). This

means that this basis switch is only possible for a subset
of cases for the original problem. Since these cases admit
a simple quantum algorithm, we focus on these and leave
the general case for future studies.

In order to find the correct rotation angle λ to imple-
ment Eq. (7), we must solve:

|↓′〉 → cosλ(A↓↓L |L〉 |↓〉+A↓↑L |L〉 |↑〉+A↓↓R |R〉 |↓〉

+A↓↑R |R〉 |↑〉)− sinλ(A↑↑L |L〉 |↑〉+A↑↓L |L〉 |↓〉

+A↑↑R |R〉 |↑〉+A↑↓R |R〉 |↓〉)

= |L〉
[

cosλA↓↓L |↓〉+ cosλA↓↑L |↑〉 − sinλA↑↑L |↑〉

− sinλA↑↓L |↓〉
]

+ |R〉
[

cosλA↓↓R |↓〉

+ cosλA↓↑R |↑〉 − sinλA↑↑R |↑〉 − sinλA↑↓R |↓〉
]
.

(10)

Focusing on the term proportional to |L〉, from Eq. (10)
we have

Ã↓↓L |↓
′〉 = Ã↓↓L

(
cosλ |↓〉 − sinλ |↑〉

)
= cosλA↓↓L |↓〉+ cosλA↓↑L |↑〉 − sinλA↑↑L |↑〉

− sinλA↑↓L |↓〉 , (11)

so that we get the following two equations:

cosλÃ↓↓L = cosλA↓↓L − sinλA↑↓L

− sinλÃ↓↓L = cosλA↓↑L − sinλA↑↑L (12)

If we multiply the top equation by sinλ, the bottom equa-
tion by cosλ and add them we get

cosλ sinλ(A↓↓L −A
↑↑
L ) + cosλ2(A↑↓L +A↓↑L )−A↑↓L = 0 .

(13)

Now if we repeat the same process with the transforma-
tion of |↑′〉 and once again we focus on the terms propor-
tional to |L〉 we obtain

sinλÃ↑↑L = sinλA↓↓L + cosλA↑↓L

cosλÃ↑↑L = sinλA↓↑L + cosλA↑↑L (14)

and

cosλ sinλ(A↓↓L −A
↑↑
L ) + cosλ2(A↑↓L +A↓↑L )−A↓↑L = 0 .

(15)

Then Eq. (13) and Eq. (15) imply

A↓↑L = A↑↓L ≡ AL (16)

and they become

cosλ sinλ(A↓↓L −A
↑↑
L ) + cos 2λAL = 0 . (17)

We can now solve for λ in terms of AL, A↑↑L and A↓↓L ,
which are free parameters we will specify in the unrotated
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basis, and use the result to solve for Ã↓↓L and Ã↑↑L in Eqs.
12 and 14 . When we do so we get

Ã↓↓L = A↓↓L

−

√
4A2

L(A↓↓L −A
↑↑
L )2 + (A↓↓L −A

↑↑
L )4 + (A↓↓L −A

↑↑
L )2

2(A↓↓L −A
↑↑
L )

(18)

Ã↑↑L = A↓↓L

+
2A2

L(A↓↓L −A
↑↑
L )√

4A2
L(A↓↓L −A

↑↑
L )2 + (A↓↓L −A

↑↑
L )4 + (A↓↓L −A

↑↑
L )2

.

(19)

We can then find Ã↑↑R and Ã↓↓R from unitarity conditions
in 9. Of course we could have performed the same deriva-
tion focusing on terms proportional to |R〉 instead, in
which case, instead of eq. 17, we would have found

A↓↑R = A↑↓R ≡ AR (20)

and

cosλ sinλ(A↓↓R −A
↑↑
R ) + cos 2λAR = 0 . (21)

B. Tree evolution as an efficient quantum
algorithm

We now introduce a quantum algorithm which can
solve the system introduced in the previous section in
polynomial time. The algorithm implements the change
of basis discussed above, it evolves the system in the de-
coupled basis and then rotates back to the original ba-
sis, creating interferences between all the possible paths
which lead to the same final leaf and spin.

To illustrate the algorithm consider a tree of the kind
illustrated in Fig. 2 with N total nodes and a spin degree
of freedom. The state which is evolved in our quantum
circuit is given by

|Ψn,N 〉 = |s〉 |λ1λ2 . . . λn . . . λN 〉
≡ |ψn,N 〉 , (22)

where n denotes how many steps have occured and the
combination of |s〉 and |λ1λ2 . . . λn . . . λN 〉 is abbreviated
by |ψn,N 〉, which determines the node reached after n
steps.

To explain what these different qubits encode, recall
that at each step the spin can either flip or not flip mean-
ing we can go form one tree to the other or we can stay
on the same tree, and the path can either go right or
left. At the end of the evolution, if we measure |λi〉 in
the |0〉 state it denotes that the path went right at node
i, while if we measure it in the |1〉 state, it denotes the
path went left at node i. For the ket |s〉, |0〉 represents
spin down and |1〉 represents spin up. In other words,
these qubits uniquely identify a particular node in the

two trees. While we keep track whether the path went
right or left at each step and we measure this information
at the end of the evolution by measuring all the λi qubits,
we do not keep track of whether the the spin flipped or
not in a particular step, which is why we can reach the
same node with different spin histories.

The quantum circuit which implements the evolution
is shown in Fig. 3. The |λi〉 qubits are initialized in the
|0〉 state while the spin qubit, on the other hand, can be
initialized in any superposition of |0〉 and |1〉. The R gate
is responsible for rotating into the diagonalized basis, it
is given by the 2× 2 real unitary matrix

R =

(
cosλ − sinλ
sinλ cosλ

)
, (23)

while R† rotates back to the original basis at the end
of the evolution before we perform a measurement. The
U i↑/↓ gates are also single qubit operations represented by

2 × 2 real unitary matrices (we drop the step index for
simplicity), which in quantum computing are referred to
as RY rotations:

U↓ =

(
cos θ↓ − sin θ↓
sin θ↓ cos θ↓

)
=

(
Ã↓↓L −Ã↓↓R
Ã↓↓R Ã↓↓L

)
U↑ =

(
cos θ↑ − sin θ↑
sin θ↑ cos θ↑

)
=

(
Ã↑↑L −Ã↑↑R
Ã↑↑R Ã↑↑L

)
, (24)

where we define the basis states on which these matrices

act on as |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

|λN 〉 . . . Un↓ Un↑

. . . . . .

|λ1〉 U1
↓ U1

↑ . . .

|s〉 R • . . . • R†

FIG. 3: Complete quantum circuit which implements full
tree evolution

In general the probabilities of the path to go left or
right (as well as λ) could depend on the step, meaning
the matrices U↓ and U↑ are different at each step. If λ
is different, then R†(λ)R(λ′) operations would need to
be inserted between each step. At the end of the circuit
evolution, we measure all of the qubits and we record the
output. This way we sampled the distribution of final
states and generated one event. This corresponds, in our
tree notation, to reaching a final tree leaf with definite
spin.
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IV. IMPLEMENTATION ON A QUANTUM
COMPUTER

In order to run a full quantum simulation of our cir-
cuit, and implement it on a currently available test bed,
it is necessary to decompose it in terms of single qubit
gates and CNOT gates only We have to break down
two controlled-RY operations, one controlled on |0〉 and
one controlled on |1〉. We use Fig. 4 to relate a unitary
transformation controlled on |0〉 to one controlled on |1〉,
where X is the standard CNOT gate. To break down the

X • X
=

U U

FIG. 4: Decomposition of a single controlled gate.

controlled-RY gate, one uses the decomposition shown in
Fig. 5, with

• • •
=

RY (2θs) RY (αs) RY (βs) RY (αs)

FIG. 5: The decomposition of the controlled RY gate.

αs =
θs
2

βs = −θs . (25)

Combining the above results our quantum circuit can
be decomposed in terms of 2 + 12N standard qubit gates
(single qubit gates and CNOT gates), showing that the
number of gates scales linearly with the number of steps.

V. NUMERICAL RESULTS

This section shows some numerical results for simula-
tions of the quantum algorithm and how it compares with
a naive classical MCMC implementation. The quantum
circuit is implemented with Qiskit [12]. To compute the
distributions of various observables, the algorithm is run
many times and each measured outcome (leaf and final
spin) is recorded. With these ‘events’, it is possible to
then compute the distribution of any observable. For il-
lustration, two observables are considered: the number
of times the system moved left and the first time the sys-
tem moved left. For these illustrations, the state always
starts as spin down.

A naive classical MCMC is constructed by sampling
from the squared amplitudes at each step. This classical
simulation does not contain any interference effects and

is therefore expected to produce the incorrect probability
distributions for a generic observable when λ 6= 0.

We run our simulations with N = 20, with constant
values of cos2(θ↑) = 0.5 and cos2(θ↓) = 0.8. Figure 6
shows histograms of the two observables for different val-
ues of λ while Fig. 7 shows how the expectation values
for the two observables scales with λ.

As expected, the expectation values are the same for
the naive MCMC and for the quantum algorithm when
λ = 0, but differ as interference effects are introduced.
We have verified that the results from the quantum al-
gorithm agree with the calculation of the full probability
distribution using the exponentially scaling method in-
troduced in Sec. II. The difference between the MCMC
and the quantum algorithm also goes to zero as λ→ π/2,
in which case the spin flips at each step in a deterministic
way and thus there are no interference effects.

0 5 10 15 20
First left branch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

= 0.0

AL = 0.5

AL = 0.8

Markov Chain Monte Carlo
Quantum (qiskit)

0 5 10 15 20
First left branch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

= 0.5
AL = 0.5
AL = 0.8

Markov Chain Monte Carlo
Quantum (qiskit)

0 5 10 15 20
Number of left branches

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Pr
ob

ab
ilit

y

= 0.0

AL = 0.5

AL = 0.8

Markov Chain Monte Carlo
Quantum (qiskit)

0 5 10 15 20
Number of left branches

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

= 0.5

AL = 0.5

AL = 0.8

Markov Chain Monte Carlo
Quantum (qiskit)

FIG. 6: Top: histograms of the first depth in which the tree
goes left. Bottom: the number of left branches from the
entire tree. Left: λ = 0 (no interference effects). Right:
λ = 0.5. Error bars correspond to Poission uncertainties

from the finite simulation.

VI. A QUANTUM-INSPIRED CLASSICAL
ALGORITHM

At each step the U↓ and U↑ gates are conditionally ap-
plied to a new qubit, but after that the qubit is left alone
until the final measurement at the end of the evolution.
Therefore, at each step one could measure the qubit on
which the U↓/↑ gates act on, store the result in a classical
register, reset it to the initial |0〉 state and reuse it for
the next step. Using this method of repeated measure-
ments and resetting the measured qubits one can rewrite
the circuit in terms of just two qubits as shown in Fig-
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FIG. 7: Left: the expectation value of the depth of the first
left branch as a function of λ. Right: the expectation value

for the number of total left branches as a function of λ.
Error bars correspond to Poission uncertainties from the

finite simulation.

ure 8. At each step one records the measurement on the

|ψ〉
U1

|0〉
U2

|0〉 . . .
UN

|f〉 R . . . R†

FIG. 8: A quantum algorithm that implements the circuit
shown in Figure 3; each Ui corresponds to the two controlled

operations in the earlier circuit.

second qubit, and at the very end the first qubit is mea-
sured. The combination of these measurements makes
up one event. Note that because this circuit can be im-
plemented using just 2 qubits, one can in fact find an
efficient quantum inspired classical algorithm.

We show how this classical algorithm works by consid-
ering the kth step. Because the second qubit is reset to
|0〉 after each step, the state at the beginning of the step
(before Uk is applied) will always be of the form

|ψk〉 =


a
(k)
1

0

a
(k)
3

0

 . (26)

After applying the Uk operation through matrix multi-
plication one finds

|ψk〉 → Uk |ψk〉 =


b
(k)
1

b
(k)
2

b
(k)
3

b
(k)
4

 , (27)

where the b
(k)
i are determined from the a

(k)
1 and a

(k)
3

through multiplication with the matrix Uk.
From this one finds that the probabilities P0 and P1 to

measure the second qubit as |0〉 or |1〉are given by

P0 = b
(k)
1

2
+ b

(k)
3

2
, P1 = b

(k)
2

2
+ b

(k)
4

2
(28)

The corresponding states after resetting the second qubit
to |0〉 are given by

|ψk〉0 =
1√
P0


b
(k)
1

0

b
(k)
3

0

 , |ψk〉1 =
1√
P1


b
(k)
2

0

b
(k)
4

0

 . (29)

Both of these states have form

|ψk+1〉 =


a
(k+1)
1

0

a
(k+1)
3

0

 , (30)

which has exactly the same form of the state we started
with, so that this process can be repeated again.

The same result can be obtained classically by the fol-
lowing classical algorithm for generating a single event,
which starts from a fermion in the superposition f =
af1 +

√
1− a2f2, and where we have defined the matrix

U ≡ Uk. The event is stored in the classical register
cf holding the type of fermion and cψ[step], which holds
whether a left branch happened at the given step. The
procedure is described algorithmically in Alg. (1).

Create empty vector for classical register cψ[m]
Set a1 = a and a3 =

√
1− a2

for step = 1 . . .m do
Set bi = Uijaj
Set P0 = (b21 + b23) and P1 = b22 + b24
if rand() < P0 then
c[step] = 0
a1 = b1/

√
P0 and a3 = b3/

√
P0

else
c[step] = 1
a1 = b2/

√
P1 and a3 = b4/

√
P1

end if
end for
if rand() < a21/(a

2
1 + a23) then

cf = 0
else
cf = 1

end if

ALGORITHM 1: Quantum inspired classical algorithm.

VII. CONCLUSIONS

In this work, we have introduced a system similar to
the quantum walk which smoothly interpolates between
a binary tree, amenable to naive classical MCMC ap-
proaches, and interfering trees with non-trivial quantum
phenomenology. When non-trivial interference effects are
introduced, a classical calculation of all possible out-
comes scales exponentially with the depth of the tree. We
have introduced a quantum algorithm that uses an inno-
vative remeasuring technique to sample from the inter-
fering trees with polynomial scaling with the depth of the
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tree. In addition to constructing an explicit quantum cir-
cuit to implement the algorithm, some numerical results
were presented with a simulated quantum computer. In-
terestingly, the simple nature of the quantum algorithm
inspired a classical approach that is still a Markov chain
and thus efficient.

Given the wide-ranging applicability of classical ran-
dom walks and quantum walks to aiding complex algo-
rithms, it is likely that the algorithm presented here will
be a useful addition to the quantum toolkit. The applica-
tion of the interfering trees algorithm and its variations
to empowering MCMC algorithms of physical systems
could empower many body simulations where quantum

effects were previously ignored. More complex simula-
tions and calculations will also be possible as quantum
software and hardware continue to improve.
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