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ABSTRACT OF THE DISSERTATION

Statistical methods for analyzing mRNA isoform

variation in large-scale RNA-seq data

by

Levon Demirdjian

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2018

Professor Ying Nian Wu, Chair

Alternative splicing (AS) is a major source of cellular and functional complexity in the

eukaryotic transcriptome and plays a critical role in many developmental processes and

diseases. Variations in AS are an important factor in disease-causing mutations, and it is

hypothesized that over half of all known disease-causing mutations affect splicing patterns.

Next-generation RNA sequencing (RNA-seq) technology has enabled the accumulation of

large-scale sequencing data from diverse human tissues and populations and has provided

an important resource for discovering variations in AS, yet the size and complexity of large-

scale RNA-seq datasets continue to pose significant data analysis challenges to researchers.

In this work, we propose new statistical methodologies that more effectively leverage

complex RNA-seq data structures for studying AS.

In the first part of this work, we propose a sensitive and robust methodology called

PAIRADISE for detecting genetic and allelic variation of alternative splicing in population-

scale transcriptome datasets. PAIRADISE uses a novel statistical framework to detect

allele-specific alternative splicing (ASAS) from population-scale RNA-seq data. A key

feature of PAIRADISE is a statistical model that aggregates ASAS signals across multi-

ple replicates of a given individual or multiple individuals in a population. PAIRADISE
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consistently outperforms alternative statistical models in simulation studies, and boosts

the power of ASAS detection when applied to replicate or population-scale RNA-seq data.

Next, we introduce the rMATS-Iso statistical framework for quantifying AS in mod-

ules with complex patterns of AS using replicate RNA-seq data. Importantly, rMATS-Iso

leverages an EM algorithm to disambiguate short RNA-seq reads which may be consistent

with multiple mRNA isoforms. As a result, rMATS-Iso can accommodate complex pat-

terns of AS within a splicing module where transcripts can be defined by any combination

of exons, splice site choices, etc. In addition, rMATS-Iso uses a likelihood ratio test to

detect differential splicing between sample groups, and quantifies the extent to which each

individual isoform contributes to the overall difference.

In conjunction with the continued development of next-generation sequencing meth-

ods, we anticipate that both PAIRADISE and rMATS-Iso will have broad utilities in

elucidating the landscape of alternative splicing variation as well as other forms of mRNA

isoform variation in human populations.
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The deepest solace lies in understanding,

This ancient unseen stream,

A shudder before the beautiful

-Nightwish
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CHAPTER 1

Introduction

Nearly seventy years ago and soon after the discovery of DNA, it was a commonly held

belief that each gene in the eukaryotic genome coded for a specific protein. According

to this view, the information contained within genes was transferred to RNA and even-

tually into proteins, with a one-to-one correspondence between input (gene) and output

(protein). A consequence of this assumption was the necessity of a vast number of genes,

nearly 100,000, to explain the extraordinary degree of phenotypic complexity in mam-

mals, yet all signs pointed to the fact that the actual number of genes was much smaller

(Nilsen and Graveley, 2010; Pertea and Salzberg, 2010). To make matters even more

complicated, additional observational evidence raised two other puzzles that this theory

could not explain. First, there was simply too much DNA in the eukaryotic genome to

correspond to the expected number of genes. Second, it was observed that RNA located

within the nucleus of vertebrate cells was much longer than the messenger RNA (mRNA)

in the cytoplasm, yet the tail ends of both the nuclear RNA and cytoplasmic mRNA

had the same structure (they both had the same 5’ cap structure and poly(A) tail at the

RNA’s 3’ end) (Berk, 2016; Nilsen and Graveley, 2010; Sharp, 2005). Clearly then, this

theory of information transfer from DNA to protein needed to be refined to comport with

contemporary empirical findings.

About three decades after these questions had been raised, scientists discovered that

a single gene coded for two distinct forms of immunoglobulin in antibodies (Alt et al.,

1980; Early et al., 1980; Nilsen and Graveley, 2010). Though the mechanisms driving
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this phenomenon were not understood at the time (the phenomenon itself was considered

to be unusual), an increasing body of evidence corroborated the finding that one gene

could code for a multitude of structurally and functionally distinct proteins. Over the

next few decades, experiment after experiment would confirm that this seemingly unusual

mechanism, alternative splicing, was not unusual at all; in fact, recent studies have shown

that alternative splicing is in fact a very common phenomenon, with nearly all multi-

exon human genes undergoing some form of alternative splicing (Pan et al., 2008; Wang

et al., 2008). In conjunction with processes such as the use of alternative transcription

start sites, RNA editing and post-translational modification, alternative splicing enables

an incredible degree of phenotypic diversity that is a hallmark of all complex organisms

(Nilsen and Graveley, 2010). Notably, the discovery of alternative splicing explained all

of the puzzles that had been plaguing scientists nearly thirty years earlier.

1.1 Transcriptomics and Alternative Splicing

The transcriptome is the set of all RNA molecules within a biological sample. There

can be significant variation in the transcriptomes of different tissues and cell types and

these variations eventually manifest themselves as changes in the proteins that the RNA

molecules code for. Before RNA is coded into protein, however, it is first converted into

mRNA, and through a process known as alternative splicing, a single gene can result in

multiple distinct mRNA transcripts, each of which is referred to as an mRNA isoform.

The field of transcriptomics aims to study these variations and their broader biological

consequences, e.g. their implications in disease phenomena.

Formally, pre-mRNA alternative splicing (AS) is a complex biological process involving

the differential use of exons (protein-coding regions of a gene) and splice sites, enabling a

number of distinct mRNA isoforms to be produced from a single gene (Fig 1.1A) (Nilsen

and Graveley, 2010; Sharp, 1994). Note that AS is different than constitutive splicing,
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where splicing proceeds the same way in every pre-mRNA of a given gene. The basic

patterns of AS include exon skipping, alternative 5’ and 3’ splice site choice, mutually

exclusive exons, intron retention, and alternative splicing coupled with alternative first

or last exons (Fig 1.1B). Exon skipping is the most common AS event in humans and

is characterized by the inclusion or removal of an exon (often referred to as a cassette

exon) from a pre-mRNA molecule, resulting in two distinct mRNA isoforms of which only

one contains the cassette exon. In addition to the basic patterns of AS, there exist more

complex patterns that further increase the number of possible mRNA isoforms generated

by a single gene. In extreme cases, such complex AS behavior can generate thousands or

even tens of thousands of distinct mRNA isoforms. A notable, albeit extreme example is

illustrated by the Drosophila melanogaster gene DSCAM (Down syndrome cell adhesion

molecule). The DSCAM gene contains four clusters of mutually exclusive exons (i.e.

exactly one exon from each cluster is transcribed), where the clusters are composed of 12,

48, 33, and 2 alternative exons respectively. As a result, this single gene can code for up

to 38,016 different mRNA isoforms, more than twice the number of genes in the species

(Venables et al., 2012; Schmucker et al., 2000).

Alternative splicing is regulated by extensive RNA-protein interactions involving cis el-

ements (elements within the pre-mRNA) as well as trans-acting factors - elements outside

of the pre-mRNA like RNA binding proteins which interact with these cis elements (Wang

and Burge, 2008; Fu and Ares, 2014). Cis elements involved in splicing can be divided

into two categories: splicing signals, and splicing regulatory elements. Splicing signals in-

clude the 5’ and 3’ splice sites defining the boundaries between an intron and its upstream

and downstream exon, respectively, and the branch site and polypyrimidine tract. These

splicing signals are recognized by the spliceosome, the core splicing machinery, and play

a critical role in exon and intron definition (Wang and Burge, 2008). In contrast, splicing

regulatory elements include exonic splicing enhancers (ESEs), intronic splicing enhancers
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Figure 1.1: (A) Alternative splicing permits the synthesis of multiple distinct mRNA

isoforms and proteins from a single gene. The orange and teal exons represent constitutive

exons, while the red exon is an alternatively spliced exon. (B) The basic patterns of

alternative splicing include exon skipping, alternative 3′/5′ splice site selection, mutually

exclusive exons, and intron retention. Black exons represent constitutive exons, while

red and teal exons represent alternatively spliced exons. Horizontal black lines represent

introns, and the line segments above and below the exons represent different patterns of

splicing.

(ISEs), exonic splicing silencers (ESSs) and intronic splicing silencers (ISSs), all of which

are regulatory motifs that interact with RNA-binding proteins to regulate splicing (Wang

and Burge, 2008; Wang and Cooper, 2007). The most thoroughly studied RNA-binding

proteins involved in splicing regulation include SR proteins (named for their repeating

regions of serine (S) and arginine (R) amino acids), which bind to both ESEs and ISEs to

promote exon splicing, and heterogeneous nuclear ribo-nucleoproteins (hnRNPs), which

bind to both ESSs and ISSs to suppress exon splicing (Nilsen and Graveley, 2010; Fu and

Ares, 2014; Lin and Fu, 2007; Martinez-Contreras et al., 2007).
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1.2 Alternative Splicing and Disease

Variations in alternative splicing are an important factor in disease-causing mutations,

and it is hypothesized that over half of all known disease-causing mutations affect splic-

ing patterns (Wang and Cooper, 2007; López-Bigas et al., 2005). Cancer and various

neurodegenerative diseases have been shown to be associated with departures from nor-

mal splicing patterns. Notably, several cis-acting mutations that modify the splicing of

cancer-relevant genes have been linked with cancer initiation and progression. For exam-

ple, exon 7 skipping in the CDH17 gene (which codes for liver intestine cadherin, a cell-cell

adhesion protein) has been associated with poor outcomes and high incidence of tumor

recurrence in patients with hepatocellular carcinomas and gastric and pancreatic cancers

(Srebrow and Kornblihtt, 2006). Importantly, alternative splicing occurs in every cate-

gory of cancer hallmarks (Liu and Cheng, 2013), with differential splicing between cancer

and healthy cells. Leveraging these differences in splicing patterns, recent advances in

statistical modeling have demonstrated the clinical utility of using mRNA isoform ratios

to predict cancer patient survival times (Shen et al., 2016). Proper identification of such

changes in alternative splicing can be a key step in disease classification, and can ulti-

mately enable the development of therapeutic approaches aimed at altering the splicing

patterns of target genes. A promising example of this approach concerns spinal muscular

atrophy, where artificial enhancement of exon 7 inclusion in the SMN2 gene has been

associated with restoration of SMN protein back to normal levels in cultured human cells

(Lorson et al., 2010; Hua et al., 2011; Kornblihtt et al., 2013).

1.3 Tissue Specific Alternative Splicing

Variations in alternative splicing play a vital role in tissue-specific functions, and tissue

specific AS tends to be associated with functional changes in the underlying tissues (for

5



example, AS events in brain tissue are associated with neural-specific functions) (Korn-

blihtt et al., 2013). An interesting case is that of infrared detection in vampire bats.

Alternative splicing of the TRPV1 (transient receptor potential cation channel V1) gene

lowers thermal activation of the TRPV1 channel to boost vampire bats’ infrared radiation

detection capabilities. This AS event is both species specific and tissue specific, as this

AS event occurs in the trigeminal ganglia of the bats but not in the dorsal root ganglia

(Gracheva et al., 2011). Recognizing the importance of tissue-specific and species-specific

splicing, it was long speculated that AS is an evolutionary advantage distinguishing hu-

mans from other primates and primates from other vertebrates. Empirical findings have

corroborated this viewpoint by showing increased AS frequency in primate organ tissue

compared to other vertebrate species. Moreover, of all species and tissue types studied,

the human cerebellum displays the most pronounced degree of AS (Barbosa-Morais, Nuno

L et al., 2012).

1.4 High-Throughput Analysis of Alternative Splicing

Before the advent of RNA-sequencing in the late 2000’s, alternative splicing was quan-

tified primarily using three technologies: reverse transcription polymerase chain reaction

(RT-PCR), expressed sequencing tags (ESTs), and microarrays. In RT-PCR, reverse

transcriptase enzymes are used to convert RNA molecules into their complementary DNA

sequences, which are then amplified using PCR (Percifield et al., 2014; Farrell, 2010). Se-

quencing of ESTs, which are short segments of full-length mRNA sequences, provided an

unprecedented view into the diversity of mRNA and the landscape of AS in humans (Lee

et al., 2004; Xing et al., 2006). In contrast to low throughput techniques like RT-PCR

and ESTs, splicing microarrays provide a high-throughput solution for studying the ef-

fects of splicing across biological conditions, though like RT-PCR, splicing microarrays

are limited to known splicing events (Lee et al., 2004).
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The recent development of next-generation RNA-sequencing (RNA-seq) technology

has greatly facilitated the measurement and analysis of eukaryotic transcriptomes in a

high-throughput manner, and has led to the discovery of novel splicing isoforms of known

genes (Wang et al., 2009; Griffith et al., 2010). Briefly, an RNA-seq experiment entails

converting a population of RNA to a library of complementary DNA (cDNA) fragments

and attaching sequencing adaptors to each cDNA fragment. The molecules are then

sequenced either from one end or both ends to obtain short sequences, which are sub-

sequently aligned to a reference genome or transcriptome (Wang et al., 2009). Aligning

the sequences to a reference genome or transcriptome is an important step that allows

researchers to known how many sequences are generated from each exon in the region

being studied.

RNA-seq can detect novel genes and mRNA isoforms, and the massively parallel nature

of RNA-seq allows billions of short sequences, known as reads, to be generated in a single

sequencing run (Wang et al., 2009); consequently, RNA-seq facilitates the quantitation of

alternative splicing events. Due to the popularity of RNA-seq and continued reduction

in the cost of sequencing, many large-scale RNA-seq datasets have been made publically

available, including data from the Genotype-Tissue Expression (GTEx) study (Ardlie and

Coauthors, 2015), the Geuvadis RNA-seq data of 445 B-lymphocyte cell lines from five

populations (Lappalainen and Sammeth, 2013), as well data from The Cancer Genome

Atlas (TCGA) study, which includes samples from over 10,000 individuals with 33 cancer

types. Comparison of the splicing regulatory machinery between different tissues using

RNA-seq has revealed substantial variation in splicing behavior between tissues (Wang

and Cooper, 2007; Wang et al., 2009), underscoring the benefits of utilizing RNA-seq to

compare AS between distinct biological conditions.
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1.5 Quantifying Alternative Splicing Using RNA-seq

A commonly used metric for the quantification of alternative splicing is the PSI value ψ

(Percent Spliced In), which is defined to be the percentage of a gene’s mRNA transcripts

which contain a given exon or splice site. For simple exon-skipping events, ψ values

are estimated using RNA-seq reads supporting the inclusion isoform (i.e. reads mapping

to the alternative exon body or to splice junctions of the alternative exon) or skipping

isoform (i.e. reads joining the two constitutive exons) (Katz et al., 2010). For example,

one of the simplest estimators of ψ is given by

ψ̂ =
`SI

`SI + `IS
, (1.1)

where I is the number of reads supporting the inclusion isoform, S is the number of reads

supporting the skipping isoform, and where `I and `S are constants that account for the

different lengths of both isoforms (discussed in more detail in the next chapter). The

estimator ψ̂ in (1.1) is often referred to as the naive estimate of ψ, since it ignores an

important source of experimental variability: the total number of RNA-seq reads clearly

affects the confidence in any estimate of PSI, with higher read coverage translating into

more confident estimates of PSI, and thus any robust statistical framework modeling

PSI values must consider this source of experimental variability. In fact, capturing and

modeling this source of uncertainty has been shown to boost the results of subsequent

statistical analyses (Shen et al., 2016; Katz et al., 2010; Shen et al., 2014).

A number of computational tools that utilize short-read RNA-seq data have recently

been developed for quantifying and analyzing mRNA isoform expression and AS variation.

These tools can be grouped into two categories: transcript-based tools, and event-based

tools (see Park et al. (2018) for a comprehensive discussion comparing both approaches).

Briefly, transcript-based tools aim to estimate the abundance and proportions of full-

length mRNA isoforms. Methods falling into this category typically assign reads to their
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corresponding full-length mRNA isoforms by using a generative statistical model in con-

junction with an expectation-maximization (EM) type algorithm (Xing et al., 2006; Demp-

ster et al., 1977) after aligning short RNA-seq reads to a reference transcriptome (though

recent innovations in pseudoalignment (Bray et al., 2016) and lightweight mapping (Patro

et al., 2017) algorithms have precluded the need for traditional read alignment). Event-

based tools, on the other hand, seek to directly quantify AS and detect differential AS

events using statistical methods. Some of the most popular event-based tools include

MISO (Katz et al., 2010), rMATS (Shen et al., 2014), MAJIQ (Vaquero-Garcia et al.,

2016), and SpliceTrap (Wu et al., 2011). Though these models differ in their underlying

statistical assumptions, use of replicates, definition of splicing events etc., their estimates

of psi values are largely in sync with one another.

1.6 Goal of this Dissertation

Though the development of RNA-seq technology has revolutionized transcriptome anal-

ysis, including the analysis of mRNA isoform variation, the size and complexity of large-

scale RNA-seq datasets continue to pose significant data analysis challenges to researchers.

To address this difficulty, we developed new statistical methodologies for the analysis of

alternative splicing that leverage such complex data structures in more nuanced ways.

This dissertation primarily focuses on two complex data structures, the first of which

is paired RNA-seq data, where the data are in the form of pairs of measurements taken

on matched samples across groups. With the right analytical tools, paired RNA-seq data

can help identify splicing differences among groups of matched samples, e.g. paired tu-

mor vs. normal adjacent samples or heterozygous alleles in an allele-specific alternative

splicing analysis. Importantly, we develop a sensitive and robust statistical methodology

for paired RNA-seq data that addresses a gap in the existing literature on allele-specific

alternative splicing, where the existing methods tend to be ad-hoc and fail to pool splicing
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signals from multiple samples. Another challenge owing to the combinatorial nature of

alternative splicing is the reconstruction of full-length isoforms from RNA-seq sequence

fragments. RNA-seq reads do not capture the full-length mRNA sequence, but rather

shorter fragments of the target sequence (Wang et al., 2009). As a result, it can be diffi-

cult to infer the underlying isoform structure that generated the RNA-seq read in the case

where more than one isoform is compatible with the generated sequence. Furthermore, it

is difficult to assess the functional impact of a splice variant without knowing its corre-

sponding full-length transcript (Boue et al., 2002). To address this difficulty, we develop

a new statistical framework called rMATS-Iso which is a generalization of the existing

rMATS statistical model for differential alternative splicing analysis. By redefining the

observed data to be isoform consistency counts instead of counts unique to each isoform,

rMATS-Iso circumvents the central problem posed by ambiguous RNA-seq reads.

The methods we develop address both of these problems and provide a fundamental set

of tools for elucidating the transcriptome. We are confident that these tools will help shed

light on important biological processes and will ultimately enhance our understanding of

human health.
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CHAPTER 2

Detecting Allele-Specific Alternative Splicing from

Population-Scale RNA-seq Data

The analysis of alternative splicing often involves a study design in which two samples

are matched to one another; this type of design is natural, for example, when compar-

ing splicing levels in paired tumor-normal samples or in pre-post therapy samples. In

general, a paired design can increase statistical power by reducing individual level vari-

ation. In this chapter, we introduce a statistical and computational framework called

PAIRADISE developed specifically for paired RNA-seq data, where the data are in the

form of pairs of measurements taken on matched samples across sample groups. In partic-

ular, PAIRADISE fills an important methodological gap for studying the role of genetic

variation in alternative splicing, namely, the analysis of allele-specific alternative splicing

(ASAS). By treating the two alleles of an individual as paired, and multiple individuals

sharing a heterozygous SNP as replicates, PAIRADISE frames ASAS detection as a sta-

tistical problem for identifying differential alternative splicing from RNA-seq data with

paired replicates.

We begin this chapter with an introduction to genetic variation of alternative splicing,

highlighting the differences between the sQTL and ASAS paradigms. Next, we introduce

the PAIRADISE statistical framework, comparing and contrasting it to its precursor,

the rMATS paired statistical model. We demonstrate the performance of PAIRADISE

using a simulation study, where PAIRADISE outperforms every alternative statistical
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model in every simulation setting. Finally, we apply PAIRADISE to replicate RNA-

seq data including a population-scale RNA-seq dataset, and demonstrate the ability of

PAIRADISE ASAS analysis to detect the effects of rare variants on alternative splicing.

2.1 Introduction

As discussed in Chapter 1, the relationship between aberrant alternative splicing (AS)

and disease has been thoroughly studied over the last several decades and is relatively

well understood. In contrast, the relation between naturally occurring variability in AS

and phenotypic diversity and disease susceptibility in humans has only recently received

commensurate attention, thanks in large part to the advent of RNA-seq and the accumu-

lation of population-scale RNA-seq data for diverse human tissues and cell types (Park

et al., 2018).

Genetic variation of alternative splicing, such as cis-acting sequence polymorphisms,

can modulate complex traits and diseases in human individuals (Lu et al., 2012; Manning

and Cooper, 2017). Splicing quantitative trait loci (sQTL) analysis is a widely used

approach to uncover genetic variation of alternative splicing. In an sQTL analysis, the

splicing level of a given exon or splice site is treated as a quantitative trait and tested

for association with genotype across a population. A variety of computational tools have

been developed for identifying sQTLs (Zhao et al., 2013; Ongen and Dermitzakis, 2015;

Monlong et al., 2014; Jia et al., 2015; Yang et al., 2017), including GLiMMPS (Zhao

et al., 2013), a generalized linear mixed model for sQTL association testing that accounts

for the measurement uncertainty of mRNA isoform ratios in RNA-seq data. Analyses

of population-scale RNA-seq and genotype data have revealed thousands of sQTLs in

human genes, including numerous sQTLs associated with genome-wide association study

(GWAS) signals of human traits or diseases (Park et al., 2018).
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An alternative strategy for uncovering associations between sequence polymorphisms

and alternative splicing is allele-specific alternative splicing (ASAS) analysis. ASAS anal-

ysis identifies differential splicing events between mRNA transcripts originating from two

different haplotypes within an individual. Specifically, heterozygous SNPs present in mR-

NAs are used to assign RNA-seq reads to two alleles, and differential splicing between

the two alleles is tested using RNA-seq read counts (Lappalainen and Sammeth, 2013; Li

et al., 2012; Tilgner et al., 2014). A feature of the ASAS approach, compared with the

sQTL approach, is that the two alleles of a single individual should share an identical

cellular environment, thus splicing differences between the two alleles should arise from

genetic effects. However, while a number of statistical models and computational tools

have been developed for sQTL analysis (Zhao et al., 2013; Ongen and Dermitzakis, 2015;

Monlong et al., 2014; Jia et al., 2015; Yang et al., 2017), rigorous methods for ASAS

analysis are lacking. The approaches used in previous work were ad hoc and had impor-

tant methodological limitations. ASAS was often discovered as allele-specific expression

of individual exons, but such exon expression is itself confounded by allele-specific gene

expression (Tilgner et al., 2014; Skelly et al., 2011; Van De Geijn et al., 2015). More-

over, ASAS events were detected in one cell line or individual at a time, by comparing

isoform-specific read counts (e.g. Fisher exact test of exon inclusion vs skipping counts)

between the two alleles (Lappalainen and Sammeth, 2013; Li et al., 2012; Tilgner et al.,

2014). However, by performing ASAS analysis for each individual separately, signals from

multiple individuals were not combined, likely reducing the statistical power.

2.2 The rMATS Paired Statistical Model

As mentioned above, there are a lack of robust statistical methods for the analysis of

ASAS. A clever way to address this shortcoming is to frame the problem of ASAS detection

as a specialized case of differential AS analysis with paired replicates; in this scenario, two
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alleles within each individual are paired while replicate samples, or multiple individuals

in a population, represent replicates. Importantly, setting the problem up in this manner

allows one to leverage existing methods for differential AS analysis with paired replicates.

One such popular tool is the rMATS paired statistical model (Shen et al., 2014), which

utilizes a hierarchiecal design to simultaneously capture the estimation uncertainty in

exon inclusion levels within individual samples/replicates, as well as the uncertainty across

samples/replicates.

For the exon skipping type of AS event, the rMATS paired model utilizes RNA-seq

reads specific to the exon inclusion and exon skipping isoforms in order to estimate exon

inclusion levels in two sample groups, then uses a likelihood ratio test to detect differential

splicing (see Figure 2.1 for a schematic diagram of the rMATS framework). For exon i,

sample group j = 1, 2, and replicate k = 1, . . . ,M , let Iijk denote the count of RNA-seq

reads unique to the exon inclusion isoform and let Sijk denote the count of reads unique to

the exon skipping isoform. In addition, let ψijk denote the corresponding exon inclusion

level; rMATS considers ψi1k and ψi2k to be latent, unobserved variables specified by the

following bivariate normal distribution:




logit(ψi1k)

logit(ψi2k)


 iid∼ Normal

(
µi =




logit(ψi1)

logit(ψi2)


 ,Σi =




σ2
i1 ρiσi1σi2

ρiσi1σi2 σ2
i2



)

(2.1)

for k = 1, . . . , K. The distribution in (2.1) models the variability in exon inclusion levels

between replicates; notably, (2.1) utilizes a correlation parameter ρi to model the joint

variability of logit(ψi1k) and logit(ψi2k), though the underlying biological interpretation of

ρi is unclear. logit(ψi1), logit(ψi2), σ
2
i1, and σ2

i2 represent group specific mean and variance

parameters, respectively.

In addition to modeling the group specific exon inclusion levels, the rMATS paired

model captures the variability in RNA-seq read counts for each sample group using the
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Figure 2.1: rMATS paired statistical model for differential alternative splicing analysis

(figure reproduced from (Shen et al., 2014)). rMATS uses a hierarchical design to model

the uncertainty resulting from the RNA-seq read coverage, as well as the variability in

splicing levels across individuals/replicates from a population.

following binomial distributions:

Ii1k|ψi1k ∼ Binomial

(
ni1k = Ii1k + Si1k, pi1k(ψi1k) =

`iIψi1k
`iIψi1k + `iS(1− ψi1k)

)
,

Ii2k|ψi2k ∼ Binomial

(
ni2k = Ii2k + Si2k, pi2k(ψi2k) =

`iIψi2k
`iIψi2k + `iS(1− ψi2k)

)
, (2.2)

where `iI and `iS are the effective read lengths (i.e. number of unique isoform specific

read positions) of the exon inclusion and exon skipping isoforms, respectively. pi1k and

pi2k are deterministic length normalization functions which normalize the exon inclusion

levels by the effective lengths of the isoforms:

pijk(ψijk) =
`iIψijk

`iIψijk + `iS(1− ψijk)
, j = 1, 2.

The probability of observing an RNA-seq read corresponding to a specific isoform depends

not only on the probability ψ, but also on the length (number of base pairs) of the isoform.

For example, when ψ = 0.5 and in the absence in any bias in RNA-seq read coverage, we

can expect more RNA-seq reads to correspond to the inclusion isoform simply by virtue of

the fact that there are more read positions corresponding to the inclusion isoform than for
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Figure 2.2: (A) When the number of samples/replicates is small, estimation of the rMATS

paired model’s correlation parameter is inaccurate and skewed towards 1 and −1. (B)

This issue resolves with larger sample sizes. In both plots, the true correlation parameter

ρ is equal to 0.

the skipping isoform. Thus, the function pijk is necessary to control for the confounding

effects of the the different lengths of each isoform.

Though the rMATS paired model accounts for the distinct structure of paired RNA-seq

data, it has several limitations. First, the model relies on the estimation of the correlation

parameter ρi between the two paired sample groups, the interpretation of which is not

straightforward. Moreover, when the number of replicates in a sample group is small, the

estimation of the correlation parameter can be inaccurate (Figure 2.2). Finally, rMATS is

limited to the RNA-seq analysis of only 5 types of pre-defined alternative splicing events.
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2.3 The PAIRADISE Statistical Model

To address the limitations of the rMATS paired test, we developed PAIRADISE (Paired

Analysis of Allelic Differential Splicing Events), a more general framework for testing

count based ratio differences between sample groups. In addition to accounting for the

uncertainty due to RNA-seq read coverage, PAIRADISE directly models the average dif-

ference in logit exon inclusion levels between two groups and circumvents the problem

of estimating a correlation parameter. Moreover, PAIRADISE can be applied to several

types of mRNA isoform variation, including alternative splicing, alternative polyadenyla-

tion, and RNA editing. Here we use alternative splicing, specifically exon skipping events,

to illustrate the model and computational procedure.

PAIRADISE utilizes a hierarchical framework to detect ASAS by modeling the paired

differences between the two alleles across a population. The PAIRADISE model simul-

taneously accounts for both the estimation uncertainty of alternative splicing levels in

each allele within each individual (or replicate), and the variability in alternative splicing

levels between alleles and across individuals (or replicates). The defining characteristic

of the PAIRADISE statistical model is a simple and intuitive additive structure defining

the variability in exon inclusion levels. More precisely, PAIRADISE assumes the logit

transformed exon inclusion levels are given by

logit(ψi1k) = αik + εi1k,

logit(ψi2k) = αik + δi + εi2k, (2.3)

where the subject effect for exon i, αik, is assumed to follow a normal distribution

αik
iid∼ N(µi, σ

2
i ), k = 1, . . . ,M ; (2.4)

in other words, αi1, . . . , αiM all follow the same normal distribution with mean µi and

variance σ2
i . In expression (2.3), we are assuming that
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εi1k
iid∼ N(0, σ2

i1),

εi2k
iid∼ N(0, σ2

i2), k = 1, . . . ,M, (2.5)

and that εi1k and εi2k are independent of each other. The variable δi in (2.3) measures

the expected difference between logit(ψi2k) and logit(ψi1k) conditional on αik, i.e.

δi = E [logit(ψi2k)− logit(ψi1k)|αik] . (2.6)

Expression (2.3) illustrates how PAIRADISE decomposes the variability in exon inclusion

levels into two sources: the variability that is common to both alleles/groups (given by

the subject effect αik), and the variability that is unique to each allele/group (given by

εi1k and εi2k). Equations (2.3), (2.4), and (2.5) imply the following joint distribution of

logit(ψi1k) and logit(ψi2k):







logit(ψi1k)

logit(ψi2k)



∣∣∣∣∣αik, σi1, σi2, δi


 ∼ N







αik

αik + δi


 ,




σ2
i1 0

0 σ2
i2





 . (2.7)

The distribution in (2.7) illustrates a key advantage of PAIRADISE over the rMATS

paired model: conditional on the subject effect αik, logit(ψi1k) and logit(ψi2k) are inde-

pendent of eachother. Therefore, there is no need to estimate an additional correlation

parameter as in the rMATS paired framework. Note that the likelihood function used

in the optimization of the PAIRADISE model is based on the conditional distribution in

(2.7), and not the marginal distributions given in 2.3 (more details about the optimization

procedure are given in the appendix, section 2.11).

The second layer of the PAIRADISE statistical model, i.e. the distributions of observed

RNA-seq read counts Ii1k and Ii2k, is the same as the corresponding layer in rMATS given

in (2.2). A schematic diagram illustrating the PAIRADISE statistical model is given in

Figure 2.3.
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Figure 2.3: The PAIRADISE statistical framework for identifying allele-specific alterna-

tive splicing (ASAS). (A) ASAS analysis aims to identify differential alternative splicing

between two alleles within an individual. Heterozygous SNPs are used to assign RNA-seq

reads to specific alleles. (B) PAIRADISE aggregates ASAS signals across multiple repli-

cates of a given individual or multiple individuals in a population. (C) Summary of the

PAIRADISE statistical model.

In order to detect differential splicing between sample groups, PAIRADISE uses a

likelihood ratio test to test the null hypothesis δi = 0 against the alternative hypothesis

δi 6= 0 (a one sided alternative is also straightforward to implement). Since the variables

logit(ψi1k), logit(ψi2k) and αik are regarded as latent (unobserved) variables, we utilize an

optimization procedure that first calculates the maximum likelihood estimates (MLEs) of

the observed data likelihood based on the current estimates of the latent variables, then

using the current MLEs, updates the latent variables by maximizing the complete data

likelihood. This procedure is performed under both the null and alternative hypotheses

and iterated until the model parameters converge. The test statistics of the likelihood

ratio test are then compared to a χ2 distribution with one degree of freedom to derive the

p-value. We utilize the Benjamini-Hochberg method to calculate the false discovery rates

(FDRs) from p-values. Derivation of the likelihood functions and optimization algorithm

are given in the appendix, Section 2.11.
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2.4 Evaluating PAIRADISE Using a Simulation Study

To evaluate the performance of PAIRADISE, we compared it to four alternative statistical

models using a simulation study. The four alternative models were the rMATS paired test

(Shen et al., 2014), paired t-test, paired Wilcoxon signed-rank test, and Fisher’s method.

The paired t-test and paired Wilcoxon signed-rank test were conducted on point estimates

of ψ values (which we denote by ψnaive) derived from RNA-seq read counts, i.e.

ψnaive =
`SI

`SI + `IS
, (2.8)

while ignoring the estimation uncertainty of ψ as influenced by sequencing coverage.

Fisher’s method uses Fisher’s exact test on allele-specific read counts to obtain a p-value

of ASAS for each individual separately, then uses the Fisher’s combined probability test

to aggregate p-values across all individuals. We designed a set of simulation studies with

varying sample size (number of replicates) and variability among replicates, and measured

the performance of each method by analyzing its receiver operating characteristic (ROC)

curve for the task of classifying a simulated event as being differentially spliced versus

non-differentially spliced.

More precisely, each simulation was performed by generating 5, 000 exon skipping

events and varying the number of replicates (M = 3, 5, 10, 20, 50) as well as the variabil-

ity among replicates, i.e. σi1, σi2, and σi. These standard deviations were chosen from

the 1st, 2nd, and 3rd quartiles (corresponding to low, medium, and high variability) of

their corresponding estimated distributions obtained from applying PAIRADISE to the

Geuvadis CEU dataset (this dataset is described in more detail in section 2.6). Since the

true values of the parameter δi were not known, to generate null (δi = 0) and alternative

(δi 6= 0) cases, we set the middle 50% of the empirical estimates of δi to 0, then ran-

domly sampled one value per event; as a result, roughly 50% of the events were generated

from the null hypothesis of no splicing difference between groups. The remaining simu-
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lation parameters, i.e. the total read counts ni1k and ni2k, effective lengths `iI and `iS,

and mean logit inclusion level µi, were similarly obtained empirically from the Geuvadis

dataset. The subject effects αik were sampled from the normal distribution in (2.4) using

the empirically sampled parameter values. The logit exon inclusion values logit(ψi1k) and

logit(ψi2k) were then sampled from the normal distributions given in (2.7) using the sim-

ulated value of αik and the empirically sampled parameter values. The read counts of the

exon inclusion isoforms were then sampled from the binomial distributions given by (2.2)

using the generated values for the exon inclusion levels as well as the sampled values for

the total read counts and effective lengths. PAIRADISE and the other paired tests were

applied to the simulated data to compute the p-value and FDR of differential splicing for

each simulated event.

PAIRADISE outperformed all other statistical models in every simulation setting,

based on the area under curve (AUC) of the ROC curve as well as the true positive rate

(TPR) at 5% false positive rate (FPR; see Figure 2.4). The increased performance of

PAIRADISE over other models was even more pronounced when the sample size was

small. For example, in the simulations with 3 replicates and low variance, the AUC

for PAIRADISE, rMATS paired test, paired t-test, paired Wilcoxon test, and Fisher’s

method were 81%, 74%, 74%, 71%, and 73%, respectively. PAIRADISE continued to

outperform other methods in simulations with medium or high variance. We observed

the same trend for the TPR at 5% FPR. Additionally, we note that in the low or medium

variance setting, other models required roughly 2-3 times larger sample size to achieve

the same AUC and TPR values as a sample size of 3 replicates for PAIRADISE. We

also note that while almost all methods had better performance with increased sample

size, Fisher’s method had worse performance with large sample size in the medium and

high variance settings. This is not surprising, as Fisher’s method is particularly sensitive

to outliers in large datasets (Loughin, 2004; Whitlock, 2005). Taken together, these

21



A

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Low Variance

Number of Replicates

Ar
ea

 U
nd

er
 th

e 
Cu

rv
e 

(A
UC

)

3 5 10 20 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Medium Variance

Number of Replicates

Ar
ea

 U
nd

er
 th

e 
Cu

rv
e 

(A
UC

)

3 5 10 20 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

High Variance

Number of Replicates

Ar
ea

 U
nd

er
 th

e 
Cu

rv
e 

(A
UC

)

3 5 10 20

B C

PAIRADISE
rMATS Paired
Paired T
Paired Wilcoxon
Fisher’s Method

50

D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Low Variance

Number of Replicates

TP
R

 a
t 5

%
 F

PR

3 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Medium Variance

Number of Replicates

TR
P 

at
 5

%
 F

PR

3 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

High Variance

Number of Replicates

TP
R

 a
t 5

%
 F

PR

3 5 10 20

E F

PAIRADISE
rMATS Paired
Paired T
Paired Wilcoxon
Fisher’s Method

50

Figure 2.4: Simulation studies to compare the performance of PAIRADISE, rMATS paired

model, paired t-test, paired Wilcoxon signed-rank test, and Fisher’s method. (A-C) The

area under curve (AUC) of all methods in simulation settings with the number of replicates

equal to 3, 5, 10, 20, and 50, and three settings of variability (low, medium, high) sampled

from the 1st, 2nd, and 3rd quartile of the empirical variance estimated from the Geuvadis

dataset. (D-F) The true positive rate (TPR) at 5% false positive rate (FPR) of all methods

in various simulation settings

simulation studies indicate that PAIRADISE outperforms other statistical models and

requires fewer replicates to achieve the same level of performance.

2.5 Analysis of ASAS in the GM12878 Cell Line

To illustrate how PAIRADISE could be utilized to discover ASAS events in replicate

RNA-seq data, we applied PAIRADISE to six RNA-seq biological replicates of the hu-
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Gene ASAS exon (hg19) ASAS SNP GWAS trait (SNP)

BAZ2A -chr12:57024559-57024649 rs2255074 Mean platelet volume (rs2950390)

HLA-DOA -chr6:32974856-32974992 rs365066 Platelet counts (rs399604)

HLA-DPA1 -chr6:33036795-33036984 rs1126543 Hepatitis B (rs3077)

ORC4 -chr2:148733470-148733544 rs897172 Urate levels (rs2307394)

PRR4 -chr12:11273608-11273779 rs2597984 Bitter taste perception (rs2708377)

SP110 -chr2:231037559-231037733 rs13018234 Obesity-related traits (rs13010639)

TLR1 -chr4:38806374-38806408 rs5743565 Alcohol consumption (rs4543123),

Allergic sensitization (rs17616434),

Asthma and hay fever (rs4833095),

Helicobacter pylori serologic status (rs10004195)

TOMM7 -chr7:22857618-22857667 rs1054471 Fibrinogen (rs2286503)

TRDMT1 -chr10:17210839-17210916 rs2273734 Telomere length (rs10904887)

VAMP8 +chr2:85806134-85806290 rs1009 Prostate cancer (rs10187424)

Table 2.1: By combining the ASAS signals from all six GM12878 RNA-seq replicates,

PAIRADISE identified 13 ASAS events linked (r2 > 0.8) to GWAS signals.

man GM12878 B-lymphocyte cell line from a European female (more information about

the data is provided in subsection 2.11.5). This setup allowed us to gauge the ability of

PAIRADISE to aggregate ASAS signals over multiple RNA-seq replicates of a given in-

dividual. Using the SNP and haplotype information of GM12878, PAIRADISE identified

121 significant ASAS events at FDR ≤ 10%, of which 13 were in high (r2 > 0.8) link-

age disequilibrium (LD) with GWAS trait/disease-associated SNPs in the NHGRI GWAS

catalog (a list of these SNPs can be found in Table 2.1).

By combining the ASAS signals from all six GM12878 RNA-seq replicates, PAIRADISE

substantially increased the power of ASAS detection. Analyzing each individual replicate

in isolation resulted in an average of 51 (between 30 to 61) significant ASAS events in each

replicate; in contrast, applying PAIRADISE to all six replicates jointly resulted in 121

significant events. To validate the differential splicing events identified by PAIRADISE,

we also performed an sQTL analysis using the GLiMMPS software (Zhao et al., 2013).

More specifically, we applied GLiMMPS to the 89 CEU (Utah Residents with European
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Figure 2.5: By aggregating signals from all six GM12878 RNA-seq replicates, PAIRADISE

substantially boosts the power of ASAS detection. (A) The percentage of significant

ASAS events that are also significant sQTL events against the ranking of ASAS events by

PAIRADISE or in individual replicates. (B) The percentage of significant sQTL events

that are also significant ASAS events against the ranking of ASAS events by PAIRADISE

or in individual replicates. Both plots correspond to events analyzed by both PAIRADISE

and GLiMMPS.

Ancestry) B-lymphocyte cell lines, whose RNA-seq and genotype data were available from

the Geuvadis project.

Since PAIRADISE and GLiMMPS each use a different set of criteria for filtering out

alternative spicing events before analysis, we restricted the present comparison to only fo-

cus on alternative exons surviving both sets of filters (see subsections 2.11.7 and 2.11.8 for

more about the ASAS and sQTL specific filters we implemented). At FDR ≤ 10% (per-

mutation FDR based on 10 permutations), GLiMMPS identified 163 significant sQTLs

in the CEU population, including 117 that were also analyzed by PAIRADISE for ASAS

signals. To measure the concordance of the ASAS results with the sQTL results, we

plotted the percentage of significant ASAS events that were also significant sQTL events

(Figure 2.5A), as well as the percentage of significant sQTL events that were also signifi-
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cant ASAS events (Figure 2.5B), against the ranking of ASAS events by PAIRADISE or

in individual replicates. By aggregating all six biological replicates together, PAIRADISE

identified two to four times as many significant ASAS events compared to the analysis of

each individual replicate in isolation; moreover, using all six replicates together resulted

in comparable and often higher concordance with the sQTL results. For example, 46%

to 59% of ASAS events identified in individual replicates were also significant sQTLs. By

contrast, 62% of the top 50 and 49% of all PAIRADISE ASAS events were also significant

sQTLs.

2.6 Population-Scale Analysis of ASAS

We tested PAIRADISE on a population-scale RNA-seq dataset containing data from

multiple populations and multiple individuals within those populations. Specifically, we

applied PAIRADISE to the Geuvadis RNA-seq data of 445 B-lymphocyte cell lines taken

from 89 CEU (Utah Residents with European Ancestry), 92 FIN (Finnish in Finland),

86 GBR (British in England and Scotland), 91 TSI (Toscani in Italia), and 87 YRI

(Yoruba in Ibadan, Nigeria) individuals with both RNA-seq and genotype data. We

tested PAIRADISE on each population separately, and at FDR ≤ 10%, PAIRADISE

identified 111 ASAS events in CEU, 144 in FIN, 130 in GBR, 151 in TSI, and 180 in YRI

respectively (Figure 2.6A). In addition to identifying 197 population-specific ASAS events,

PAIRADISE identified 17 events that were significant in all five populations. There was a

higher degree of overlap in ASAS events between the four European populations, while the

YRI African population had the largest number, 84, of population-specific ASAS events.

As a basis for comparison, we also conducted an sQTL analysis on the Geuvadis dataset

using GLiMMPS. At FDR ≤ 10%, GLiMMPS identified 163 significant sQTL events in

CEU, 138 in FIN, 148 in GBR, 136 in TSI, and 212 in YRI (Figure 2.6B). GLiMMPS

identified 301 population specific sQTL events, and 13 events that were significant in all
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Figure 2.6: PAIRADISE analysis of ASAS in five Geuvadis populations. (A) Mosaic plot

showing the number of significant ASAS events shared between five populations. Values

in the top rectangles represent population specific ASAS events and values in the bottom

rectangles represent ASAS events shared by all five populations. (B) Mosaic plot showing

the number of significant sQTL events shared between five populations. Values in the top

rectangles represent population specific sQTL events and values in the bottom rectangles

represent sQTL events shared by all five populations. (C) Venn diagrams of ASAS events

identified by PAIRADISE and sQTL events identified by GLiMMPS. The two outlying

circles in each Venn diagram represent events only considered by one method due to

method-specific filters and limitations. The p-values of overlap between ASAS events and

sQTL events over random expectation (computed using Fisher’s exact test) are provided

for each population.
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Figure 2.7: Concordance between sQTL p-values computed using GLiMMPS, and ASAS

p-values computed using PAIRADISE on the five populations from the Guevadis dataset.

The correlations ranged from 0.59 to 0.74 and were significant in all five populations.

five populations. As was the case for ASAS events, the YRI African population had the

largest number, 101, of population-specific sQTLs.

Next, we compared the results of the ASAS analysis using PAIRADISE with the

results of the sQTL analysis performed using GLiMMPs. There was a strong concor-

dance between the ASAS signals detected by PAIRADISE and sQTL signals detected

by GLiMMPS. Due to method-specific filters and limitations (discussed in subsections

2.11.7 and 2.11.8), certain splicing events in each population were only analyzed by one

approach and not the other. For events analyzed by both approaches, the – log10 of ASAS

p-values and sQTL p-values were correlated in all five populations (Pearson correlation

p ≤ 2.2e−16, Figure 2.7). In addition, there was a significant overlap between significant
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ASAS events and significant sQTL events in each population (Fig. 2.6C).

2.7 Functional Splicing Variation Identified by PAIRADISE

The ASAS events identified by PAIRADISE in Geuvadis often had important biological

implications. For example, exon 4 of HLA-DQB1 (major histocompatibility complex,

class II, DQ beta 1) had significant ASAS signals in both the CEU (Figure 2.8A) and YRI

(Figure 2.8B) populations; the major G allele of SNP rs1049107 had significantly higher

exon inclusion levels than the minor A allele across almost every individual heterozygous

for this SNP in both populations. An sQTL analysis revealed a similar trend; individuals

with the GG genotype had higher exon inclusion levels than heterozygous individuals,

which in turn had higher exon inclusion levels than individuals with the AA genotype (see

Figures 2.8C-D; also see Figure 2.8E for the sashimi plot of each genotype in the CEU

population). The gene HLA-DQB1 encodes a cell surface receptor which plays an essential

role in the proper functioning of the immune system (Shiina et al., 2009). The exon 4

skipping isoform of HLA-DQB1 lacks the sequence which encodes the transmembrane

domain of DQβ, leading to the production of a soluble protein isoform that can modulate

immune response and induce peripheral tolerance (Královičová et al., 2004).

A number of significant ASAS events were associated with SNPs identified in GWAS

analyses. For example, PAIRADISE identified differential splicing in the A/G alleles

of SNP rs1009 in exon 2 of VAMP8 (vesicle associated membrane protein 8) among

CEU individuals (Figure 2.9A, PAIRADISE ASAS p-value = 3.7e−11). SNP rs1009 was

also significantly associated with exon 2 splicing in an sQTL analysis (Figures 2.9B-

C, GLiMMPS sQTL p-value = 6.8e−19). SNP rs1009 is in high LD (r2 = 0.97) with

GWAS SNP rs10187424; a GWAS analysis of 51, 311 individuals conducted by the inter-

national PRACTICAL consortium (Kote-Jarai and Coauthors, 2011) previously identified

rs10187424 as being associated with prostate cancer susceptibility (Figure 2.9D).
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Figure 2.8: (A, B) A significant ASAS event involving SNP rs1049107 in the HLA-DQB1

gene identified by PAIRADISE in the CEU and YRI populations. The error bars around

the exon inclusion levels represent 95% confidence intervals. (C, D) rs1049107 was also

identified as a significant sQTL event by GLiMMPS; each dot represents the exon inclusion

level of one individual, with dot sizes indicating the number of reads covering the splicing

event for that individual. (E) Sashimi plots of the HLA-DQB1 gene with average exon

read density and splice junction counts for the three genotypes in the CEU population.
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Figure 2.9: (A) A significant ASAS event identified by PAIRADISE corresponding to SNP

rs1009 in exon 2 of the VAMP8 gene. The error bars around the exon inclusion levels

represent 95% confidence intervals. (B) rs1009 was also identified as a significant sQTL by

GLiMMPS. Each dot represents the exon inclusion level of one individual, with dot sizes

indicating the number of reads covering the splicing event for that individual. (C) Sashimi

plots of the VAMP8 gene with average exon read density and splice junction counts for

the three genotypes in the CEU population. (D) rs1009 is in high LD (r2 = 0.97) with

GWAS SNP rs10187424.

In various genes, PAIRADISE identified ASAS events associated with multiple traits

or diseases. One example is the exon 2 skipping event of TLR1 (toll like receptor 1),

which shows consistent splicing differences between the A/G alleles of SNP rs5743565 in

CEU individuals (Figure 2.10A, PAIRADISE ASAS p = 5.2e−14). The same SNP was

also significantly associated with exon 2 splicing in an sQTL analysis using GLiMMPS

(Figures 2.10B-C, p = 4.7e−31). Exon 2 of TLR1 corresponds to a 77-bp region in the
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Figure 2.10: (A) A significant ASAS event identified by PAIRADISE corresponding to

SNP rs5743565 in exon 2 of the TLR1 gene. The error bars around the exon inclusion

levels represent 95% confidence intervals. (B) rs5743565 was also identified as a significant

sQTL by GLiMMPS. Each dot represents the exon inclusion level of one individual, with

dot sizes indicating the number of reads covering the splicing event for that individual.

(C) Sashimi plots of the TLR1 gene with average exon read density and splice junction

counts for the three genotypes in the CEU population. (D) rs5743565 is in high LD

(r2 ≥ 0.86) with GWAS SNPs rs10004195, rs4543123, rs4833095, and rs17616434.

5’-untranslated region, and alternative splicing of this exon has been shown to alter TLR1

mRNA stability and steady-state level (Chang et al., 2006). SNP rs5743565 is in high

LD with a number of GWAS SNPs: rs17616434 (r2 = 0.86), associated with allergic

sensitization (Bønnelykke and Coauthors, 2013); rs4833095 (r2 = 0.91), associated with

asthma (Daley et al., 2012); rs4543123 (r2 = 0.89), associated with alcohol consumption

(Kapoor et al., 2013); and rs10004195 (r2 = 0.89), associated with helicobacter pylori
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serologic status (Mayerle et al., 2013).

2.8 PAIRADISE Analysis of Rare Variants

One of the unique advantages of ASAS analysis relative to sQTL analysis is the ability to

detect allelic differences in splicing levels in rare variants. sQTL analysis across individuals

in a population is practically limited to focusing on common variants: for example, under

Hardy-Weinberg equilibrium, only 0.04% of individuals can be expected to be homozygous

for the minor allele for a variant with minor allele frequency (MAF) 2%, thus precluding

the possibility of an sQTL analysis except for studies with especially large sample sizes.

ASAS analysis does not face the same limitation since the percent of individuals expected

to be heterozygous is 3.9%, roughly a 100-fold increase in expected frequency.

Among the significant ASAS events detected by PAIRADISE in GM12878 were 10

genetically regulated exon skipping events associated with rare variants (MAF < 5% in

the CEU population). For example, an exon skipping event in IFI16 (interferon gamma

inducible protein 16) was found to be significantly associated with SNP rs62621173. As

remarked above, this SNP would conventionally be filtered out of an sQTL analysis due

to its low MAF of 2% in CEU (Hernandez et al., 2017). In contrast, among the six RNA-

seq replicates of GM12878, ASAS analysis using PAIRADISE revealed consistent splicing

differences in exon inclusion levels between the two alleles, generating a significant ASAS

signal (Figure 2.11A, PAIRADISE ASAS p = 1.5e−5), with the minor T allele associated

with higher exon inclusion levels. IFI16 acts as a sensor for intracellular DNA, thus playing

a role in innate immunity (Unterholzner et al., 2010). The exon 9 skipping isoform of

IFI16 contains one less copy of the 56-amino acids serine–threonine–proline (S/T/P)-rich

spacer region within the protein product (Veeranki and Choubey, 2012). SNP rs62621173

has been linked with the age of onset of Alzheimer’s disease (Vélez et al., 2016).
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Figure 2.11: PAIRADISE identifies rare variants’ effects on alternative splicing. (A) An

ASAS event in the IFI16 gene with respect to SNP rs62621173 (CEU MAF: 2%; C: 98%,

T: 2%) identified from the six RNA-seq replicates of GM12878. The error bars around the

exon inclusion levels represent 95% confidence intervals. (B) An ASAS event in the SCOC

gene with respect to SNP rs183379470 (CEU MAF: 2%; G: 98%; A: 2%) identified from

three YRI individuals in Geuvadis. (C) The cumulative distribution function comparing

the allelic difference of exon inclusion levels for ASAS events associated with rare variants

(MAF ≤ 5%) or common variants (MAF > 5%) in the five Geuvadis populations.

In addition to rare variants identified in GM12878, PAIRADISE also identified 63 sig-

nificant ASAS events associated with rare variants in the five populations of the Geuvadis

data. One example is a significant ASAS event in the SCOC (short coiled-coil protein)

gene, which was associated with the rare variant rs183379470 (MAF = 2%), identified

from three individuals in the YRI population (Figure 2.11B). The major G allele had an

average exon inclusion level of 98% compared to 83% for the minor A allele.

Since fewer individuals will have rare variants compared to common variants, we can

expect to see larger effect sizes for significant rare variant ASAS events in Geuvadis. In-

deed the data support this hypothesis: the average allelic difference in exon inclusion

levels was 19% for ASAS associated rare variants, as compared to 12% for common vari-
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ants (Figure 2.11C; two-sided Wilcoxon p = 0.01). This phenomenon does not extend

to GM12878, however, underscoring the fact that in general, larger effect sizes are not

necessary for rare variant ASAS events to be significant. In GM12878, the average allelic

difference in exon inclusion levels was 21% for ASAS associated rare variants, as compared

to 19% for common variants (two-sided Wilcoxon p = 0.88).

2.9 Tumor-Specific Splicing Analysis

Since PAIRADISE is indeed a generic framework for testing differential splicing between

matched sample groups (and not necessarily limited to ASAS), as a proof of concept we

perform a tumor-specific splicing analysis using paired tumor/normal cell RNA-seq data

from The Cancer Genome Atlas (TCGA). More specifically, we applied PAIRADISE to

TCGA data for 12 cancer types, where the numbers of replicates in each dataset ranged

from 11 (ESCA, Esophageal Carcinoma) to 107 (BRCA, Breast Invasive Carcinoma).

At FDR ≤ 10%, PAIRADISE identified 3, 181 differential splicing events across all

tumor types (Table 2.2); moreover, over 1, 300 splicing events were significant in more

than one tumor type, including 2 differential splicing events found to be significant for 10

different tumors (Table 2.3). These cases are highlighted in Figure 2.12, corresponding

to two exon skipping events in the SMARCA4 gene and CALD1 gene respectively. In

both events, the exon inclusion levels are consistently larger in tumor cells than in normal

cells across nearly every tumor type. The SMARCA4 gene encodes a protein which is

a member of the SWI/SNF family of proteins. Proteins from this group are believed

to regulate transcription of certain genes through helicase and ATPase activities which

modify the chromatin structure around those genes (Barutcu et al., 2016). The CALD1

gene encodes a calmodulin and actin binding protein and has been show to play an

important role in smooth muscle and nonmuscle contraction. Variations in the CALD1

gene have been associated with diseases including Mixed Endometrial Stromal and Smooth
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Tumor # Paired # Sig

Type Samples Exons

BLCA 19 71

BRCA 107 1316

COAD 26 223

ESCA 11 10

HNSC 40 211

KICH 25 350

KIRC 65 1015

KIRP 32 202

LIHC 50 178

LUAD 53 553

LUSC 50 1091

THCA 59 520

Table 2.2: Number of differential alterna-

tive splicing events for each tumor type.

# Tumor # Sig

Types Exons

10 2

9 5

8 16

7 32

6 72

5 145

4 216

3 287

2 588

1 1818

Table 2.3: Number of common splicing

events across multiple tumor types.

Muscle Tumor, Kidney Leiomyosarcoma, and glioma (Zheng et al., 2004). Though a proof

of concept, these results further demonstrate how PAIRADISE can identify consistent

splicing differences across samples and groups.

2.10 Discussion

To address the lack of robust statistical methods for ASAS analysis, we have introduced

the PAIRADISE statistical framework for detecting ASAS from population-scale RNA-seq

and genotype data. PAIRADISE provides a powerful tool for elucidating the genetic vari-

ation and phenotypic association of alternative splicing and frames the problem of ASAS

detection as that of identifying differential alternative splicing from RNA-seq data with
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Figure 2.12: Two differential splicing events were significant for 10 different tumors. Left)

Differential splicing event in the SMARCA4 gene. Exon inclusion levels are consistently

higher in tumor cells relative to normal cells. Right) Differential splicing event in the

CALD1 gene. Exon inclusion levels are consistently higher in tumor cells relative to

normal cells. Each pair of boxplots corresponds to one tumor type.

paired replicates; leveraging the pairing structure of the two alleles allows PAIRADISE

to identify consistent allelic differences in alternative splicing across multiple biological

replicates or multiple individuals from a population. Our simulation studies demonstrate

that PAIRADISE outperforms alternative statistical models for ASAS analysis; the gains

in performance are especially large when the number of replicates is small, with other

methods requiring up to 2-3 times as many samples to achieve the same performance

as PAIRADISE (Figure 2.4A). We also demonstrate how PAIRADISE can increase the

power of ASAS detection in a single individual by aggregating the ASAS signals from the

six biological replicates of the GM12878 B-lymphocyte cell line. Compared to the analysis

of each RNA-seq replicate in isolation, the PAIRADISE analysis of six replicates in combi-

nation generates two to four times as many significant ASAS events, at a comparable and

often higher level of concordance with sQTL signals in the CEU population. We highlight
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a particular advantage of PAIRADISE by demonstrating its ability to detect the effects

of rare genetic variants on alternative splicing using both single-individual (GM12878)

and population-scale (Geuvadis) RNA-seq datasets. Finally, since PAIRADISE is indeed

a generic model for testing for differences in count-based ratios between matched pairs,

we demonstrate the broad applicability of the PAIRADISE statistical model by using it

to detect differential alternative splicing events on matched tumor-normal RNA-seq data

from TCGA.

There are several limitations to the PAIRADISE statistical model. Alternative splicing

levels may themselves depend on other factors such as other cis SNPs or the concentration

or activity of trans-acting splicing regulators. This information could be integrated into

PAIRADISE by adding an additional layer into the hierarchical framework that captures

the relation between individual-specific allelic diffferences and certain covariates. Note

that a larger population sample size would be needed to identify such covariates that

affect the magnitude of ASAS signals across individuals. Another limitation of ASAS

analysis with PAIRADISE is that it requires heterozygous SNPs to be outside of the

alternative exon to enable allele-specific read assignment, but simultaneously requires

SNPs to be close enough to the alternative splicing event for both to be detected on

the same RNA-seq read. SNPs which are located within the alternative exon or too far

from the alternative exon cannot be analyzed by PAIRADISE using short-read RNA-seq

data. Finally, other than accounting for the total read coverage of different samples,

PAIRADISE does not account for any differences in the quality of biological samples like

those owing to the different protocols used by different labs. Li et al. (2018) demonstrated

the importance of explicitly accounting for the heterogeneity in the quality of RNA-seq

samples using a Bayesian hierarchical framework. We believe that this is a promising

direction for future work.
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2.11 Appendix

2.11.1 Derivation of the Likelihood Function

PAIRADISE aims to test whether there is a significant difference in the means of the

distributions of logit(ψi1k) and logit(ψi2k). Adopting the notation of hypothesis testing,

PAIRADISE performs the following test:

H0 : δi = 0

Ha : δi 6= 0.

In the PAIRADISE framework, Ii1k and Ii2k are the observed data and ψi1k, ψi2k, and αik

are all regarded as latent, unobserved variables. In order to make inference about the

parameter δi, we must first derive an expression for the observed data likelihood. For

notational simplicity, we first set θi = (δi, σi1, σi2, σi, µi). For a given exon i, the complete

data likelihood function (the likelihood of the observed and latent variables) is given by

M∏

k=1

f(Ii1k, Ii2k, logit(ψi1k), logit(ψi2k), αik|θi) =

M∏

k=1

f(Ii1k|ψi1k) · f(Ii2k|ψi2k) · f(logit(ψi1k), logit(ψi2k)|αik, δi, σi1, σi2) · f(αik|µi, σi), (2.9)

where

f(Ii1k|ψi1k) = c1 ·
[

`iIψi1k
`iIψi1k + `iS(1− ψi1k)

]Ii1k
·
[

`iS(1− ψi1k)
`iIψi1k + `iS(1− ψi1k)

]Si1k

,

f(Ii2k|ψi2k) = c2 ·
[

`iIψi2k
`iIψi2k + `iS(1− ψi2k)

]Ii2k
·
[

`iS(1− ψi2k)
`iIψi2k + `iS(1− ψi2k)

]Si2k

,

f(logit(ψi1k), logit(ψi2k)|αik, δi, σi1, σi2) =

c3 ·
1

σi1σi2
exp

(
−(logit(ψi1k)− αik)2

2σi12

)
· exp

(
−(logit(ψi2k)− αik − δi)2

2σi22

)
,
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f(αik|µi, σi) = c4 ·
1

σi
exp

(
− 1

2σi2
(αik − µi)2

)
,

and where the constants c1, c2, c3 and c4 do not depend on the model parameters or

latent variables. Note that we are using the same function f(·) to represent pdfs/pmfs

of different variables for notational clarity. Also note that the distributions of logit(ψi1k)

and logit(ψi2k) are based on the conditional distribution given in (2.7) rather than the

marginal distributions in (2.3). To derive an expression for the observed data likelihood,

we can integrate the latent variables out of the complete data likelihood in expression

(2.9) to obtain

M∏

k=1

f(Ii1k, Ii2k|θi)

=
M∏

k=1

∫
f(Ii1k, Ii2k, logit(ψi1k), logit(ψi2k), αik|θi)d logit(ψi1k) · d logit(ψi2k) · dαik. (2.10)

Since there is no closed-form expression for the integral in (2.10), we proceed by us-

ing Laplace’s method to obtain an approximation of this integral. Briefly, our appli-

cation of Laplace’s method uses a second-order Taylor expansion around the MLEs of

αik, logit(ψi1k), and logit(ψi2k) to approximate the observed data likelihood. Let f1 =

log(f), and let α̂ik, logit(ψ̂i1k), and logit(ψ̂i2k) be the MLEs of αik, logit(ψi1k), and logit(ψi2k).

Then for k = 1, . . . ,M ,

∫
f(Ii1k, Ii2k, logit(ψi1k), logit(ψi2k), αik|θi)d logit(ψi1k) · d logit(ψi2k) · dαik

=

∫
exp(f1(Ii1k, Ii2k, logit(ψi1k), logit(ψi2k), αik|θi))d logit(ψi1k) · d logit(ψi2k) · dαik

=

∫
exp{f1(Ii1k, Ii2k, logit(ψ̂i1k), logit(ψ̂i2k), α̂ik|θi)

+
1

2




logit(ψi1k)− logit(ψ̂i1k)

logit(ψi2k)− logit(ψ̂i2k)

αik − α̂ik




′

Σik




logit(ψi1k)− logit(ψ̂i1k)

logit(ψi2k)− logit(ψ̂i2k)

αik − α̂ik



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+ o((logit(ψi1k)− logit(ψ̂i1k))
2) + o((logit(ψi2k)− logit(ψ̂i2k))

2)

+ o((αik − α̂ik)2)} d logit(ψi1k) · d logit(ψi2k) · dαik

≈ (2π)3/2(−|Σik|)−1/2 exp{f1(Ii1k, Ii2k, logit(ψ̂i1k), logit(ψ̂i2k), α̂ik|θi)}, (2.11)

where we have used the fact that

[
∂f1(zik)

∂ logit(ψi1k)

∣∣∣∣
logit(ψ̂i1k)

,
∂f1(zik)

∂ logit(ψi2k)

∣∣∣∣
logit(ψ̂i2k)

,
∂f1(zik)

∂αik

∣∣∣∣
α̂ik

]
= 0

for zik := (logit(ψi1k), logit(ψi2k), αik). The Hessian matrix Σik in (2.11) is given by

Σik =




∂2f1(zik)

∂ logit2(ψi1k)

∂2f1(zik)

∂ logit(ψi1k)∂ logit(ψi2k)

∂2f1(zik)

∂ logit(ψi1k)∂αik

∂2f1(zik)

∂ logit(ψi1k)∂ logit(ψi2k)

∂2f1(zik)

∂ logit2(ψi2k)

∂2f1(zik)

∂ logit(ψi2k)∂αik

∂2f1(zik)

∂αik∂ logit(ψi1k)

∂2f1(zik)

∂αik∂ logit(ψi2k)

∂2f1(zik)

∂α2
ik




,

(2.12)

where each of the second-order partial derivatives is evaluated at the MLEs α̂ik, logit(ψ̂i1k),

and logit(ψ̂i2k). Note that the determinant of the above Hessian matrix is always negative

(shown in subsection 2.11.4). Combining (2.10) and (2.11) yields an expression for the

observed data likelihood:

M∏

k=1

f(Ii1k, Ii2k|θi) ≈ c5

M∏

k=1

(−|Σik|)−1/2f(Ii1k, Ii2k, logit(ψ̂i1k), logit(ψ̂i2k), α̂ik|θi)

or

M∑

k=1

log f(Ii1k, Ii2k|θi) ≈

M∑

k=1

{
f1(Ii1k, Ii2k, logit(ψ̂i1k), logit(ψ̂i2k), α̂ik|θi)−

1

2
log(−|Σik|)

}
+ c6 (2.13)
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for some constants c5 and c6.

2.11.2 Optimization

Next, we outline an iterative procedure that will produce estimates (δ̂i, σ̂i1, σ̂i2, µ̂i, σ̂i)

based on the observed data log likelihood in (2.13). For k = 1, . . . ,M , initialize logit(ψi1k)

and logit(ψi2k) from the individual binomial distribution of each replicate:

logit(ψ̂
(0)
i1k) = logit

(
Ii1k`iS

Ii1k`iS + Si1k`iI

)
, logit(ψ̂

(0)
i2k) = logit

(
Ii2k`iS

Ii2k`iS + Si2k`iI

)
.

Since logit(ψi1k) = αik + εi1k, one can set α̂ik
(0) = logit(ψ̂

(0)
i1k). Next, let t← 1 and proceed

through the following steps:

Step 1: Estimate the MLEs of the observed data likelihood based on the estimated values

of logit(ψ̂
(t−1)
i1k ), logit(ψ̂

(t−1)
i2k ), and α̂ik

(t−1). That is, maximize expression (2.13):

(δ̂i
(t), σ̂i1

(t), σ̂i2
(t), µ̂i

(t), σ̂i
(t)) =

argmax
δi,σi1,σi2,µi,σi

M∑

k=1

(
f1(Ii1k, Ii2k, logit(ψ̂

(t−1)
i1k ), logit(ψ̂

(t−1)
i2k ), α̂ik

(t−1)|θi)−
1

2
log(−|Σ(t−1)

ik |)
)
.

Σ
(t−1)
ik is the Hessian matrix given in (2.12) where the partial derivatives are evaluated

using the estimates α̂ik
(t−1), logit(ψ̂

(t−1)
i1k ), and logit(ψ̂

(t−1)
i2k ) (a formal expression for |Σ(t)

ik |

is given in the next subsection).

Step 2: For k = 1, . . . ,M , update the estimates α̂ik
(t), logit(ψ̂

(t)
i1k), and logit(ψ̂

(t)
i2k) based

on the complete data likelihood (2.9) and the latest MLEs of δ̂i
(t), σ̂i1

(t), σ̂i2
(t), µ̂i

(t), σ̂i
(t):

(logit(ψ̂
(t)
i1k), logit(ψ̂

(t)
i2k), α̂ik

(t)) =
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argmax
logit(ψi1k),logit(ψi2k),αik

(
A(ψi1k) +B(ψi2k) + C(αik) +D(ψi1k, ψi2k, αik)

)
,

where

A(ψi1k) = Ii1k log

(
`iIψi1k

`iIψi1k + `iS(1− ψi1k)

)
+ Si1k log

(
`iS(1− ψi1k)

`iIψi1k + `iS(1− ψi1k)

)
,

B(ψi2k) = Ii2k log

(
`iIψi2k

`iIψi2k + `iS(1− ψi2k)

)
+ Si2k log

(
`iS(1− ψi2k)

`iIψi2k + `iS(1− ψi2k)

)
,

C(αik) = − 1

2σ̂i2
(t)

(αik − µ̂i(t))2,

D(ψi1k, ψi2k, αik) = −(logit(ψi1k)− αik)2
2σ̂i12

(t)
− (logit(ψi2k)− αik − δ̂i(t))2

2σ̂i22
(t)

.

Step 3: Let t← t+ 1 and go to step 1. Iterate between steps 1 and 2 until the difference

in log likelihoods between consecutive iterations is smaller than some threshold ε, say

ε = 10−2. Use an optimization algorithm (e.g. L-BFGS-B or BOBYQA) to optimize

the likelihood function with the parameters σi1, σi2, σi constrained within (0,∞), and

αik, µi, δi, logit(ψi1k), logit(ψi2k) unconstrained.

The above optimization procedure is performed for two cases: the unconstrained

model, and the model constrained under the null hypothesis (i.e. the model with δi = 0).

The likelihood-ratio test statistic then asymptotically (in M) follows a χ2 distribution

with 1 degree of freedom:

−2(logLδi=0 − logL) ∼ χ2
1,

where Lδi=0 is the likelihood function under the null hypothesis and L is the likelihood

function under the alternative hypothesis.
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2.11.3 Computing the Hessian Σik

The expressions for the partial derivatives in the Hessian matrix Σik given in (2.12),

evaluated at α̂ik, logit(ψ̂i1k), logit(ψ̂i2k), are given by

∂2f1(zik)

∂ logit2 (ψi1k)
=
`iI`iSψ̂i1k(ψ̂i1k − 1)(Ii1k + Si1k)

[`iIψ̂i1k + `iS(1− ψ̂i1k)]2
− 1

σ2
i1

(2.14)

∂2f1(zik)

∂ logit2 (ψi2k)
=
`iI`iSψ̂i2k(ψ̂i2k − 1)(Ii2k + Si2k)

[`iIψ̂i2k + `iS(1− ψ̂i2k)]2
− 1

σ2
i2

(2.15)

∂2f1(zik)

∂α2
ik

= −
[

1

σ2
i1

+
1

σ2
i2

+
1

σ2
i

]
(2.16)

∂2f1(zik)

∂αik∂ logit(ψi1k)
=

∂2f1(zik)

∂ logit(ψi1k)∂αik
=

1

σ2
i1

∂2f1(zik)

∂αik∂ logit(ψi2k)
=

∂2f1(zik)

∂ logit(ψi2k)∂αik
=

1

σ2
i2

∂2f1(zik)

∂ logit (ψi1k)∂ logit (ψi2k)
=

∂2f1(zik)

∂ logit (ψi2k)∂ logit (ψi1k)
= 0.

The determinant |Σ(t)
ik | is therefore given by the expression

∣∣∣Σ(t)
ik

∣∣∣ = D(σi1, σi2) + E(σi1, σi2) · F (σi1, σi2, σi),

where

D(σi1, σi2) =
1

(σ2
i1)

2

(
1

σ2
i2

− `iI`iSψ̂
(t)
i2k(ψ̂

(t)
i2k − 1)(Ii2k + Si2k)

[`iIψ̂
(t)
i2k + `iS(1− ψ̂(t)

i2k)]
2

)
,

E(σi1, σi2) =

(
1

σ2
i1

− `iI`iSψ̂
(t)
i1k(ψ̂

(t)
i1k − 1)(Ii1k + Si1k)

[`iIψ̂
(t)
i1k + `iS(1− ψ̂(t)

i1k)]
2

)
,
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F (σi1, σi2, σi) =
1

(σ2
i2)

2
+

(
1

σ2
i1

+
1

σ2
i2

+
1

σ2
i

)(
`iI`iSψ̂

(t)
i2k(ψ̂

(t)
i2k − 1)(Ii2k + Si2k)

[`iIψ̂
(t)
i2k + `iS(1− ψ̂(t)

i2k)]
2

− 1

σ2
i2

)
.

2.11.4 Proof that the Determinant of Σik is Negative

To ease notation, rewrite the Hessian in (2.12) as

Σik =




x1 0
1

σ2
i1

0 x2
1

σ2
i2

1

σ2
i1

1

σ2
i2

x3




where x1, x2 and x3 are defined as in (2.14), (2.15) and (2.16) (we ignore the indices i and

k for additional clarity). Next, let

a1 =
`iI`iSψ̂i1k(ψ̂i1k − 1)(Ii1k + Si1k)

[`iIψ̂i1k + `iS(1− ψ̂i1k)]2

and

a2 =
`iI`iSψ̂i2k(ψ̂i2k − 1)(Ii2k + Si2k)

[`iIψ̂i2k + `iS(1− ψ̂i2k)]2

so that

x1 = a1 −
1

σ2
i1

and

x2 = a2 −
1

σ2
i2

.

It follows that

det(Σik) = (x3 − 1)x1x2 + det




x1 − 1
σ4
i1
− 1
σ2
i1σ

2
i2

− 1
σ2
i1σ

2
i2

x2 − 1
σ4
i2



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= x1x2x3 −
[
x1
σ4
i2

+
x2
σ4
i1

]

= −
[

1

σ2
i

+
1

σ2
i1

+
1

σ2
i2

] [
(a1 −

1

σ2
i1

)(a2 −
1

σ2
i2

)

]
−
[
a1
σ4
i2

− 1

σ2
i1σ

4
i2

+
a2
σ4
i1

− 1

σ2
i2σ

4
i1

]

= −a1a2
σ2
i1

+
a1

σ2
i1σ

2
i2

+
a2
σ4
i1

− 1

σ4
i1σ

2
i2

− a1a2
σ2
i2

+
a1
σ4
i2

+
a2

σ2
i1σ

2
i2

− 1

σ2
i1σ

4
i2

− a1a2
σ2
i

+
a1
σ2
i σ

2
i2

+
a2
σ2
i σ

2
i1

− 1

σ2
i σ

2
i1σ

2
i2

−
[
a1
σ4
i2

+
a2
σ4
i1

− 1

σ2
i1σ

4
i2

− 1

σ2
i2σ

4
i1

]

= −a1a2
( 1

σ2
i

+
1

σ2
i1

+
1

σ2
i2

)
+ a1

( 1

σ2
i1σ

2
i2

+
1

σ2
i σ

2
i2

)

+ a2

( 1

σ2
i1σ

2
i2

+
1

σ2
i σ

2
i1

)
− 1

σ2
i σ

2
i1σ

2
i2

< 0,

which follows since a1, a2 < 0.

2.11.5 Description of Data

GM12878

The RNA-seq data from six replicates of the GM12878 B-lymphocyte cell lines were

generated by the following labs (sample IDs from the ENCODE project are given in

parentheses): Brenton Graveley’s lab at UConn (sample ENCSR000AEF, 2 replicates),

Barbara Wold’s lab at Caltech (sample ENCSR000AEG, 2 replicates), Thomas Gingeras’

lab at CSHL (sample ENCSR000AED, 2 replicates).

Guevadis

We also used RNA-seq and genotype data from the Geuvadis dataset of B-lymphocyte

cell lines of 445 individuals from five populations (Lappalainen and Sammeth, 2013).

Genotype data for these individuals were from the Phase 3 of 1000 Genomes Project

(release 05-02-2013) (Auton and Coauthors, 2015).
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2.11.6 Allele-Specific Alignment of RNA-seq Data

The PAIRADISE computational pipeline takes two inputs: FASTQ files of RNA-seq data,

and VCF files of phased genotype data. In addition, PAIRADISE also uses a human refer-

ence genome, a GTF file of gene/transcript annotations and a list of RNA editing sites that

are masked for allele-specific read assignment. More details about the PAIRADISE run-

ning parameters, as well as download links and annotation files are provided at our lab’s

website (https://github.com/Xinglab/PAIRADISE). The PAIRADISE statistical model

is available as a stand-alone R package and forms the final stage of our computational

pipeline.

Our pipeline first performs allele-specific read mapping onto alternative splicing events

using rPGA (version 2.0.0, https://github.com/Xinglab/rPGA). First, the reference genome

is personalized based on the phased genotype data of each individual. For each individ-

ual, the reference genome is modified at each SNP position to carry the alleles of that

particular individual. This process yields one personal reference genome for each haplo-

type. Second, RNA-seq reads are aligned to both personal genomes using STAR (Dobin

et al., 2013) (version 2.5.3a, https://github.com/alexdobin/STAR/archive/2.5.3a.tar.gz),

allowing 6 mismatches and restricting splice junctions to canonical splice sites only. The

third step involves allele-specific read assignment: for each uniquely mapped read, we first

identify all heterozygous SNPs covered by the read, and note whether the read carries the

first or second haplotype allele at each base. Reads carrying haplotype 1 (or 2) alleles at

the majority of the heterozygous SNP positions are assigned to haplotype 1 (or 2). Reads

which fail to meet either of these requirements are removed.

2.11.7 Allele-Specific Read Assignment

To detect alternative splicing events, the allele-specific bam files mapped onto the two

haplotypes were merged together and input to rMATS (version 3.2.5) (Shen et al., 2014).
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To ensure a consistent set of alternative splicing events across all samples, the merged

allele-specific bam files of all samples were used together in the rMATS analysis.

In an allele-specific alternative splicing analysis using RNA-seq, reads must be assigned

to one of the two alleles of a heterozygous SNP. For a given exon skipping event and

heterozygous SNP at one of the flanking constitutive exons, a read must cover both the

SNP and a splice junction (either exon skipping or exon inclusion) to be assigned to

one of the two isoforms (see Figure 2.3A). In the situation where a read covers multiple

heterozygous SNPs at either of the flanking exons, we counted that read separately for

each SNP. Note that we excluded any SNPs within the alternatively spliced exon from any

further analysis since they can only be detected from the exon inclusion isoform. We also

filtered out alternative splicing events for which the average ψ values across all individuals

were less than 5% or greater than 95% for both alleles, as well as events with less than

10 total reads on average across all individuals for both alleles.

2.11.8 sQTL Analysis of the Five Geuvadis Populations

To perform an sQTL analysis on the five Geuvadis populations, we first processed the

RNA-seq data from these populations using rMATS to generate a consistent set of al-

ternative splicing events across all of the populations. Next, we applied the following

filtering criteria across the alternative splicing events in each population separately:

1. the average ψ values across all individuals was between 5% and 95%

2. the average total read count of all individuals was greater than or equal to 10

3. the range of ψ values across all individuals was greater than 20%

4. more than 20% of the individuals had non-zero read counts.

The GLiMMPS statistical model (Zhao et al., 2013) was then used to discover sQTLs by
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testing for association between genotype and exon inclusion levels with SNPs within 200kb

upstream or downstream of alternative exons. As an additional filtering criterion, SNPs

with minor allele frequency (MAF) less than 5% were removed from the analysis (MAFs

were estimated for each population separately). Finally, the GLiMMPS sQTL p-values for

each alternative splicing event were defined to be the p-values of the SNP with the most

significant association within the 200kb window. The sQTL FDRs were estimated based

on 10 permutations (Zhao et al., 2013) and linkage disequilibrium correlations between

SNPs were calculated by the 1000 Genomes Project (HapMap release #27). GWAS traits

and associated SNPs were collected from the NHGRI-EBI GWAS catalog (version 01-14-

16) (MacArthur et al., 2017).
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CHAPTER 3

Quantifying Alternative Splicing Variation in

Multi-Isoform, Complex Splicing Modules

Thus far, we have exclusively been dealing with basic patterns of alternative splicing

such as studying differential isoform expression from simple exon skipping events. As

discussed in Chapter 1, patterns of alternative splicing are often more complex than those

highlighted in Figure 1.1, and thus it is imperative to develop computational models that

can accommodate these commonly encountered patterns of isoform variation. To make

matters even more complicated, RNA-seq reads are often ambiguous in the sense that

there is no aspect of the read which uniquely identifies it as having been generated from

one specific isoform. For example, reads fully contained within a constitutive exon of a

simple exon skipping event could have been generated either by the exon inclusion or exon

skipping mRNA isoforms.

In this chapter, we propose rMATS-Iso, a generalization of the rMATS statistical

framework, and the first event-based tool which can detect differential alternative splicing

in splicing modules with complex splicing patterns using replicate RNA-seq data. The

rMATS-Iso statistical model utilizes a hierarchical framework to account for both the

estimation uncertainty in ψ values within individual replicates as due to RNA-seq read

coverage, as well as the variation in ψ values among replicates. rMATS-Iso leverages

an EM algorithm to disambiguate short RNA-seq reads which may be consistent with

multiple mRNA isoforms. As a result, rMATS-Iso can accommodate complex patterns
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of alternative splicing within a splicing module where transcripts can be defined by any

combination of exons, splice site choices, etc. In addition to quantifying isoform com-

position within individual sample groups, rMATS-Iso utilizes a likelihood ratio test to

identify differential splicing between two sample groups. Once differential splicing has

been identified, rMATS-Iso further quantifies the extent to which each individual tran-

script contributes to the overall difference between groups.

We begin the chapter by reviewing the problem of transcript reassembly from partial

sequencing observations, tracing the evolution of the problem over the last few decades.

Next, we introduce the rMATS-Iso statistical model, and demonstrate its performance

using two simulation studies. Finally, we apply rMATS-Iso to identify differential al-

ternative splicing using RNA-seq data generated from the PC3E (epithelial) and GS689

(mesenchymal) cell lines. All technical derivations appear in the appendix at the end of

the chapter.

3.1 Introduction

The reconstruction of full-length isoforms from sequence fragments poses a unique chal-

lenge owing to the combinatorial nature of alternative splicing. RNA-seq reads do not

capture the full-length mRNA sequence, but rather shorter fragments of the target se-

quence (Wang et al., 2009). As a result, it can be difficult to infer the underlying isoform

structure that generated the RNA-seq read in the case where more than one isoform is

compatible with the generated sequence (Figure 3.1). Furthermore, it is difficult to assess

the functional impact of a splice variant without knowing its corresponding full-length

transcript (Boue et al., 2002).

Before the advent of RNA-seq, Xing et al. (2004) outlined several of the contempo-

rary challenges like those mentioned above that made analyzing the transcriptome more
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difficult. Though Xing et al. (2004) focused on ESTs in their analysis, the challenges

they highlighted were by no means limited to ESTs; in fact, the problems they discussed

would soon become very relevant for alternative sequencing technologies like RNA-seq.

These challenges included: 1) The existence of many different biological processes gener-

ating multiple mRNA isoforms. These processes include alternative splicing, alternative

polyadenylation, and RNA editing. 2) Genetic polymorphisms which themselves may in-

teract with the processes mentioned above. 3) The fact that observed sequencing reads

(in our case RNA-seq reads) are short snapshots of the true data-generating process (full-

length transcript). 4) The existence/analysis of complex splicing modules. 5) Random

experimental errors. 6) The question of how to best integrate information from multiple

different sources (e.g. ESTs, full-length mRNAs, genomic sequences) to produce the most

biological meaningful results.

Xing et al. (2004) referred to these problems collectively as the “multiassembly prob-

lem” and proposed a two-tiered methodolgy to address it. The first stage involved using

short-length EST fragments to reconstruct the full-length isoform. To represent all the

different ways which the exons in the target region could be spliced together, the authors

employed the framework of splice graphs introduced by Heber et al. (2002). Briefly, splice

graphs utilize a graph representation in order to represent a gene’s structure and patterns

of alternative splicing. More specifically, splice graphs use nodes to represent the exons

within a gene or splicing module, and directed edges between nodes to represent different

splicing events. To traverse the graph and infer the most likely set of isoforms which could

have generated the observed data (i.e. sequencing reads), Xing et al. (2004) then employed

a dynamic programming algorithm known as heaviest bundling developed in Lee (2003)

and Lee et al. (2002). The second stage of the multiassembly problem involved imple-

menting a heuristic approach to evaluate the transcript sequences for completeness and

what the authors referred to as distinguishing “productive isoforms” from EST artifacts.
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Despite the successes of splice-graph based approaches for transcript reassembly, a

number of problems facing isoform reconstruction still remained. First of all, splice graph

transversal algorithms like heaviest bundling were not necessarily well suited for dealing

with complex patterns of alternative splicing. For example, heaviest bundling could not

guarantee an optimal traversal in the presence of coupled edges in the splice graph (which

could represent splicing events such as mutually exclusive exons). In addition, an im-

portant and unanswered question remained as to how to account for sequence fragments

which were consistent with a number of distinct isoforms. Realizing the need for an explic-

itly probabilistic approach, Xing et al. (2006) developed a statistical framework and EM

algorithm for estimating the probability of each transversal across the splice graph. More

specifically, the authors developed a hierarchical statistical model assumed to be gener-

ating EST reads, thus explicitly capturing the sources of uncertainty when categorizing

sequence fragments. This algorithm has served as the basis for isoform level estimation

by popular RNA-seq tools such as Cufflinks (Trapnell et al., 2013) and RSEM (Li and

Dewey, 2011). Note that though the model was developed with EST reads in mind, it

can easily be extended to handle RNA-seq data.

The statistical model of Xing et al. (2006) consists of two layers: the observed data,

and a layer of latent, unobserved variables assumed to be generating the observed data.

Suppose for a given gene or splicing module that there are a total of n different isoforms,

and let ψ = (ψ1, . . . , ψn) denote the probabilities that the reads (e.g. RNA-seq reads)

will be generated by each isoform; here
∑n

f=1 ψf = 1, and 0 ≤ ψf ≤ 1 for f = 1, . . . , n.

In this framework, ψ is assumed to be a fixed parameter vector that is to be estimated

from the data. The observed data consist of K sequence observations O1, . . . , OK . The

K sequence observations can be encoded into a K × n indicator matrix Z, where Zif = 1

if the ith sequence was generated from isoform f and Zif = 0 otherwise. In other words,

the ith row of Z indicates which isoform generated Oi. Of course, Z is unobserved since
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each sequence can be consistent with multiple isoforms, so another matrix Y is introduced

into the model. Instead of denoting which isoform generated each sequence, the entries

of Y denote which isoforms are consistent with each sequence (i.e. which isoforms could

have generated each sequence). More formally, Yif = 1 if Oi is consistent with isoform f

and Yif = 0 otherwise. The indicator matrix Y contains the observed data. Under this

framework, the observed data likelihood function is given by

L(ψ|Y ) =
K∑

i=1

log

(
n∑

f=1

yi,fψf

)
(3.1)

and an EM algorithm is used to find the maximum likelihood estimates of ψ. The model

also includes a likelihood ratio test designed to test for differences in ψ values between

two sample groups (e.g. two distinct tissues).

Despite the successes of this method, it faces a number of limitations. First, the model

is specifically designed to handle reads from one sample (e.g. biological replicate) at a

time; therefore, there is no way to use EST/RNA-seq reads being generated from mul-

tiple samples. As a result, even though the model accounts for differences in ψ values

between distinct tissues/biological conditions, it ignores the variability in ψ values be-

tween different samples from the same tissue/biological condition. Another problem is

that the structure of the splicing module is not explicitly incorporated into the statisti-

cal model, nor is there any length-normalization of the probabilities ψf to adjust for the

effective lengths of each of the different isoforms. Therefore, estimates of ψ values for

larger isoforms are biased upwards relative to smaller isoforms. Finally, the statistical

model implicitly assumes that knowing that a read is consistent with an isoform gives

no additional information about whether or not the same read is consistent with another

isoform. In other words, the patterns of isoform compatibility are assumed to be inde-

pendent of one another. In reality, the relation between these “consistency patterns” is

more complex; for example, in the case of a simple exon-skipping event, a read covering

53



Figure 3.1: rMATS-Iso is a multi-isoform generalization of the rMATS statistical and

computational framework. rMATS-Iso can accommodate alternative splicing modules

with more than two isoforms, as well as RNA-seq reads which are consistent with more

than one isoform. Here, reads 1 and 3 were generated from isoform 1, while read 2 could

have been generated by isoforms 1 or 2.

part of the alternative exon is necessarily inconsistent with the exon skipping isoform.

A more realistic statistical framework should capture such structure in the underlying

splicing module / sequence fragment relation.

3.2 The rMATS-Iso Statistical Model

To address the shortcomings of the model in Xing et al. (2006), we developed a new sta-

tistical framework called rMATS-Iso. rMATS-Iso is a multi-isoform generalization of the

rMATS statistical framework and provides a more realistic platform for estimating iso-

form abundance. rMATS-Iso quantifies the uncertainty in isoform inclusion levels due to

RNA-seq read coverage as well as variability between biological samples. More specifically,

rMATS-Iso utilizes a hierarchical design to model the variability in isoform inclusion lev-

els among individual samples from the same biological condition. Moreover, rMATS-Iso

models the variability in RNA-seq read counts within each individual while simultaneously

accounting for the compatibility of RNA-seq reads with multiple isoforms. The principal
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novelty of rMATS-Iso is that it defines the observed data to be RNA-seq read counts of

observed isoform consistency patterns instead of read counts uniquely corresponding to

each isoform. Figure 3.1 shows a fictional example of a splicing module with three distinct

isoforms and how RNA-seq reads can be consistent with several different isoforms.

3.2.1 Modeling the Between-Sample Variability

To model the variability in isoform inclusion levels among samples, let ψkf denote the

isoform inclusion level of the f th transcript in sample k, and let ψk = (ψk1, . . . , ψkn)

denote the vector of isoform inclusion levels. Here, 0 ≤ ψkf ≤ 1 for all f = 1, . . . , n, and

∑n
f=1 ψkf = 1. rMATS-Iso assumes that the vectors for each sample are independent,

identically distributed draws from a Dirichlet distribution:

ψk = (ψk1, . . . , ψkn)
iid∼ Dirichlet(α), k = 1, . . . , K, (3.2)

where K is the total number of samples. Here, by samples we are referring to multiple

different instances drawn from the same population (e.g. multiple biological replicates

taken from the same tissue in a given individual, or multiple draws from the same tis-

sue type taken across individuals within a population). The ψk values in equation 3.2

are regarded as latent, unobserved variables, and α = (α1, . . . , αn) is an n−dimensional

parameter vector of positive real numbers.

The Dirichlet parameter α in equation 3.2 fully specifies the joint probabilistic behavior

of all isoforms’ inclusion levels, e.g. their means, variances, and higher-order moments.

Moreover, since the marginal distributions of a Dirichlet random vector follow a beta

distribution, the parameter α fully specifies the marginal distributions of each individual

ψf . Estimates of α will therefore capture both the joint variability in ψ, as well as the

marginal variability in each ψf .
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3.2.2 Modeling the Within-Sample Variability

If each RNA-seq read uniquely identified one transcript, then a straightforward way to

model the variability in RNA-seq reads would be to place a multinomial distribution

on the read counts corresponding to each transcript. Conjugacy of the Dirichlet and

Multinomial distributions would imply a Dirichlet likelihood, and inference could easily

be carried out by using the expectation-maximization (EM) algorithm (Dempster et al.,

1977) to estimate the parameter in equation 3.2. In practice, however, the situation is

more complicated since short RNA-seq reads may be consistent with multiple different

transcripts (Figure 3.1). As mentioned in the previous section, Xing et al. (2006) addressed

a similar problem in the analysis of EST reads by developing a probabilistic model of the

isoform reconstruction problem based on the EM algorithm. The key idea there was to

classify reads as being consistent with each isoform, and then to regard the resulting

“consistency matrices” as the observed data.

Inspired by the work of Xing et al. (2006), we expand upon this reformulation of

the observed data by modeling the reads that are consistent with each combination of

transcripts rather than the reads that are consistent with each individual transcript. To

formalize this idea, first note that in general, when there are n distinct transcripts, there

can be a total of M = 2n − 1 possible combinations of transcripts, since

n∑

i=1

(
n

i

)
= 2n − 1

by the binomial theorem. We refer to each of these M combinations as a “consistency

pattern” (or simply, a pattern). Each of the M patterns corresponds to a set of isoforms

with which an RNA-seq read may be consistent. These patterns can be encoded into a

binary pattern matrix P with M rows and n columns, where Pmf = 1 if isoform f is

included in the mth consistency pattern, and Pmf = 0 otherwise for m = 1, . . . ,M, and

f = 1, . . . , n. For example, in the case where there are a total of n = 3 distinct transcripts,

56



the pattern matrix P is given by:

P =




1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1




. (3.3)

Here, the first consistency pattern (i.e. the first row of P ) is (1, 0, 0), indicating that only

transcript 1 is included in the first pattern - reads corresponding to this pattern would be

reads which are only consistent with the first transcript. The fifth consistency pattern is

(1, 0, 1), indicating that only transcripts 1 and 3 are included in the fifth pattern - reads

corresponding to this pattern would be reads which are consistent with transcripts 1 and

3, but not transcript 2.

Instead of modeling the read counts corresponding to each individual transcript,

rMATS-Iso models the read counts corresponding to each consistency pattern in P .

Since each individual sample can have RNA-seq reads of differing lengths, we define

Rk = {r1, . . . , rLk
} to be the set of unique read lengths for the reads corresponding to

subject k. Here, Lk is the total number of distinct RNA-seq read lengths for sample k.

To define the observed data, let Ykr = (Ykr1, . . . , YkrM) ∈ NM
0 be the vector of counts

of reads with length r corresponding to each of the M patterns; here N0 denotes the set

of non-negative natural numbers. Finally, define

Yk =




Ykr1

Ykr2
...

YkrLk



. (3.4)

The rth row, mth column of Yk denotes the number of reads of length r corresponding to
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pattern m in sample k. rMATS-Iso utilizes the following multinomial distribution for the

read counts given in (3.4):

Yk|ψk ∼
∏

r∈Rk

Multinomial(Ykr;Rkr, pr(ψk)), k = 1, . . . , K. (3.5)

In expression (3.5), Rkr =
∑M

m=1 Ykrm and pr(ψk) = (pr1(ψk), . . . , prM(ψk)). Here, prm(ψk)

denotes the probability that a read with length r will be consistent with the mth pattern

and is equal to

prm(ψk) =
n∑

f=1

θ
(r)
mf · ψ̃kf , (3.6)

where ψ̃kf is the length-normalized version of ψkf (explained in more detail in the ap-

pendix, section 3.8.1). θ
(r)
mf denotes the probability that a read with length r will corre-

spond to pattern m, given the read was actually generated by isoform f .

3.2.3 Transforming the Isoform Probabilities into Consistency Probabilities

The probabilities θ
(r)
mf given in expression (3.6) provide a very important insight into how

rMATS-Iso converts information regarding the probabilistic behavior of the individual

isoforms into information regarding the probabilistic behavior of the observed counts

of consistency patterns. Each θ
(r)
mf is a deterministic quantity determined entirely by

the structure of the alternative splicing module and RNA-seq read length, and can be

computed using a straightforward algorithm (a formal derivation of θ
(r)
mf can be found in

the appendix, section 3.8.4). If we define the column vector θ
(r)
f = (θ

(r)
1f , . . . , θ

(r)
Mf )

T and

stack all of the θ
(r)
f vectors into a matrix Θ(r) = [θ

(r)
1 , . . . , θ

(r)
n ], then the probability vector

pr(ψk) in equation (3.5) can be written more compactly as

pr(ψk) = Θ(r) · ψ̃k.

Seen from this perspective, Θ(r) defines a linear mapping T such that

T : Dn → DM ,
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where D` = {(x1, . . . , x`) :
∑̀
i=1

xi = 1, 0 ≤ xi ≤ 1 ∀i = 1, . . . , `}. More intuitively, the

matrix Θ(r) transforms the probabilities ψ̃ from n dimensional “isoform” space into M

dimensional “pattern” space via the transformation

T (ψ̃) = Θ(r) · ψ̃.

The defining feature of the rMATS-Iso framework is that the data are observed in M

dimensional pattern space with probabilities defined over DM , whereas inference occurs

in the original n dimensional isoform space with probabilities defined over Dn. As an

aside, note that Equations (3.2) and (3.5) will not yield a conjugate likelihood function

since M 6= n. It is also worth noting that our derivation of θ
(r)
mf assumes uniform read

coverage within each splicing module; in other words, we assume reads are equally likely to

occur in any given location within the module (see section 3.8.4 for more details regarding

the computation of Θ(r)).

3.3 An EM Algorithm for Estimating the Model Parameters

Since the isoform inclusion levels ψkf are not observable, we use the EM algorithm to

estimate the Dirichlet parameter α in Equation (3.2). The E step of the EM algorithm

involves computing the conditional expectation of the joint log-likelihood of the observed

and unobserved variables. In the case of rMATS-Iso, this expectation is given by

K∑

k=1

Eψk

[
logP (Yk, ψk)|Yk, α(t)

]
=

K∑

k=1

n∑

f=1

αfEψk

[
logψkf |Yk, α(t)

]
−K logB(α) + c, (3.7)

where Eψk
[·] denotes expectation with respect to ψk, B(α) is the multivariate beta func-

tion, and c is a constant that does not depend on the parameter α. α(t) denotes the

parameter value during the tth iteration of the EM algorithm (the starting value α(0) can

be randomly initialized). Unfortunately, there is no closed form expression for the distri-

bution P (ψk|Yk, α(t)) required to compute the expectation on the right side of Equation
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(3.7); however, using importance sampling, Equation (3.7) can be approximated as

K∑

k=1

Eψk

[
logP (Yk, ψk)|Yk, α(t)

]
≈

K∑

k=1

n∑

f=1

αf

∑S
s=1 logψ

(s)
f ωk(ψ

(s), Yk)∑S
s=1 ωk(ψ

(s), Yk)
−K logB(α) + c,

(3.8)

where ψ(1), . . . , ψ(S) iid∼ Dirichlet(α(t)), and where ωk(ψ
(s), Yk) are the importance ratios

(more details about the importance sampling procedure are provided in the appendix,

section 3.8.2).

The full EM-algorithm for estimating α is provided in Algorithm 1. The algorithm

runs until the difference in consecutive parameter estimates is sufficiently small:

‖α(t) − α(t−1)‖2 ≤ ε.

We use ε = 0.01, and S = 500 throughout the manuscript. The optimization in Algorithm

1 can be performed using a constrained optimization routine such as the L-BFGS-B

optimization algorithm. A formal derivation for each component of Algorithm 1 can be

found in various sections of the appendix.

3.4 Testing for Differential Splicing Between Two Groups

In addition to estimating the distributions of isoform inclusion levels, rMATS-Iso can

also be used to detect differential splicing between two sample groups. More specifically,

we assume that the isoform inclusion levels for each sample group are drawn from the

following distributions:

ψ11, . . . , ψ1K1

iid∼ Dirichlet(α1)

ψ21, . . . , ψ2K2

iid∼ Dirichlet(α2)

Using a likelihood-ratio test, rMATS-Iso tests whether there is a difference between α1

and α2, the Dirichlet parameters corresponding to sample groups 1 and 2, against the null
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Algorithm 1: EM algorithm for estimating Dirichlet parameter α

Input : Y1, . . . , YK , Θ = {Θ(r1), . . . ,Θ(rLk
)}, ` = {`1, . . . , `n}, S, T , ε

/* Y1, . . . , YK are the multinomial pattern count matrices */

/* Θ contains the isoform to pattern probabilities */

/* ` contains the effective lengths of each isoform */

/* S is the number of samples to draw */

/* T is the number of EM iterations */

/* ε threshold for terminating EM algorithm */

Output: α̂ = (α̂1, . . . , α̂n)

1 Randomly initialize α(1) ;

2 for t = 1, . . . , T, do

3 Draw ψ(1), . . . , ψ(S) iid∼ Dirichlet(α(t));

4 Set ψ̃
(s)
f ←

`fψ
(s)
f∑n

j=1 `jψ
(s)
j

for s = 1, . . . , S and f = 1, . . . , n ; // Length

normalization

5 Set ωk(ψ
(s), Yk)←

∏
r∈Rk

M∏
m=1

( n∑
j=1

ψ̃
(s)
j θ

(r)
mj

)Ykrm
; // Importance ratios

6 Set α(t+1) ← argmax
α

(
K∑
k=1

n∑
f=1

αf

(∑S
s=1 logψ

(s)
f ωk(ψ

(s),Yk)∑S
s=1 ωk(ψ(s),Yk)

)
−K logB(α)

)
st

αf > 0 ∀f = 1, . . . , n ;

7 if ‖α(t+1) − α(t)‖2 < ε then

8 continue;

9 end

10 end

11 return α(t+1);
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hypothesis that α1 = α2:

H0 : α1 = α2

Ha : α1 6= α2.

Moreover, if the null hypothesis of equality between α1 and α2 is rejected, a p-value is

assigned to each of the f transcripts to assess how strongly differences in the corresponding

α1f and α2f contribute to the overall difference in splicing between groups. More details

regarding the likelihood ratio test and derivation of individual-isoform p-values can be

found in the appendix, section 3.8.3.

3.5 rMATS-Iso Simulation Studies

To assess the performance of rMATS-Iso, we performed a series of simulation studies

using data generated from the Flux-Simulator (v 1.2.1) (Griebel et al., 2012). The Flux-

Simulator software aims to reproduce the sources of variability present in real RNA-seq

experiments such as those introduced during reverse transcription, RNA fragmentation,

library preparation, and high-throughput sequencing. Thus, simulating data from the

Flux-Simulator is more realistic than directly simulating from the rMATS-Iso statistical

model, where no sources of experimental error are assumed to exist. Six samples were

simulated in a 3 vs. 3 comparison of the PC3E (epithelial) and GS689 (mesenchymal)

prostate cancer cell lines. Each sample had 200 million 101-bp paired-end reads. The

transcript structure was based on the Ensembl Human GRCh37.87 GTF annotation. For

each one of the six samples, the simulated true value of transcript expression was based

on the transcription expression of one of the 3 PC3E samples and 3 GS689 samples

respectively. RNA-seq data were generated using transcripts from the PC3E and GS689

cell lines, where reads from splicing modules were simulated for 3 replicates in each sample

group / cell line. The number of transcripts within each splicing module ranged from 2 to
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5. The data were subsequently input into the rMATS-Iso software package with the goal

of quantifying splicing as well as detecting differential splicing events between the two

groups. Modules containing transcripts for which no isoform-specific reads were possible,

as well as modules with fewer than 100 reads in both sample groups were removed prior

to the analysis, resulting in a total of 3,823 AS events being analyzed.

Since the Dirichlet parameters of the two sample groups were not set in advance, we

defined whether two groups were differentially spliced according to the following criterion:

modules where the largest absolute difference in average psi values between groups (av-

eraged across replicates) for at least one isoform was greater than talt for some threshold

0.05 ≤ talt ≤ 0.15 were set equal to alternative cases (differential splicing, i.e. α1 6= α2).

Modules where the absolute difference in average psi values between groups for every iso-

form was less than tnull for some threshold 0.01 ≤ tnull ≤ 0.05 were defined to be null cases

(no differential splicing, i.e α1 = α2). A similar definition was used to define null and

alternative cases in individual isoforms within modules generated from the alternative hy-

pothesis (individual isoforms within splicing modules generated from the null hypothesis

were defined to be null-cases themselves). Null/alternative cases for individual isoforms

were only defined for modules containing more than 2 isoforms.

The simulation results reveal that rMATS-Iso was able to accurately estimate isoform

inclusion levels across splicing modules as well as identify differential splicing events (Fig-

ure 3.2). There was strong and significant correlation between the true psi values and those

predicted by rMATS-Iso (Pearson’s correlation coefficient r = 0.98, p-value < 2.2e−16;

Figure 3.2A). Moreover, the strengths of the correlations were consistent across modules

with different numbers of isoforms, with correlations of 0.99, 0.98, 0.94, 0.95 (all p-values

< 2.2e−16) for modules with 2,3,4, and 5 transcripts, respectively (Figure 3.3). To quantify

the performance of rMATS-Iso at identifying differential splicing events, we computed the

area under the curve (AUC) of the receiver operating characteristic curves (ROC) using
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Figure 3.2: rMATS-Iso is able to accurately estimate isoform inclusion levels across splic-

ing modules as well as identify differential splicing events using data simulated from the

Flux-Simulator. (A) There is high and significant concordance between the true ψ values

and those predicted by rMATS-Iso (Pearson’s correlation coefficient r = 0.98, p-value

< 2.2e−16). (B) ROC curve for the task of identifying differential alternative splicing be-

tween splicing modules (AUC = 0.86). (C) ROC curve for the task of identifying pairwise

differences in individual isoforms’ inclusion levels (AUC = 0.84).

the p-values generated from rMATS-Iso. rMATS-Iso was effectively able to identify differ-

ential splicing events while maintaining robustness against non-significant differences in

isoform inclusion levels between sample groups. For example, for the choice of thresholds

tnull = 0.01 and talt = 0.10, rMATS-Iso achieves an AUC of 0.86 for identifying differen-

tial splicing events (Figure 3.2B), and an AUC of 0.84 for identifying differentially spliced

isoforms within modules (Figure 3.2C). Table 3.1 shows the AUC results over a range of

values for the thresholds tnull and talt.

Next, we performed another simulation where data were generated from the rMATS-

Iso statistical model directly, using the same module structures as before. More specif-

ically, for each splicing module from the Flux-Simulated dataset, we randomly decided

(with 50% probability) whether or not that module was differentially spliced. If the
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Figure 3.3: There is high and significant concordance between the true ψ values and those

predicted by rMATS-Iso across modules with different numbers of isoforms (Pearson’s

correlation coefficient p-value < 2.2e−16 for each plot).

module corresponded to differential splicing, we randomly sampled the parameter vec-

tors α1 and α2 jointly from the empirical distributions of unconstrained parameter esti-

mates obtained from the previous simulation, specifically from modules where the largest

absolute difference in average psi values was greater than talt = 0.10. If the splicing

module corresponded to the null hypothesis of no differential splicing, we randomly sam-

pled α1 = α2 = α from the empirical distribution of constrained parameter estimates

from modules where the absolute difference in average psi values between groups for

every isoform was less than tnull = 0.01. For this simulation, we treated the total num-

ber of RNA-seq reads for each replicate, as well as the number of replicates in each
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HHH
HHH

HHHH
talt

tnull
0.01 0.02 0.03 0.04 0.05

0.05 0.818 0.795 0.780 0.769 0.760

0.10 0.863 0.845 0.832 0.824 0.816

0.15 0.896 0.882 0.873 0.866 0.861

0.20 0.904 0.894 0.887 0.883 0.879

Table 3.1: The area under curve (AUC) for the classification task in Figure 3.2B for

different values of the thresholds tnull and talt.

sample group, K1, K2, as parameters and varied them from simulation to simulation

(R = 50, 100, 200, 400, 500, 1000, and K1 = K2 = 2, 3, 5, 10, 20, 50).

The results are shown in Figure 3.4 and illustrate that increasing either the total num-

ber of reads or number of replicates increases the performance of rMATS-Iso in detecting

differential splicing events. Figure 3.4 can also provide useful insight into performing

differential splicing analysis with a fixed budget of replicates/reads. For example, if ob-

taining additional replicates is prohibitively costly for a particular study, significant gains

in AUC can be obtained simply by increasing the sequencing depth, especially if the

original sequencing depth is shallow.

3.6 Analysis of the PC3E and GS689 Cell Lines Using Long

RNA-seq Reads

To illustrate the utility of rMATS-Iso, we analyzed an RNA-seq dataset generated from

six independent samples of the PC3E (epithelial) and GS689 (mesenchymal) prostate

cancer cell lines (three samples per cell line) discussed in the previous subsection. As part
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Figure 3.4: The performance of rMATS-Iso improves as more replicates and/or RNA-seq

reads are added. (A) AUC for the task of identifying differential splicing events. (B) AUC

for the task of identifying differences in individual isoforms’ inclusion levels.

of the data processing pipeline, we first created a gene annotation file using both short

RNA-seq reads as well as Pacific Biosciences long RNA-seq read data generated from all

six samples of PC3E and GS689. Next, the resulting gene annotation file along with

the alignment results were used to generate all of the necessary input for the rMATS-Iso

statistical model, including a file containing the splicing module structures as well as files

containing isoform consistency counts for each replicate in every splicing module. More

details about the data processing pipeline are given in the appendix, section 3.8.5.

The most abundant splicing patterns, along with the corresponding numbers of signif-

icant differential splicing events, are shown in Figure 3.5. Among the 10 most abundant

splicing patterns, rMATS-Iso identified 712 significant events from a total of 13, 211 events

analyzed. These events include the basic patterns of alternative splicing such as exon skip-

ping (456 significant events), alternative 3’ (62 significant events) and 5’ (15 significant
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Figure 3.5: The most abundant splicing patterns in PC3E identified by rMATS-Iso along

with the corresponding number of significant differential splicing events at FDR ≤ 10%.

Among the most abundant splicing patterns, 712 significant events were identified from a

total of 13, 211 events analyzed.

events) splice sites, alternative first exons (61 significant events) and alternative last ex-

ons (36 significant events), as well as more complex events such as exon skipping coupled

with alternative 3’ splice site (20 significant events), and mutually exclusive exons (11

significant events).

An example of a complex differential splicing event identified by rMATS-Iso is shown

in Figure 3.6. This event corresponds to an exon skipping + alternative 5′ splice site event

in the FLNB gene (rMATS-Iso p-value < 2.2e−16). There were significant differences in

the inclusion levels of isoforms 2 and 3 between the two sample groups. The estimated

mean inclusion level for isoform 2 is 76% in PC3E vs 24% in GS689 (p-value of isoform

difference = 0.019), while the estimated mean inclusion level for isoform 3 is 1% in PC3E

vs 73% in GS689 (p-value of isoform difference = 0.00015). The FLNB gene codes for

the protein filamin B which forms the cytoskeleton and is important for normal cell

growth; differential expression of the FLNB splice variants has previously been shown to

be associated with cell survival and differentiation of giant cell bone tumors (Tsui et al.,
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Figure 3.6: A significant differential splicing event identified by rMATS-Iso in the FLNB

gene (rMATS-Iso p < 2.2e−16). Top) Sashimi plots indicating the read counts correspond-

ing to each exon junction in each group. Bottom) Mean isoform inclusion levels estimated

using rMATS-Iso for each sample group.

2016).

Another differential alternative splicing event identified by rMATS-Iso is shown in

Figure 3.7. This event corresponds to a mutually exclusive exon splicing event in the

MYO1B gene (rMATS-Iso p-value < 2.2e−16). The largest differences in isoform ratios

between the PC3E and GS689 cell lines occur between isoforms 1 and 4 corresponding to

inclusion of all 4 exons and skipping of both exons 2 and 3 respectively. The estimated

mean inclusion level for isoform 1 is 6% in PC3E vs 56% in GS689 (p-value of isoform

difference = 0.0002), while the estimated mean inclusion level for isoform 4 is 81% in

PC3E vs 23% in GS689 (p-value of isoform difference = 7e−05). Aberrant expression of

the MYO1B gene has been linked to cell migration and lymph node metastasis in patients

69



MYO1B      rMATS-ISO   p < 2.2e-16
PC3E

GS689

832

92

445

63 113

138 16

393

157

148

308

8

PC3E
6%

2%
11%

GS689
56%

2%
19%

81% 23%

Figure 3.7: A significant differential splicing event identified by rMATS-Iso in the MYO1B

gene (rMATS-Iso p < 2.2e−16). Top) Sashimi plots indicating the read counts correspond-

ing to each exon junction in each group. Bottom) Mean isoform inclusion levels estimated

using rMATS-Iso for each sample group.

with certain classes of cancer (Ohmura et al., 2015).

3.7 Discussion

In this chapter, we have proposed a novel statistical framework, rMATS-Iso, to fill a

methodological gap in the literature on quantifying isoform variation in complex splicing

modules. rMATS-Iso accounts both for the estimation uncertainty in ψ values owing to

RNA-seq read coverage, as well as for the variability in splicing levels between samples

from the same biological population. Moreover, to address the possible ambiguity of RNA-
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seq read counts, rMATS-Iso converts the underlying isoform probabilities from isoform

space to pattern space where there is no problem or ambiguity defining the observed

read counts. rMATS-Iso leverages a likelihood ratio test in order to detect differential

splicing between sample groups, and utilizes a simulation-based approach to quantify

individual-isoform differences between groups. Our simulation results reveal that rMATS-

Iso accurately estimates the true psi values within the PC3E and GS689 cell lines, and

that adding samples and/or increasing the RNA-seq read coverage increases the accuracy

of detecting differential events.

There are several possible extensions to the rMATS-Iso model. First, our computation

of the isoform-to-pattern probability matrix Θ(r) assumes that RNA-seq reads are equally

likely to be drawn across each feasible position in a given splicing module. In practice,

the distribution of where RNA-seq reads occur across a module may be non-uniform, and

a more realistic model to reflect this departure from uniformity may be more appropriate.

In addition, our model assumes that alternative splicing levels are fully determined by

factors within the splicing module. In reality, alternative splicing levels may depend

on other factors and may even differ within sub-strata of the population of interest.

Integrating this information as an additional layer in the hierarchical framework is a

promising direction for future work.

3.8 Appendix

3.8.1 Normalizing Isoform Lengths

Since the effective lengths of each isoform (defined as the number of isoform-specific read

positions) can differ between isoforms, the isoform inclusion levels ψ must be appropriately

normalized to obtain the proportion of reads generated by each isoform. Let `f denote

the effective length of isoform f (see (Shen et al., 2014) for more details on computing the
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effective lengths for different types of alternative splicing events). Then for f = 1, . . . , n,

the proportion of reads generated from isoform f is given by

ψ̃f =
`f · ψf
n∑
j=1

`j · ψj
.

ψ̃ is used in equation 3.6 to adjust the multinomial read counts corresponding to each

consistency pattern.

3.8.2 Approximating the Conditional Expectation of the Log-Likelihood

Let Rk = {r1, . . . , rLk
} denote the set of unique read lengths for the reads corresponding

to subject k. Combining Equations 3.2 and 3.5 yields the joint probability of Yk and ψk,

given by

P (Yk, ψk;α) ∝ P (ψk;α)P (Yk|ψk) ∝
1

B(α)

n∏

f=1

ψ
αf−1
kf

∏

r∈Rk

M∏

m=1

prm(ψk)
Ykrm ,

where B(α) is the multivarite beta function

B(α) =

n∏
f=1

Γ(αf )

Γ
( n∑
f=1

αf

) ,

and where prm(ψk) is defined as in 3.6. The log-likelihood function can therefore be

written as
K∑

k=1

logP (Yk, ψk;α) =
K∑

k=1

n∑

f=1

αf logψkf −K logB(α) + C0, (3.9)

where C0 is a constant that does not depend on α. Finally, taking the conditional expec-

tation of expression 3.9 yields

K∑

k=1

Eψk

[
logP (Yk, ψk;α)|Yk, α(t)

]
=

K∑

k=1

n∑

f=1

αfEψk

[
logψkf |Yk, α(t)

]
−K logB(α) + C0.

(3.10)
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Since there is no closed form expression for P (ψk|Yk, α(t)), we can use importance sampling

to approximate the expectation in the above expression. More specifically, let Q(ψ|α(t))

denote the density function of a Dirichlet(α(t)) random vector, and let ψ(1), . . . , ψ(S) denote

an iid sample drawn from Q(ψ|α(t)). Also, let

P (ψ(s)|Yk, α(t)) := cp · P0(ψ
(s)|Yk, α(t))

Q(ψ|α(t)) := cq ·Q0(ψ|α(t)),

where cp and cq are the normalizing constants of their respective density functions. Note

that

P0(ψ
(s)|Yk, α(t))

Q0(ψ(s)|α(t))
∝ P (Yk|ψ(s), α(t))Q0(ψ

(s)|α(t))

Q0(ψ(s)|α(t))
= P (Yk|ψ(s))

∝
∏

r∈Rk

M∏

m=1

( n∑

j=1

ψ̃
(s)
j θ

(r)
mj

)Ykrm

:= ωk(ψ
(s), Yk). (3.11)

The conditional expectation in 3.10 can now be written as

Eψk

[
logψkf |Yk, α(t)

]
=

∫
logψkfP (ψk|Yk, α(t))dψk

=

∫ (
logψkf ·

P (ψk|Yk, α(t))

Q(ψk|α(t))

)
Q(ψk|α(t))dψk

=

∫ (
logψkf ·

P (ψk|Yk, α(t))

Q(ψk|α(t))

)
Q(ψk|α(t))dψk∫

P (ψk|Yk, α(t))

Q(ψk|α(t))
Q(ψk|α(t))dψk

=

∫ (
logψkf ·

P0(ψk|Yk, α(t))

Q0(ψk|α(t))

)
Q(ψk|α(t))dψk∫

P0(ψk|Yk, α(t))

Q0(ψk|α(t))
Q(ψk|α(t))dψk

= Eψk

[
logψkf ·

P0(ψk|Yk, α(t))

Q0(ψk|α(t))

∣∣∣∣∣α
(t)

]/
Eψk

[
P0(ψk|Yk, α(t))

Q0(ψk|α(t))

∣∣∣∣∣α
(t)

]
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≈

S∑
s=1

logψ
(s)
f · ωk(ψ(s), Yk)

S∑
s=1

ωk(ψ(s), Yk)

(3.12)

when the sample size S is large enough.

3.8.3 Likelihood Ratio Test and Derivation of Individual-Isoform p-values

When there are two sample groups, rMATS-Iso assumes that the isoform inclusion levels

from each group are drawn from the following distributions:

ψ11, . . . , ψ1K1

iid∼ Dirichlet(α1)

ψ21, . . . , ψ2K2

iid∼ Dirichlet(α2).

A likelihood ratio test is then used to test the hypothesis α1 6= α2 against the null

hypothesis that α1 = α2:

H0 : α1 = α2

Ha : α1 6= α2.

The log likelihood function for the two sample situation can be written as

L(α1, α2|Y1, Y2, ψ1, ψ2) =

K1∑

k=1

logP (Y1k, ψ1k;α1) +

K2∑

k=1

logP (Y2k, ψ2k;α2)

=

K1∑

k=1

n∑

f=1

α1f logψ1kf +

K2∑

k=1

n∑

f=1

α2f logψ2kf

−K1 logB(α1)−K2 logB(α2) + C1,

where the constant C1 does not depend on either α1 or α2. The EM algorithm proceeds

analogously as before, yielding two estimates α̂1, α̂2 under the alternative (unconstrained)

hypothesis and one estimate α̂ under the null (constrained) hypothesis. Under this setup,

the likelihood ratio test statistic asymptotically follows a χ2 distribution with n degrees

of freedom.
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Algorithm 2: Algorithm for computing isoform-specific p-values

Input : α̂, α̂1, α̂2, T

/* α̂ is the estimate of α under the null hypothesis */

/* α̂1 is the estimate of α1 under the alternative hypothesis */

/* α̂2 is the estimate of α2 under the alternative hypothesis */

/* T is the number of rounds of simulation to perform */

Output: (p1, . . . , pn), where pf is the p-value for isoform f .

1 Set D ← α̂1
n∑
i=1

α̂1i

− α̂2
n∑
i=1

α̂2i

;

2 for t = 1, . . . , T, do

3 Draw ψ
(t)
1k

iid∼ Dirichlet(α̂) for k = 1, . . . , K1;

4 Draw ψ
(t)
2k

iid∼ Dirichlet(α̂) for k = 1, . . . , K2;

5 Set Dt ← ψ̄
(t)
1 − ψ̄(t)

2 =
1

K1

K1∑
k=1

ψ
(t)
1k −

1

K2

K2∑
k=1

ψ
(t)
2k ;

6 end

7 for f = 1, . . . , n, do

8 Set pf ←
1

T

T∑
t=1

I{Dt
f < −|Df |}+

1

T

T∑
t=1

I{Dt
f > |Df |} ;

9 end

10 return p = (p1, . . . , pn);

If the null hypothesis α1 = α2 is rejected, we may be interested in quantifying how

strongly each individual isoform contributes to the differences observed in the data. With

this goal in mind, we use a simulation-based strategy that computes p-values for each

isoform; a small p-value indicates that an isoform contributes significantly to the difference

in overall isoform inclusion levels (of course, there is no need for such a procedure if there
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are only 2 isoforms). First, note that under the null hypothesis α1 = α2 = α,

E[ψjf ] =
αf
n∑
i=1

αi

≈ α̂f
n∑
i=1

α̂i

≈ 1

Kj

Kj∑

k=1

ψjkf = ψ̄jf , j = 1, 2.

Taking advantage of the above approximation, the p-values for each isoform can be ap-

proximated using Algorithm 2. We set the default number of simulations to T = 100, 000.

3.8.4 Computing the Transcript to Pattern Probabilities

The probabilities θ
(r)
mf in Equation 3.6 represent the probability that a read will corre-

spond to pattern m, given the read was generated from isoform f . Each θ
(r)
mf value is a

fixed (non-random) quantity and can be determined by the structure of the alternative

splicing module and RNA-seq read length. These probabilities can be calculated using

the following three steps:

Step 1: Find the effective length of each isoform.

Step 2: Find the effective length of each pattern.

Step 3: Normalize the effective length of each pattern by the effective length of each

isoform.

The following scheme can be used to compute Θ(r):

Step 1: Find all of the exon bodies and junctions in which a read will be consistent with

a given isoform.

Let I = {1, . . . , n} and for isoform f = 1, . . . , n, do:

(A) Let If = {i ∈ I; exon i is included in isoform f}, and let nf = |If |.

(B) Let Er
f = {i ∈ If ; ei ≥ r}, where ei is the length of exon i. Er

f tracks all exons which

can fully contain a read of length r.

(C) For every k ∈ {2, . . . , nf}, defined Sfk = {(i1, . . . , ik); ij ∈ If for j = 1, . . . , k}, i.e.

Sfk contains all k-tuples of indices from If . Let Sf = ∪nf

k=2Sfk. We would like to
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define a subset of Sf that tracks all feasible exon junctions within isoform f . With

this goal in mind, define Jrf to be the subset of Sf such that for all z ∈ Jrf ,

(a) zj < zj+1 for all j = 1, . . . , `z − 1, where `z is the length of z. Furthermore,

the exons indexed by zj and zj+1 are adjacent in isoform f .

(b) r ≤ ∑`z
j=1 ezj < ez1 + r − 1; this condition states that the total length of the

exons indexed by z is greater than or equal to the read length r, and that at

least one read can cover both the first and last exons indexed by z.

Each ordered pair (i, j) in Jrf corresponds to the junction between exons i and j. k-tuples

with k ≥ 3 indicate a “multi-exon junction”, i.e. a configuration for which a read crosses

exactly k − 1 junctions.

Step 2: Identify the exon bodies and junctions in which a read will uniquely correspond

to each isoform consistency pattern. Then find the effective length, i.e. the total number

of unique read positions, of each consistency pattern.

Enumerate all M = 2n − 1 consistency patterns into an M × n matrix P as defined in

section 3.2.

(A) For m = 1, . . . ,M , let

Hm = {f ∈ I;Pmf = 1}.

For all f ∈ Hm, define

Er
fm :=

⋂

j∈Hc
m

(Er
f − Er

j ),

Jrfm :=
⋂

j∈Hc
m

(Jrf − Jrj ).

Finally, let

Ẽr
fm :=

⋂

f∈Hm

Er
fm,
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J̃rfm :=
⋂

f∈Hm

Jrfm.

Intuitively, ẼR
fm corresponds to exon bodies in which a read will uniquely correspond

to pattern m. Similarly, J̃rfm corresponds to junctions for which a read will uniquely

correspond to pattern m.

(B) For m = 1, . . . ,M , let

Br
m =

∑

i∈Ẽr
m

ei − |Ẽr
m| · (r − 1),

where ei is the length of exon i. Br
m is the number of exon body read positions

unique to pattern m.

(C) For each m = 1, . . . ,M and every tuple zj = (zj1, . . . , zjkj) in J̃rm, where j ∈

{1, . . . , |J̃rm|} and where kj can vary from tuple to tuple, let

emiddle
j =





kj−1∑
t=2

ezjt if kj ≥ 3

0 otherwise,

and set

U r
m =

|J̃r
m|∑

j=1

min
(
ezj1 , ezjkj , r − e

middle
j − 1

)
.

U r
m is the total number of read positions corresponding to every tuple in J̃rm.

(D) For m = 1, . . . ,M , let nrm = |Br
m|+ |U r

m|, and let N r = (nr1, . . . , n
r
M).

Step 3: Normalize the effective length of each pattern by the effective length of each

isoform included in that pattern to obtain the transcript-to-pattern matrix Θ(r).

For f = 1, . . . , n, let Pf = (Pf1, . . . , PfM) denote the f th column of the pattern matrix P .

Then the f th column of Θ(r) can be computed as

Θ
(r)
f =

Pf ·N r

∑
i∈If

ei − r + 1
.
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3.8.5 Generating Alternative Splicing Modules and Compatibility Matrices

rMATS-Iso takes a gene annotation file in GTF format and alignment result file in sorted

BAM format as input and generates two types of output files: “.IsoExon” and “.IsoMa-

trix”. Only the first bam input file has a corresponding “.IsoExon” output file, which

contains the splicing module information of all the input bam files. Each bam input file

has a corresponding “.IsoMatrix” output file, which contains the isoform read compati-

bility information of each individual bam file.

rMATS-Iso builds a splicing graph within each gene. In the splicing graph, exons are

represented as nodes and splice junctions between two exons are represented as directed

edges between two nodes (directed from the 5’ splice site to the 3’ splice site). Redundant

exons that have same 5’ and 3’ splice sites are merged into one unique exon. In addition,

one virtual start node and one virtual end node are added to the splicing graph for the

completeness of the splicing module’s definition. We add one virtual edge between the

virtual start node and each exon node that does not have any incoming edges. Similarly,

virtual outgoing edges are added between terminal exon nodes and the virtual end node.

For each junction edge in the splicing graph, rMATS-Iso calculates the corresponding

supporting junction read count. By default, only uniquely mapped and properly paired

reads are counted during this step. We then remove all junction edges that do not have

enough supporting junction reads (the default value is set to 1 read).

The concept of “splicing modules” was previously defined in (Hu et al., 2013). rMATS-

Iso implements a method which is similar to that of (Hu et al., 2013) to find valid splicing

modules. All the splicing module information is stored in the “.IsoExon” file. For each

valid splicing module, all possible paths between nodes are generated to represent all of

the possible transcript isoforms. Next, the aligned reads are compared with all of the

enumerated isoforms. If a read alignment is consistent with an isoform, meaning that the

read may have been generated from that transcript, we say that the read is compatible
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with the isoform. A single read could be compatible with multiple isoforms. All of the read

compatibility information of each BAM file is stored in the corresponding “.IsoMatrix”

file.
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CHAPTER 4

Conclusion

We have developed two new statistical methodologies for quantifying and better under-

standing mRNA isoform variation. First, we introduced PAIRADISE, a method for de-

tecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional

approaches that detect ASAS events one sample at a time, PAIRADISE uses a statisti-

cal model that aggregates ASAS signals across multiple individuals in a population. By

treating the two alleles of an individual as paired, and multiple individuals sharing a

heterozygous SNP as replicates, PAIRADISE formulates ASAS detection as a statistical

problem for identifying differential alternative splicing from RNA-seq data with paired

replicates. PAIRADISE outperforms alternative statistical models in simulation studies,

and boosts the power of ASAS detection in replicate or population-scale RNA-seq data.

Additionally, PAIRADISE ASAS analysis detects the effects of rare variants on alternative

splicing.

Next we introduced rMATS-Iso, a multi-isoform generalization of the rMATS statis-

tical and computational framework, for quantifying alternative splicing variation from

complex splicing events. rMATS-Iso addresses a commonly encountered difficulty asso-

ciated with RNA-seq data, namely the difficulty of assigning short RNA-seq reads to

one particular mRNA isoform. To address this ambiguity of RNA-seq reads, rMATS-Iso

redefines the observed data to be counts of isoform consistency, then uses an EM algo-

rithm to estimate isoform probabilities. Our simulation studies reveal that rMATS-Iso

provides accurate estimates of the true isoform inclusion levels, and that the performance
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of rMATS-Iso improves as more samples and/or RNA-seq reads are added.

Both PAIRADISE and rMATS-Iso are generalizable across diseases and biological

systems and will provide a fundamental set of tools for elucidating the transcriptome. We

are confident that these methodologies will play a crucial role in highlighting the role of

mRNA isoform variation in complex disease processes, and will ultimately help contribute

a better understanding of human health.
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Královičová, J., Houngninou-Molango, S., Krämer, A., and Vořechovský, I. (2004).

Branch site haplotypes that control alternative splicing. Hum. Mol. Genet.,

13(24):3189–3202.

Lappalainen, T. and Sammeth, M. (2013). Transcriptome and genome sequencing uncov-

ers functional variation in humans. Nature, 501(7468):506–511.

Lee, C. (2003). Generating consensus sequences from partial order multiple sequence

alignment graphs. Bioinformatics, 19(8):999–1008.

86



Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial

order graphs. Bioinformatics, 18(3):452–464.

Lee, C., Roy, M., and Coauthors (2004). Analysis of alternative splicing with microarrays:

successes and challenges. Genome Biol., 5(7).

Li, B. and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq

data with or without a reference genome. BMC Bioinformatics, 12(323).

Li, G., Bahn, J. H., Lee, J. H., Peng, G., Chen, Z., Nelson, S. F., and Xiao, X. (2012).

Identification of allele-specific alternative mRNA processing via transcriptome sequenc-

ing. Nucleic Acids Res., 40(13).

Li, W. V., Zhao, A., Zhang, S., and Li, J. J. (2018). MSIQ: Joint modeling of multiple

RNA-SEQ samples for accurate isoform quantification. Ann. Appl. Stat., 12(1):510–539.

Lin, S. and Fu, X.-D. (2007). SR Proteins and Related Factors in Alternative Splicing.

Exp. Med. Biol., pages 107–122.

Liu, S. and Cheng, C. (2013). Alternative RNA splicing and cancer. Wiley Interdiscip.

Rev. RNA, 4(5):547–566.
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