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ABSTRACT OF THE DISSERTATION

Excitons and Plasmons in Low-dimensional Systems

by

Brian Sullivan Vermilyea

Doctor of Philosophy in Physics

University of California San Diego, 2024

Professor Michael M. Fogler, Chair

In this dissertation, I study the many-body physics of two types of collective

excitations, excitons and plasmons, in low-dimensional systems. In Chapter 1, I explain

how low-dimensional systems are realized and discuss their importance in condensed

matter physics. I subsequently introduce excitons and plasmons, as well as exciton-

polaritons and exciton-polarons. Chapter 2 considers a novel type of polariton formed

by hybridization of excitons in a two-dimensional semiconductor with surface optical

phonons or plasmons. We show that these quasiparticles can bind into bipolaritons near a

Feshbach-like scattering resonance and analyze the physics of a many-body condensate

of polaritons and bipolaritons. In Chapter 3, we study another type of polariton that

xiii



results from the hybrdiization of magnetoexcitons in graphene with hyperbolic phonon

modes in hexagonal boron nitride, and calculate the shift in the magnetoexciton energy

due to many-body effects. We investigate excitonic Bose-polarons in Chapter 4, where we

develop a many-body theory of these polarons formed by spatially direct excitons immersed

in a degenerate Bose gas of spatially indirect excitons. In Chapter 5, we study surface

plasmons in minimally-twisted gapped bilayer graphene that develops a triangular network

of partial dislocations (or AB-BA domain walls) hosting one-dimensional electronic states,

and formulate a theoretical model describing the plasmonic spectrum of the network in

different regimes of temperature and electron-electron interaction strength. Conclusions

are given in Chapter 6, where I also outline potential future research directions.

xiv



Chapter 1

Introduction

In condensed matter physics, low-dimensional systems are of great current in-

terest due to their high degree of tunability and novel properties. Such systems arise

when electrons are spatially confined in one or more dimensions and can be realized in

several different ways: in nano-fabricated structures, such as semiconductor quantum

wells [1]; in two-dimensional (2D) materials such as graphene or monolayer transition

metal dichalcogenides [2], or one-dimensional (1D) materials such as carbon nanotubes [3];

or as topological states at the boundary between two higher-dimensional regions [4].

From an experimental perspective, low-dimensional systems often have the advan-

tage that they can more easily be controlled and manipulated than their three-dimensional

(3D) counterparts. For example, the electron density in graphene can be changed by

applying an external gate voltage. Additionally, 2D materials can be stacked to form het-

erostructures and superlattices that exhibit unique phenomena, such as superconductivity

and correlated insulating states observed in a twisted bilayer graphene superlattice [5, 6].

On the theoretical side, low-dimensional systems are intriguing because the physics of

interacting particles strongly depends on dimensionality. With reduced dimensionality,

electron-electron interactions have a more pronounced effect. In fact, electrons in one

dimension form a Luttinger liquid where the low-energy excitations are entirely collective,

rather than single-particle, in nature [7]. At the same time, quantum fluctuations become

1



stronger as the system’s dimension decreases and limit its ability to form ordered states.

Collective excitations in low-dimensional systems are of interest for several reasons.

First of all, they determine the optical properties and reveal information about the

underlying electronic state of the system. Furthermore, they can serve as a tunable

platform to explore many-body physics and create novel solid-state devices. Here we

study two types of collective excitations: excitons, which are bound electron-hole pairs in

semiconductors, and plasmons, which are longitudinal oscillations of electrons in conductors.

In the following I provide a brief overview of excitons and plasmons before proceeding to

the next chapter.

Excitons are created by absorption of a photon in a semiconductor, which excites

an electron from the conduction to the valence band. Removing an electron from the

valence band creates a positively-charged quasiparticle called a hole. Due to the attractive

Coulomb interaction between them, the electron in the conduction band and hole in

the valence band form a bound state known as an exciton. Another type of exciton —

magnetoexcitons — appear in 2D conductors subject to a strong magnetic field (Chapter 3).

They are bound states of electrons and holes residing in different Landau levels. In general,

excitons are observed as peaks in the optical absorption spectrum of a material, and as

composite bosons they can provide a solid-state realization of Bose-Einstein condensation

and superfluidity [8, 9]. Furthermore, excitons can resonantly couple to photons to form

hybrid light-matter states know as exciton-polaritons [10]. In Chapters 2 and 3, we consider

a generalized notion of exciton-polaritons where the excitons are coupled to phonons or

plasmons instead of photons. We also study exciton-polarons: excitons dressed by a

surrounding Bose and Fermi gas to form a new quasiparticle (Chapter 4).

The physical origin of plasmons can be simply understood. If the electron density

in a conductor is increased in one region, the electrons repel each other and try to return to

their equilibrium position. However, they will overshoot the mark, setting up a longitudinal

oscillation known as a plasmon. The plasmon dispersion at long-wavelength can be found

2



by solving hydrodynamic equations for the electron density and current and depends on

the Drude weight, i.e., the weight of the zero-frequency peak in optical conductivity [11].

Alternatively, plasmons can be viewed as superpositions of electron-hole pair excitations

where the hole refers to an empty state in the Fermi sea. In 3D, the plasmon is a gapped

mode that has finite frequency even as its momentum q tends to zero, which is due to

the long-range of the Coulomb interaction. In lower dimensions the plasmon dispersion is

gapless: its frequency scales as
√
q in 2D and linearly in q with logarithmic corrections

in 1D. In Chapter 5, we study plasmon modes in a 2D network of 1D electronic states

formed in twisted bilayer graphene.

3



Chapter 2

Feshbach resonance of heavy exciton-
polaritons

2.1 Introduction

In this chapter, we consider heavy exciton-polaritons, a novel type of polariton

formed by hybridization of excitons in a two-dimensional (2D) semiconductor with surface

optical phonons or plasmons [12]. Exciton-polaritons, formed by coherent coupling of

excitons with photons in semiconductor microcavities, have been a subject of active research

[10, 13]. These hybrid light-matter quasiparticles are of interest due to their potential device

applications [14] and solid-state realizations of condensation and superfluidity [15, 16].

Many phenomena unique to exciton-polaritons stem from strong interactions induced

by their excitonic component. Recent pump-probe optical experiments revealed that

exciton-polaritons can exhibit a Feshbach scattering resonance mediated by the biexciton

state [17, 18, 19, 20, 21, 22], which in some sense allows one to control the strength and

sign of polariton interactions, akin to the manipulation performed in experiments with

atomic gases.

The origin of the exciton-polariton Feshbach resonance is associated with formation

of bipolaritons, i.e., bound states of polaritons. One might expect that bipolaritons

are realized when the Rabi splitting (Sec. 2.2.1) exceeds the biexciton binding energy.

However, due to the strong dispersion of the photon, exciton-polaritons have a very

4
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Figure 2.1. Schematic diagrams of (a) the photon cavity and (b) phonon/plasmon
cavity. The lines indicate the electric field direction. (c) Schematic of the heavy-exciton
polariton (left) and bipolariton (right) The ring surrounding the exciton indicates the
characteristic polariton radius Rc = (1/mxΩ)

1/2, with mx the exciton mass and Ω the
polariton Rabi frequency. Bipolaritons are well defined when the biexciton binding energy
Exx is much smaller than Ω, or equivalently Rc is much smaller than the length scale
rxx = (1/mxExx)

1/2, which is of order the bipolariton radius.

small effective mass and the bipolariton binding energy is exponentially suppressed in

2D. Thus, bipolariton states are not observed [23], although radiative corrections can

significantly modify the biexciton dispersion [24, 25, 26, 27]. Note that while such

radiatively renormalized biexciton states are often called bipolaritons in the literature, in

this chapter we use the term bipolariton to mean a true bound state of two polaritons

with energy below the two-particle continuum.

Polaritons in 2D materials, such as phonon polaritons in hexagonal boron nitride

and exciton-polaritons in tranitional metal dichalcogenide (TMD) monolayers, are a
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growing research field which provides a controllable platform to study polaritons and their

interactions [28, 29]. Motivated by this, we consider a novel type of exciton-polariton

formed by strong coupling of excitons in a 2D semiconductor with surface optical phonons

or surface plasmons, see Fig. 2.1(a),(b). In contrast to previous investigations of resonant

exciton-phonon coupling [30, 31, 32], we consider the regime where the phonon frequency

is resonant with transitions across the band gap, not between internal states of the exciton.

This is similar to the case of plexcitons, which are hybrid quasiparticles resulting from

resonant coupling between excitons and plasmons in metallic nanostructures [33, 34, 35].

By analogy to heavy fermions, we use a common term heavy exciton-polaritons for these

quasiparticles to emphasize that they have a large effective mass inherited from a nearly

flat dispersion of phonons or plasmons. This is why heavy exciton-polaritons can be

confined in nanocavities of size much smaller than the diffraction limit of light. Note that

such highly confined heavy polaritons have a very small photonic component. In this

regard, we wish to clarify that we use the term ‘polariton’ in a broad sense, meaning a

hybrid excitation of a polarizable medium.

In this chapter, we analyze the Feshbach scattering resonance between heavy

polaritons and show that they can form bipolariton states near the resonance. In contrast

to previously studied exciton-polaritons in photonic cavities, where paired states are

essentially biexcitons, heavy polaritons retain their hybrid nature in the bound state

[Fig. 2.1(c)] assuming that Rabi frequency exceeds the biexciton binding energy. We

subsequently consider a system with finite densities of polaritons and bipolaritons that can

exhibit Bose condensation and superfluidity. We study possible phases of such a condensate,

the polariton superfluid (PSF) and bipolariton superfluid (BSF) [36, 37, 38, 39], and the

associated excitation spectra within a mean-field approximation.

The rest of this chapter is organized as follows. In Sec. 2.2 we first discuss single-

particle states and compare heavy exciton-polaritons to photon exciton-polaritons. We

then include exciton-exciton interactions and show how bipolariton states emerge near
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the Feshbach resonance. In the last part of Sec. 2.2, we study the consequences of heavy

bipolariton formation in many-body condensates. In Sec. 2.3, we compute the absorption

and luminescence spectra of the polariton systems and show that they are dominated by

collective excitations of the condensate. We discuss additional experimentally testable

predictions of our theory in Sec. 5.7. Details of our calculations are provided in the

Appendix.

2.2 Model

2.2.1 Single-particle states

We consider a simple model of the heavy polariton that captures the essential

physics. The Hamiltonian is

H0 =
∑
k

[
ωx,kb

†
kbk + ωc,ka

†
kak +

Ωk

2

(
b†kak + h.c.

)]
,

(2.1)

which is analogous to what is commonly used to model exciton-polaritons in photonic

cavities [13]. In that context the operators a†k and b†k respectively create cavity mode and

exciton states with momentum k. The exciton kinetic energy is ωx,k = k2/2mx, where mx

is the exciton mass. In our case a†k creates a phonon or a plasmon (Fig. 2.1) with energy

ωc,k = δ independent of k since the dispersion of a surface optical phonon (plasmon) is

nearly flat compared to that of the exciton. We refer to parameter δ as the cavity detuning.

The strength of the coupling is characterized by the Rabi frequency Ωk, i.e., the rate of

energy transfer between the two modes, which we take to be momentum independent for

simplicity: Ωk = Ω. We also ignore the polarization degree of freedom of the exciton. We

use units such that ℏ = 1 throughout. The spectrum consists of upper and lower polariton
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(a)

(b)

Figure 2.2. Plots of the polariton energy (left) and the exciton fraction (right) versus
momentum for (a) photon exciton-polaritons and (b) heavy exciton-polaritons.

branches with energies

ω±,k =
1

2

[
ωc,k + ωx,k ±

√
(ωx,k − ωc,k)2 + Ω2

k

]
, (2.2)

and the exciton fraction in each branch is given by the squares of the Hopfield coefficients

U2
±,k =

1

2

[
1± (ωx,k − ωc,k)

/√
(ωx,k − ωc,k)2 + Ω2

k

]
. (2.3)

ωc,k =
k2

2mc

+ δ (2.4)

ωx,k =
k2

2mx

(2.5)

In Fig. 2.2, we compare the momentum dependence of the polariton energy and Hop-

field coefficients for conventional photon exciton-polaritons and heavy exciton-polaritons.
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Cavity photons have a very steep energy-momentum dispersion which takes the form

ωp,k ≃ δ + k2/2mp, with an effective mass mp ∼ 10−4mx. Therefore, for a photonic cavity,

the polaritons have a strong dispersion at small k, but with increasing k outside the

light-cone the lower polariton rapidly becomes mostly exciton and the upper polariton

becomes mostly photon. This is contrasted with the heavy polaritons which have an

effective mass of order the exciton mass mx and retain their hybrid character at much

larger k.

2.2.2 Two-particle states

The interaction between two excitons, viewed as rigid structureless bosons, takes

the form

Hint =
1

2A

∑
kk′q

Wq b
†
k+qb

†
k′−qbk′bk, (2.6)

where A is the area of the system and Wq is an attractive interaction that supports the

biexciton bound state. The structureless boson approximation for excitons is justified if

their binding energy is much greater than all other relevant energy scales in the problems,

including the Rabi frequency, the biexciton binding energy, etc. If this is not true, a more

sophisticated formalism is required [40]. The total Hamiltonian is H = H0 +Hint, with

H0 defined in Eq. (2.1). We may estimate the bipolariton binding energy E from the

well-known formula for weak attractive interactions in 2D [41]:

E ≃ EΛ exp

(
− 2π

|Vp|mr

)
, (2.7)

with Vp < 0 the polariton interaction strength at zero momentum, mr the reduced mass

of the two polaritons forming the bound state, and EΛ a high-energy cutoff determined

by the range of the interaction. For photon exciton-polaritons, mr ∼ mp ∼ 10−4mx,

so the binding energy is exponentially small, as mentioned earlier in Sec. 2.1 (see also

Appendix A.1). In contrast, for heavy polaritons mr and Vp are of the same order as those
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of the exciton. Therefore, strongly bound bipolaritons are expected near the biexciton

resonance. We find the bipolariton energies from the poles of the exciton two-particle

scattering matrix. To simplify the calculation we choose Wq to be momentum independent,

i.e., a contact interaction, and subsequently eliminate it in favor of the biexciton binding

energy Exx to obtain the renormalized scattering matrix T (K, ω), which depends on the

total incoming momentum K and energy ω of the particles. We give an explicit formula

for the scattering matrix, along with details of the calculation, in Appendix A.1.

Here and in the following calculations we choose Ω = 3Exx for the Rabi frequency.

In Fig. 2.3(a) we plot the bipolariton energies versus cavity detuning δ. There are two

Feshbach resonances. The first one occurs when the energy of a biexciton (the horizontal

dotted line) conincides with the energy of two lower polaritons (the lower boundary of the

continuum), 2ω− = −Exx, all at momenta k = 0. The second resonance is found where

the biexciton energy is equal to the sum of the energies of a lower and upper polariton,

ω+ + ω− = −Exx. In both cases there are bipolariton states lying below the continuum of

unbound two-particle states, e.g., ω = ω−(k) +ω−(−k). In principle, two upper polaritons

can also form a quasi-bound state but it lies in the continuum and is damped. Figure 2.3(b)

shows the binding energies and radii of the states outside the continuum versus δ. The

bipolariton states become more loosely bound with decreasing δ as the exciton fraction

u2− decreases, e.g., for two lower polaritons mr ∝ u−2
− and Vp ∝ u4−, hence their binding

energy decreases towards zero in accordance with Eq. (2.7) while their radius diverges.

2.2.3 Phase diagram and excitations

Many-body physics of a system with a finite concentration of polaritons may be

described by a two-channel effective Hamiltonian [39] that explicitly includes polariton
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(a)

(b)

Figure 2.3. (a) Energies of the bipolariton states versus detuning δ for Ω = 3Exx. The
solid and dashed black lines are the energies of lower-lower, upper-lower, and upper-upper
bipolaritons, denoted respectively by ω−−, ω+−, and ω++. The horizontal dotted line
is the biexciton energy, the negative of the biexciton binding energy Exx. The dashed-
dotted lines are the sum of the energies of two polaritons at zero momentum, with the
two-polariton continuum shown by the shaded regions above. (b) The binding energies
E−− = 2ω− − ω−− and E+− = ω+ + ω− − ω+− and corresponding radii of the bipolariton
states versus detuning δ. The radii rss′ are defined by r2ss′ =

∫
d2r r2|ψss′(r)|2, with ψss′(r)

the bipolariton wavefunction, and r′xx = (2/3mxExx)
1/2 is the biexciton radius for the

contact potential model.
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(ξ1) and bipolariton (ξ2) fields:

Heff =
∑
i=1,2

∑
k

(ωi,k − µi)ξ
†
i,kξi,k

+
1

2A

∑
ij

∑
kk′q

gijkk′q ξ
†
i,k+qξ

†
j,k′−qξj,k′ξi,k

+
1√
2A

∑
kq

(
αkqξ

†
1,q/2+kξ

†
1,q/2−kξ2,q + h.c.

)
. (2.8)

We assume that only the “−” polaritons, which are the lower energy states, are present.

Parameter µ is the chemical potential; µ1 = µ, µ2 = 2µ; ω1,k = ω−,k and ω2,k [defined by

Eq. (2.10) below] are the energies of the polariton and bipolariton, respectively, and α is

the polariton-bipolariton coupling. Parameters gij are repulsive background interactions

which depend on the Hopfield coefficents according to

gijkk′q = U−,kU−,k′U−,k+qU−,k′−qg̃
ij/mx, (2.9)

and g̃ij are dimensionless interaction strengths, which we assume to be constant. The

parameters α and ω2,k are determined by an expansion of the polariton-polariton scattering

matrix near the bipolariton pole (see Appendix A.1):

T−−(k,k
′,K, ω) = U−,K/2+kU−,K/2−kU−,K/2+k′U−,K/2−k′T (K, ω) ≃ αkKαk′K

ω − ω2,K

. (2.10)

The system exhibits a transition from a polariton to bipolariton superfluid with

changing density and detuning. In the polariton superfluid phase (PSF) both polaritons

and bipolaritons condense; in the bipolariton superfluid phase (BSF) only bipolaritons

condense. we calculate the mean-field phase diagram at zero temperature using the

two-channel model of Eq. (2.8). We caution the reader that these phase diagrams are not

12



(a)

(b) (c)

BSF PSF

Figure 2.4. (a) Schematic of polariton distribution in the BSF and PSF phases. (b),(c)
Ratio of single polariton condensate density to the total density at zero temperature
as a function of cavity detuning δ and chemical potential µ (b) or density n (c). The
background scattering parameters are g̃11 = 6, g̃12 = 9, and g̃22 = 20. The normal phase is
labeled by N, the polariton superfluid by PSF, the bipolariton superfluid by BSF, and
phase separated regions by PS.

suitable for immediate comparison with experiment because quantum fluctuations beyond

mean-field theory can significantly shift the phase boundaries [39]. Additionally, there is a

significant uncertainty in the values of phenomenological parameters g̃ij (see more below).

We plot the ratio of the single polariton condensate density to the total density in

Fig. 5.2(b),(c) [note that rxx = (1/mxExx)
1/2], showing the BSF to PSF phase transition

with decreasing δ, which can be either first-order or continuous. In the case of a first-order

transition, there is a region of phase separation between the PSF phase and the BSF or

normal phase. The mean-field phase boundary of the continuous transition is described by
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the equation

E−− = (g22/2− g12)n+ α
√
2n, (2.11)

with E−− the bipolariton binding energy. This equation relates the total density n to

the cavity detuning δ. Note that the parameters g̃ij are difficult to determine even for

simplified microscopic models; furthermore, they depend crucially on details such as the

exciton spin structure not included in our simple model. We crudely estimate these

parameters by requiring that the BSF-PSF transition occur at a critical density nM in

accordance with the Mott criterion nMr
2
−− ∼ 0.03 [9, 42]. Here r−− is the bipolariton

radius which is plotted versus detuning in Fig. 2.3(b). Associated with this criterion is

the picture of particle distribution in real space, Fig. 5.2(a). In the BSF phase, polaritons

form a dilute gas of bound pairs. As the system approaches the phase transition, the

binding energy of these pairs decreases while their radius becomes larger so they begin to

overlap in space. As a result, a significant fraction of these pairs dissociate leading to the

formation of a single-polariton condensate in addition to the bipolariton condensate in the

PSF phase.

As discussed below in Sec. 2.3, the optical response of the PSF and BSF phases

is dominated by their collective excitations. The excitation spectrum has one gapless

acoustic mode and one gapped mode in each phase [37]. In the BSF phase, the gapless

mode is due to phase oscillations of the bipolariton condensate and the gapped mode is

due to pair-breaking of bipolaritons into two polaritons. The energy of the gapped mode is

EBSF
1 =

{[
1
2
(E−− − g22n2 + 2g12n2)

]2 − α2n2

}1/2

, (2.12)

where n1 is the single polariton density and n2 is the bipolariton density. In the PSF

phase, the gapless and gapped modes are due to in-phase and out-of-phase fluctuations of

14



polariton and bipolariton fields, respectively. The energy of the gapped mode is

EPSF
1 =

{
[E−− − g12n1 − g22n2 + 2g11n1 + 2g12n2 − α

√
n2]

2

+ αn1 [α− 2g12
√
n1 + (4g11 + g22)

√
n2]

}1/2

. (2.13)

Both EBSF
1 and EPSF

1 vanish along the phase boundary given by Eq. (2.11). Far from the

phase transition, and neglecting the Feshbach coupling α, the energies of the gapped modes

have a simple interpretation. We may write EPSF
1 = ω̃2 − 2ω̃1, where ω̃1 = g11n1 + g12n2

and ω̃2 = −E−− + g12n1 + g22n2 are respectively the polariton and bipolariton energies

renormalized by interaction. This corresponds to the energy to create a bipolariton.

Similarly, EBSF
1 = 1

2
(2ω̃1 − ω̃2) corresponds to the energy to break a bipolariton into its

constituent polaritons.

2.3 Experimental signatures

One way to distinguish PSF and BSF phases is by measuring the optical absorption

or luminescence spectrum. The spectrum in both normal and condensed states is deter-

mined from the collective excitations of the system, which we calculate from the effective

Hamiltonian of Eq. (2.8). Details of the calculation are given in Appendix A.2. There

are two contributions: direct coupling of polaritons to photons, which gives rise to sharp

emission lines, and coupling of a bipolariton to a photon and polariton, which yields a

broad continuum. In Fig. 2.5, we show plots of the absorption and luminescence spectra

for a polariton condensate at zero temperature.

The energy of a photon measured in an optical experiment is the sum (difference)

of the chemical potential µ and excitation energy corresponding to absorption (emission)

of a photon along with emission of a collective excitation. Therefore, the gapless modes

follow the lines ω = µ (the solid lines in Fig. 2.5), and the gapped modes are positioned

above or below these lines. Within the mean-field theory, the chemical potential is given

15



(a)

(b)

Figure 2.5. (a) Absorption and (b) luminescence spectra at zero temperature for density
nr2xx = 0.015 (left) and nr2xx = 0.03 (right). The chemical potential µ is denoted by
the solid lines, and dashed grey lines indicate thresholds associated with the emission
of collective excitations. The absorption spectrum is negative for frequencies below µ,
corresponding to optical gain, and positive for frequencies above µ. Since only emission
(and not absorption) of collective excitations is possible at zero temperature, luminescence
only occurs at frequencies below µ.
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by

µ =


g11n1 + g12n2 − α

√
n1n2 (PSF)

1
2
(−E−− + g22n2) (BSF).

(2.14)

The energy ω = µ+EPSF
1 of the collective mode above µ in the PSF phase and the energy

ω = µ−EBSF
1 below µ in the BSF phase, can be viewed as the renormalized energy of the

bipolariton spectral line. Far from the transition, this energy is given by the formula

ω = ω̃2 − ω̃1 = −E−− + (g12 − g11)n1 + (g22 − g12)n2 . (2.15)

At large positive δ, the system is in the BSF phase, where bipolaritons are energetically

favored. The gap between µ and the absorption or emission threshold is the energy of

the gapped excitation mode, given by Eq. (2.12). The gapless mode, which is due to

phase oscillations of the bipolariton condensate, is not observed in this phase because

bipolaritons do not couple directly to light. With decreasing detuning, the gap decreases

and closes at the phase transition, where single polariton condensation becomes favorable.

In the PSF phase, both gapless and gapped modes are observed. The energy of the gapped

mode is given by Eq. (2.13).

We now discuss the relation of our results to previous experiments on the polaritonic

Feshbach resonance [19, 20, 21]. Photon exciton-polaritons studied in those experiments

have a polarization or pseudo-spin degree of freedom since there are two countercircular

polarization states of the photon that couple to excitons with the same polarization.

Since the interaction between two excitons is attractive (repulsive) when they have anti-

parallel (parallel) spin, only polaritons with anti-parallel spin can form biexcitons. In the

experiments, the system is pumped with circularly polarized light to create a condensate

of spin-up polaritons. A probe beam with the opposite circular polarization then excites a

few spin-down polaritons which interact with the spin-up condensate to form biexcitons.
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Figure 2.6. Density profiles for polariton condensate in a harmonic trap for first-order
transition (left) and continuous transition (right). The plots correspond respectively to
δ/Exx = 0 and δ/Exx = 2 in the phase diagram of Fig. 5.2(b). The trap potential is
V (x) = 1

2
Exx(x/rtrap)

2 with rtrap = 300rxx. Here n1 is the single polariton density, n2 is
the bipolariton density, and n = n1 + 2n2 is the total density.

This results in a shift in the spin-down polariton energy observed in the probe transmission

spectrum. The shift changes from positive to negative with decreasing cavity detuning as

the system is tuned across the Feshbach resonance, which is often colloquially described

as the interaction changing from repulsive to attractive. The corresponding effect in our

model is the change in the collective mode energy from −EBSF
1 to EPSF

1 in Fig. 2.5(a) and

crossing between the photon energy ω in Eq. (2.15) and chemical potential µ. In other

words, the renormalized bipolariton binding energy effectively changes from positive in

the BSF phase to negative in the PSF phase. However, the aforementioned experiments

have studied a transient state rather than the true ground state of the polariton system,

since in principle biexcitons should also condense.

In addition to photoluminescence spectroscopy of a uniform density system, the

PSF to BSF transition can be detected by imaging the polariton condensate confined

in a trap. In Fig. 2.6, we show the density profile in a harmonic trap calculated in the

Thomas-Fermi approximation by solving µ[n(r)] + V (r) = µ0 for n(r), where µ[n] is the

local chemical potential as a function of density, V (r) = 1
2
Exx(r/rtrap)

2 is the trap potential

with rtrap = 300rxx, and µ0 is the chemical potential at the center of the trap. Since
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the local chemical potential µ(r) decreases with increasing radial coordinate r, there is

a transition from the PSF to BSF phase which results in a discontinuity in the density

n(r) or its derivative dn
dr

for a first-order or continuous transition, respectively. Since µ

is continuous across the phase boundary of the continuous transition, ∆µ = 0, we may

relate the discontinuity in ∂µ
∂n

to that of ∂µ
∂δ

by ∆∂µ
∂δ

= −dn
dδ
∆∂µ
∂n
, with dn

dδ
determined from

the phase boundary in Fig. 5.2(c). From Fig. 2.5, ∂µ
∂δ

∣∣
c− = −0.022 and ∂µ

∂δ

∣∣
c+

= −0.026,

where c− (c+) indicates that the derivative is evaluated just below (above) the transition

point. This gives ∆∂µ
∂δ

≈ −0.004, and since dn
dδ

≈ 0.002/(Exxr
2
xx), we have ∆∂µ

∂n
≈ 2Exxr

2
xx.

Therefore, ∆
(
dn
dr

)−1
=

r2trap
Exxr

∆∂µ
∂n

≈ 10rtrapr
2
xx, which is consistent with the slopes in Fig. 2.6:

dn
dr

∣∣
c− ≈ −0.5/(rtrapr

2
xx) and

dn
dr

∣∣
c+

≈ −0.05/(rtrapr
2
xx). This explains the large kink seen in

the density profile of Fig. 2.6(right) despite the small discontinuity of ∂µ
∂δ

in Fig. 2.5.

2.4 Discussion and outlook

We have investigated a novel type of quasiparticle, heavy polaritons, formed by

strong coupling of excitons in a 2D semiconductor with surface optical phonons or plasmons.

Similar to systems of cold atoms, where this phenomenon was first studied, heavy polaritons

exhibit a Feshbach resonance when the biexciton energy becomes resonant with that of

two polaritons. Such resonances have been recently probed in experiments with exciton-

polaritons in photonic cavities. However, in those experiments the polaritons did not form

true bound states. In contrast, we predict that heavy polaritons bind into bipolaritons near

the Feshbach resonance. For a system with a finite density of polaritons and bipolaritons

we have analyzed the possible phases, polariton (PSF) and bipolariton (BSF) superfluids,

and their collective excitations within a mean field approximation. We have computed the

absorption and luminescence spectra in these phases.

Another observable signature of polariton condensation is formation of quantized

vortices. Such vortices can be induced in the system by external perturbations or non-
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equilibrium flow and subsequently detected by optical imaging [43, 44, 45]. of polaritons

and bipolaritons induces a splitting of a 2π polariton vortex into two π vortices connected

by a domain wall. Observation of this vortex splitting would confirm the existence of the

PSF phase.

In conclusion, we briefly mention possible materials realizations of our results. Since

phonons have frequencies in the terahertz region, resonantly coupling them to excitons

requires a narrow band gap semiconductor. One candidate is gapped bilayer graphene,

where tunable excitons have been observed with energies around 100 meV [46, 47]. These

excitons can be tuned into resonance with the low-loss hyperbolic phonon modes in hBN

[48, 49]. Regarding plasmons, several experiments have demonstrated strong coupling of

excitons in TMD monolayers with plasmons in metallic nanostructures [35, 50]. TMDs host

strongly bound biexcitons with Exx ≈ 50 meV [51]. Also, a highly controllable realization

of plasmonic strong local coupling with excitons can be achieved using a nano-optical

antenna [52, 53]. Note that previously the term heavy polariton has been used to describe

hybridization of excitons with ‘heavy photons’, i.e. flat photonic bands, in an optical

lattice [54]. Even though the range of momenta where this band dispersion remains flat

is relatively narrow, this could potentially be another path to realization of the physics

described in this chapter.

Possible extensions of our work include studying a Josephson-like effect where

the optical spectrum in the PSF phase depends on the relative phase of polariton and

bipolariton condensates and analyzing the collective modes of the polariton condensate in

a trap. A potential application of the heavy polariton Feshbach resonance is the generation

of entangled pairs of polaritons [55], which is another interesting subject for future study.

In addition, experiments with atomic Bose gases near a Feshbach resonance have observed

novel phenomena including Efimov states [56], universal dynamical behavior [57], and

formation of solitons [58] or quantum droplets [59]. The system of heavy polaritons studied

in this chapter provides another potential avenue to realize these phenomena.
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Chapter 3

Landau-phonon polaritons

3.1 Introduction

Another type of phonon exciton-polariton occurs via resonant coupling of optical

phonons with magnetoexcitons in a 2D material under a strong transverse magnetic

field. These so-called Landau-phonon polaritons (LPPs) are observed experimentally from

hybridization of a hyperbolic phonon mode in hBN with magnetoexcitons in graphene

[60]. The experiment employs magneto scanning near-field optical microscopy (m-SNOM)

to image real-space interference patterns created by LPPs, obtaining a high precision

mapping of the LPP dispersion. This in turn allows precise measurements of the many-

body corrections to the inter Landau Level (LL) transition energy in graphene for both

optically allowed and forbidden transitions. We theoretically calculate these corrections

and find excellent agreement with the experimental data. Therefore, the formation of

LPPs allows for measurements of the magnetoexciton energy, which is the main subject of

this chapter. We use the term LPP both to make a connection with prior literature [61]

and to account for the fact that the magnetoexcitons are hybridized with hBN hyperbolic

phonons. Additionally, we consider LPPs in a graphene/hBN heterostructure (HS) with

N layers of graphene and show a
√
N enhancement of the polaritonic gap.

The remainder of this chapter is organized as follows. In Sec. 3.2, we review optics

of graphene Landau levels (LLs) and explain the details of the experiment. We discuss

22



our calculation of many-body corrections and compare these results to the experimental

data in Sec. 3.3. In Sec. 3.4, we formulate a quantum theory of LPPs in a graphene/hBN

HS and derive an analytical expression for the polaritonic gap. A discussion of our results

and outlook is given in Sec. 3.5.

3.2 Observation of Landau-phonon polaritons

In a transverse magnetic field, the energy spectrum of graphene splits into Landau

levels (LLs) with energy En = sgn(n)
√
2n(ℏvF/lB), where n = 0,±1,±2, . . . is the LL

index, vF is the Fermi velocity, e is the elementary charge, lB =
√

ℏ/e|B| is the magnetic

length, and B is the magnetic field. This characteristic square-root n- and B-dependence

is a consequence of the linear energy-momentum dispersion of electrons in graphene. In

a charge-neutral graphene the optical transitions can occur between LLs with indices of

opposite sign, −n→ n′, at frequencies ω ∝
√
|n|+

√
|n′|. The oscillator strength of each

inter-LL transition (ILT) is a function of the in-plane momentum k. Conventional far-field

infrared experiments excite graphene at very small momentum k, with a non-negligible

oscillator strength only at |n| − |n′| = ±1 [62, 63]. However, at finite momenta transitions

between any pair of LLs become possible [64].

Each ILT gives rise to a collective excitation, the magnetoexciton [65]. If the

magnetoexcitons are tuned in resonance with the hyperbolic phonon-polaritons in hBN by

changing the applied magnetic field, the hybrid modes, which are the aforementioned LPPs,

can form. The dispersion of the collective modes may be deduced from the frequency and

momentum-dependent p-polarized reflection coefficient of the sample, rp = rp(k, ω). Figs.

3.1(a)-(c) show the imaginary part of rp calculated for three representative values of the

magnetic field. The multiple branches of phonon-polaritons in the upper Reststrahlen

band of hBN (1360-1610 cm−1) are evident in all three cases [66, 48].

At 3.35 T [Fig. 3.1(b)], the frequency of the −1 → 2 ILT is inside the hBN upper
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Figure 3.1. Hybridization of hBN phonon polaritons with graphene Landau polaritons,
resulting in LPPs. (A to C) Calculated LPP dispersion at magnetic fields of 0.0, 3.35,
and 6.0 T, respectively. The false color represents Im rp(k, ω), the analytically calculated
imaginary part of the reflection coefficient for p-polarized light. Graphene is assumed to
be charge neutral with a constant LL broadening (33) γ = 24.3 cm−1 and Fermi velocity
vF = 1.19× 106 m/s, the latter being the value extracted from Fig. 4C. Inset in (B): An
enlarged view of the region exhibiting strong coupling and an avoided crossing between the
Landau and the hBN phonon polaritons; the arrow marks ω = 1519 cm−1 corresponding
to the data in (D) to (F). (D to F) Nano-imaging data collected from the region marked
by the red rectangle in Fig. 1A at T = 154 K and B = 0.0, 3.35, and 6.0 T, respectively.
The near-field signal S3 (demodulated at the third harmonic of the tip frequency; refer
to Materials and Methods) shows relative differences between regions with and without
graphene that strongly depend on the magnetic field. The enhanced signal-to-noise ratio
in (E) and (F), compared to (D), is due to a slightly longer integration time. We also
note that the mechanical stability of our system is slightly better at higher magnetic fields.
The double-headed arrow in (F) marks the location of the line scan analyzed further in
Fig. 3. a.u., arbitrary unit.
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Reststrahlen band, which generates avoided crossings in the polariton dispersion. These

features manifest as a coupling and hybridization of the 1 → 2 inter-LL Landau polariton

with the hBN phonon polaritons, i.e., the formation of the LPPs. At 0 T [3.1(a)] and 6.0

T [Fig. 3.1(c)], there are no ILTs inside the Reststrahlen band, so the phonon-polariton

dispersion is again largely unaffected by graphene. Figs. 3.1(d)-(f) show m-SNOM images

for magnetic fields of B =0.0, 3.35, and 6.0 T, matching Figs. 3.1(a)-(c), respectively,

for a fixed incident photon energy. At 3.35 T [Fig. 3.1(e)], the polariton propagation

in hBN-graphene ceases such that all but the first fringe is suppressed. This gives clear

evidence for the existence of the hybridization gap in the LPP dispersion, i.e., the strong

mode coupling, predicted by our theoretical calculations [Fig. 3.1(b)].

To study the magnetic-field dependence of the LPP dispersion in detail, we obtained

a field-tip-position map of the m-SNOM signal By sweeping B from -6.0 T to +6.0 T. At

our selected photon energy of 188 meV (ω = 1519 cm−1) within the hBN Reststrahlen band,

we observe the suppression of the fringes for certain distinct field values corresponding to

distinct ILTs, e.g., for the discussed case of B = 3.35 T for the −1 → 2 transition. When

approaching such fields from a higher (lower) absolute magnetic field side, the polariton

wavelength decreases (increases) along with an overall reduction in near-field signal and a

decrease of the propagation length.

Fig. 3.2 (a) and (b) show respectively the polariton wavelength and polariton quality

factor Q = Re k/Im k extracted from the near-field signal. We find that the features

corresponding to the −1 → 2 transitions are the strongest in our frequency window,

testifying to a strong mode coupling regime. In addition, we observe clear signatures of

several other transitions. They include allowed transitions −2 → 3 and −3 → 4, as well

as transitions −1 → 1, −2 → 2, and −3 → 3 forbidden by the standard selection rules.

Any of these ILTs also induces a clear modification of the polariton wavelength as well

as a reduction of the quality factor, which further supports our assignment and will be

used for a quantitative analysis later. In total, we can resolve six different ILTs in our
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data. Notably, the forbidden transitions show up much stronger compared to what was

previously seen in far-field infrared spectroscopy. As hypothesized above, this massive

breakdown of the selection rules originates from the greater role of high-momentum field

components k ∼ l−1
B in our m-SNOM measurements.

3.3 Many-body effects

Many-body effects manifested in deviations of the ILT frequencies from the
√
B-

law valid for free Dirac fermions. An alternative description of these deviations is the

renormalization of the effective Fermi velocity veffF defined by Eq. (1) below. From the

minima in the Q-factor we can read off the magnetic fields B associated with each ILT

and obtain the corresponding field-dependent veffF . We find that veffF decreases with B for

all transition types following a non-logarithmic B-dependence (squares in Fig. 3.2(c)).

These values agree surprisingly well with previous far-field infrared (31) and Raman

(32) spectroscopy results. Importantly, we extract veffF associated with both allowed and

forbidden ILTs with the same measurement. In this regard, the m-SNOM provides a

unified approach for LL spectroscopy that lifts many previous limitations.

Our theoretical calculations (Appendix B) of the effective Fermi velocity (diamonds

in Fig. 3.2(c)) show a good agreement with the data utilizing one adjustable parameter,

the value of veffF at one specific ILT (here, −2 → 3 gives the best agreement). These

calculations also corroborate our experimental observation that the effective Fermi velocity

of the −n→ n ILTs is consistently below the trend followed by the −n→ n± 1 ones.

Our explanation for the above observation of veffF is as follows: Despite its common

usage, the term “effective” Fermi velocity is somewhat misleading in the present context.

A more accurate statement is that the interaction corrections to the observed ILT energy

ℏω, resulting in veffF , include contributions from both the Fermi velocity renormalization (a

polaronic effect) and excitonic effects. Namely, ℏω is given by the LL energy difference,
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Figure 3.2. Magnetic-field dependence of LPP properties and Fermi velocity renormal-
ization. (A) Polariton wavelength λp and (B) polariton quality factor Q = Rek/Imk as
a function of the magnetic field B. Solid lines show experimental values extracted from
Fig. 2; shaded regions show the SD of the measurement. (C) Effective Fermi velocity
veffF as a function of the logarithmic magnetic field ln(B) derived for different ILTs (see
section Many-body effects): Squares show experimental values derived from (B). Diamonds
represent calculated values of veffF . [67]. We observe a nonlogarithmic trend. Inset: The red
(black) points show veffF for the −1 → 1 (−1 → 2) ILT measured via Raman spectroscopy
[63] [far-field infrared spectroscopy [62]]. The tapering shape of the Dirac cone illustrates
the Fermi velocity renormalization [62, 63, 68], resulting in a logarithmic B dependence of
the far-field data [62, 63]. (D) Squares and diamonds show the exciton binding energy
∆nn′ of the Landau polaritons derived from the experiment and theory, respectively. The
exciton binding energy is larger for the ILT s with n′ = −n compared to those with
n′ = −(n± 1) and generally increases with magnetic field. Inset: The dependence of the
exciton binding energy on the magnetic field and type of the ILT can be explained within
a semiclassical model where quantized electronic orbitals of the LLs are shaped as narrow
rings of radius rj = lB

√
2|j|, j = n, or n′. The magnetoexciton binding energy ∆nn′ (see

text) is given by the Coulomb attraction energy of these rings. For a fixed n, this binding
energy is the largest when the ring radii are equal, at n′ = −n.
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|En|+ |E ′
n|, minus the magnetoexciton binding energy ∆nn′ :

ℏω ≡ ℏveffF
lB

(
√

2|n|+
√

2|n′|) = |En|+ |E ′
n| −∆nn′ . (3.1)

The LLs En in this expression obey the quantization rule |En| = E(qn) where E = ℏvrenF q is

the renormalized quasiparticle dispersion and qn = l−1
B

√
2|n| is the quantized momentum

of a Dirac fermion residing at the nth LL (inset Fig. 3.2(c)). The effective Fermi velocity

veffF is (approximately) equal to the renormalized vrenF only if the magnetoexciton binding

energy ∆nn′ is neglected. In that case a logarithmic dependence of veffF on E (at fixed n

and n′) follows from the perturbation theory formula vF (E) ≈ vF (Λ)[1+
1
4
α ln |Λ/E|+ . . . ]

where α = e2/(κℏvF ) ≫ 1 is the Coulomb coupling constant, λ is the high-energy cutoff,

and κ is the effective dielectric constant of the graphene environment (34). This formula

has been derived for graphene in zero magnetic field; however, it remains approximately

correct at nonzero B (Appendix B), meaning that the renormalized Fermi velocity is first

and foremost a function of energy, vrenF = vrenF (E). Since En and E ′
n are B-dependent

(31, 32), vrenF usually acquires a logarithmic B-dependence for a given ILT, as found in

previous far-field spectroscopy studies (inset in Fig. 3.2(d)). On the other hand, here we

have studied ILTs at a fixed laser frequency so that the transition energy ℏω ≈ |En|+ |E ′
n|

remained the same, being split roughly equally between |En| and |En′ |. Therefore, in our

experiments, the renormalized Fermi velocity vrenF ≈ vrenF (ℏω/2) should have little B-field

dependence and the observed variation of veffF (Fig. 3.2(c)) should mostly come from the

change of magnetoexciton binding energy ∆nn′ , which follows non-logarithmic trend with

changing magnetic field.

Indeed, our theoretical calculation of the two competing terms, |En|+ |E ′
n| and ∆nn′ ,

in Eq. (3.1) confirms that at fixed ℏω, the former gives a nearly constant contribution to veffF

for all measured ILTs, so that veffF variation comes from the latter, with characteristic dips

occurring at n′ = −n points (Appendix B). This allows us to extract the binding energy
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∆nn′ (Fig. 3.2(d)) from veffF . The absolute value of ∆nn′ generally increases with magnetic

field and is larger for the ILTs with n′ = −n compared to those with n′ = −(n± 1). A

simple way to think about the magnetoexciton binding energy ∆nn′ is to imagine that it

is equal to the Coulomb attraction energy of two LL orbitals shaped as concentric rings,

one with charge +e, the other with charge -e (inset Fig. 3.2(d)). The ring radii are given

by the formula rj = |Ej/evrenF B| , where j = n or n′, which is the semiclassical cyclotron

radius of a Dirac particle with energy Ej . (Note additional relations rj = lB
√

2|j| = l2Bqj .)

For a fixed n, this attraction energy is the largest when the ring radii are equal, i.e., at

n′ = −n, yielding the lowest veffF at such ILTs.

3.4 Polaritonic gap in graphene/hBN heterostruc-

ture

In addition to allowing precise measurements of the magnetoexciton energy, LPPs

are intrinsically interesting as a realization of strong mode coupling. The strength of the

coupling can potentially be increased by adding more layers of graphene. In this section,

we consider a graphene-hBN heterostructure consisting of N layers of graphene separated

by hBN spacers, and show a
√
N enhancement of the gap. In Appendix C, we derive

a quantum theory of LPPs in this HS. We define creation operators a†l,q for the hBN

hyperbolic phonon mode l with in-plane momentum q, and b†i,nm,q for the m→ n graphene

magnetoexciton in the ith graphene layer. The Hamiltonian of these coupled modes is

H =
∑
q

[
ωl,qa

†
l,qal,q + ωxnm,q

N∑
i=1

b†i,nm,qbi,nm,q +
N∑
i=1

1
2
Φl,q(zi)ρnm,−q(al,qb

†
i,nm,q +H.c.)

]
,

(3.2)

where ωl,q and ωxnm,q are respectively the energies of the hBN phonon mode and graphene

magnetoexciton, Φl,q(zi) is the normalized electrostatic potential profile of the phonon

mode at the position of the ith graphene layer zi, and ρnm,−q is the charge density matrix
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Figure 3.3. Polaritonic energy splitting versus graphene layer spacing L in graphene-hBN
HS. The dashed line is the analytical formula of Eq. (3.3), and the other lines show
numerical results for fixed hBN thicknesses d = 10, 50, and 100 nm with different number
of graphene layers.

element associated with the ILT. Diagonalizing this Hamiltonian, we find upper and lower

LPP branches and obtain the following approximate expression for the polaritonic gap ∆:

∆ =

√
NĒµ
L

, µ = 16πe2Fnm/ℏ, Ē = 1
2

{
1− (2kzed)

−1[sin(2ϕa) + sin(2ϕs)]
}
,

N = qd

(
1

[−ε⊥]

{[
1 + (εa/ε⊥ψ)

2]−1
+
[
1 + (εs/ε⊥ψ)

2]−1
}
+ qd

)−1(
dε⊥
dω

)−1

.

(3.3)

Here d is the thickness of the hBN slab, L = d/N is the graphene layer spacing, ϵ⊥ and ϵ∥

are the hBN dielectric functions perpendicular and parallel to the optical axis, respectively,

ϵs is the substrate dielectric constant, and ϵa is the dielectric constant of the medium above

hBN. We also define ψ =
√
ε∥

i
√
ε⊥
, kze = q/ψ, and ϕj = arctan

(
εj
ε⊥ψ

)
for j = s, a [66]. Matrix
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element Fnm of the ILT is defined in Eq. (B.7). The dielectric functions are evaluated at

the magnetoexciton frequency ωxnm, and q is the momentum of the hBN phonon mode at

this frequency.

The gap scales as
√
N , as expected. Additionally, it scales as 1/

√
d since the

coupling strength increases with increasing confinement of the hBN mode. In Fig. 3.3,

we plot our formula for the gap ∆ versus the graphene layer spacing L for the l = 0

phonon mode (for hBN on an SiO2 substrate) coupled to the −1 → 2 ILT. We compare to

numerical results for different hBN thicknesses and number of graphene layers and find

good agreement.

3.5 Discussion

Our study has shown that the physics of LPPs is very rich, and it involves simulta-

neously three types of effects: polaritonic, excitonic, and polaronic. These effects have

distinct characteristics: 1) The polaritonic effects change collective mode properties in the

heterostructure. Forbidden optical transitions are now accessible in the momentum space

offered by m-SNOM. The mode coupling between Landau polaritons (magnetoexcitons) in

graphene and phonon polaritons in hBN generates a tunable avoided crossing, which, as

we have shown, can potentially be further tailored by using other ILTs (e.g., 0 → 1 ILT) or

multilayer engineering (e.g., adding additional layers of graphene). 2) The excitonic effects

are manifestations of the electron-electron interactions. They lead to a finite binding

energy, which also modifies the LPP dispersion. This binding energy can be further

tuned via dielectric screening engineering. 3) The polaron effect is another term for the

renormalization of the quasiparticle dispersion. Although above we emphasized the role of

electron-electron interactions as the reason for the renormalization of the Fermi velocity

vrenF , this interaction is screened by hBN. Hence, the interaction of electrons in graphene

with phonons in hBN is included implicitly. In our case, vrenF does not change much with
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magnetic field since we keep the incident photon energy the same throughout.

The LPPs are specific examples of magneto phonon resonance (MPR) effects.

Other known MPR effects include magneto-polarons [69, 70], dc magneto-transport oscilla-

tions [71, 72, 73], and mode splitting in magneto-Raman spectroscopy [74]. Most of them

have been studied in bulk crystals or a single material system. It would be interesting

to investigate whether these phenomena are affected by finite-momenta LPPs in a 2D

heterostructure. Last, it would be desirable to explore a variety of other nano-magneto-

optics phenomena using m-SNOM, including chiral edge magnetoplasmons [75, 76, 77],

cavity magneto optics [78], magnon polaritons and magnon-phonon polaritons [61, 79],

the polaritonic Hofstadter butterfly [80], magnetoexcitons of fractional quantum Hall

states [81], and collective modes of stripe phases in partially filled LLs [82].

This chapter, in part, is a reprint with permission of the material as it appears in

‘L. Wehmeier, S. Xu, R. A. Mayer, B. Vermilyea, M. Tsuneto, M. Dapolito, R. Pu, Z. Du,

X. Chen, W. Zheng, R. Jing, Z. Zhou, K. Watanabe, T. Taniguchi, A. Gozar, Q. Li, A. B.

Kuzmenko, G. L. Carr, X. Du, M. M. Fogler, D. N. Basov, and M. Liu, Science Advances

10 (2024).’
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Chapter 4

Excitonic Bose-polarons

4.1 Introduction

In this chapter we consider excitonic Bose-polarons: excitons dressed by a surround-

ing Bose gas. They are observed experimentally with spatially direct excitons immersed in

a degenerate Bose gas of spatially indirect excitons in an electron-hole (e-h) bilayer formed

in a GaAs semiconductor heterostructure (HS) [83]. We develop a many-body theory of

the energies of the attractive and repulsive polaron branches in this system. We determine

the parameters of our theory via numerical calculations of exciton and biexciton binding

energies, as well as Hartree-Fock estimates of the exciton-exciton scattering amplitude,

and find good agreement with the experimental data.

The remainder of this chapter is organized as follows. In Sec. 4.2, we provide

an overview of the experimental results. Our calculation of binding energies of various

e-h complexes is presented in Sec. 4.3. We discuss our calculations of exciton-exciton

interactions in Sec. 4.4. In Sec. 4.5, we discuss the T-matrix theory of Bose polarons.

Finally, we develop a phenomenological T-matrix model and compare with the experiment

in 4.6.
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Figure 4.1. Diagram of an electron-hole bilayer. (a) Electrons (e) and holes (h) are
confined in separated layers. (b) Absorption (PLE) and emission (PL) in bilayer het-
erostructure. Spatially indirect excitons (IXs) and direct excitons (DXs) are shown by the
ovals. (c) Free DXs (left) and DX-IX bound states (right) interact with surrounding IXs
and form attractive and repulsive Bose polarons (ABP and RBP).

4.2 Observation of excitonic Bose-polarons

In this work, we present experiments with electron-hole bilayers in GaAs HS hosting

two types of excitons: spatially indirect, or interlayer, excitons (IXs), and spatially direct,

or intralayer, excitons (DXs), see Fig. 4.1a,b. The photo-excited DXs behave as polaronic

impurities in a degenerate Bose gas of IXs, Fig. 4.1c. We observe spectroscopic signatures

of two kinds of such polarons: attractive and repulsive Bose polarons (ABPs and RBPs,

respectively). The ABPs are the stable low-energy polaron quasiparticles whereas RPBs

are the long-lived excited states in the many-body continuum.

Semiconductor HS’s containing e-h bilayers are suited for studying ultracold neutral

e-h matter (Fig. 4.1a). The layer separation drastically increases e-h recombination

lifetimes, which allows such systems to reach low-temperature quasi-equilibrium states

even under optical excitation [84]. As summarized in Ref. [9], e-h bilayers can exhibit a

variety of quantum phases, depending on the two key parameters: dimensionless density
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na2X and dimensionless layer separation d/aX. Here aX = ℏ2κ/(µe−he
2) is the exciton Bohr

radius, κ is the dielectric constant of the semiconductor, µe−h = (m−1
e +m−1

h )−1 is the

reduced e-h mass, and me (mh) is the electron (hole) effective mass. In our GaAs system

d = 19nm (center-to-center separation, Fig. 4.1a) is not much larger than aX ≈ 13 nm,

so the most experimentally relevant phases are as follows. At low densities, na2X ≪ 1,

electrons and holes form a Bose-Einstein condensate (BEC) of tightly bound, hydrogen-like

IXs [85, 43]. At moderate densities, na2X ∼ 1, IXs become weakly bound and Cooper-pair-

like, so that the BEC crosses over to a Bardeen-Cooper-Schrieffer (BCS) state [86, 87, 88].

At high density, na2X ≫ 1, the IX binding energy is exponentially small (or perhaps, zero),

so that the state of the system is best described as a correlated Fermi liquid of electrons

and holes. These three regimes can be expressed as the condition on the energy scale

En = (πℏ2/µe−h)n , (4.1)

which has the meaning of the Fermi edge, i.e., the sum of the Fermi energies of nonin-

teracting electrons and holes. This quantity is much smaller, of the order of, and larger

than the IX binding energy EIX ∼ ℏ2/µe−ha
2
X in the BEC, BCS, and Fermi-liquid regimes,

respectively.

The experiments were done with GaAs HS containing two 15 nm-thick quantum

wells (QWs) separated by a 4 nm-wide AlGaAs barrier. Electrons and holes were optically

generated and their density was controlled by the laser excitation power Pex. Electrons and

holes were driven into different QWs by an applied voltage (Fig. 4.1a). This significantly

increased e-h recombination time, to τ ∼ 1µs, allowing the system to cool down and form

the aforementioned quantum phases.

Previous photoluminescence (PL) studies of this system [88] are consistent with

the BEC-BCS crossover occurring with increasing Pex. Here we study photoluminescence

excitation (PLE) spectra. The PLE signal is a measure of optical absorption in the
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Figure 4.2. Measured PLE spectra. (a) PLE spectra vs. the laser excitation power
Pex at bath temperature T = 2K. The first two peaks in the order of increasing energy
correspond to ABP and RBP for DXs containing heavy holes (hh). The next two peaks
correspond to ABP and RBP for DXs containing light holes (lh). The higher-energy
peaks originate from higher QW subbands. (b) Polaron energies vs. IX density (symbols).
(c) Measured (squares) and calculated (line) ABP-RBP energy splitting for the hh DXs.
The calculations [Eq. (4.42)] use the estimated EXX = (0.88 + 0.96)/2 = 0.92meV and
g3 = 0.084× 10−10meV cm2.
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system. The absorption is dominated by spatially direct (intralayer) optical transitions,

e.g., photoexcitation of DXs. Absorption via spatially indirect (interlayer) transitions is

much weaker and is not observed. However, the DX density is always much smaller than

the IX density due to a fast interlayer e-h relaxation and long IX lifetime [89]. The IX

densities in the PLE experiments were estimated to be in the range n = 0.3−11×1010 cm−2.

These estimates are based on the measured blue shift δE of the IX PL energy and the

“capacitor” formula [90] δE = (4πe2d/κ)n, which becomes increasingly more accurate as n

gets larger [89, 91].

Our principal finding is a set of peaks in the PLE spectra, which display a pro-

nounced n-dependence. As labeled in Fig. 4.2a, we attribute the two lowest-energy peaks

to ABP and RBP formed from DXs containing heavy holes (hh) and the next pair of

peaks those containing light holes (lh). The photo-excited DXs behave as many-body

objects dressed by excitations of the surrounding IX Bose gas. As the IX density increases,

an approximately linear increase of the ABP and RBP energies (Fig. 4.2b) as well as

their splitting ∆ABP−RBP (Fig. 4.2c) is observed. This behavior is reproduced within a

theoretical model (solid line in Fig. 4.2c) to be discussed in Sec. 4.6. This model treats the

DX-IX interaction and phase-space filling [92] (PSF) effects in a unified fashion. According

to this model, at low n the RBP evolves into a free DX and the ABP into a DX-IX

biexciton, so that the energy splitting ∆ABP−RBP should approach the DX-IX biexciton

binding energy EXX. There are two possible biexciton types in our CQW, (h-e-h)(e) and

(e-h-e)(h), where the parentheses group together particles residing in the same QW. The

calculated EXX = 0.88 and 0.96meV for, respectively, (h-e-h)(e) and (e-h-e)(h) are close

to the measured ∆ABP−RBP = 0.8meV, see Fig. 4.1c and Sec. 4.3.
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Table 4.1. Calculated binding energies of various e-h complexes, in units of meV, for zero
gate voltage Vg = 0; ‘hh’ and ‘lh’ stand for the heavy hole and light hole, respectively.

Complex QW 1 QW 2 h = hh h = lh
IX e hh 2.99

DX e-h 8.24 9.44

DX-IX e-h-e hh 0.96 1.26

DX-IX e h-e-hh 0.88 0.73

4.3 Exciton binding energies

Few-body e-h bound states that can form in the CQW are listed in Table 4.1,

together with their calculated binding energies. They include indirect excitons (IXs),

direct excitons (DXs), and DX-IX biexcitons. The details of the calculations are presented

below.

The first step of the calculation is to solve for the single-particle states of the QWs.

The electron states were determined from the Hamiltonian

He =
1

2me

P2 + Ue(z) , (4.2)

where z is the coordinate perpendicular to the QW plane, P = (p,−iℏ∂z) is the momentum

operator, p = ℏk⊥ is the in-plane momentum, and me = 0.0665m0 is the effective electron

mass in GaAs. The hole states were determined from the Hamiltonian [93, 94]

Hh = − 1

2m0

∑
ij

PiDijPj + Uh(z),

D̂ij =

(
1

2
γ1 +

5

4
γ2

)
δij − γ2JiJj,

(4.3)

where γ1 and γ2 are the Luttinger parameters, m0 is the free electron mass, and J =

(Jx, Jy, Jz) is the spin-3/2 angular momentum operator. The confining potentials Ue(z)
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Figure 4.3. In-plane dispersion εh(k⊥) for the first three hole subbands in units of meV.
The dashed lines are the dispersions obtained by neglecting the coupling between heavy
and light holes (the off-diagonal terms of Hh).

and Uh(z) were chosen in the form

Ue,h(z) =


0 inside QW,

Ue,h outside QW.

(4.4)

For all the parameter values in our calculations we used those given in Ref. 95. We

numerically diagonalized the Hamiltonians in Eqs. (4.2) and (4.3) and obtained the energy

levels and wavefunctions φi(z) where i = e(h)n for e(h) states of QW n = 1, 2. The

energy-momentum dispersions of the first three hole subbands are plotted in Fig. 5.6.

To facilitate comparison with published results [93, 94] (that appears to be good) the

momentum on the horizontal axis is expressed in units of π × 106 cm−1.

Next, to define the effective mass mh of the heavy hole (hh), we fitted its dispersion

to a parabola over a range of momenta 0 < k⊥ < a−1
X , where aX = (κℏ2/e2)(m−1

e +m−1
h ) is

again the exciton Bohr radius. We found mh = 0.217m0 = 3.26me, so that aX = 12.7 nm.
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Note that a−1
X is about 0.25 in the momentum units used in Fig. 5.6. The light hole

(lh) dispersion is non-monotonic. For simplicity, we decided to neglect this dispersion

altogether, i.e., to treat the lh mass as infinite.

To compute the binding energies of interest we approximated the momentum-space

Coulomb interaction potential between particles of charge ei and ej by

Ṽij(k⊥) =
2πeiej
κk⊥

∫
dzdz′|φi(z)|2 |φj(z′)|2 e−k⊥|z−z′| , (4.5)

which we further simplified as follows. For particles in the same layer, we used [94]

Ṽij(k⊥) =
2πeiej
κk⊥

1

1 + k⊥ρij
, (4.6a)

Vij(r) =
π

2ρij

eiej
κ

[
H0

(
r

ρij

)
− Y0

(
r

ρij

)]
, (4.6b)

where the effective well widths ρen,en = 4.5 nm, ρhn,hn = 3.81 nm, and ρen,hn = 4.17 nm

(all for hh), were determined by numerically evaluating the integrals in Eq. (4.5) and

fitting the result to Eq. (4.6a) at 0 < k⊥ < a−1
X . Equation (4.6b) is known as the Rytova-

Keldysh potential. This function approaches the Coulomb potential eiej/κr at r ≫ ρij and

diverges logarithmically (eiej/κρij) ln(ρij/r) at r ≪ ρij; H0(z) and Y0(z) are the Struve

and Neumann functions, respectively.

For particles in opposite layers, we used ρij = 0, i.e., the Coulomb law:

Ṽij(k⊥) = 2π
eiej
κk⊥

e−k⊥d, (4.7a)

Vij(r) =
eiej
κ

1√
r2 + d2

, (4.7b)

where d = 19nm is the center-to-center layer distance. These interlayer and intralayer

potentials are plotted in Fig. 4.4. We neglected intersubband mixing because the energy

separation between the subbands is relatively large, 5–7meV, see Fig. 5.6.
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We computed the DX and IX binding energies EX and ground-state wavefunctions

ϕX(k⊥) by numerically solving the Wannier equation,

[εe(k⊥) + εh(k⊥)]ϕX(k⊥) + Ω−1
∑
k′
⊥

Ṽek,hn(k⊥ − k′
⊥)ϕX(k

′
⊥)

= −EXϕX(k⊥) (4.8)

following Ref. 96. Here X ∈ {DX, IX} is the exciton type, εe,h(k⊥) = ℏ2k2
⊥/2me,h are the

e(h) dispersions, and Ω is the area of the system.

Finally, we calculated the biexciton binding energies using the stochastic variational

method (SVM), a highly accurate numerical technique for solving few-body quantum

mechanics problems [97]. To this end we adopted the SVM code previously developed [98]

for zero-thickness 2D layers (ρij ≡ 0) and modified it to work with the interaction potential

of Eq. (4.6). We also used the SVM solver to verify the exciton binding energies EX

computed by the diagonalization method and found them to be in excellent agreement.

Table 4.1 summarizes the results for all the binding energies we calculated.

4.4 Exciton-exciton interaction

4.4.1 IX-IX interaction

Theoretical investigations of Bose polarons have been stimulated primarily by

experiments with cold atoms. Transferring these methods to excitons must be done with

caution because of important differences between two classes of systems. Atoms reach

quantum degeneracy at very low temperatures in the nK or µK-range. Since IXs have

much smaller mass, their degeneracy temperature Tdeg = 2πT0 with T0 ≡ ℏ2n/m [9] is

many orders of magnitude higher, e.g., Tdeg = 20K for m = me + mh = 0.285m0 and

n = 1011 cm−2.

Atoms typically form dilute, weakly nonideal BECs (Bose-Einstein condensates) for
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Figure 4.4. Model interaction potentials: intralayer potential Ven,en = Vhn,hn [Eq. (4.6b)],
interlayer potential Ve1,h2 [Eq. (4.7b)], and the IX-IX potential VIX [Eq. (4.12)].

which the details of the interatomic interaction potential are unimportant. Instead, the

interactions are parametrized by the s-wave scattering amplitude, which is proportional to

the on-shell two-body T -matrix. In 2D, this T -matrix has a universal low-energy form

T (E) ≃ 4πℏ2

m

[
ln

(
− ℏ2

ma2
1

E

)]−1

, E → 0, (4.9)

where a is referred to as the scattering length. The T -matrix enters in equations for many

key quantities of the system. For example, the chemical potential ζ of the BEC is given by

ζ = Tn (4.10)

to the leading order in na2 ≪ 1. In this equation, T needs to be evaluated at energy

E ∼ −ζ [99, 100], so that Eq. (4.10) is a self-consistent equation for ζ as a function of n.
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The solution can be presented in the form

g̃ ≡ ζ

T0
=
m

ℏ2
ζ

n
≃ 4π

ln (1/na2)
. (4.11)

The dimensionless parameter g̃ is a measure of BEC nonideality. For example, it determines

the interaction-induced condensate depletion via g̃/(2π) [100]. These formulas apply if

g̃ ≲ 1 [101, 102], which translates to the condition on the boson density na2 ≲ 10−6.

Despite the small numerical factor on the right-hand side of this inequality, it is not

uncommon to have it fulfilled for cold atoms. In contrast, such densities are unrealistically

low for IXs in GaAs heterostructures. As a result, scattering length a is not useful for

describing these excitonic systems. Their properties crucially depend on details of the

IX-IX interaction and they are typically strongly coupled, g̃ ≫ 1.

One common model for the interaction potential of two IXs is

VIX(r) = Vee(r) + Vhh(r) + 2Veh(r) , (4.12)

where r is the distance between the centers of mass of the IXs. As one can see from Fig. 4.4,

potential VIX(r) has a strong repulsive core and rapidly decreasing tails. Equation (4.12) is

essentially classical, e.g., it neglects fermionic and bosonic exchange of IXs [103] at distances

r ≲ aX. However, due to the strong IX-IX repulsion [104, 98], excitons tend to avoid each

other and these exchange effects should be small at densities n ≪ a−2
X ∼ 6 × 1011 cm−2

studied in our experiments.

At r ≫ d, the IX-IX potential approaches VIX(r) ≃ e2d2/κr3. The corresponding

s-wave scattering length a is given by [102] a = e2γEd2/AX , where γE = 0.577 is the Euler

constant and AX = ℏ2κ/me2 = 2.3 nm. For d = 19 nm, we find a = 500 nm, so that in our
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experiments na2 ≫ 1. In this regime Eq. (4.11) fails and is replaced by

g̃ ≡ m

ℏ2
ζ

n
=


Cg

√
na2 , n≪ 1/d2, (4.13a)

4πe−2γE
a

d
, n≫ 1/d2, (4.13b)

which is specific to the interaction law (4.12). The numerical constant Cg ∼ 5 in Eq. (4.13a)

can be estimated from Ref. [91] and work cited therein. Note that Eq. (4.13b) is the same

as the ‘capacitor formula’ introduced in the main text. From these equations, we find

ζ ∼ 30–300K, T0 ∼ 0.3–3K, and g̃ ∼ 40–80 in our experiments, indicating that IXs form

a strongly correlated Bose gas rather than a weakly nonideal BEC. The large value of g̃

is not a cause for concern; it simply shows that the s-wave scattering length a is not a

meaningful control parameter for such dense many-body systems.

4.4.2 DX-IX interaction

The interaction between impurities and host bosons in cold atom gases and in

excitonic systems also has some qualitative differences. In the context of cold atoms it

is common to describe this interaction using another parameter of dimension of length —

the size of the impurity-host dimer. If this length is much larger than the scattering length

a of the host bosons, the impurity can attract many host particles. As a result, the ABP

becomes a multi-particle cluster with energy much lower than the dimer energy [105]. A

related effect is formation of multimers (trimers, quadrimers, etc.) in a few-body bosonic

systems [106]. In our case, the size of the DX-IX bound state, defined by the relation

aXX =
ℏ

(2µEXX)
1/2

≈ 15 nm, (4.14)

is much smaller than the IX-IX scattering length a ≈ 500 nm. [Here µ = (m−1
DX +m−1)−1

is the reduced mass of DX and IX, m is the IX mass, and mDX is the DX mass. We

used EXX = 1.11meV, which is the average of the hh and lh values in Table 4.1.] This

44



means that the IX-IX repulsion is strong compared to the DX-IX attraction. Therefore

no multimers or multi-exciton clusters can appear and the excitonic ABP is essentially a

dimer.

As mentioned in the main text, the DX-IX bound states, e.g., (e-h-e)(h) biexcitons,

which Eq. (4.14) refers to, are stable only when the spins on the two e’s form a singlet.

The spin dependence of the interaction of the excitons comes from the symmetries of their

orbital wavefunctions. It indicates that exchange plays an important role in the DX-IX

interaction unlike the case of the IX-IX interaction discussed in Sec. 4.4.1 above.

The exchange effects can be analyzed as follows. Taking the (e-h-e)(h) complex as

an example, we note that in GaAs each of the four particles involved can exist in two spin

states, sz = ±1/2 for the e’s and Jz = ±3/2 for the h’s, yielding 24 = 16 combinations total.

In this Hilbert space we can select a basis of spin wavefunctions that are either even or odd

with respect to interchange of e’s or h’s. The corresponding orbital wavefunctions must

have the opposite parity and therefore different scattering amplitudes. Following Ref. [104],

we can describe the DX-IX interaction using four different T -matrices T uv , where u and v

refer to e and h, respectively, u, v ∈ {s, a} and s(a) indicates symmetric (antisymmetric)

orbital wavefunction. The u = v = s channel is a singlet. The spin degeneracy triples if

u or v is switched from s to a, so that the original 16-fold degeneracy is split into four

channels of spin degeneracy 1, 3, 3, and 9. In the present case, the problem is actually

simpler because we can neglect exchange between particles residing in different QWs, e.g.,

the h-exchange in the (e-h-e)(h) DX-IX complex. Thus, we can disregard the spin of the

two h’s. We need to consider only the four e-spin states that split into an antisymmetric

triplet, described by a T -matrix T a
a = T a

s ≡ T a and a symmetric singlet, characterized by

another T -matrix T s
a = T s

s ≡ T s.

Some properties of these T -matrices are known from general principles. The triplet

channel is non-binding, the singlet channel supports bound state(s). Therefore, T a(E) is

analytic at all negative energies E < 0 whereas T s(E) has a pole at E = −EXX. In the
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asymptotic low-energy limit E → 0, both T a and T s have the universal form [cf. Eq. (4.9)]

T u(E) =
Ṽ u

1− L(E)Ṽ u
, (4.15)

L(E) =
1

Ω

∑
|k|<Λ

1

E − εk − εDX,k

≃ − µ

2πℏ2
ln

(
−ℏ2Λ2

2µE

)
. (4.16)

This expression represents the sum of all ladder diagrams for two particles — an IX with

dispersion εk = ℏ2k2/2m and a DX with dispersion εDX,k = ℏ2k2/2mDX — interacting

via a short-range effective potential V u(r) such that Ṽ a > 0 and Ṽ s < 0. Parameter

Λ ∼ a−1
X is the high-momentum cutoff. If the binding energy EXX belongs to the range of

validity of Eq. (4.15), then Ṽ s can be deduced from the condition that T s(E) has a pole

at E = −EXX:

Ṽ s = −ℏ2

µ

π

ln (ΛaXX)
, (4.17)

which entails

T s(E) =
2πℏ2

µ

[
ln

(
−EXX

E

)]−1

≃ 2πℏ2

µ

EXX

E + EXX

, E → −EXX .

(4.18)

Accurate calculation of T a and T s at arbitrary energies and momenta requires solving the

four-body scattering problem numerically, which goes beyond the scope of the present

work. (Currently, our numerical codes can only solve for the bound states, see Sec. 4.3.)

However, we can estimate T a and T s by combining Eqs. (4.15), (4.16) with the Hartree-

Fock approximation for Ṽ a(s) = Ṽd± Ṽx [103, 92, 104]. Due to the exciton charge neutrality,

the Hartree (or direct) term Ṽd is negligible compared to the Fock (or e-exchange) term

Ṽx, so that

T a(s)(E) ≈ ± Ṽx

1∓ L(E)Ṽx
. (4.19)
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The equation for the Fock term is

Ṽx = −
∫

d2k

(2π)2

∫
d2k′

(2π)2
W (k,k′) ,

W (k,k′) = Ṽe1,e1(k− k′)Φ(k,k′;k,k′)

+ Ṽe1,h2(k− k′)Φ(k,k;k,k′)

+ Ṽh1,e1(k− k′)Φ(k,k;k′,k)

+ Ṽh1,h2(k− k′)Φ(k,k′;k′,k) ,

(4.20)

where

Φ(k,q;k′,q′) ≡ ϕ∗
DX(k)ϕ

∗
IX(q)ϕDX(k

′)ϕIX(q
′) . (4.21)

For comparison with previous work, we can write

Ṽx = Cx
ℏ2

2µe−h

,
1

µe−h

≡ 1

me

+
1

mh

. (4.22)

Using ϕDX(k), ϕIX(k) found as described in Sec. 4.3, we obtained the numerical coefficients

Cx = 3.81 for hh and 3.24 for lh. Interestingly, they are only slightly larger than the

analytical result Cx = 4π − (315π3/1024) = 3.03 for the DX-DX interaction in a zero-

thickness QW [92]. In physical units, we find

Ṽx = 0.28× 10−10meV cm2 (4.23)

for (e-h-e)(h) with h = hh.

At this point we can compare the Hartree-Fock estimate Ṽ s ≈ −Ṽx with Eq. (4.17).

In fact, we can get them to agree perfectly by fixing the numerical factor in the momentum

cutoff parameter, making the ‘large logarithm’ in Eq. (4.17) equal to ln (ΛaXX) = 0.59,

which corresponds to Λ = 1.5/aX. With this adjustment, Eq. (4.18) for T̃ s reproduces

the accurate value of the binding energy EXX = 0.96meV in Table 4.1. It may now be
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tempting to use Eq. (4.19) for T̃ a with the same Λ. However, doing so would generate a

spurious pole in T̃ a(E) at a relatively small (by absolute value) energy

E = −
(
ℏ2Λ2

2µ

)2
1

EXX

≈ −10meV . (4.24)

We believe it is a sign of going beyond the range of validity of the approximation. Therefore,

it may be better to revert to the lowest-order perturbation theory formula

T a(E) = Ṽx = const . (4.25)

We take Eqs. (4.18), (4.23), and (4.25) for two-body DX-IX scattering as the basis for the

further analysis of the many-body Bose polaron problem in Sec. 4.6.

4.5 Bose polarons in weakly interacting 2D systems

There have been numerous theoretical studies of Bose polarons in all physical

dimensions: 3D, 2D, and 1D. Some examples of methods developed to tackle the 2D case

with short-range interactions include the Fröhlich polaron model, which was treated by

the Feynman variational method [107] and by perturbation theory [108], a truncated-basis

variational approach [109, 110, 111], diffusion quantum Monte-Carlo calculations [112, 105],

functional renormalization group theory [113], a T -matrix approximation [114], and

variational mean-field (coherent-state) methods, both static and dynamic [115, 116, 117].

The problem of a Bose polaron in a dense excitonic system with realistic interac-

tion laws [such as Eq. (4.12)] has received much less attention. Some nonperturbative

calculations within the hypernetted chain method have been reported [91]. Unfortunately,

those results are not directly relevant for the present study because of a different geometry

of the problem (an e-h quadrilayer instead of the bilayer).

In general, the goal is to find the dispersion E = E(P ) of the Bose polarons, which
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is determined by the peaks of the spectral function

ADX(P,E) = −2 ImGDX(P,E) , (4.26)

where

GDX(P,E) = −i
∞∫
0

dteiEt/ℏ
〈[
aP(t), a

†
P(0)

]〉
≡

[
E − ℏ2P 2

2mDX

− Σ(P,E) + i0+
]−1

(4.27)

is the retarded Green’s function of the impurity (in our case, a DX) and ak(a
†
k) is the

impurity creation (annihilation) operators. To analyze the polaron resonances probed

in optical experiments it is sufficient to consider P = 0 only, and so we suppress the

momentum argument P in the formulas below.

Within the T -matrix method the self-energy of the Bose polaron is given by

Σ(E) = nT (E) , (4.28)

which is similar to Eq. (4.10). A formula for the T -matrix of a weakly-coupled BEC of

spinless bosons has been proposed by Raith and Schmidt (RS) [118]. In our notations, it

looks as follows:

T (E) =
Ṽ

1− LRS(E)Ṽ
, (4.29)

LRS(E) =
1

Ω

∑
|k|<Λ

u2k
E − ωk − εDX,k

, (4.30)
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where

ωk =

√
ε2k + 2ζεk , (4.31)

uk =
1

2

(√
ωk

εk
+

√
εk
ωk

)
(4.32)

are the Bogoliubov excitation energies and coherence factors. RS derived Eq. (4.29) by

summing a subset of ladder diagrams. Identical expressions have been also obtained

within the truncated-basis approach [111]. Focusing on the equal-mass case mDX = m, it

is easy to show analytically that LRS(E) = L(E) [cf. Eq. (4.16)]. Hence, these theories

predict, surprisingly, that T (E) is no different from the vacuum two-body T -matrix given

by Eq. (4.15). Therefore, to adapt this approach to the spinful case, we can use our results

from Sec. 4.4.2 and try

T (E) =
3

4
T a(E) +

1

4
T s(E) , (4.33)

assuming equal concentrations of all IX spin states.

In our model the triplet term T a(E) = Ṽx is energy-independent, and so it shifts

the self-energy by a fixed amount

∆Σ =
3

4
Ṽxn , (4.34)

which is equivalent to a shift of the DX chemical potential. This suggests an improved

approximation

Σ(E) = ∆Σ +
1

4
nT s(E −∆Σ)

= ∆Σ+
πℏ2

m
n

[
ln

(
− EXX

E −∆Σ

)]−1

. (4.35)

(We used 2µ = m in the denominator assuming mDX = m.) The resultant spectral function

ADX(E) has peaks at energies that solve the equation E = ReΣ(E). The higher-energy
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solution is the RBP:

ERBP ≃ ∆Σ(n) +
πℏ2

m

n

ln (1/na2XX)
, n≪ a−2

XX . (4.36)

This equation is different from those previously derived for spinless bosons [108, 105] in

two aspects. One is the addition of ∆Σ(n), the other is the extra factor of 1/4 in the

second term. Both differences originate from the electron spin. The ‘repulsive’ nature of

the RBP is manifested in its energy increase with n, which is due to the positive sign of

ReT (E). Note that ReT s(E) > 0 at −EXX < E < EXX, which can be thought of as a

‘level repulsion’ at energies above the bound-state resonance. At the face value, Eq. (4.36)

predicts a diverging ERBP at n→ 1/a2XX. This is referred to as the strong coupling regime

for the Bose polaron. In fact, at large n, this solution of the equation E = ReΣ(E) has

the asymptotic behavior ERBP ≃ ∆Σ(n) + EXX.

The lower-energy solution corresponds to the ABP. It depends on n as

EABP ≃ ∆Σ(n)−


πℏ2

m
n+ EXX , n≪ a−2

XX , (4.37a)

πℏ2

m

n

ln (na2XX)
, n≫ a−2

XX . (4.37b)

Note that Eq. (4.37b) is the same as Eq. (4.36). However, the ‘reduced energy’ EABP −

∆Σ(n) now decreases with n, which is a signature of DX-IX attraction.

The DX spectral function computed numerically from Eqs. (4.26), (4.27), (4.34),

and (4.35) is plotted in Fig. 4.5(a). To regularize the δ-function-like ABP peak we added

a damping constant −iΓ to ∆Σ. Both the ABP and RBP energies increase with IX

density n, in a qualitative agreement with the experiment. The rate of increase is however

somewhat smaller. The distance ∆ABP−RBP between the two peaks as a function of n

is shown in Fig. 4.5(b). The starting point, ∆ABP−RBP = EXX is in a good agreement

with the measured value, the subsequent rate of increase is about twice slower. In the
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Figure 4.5. (a) Calculated DX spectral function for different n using EXX = (0.96 +
0.88)/2 = 0.92meV and damping Γ = 0.3meV. The lower-energy and higher-energy
peaks correspond to the ABP and RBP, respectively. (b) The ABP-RBP energy splitting
deduced from panel (a) (line). The squares are experimental data from Fig. 2 of the main
text. (c) ABP and RBP spectral weight vs. n. (d) ABP and RBP peak width vs. n.

context of the polaron problem, the integrated weight (or so-called quasiparticle residue)

of the spectral peaks is often discussed. As shown in Fig. 4.5(c), the spectral weight is

steadily transferred from the RBP to to ABP as n increases, which is also apparent from

Fig. 4.5(a). Finally, in Fig. 4.5(d) we present the evolution of the peak widths. The ABP

peak maintains the constant width equal to Γ (which we added by hand). The RBP peak

widens with n. This widening originates from the imaginary part of the T -matrix and

represents collisional broadening of an unbound DX being scattered by IXs.

The described T -matrix theory is certainly an approximation. It does not capture

several additional effects as follows. In Sec. 4.4.2 we suggested that the ABP is essentially

a dimer. In fact, the ABP can still be dressed with Bogoliubov-like excitations of the

medium, i.e., density oscilations localized near the dimer. Such excitations would produce
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spectral weight above the lowest-energy ABP state. This spectral weight can be substantial.

In the strong-coupling polaronic regime, it may even exceed that of the ground ABP state.

Conversely, for the RBP, which is a metastable state, these local modes typically have

negative energies, producing spectral lines below the main RBP peak [119]. Therefore, a

non-negligible absorption can be present everywhere in between ABP and RBP energies.

4.6 A phenomenological T-matrix model

The T -matrix theory of Sec. 4.5 gives a qualitative but not quantitative agreement

with the experiment. It is also not fully satisfactory for several conceptual reasons. First,

Eq. (4.30) disagrees with the perturbation theory formula [120, 108]

Σ = nṼ +
nṼ 2

Ω

∑
|k|<Λ

εk
ωk

1

E − ωk − εDX,k

(4.38)

already in the order O(Ṽ 2) unlike other theoretical calculations [119, 115], which do agree

with Eq. (4.38). The perturbation theory indicates that the response of the BEC to

the impurity is suppressed at energy scales below ζ where it behaves as a fairly ‘rigid’

medium with excitation energies much larger than the bare particle energies, ωk ≫ εk.

In contrast, the RS theory [118] and the truncated-basis method [111] (at the single-

Bogoliubov-excitation level) predict that the interaction among host bosons practically do

not affect the response of the BEC. (If mDX = m, there is no difference at all, see Sec. 4.5.)

Second, as explained in Sec. 4.4.1, the IX system is strongly correlated, so diagram-

matic approaches, perturbative or otherwise, are uncontrolled. In the same vein, formulas

like Eqs. (4.30) or (4.38) assume unrealistic (extremely short-range) IX-IX interaction law.

It may therefore be prudent to retain only the basic properties of the theory outlined

in the previous section and make phenomenological assumptions about all quantities that

are difficult to compute reliably. Returning to Eq. (4.35), we can argue that it represents
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splitting of the self-energy into a non-singular part with a slow E-dependence and a

singular part that has a pole at some energy

E
(0)
ABP = −EXX + ng2 . (4.39)

This leads us to the model:

T (E) = g1 + g3
EXX

E − E
(0)
ABP

, (4.40)

which predicts the polaron energies

EABP,RBP =
1

2
(2ng1 − EXX ±∆ABP−RBP) , (4.41)

∆ABP−RBP =
(
E2

XX + 4ng3EXX

)1/2
, (4.42)

which agree fairly well with the measured peak energies. Here we already set g1 = g2

because it is physically reasonable if the DX-IX biexciton is weakly bound and because it

helps to reduce the number of phenomenological parameters. This model also predicts the

polaron spectral weights (quasiparticle residues)

ZABP,RBP =
1

1− (dΣ/dE)
=

1

2
± 1

2

EXX

∆ABP−RBP

, (4.43)

which depend on n similar to what is shown in Fig. 4.5(c).

We can use the formulas of Secs. 4.4.2 and 4.5 to crudely estimate g1 and g3. For the

case of g1, we take ng1 = ∆Σ(n), i.e., g1 = (3/4)Ṽx, see Eq. (4.34). For g3, we use Eqs. (4.18)

and (4.33) to obtain g3 = πℏ2/2µ. These give the estimates g1 = 0.21 × 10−10meV cm2

and g3 = 0.084× 10−10meV cm2 for hh. It is also possible to extract g1 from the measured

peak positions by fitting them to Eqs. (4.41) and (4.42). Doing so for the hh points in

Fig. 2b, we obtained g1 = 0.34× 10−10meV cm2. A better physical understanding of these
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parameter values and other spectral characteristics of the excitonic Bose polarons warrants

future experimental and theoretical work.

In summary, we presented spectroscopic evidence for excitonic Bose polarons in

electron-hole bilayers. These polarons are many-body objects formed around spatially

direct excitons in a degenerate Bose gas of spatially indirect excitons. The energy splitting

between attractive and repulsive branches of the Bose polarons grows with the indirect

exciton density. We interpreted this behavior within a theoretical model employing the

estimated biexciton binding energy and exciton interaction parameters.

The Mott transition (or crossover) from the excitonic to the correlated e-h Fermi

liquid regime is expected to occur in our system at high n. The corresponding transition

from Bose to Fermi polarons may result [110], which can be an interesting topic for future

work.

This chapter, in part, is a reprint with permission of the material as it appears

in ‘E. A. Szwed, B. Vermilyea, D. J. Choksy, Z. Zhou, M. M. Fogler, L. V. Butov, D. K.

Efimkin, K. W. Baldwin, and L. Pfeiffer, Nano Letters 24, 13219 (2024).’
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Chapter 5

Plasmon modes of topological-state
networks in twisted bilayer graphene

5.1 Introduction

In this chapter, we study surface plasmons in minimally-twisted gapped bilayer

graphene that develops a triangular network of partial dislocations (or AB-BA domain

walls) hosting one-dimensional electronic states. The structural and electronic properties

of twisted bilayer graphene (TBG) sensitively depend on the twist angle θ. While the

emergence of superconducting and insulating phases near the “magic” angle of θ ≈ 1.1◦ has

been extensively studied [5, 6], TBG also exhibits interesting physics at smaller θ. For twist

angles below about 1◦, i.e. for a minimally twisted TBG (henceforth, mTBG), this material

undergoes a structural transformation to form a triangular lattice of energetically-preferred

AB and BA stacking domains separated by partial dislocations (also referred to as the

domain walls or structural solitons) [121, 122, 123], shown schematically in Fig. 5.1. In

the experiment, mTBG is typically subject to an out-of-plane electric field due to external

gates or charged impurities. In the presence of such a field, the AB and BA regions

develop a bandgap ∆TBG while AB-BA domain walls remain gapless [124]. Each domain

wall hosts at least two bound states (per valley, per spin) whose energy dispersions cross

the bandgap. These one-dimensional (1D) states are topologically protected and their

propagation directions are opposite for the K and K′ valleys [125, 126, 127, 128, 129, 130].
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Figure 5.1. A schematic of the mTBG structure at small twist angles. The AB and BA
stacking domains are separated by narrow domain walls (links), which intersect at AA
regions (nodes). When an interlayer bias is applied, the AB and BA regions are gapped
while the domain walls host 1D electronic states. The gray arrows represent 1D plasmons
that propagate along the links and scatter at the nodes. The red arrows label the moiré
primitive lattice vectors.

The states therefore form a triangular network of 1D conducting channels [123, 131, 132,

133, 134, 135, 136, 137]. The domain walls are the links and their intersections are the

nodes (or junctions) of the network, see Fig. 5.1.

Near-field infrared imaging of a doped mTBG [138, 139, 140] revealed that two-

dimensional (2D) plasmons in mTBG experience scattering at the domain walls. This

observation was attributed to the enhanced local optical conductivity at the domain walls

due to the topological 1D states. Direct imaging of these 1D states was not possible in

those experiments since the chemical potential was outside the bandgap.

On the theory side, the low-energy electronic band structure of the domain-wall

network has been elegantly described by scattering models [141, 142, 143] predicting

quasiparticle dispersions ε(k) that are repeated in energy with the period ∆ε = 2πℏv/L.

Here L = |lj| = a/[2 sin(θ/2)] is the moiré lattice constant (Fig. 5.1), a = 0.246 nm

is the in-plane lattice constant of mTBG, and v is the quasiparticle velocity on the
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links. Representative band structures for one such model [141] are shown in Fig. 5.3(a).

Although realistic electronic structure calculations [133, 136] show more complicated band

dispersions, such discrepancies can presumably be accounted for by the energy dependence

of the network model parameters. On the other hand, a conceptually important omission

of these models is electron-electron interaction. It is known that the low-energy dynamics

of interacting 1D electrons is collective [7]. Depending on L and the Fermi energy εF , the

corresponding range of frequencies in mTBG may extend up to ∼ ∆TBG, i.e., into the

terahertz domain. Theoretical understanding of the collective modes, such as 1D plasmons,

is necessary to correctly describe the response of the system at such frequencies. Electron-

electron interaction effects in TBG networks have been investigated with renormalization

group methods [144, 145, 146], but plasmons have not been explicitly addressed.

In this chapter, we develop a theoretical model of plasmons in the mTBG network.

We consider two limiting cases depending on the single-particle phase coherence length

Lφ [147]. When Lφ ≫ L, the electrons maintain phase coherence upon traversing the

links. In this regime, we employ the random phase approximation (RPA) to calculate the

network dielectric function and plasmon modes. In the other regime, Lφ ≪ L, the electron

phase is randomized due to inelastic scattering. The plasmon modes are determined by a

plasmonic network model (PNM) analogous to that for single electrons.

We assume that the dephasing processes are momentum conserving, so that they

do not cause plasmonic damping on the links. Therefore, in our PNM, plasmons propagate

ballistically along the AB-BA links and scatter only at AA nodes of the network. The

interaction mixes plasmons of all propagation directions, so the scattering is governed by

a full 6× 6 matrix. In particular, the possibility of plasmon backscattering at the nodes is

included. This is a key distinction of our model from a related recent work [148] where

the plasmons were restricted to propagate only in one particular direction along each link

(as in the Chalker-Coddington model for the quantum Hall effect [149]).

Finding the scattering matrix in the PNM is in general a complex problem which
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Figure 5.2. Schematic diagram showing different regimes for the network versus temper-
ature T and interaction strength 1/K, where K is the Luttinger parameter.

depends on the details of inter-link coupling at the nodes and the electron-electron

interaction strength. We do not attempt to solve this problem here, but just consider the

limiting cases of weak and strong repulsive interactions where the scattering matrix is

determined by admittance boundary conditions at the nodes. Interaction strength in 1D

may be parametrized by the Luttinger parameter K, where K = 1 for non-interacting

electrons and K < 1 for repulsive interactions [7]. In the weakly interacting limit, K → 1,

the junction admittance is purely resistive and determined by the scattering probabilities

of single electrons in accordance with the Landauer formula [150]. Therefore, the system

behaves as a network of resistors. In the strongly interacting limit, K → 0, this admittance

is purely capacitive [151, 152], and the system behaves as a network of capacitors.

Fig. 5.2 shows a schematic “phase diagram” for this system that illustrates the

different regimes versus temperature and interaction strength. In each of these regimes, we

compute the plasmon spectrum of the network. We find that this spectrum is composed of

multiple bands quasi-periodic in frequency, similar to the single-particle problem [141, 142,

143]. Finally, to facilitate their experimental discovery by near-field imaging, we model a

near-field response of the network plasmons for a few representative cases. Our theory

may also be useful for studying plasmons in artificial networks made from nanotubes or

nanowires [153, 154].
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The rest of this chapter is organized as follows. We first consider long-wavelength

plasmons in Sec. 5.2. In Sec. 5.3, we analyze a model of a 1D periodic chain of scatterers

and elucidate the main features of the plasmonic spectrum in different regimes. We

formulate a theory of scattering of 1D plasmons at a six-wire junction in Sec. 5.4 and apply

it to calculate the plasmon scattering matrix. In Sec. 5.5, we present our calculations of

the plasmonic spectrum of the mTBG network in different regimes. We model signatures

of the plasmons in near-field images in Sec. 5.6. The concluding discussion is given in

Sec. 5.7. Additional details are included in the Appendix.

5.2 Long-wavelength plasmons

We begin by considering plasmons in the long-wavelength limit, where the plasmon

wavelength λp is much larger than the lattice constant L and the network behaves as a

continuous medium with a certain Drude weight D. For a long-range Coulomb interaction,

the plasmon dispersion as a function of momentum q, is given by

ω(q) =
√

(2D/κ)q , (5.1)

with κ being the effective dielectric constant of the mTBG environment, the plasmons

have the
√
q dispersion expected in 2D. We compute D is from the RPA formula:

NcNd

∑
n

∫
d2k

(2π)2
δ [εn(k)− εF ] vn,α(k)vn,β(k) =

D

πe2
δαβ . (5.2)

Here e = −|e| is the electron charge, εn(k) is the single-particle energy of momentum k

in the nth band, vn(k) = ℏ−1∇kεn is the corresponding velocity, the integration is taken

over the moiré Brillouin zone, Nd = 4 is the spin-valley degeneracy, and Nc = 2 is the

number of channels in addition to this degeneracy. (For simplicity, we assume that all

the channels have the same velocity.) We also consider a model where the interaction is
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Figure 5.3. (a) Band structure (left) and Drude weight (right) according to the network
model of Ref. 141 for forward scattering probability Pf = 1 (top), Pf = 0.8 (middle), and
Pf = 0.4 (bottom). The vertical dashed lines indicate the average Drude weight D̄. (b)
Average Drude weight D̄ as a function of the forward scattering probability Pf in this
model. The solid line is the numerical result, and the dashed line is the formula of Eq.
(5.6). Inset: diagram showing allowed scattering directions.
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short-range, which is appropriate if the mTBG resides near a metal gate that screens the

long-range Coulomb interaction. The long-wavelength plasmon dispersion is linear in q

and has three branches:

ω(q) = vi(q̂)q, i = 1, 2, 3, (5.3)

where q̂ is the unit vector in the direction of q and the vi(q̂) are the solutions of

det[ϵ(q̂, v)] = 0 for v, where ϵ(q̂, v) is a 3× 3 matrix with elements

ϵij(q̂, v) = δij − U0Pij(q̂, v),

Pij(q̂, v) =
√
3
2
NcNd

∑
n

∫
d2k

(2π)2
Mij,n(k)[vn(k) · q̂]2

v2 − [vn(k) · q̂]2
,

Mij,n(k) = δ [εn(k)− εF ] |ψi,n,k|2|ψj,n,k|2,

(5.4)

with ψi,n,k the wavefunction amplitude on the ith link.

We employ the Efimkin-MacDonald model [141] to find εn(k), as described in

Appendix D. Although this model has been generalized to include inter-channel scattering

[142], we neglect that here for simplicity. In this approximation, the model has a single

parameter: the forward scattering probability Pf . Since the domain wall states are chiral

within each valley, and there is assumed to be no intervalley scattering then the Drude

weight and the plasmon dispersion should also vary periodically with εF . For example, if

v = 108 cm/s and L = 500 nm, the oscillations with Fermi energy should have a period of

∆εF = 8meV. In Fig. 5.3(a), we plot the band structure and Drude weight for different

values of Pf . The Drude weight takes its maximum value

Dmax = 4
√
3v2α/L (5.5)

at Pf = 1 and decreases with decreasing Pf . Here α = e2/ℏv is the Coulomb coupling

constant. In terms of the total electron density, the oscillation period is ∆n = NcNd/A0
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where A0 =
√
3L2/2 is the area of the unit cell of the network. For L = 500 nm, this period

is very small, ∆n = 3.7 × 109 cm−2. Hence, detecting such oscillations in experiments

would require low disorder, low temperature, and a precise control over the electron density.

A more useful quantity is the Drude weight averaged over Fermi energy, D̄, which we plot

versus Pf in Fig. 5.3(b). For Pf close to 1, we find to leading order the formula

D̄ = Dmax

(
1− 3

2

√
Pd

)
, (5.6)

with Pd = 1
2
(1 − Pf) the probability to deflect 120◦ to neighboring links. The allowed

scattering directions are shown in the inset diagram of Fig. 5.3(b).

5.3 1D model

In this section, we analyze a simple 1D model: a periodic chain of identical barriers

separated by a distance a. The electrons scatter forward or backward at the barriers and

propagate ballistically between them. We discuss the single-particle spectrum for this

system, and its plasmonic spectrum calculated via both the RPA and PNM. In terms of

the phase coherence length Lφ, the RPA applies when Lφ ≫ a, whereas the PNM applies

when Lφ ≪ a.

5.3.1 Single-particle spectrum

Each barrier is characterized by a single-particle scattering matrix which takes the

form

S0 =

r t

t r

 . (5.7)

Current conservation requires that S0 is unitary, and therefore the reflection and trans-

mission amplitudes may be parametrized by a single real parameter (the transmission

probability T ) as r = −i
√
1− T and t =

√
T . Between the scatterers, the electrons

63



propagate ballistically with velocity v. For a state with energy ε, the wavefunction at

position x (0 < x < a) in a unit cell may be written as
(
ψRe

iεx/ℏv, ψLe
iε(a−x)/ℏv), where the

two components correspond to right and left moving electrons. At a given momentum k,

wavefunction amplitudes on adjacent links differ by a Bloch phase e±ika, so the incoming

and outgoing amplitudes at a node are respectively given by

ψin(k) = eiεka/ℏv
(
ψR, e

ikaψL
)
,

ψout(k) =
(
ψL, e

ikaψR
)
.

(5.8)

These are related by the scattering matrix, ψout(k) = S0ψin(k). Therefore, the energies

ε(k) are determined by solving the following eigenvalue problem

te−ika r

r teika


ψR
ψL

 = e−iεka/ℏv

ψR
ψL

 . (5.9)

The spectrum consists of two bands that repeat periodically in energy with period 2πℏv/a:

ε±,n,k =
v

a

[
± arccos

(√
T cos ka

)
+ 2πn

]
, (5.10)

with n an integer. In Fig. 5.4(a), we plot the band structure for T = 0.5.
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Figure 5.4. (a) The single-particle band structure for transmission probability T = 0.7.
The dashed line denotes the Fermi energy used for the RPA calculation below. (b)
RPA spectrum. The dotted lines indicate boundaries of the electron-hole continua. The
Luttinger parameter is K = 0.5. (c) Resistive PNM spectrum for the same parameters.
(d) Capacitive PNM spectrum with C̄ = 0.125.
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5.3.2 Random phase approximation

The RPA polarizability is given by

Pll′(q, ω) =
1

ℏ
∑
n,m

∫ π/a

−π/a

dk

2π
ρn,mk,q,l

(
ρn,mk,q,l′

)∗
× nF (εn,k − εF )− nF (εm,k+q − εF )

ω − (εm,k+q − εn,k)/ℏ+ iγ
,

ρn,mk,q,l =

∫ a

0

dx e−i(q+2πl/a)xΨ†
n,k(x)Ψm,k+q(x),

Ψn,k(x) =
1√
a

 ψR,n,ke
iεn,kx/ℏv

ψL,n,ke
iεn,k(a−x)/ℏv

 ,

(5.11)

where l and l′ are integers that specify the 1D reciprocal lattice vectors, n and m are band

indices, εF is the Fermi energy, and nF (ε) = Θ(−ε) is the Fermi-Dirac function at zero

temperature. The wavefunction amplitudes are normalized such that |ψR,n,k|2+|ψL,n,k|2 = 1.

Parameter γ is the line width, and to present our results we take γ = 0.01v/a in the

following calculations. The dielectric function is

ϵRPA,ll′(q, ω) = δll′ − Ũ(q + 2πl/a)Pll′(q, ω), (5.12)

with Ũ(q) the 1D Fourier transform of the interaction kernel. The plasmon modes

are found from the poles of the inverse matrix ϵ−1
ll′ . We define the spectral function

SRPA(q, ω) = −Im
∑

l ϵ
−1
RPA,ll(q, ω). In our calculation we use a short-range interaction with

Ũ(q) = U0 constant, and the interaction strength is defined as K = (1 + (N/π)U0)
−1/2,

with N the number of modes [cf. Eq. (5.29)].

In Fig. 5.4(b) we show an example RPA spectral function. The dotted lines indicate

the boundaries of the electron-hole continua. Outside these regions, the plasmon modes

are sharp spectral lines. As expected, there is a linearly dispersing gapless mode at low

frequency with slope vF/K, where vF is the Fermi velocity. At higher frequencies there
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are interband plasmon modes, which can be explained by the inverse square-root van

Hove singularities in the dielectric function at the edges of the continua. If we neglect the

off-diagonal elements of ϵll′ , the interband plasmons would be repelled by the singularities

and remain undamped. In the full calculation, they can enter the continua, as seen in

Fig. 5.4(b). Additionally, there are undamped modes at the high-symmetry points q = 0

and q = π/a, which are explained by pole-type singularities in Pll′(q, ω) due to nesting of

the single-particle bands. The presence of a sharp mode at such momenta is also obtained

within the PNM (see below).

5.3.3 Plasmonic network model

To formulate the PNM, we first need the plasmon scattering matrix, which is

derived in Sec. 5.4. It may be expressed in terms of the barrier admittance Y , which

relates current through the barrier to voltage across it. In Sec. 5.4 below it will be shown

that [Eq. (5.33)] the plasmon reflection and transmission coefficients are, respectively

rp =
K

K + Ȳ
, tp =

Ȳ

K + Ȳ
, (5.13)

where Ȳ = h
Ne2

Y is the dimensionless admittance. To determine the plasmon modes and

their frequencies at momentum q we solve the eigenvalue problem

tpe−iqa rp

rp tpe
iqa


ϕR
ϕL

 = e−iωqa/ℏvp

ϕR
ϕL

 , (5.14)

where ωq is the mode frequency. This is analogous to Eq. (5.9) but with r and t replaced

by rp and tp, and the velocity v replaced by the plasmon velocity vp = v/K.

For weak interactions, Ȳ = T
R according to the Landauer formula [150], with

R = 1− T the reflection probability, so the barrier behaves as a resistor. Note that in the
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noninteracting case K = 1 this implies rp = R and tp = T . The plasmonic bands are

ω±,n,q =
vp
a

[
i ln

(
tp cos qa±

√
r2p − t2p sin

2 qa

)
+ 2πn

]
. (5.15)

Since the scattering matrix is not unitary, ω±,n,q has an imaginary part, which implies

dissipation of the plasmon modes. For strong interactions, we have Ȳ = −i(ωa/v)C̄,

where C̄ is the dimensionless capacitance of the barrier. Then the plasmonic spectrum is

dissipationless and has a gap ω0 determined by the solution of

ω0 =
K

2C̄
cot

(
a

2vp
ω0

)
, (5.16)

which lies between 0 and πvp/a.

In terms of the plasmon modes, the inverse dielectric function is given by

ϵ−1
PNM,ll′(q, ω) =

∑
n

ϵ−1
1D(ωn,q/vp, ω + iγ)Φ̃n,q,lΦ̃

∗
n,q,l′ ,

Φ̃n,q,l =

∫ a

0

dx e−i(q+2πl/a)xΦn,q(x),

Φn,q(x) = ϕR,n,qe
iωn,qx/vp + ϕL,n,qe

iωn,q(a−x)/vp .

(5.17)

Here Φn,q(x) is normalized so that
∫ a
0
dx|Φn,q(x)|2 = 1.

We show the spectral function SPNM(q, ω) = −Im
∑

l ϵ
−1
PNM,ll(q, ω) in Fig. 5.4(c,d)

for resistive and capacitive barriers, respectively. In both cases, the spectrum is quasi-

periodic in frequency with period 2πvp/a, although we only plot one full period. In the

resistive case, ω±,n,q is purely imaginary for |qa| < arcsin(rp/tp). In particular, we obtain

the low frequency dispersion by expanding ω+,0,q in qa≪ 1:

ω+,0,q = −i av
2K2

T
R
q2. (5.18)
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This corresponds to diffusive motion of electrons with diffusion constant D = 1
2
avT /R. At

qa ∼ KR/T , there is a crossover from diffusive motion to damped ballistic motion with

velocity v. There is a broadened linearly-dispersing mode with a velocity of approximately

v/K, which becomes a sharp mode at high-symmetry points q = 0 and q = π/a. This

is because current conservation enforces rp + tp = 1, so there is no dissipation in the

symmetric scattering channel. In the capacitive case, the plasmons are dissipationless at

all frequencies, since the admittance is purely imaginary. Furthermore, the spectrum is

gapped since the admittance vanishes as ω → 0.

Comparing Fig. 5.4(b,c), it is apparent that the broad features of the RPA and

resistive PNM spectra are similar: both exhibit a broadened specral line with a slope of

approximately v/K. However, features seen in the RPA spectrum, such as the electron-

hole continua and the sharp interband plasmons outside these continua, as well as the

linearly-dispersing gapless mode at low energy, are absent in the PNM spectrum. This is

due to loss of phase coherence of the electrons.

We now comment briefly on the validity of our approaches. In the RPA, we compute

the irreducible polarizability neglecting electron-electron interactions, as in Eq. (5.11),

which ignores both vertex and self-energy corrections to the polarization bubble. At

low energy, the RPA predicts that there is a gapless plasmon mode above the intraband

continuum [Fig. 5.4(b)]. While it correctly predicts that the velocity of the mode is v/K

(see Sec. 5.4), in 1D the continuum below this mode is present only if there are multiple

species of electrons (such as due to spin degeneracy). Regarding the intraband excitations,

the RPA does not include exciton lines that should exist below the electron-hole continua.

In general, the RPA becomes more accurate with increasing dimension d and number of

modes N . Applied to the mTBG network, where d = 2 and N = 4, we believe it should be

an adequate approximation in the coherent regime. On the other hand, the PNM should

be a good approximation in the incoherent regime. Computing the plasmonic response of

the system in a general, partially coherent regime Lφ ∼ L goes beyond the scope of the
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present work but we think the result should be somewhere in between these two limiting

cases.

5.4 Plasmon scattering

Assuming L≫ λp, we treat the links of the network as 1D wires. Each link contains

N = 4 modes, due to the two chiral states per link and the two spin states of the electron.

By a “mode” we mean a pair of 1D channels: one from the K valley and its partner from

the K′ valley obtained by time-reversal of the orbital motion. To describe the low-frequency

long-wavelength dynamics of the system we use the standard bosonization theory [7],

as outlined in Appendix E. With a harmonic time dependence e−iωt of the fields, the

equations of motion for the total density n and current j may be written as

−iωn(x) + ∂xj(x) = 0, (5.19)

−iωj(x) = −Ne
2v

πℏ
∂xΦ(x) , (5.20)

Φ(x) =
πℏv
Ne

n(x) +
1

e

∫
dx′U(x− x′)n(x′) + Φext(x) . (5.21)

Function Φ(x) has the meaning of the electrochemical potential (or voltage, for short).

The first term on the right-hand side of Eq. (5.21) is the local change in the chemical

potential, the second term is the electrostatic contribution, and the last term is an external

potential, added for completeness.

Function U(x) is the effective 1D interaction kernel. In our calculations later in

this section we adopt the approximation

U(x) =
e2

κ

1

|x|+ ℓ
. (5.22)

Parameter ℓ, which has the meaning of a characteristic width of the wire, cuts off the

divergence of the Coulomb law, U(x) ≃ e2/κ|x| at short distances. Note that Ũ(q) =
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(e2/κ)ũ(q) with ũ(q) ≃ 2 ln(A/qℓ) and A = 0.561. Here and below the tilde denotes the

1D Fourier transform. For the case that U(x) is short-range due to screening by a metal

gate, we have ũ(q) = 2 ln(Adg/ℓ) = const where dg is the gate-sample distance and A ∼ 1.

From Eqs. (5.19)–(5.21), it is easy to see that the 1D dielectric function of the

system is

ϵ1D(q, ω) ≡
Φ̃ext(q)

⟨Φ̃(q)⟩
= 1− N

π

Ũ(q)

ℏv
v2q2

ω2 − v2q2
, (5.23)

which is identical to the RPA result for a 1D electron gas with a linearized dispersion.

The roots of the dielectric function determine the plasmon spectrum

ωp(q) = [1 + (Nα/π)ũ(q)]1/2 vq, (5.24)

where α = e2/(ℏvκ) is the dimensionless Coulomb interaction constant. The plasmon

dispersion is linear for the case of short-range interaction ũ(q) = const and linear with

logarithmic corrections for unscreened Coulomb interactions. All these properties are well

known.

Consider now a junction of several 1D channels. Let Φα(r) be the voltage on the

αth link at a distance r from the node. Following the above treatment, it is straightforward

to obtain the equations

Φα(r) +
v2

ω2

[
∂2rΦα +

N

πℏv
∑
µ

∫
dr′Uαµ(r, r

′) ∂2r′Φµ

]
= 0, (5.25)

Uαµ(r, r
′) = U

(√
r2 + r′2 − 2rr′ cos βαµ

)
, (5.26)

where βαµ is the angle between links α and µ. (The external potential term has been

dropped.)

To complete the system of equations we specify boundary conditions with an

71



admittance matrix Y relating currents to voltages at the junction:

j(0) = YΦ(0), (5.27)

with j(0) and Φ(0) six-component vectors specifying current and voltage on each link,

respectively. Equivalently, incoming and outgoing currents are related with a current

splitting matrix M [155]:

j+(0) = Mj−(0), (5.28)

where j+α = [Ne2Φα/(πℏ) + jα]/2 and j−α = [Ne2Φα/(πℏ)− jα]/2 are respectively outgoing

and incoming chiral currents of wire α. The relation between Y and M is Y = 2Ne2

h
(M+

1)−1(M − 1). In order to ensure current conservation, each row and column of Y (M)

must sum to zero (one). We also define a dimensionless admittance Ȳ = h
Ne2

Y, which we

refer to below.

In general, Y has a complicated dependence on the Luttinger parameter K which

characterizes the strength of the interaction:

K(q) = [1 + (Nα/π)ũ(q)]−1/2 =
vq

ωp(q)
. (5.29)

Here we will consider the limits of weak and strong interactions, K → 0 and K → 1,

respectively. When interactions are weak, the boundary conditions are determined by the

the scattering probabilities of single electrons. This may be simply expressed in terms of
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M, whose elements are Mij = |S0,ij|2, with S0 the single-particle scattering matrix:

M =

 M(1) M(2)

M(2) M(1)

 ,

M(1) =


0 Pd 0

Pd 0 Pd

0 Pd 0

 , M(2) =


Pf 0 Pd

0 Pf 0

Pd 0 Pf

 .

(5.30)

where Pf and Pd are respectively the probabilities of forward scattering and deflection to

neighboring channels. This means that the admittance Y is purely real and corresponds to

resistive coupling between channels. Conversely, in the limit of strong interactions, there

is a purely imaginary admittance Y = −iωC, where ω is frequency and C is a capacitance

matrix coupling the different channels [151, 152].

The plasmon scattering matrix S is obtained by solving Eq. (5.25) subject to the

boundary conditions of Eq. (5.27). Since the junction is six-fold rotationally symmetric,

we express the result in terms of phase shifts e2iδm in each angular momentum channel

m = 0,±1,±2, 3. In terms of these phase shifts

Sjk =
1

6

∑
m

e2iδmzmjk, zjk ≡ eiπ(j−k)/3. (5.31)

By inversion symmetry δm = δ−m, so there are four distinct phase shifts that determine

S. By current conservation, the phase shift δ0 is independent of the boundary conditions

imposed by Y.

We consider first the simpler case of scattering for short-range interactions, where

dg ≪ λp. The solution away from the junction takes the form Φi(ri) = e−iqri + Siie
iqri ,

Φj(rj) = Sjie
iqrj (j ̸= i). Substituting this into Eq. (5.27), we find a formula for the
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(a)

(b)

.

Figure 5.5. Numerical solution for scattering matrix for Coulomb interaction versus
plasmon wavelength λp. Parameters are Pf = 0.4 and Nα = 10. (a) Real parts of the phase
shifts in each angular momentum channel. They asymptotically approach the limiting
values shown by the dashed lines. (b) Magnitude of reflection amplitude |e2iδm| for the
m = 1, 2 channels compared to the prediction of Eq. (5.33) shown by the dashed lines.
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scattering matrix:

S =
K1+ Ȳ/2

K1− Ȳ/2
, (5.32)

or in terms of phase shifts,

e2iδm =
K + Ȳm/2

K − Ȳm/2
,

Ȳm =
∑
j

zm1jȲ1j.
(5.33)

Current conservation requires Ȳ0 = 0, hence δ0 = 0 always. In the absence of interactions,

K = 1, so S = M, as expected. For weak interactions, Eq. (5.30) implies Ȳ3 → ∞, and

Ȳ1 = Ȳ −1
2 = −2

3
P−1
d + 1. (5.34)

Therefore, δ3 = π/2 and δm = π/2+iImδm form = 1, 2. The imaginary part of them = 1, 2

phase shifts corresponds to dissipation of energy in these channels. For strong interactions,

Ȳm = −i(ωL/v)C̄m for m = 1, 2, 3, hence there are three independent parameters, C̄1, C̄2,

and C̄3, that determine plasmon scattering. For K → 0, we have δm = π/2 for m ̸= 0.

This implies that S takes the form

Sii = −2/3, Sji = 1/3 (j ̸= i), (5.35)

which is a universal result independent of Y. It follows from imposing boundary conditions

of continuity of the potential Φ across the junction and current conservation:

Φj(0) = Φk(0),
∑
j

∂rΦj(0) = 0. (5.36)

This so-called classical limit is approached when either the coupling constant α or the

number of modes N become large.
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For long-range Coulomb interactions, additional phase shifts are induced. However,

as the wavelength increases, the scattering amplitudes tend to those for short-range

interactions logarithmically in the small parameter qℓ. This behavior is confirmed in

Fig. 5.5, where we plot the numerical solution for the δm versus the plasmon wavelength

λp for resistive boundary conditions. In Fig. 5.5(a), we plot the real parts of the phase

shifts for each angular momentum channel. At long wavelength Reδm approaches zero for

m = 0 and π/2 for m ̸= 0 in accordance with Eq. (5.33). Fig. 5.5(b) shows |e2iδm| for the

m = 1, 2 channels compared to the prediction of Eq. (5.33). Since |e2iδm | < 1 for m = 1, 2

there is dissipation of energy in these channels. For m = 0, 3, we have |e2iδm | = 1 due to

current conservation, and there is no dissipation.

5.5 Network plasmons

In this section, we analyze plasmons in the mTBG network analogously to the 1D

model of Sec. 5.3. For simplicity, we consider a short-range interaction with U(x) = U0

constant, which applies when the interaction is screened by a metallic gate, as discussed

in Sec. 5.4. We comment on the modification of our results for long-range Coulomb

interactions at the end of this section.

5.5.1 Plasmonic network model

There are three links per unit cell and two propagation directions per link, so in

total there are six independent plasmon amplitudes per unit cell. We denote the moiré

lattice vectors by l1, l2, and l3 = −(l1 + l2) (see Fig. 5.1), and choose the jth link in

a unit cell to be along lj (j = 1, 2, 3). In a given unit cell, let ϕj± be the amplitude of

the plasmon wave along the jth link, propagating in the forward (+) or backward (−)

direction. Traversing the link at frequency ω it accumulates a phase eiωL/vp . At a given

Bloch momentum q, amplitudes on links directly opposite each other are related by a

Bloch phase. The six incoming and outgoing amplitudes at a node may be represented by
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six-element vectors Φin(q) and Φout(q) respectively:

Φin(q) = eiωqL/vp
(
ϕ1−, e

−iq·l2ϕ2+, ϕ3−,

e−iq·l1ϕ1+, ϕ2−, e
−iq·l3ϕ3+

)
,

Φout(q) =
(
ϕ1+, e

−iq·l2ϕ2−, ϕ3+,

e−iq·l1ϕ1−, ϕ2+, e
−iq·l3ϕ3−

)
.

(5.37)

The incoming and outgoing amplitudes are related by the scattering matrix, Φout(q) =

S Φin(q). Therefore, the plasmon modes are obtained by solving the following eigenproblem:

T (q)Φ̄q = e−iωqL/vpΦ̄q, T (q) = WΛ−1
q SΛq,

Λq = diag
(
1, e−iq·l2 , 1, e−iq·l1 , 1, e−iq·l3

)
, W =

 0 13

13 0

 ,

Φ̄q =
(
ϕ1−, ϕ2+, ϕ3−, ϕ1+, ϕ2−, ϕ3+

)
. (5.38)

The inverse dielectric function is

ϵ−1
PNM,GG′(q, ω) =

∑
n

ϵ−1
1D(ωn,q/vp, ω + iγ)Φ̃n,q,GΦ̃

∗
n,q,G′ ,

Φ̃n,q,G =
3∑
j=1

∫ L

0

dx e−i(q+G)·̂ljxΦj,n,q(x).

Φj,n,q(x) = ϕj+,n,qe
iωn,qx/vp + ϕj−,n,qe

iωn,q(L−x)/vp ,

(5.39)

with the eigenvector Φ̄q normalized such that
∑3

j=1

∫ a
0
dx|Φj,n,q(x)|2 = 1. The spectral

function is SPNM(q, ω) = −Im
∑

G ϵ
−1
PNM,GG(q, ω).

5.5.2 Random phase approximation

The procedure of Sec. 5.3.2 may be straightforwardly generalized to calculate the

RPA spectrum of the mTBG network. We begin by calculating the single-particle spectrum

77



(b)

(a)

(c)

(d)

Figure 5.6. (a) The single-particle band structure for Pf = 0.4. The dashed-dotted line
denotes the Fermi energy used for the RPA calculation below. (b) Corresponding RPA
spectrum. The Luttinger parameter is K = 0.25. (c) Resistive PNM spectrum for the
same parameters. The insets in (b) and (c) show a zoom-in on the low-frequency part of
the spectum. (d) Capacitive PNM spectrum with C̄1 = −0.125, C̄2 = −0.25, C̄3 = −0.5.
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as described in Appendix D. The RPA polarizability is given by a formula analogous to

Eq. (5.11):

PGG′(q, ω) =
1

ℏ
∑
ν=±

∑
n,m

∫
d2k

(2π)2
ρn,mk,q,G

(
ρn,mk,q,G′

)∗
× ν

nF (εn,k − εF )− nF (εm,k+q − εF )

ω − ν(εm,k+q − εn,k)/ℏ+ iγ
,

ρn,mk,q,G =
3∑
j=1

∫ L

0

dx e−i(q+G)·̂ljxΨ∗
j,n,k(x)Ψj,m,k+q(x),

Ψj,n,k(x) =
1√
L
ψj,n,ke

iεn,kx/ℏv,

(5.40)

where G and G′ are moiré reciprocal lattice vectors, εn,k is the single-particle energy of

momentum k in the nth band, ψj,n,k is the corresponding wavefunction amplitude on

the jth link, the integration is over the moiré Brillouin zone, and the summation over ν

accounts for states in both K and K′ valleys. The wavefunction amplitudes are normalized

such that
∑3

j=1 |ψj,n,k|2 = 1. The dielectric function is

ϵRPA,GG′(q, ω) = δGG′ − Ũ(q+G)PGG′(q, ω), (5.41)

with Ũ(q) the 2D Fourier transform of the interaction potential. At long wavelength, the

plasmon dispersion is linear in q and determined by Eqs. (5.3) and (5.4). We define the

spectral function SRPA(q, ω) = −Im
∑

G ϵ
−1
RPA,GG(q, ω).

5.5.3 Results

We plot an example single particle spectrum in Fig. 5.6(a) The corresponding RPA

spectral function is plotted in Fig. 5.6(b) for a representative choice of parameters. At low

frequency there are three linearly dispersing gapless modes, as predicted by Eq. (5.4). At

higher frequencies the plasmon modes lie in the particle hole continuum and have a finite

lifetime. However, there are dissipationless modes at high-symmetry points Γ, K, and K′,
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which, as in Sec. 5.3, are explained by nesting of the single-particle bands.

We plot PNM spectral functions in Fig. 5.6(c,d) for resistive and capacitive

boundary conditions, respectively. The spectrum is quasi-periodic in frequency with six

bands per period 2πvp/L, although we only plot one full period. In the resistive case, the

low-frequency spectrum is diffusive, and there are two modes with dispersions

ω1,q = −i Lv
4K2

(−Ȳ1)q2, ω2,q = −iLv
4
(−Ȳ1)q2, (5.42)

with Ȳ1 given by Eq. (5.34). At higher frequencies, there are broadened, linearly dispersing

modes, as well as non-dispersive modes when ωL/vp is an integer multiple of π. As in the

RPA spectrum, the modes become sharp at high-symmetry points Γ, K, and K′. This is

because there is no dissipation in the m = 0 and m = 3 scattering channels [Sec. 5.4]. In

the capacitive case, the plasmons are dissipationless at all frequencies, and the spectrum

has a gap ω0 determined by the solution of

ω0 =
K

2C̄max

cot

(
a

2vp
ω0

)
, (5.43)

where Cmax = max(|C̄1|, |C̄2|, |C̄3|).

It is interesting to consider the classical limit of S given by Eq. (5.35), for which

Eq. (5.38) can be solved analytically. The resulting band structure is given by

ω1
n,qL/vp = 2nπ, ω2

n,qL/vp = (2n+ 1)π,

ω±
n,qL/vp = 2nπ ± arccos

[
1

3

3∑
j=1

cos(q · lj)

]
, (5.44)

where n ∈ Z. There is a linearly dispersive gapless mode at the Γ point as well as twofold

degenerate flat bands ω1
n,q and ω2

n,q that correspond to eigenstates localized on closed

loops in the network.
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For long range interactions, the main difference is in the low-frequency part of the

spectrum, where the plasmons will have a
√
q dispersion. In the coherent regime, the

Drude weight is given by the RPA formula Eq. (5.2); in the incoherent regime, it takes the

classical value Dmax defined in Eq. (5.5). At higher frequencies, the plasmon modes are

well-approximated by solving Eq. (5.38) with a wavelength dependent scattering matrix

(Fig. 5.5).

5.6 Near-field imaging

Plasmons can be observed in real-space using scattering-type scanning near-field

optical microscopy (s-SNOM) [156]. In this technique, an atomic force microscope (AFM)

tip is positioned close to the sample and illuminated by an infrared laser. The light

scattered by the tip launches surface plasmons, which in turn modify its total radiating

dipole moment, and this is measured in the far-field. Note that plasmons can also be

launched by a fixed object such as an impurity and detected with the tip. The resulting

near-field contrast provides a real-space picture of plasmon interference patterns in the

sample. In general, the magnitude of this near-field contrast has a complex dependence

on the optical conductivity of the sample and the probe-sample coupling [156, 157]. Here

we use a simplified model that gives the near-field signal as a convolution of the inverse

dielectric function with appropriate form factors. As shown in Appendix F, the signal for

a plasmon launched at position r′ and detected at position r is proportional to

G(r, r′;ω) =
∑
G,G′

∫
d2k

(2π)2
ei(q+G)·re−i(q+G′)·r′

× Fd(q+G)ϵ−1
GG′(q, ω)Fl(q+G′).

(5.45)

Here, Fd(q) = qe−qztip , where ztip is the tip-sample distance. For the form factor Fl(q), we

take Fl(q) = e−qztip for tip-launched plasmons and Fl(q) = 1 for plasmons launched by an

impurity (see Appendix F).
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(a) (b)

Figure 5.7. (a) Simulated amplitude of near-field signal for frequency ω = 19v/a.
(b) Amplitude of near-field signal for a point source at an AA vertex for frequencies
ω = (4π/3)v/L (left) and ω = 15.5v/L (right). Parameters are K = 0.25 and Pf = 0.4,
corresponding to Fig. 5.6(c). The tip-sample distance ztip = 0.1L.

For an isolated node, the scattering amplitudes can in principle be determined

directly from the near-field signal. Suppose a wave of momentum q is launched at a

distance from the node r along the ith link and detected at distance r′ along the jth link.

It is clear that the resulting signal is proportional to

Sije
iq(r+r′). (5.46)

The near-field signal for the network is determined, conceptually, by summing over all

possible scattering processes. We calculate it numerically from the network dielectric

function as discussed above. Simulated near-field images are shown in Fig. 5.7, with

ϵ−1
GG′(q, ω) calculated using the PNM with parameters corresponding to Fig. 5.6(c). In

Fig. 5.7(a), the probe acts as both a launcher and detector of the near-field signal. In

Fig. 5.7(b), we show the near-field signal from a fixed launcher, e.g., an impurity. The left

image is for frequency ω = 4π/3v/(Ka), in resonance with the dissipationless mode at the

K point. Therefore, a propagating wave is launched from the tip. The right image is for

frequency ω = 15.5v/a, and the response is exponentially localized.
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5.7 Discussion and outlook

In this work, we have formulated a theoretical model for plasmons in the network

of channel states formed in minimally twisted gapped bilayer graphene. We studied

two different regimes depending on the single-particle phase coherence length Lφ. In

the phase-coherent regime, Lφ ≫ L, we employed the RPA to calculate the plasmonic

spectrum of the network. In the phase-incoherent regime, Lφ ≪ L, plasmon modes are

described with a plasmonic network scattering model (PNM), which is similar to scattering

models used to describe the single-particle band structure of the mTBG network [141, 142].

However, two key differences of the PNM compared to these single-particle models are

that plasmons can scatter in any direction, so plasmon scattering is governed by a full

6× 6 scattering matrix, and that this scattering dissipates energy. This also distinguishes

our model from a related work on plasmons in the mTBG network, where plasmons were

restricted to scatter only in certain directions, as in the single-particle models [148].

In order to experimentally realize domain-wall plasmons, it is necessary that

the chemical potential resides in the bandgap, and that the frequency is low enough

to avoid Landau damping associated with optical transitions to the bands in AB and

BA regions. The former condition may be satisfied by using a top and back gate to

independently control the displacement field and Fermi level, and a clean substrate to

reduce disorder and unintentional doping. Performing SNOM on top-gated systems may be

challenging, but methods based on a transmission line could be a viable alternative to image

plasmons [158, 159]. To satisfy the latter condition, ℏω must be smaller than ∆TBG/2,

with ∆TBG the bandgap. The characteristic frequency scale of plasmons is ω0 = 2πv/(KL).

With v equal to the graphene Fermi velocity of 108 cm/s, L = 200 nm (corresponding to a

twist angle of 0.07◦), and K = 0.5, we have ℏω0 ≈ 40 meV. In contrast, bandgaps up to

∆TBG ≈ 200 meV can be achieved by applying a strong out-of-plane electric field to the

sample [124]. Therefore, 1D plasmons with wavelengths λp < L can be realized.
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Potential future directions include studying plasmons in this system under an

out-of-plane magnetic field, where Ahronov-Bohm oscillations were observed in electron

transport experiments [134, 142], and exploring the crossover between the phase-coherent

and incoherent regimes. Considering the effects of strain, which can induce quasi-1D

channels in moiré systems [160], would also be intriguing. Additionally, it has been shown

that narrow band systems, such as TBG, exhibit instrinsically undamped plasmons above

the particle-hole continuum [161], which may have implications for our model.

This chapter, in full, is currently being prepared for submission for publication of

the material “Plasmon modes of topological state networks in twisted bilayer graphene”

by B. Vermilyea and M.M. Fogler. The dissertation author was the primary investigator

and author of the material.
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Chapter 6

Conclusion

In this dissertation, I have investigated the many-body physics of excitons and

plasmons in low-dimensional systems. In Chapter 2 we studied interactions between

polaritons formed by hybridization of excitons in a two-dimensional semiconductor with

surface optical phonons or plasmons. These quasiparticles have a high effective mass and

can bind into bipolaritons near a Feshbach-like scattering resonance. We analyzed the phase

diagram of a many-body condensate of heavy polaritons and bipolaritons and calculated

their absorption and luminescence spectra, which can be measured experimentally. Chapter

3 considered another type of polariton that results from the hybrization of magnetoexcitons

in graphene with hyperbolic phonon modes in hexagonal boron nitride. We calculated the

shift in the magnetoexciton energy due to many-body effects, and found excellent agreement

with the experimental data. Additionally, we formulated a quantum theory of LPPs in a

graphene/hBN heterostructure and derived an analytical expression for the polaritonic

gap. In Chapter 4, we developed a many-body theory of excitonic Bose-polarons formed by

spatially direct excitons immersed in a degenerate Bose gas of spatially indirect excitons,

and found good agreement with experimental data. Lastly, in Chapter 5, we studied surface

plasmons in minimally-twisted gapped bilayer graphene that develops a triangular network

of partial dislocations (or AB-BA domain walls) hosting one-dimensional electronic states.

We formulated a theoretical model describing the plasmonic spectrum of the network in
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different regimes of temperature and electron-electron interaction strength, and discussed

optical nano-imaging experiments that can verify our predictions.

Going forward, it would be interesting to extend our work on excitonic Bose-polarons

and develop a more sophisticated theory that describes the crossover from Bose to Fermi

polarons. To this end, methods known from the Fermi-edge singularity problem may be

applicable [162, 163]. Another research problem related to exciton-polarons is motivated

by recent experiments that detect correlated electron phases in 2D materials, such as

Wigner crystal [164] or fractional quantum Hall [165] phases, using exciton excited states

in a TMD monolayer as a sensor. It would be intriguing to develop a theory of how the

energy and oscillator strength of the exciton states change due to their interaction with

the sample in these experiments. Regarding plasmons, our study of plasmon scattering in

twisted bilayer graphene motivates the question of how to describe the physics of a junction

of Luttinger liquid wires in different regimes of interaction strength [152]. Finally, another

research direction is quantum plasmonics, which enables confinement of light at scales far

below that of conventional quantum optics. Previous work has shown that graphene can

be a source of entangled plasmons with pair generation rates greatly exceeding those of

conventional photonic sources [166]. An open question is how plasmons could be used to

extract entanglement from a many-body system [167].
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Appendix A

Heavy exciton-polaritons

A.1 Scattering matrix calculation

The scattering matrix satisfies the Bethe-Salpeter equation, which with the notation

k = (k, iωn) takes the form [22]

T (k, k′; k + q, k′ − q) =W (k, k′, q) +
∑
q′

W (k, k′, q′)Gx(k + q′)Gx(k
′ − q′)

× T (k + q′, k′ − q′; k + q; k′ − q). (A.1)

Here W (k, k′, q) is the interaction vertex and Gx(k) is the exciton Green’s function. If

W (k, k′, q) = W0 is frequency and momentum independent, then T depends only on the

total incoming momentum and energy (K, ω) and Eq. (A.1) is solved immediately:

T (K, ω) =
[
W−1

0 − Π(K, ω)
]−1

, (A.2)

with the two-exciton propagator (at zero temperature)

Π(K, ω) =
∑
q

∫
dω′

2πi
Gx(K− q, ω − ω′)Gx(q, ω

′). (A.3)
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Consider first the case of free excitons, where the Green’s function is G0
x(,ω) = (ω−ωx,k)−1,

and the propagator is

Π0(K, ω) =
∑
q

∫
dω′

2πi
G0
x(K− q, ω − ω′)G0

x(q, ω
′) =

∑
q

1

ω − ωx,K−q − ωx,q
. (A.4)

Since the sum diverges logarithmically at large q, we must impose a momentum cutoff Λ,

and we have Π0(K = 0, ω) = −mx

4π
ln(−EΛ/ω), with EΛ = Λ2/2mx. We eliminate W0 by

requiring that the biexciton binding energy Exx is the pole of the of the zero-momentum

scattering matrix, soW−1
0 = −mx

4π
ln(EΛ/Exx), and the renormalized free exciton scattering

matrix takes the form

T0(K = 0, ω) =
4π/mx

ln (−Exx/ω)
, (A.5)

which is the universal result for low-energy scattering in 2D [168]. We now consider the

case of exciton-polaritons, where the exciton Green’s function is

Gx(k, ω) =
∑
s=±

U2
s,k

ω − ωs,k
. (A.6)

The polariton energies ω±,k and Hopfield coefficients U±,k are given respectively in Eqs. (2.2)

and (2.5) of the main text. The two-exciton propagator is

Π(K, ω) =
∑
q

∑
s,s′=±

U2
s,K−qU

2
s′,q

ω − ωs,K−q − ωs′,q
. (A.7)

For photon exciton-polaritons, the cavity mode dispersion takes the form ωp,k =
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δ + k2/2mp, with mp ≪ mx. We expand Π(K = 0, ω) in mp/mx ≪ 1 and find

T (K = 0, ω) =
4π

mx

{
ln(−Exx/ω) +

mp

mx

Ω2

ω2

[
− 1 + ln[−(mx/2mp)ω/Exx]

− 1

ω2 + Ω2

(
ω2 ln[(ω+ + ω− − ω)/Exx] + Ω2{− ln[−2ω/Exx]

+ ln[(2ω+ − ω)/Exx] + ln[(2ω− − ω)/Exx)]
}]

+ . . .

}−1

. (A.8)

Here ω± = 1
2

(
δ ±

√
δ2 + Ω2

)
are the polariton energies at zero momentum. This shows

that T (K = 0, ω) has a pole at the biexciton binding energy which is slightly shifted from

Exx and acquires a small imaginary part in the two-polariton continuum. In addition,

there are bipolariton poles at energies below ωs + ωs′ , but it is apparent from Eq. (A.8)

that the bipolariton binding energy and spectral weight are exponentially small in the

large mass ratio mx/mp, in agreement with Eq. (2.7) of the main text.

For heavy polaritons we take ωc,k = δ constant. Then the integral in Eq. (A.7) may

be evaluated analytically at K = 0 and we find

T (K = 0, ω) =− (4π/mx)
[
(2δ − ω)2 + Ω2

] {
Ω2 ln[2(ω+ + ω− − ω)/Exx] + (2δ − ω)2

× (− ln[(2δ − ω)/Exx] + ln[(2ω+ − ω)/Exx] + ln[(2ω− − ω)/Exx])
}−1

.

(A.9)

The bipolariton energies ωss′,K are poles of T (K, ω). The scattering matrix between two

polaritons s and s′ with incoming momenta K/2+k and K/2− k and outgoing momenta

K/2+ k′ and K/2− k′ is given by

Tss′(k,k′,K, ω) = Us,K/2+kUs′,K/2−kUs,K/2+k′Us′,K/2−k′T (K, ω). (A.10)

The polariton Green’s functions are Gs(k, ω) = (ω− ωs,k)
−1 and we define G̃ss′(k,K, ω) =
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∫
dω′

2πi
Gs(ω − ω′,K/2− k)Gs′(ω

′,K/2+ k), or

G̃ss′(k,K, ω) =
1

ω − ωs,K/2−k − ωs′,K/2+k

. (A.11)

In the spectral vicinity of the bipolariton resonance, we have [26]

G̃ss′(k,K, ω)Tss′(k,k′,K, ω)G̃ss′(k
′,K, ω) ≃ ψss′(k,K)ψss′(k

′,K)

ω − ωss′,K
, (A.12)

which defines the bipolariton wavefunction ψss′(k,K). In our approximation

ψss′(k,K) = NK

Us,K/2−kUs′,K/2+k

ωss′,K − ωs,K/2−k − ωs′,K/2+k

, (A.13)

with NK a normalization factor such that
∑

k |ψss′(k,K)|2 = 1. The bipolariton wavefunc-

tion is used to compute the optical spectra, see Appendix A.2.

A.2 Calculation of absorption and luminescence

spectra

Two processes contribute to the absorption and luminescence spectra: direct

coupling of polaritons to photons and coupling of a bipolariton to a photon and polariton

[103, 169]. The relevant diagrams for calculating photon self-energy are shown in Fig. A.1.

The filled circle denotes the photon-polariton coupling vertex. In terms of the photon-

exciton coupling µx, it is given by

µ1,q = U−,qµx, (A.14)
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where U−,q is the Hopfield coefficient. The open circle denotes the photon-polariton-

bipolariton coupling vertex, given by

µ12,k,q = U−,kU
2
−,q+kψ((q− k)/2,q+ k)µx, (A.15)

with ψ the bipolariton wavefunction defined by Eq. (A.12).

Normal state

In the normal state, only the first two diagrams of Fig. A.1 contribute. The

Matsubara Green’s functions are

Gi(k, iωn) =
1

iωn − ω̃i,k
, (A.16)

where i = 1, 2 for the polariton and bipolariton respectively. Here ω̃1,k and ω̃2,k are

the polariton and bipolariton energies shifted by interaction (see Sec. 2.2). The photon

self-energy is

Π(q, iωn) = |µ1,q|2G1(q, iωn)−
∑
k

∑
iω′

n

|µ12,k,q|2G1(k, iω
′
n)G2(q+ k, iωn + iω′

n). (A.17)

Evaluating the sum over iω′
n, we obtain the absorption spectrum:

A(q, ω) =− 2ImΠ(q, ω − µ) = |µ1,q|22πδ(ω − µ− ω̃1,q)

+
∑
k

|µ12,k,q|2[nB(ω̃1,k)− nB(ω̃2,q+k)]2πδ(ω − µ+ ω̃1,k − ω̃2,q+k). (A.18)

with

nB(ω) =
(
eβω − 1

)−1
(A.19)
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the Bose distribution function, β being the inverse temperature. The luminescence

spectrum is [103]

I(q, ω) =nB(ω − µ)A(q, ω)

=|µ1,q|2nB(ω̃1,q)2πδ(ω − µ− ω̃1,q)

+
∑
k

|µ12,k,q|2[1 + nB(ω̃1,k)]nB(ω̃2,q+k)2πδ(ω − µ+ ω̃1,k − ω̃2,q+k). (A.20)

For q = 0 and far from the Feshbach resonance, this spectrum consists of a sharp peak at

ω = µ+ g11n1 + g12n2 and a continuum below the energy ω = µ− E−− + (g11 − g12)n1 +

(g12 − g22)n2, similar to Eq. (2.15). In principle, this spectrum is qualitatively different

from what is shown in Fig. 2.5(b), and so it can be used to identify the condensation

transition.

(a)

(b)

+ + +

+ +

𝐺!
𝐺"

𝐹!"

Figure A.1. Diagrams for calculating photon self-energy including (a) normal and (b)
anomalous contributions. In the normal state only the first two diagrams in (a) are
non-vanishing. Single and double lines denote exciton and biexciton Green’s functions,
respectively. The filled circle denotes the photon-polariton coupling vertex, and the open
circle is the photon-polariton-bipolariton coupling vertex. Dotted lines indicate particles
going into or out of the condensate.

92



Condensed state

In the condensed state, there are two modes: a gapless mode E0,k and gapped

mode E1,k. The Matsubara Green’s functions may be written

Gi(k, iωn) =
∑
σ=0,1

∑
s=±

s
(
uσ,si,k

)2
iωn − sEσ

k

. (A.21)

Here the uσ,si,k are Bogolubov coefficients that satisfy
∑

σ,s s
(
uσ,si,k

)2
= 1. We also need the

anomalous Green’s functions

Fij(k, iωn) = −
∑
σ=0,1

∑
s=±

suσ,si,ku
σ,−s
j,k

iωn − sEσ
k

. (A.22)

Expressions for the energies and Bogolubov coefficients in terms of the parameters in the

effective Hamiltonian of Eq. (2.8) are given in Ref. 37. The photon self-energy is

Π(q, iωn) =|µ1,q|2G1(q, iωn)−
∑
k

∑
iω′

n

|µ12,k,q|2G1(k, iω
′
n)G2(q+ k, iωn + iω′

n)

−
∑
k

∑
iω′

n

|µ12,k,q|2F12(k, iω
′
n)F

∗
21(q+ k, iωn + iω′

n)

+ |µ12,0,q|2 [n1G2(q, iωn) + n2G1(q,−iωn)− 2
√
n1n2F12(q, iωn)] . (A.23)
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We find for the absorption spectrum

A(q, ω) =− 2ImΠ(q, ω − µ) =
3∑

n=1

An(q, ω),

A1(q, ω) =− |µ1,q|2
∑
σ,s

s
(
uσ,−s1,q

)2
2πδ

(
ω − µ+ sEσ

q

)
,

A2(q, ω) =
∑
σ,σ′

∑
s,s′

∑
k

|µ12,k,q|2ss′
[(
uσ,s1,k

)2(
uσ

′,s′

2,q+k

)2
+ uσ,s1,ku

σ,−s
2,k uσ

′,−s′
1,q+ku

σ′,s′

2,q+k

]
×

[
nB

(
sEσ

k

)
− nB

(
s′Eσ′

q+k

)]
2πδ

(
ω − µ+ sEσ

k − s′Eσ′

q+k

)
,

A3(q, ω) =− |µ12,0,q|2
∑
σ,s

s
[
n1

(
uσ,−s2,q

)2
+ n2

(
uσ,s1,q

)2 − 2
√
n1n2u

σ,s
1,qu

σ,−s
2,q

]
× 2πδ

(
ω − µ+ sEσ

q

)
. (A.24)

The luminescence spectrum is

I(q, ω) =I0(q, ω) + nB(ω − µ)A(q, ω) =
3∑

n=0

In(q, ω),

I0(q, ω) =
(
|µ1,0|2n1 + |µ12,0,0|2n1n2

)
(2π)3δ(ω − µ)δ(q),

I1(q, ω) =|µ1,q|2
∑
σ,s

s
(
uσ,−s1,q

)2[
1 + nB

(
sEσ

q

)]
2πδ

(
ω − µ+ sEσ

q

)
,

I2(q, ω) =
∑
σ,σ′

∑
s,s′

∑
k

|µ12,k,q|2ss′
[(
uσ,s1,k

)2(
uσ

′,−s′
2,q+k

)2
+ uσ,s1,ku

σ,−s
2,k uσ

′,s′

1,q+ku
σ′,−s′
2,q+k

]
×

[
1 + nB

(
sEσ

k

)][
1 + nB

(
s′Eiσ

q+k

)]
2πδ

(
ω − µ+ sEσ

k + s′Eσ′

q+k

)
,

I3(q, ω) =|µ12,0,q|2
∑
σ,s

s
[
n1

(
uσ,−s2,q

)2
+ n2

(
uσ,s1,q

)2 − 2
√
n1n2u

σ,s
1,qu

σ,−s
2,q

]
×

[
1 + nB

(
sEσ

q

)]
2πδ

(
ω − µ+ sEσ

q

)
. (A.25)

The first term is due to coherent spontaneous emission of photons from the condensate,

and is not present in the absorption spectrum. Actually, when q → 0 the weight of the

peak at ω = µ diverges due to the divergence of the Bogoliubov coefficients. We deal with
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this by integrating over a finite range of q, q < qc. Physically, the cutoff qc represents a

typical momentum due to scattering by inhomogeneities, phonons, etc., or the inverse trap

size in the case of confined polaritons (Sec. 2.3).
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Appendix B

Fermi velocity renormalization and
magnetoexciton binding energy

In terms of the ILT energy E−n→n′ , the effective Fermi velocity is defined as

(assuming n, n′ ≥ 0):

veffF,−n→n′ ≡
lB
ℏ

E−n→n′
√
2n+

√
2n′

. (B.1)

In the main text we explained that the many-body correction ∆E−n→n′ to the energy

E−n→n′ of a −n→ n′ ILT (at zero momentum q = 0) has two parts: i) the correction due

to the electron self-energies ∆Em of m = −n, n′ LLs and ii) the magnetoexciton binding

energy ∆−nn′ :

∆E−n→n′ = ∆E ′
n −∆E−n −∆−nn′ . (B.2)

We referred to the former as the Fermi velocity renormalization effect and to the latter as

the excitonic effect. In this approach, the renormalized Fermi velocity of −n→ n′ ILT is

given by

vF,−n→n′ ≡ vF +
lB
ℏ
∆E ′

n −∆E−n√
2n+

√
2n′

, (B.3)

where vF is the bare Fermi velocity, so that veffF,−n→n′ and vF,−n→n′ are related by

veffF,−n→n′ = vF,−n→n′ − lB
ℏ

∆−nn′
√
2n+

√
2n′

. (B.4)
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Following previous work [67], we compute the quantities that enter these equations as

follows:

∆En′ −∆E−n = −
∫

d2q

(2π)2
v(q)I−n,n′(q), (B.5)

I−n,n′(q) =
∑
m

fm
(
|gm,n′(q)|2 − |gm,−n(q)|2

)
,

∆−nn′ =

∫
d2q

(2π)2
v(q)g−n,−n(q)gn′n′(q). (B.6)

Here fm is again the Fermi occupation factor of mth LL [fm = Θ(−m) if m ̸= 0 and

f0 = 1/2], and v(q) = (2πe2)/(ϵ(q)q) is the screened Coulomb interaction. The matrix

element Fnm(q) is

Fnm(q) =
2

πx
|sgn(mn)An<,n>(x) + An<−1,n>−1(x)|2

n< = min(|m|, |n|), n> = max(|m|, |n|), x ≡ q2l2B
2

An1,n2(x) =

(
1 + δ0,n1

2

1 + δ0,n1

2

n1!

n2!
xn2−n1

)1/2

Ln2−n1
n1

(x)e−x/2,

(B.7)

where Lαn(x) is the associated Laguerre polynomial. We neglect dynamical screening effects;

however, we include static screening through the momentum-dependent dielectric function

ϵ(q) = κ(q) + κg(q), (B.8a)

κ(q) =
εhBN

2

(
ϵhBN tanh ξhBNqd1 + ϵ0
ϵ0 tanh ξhBNqd1 + ϵhBN

+
ϵhBN tanh ξhBNqd2 + ϵSOS

ϵSOS tanh ξhBNqd2 + ϵhBN

)
, (B.8b)

ϵSOS = ϵSiO2
ϵSiO2 tanh qd3 + ϵSi
ϵSi tanh qd3 + ϵSiO2

,

κg(q) = 2πiqω−1σxx(q, ω). (B.8c)
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Function κ(q) has the meaning of the effective dielectric constant of graphene environment.

Parameter ϵhBN = (ϵ⊥hBNϵ
∥
hBN)

1/2 = 4.9 is the dc (i.e., ω = 0) dielectric constant of

hBN defined as the geometric average of its in-plane and out-of-plane dielectric constants,

ξhBN = (ϵ⊥hBN/ϵ
∥
hBN)

1/2 is the hBN anisotropy factor, ϵSiO2 = 3.9 is the dc dielectric constant

of SiO2, ϵSi = 11.7 is the dc dielectric constant of Si, and ϵ0 = 1 is the dielectric constant

of vacuum. Parameters d1 = 16 nm and d2 = 55 nm are thicknesses of the top and bottom

hBN layers, respectively, and d3 = 285 nm is the SiO2 thickness. Function κg(q) specified

by Eq. (B.8c) accounts for the (static) screening of the Coulomb potential by electrons

in graphene and σxx(q, ω) is the longitudinal conductivity of graphene in the presence

of magnetic field. Representative plots of functions κ(q), κg(q), and ϵ(q) are shown in

Fig. B.1(a)-(b).

As one can see from these graphs, κ(q) (the middle curve) is equal to (ϵ0 + ϵSi)/2 at

zero q, then has a small dip to approach (ϵ0 + ϵSiO2)/2 within a narrow range of relatively

low momenta d−1
3 ≤ q ≤ d−1

2 , then rises and tends to ϵhBN at q ≥ d−1
1 = 6.7 × 105 cm−1.

The total dielectric function ϵ(q) (the top curve) shows the same small dip at low q, goes

through a modest maximum, and then approaches the limiting value

ϵ∞ = ϵhBN +
πα

2
, α =

e2

ℏvrenF
≈ 2.2, (B.9)

at high momenta q ≫ l−1
B .

The calculation of the binding energies ∆−nn′ in Eq. (B.6) involves numerical

evaluation of four integrals of the form

∫
d2q

(2π)2
v(q)Ln

(
q2l2B
2

)
Ln′

(
q2l2B
2

)
, (B.10)

which are well behaved. On the other hand, the integral for the self-energy in Eq. (B.5)
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diverges at large momenta qlB ≫
√
n,

√
n′ because

I−n,n′(q) ≃ −
√
2n+

√
2n′

4qlB
, (B.11)

as can be deduced from Eqs. (B.7) and (B.5). We regularize this divergence by renormal-

ization, i.e., subtraction of vF,−n→n′ evaluated at some reference field B0. Let l0 ≡ lB(B0)

be the magnetic length at B0. Since the high momenta enter through the product qlB,

we can rescale the integration variable in Eq. (B.5) by the ratio R = lB/l0 =
√
B0/B to

cancel the divergence. Performing the subtraction, we find

vF,−n→n′(B) = vF,−n→n′(B0)−
e2

8ℏϵ∞
ln

(
B

B0

)
+∆vF,−n→n′(B,B0), (B.12)

where

∆vF,−n→n′(B,B0) = − lB

ℏ(
√
2n+

√
2n′)

∫
d2q

(2π)2
[v(q)−Rv(Rq)]I−n,n′(q). (B.13)

Note that if the dielectric function is replaced by a constant, e.g., ϵ∞, then v(q) =

2πe2/(ϵ∞q) and ∆vF,−n→n′(B,B0) vanishes identically. In this case, the conventional

logarithmic-in-B rule [67] for the Fermi velocity renormalization is recovered.

In our experiment, all the ILTs were measured at the same photon energy ℏω.

Therefore, it is convenient to select a particular ILT, e.g., −2 → 3, as a reference, so that

B0 = B−2→3, where B−2→3 is the field at which this ILT occurs. Eq. (B.12) entails

vF,−n→n′ =vF,−2→3 −
e2

8ℏϵ∞
ln

(
B

B−2→3

)
− lB√

2ℏ

∫
d2q

(2π)2

[
v(q)

I−n,n′(q)
√
n+

√
n′

−Rv(Rq)
I−2,3(q)√
2 +

√
3

]
. (B.14)

Our calculations using this formula show that vF,−n→n′ is almost the same for all the

ILTs, as shown in Fig B.1(c). On the other hand, veffF,−n→n′ , given by Eq. (B.4) , exhibits
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Figure B.1. Calculation of the Fermi velocities and many-body effects. (A and B)
Effective dielectric function for electrons in graphene. Functions κ(q), κg(q), and ϵ(q)
defined by Eq. 19 (A to C) for B = 3.35 T. (B) shows a magnification of the small dip at
low q that is observed for κg(q) and ϵ(q). (C) Renormalized Fermi velocities given by Eq.
26. (D) Effective Fermi velocities defined by Eq. 17 that include excitonic corrections.
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characteristic dips at n = n′ because of relatively larger excitonic corrections ∆−n,n′ at

such ILTs, see Fig B.1(d).

To obtain the experimental binding energies ∆exp,−n,n′ , we use Eqs. (B.4) and

(B.14) but set the effective Fermi velocities equal to their experimentally measured values

veffF,exp,m→n. Solving for ∆−n,n′ , we obtain

∆exp,−n,n′ =

√
2ℏ
lB

(
√
n+

√
n′)

{
veffF,−2→3 −

e2

8ℏϵ∞
ln

(
B

B−2→3

)

− lB√
2ℏ

∫
d2q

(2π)2

[
v(q)

I−n,n′(q)
√
n+

√
n′

−Rv(Rq)
I−2,3(q)√
2 +

√
3

]
+

lB√
2ℏ

∆−2,3√
2 +

√
3

}
.

(B.15)

This gives ∆exp,−n,n′ in terms of veffF,exp,−n→n′ and veffF,exp,−2→3 , the calculated electron

self-energies, and the calculated binding energy ∆−2,3 for the reference ILT.
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Appendix C

Quantum theory of Landau-phonon
polaritons

We define creation operators a†l,q for the hBN hyperbolic phonon mode l with

in-plane momentum q, and b†nm,q for the m → n graphene magnetoexciton. There is a

Fröhlich coupling between the modes given by the Hamiltonian

Hint =
1

A

∑
q

Φ̂q(z)ρ̂−q, (C.1)

Here the operators ρ̂q and Φ̂q(z) correspond to the charge density of the graphene electrons

and the electrostatic potential due to hBN phonons, respectively, with z the position of

the graphene layer, and A is the area of the system. We may express the charge density

operator as [67]

ρ̂q =
∑
n>m

ρnm,q(bnm,q + b†nm,−q), (C.2)
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where

ρnm,q = e

(
2A

πℓ2

)1/2

[fn<−1,n>−1,q + sgn(nm)fn<,n>,q],

n< = min(|n|, |m|), n> = max(|n|, |m|),

fn1,n2,q =

(
1 + δ0,n1

2

1 + δ0,n2

2

n1!

n2!

)1/2 [
ℓ(qx − iqy)√

2

]n2−n1

Ln2−n1
n1

(1
2
ℓ2q2) exp(−1

4
ℓ2q2),

(C.3)

with ℓ the magnetic length.

The potential of the (l,q) phonon mode takes the form Φl,q(z)e
iq·x, with x the

in-plane coordinate, in terms of which the potential operator is

Φ̂q(z) =
A

2

∑
l

Φl,q(z)(al,q + a†l,−q). (C.4)

We determine Φl,q(z) and the mode frequency ωl,q by solving Laplace’s equation with

appropriate boundary conditions. Let d be the thickness of the hBN slab and let z be

the coordinate along the optical axis, with the hBN-substrate interface at z = 0. We

denote the hBN dielectric functions perpendicular and parallel to the optical axis by ϵ⊥

and ϵ∥, respectively, the substrate dielectric constant by ϵs and the dielectric constant of

the medium above hBN by ϵa [66]. The z-component of momentum of the hBN hyperbolic

phonon mode is

kze = iq

√
ε⊥√
ε∥

≡ q

ψ
. (C.5)

The reflection coefficients going from the hBN to medium j = s, a may be written as

rj = e2iϕj , where

ϕj = arctan

(
εj
ε⊥ψ

)
. (C.6)

In the absence of the graphene the modes are determined by 1 − rarse
2ikzed = 0, which
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implies the quantization condition

2kzed+ 2ϕa + 2ϕs = −2πl, l = 0, 1, 2, . . . (C.7)

Solving for q, we find

q = −ψ
d
(ϕa + ϕs + πl). (C.8)

This expression for q(ω) may be inverted to find the hyperbolic phonon polariton dispersion

ωl,q. We also have

Φ̂l,q(z) = Φ0


cosϕse

qz, z < 0

cos(kzez + ϕs), 0 ≤ z ≤ d

(−1)l cosϕae
−q(z−d), z > d.

(C.9)

The normalization factor Φ0 is chosen such that the total energy of the mode is equal to

ℏωl,q:

1

16π

{∫ d

0

dz

[
d

dω
(ωϵ⊥)|E⊥|2 +

d

dω
(ωϵ∥)|E∥|2

]
+

∫ 0

−∞
dz ϵs|E|2 +

∫ ∞

d

dz ϵa|E|2
}

= ℏω,

(C.10)

which implies

Φ0 =

(
qA

32πℏ
dε⊥
dω

)−1/2(
1

[−ε⊥]

{[
1 + (εa/ε⊥ψ)

2]−1
+
[
1 + (εs/ε⊥ψ)

2]−1
}
+ qd

)−1/2

.

(C.11)

This expression is evaluated at ωl,q, which we assume to be in the upper Restrahlen band,

hence we neglect the weak frequency dependence of ϵ∥.

We consider the case where one of the phonon modes (l,q) becomes resonant with
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an n→ m magnetoexciton. Including N layers of graphene, the Hamiltonian describing

the coupled modes is

H =
∑
q

[
ωl,qa

†
l,qal,q + ωxnm,q

N∑
i=1

b†i,nm,qbi,nm,q

+
N∑
i=1

1
2
Φl,q(zi)ρnm,−q(al,q + a†l,−q)(bi,nm,−q + b†i,nm,q)

]
, (C.12)

with ωxnm,q the magnetoexciton energy and zi the position of the ith graphene layer.

Keeping only the resonant terms in Hint, the Hamiltonian reduces to

H =
∑
q

[
ωl,qa

†
l,qal,q + ωxnm,q

N∑
i=1

b†i,nm,qbi,nm,q +
N∑
i=1

1
2
Φl,q(zi)ρnm,−q(al,qb

†
i,nm,q +H.c.)

]
.

(C.13)

It may be diagonalized by a suitable linear transformation of the operators. We find upper

and lower polariton branches with a gap

∆ =

[
N∑
i=1

|Φl,q(zi)ρnm,−q|2
]1/2

. (C.14)

Substituting in the expressions for Φl,q(zi) and ρnm,q found above, we obtain

∆ =

√
NEµ
d

, µ = 16πe2Fnm/ℏ, E =
N∑
i=1

cos2(kzezi + ϕs),

N = qd

(
1

[−ε⊥]

{[
1 + (εa/ε⊥ψ)

2]−1
+
[
1 + (εs/ε⊥ψ)

2]−1
}
+ qd

)−1(
dε⊥
dω

)−1

,

(C.15)

which is evaluated at the frequency ωxnm, with q the momentum of the phonon mode at this

frequency. The matrix element Fnm is defined in Eq. (B.7). We assume the N graphene

layers are equally spaced. For large N , we may replace the sum by an integral and the
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formula becomes

∆ =

√
NĒµ
L

, Ē = 1
2

{
1− (2kzed)

−1[sin(2ϕa) + sin(2ϕs)]
}
, (C.16)

with L = d/N , which is Eq. (3.3) of the main text.
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Appendix D

Single-particle spectrum and Drude
weight

In the Efimkin-MacDonald model [141], the scattering matrix takes the form

S =


√
Pfe

iχ
√
Pd

√
Pd

√
Pd

√
Pfe

iχ
√
Pd

√
Pd

√
Pd

√
Pfe

iχ

 , (D.1)

where Pf and Pd are respectively the forward scattering and deflection probabilities

and χ = arccos(−
√
Pd

/
2
√
Pf). The energy spectrum ε(k) is determined by solving the

eigenvalue problem

ΛkSψk = e−iε(k)L/vψk, (D.2)

with ψk = (ψ1,k, ψ2,k, ψ3,k) the vector of amplitudes on the three links in a unit cell,

Λk = diag(e−ik1 , e−ik2 , e−ik3) and ki = k · li (note k3 = −k1 − k2).

The Drude weight is given by

Dδαβ = πe2
∑
n

∫
d2k

(2π)2
δ[εn(k)− εF ]vn,α(k)vn,β(k), (D.3)

where n is the band index and vn(k) = ∇kεn. We have neglected the degeneracy factors,

which are specified in Eq. (5.2) of the main text. From now on we use units where L = 1,
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v = 1, and e = 1. Averaging Eq. (D.3) over one period we obtain

D̄δαβ =
1

2

∑
n

∫
d2k

(2π)2
vn,α(k)vn,β(k), (D.4)

or equivalently

D̄ =

√
3

4

∑
n

∫ 2π

0

∫ 2π

0

dk1dk2
(2π)2

(
∂εn
∂k1

)2

. (D.5)

In the case of forward scattering, Pf = 1, we have εi = ki, so the energy bands are three

intersecting planes. The corresponding Drude weight is Dmax =
√
3
2
.

Now consider the case of weak deflection, Pd ≪ 1. The off-diagonal terms in S

split the degeneracies near the intersections of the planes along the lines ki = kj. In the

vicinity of these lines there is an anticrossing and the resulting energy bands are

εij,± =
1

2

[
ki + kj ±

√
(ki − kj)2 + 4Pd

]
. (D.6)

This leads to a correction to the Drude weight ∆D̄ij of order
√
Pd. For example,

∆D̄12 =

√
3

4

∫ 2π

0

∫ 2π

0

dk1dk2
(2π)2

[(
∂ε12,+
∂k1

)2

+

(
∂ε12,−
∂k1

)2

− 1

]

= −
√
3

2

∫ 2π

0

∫ 2π

0

dk1dk2
(2π)2

Pd
(k1 − k2)2 + 4Pd

≃ −
√
3

2

∫ ∞

−∞

dk

2π

Pd
k2 + 4Pd

= −
√
3

8

√
Pd. (D.7)

Similarly, we find ∆D̄13 = −
√
3
2

√
Pd and ∆D̄23 = −

√
3
8

√
Pd. Therefore, to leading order in

√
Pd,

D̄ = Dmax

(
1− 3

2

√
Pd

)
, (D.8)

which is Eq. (5.6) in the main text.
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Appendix E

Bosonization description of collective
modes

We begin by expressing the long-wavelength electron density fluctuation ni and the

current ji of mode i in terms of bosonic fields ϕi, Πi such that

ni = − 1

π
∂xϕi , ji = evΠi . (E.1)

These fields satisfy the canonical commutation relations [ϕi(x),Πj(x
′)] = iδijδ(x−x′). The

effective Hamiltonian for an isolated 1D wire is H = H0 +Hint where

H0 =
N∑
i=1

1

2π

∫
dx ℏv

[
π2Π2

i (x) + (∂xϕi)
2
]

(E.2)

is the kinetic energy and

Hint =
1

2π2

∑
ij

∫
dxdx′∂xϕiU(x− x′)∂x′ϕj (E.3)

is the interaction energy, with U(x) the effective 1D interaction kernel.

Consider a linear transformation φi(x) =
∑

j Oijϕj(x) where Oij are constants

forming an orthogonal matrix. Such a transformation preserves the commutation relations

among the fields with the first row O1j = 1/
√
N . The corresponding canonical momenta
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are denoted by Πi. Under this definition, the total density and current in the wire are

expressed solely in terms of i = 1 field:

n = −
√
N

π
∂xφ1 , j =

√
N evΠ1 . (E.4)

Therefore, φ1 represents the charged excitation (plasmon) whereas the remaining φi’s with

i ̸= 1 describe neutral collective modes. The Hamiltonian becomes

H =
N∑
i=1

1

2π

∫
dx ℏv

[
π2Π2

i (x) + (∂xφi)
2
]

+
N

2π2

∫
dx

∫
dx′∂xφ1U(x− x′)∂x′φ1. (E.5)

The corresponding equations of motion are

∂tφi = πvΠi,

∂tΠi =
1

π
v∂2xφi + δi1

N

π2ℏ
∂x

∫
dx′U(x− x′)∂x′φ1. (E.6)

With a harmonic time dependence e−iωt of the fields, this implies Eqs. (5.19)–(5.21) of the

main text.
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Appendix F

Modeling of near-field images

Let r be the position vector in the plane of the sample with the z-axis perpendicular

to this plane. The light scattered by the tip or an impurity at position r′ produces an

external potential Φext(r − r′) on the sample surface. The total electrostatic potential

on the surface is then given by Φtot(r, z = 0) =
∫
dr′′ϵ−1(r, r′′;ω)Φext(r

′′ − r′). Fourier

transforming this, we obtain

Φ̃tot,G(q, 0) =
∑
G′

ϵ−1
GG′(q, ω)Fl(q+G′)e−i(q+G′)·r′ , (F.1)

where Fl is the Fourier transform of Φext. In the quasi-static approximation the potential

satisfies Laplace’s equation above the sample, so at position z it is given by

Φ̃tot,G(q, z) = e−|q+G|z
∑
G′

ϵ−1
GG′(q, ω)Fl(q+G′)e−i(q+G′)·r′ . (F.2)

The measured near-field signal is proportional to the induced dipole moment on the

probe, given by the probe polarizability times the total electric field at its position,

−∂ztipΦtot(r, ztip), with ztip the tip-sample distance. Fourier transforming Φ̃tot back to real
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space and differentiating with respect to z, we find that the signal is proportional to

G(r, r′;ω) =
∑
G,G′

∫
d2k

(2π)2
ei(q+G)·re−i(q+G′)·r′

× Fd(q+G)ϵ−1
GG′(q, ω)Fl(q+G′).

(F.3)

with Fd(q) = qe−qztip . This is Eq. (5.45) of the main text. The form of Fl(q) depends on

whether the tip or an impurity launches plasmons. For tip-launched plasmons, we model

the tip as a point dipole oriented along the z direction, so it produces a potential of the

form (|r− r′|2 + z2tip)
−3/2. The form factor is the Fourier transform of this: Fl(q) = e−qztip .

On the other hand, for plasmons launched by an impurity we take Fl(q) = 1. In practice,

ztip varies in time as the probe oscillates at a finite frequency, and the signal is demodulated

at some harmonic of this frequency to suppress the background signal [156]. However,

here we ignore this complication and assume ztip to be fixed.
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