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Abstract

Theoretical Generalizations of Topological Phases and Topological Entanglement

Entropy

by

Kaushal Hasmukh Patel

In this thesis, we explore topological phases, study their properties, and present some

novel extensions of them. Our study of topological phases begins on simplified theoretical

models and provides a tractable setting to discuss the otherwise abstract mathematics

involved, while maintaining the power to capture many experimentally salient features of

these phases. We generalize these theoretical models and discover new phases of matter,

topological flux phases, which are topological phases with a uniform anyonic flux. Other

extensions of topological phases we study are fractionalized Fermi liquids, which are

gapless topological phases with non-trivial interactions between gapless and topological

sectors. Finally, we also focus on one peculiar property of topological phases, topologi-

cal entanglement entropy, which captures the fact that some information is distributed

globally in topological phase and can only be accessed with a topologically non-trivial

measurement.
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Chapter 1

Introduction

According to Landau’s theory of phase transitions, different phases of matter correspond

to different manifestations of symmetries, and transitions between these phases occur

when the corresponding symmetries are broken or restored [1]. Specifically, we can iden-

tify a local order parameter whose symmetry, or lack thereof, distinguishes between

phases. For example, solid and liquid phases of matter can be distinguished by the sym-

metry of their density: the density of a liquid has continuous rotational and translational

symmetry, which is broken down to discrete rotational and translational symmetry in the

solid phase. Similarly, the magnetized and unmagnetized phases of the quantum Ising

model can be distinguished by the symmetry of their magnetization: the magnetization

of the unmagnetized phase has Z2 Ising symmetry, which is broken in the magnetized

phase.

Landau theory provides a unified description of many different phases and phase

transitions, but there are some remarkable cases where it does not apply, such as the

BKT transition [2, 3], integer quantum Hall effect [4, 5], and fractional quantum Hall

effect [6]. These examples of phases that can not be understood with Landau theory often

share one key ingredient: a non-trivial role played by topology. The exemplars of such
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Introduction Chapter 1

phases are called topological phases of matter, and exhibit some fascinating properties,

e.g. robust ground state degeneracy, topological entanglement entropy, and excitations

with exotic exchange statistics [7, 8, 9, 10, 11, 12, 13]. These properties open the door

for exciting and novel applications, for example in quantum computing [14, 15, 16].

Symmetry can fail to distinguish different topological phases: two distinct topologi-

cal phases can have identical symmetries. However, where group theory fails, category

theory prevails. While originally discovered in an attempt to formalize and unify ab-

stract concepts of various mathematical structures [17], category theory also provides a

natural description of the universal properties of topological phases [18, 19]. Similar to

how different phases in Landau theory correspond to different symmetry groups, different

topological phases correspond to different categories of a special type. In this thesis, we

use the language of category theories to explore topological phases, study their properties,

and present some novel extensions of them. This thesis is organized as follows.

In Chapter 2, we introduce topological phases from a purely theoretical perspective,

starting with lattice models called string-net models. We use these models to explore

certain properties of topological phases, such as robust ground state degeneracy and the

exotic excitations. We also modify string-net models to realize topological flux phases,

which helps us explore concepts such as symmetry enriched topological phases, anyon

condensation, and topological-protected non-Abelian braiding. This chapter is based on

work in progress by Parsa Bonderson, Kaushal Patel, Kirill Shtengel, and Steven Simon,

(content reproduced with permission of authors.)

In Chapter 3, we study gapless topological phases called fractionalized Fermi liquids,

which are Fermi liquids coexisting with symmetry enriched topological order. We gener-

alize Luttinger’s theorem for Fermi liquids to fractionalized Fermi liquids. We find that,

in the linear relation between the Fermi volume and the density of fermions, the contri-

bution of the density is changed by the filling fraction associated with the topologically

2



Introduction Chapter 1

ordered sector, which is determined by how the symmetries fractionalize. Conversely, this

places constraints on the allowed symmetry enriched topological orders that can manifest

in a fractionalized Fermi liquid with a given Fermi volume and density of fermions. This

chapter is based on “Topological Enrichment of Luttinger’s Theorem” by Parsa Bonder-

son, Meng Cheng, Kaushal Patel, and Eugeniu Plamadela, arXiv:1601.07902, (content

reproduced with permission of authors.)

In Chapter 4, we provide an intuitive understanding for topological entanglement

entropy and present a method of deriving it for general system configurations of a topo-

logical phase, including surfaces of arbitrary genus, punctures, and quasiparticle content,

for both bosonic and fermionic topological phases. In the process, we also develop dif-

ferent notions of anyonic entropy and formalize diagrammatic notation for topological

phases on higher genus surfaces. Our results recover and extend prior results for any-

onic entanglement and the topological entanglement entropy. This chapter is based on

“Anyonic Entanglement and Topological Entanglement Entropy” by Parsa Bonderson,

Christina Knapp, and Kaushal Patel, arXiv:1706.09420, (content reproduced with per-

mission of authors.)
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Chapter 2

Topological Flux Phases

2.1 Introduction

The study of topological phases of matter has exploded in recent years, in part due

to their fundamental beauty, and in part due to the dream of applying these systems

to quantum information processing [14, 15, 16]. Experimental realizations of topological

phases include fractional quantum Hall effect [6, 20] (FQHE) and, potentially, quantum

spin liquid materials [21, 22, 23].

String-net models provide extremely useful exactly solvable lattice models for a large

class of (2+1)D topological phases; namely, lattice gauge theories and doubled Chern-

Simons theories [24]. The Hamiltonians of string-net models are defined so that their

ground states did not contain any flux passing through the plaquettes of the lattice. In

this paper, we modify the Hamiltonians so that they favor a nontrivial flux through every

plaquette, to form what we call flux phases. These flux phases can differ from the original

trivial flux phases in several important ways.

Abelian flux phases of string-net models turn out to be symmetry enriched topological

versions of their trivial flux counterpart. Specifically, the discrete translation symmetry of

4
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the lattice is fractionalized in these flux phases. That is, when an anyon is translated along

a trivial path, e.g. around a single plaquatte, its wavefunction may acquire a nontrivial

phase, precisely due its braiding around the nontrivial flux in that plaquette. We show

that all Abelian flux phases can be understood with this symmetry fractionalization

framework.

Non-Abelian flux phases of string-net models are more exotic and cannot be classified

by symmetry fractionalization. While they may not be exactly solvable in general, the

σ flux phase of the Ising string-net model we study in this paper does turn out to be

exactly solvable. We find that it has an extensive ground state degeneracy, originating

from the non-Abelian nature of the σ flux, and offers some notion of topological protected

non-Abelian braiding. We also find that its extensive degeneracy is gapped out by local

perturbations, and the resulting perturbed phase is none other than the toric code phase.

We view this perturbation into the toric code phase as anyon condensation.

The outline of this paper is as follows. We begin with a brief review of string-net

models in Sec. 2.2, and review the Z2 string-net model and Ising string-net model. We

then introduce flux phases of string-net models in Sec. 2.3, and show how to tune the

Hamiltonian in order to realize them. We study Abelian flux phases in Sec. 2.4, and show

that they can be understood as simple examples of symmetry fractionalization. Finally,

we study the non-Abelian flux phases in Sec. 2.5, focusing mainly on the σ flux phase of

the Ising string-net model.

2.2 String-Net Models

String-net lattice models were proposed by Levin and Wen [24] as a mechanism of

obtaining a class of topological phases, whose emergent, low-energy degrees of freedom

are described by topological quantum field theories (TQFTs). These models constitute

5
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a Hamiltonian realization of the Turaev-Viro state sum models [25], which construct the

partition functions of the corresponding TQFTs. String-net models have proven to be a

useful tool for analyzing topological phases and have led to a range of new insights.

A 2D string-net model is constructed on a trivalent lattice (defined on a 2D surface)

using a fusion tensor category (FTC) C, which can be defined by a set of parameters

{{i}, δijk, di, F ijm
kln }, which are required to satisfy certain consistency conditions. The

lattice degrees of freedom live on the links of the lattice and the orthonormal basis states

of each link are given by |i〉. The elements {i} are interpreted as “string types” in the

context of the string-net models. δijk encode the branching rules that determine whether

three string types i, j, and k are allowed to meet at a vertex in the ground state. di

i the quantum dimension of the string type i, which is the associated weight ascribed

to the creation of a loop of type i. F ijm
kln are the F -symbols, which encode reconnection

rules or fusion associativity of string types, similar to 6j-symbols in traditional angular

momentum addition. We will give more details of these parameters below.

When a string-net model is constructed from a FTC C and has the “trivial flux”

condition imposed by the plaquette terms, the resulting low energy effective theory of

the system is a TQFT. The emergent quasiparticles of such systems are anyons whose

universal properties, such as their fusion and braiding, are described by a modular tensor

category (MTC) denoted D(C), which is the Drinfeld center or quantum double of C.

In this section, we review the construction of string-net models and two key examples

of string-net models: (1) the Z2 model, which realizes the D(Z2) or “toric code” phase,

and the Ising model, which realizes the D(Ising) = Ising× Ising phase. These two models

will serve as important examples throughout the remainder of this paper. We also review

the Z
(1/2)
2 model, which realizes the D(Z

(1/2)
2 ) (doubled semion) phase in Appendix A.1.

This section may be skipped or skimmed by those familiar with string-net models.

6
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2.2.1 Model

String-net models may be constructed on any directed trivalent lattice or graph. For a

model with n string types, a lattice state is given by assigning a label i ∈ {0, 1, . . . , n−1}

to each of the directed links of the lattice. These different labels are thought of as the

different string types. The Hilbert space is spanned by the set of all possible lattice states,

with the inner product between two lattice states defined as 1 if they are identical, and

0 otherwise.

Any trivalent graph can be used, in principle, but it is convenient to choose the hon-

eycomb lattice (hexagonal lattice with basis), because of its symmetry. Most manifolds,

e.g. the sphere, cannot by tiled by a honeycomb lattice, so we will implicitly assume

an appropriate trivalent graph when discussing such manifolds. The model, described

below, is adapted to arbitrary trivalent graphs by a straightforward generalization of the

plaquette term.

The Hamiltonian of the string-net model with trivial flux is

H(0) = −
∑

v

Qv −
∑

p

B(0)
p , (2.1)

where v stands for the vertices of the lattice, and p the plaquettes. The operators Qv

and B
(0)
p are commuting projectors, and therefore H(0) is exactly solvable.

The operator Qv acts on the vertex v as

Qv

∣∣∣∣∣
i

j

k

〉
= δijk

∣∣∣∣∣
i

j

k

〉
, (2.2)

where δijk are the branching rules. The branching rules specify which triples of string

7
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types are allowed to meet at the vertices of the ground state:

δijk =





1 if i, j, k allowed to meet,

0 otherwise.
(2.3)

(The branching rules are independent of the order that the string types meet at a vertex.)

Lattice states which obey the branching rules at every vertex are called string-nets.

The branching rules δijk represent the fusion rules

i× j =
∑

k

Nk
ijk (2.4)

of a FTC C, through the relation Nk
ij = δijk̄, where k̄ is the charge conjugate or dual of

k. 1 As such, they must obey the following conditions:

1. There exists a unique “vacuum” string, which we label 0. In the string-net model,

the 0 string is interpreted as an unoccupied link and it branches trivially with other

strings.

2. For every string type i, there is a dual string type ī, which is the unique string type

that obeys δ0jk̄ = δjk for all j. (The two-index δ symbol is the usual Kronecker

delta, not to be confused with the three-index branching rules δijk.) The dual string

represents a string oriented in the opposite direction:

| ī 〉 = | i 〉. (2.5)

If i = ī, then i is self-dual and it can be drawn without an arrow. The vacuum

string is always required to be self-dual 0 = 0̄.

1We note that, more generally, one can take Nk
ij to be positive integers.

8
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3. The branching rules satisfy

∑

m

δijmδm̄kl =
∑

n

δilnδjkn̄. (2.6)

This relation represents the recoupling of the branching rules (associativity of fu-

sion).

4. The branching rules satisfy δijk = δjki = δjik = δīj̄k̄, for all i, j, and k. These

relations represent invariance under rotation, reflection, and string type conjugation

of the branching rules, respectively.

The operator B
(0)
p is defined to be

B(0)
p =

∑

s

ds
D2

C
Bs

p, (2.7)

where Bs
p acts on the plaquette p as

Bs
p

∣∣∣∣∣
g

h
i

j
k

l

a

b c

d

ef

〉
=

∑

g′h′i′j′k′l′

F al̄g

s̄g′ l̄′
F bḡh
s̄h′ḡ′F

ch̄i
s̄i′h̄′F

d̄ij
s̄j′ ī′

F ej̄k
s̄k′j̄′

F fk̄l

s̄l′k̄′

∣∣∣∣∣
g′

h′

i′

j′

k′
l′
a

b c

d

ef

〉
. (2.8)

In these expressions, di are the quantum dimensions of the FTC C, which take nonzero

values. In the string-net model, di is the weight ascribed to annihilating a loop of charge

i. DC =
√∑

i d
2
i is the total quantum dimension of C. F ijm

kln are the F -symbols of C,

which encode associativity of fusion in the state space. Since these quantities are taken

from a FTC, they must obey the conditions:

1. didj =
∑
k

δijk̄dk. Note that this implies d0 = 1 and di = dī.

9
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2. F ijm
kln is inadmissible if any of δijm, δm̄kl, δiln, or δn̄jk are equal to 0, in which case,

we set F ijm
kln = 0. Otherwise, F ijm

kln is admissible (i.e. when δijmδm̄kl = δilnδn̄jk = 1).

3. Pentagon equation:
∑

n

Fmlq
kp̄n F

jip
mns̄F

js̄n
lkr̄ = F jip

q̄kr̄F
riq̄
mls̄. (2.9)

This consistency relation requires that different paths of F -move applications that

begin in the same configuration and end in the same configuration yield the same

amplitude.

We also wish to impose the following additional constraints:

1. Tetrahedral symmetries:

F ijm
kln = F lkm̄

jin = F jim
lkn̄ = F imj

k̄nl

vmvn
vjvl

(2.10)

These relations are obtained from a tetrahedron whose edges correspond to the six

string types involved, by reflecting along different planes. This can be viewed as

encoding reflection invariance of the F -moves.

2. F ijk
j̄ī0

= vk
vivj

δijk, where vi = vī =
√
di and v0 = 1. This condition, together with

Eq. (2.10) implies rotational invariance of the F -moves (i.e. there is no preferred

direction), since they provide the conditions for strict isotopy invariance [26]. (More

specifically, it implies that the Frobenius-Schur indicators κi ≡ diF
īi0
īi0 = 1 for all i

and F ijk
j̄ī0

= F jj̄0
īik

= vk
vivj

δijk.)

3. F īj̄m̄

k̄l̄n̄
=
(
F ijm
kln

)∗
. This condition, together with the relation F ijm

kln = F j̄k̄n

l̄̄im̄
derived

from Eq. (2.10), and the relation
∑

n F
ijm
kln F

jkn̄
lip = δmp derived from rotational in-

variance, implies that the F -moves are unitary. It is also straightforward to see

that this condition implies that B
(0)
p is Hermitian.

10
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In other words, imposing these extra conditions means we are restricting to a FTC C

that is unitary (in the sense that the F -symbols are unitary, but the quantum dimensions

are not required to be positive) and completely invariant under rotation and reflection

(isotopy and spatial parity).

We note that more general string-net models may be defined. In particular, one may

consider models based on FTCs that have fusion multiplicities or which are non-unitary.

One may also use FTCs that are not completely invariant under rotation and reflection,

with appropriate modification of the model construction. However, we will not consider

such generalizations in our paper.

Given a set of string types and their corresponding branching rules, Ocneanu rigidity

[27] guarantees that there are only a finite number of distinct sets of di and F -symbols,

up to gauge transformations, that can satisfy the above conditions. Each of these gauge-

equivalent set of quantities describes a distinct FTC and leads to a different string-net

model representing distinct topological phases. (Using di and F -symbols related by gauge

transformations yield Hamiltonians and corresponding ground states that are related by

the application of product of local unitary operators. As such, they represent the same

phase of matter.)

Due to the special choice of the coefficients ds/D2
C in Eq. (2.7), the plaquette terms

B
(0)
p energetically favor there being no flux passing through the plaquettes of the ground

states. These zero-flux states corresponds to the ground state subspace of a topological

phase in which the ground states have a smooth continuum limit. In Sec. 2.3, we will

tune these coefficients to create modified plaquette terms B
(i)
p that energetically favor a

nontrivial flux i passing through the plaquettes of the ground state, resulting in what we

call “topological flux phases.”

11
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Ground States

Since the Hamiltonian is a sum of commuting projectors, it can be solved exactly. A

ground state |0〉 of the string-net Hamiltonian is a superposition of lattice states

|0〉 = 1

N

∑

X

Φ(|X〉)|X〉, (2.11)

where N is a normalization constant and Φ(|X〉) is the amplitude of the lattice state

|X〉.

The ground states of the Hamiltonian maximizes every Qv and every B
(0)
p . In order

to maximize every Qv, a ground state |0〉 must be a linear combination of string-nets, i.e.

Φ(|X〉) = 0 if |X〉 is not a string-net. In order to maximize every B
(0)
p , the amplitudes

Φ(|X〉) must obey the following local relations :

1. Φ (| i 〉) = Φ (| i 〉) indicating that strings can be continuously deformed

(isotopy).

2. Φ (| i〉) = diΦ (| 〉) indicating that the relative amplitude for a loop of string

type i is its quantum dimension.

3. Φ
(∣∣∣ i jk

l

〉)
= δijΦ

(∣∣∣ i jk

l

〉)
indicating the conservation of string type, i.e. that

the branching rules hold at all scales.

4. Φ

(∣∣∣∣
i

j k

l
m

〉)
=
∑
n

F ijm
kln Φ

(∣∣∣∣
i

j k

l
n

〉)
indicating that the amplitudes for recoupling

string-nets is determined by the F -symbols.

where the diagrams in these relations represent some local region of a string-net state

|X〉. These relations are schematic in the sense that, while string-net states are defined

on the lattice, we allow the strings to be smoothly deformed off the lattice structure (onto

the corresponding 2D manifold it tiles) when applying these relations in a local region, as

12
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long as we return to the lattice structure for the sake of comparing with another string-

net state. These relations hold because H(0) is in the zero-flux phase. For nontrivial

topological flux phases, these local relations will generally no longer hold. States for

which these relations hold are referred to as string-net condensates.

On a closed surface of genus zero, i.e. the sphere or the infinite plane, the local

relations can always relate the amplitude of two different string-nets. Thus, there is a

unique ground state on such manifolds. On more general surfaces, the local relations

cannot always relate the amplitude of two different string-nets. As a result, there may

be degenerate ground states. Two string-net configurations that cannot be related by

any number of applications of the local relations belong to different ground states. This

ground state degeneracy, which is topologically protected against local perturbations, is

determined by Eq. (A.30). These ground states can only be related by application of

operators that act nontrivially on regions of macroscopic extent, for example a string

operator that winds around a nontrivial cycle of the manifold. This is discussed in more

detail below.

Excitations

Since the ground states simultaneously maximizes every Qv and B
(0)
p , excited states

must violate at least one Qv or B
(0)
p . Thus, the excited states are separated from the

ground states by a constant energy gap. Because the energy of an excited state can

be attributed to the violation of specific vertex and plaquette terms, we can view such

states as possessing quasiparticles localized at the positions of the violated vertices and

plaquettes. These states possessing quasiparticles can be obtained from the ground state

by applying open string operators (Wilson line operators), which we now review.

A string operator Wa of anyon type a is represented pictorially by a directed path

along the lattice labeled a, as shown in Fig. 2.1. The string operators carry a (specific)

13
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l-legs

r-legs

edges

a

b

Figure 2.1: Open string operator Wa and closed string operator Wb.

superposition of lattice string type labels j ∈ C. When the string operator path runs

along the lattice without crossing any links, its action on string-net states is given by

fusing the string into the lattice using the local relations of C. Additionally, the string

operators are defined to have a (one-sided) braiding over links of the lattice and to be

isotopy invariant (with fixed endpoints, when the string is open) when applied to ground

states of the (zero-flux) string-net condensed phase. Consistency with the reversal of link

orientations requires the string operators to satisfy

= . (2.12)

Isotopy invariance of the string operators over the string-net condensate ground states is

obtained by requiring that the string operators can be deformed freely over the vertices

= , (2.13)

when the lattice state satisfies the branching rules at the vertex (see Appendix A.2 for

details), and over the plaquettes

∣∣∣∣∣

〉
=

∣∣∣∣∣

〉
, (2.14)

where the lattice state satisfies the branching rules and zero-flux condition at the pla-
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quette. Imposing these requirements on the string operators is equivalent to imposing

the conditions on the braiding amplitudes.

Since the string operators satisfy these conditions, we can think of them as fluctuating

with respect to the (zero-flux) string-net condensed ground states. This means that, when

applied to the ground states of the string-net condense phase, the locatio of the string

operator is not observable. (If the string operator is open, the location of its endpoints

are observable.) For nontrivial flux phases, the fluctuating property of string operators

will no longer hold in general, and it may be possible to observe the location of the string

when applied to the ground states.

Due to Ocneanu rigidity, there can only be a finite number of string operators that

satisfy these conditions for any particular string-net model. We emphasize that there will

generally be more distinct types of string operators than there are lattice string types (i.e.

degrees of freedom per link). In particular, while the lattice string types correspond to

the simple objects in the underlying FTC C, the string operator types correspond to the

anyon types (topological charges) in the emergent topological phase, which is described

by the MTC D(C). We will label the emergent anyon types (and their corresponding

string operator types) as a ∈ D(C) in bold to distinguish them from the underlying

string types i ∈ C of the string-net model.

A closed string operator commutes with the (zero-flux) Hamiltonian. As such, apply-

ing a closed string operator to a ground state results in a ground state. On a manifold

with nontrivial topology, where there are degenerate ground states, a closed string oper-

ator can cause a transition between ground states if it is non-contractible, e.g. if it wraps

around a nontrivial cycle of a torus. A closed string operator that is contractible takes

a ground state to itself, up to a factor of the loop weight (expectation of a contractible
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closed string operator in a ground state)

ℓa = 〈0| a |0〉 =
∑

j

na,jdj. (2.15)

An open string operator Wa commutes with the Hamiltonian everywhere except at

its endpoints. Consequently, a state obtained by applying an open string operator to

a ground state results in an excited state that violates Qv and/or B
(0)
p for the vertices

and/or plaquettes at the string endpoints. This can be interpreted as the creation of

localized quasiparticle excitations a and ā at the endpoints of the open string operator.

(A directed open string of type a starts at a quasiparticle of type ā and ends at a

quasiparticle of type a.) As such, the fusion and braiding properties of D(C) can be

obtained from these string operators. Rather than obtain all the basic data, we focus

on certain important gauge invariant quantities that are believed to fully specify a MTC

(up to gauge freedom), namely the modular S-matrix and T -matrix.

We begin by noting that in order for a MTC to (diagrammatically) describe anyonic

states of quasiparticles, it must be unitary and have a positive definite inner product,

which means its quantum dimensions must be positive. In terms of its F -symbols (one

should be careful to distinguish between the F -symbols of D(C) considered here, and

those of C used to define the lattice model), the quantum dimension of an anyon type

may be defined to be

da = dā = |[F aāa
a ]00|−1

(2.16)

and the Frobenius-Schur indicators are phases given by

κa = κ
∗
ā = da[F

aāa
a ]00. (2.17)

With these definitions, da ≥ 1 and the dimension of the anyonic state space associated

16



Topological Flux Phases Chapter 2

with n anyons of topological charge a scales as dna as n → ∞. An anyon is Abelian if

da = 1, while it is non-Abelian if da > 1. Also, when a = ā, κa = ±1 is a gauge invariant

quantity. When a 6= ā, κa is gauge dependent, and can be set to 1 if so desired. (The

term “Frobenius-Schur indicator” is often reserved for the case when a = ā, but we use

it more generally.)

In terms of the string operators’s loop weight, defined in Eq. (2.15), these quantities

associated with the quasiparticle types are given by

da = |ℓa| , (2.18)

κa = ℓa/ |ℓa| . (2.19)

This emphasizes a distinction between the closed string operator loops applying to the

2D lattice states and the “loops” formed by taking inner products of anyonic states using

the diagrammatic formalism. For the FTC C of the lattice model, the Frobenius-Schur

indicators of the string types (link variables) were required to be κj = 1 for all j, but

the quantum dimensions dj were not required to be positive numbers. Similarly, the

string operator lines are required to be isotopy invariant when acting on the string-net

condensate ground states, and their loop values ℓa need not be positive. On the other

hand, for the emergent MTC D(C) describing the anyonic quasiparticle excitations, the

quantum dimensions are required to be da ≥ 1 for all a, since this corresponds to a

positive definite inner product, but the Frobenius-Schur indicators κa are not required

to equal 1.

The total quantum dimension of the emergent theory D(C) is related to that of the

underlying FTC C by

DD(C) =

√∑

a

d2a =
∑

j

d2j = D2
C. (2.20)
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The exchange statistics of the anyons are captured by the topological S and T ma-

trices

Sab =
κaκb

DD(C)
〈0| ba |0〉 (2.21)

Tab =
1

da
〈0| a |0〉δab, (2.22)

where the diagrams schematically represent string operators applied to the lattice states.

These definitions include Frobenius-Schur factors that account for the distinction between

the string operators applying to 2D lattice states and the diagrammatic representation

of the corresponding quantities in the emergent topological state space, as explained in

Appendix A.3.

When the FTC C describes the fusion and recoupling structure of a MTC M, i.e.

there exists a consistent way of introducing a braiding structure for C with a unitary

S-matrix, then the quantum double of C will be described by D(C) = M×M̄. In this

case, one can envision the emergent theory by doubling the manifold into two surfaces on

either side of the lattice, with M living on one surface and M̄ living on the other. In this

way, a quasiparticle of topological charge a = (aL, aR) can be thought of as localizing

topological charge aL ∈ M on the surface above the lattice and aR ∈ M on the surface

below the lattice. The quantum dimension of (aL, aR) is d(aR,aL) = daLdaR .

Another large class of theories are obtained when the FTC C = Rep(G), for which

the set of topological charges are the irreducible representations of a finite group G, the

fusion rules are given by tensor products of representations, the F -symbols are given

by the corresponding 6j-symbols, and the dimension of an irreducible representation is

its corresponding quantum dimension. In this case, the quantum double of C is the

discrete gauge theory D(G) for gauge group G. [28] The resulting anyon types may

take the form of: a pure flux (α, I), where α is a conjugacy class of G; a pure charge
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({e}, R(G)), where R(G) is an irreducible representation of G; or a dyon (flux-charge

composite) (α,R(C(α))), where α is a conjugacy class of G and R(C(α)) is an irreducible

representation of the centralizer C(α) of (an element in) α. The quantum dimension of

(α,R(C(α))) is d(α,R(C(α))) = |α| dimR(C(α)). 2

We now describe two examples in more detail.

2.2.2 Z2 (Toric Code)

The Z2 model uses the FTC C = Rep(Z2) given by:

• String types 0 and 1,

• Allowed branchings {0, 0, 0}, {0, 1, 1},

• Quantum dimensions d0 = d1 = 1, and

• All admissible F ijm
kln = 1.

The Hamiltonian is

H
(0)
Z2

= −
∑

v

Qv −
∑

p

1

2

(
B0

p +B1
p

)
. (2.23)

The ground state in the plane is the sum of all possible lattice configurations of

closed loops of lattice strings with equal amplitude (string-nets are simply configurations

of closed loops in this example):

|0〉 =
∑

|X〉∈closed loop
string-nets

|X〉. (2.24)

2One may also obtain the discrete gauge theory D(G) from the FTC C = Vec(G), where the topological
charges are the group elements, the fusion rules are given by group multiplication, the F -symbols are
trivial (equal 1 when admissible), and quantum dimensions all equal 1. However, in this case, the fusion
rules are not necessarily commutative, unless G is Abelian, so one must use one of the more general
string-net model constructions.
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If we represent the strings as spin-1
2
degrees of freedom, where the 0 string is |+z〉

and the 1 string is |−z〉, then Qv and B
(0)
p can be written in terms of Pauli matrices:

Qv =
1

2

(
1 +

∏

i∈v legs

σz
i

)
(2.25)

B(0)
p =

1

2

(
1 +

∏

i∈p edges

σx
i

)
·

∏

v∈p vertices

Qv (2.26)

Omitting the
∏

v Qv term in B
(0)
p , which acts trivially on the ground state, this Hamil-

tonian is equivalent to Kitaev’s toric code Hamiltonian [15]

H = −
∑

v

∏

i∈v legs

σz
i −

∑

p

∏

i∈p edges

σx
i , (2.27)

up to a factor of 2 and an overall energy shift.

There are four string operators, which correspond to the topological charges of the

D(Z2) MTC. When acting along a path P, they can be written in terms of Pauli matrices:

WI = I, (2.28)

We =
∏

p∈P edges

σx
p , (2.29)

Wm =
∏

r∈P r-legs

σz
r , (2.30)

Wf =
∏

p∈P edges

σx
p ·

∏

r∈P r-legs

σz
r . (2.31)

Here, P edges are the links along the path of the string operator, and P r-legs are the

links exiting to the right when traversing the path in some fixed direction, as shown in

Fig. 2.1. And open string operator We creates a Qv violating electric charge e at each

of its endpoints, Wm creates a B
(0)
p violating magnetic flux m, and Wf creates a bound
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state f of e and m. (If we do not omit the
∏

v Qv term in the definition of B
(0)
p , then

We also creates three B
(0)
p violations at each endpoint.)

The S and T matrices are

S =
1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




, (2.32)

T = diag[1, 1, 1,−1]. (2.33)

The rows and columns of S and T are labeled by I, e, m, and f , in order. Using

Eq. (A.30), the ground state degeneracy on a genus g surface is 4g.

2.2.3 Ising (Ising× Ising)

The Ising model uses the Ising FTC C = IFC:

• String types 0 ( ), 1 ( ), and 2 ( ), (which we call I, σ, and ψ, respectively,)

• Allowed branchings {I, I, I}, {I, σ, σ}, {I, ψ, ψ}, {σ, σ, ψ},

• Quantum dimensions dI = dψ = 1, dσ =
√
2, and

• Nontrivial F -symbols:

F σσI
σσI = F σσI

σσψ = F σσψ
σσI = −F σσψ

σσψ = 1/
√
2, (2.34)

F σψσ
σψσ = F ψσσ

ψσσ = −1. (2.35)

All other admissible F ijm
kln = 1.
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The Hamiltonian is

H
(I)
Ising = −

∑

v

Qv −
∑

p

1

4

(
BI

p +
√
2Bσ

p +Bψ
p

)
. (2.36)

Unlike with the Z2 model, we have no explicit closed-form expression for the ground

states, though it can be constructed using the local relations of Sec. 2.2.1.

The Ising FTC describes the fusion structure of the Ising MTC. Thus, there are nine

distinct types of string operators, which correspond to the topological charges of the

D(Ising) = Ising × Ising MTC. We label them a = (aL, aR), where aL, aR ∈ {I, σ, ψ}.

(See Appendix A.4 for details.)

The S and T matrices of D(Ising) are:

S = SIsing ⊗ S∗
Ising, (2.37)

T = TIsing ⊗ T ∗
Ising, (2.38)

where the modular matrices of the Ising MTC are given by

SIsing =
1

2




1
√
2 1

√
2 0 −

√
2

1 −
√
2 1



, (2.39)

TIsing = diag[1, eiπ/8,−1], (2.40)

where the rows and columns are labeled by I, σ, and ψ, in order. Using Eq. A.30, the

ground state degeneracy of D(Ising) on a genus g surface is 4g−1(2g + 1)2.

The anyons carrying the σ topological charge have non-Abelian statistics. For exam-
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ple, the (σ, I) anyon has d(σ,I) =
√
2, because two (σ, I)× (σ, I) = (I, I) + (ψ, I). A full

braid of two (σ, I) anyons around each other has the same effect as transferring a (ψ, I)

topological charge between them, up to a phase, i.e.

(σ, I) (σ, I)

= e−iπ/4
(ψ, I)

(σ, I)(σ, I)

. (2.41)

2.3 Flux Phases

In this section, we introduce flux phases of string-net models. The phases described

in Sec. 2.2 are in the zero-flux phase of the string-net models, where the ground state(s)

can be found using the local string-net relations (described by a FTC C). The quasipar-

ticle string operators were thought of as fluctuating with respect to the ground states

as a result of the zero-flux condition allowing them to be freely deformed over plaque-

ttes. However, for a string-net model with n strings, one can obtain n different phases

(including the zero-flux phase) by modifying the plaquette term of the Hamiltonian to

energetically favor one of the n different “flux” values through the plaquettes. Conse-

quently, the ground states of these nontrivial flux phases will have the corresponding flux

through plaquettes, so the local relations may not all apply for the ground states and the

string operators may not fluctuate freely.

Defining fusion matrices Ni in terms of the fusion rules (branching rules) as [Ni]jk =

Nk
ij = δijk̄ (see Sec. 2.2.1), we find the following properties. Commutativity and asso-

ciativity of the fusion rules implies that the fusion matrices are all normal matrices that

mutually commute with each other, so they can be simultaneously diagonalized. That is,

Ni = PΛ(i)P †, where Λ(i) is the diagonal matrix of the eigenvalues of Ni and P is a uni-

tary matrix whose columns are the orthonormal eigenvectors of the fusion matrices. The

existence of a unique 0 string and unique dual strings implies that [P ]ij = [Λ(i)]jj[P ]0j
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and [Λ(̄i)]jj = [Λ(i)]∗jj. Since P is unitary, [P ]0j 6= 0 and we have [Λ(i)]jj =
[P ]ij
[P ]0j

. This

yields the generalized Verlinde equation

[Ni]jk =
∑

l

[P ]il[P ]jl[P ]
∗
kl

[P ]0l
. (2.42)

By multiplying the columns of P with appropriate phases, we can choose [P ]0i to be

real. With this convention, we have [P ]ij = [P ]∗īj . Lastly, since
∑

k[Ni]jkdk = didj, the

vector of quantum dimensions is an eigenvector for all Ni, which we choose to be the 0th

column, so that [P ]i0 = di/DC.

We now use the P matrix to define an operator for plaquette p that energetically

favors a flux of type i ∈ {0, 1, . . . , n− 1} through the plaquette, which is given by

B(i)
p =

∑

s

a(i)s Bs
p, (2.43)

a(i)s = [P ]0i[P ]
∗
si. (2.44)

We notice that these are orthogonal projectors, as

B(i)
p B(j)

p =
∑

s,t

a(i)s a
(j)
t Bs

pB
t
p

=
∑

s,t,u

a(i)s a
(j)
t [Ns]tuB

u
p

=
∑

s,t,u,v

[P ]0i[P ]
∗
si[P ]0j[P ]

∗
tj

[P ]sv[P ]tv[P ]
∗
uv

[P ]0v
Bu

p

=
∑

u

δij [P ]0i[P ]
∗
uiB

u
p

= δijB
(i)
p . (2.45)

The eigenstates of B
(i)
p are the states of definite flux passing through the plaquette p.
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Specifically, the state with i flux in p has eigenvalue 1, whereas states with other fluxes

have eigenvalue 0.

With these plaquette operators, the i-flux phase of the string-net model has the

corresponding fixed point Hamiltonian

H(i) = −
∑

v

Qv −
∑

p

B(i)
p . (2.46)

The ground states of the i-flux phase will have an i-flux through every plaquette, which

we depict as a gray honeycomb lattice with a dot labeled i in the center of each plaquette:

∣∣∣∣∣ i

〉
.

If the emergent anyons form a doubled Chern-Simons theory, then the i-flux phase

corresponds to having an (i, i) anyon in every plaquette, or equivalently, having an i

string passing through every plaquette. This is because in this case, we can let P = SC

and a
(i)
s = [SC ]0i[SC ]

∗
si, where SC is the S matrix obtained when making the underlying

UFTC into an MTC. Using

i

j

=
[SC ]ij
[SC ]0j

j

, (2.47)

we see that applying B
(i)
p on a plaquette that has a flux j passing through it gives:

B(i)
p

∣∣∣∣∣ j

〉
=
∑

s

[SC ]0i[SC ]
∗
si

∣∣∣∣∣ s
j

〉

=
∑

s

[SC]0i[SC]
∗
si[SC ]sj

[SC ]0j

∣∣∣∣∣ j

〉

= δij

∣∣∣∣∣ j

〉
. (2.48)
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If the emergent anyons describe a discrete gauge theory, then a flux phase should corre-

spond to having some (α, I) flux in every plaquette.

For both doubled Chern-Simons theories and discrete gauge theories, a flux phase is

defined to be Abelian if the corresponding anyon occupying the plaquettes is Abelian, and

non-Abelian otherwise. (In general, it is unclear whether a flux phase must correspond

to having a particular anyon in every plaquette. So, we provide a more general definition

of Abelian and non-Abelian flux phases in App. A.9.)

Let the order of a flux be the minimum number of corresponding anyons required

to obtain a (I, I) anyon from their fusion. Flux phases where the order of the flux is

incommensurate with the number of plaquettes in the lattice, e.g. the flux phases of the

Z2 model and the Ising model on a lattice with an odd number of plaquettes, are actually

frustrated: it is impossible to have a certain flux through every plaquette. This leads

to an extensive ground state degeneracy, essentially due to the location of the frustrated

plaquette(s).

The string operators derived in the smooth phase can still be used in flux phases

to produce excitations. However, string operators cannot necessarily be passed over

plaquettes centers freely. For example, W(σ,I) is no longer fluctuating in the σ flux phase

of the Ising model:

∣∣∣∣∣

〉
= e−πi/4

∣∣∣∣∣

〉
6=
∣∣∣∣∣

〉
, (2.49)

where we have used Eq. (2.41). (String operators can still be passed over vertices.)

Even though the flux phases are defined by the specific B
(i)
p , they characterize all

possible Bp. This is because any magnetic operator can be written as Bp =
∑

s asB
s
p,

where a∗s = as∗ for Hermiticity, or equivalently, Bp =
∑

i biB
(i)
p , where bi = b∗i =

∑
s[P ]

−1
0i [P ]sias. The ground state(s) of this Bp has a j flux passing through every
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plaquette, where j corresponds to the largest bj in
∑

i biB
(i)
p . So, the system is in the j

flux phase. Thus, any Bp belongs to some flux phase. The boundary between the j flux

phase and k flux phase is realized when both bj = bk are both the largest coefficients,

and in this case the system exhibits a level crossing between the ground state(s) of the j

flux phase and the ground state(s) of the k flux phase.

2.4 Abelian Flux Phases

In this section, we study two examples of Abelian flux phases: the flux phase of the

Z2 model, and the ψ flux phase of the Ising model. (We also study the flux phase of the

Z
(1/2)
2 model in App. A.7 and the flux phases of the Zn and Z

(1/2)
n models in App. A.8.)

We show that in general, Abelian flux phases can be understood as simple examples of

translation symmetry fractionalization.

2.4.1 Z2 Flux Phase

The Hamiltonian is

H
(1)
Z2

= −
∑

v

Qv −
∑

p

1

2

(
B0

p −B1
p

)
(2.50)

= −
∑

v

1

2

(
1 +

∏

i∈v legs

σz
i

)

−
∑

p

1

2

(
1−

∏

i∈p edges

σx
i

)
, (2.51)

where we have again omitted the
∏

v Qv in the definition of B
(1)
p .

The ground state corresponds to having an m anyon (i.e. π flux) in every plaquette.
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Figure 2.2: Change of Basis

It is given by

|0〉 =
∑

|X〉∈closed loop
string-nets

(−1)nP(|X〉)|X〉, (2.52)

where nP(|X〉) is the number of plaquettes contained by closed loops in |X〉. Using

Eq. A.30, the ground state degeneracy for a lattice with an even number of plaquettes N

on a manifold of genus g is Ng,{m,...,m} = 4g , where {m, . . . ,m} represents N number

of m. For a lattice with an odd number of plaquettes, the system is actually frustrated

and the ground state degeneracy is 4gN .

The four string operators of the smooth phase can still be applied in the flux phase

to create excitations, but the We and Wf string operators now acquire a factor of −1

every time they are passed over a plaquette.

Even Plaquette Solution

We can use a change of basis to solve H
(1)
Z2

for a lattice with an even number of

plaquettes. To specify the change of basis we choose a dimer covering on the dual lattice.

In other words, we mark links on the latttice in such a way that each hexagon has exactly

one marked link, as shown in Fig. 2.2. We apply the change of basis

Λ = Λ−1 =
∏

i∈marked
links

Λi, (2.53)
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where

Λi = σz
i =



1 0

0 −1


 (2.54)

multiplies the amplitude of a lattice state by −1 if the link i is occupied by a 1 string.

Since every hexagon has exactly one marked link, and

σz
i σ

x
j σ

z
i =





σx
j , i 6= j

−σx
j , i = j

, (2.55)

the change of basis transforms the flux Hamiltonian into the smooth Hamiltonian:

Λ−1H
(1)
Z2

Λ = H
(0)
Z2
. (2.56)

Thus, we can understand the flux phase by applying the change of basis to the smooth

phase results.

The ground state in the flux phase is:

|0〉 =
∑

|X〉∈closed loop
string-nets

(−1)nM(|X〉)|X〉, (2.57)

where nM(|X〉) = nP(|X〉) is the number of marked links occupied by 1 strings in |X〉.

This agrees with Eq. (2.52).

The four modified string operators of the flux phase, which pass through plaquettes

freely, are WI , (−1)nM(P)We, Wm, (−1)nM(P)Wf , where nM(P ) is the number of marked

links along the path P.
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2.4.2 Ising ψ Flux Phase

The Hamiltonian is:

H
(ψ)
Ising = −

∑

v

Qv −
∑

p

1

4

(
BI

p −
√
2Bσ

p +Bψ
p

)
. (2.58)

Since the Ising UFTC can be made into a MTC, the ground state corresponds to

having a (ψ, ψ) anyon in every plaquette, or equivalently, having a ψ string passing

through every plaquette. Unlike with the flux phase of the Z2 model, there is no explicit

formula for the ground state, though it can be constructed using the local relations of

Sec. 2.2.1 as long we respect the presence of the ψ flux: the relations can be applied in a

region without any flux, and passing a σ string through a ψ flux introduces a factor of −1.

Using Eq. A.30, the ground state degeneracy for a lattice with N plaquettes on a manifold

of genus g is Ng,{(ψ,ψ),...,(ψ,ψ)} = 4g−1(1 + (−1)N2g+1 + 4g), where {(ψ, ψ), . . . , (ψ, ψ)}

represents N number of (ψ, ψ).

The nine string operators of the smooth phase can still be applied in the flux phase

to create excitations. However, W(I,σ), W(σ,I), W(σ,ψ), and W(ψ,σ) acquire a factor of −1

every time they are passed over a plaquette center.

Even Plaquette Solution

As with the flux phase of the Z2 model, we can use a change of basis to solve H
(ψ)
Ising

for a lattice with an even number of plaquettes. We mark links on the latttice in such a

way that each hexagon has exactly one marked link, as shown in Fig. 2.2, and apply the

change of basis Λ:

Λ = Λ−1 =
∏

i∈marked
links

Λi, (2.59)
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where

Λi = diag(1,−1, 1) (2.60)

multiplies the amplitude of a lattice state by −1 if its link i is occupied by a σ string.

We show in App. A.10 that this change of basis transforms the flux Hamiltonian into the

smooth Hamiltonian:

Λ−1H
(ψ)
IsingΛ = H

(I)
Ising. (2.61)

Thus, we can understand the flux phase by applying the change of basis to the smooth

phase results.

For example, suppose the ground state of the smooth phase is

|0〉 =
∑

|X〉
Φ(|X〉)|X〉, (2.62)

Then, the ground state in the ψ flux phase is

|0〉 =
∑

|X〉
(−1)nM(|X〉)Φ(|X〉)|X〉. (2.63)

where nM(|X〉) is the number of marked links occupied by σ strings in |X〉. Similarly, the

modified string operators of the ψ flux phase, which pass through plaquettes freely, are

(−1)nM(P)W(I,σ), (−1)nM(P)W(σ,I), (−1)nM(P)W(σ,ψ), and (−1)nM(P)W(ψ,σ), where nM(P)

is the number of marked links along the path P. (The other string operators do not need

to be modified.)

2.4.3 Symmetry Fractionalization

Topological phases with symmetry lead to symmetry-enriched topological phases,

which cannot be adiabatically connected by a path of gapped Hamiltionians without
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breaking the symmetry.[29, 30] In these phases, the symmetry is fractionalized: the

anyons carry fractional quantum numbers corresponding to the symmetry. For example,

in the fractional quantum Hall effect, the U(1) symmetry is fractionalized and the anyons

carry fractional charge.[20]

For string-net model, abelian flux phases are SET phases whose translational symme-

try has be fractionalized, as we will show below. This is in accordance with other work

that has understood translational symmetry fractionalization as having a background

anyonic flux.[29, 30, 31] In general, only a subset of SET phases with translational sym-

metry fractionalization can be obtained as flux phases (via modified plaquette operators).

We expect that the remaining fractionalization classes can be obtained by additionally

modifying the vertex terms.

Consider a system in a topological phase with a symmetry described by the group

G, whose element g acts on the Hilbert space as the unitary on-site operators Rg. Let

|Ψ{a1,...,an}〉 be a state with anyons a1, . . . ,an. Assuming the action of the symmetry

does not permute the anyons, it can be decomposed into unitary operators acting locally

on the anyons:

Rg|Ψ{a1,...,an}〉 =
n∏

i=1

U (i)
g |Ψ{a1,...,an}〉. (2.64)

The local operators form a projective representation of G,

U (i)
g U

(i)
h |Ψ{a1,...,an}〉 = ηai

(g,h)U
(i)
gh|Ψ{a1,...,an}〉, (2.65)

where ηa(g,h) ∈ U(1).

The phases ηa(g,h) must satisfy certain constraints, due to the associativity of U
(i)
g

and the fact that RgRh = Rgh. Additionally, ηa(g,h) have some redundancy, because

U
(i)
g can be “trivially” redefined by an phase. It turns out that the solutions for ηa(g,h),
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modulo the aforementioned redundancy, are classified by the second cohomology group

H2(G,A), where A is the group of Abelian anyons under fusion. In our case, since the

translation symmetry group of a lattice is Z×Z and H2(Z×Z,A) = A. Therefore, each

translational symmetry fractionalization class is specified by an Abelian anyon, which

can be thought of as a background anyonic flux.

The Abelian flux phases are simple examples of translation symmetry fractionaliza-

tion. For example, the flux phase of the Z2 model corresponds to the fractionalization

class specified by the anyon m, i.e. every plaquette has an m, and the ψ flux phase of

the Ising model is specified by (ψ, ψ), i.e. every plaquette has a (ψ, ψ),

More generally, the Zn model has n2 Abelian anyons a = (a1, a2), where a1, a2 ∈

{0, . . . , n − 1}, that obey Zn × Zn fusion rules. The j flux phase corresponds to having

a (0, j) boson in every plaquette. In this phase,

U (a)
x U (a)

y = e2πia1j/nU (a)
y U (a)

x . (2.66)

In other words, when an anyon (a1, a2) is transported around a plaquette, the wavefunc-

tion acquires a phase e2πia1j/n, which is exactly the phase acquired upon braiding (a1, a2)

around (0, j).

Similarly, the Z
(1/2)
n model has n2 Abelian anyons a = (aA, aB), where aA, aB ∈

{0, . . . , n− 1}, that obey Zn×Zn fusion rules. In this case, the j flux phase corresponds

to having a (j, j) boson in every plaquette. In this phase,

U (a)
x U (a)

y = e2πi(aA−aB)j/nU (a)
y U (a)

x . (2.67)

In other words, when an anyon (aA, aB) is transported around a plaquette, the wavefunc-

tion acquires a phase e2πi(aA−aB)j/n, which is exactly the phase acquired upon braiding
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(aA, aB) around (j, j).

Flux phases in which the background anyonic flux corresponds to an Abelian topolog-

ical charge can be interpreted as a translationally invariant topological phase in which the

translational symmetry is fractionalized.[29, 30, 31] In particular, the background any-

onic flux per unit cell corresponds to the Abelian topological charge, denoted b(Tê2 , Tê1),

specifies the symmetry fractionalization class through the invariant relation

b(Tê2, Tê1) = w(Tê2 , Tê1)×w(Tê1, Tê2), (2.68)

where Têj is the translational symmetry group generator for translation in the êj direction.

These are classified by H2(Z2,A), where A is the group defined by the Abelian anyons (of

the emergent topological order), with group multiplication specified by the fusion rules.

2.5 Non-Abelian Flux Phases

In this section, we study the non-Abelian σ flux phase of the Ising model. We find that

the model has an extensive ground state degeneracy, and exhibits topologically protected

non-Abelian braiding. Furthermore, we find that this extensive degeneracy is gapped out

by generic local perturbations, and that the resulting perturbed phase is the toric code

phase. Finally, we discuss some general properties of non-Abelian flux phases.

2.5.1 Ising σ Flux Phase

The Hamiltonian is

H
(σ)
Ising = −

∑

v

Qv −
∑

p

1

2

(
BI

p −Bψ
p

)
. (2.69)

34



Topological Flux Phases Chapter 2

Since the Ising UFTC can be made into a MTC, the ground state corresponds to

having a (σ, σ) anyon in every plaquette, or equivalently, having a σ string passing through

every plaquette. Unlike with the flux phase of the Z2 model and the ψ flux phase of the

Ising model, we cannot use local relations at all to find the ground state. This is because

passing a σ string through a σ flux leaves ψ string tails that cannot be removed. Using

Eq. A.30, the ground state degeneracy for a lattice with an even number of plaquettes

N on a manifold of genus g is Ng,{(σ,σ),...,(σ,σ)} = 2N−216g , where {(σ, σ), . . . , (σ, σ)}

represents N number of (σ, σ). For a lattice with an odd number of plaquettes, the

system is actually frustrated and the ground state degeneracy is 2N−216gN .

Of the nine string operators of the smooth phase, only W(I,I) and W(ψ,ψ) are still

fluctuating, (and actually do not create excitations.) W(I,ψ) and W(ψ,I) acquire a factor

of −1 every time they are passed over a plaquette, and W(I,σ), W(σ,I), W(σ,σ), W(σ,ψ),

and W(ψ,σ) cannot be passed over plaquettes at all.

Even Plaquette Solution

For a lattice with an even number of plaquettes, we can use the results of the flux

phase of Z2 model to obtain a ground state. Consider momentarily limiting the Hilbert

space basis to the set of string-nets with only I and ψ strings. If we represent the strings

as spin-1
2
particles, where the I string is |+z〉 and the ψ string is |−z〉, then the H

(σ)
Ising

acting on this subspace can be written in terms of Pauli matrices:

H
(σ)
Ising\σ = −

∑

v

1

2

(
1 +

∏

i∈v legs

σz
i

)

−
∑

p

1

2

(
1−

∏

i∈p edges

σx
i

)
, (2.70)
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which is identical to H
(1)
Z2

of Eq. (2.51). Therefore, its ground state is

|0〉 =
∑

|X〉∈closed ψ loop
string-nets

(−1)nM(|X〉)|X〉, (2.71)

where nM(|X〉) is the number of ψ strings that occupy marked links in the string-net

|X〉.

This ground state does not contain any links occupied by σ strings. In order to

introduce σ strings, we may attempt to act on this ground state with a closed W(σ,I)

that encloses a single plaquette. Although this closed string operator cannot create

excitations, it annihilates the ground state:

∣∣∣∣∣

〉
= 0. (2.72)

However, consider two closed W(σ,I) enclosing adjacent plaquettes p1 and p2 connected

by W(ψ,I), which we call a minimal spectacle operator Sp1p2 :

Sp1p2

∣∣∣∣∣
p1

p2

〉
≡ 1

2

∣∣∣∣∣
p1

p2

〉
(2.73)

Acting Sp1p2 on this ground state does result in a new ground state, which is also a sum

of closed ψ loop string-nets but with the links enclosing p1 and p2 occupied by σ strings.

By applying minimal spectacle operators on top of or next to each other, we can create

larger spectacle operators:

∣∣∣∣∣

〉
∝
∣∣∣∣∣

〉
(2.74)

36



Topological Flux Phases Chapter 2

∣∣∣∣∣

〉
∝
∣∣∣∣∣

〉
(2.75)

Therefore, we can create a wide variety of spectacle operators, which, when acted on the

ground state given by Eq. (2.71), result in a new ground states. Spectacle operators are

Hermitian, unitary, mutually commuting, and commute with the Hamiltonian. These

properties are proven in App. A.11. Note that the path of W(ψ,I) in the spectacle

operators is unimportant, since it can be passed over plaquettes with a factor of −1.

Therefore, only p1 and p2 are needed to specify Sp1p2 . We will often specify the plaquettes

of Sp1p2 using diagrams and leave the subscripts p1 and p2 implicit.

Thus, we have an extensive ground state degeneracy due to the spectacle operators.

To count this degeneracy, we note that all spectacle operators can be constructed out

of minimal spectacle operators. All that matters is which plaquettes contain the W(σ,I)

loops; the W(ψ,I) string operators connecting them are fluctuating (up to an unimportant

factor of −1). Because each of the N plaquettes may or may not contain a W(σ,I) loop,

but the total number of W(σ,I) loops must be even, there are 2N−1 possible ways of

acting spectacle operators. However, this double counts the number of unique spectacle

operators. This is because when acting on a ground state, a configuration of minimal

spectacle operators acting on plaquettes {pi} is equivalent to the configuration of minimal

spectacle operators acting on every plaquette but {pi}. For example,

∣∣∣∣∣

〉
∝
∣∣∣∣∣

〉
. (2.76)

Thus, the correct extensive degeneracy is 2N−2. This extensive degeneracy essentially
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originates frrom the degeneracy of the fusion tree formed by fusing the σ fluxes above

and below the lattice, as explained in App. A.6.3 and App. A.10.

The rest of the degeneracy can be determined by considering closed string operators

that wrap around the nontrivial cycles of the manifold. For example, consider a lattice

with an even number of plaquettes on a torus. The ground state degeneracy is 16×2N−2.

We can count this degeneracy as 16 base ground states, each with a 2N−2 degeneracy

spanned by spectacle operators. We label these states as |I, I;α〉, |I, σ;α〉, |I, σ′;α〉,

|I, ψ;α〉, |σ, I;α〉, |σ′, I;α〉, |σ, σ;α〉, |σ, σ′;α〉, |σ′, σ;α〉, |σ′, σ′;α〉, |σ, ψ;α〉, |σ′, ψ;α〉,

|ψ, I;α〉, |ψ, σ;α〉, |ψ, σ′;α〉, and |ψ, ψ;α〉, where α ∈ {1, . . . , 2N−2}. Here, |I, I; 1〉 is

the ground state given by Eq. (2.71), |I, I;α〉 is |I, I; 1〉 acted on by a configuration α

of spectacle operators, and |i, j;α〉 is |I, I;α〉 with a W(i,I) wrapping around one of the

nontrivial cycles and a W(j,I) wrapping around the other.

|i, j; 1〉 :

(i, I)

(j, I)
(2.77)

The σ′ string is a W(σ,I) string with half of a spectacle operator attached.

|σ′, I; 1〉 :

(σ, I)

(2.78)

Projective Non-Abelian Braiding

A topological phase is usually defined (in the thermodynamic limit) to have a robust

ground state degeneracy that depends only on the topology of the manifold the system

is supported by and a finite energy gap for excitations. These properties are ostensi-
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bly crucial to the topologically protection of the ground states and of the braiding of

quasiparticle excitations. However, the requirement of a finite excitation gap can ac-

tually be relaxed: quasi-topological phases can be gapless and yet exhibit topological

protection.[32] Indeed, almost all experimentally realized topological phases are actually

gapless. The Hall bar in the fractional quantum hall effect, for example, contains gapless

phonons and photons.

The Ising σ flux phase may be roughly thought of as gapless, because of its extensive

ground state degeneracy. Strictly speaking, it is not a gapless phase, because as we show

in the later sections, this extensive ground state degeneracy can be gapped out by local

perturbations. Nevertheless, we can ask whether topological protection exists against

perturbations that do not lift this extensive ground state degeneracy. We show that the

non-Abelian braiding of σ anyons is in fact topologically protected.

Consider the case when a lattice with an even number of plaquettes is supported by

a sphere, and only perturbations that commute with spectacle operators are allowed.

The ground state degeneracy is 2N−2, spanned by spectacle operators. We label these

orthogonal states as |α〉, where α ∈ {1, . . . , 2N−2} represents a configuration of spectacle

operators.

Let O(I) be composed of two non-intersecting open W(σ,I), as shown below.

When acting on the ground state subspace this operator creates the subspace H(I)

spanned by |α(0)〉 = O(I)|α〉. Let O(ψ) be O(I) with a W(ψ,I) connecting the two W(σ,I),
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as shown below.

When acting on the ground state Hilbert space this operator creates the Hilbert space

H(ψ), spanned by |α(ψ)〉 = O(ψ)|α〉. (Note that the exact form of the strings composing

the O(I) and O(ψ) is unimportant as long as the four endpoints of W(σ,I) are sufficiently

separated. The placement of W(ψ,I) is unimportant as it can moved around, acquiring a

factor of −1 as it passes over a plaquette center.)

States in both Hilbert spaces H(I) and H(ψ) have the same energy and, furthermore,

we prove in App. A.12 that the spaces are topologically protected against any local

operator if the simply connected cover of the support of that operator does not contain

endpoints from both the W(σ,I).

Let us restrict ourselves to H(I) ⊕ H(ψ), spanned by 2 × 2N−2 degenerate energy

eigenstates |Σ〉, where |Σ〉 is |α(I)〉 or |α(ψ)〉 for some α. We wish to adiabatically evolve

the H
(σ)
IS (t) from t = 0 to t = T so that we end up braiding an endpoint of one of the

W(σ,I) around an endpoint of the other W(σ,I).

We require that the path of the braid encloses an even number of plaquettes and is

sufficiently distant from the two nonparticipating (σ, I) endpoints
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Let us assume we have energy eigenstates |Σ(t)〉 at time t, i.e. H
(σ)
Ising(t)|Σ(t)〉 =

E(t)|Σ(t)〉. Since the evolution is cyclic, i.e. H
(σ)
Ising(0) = H

(σ)
Ising(T ), we have

|Σ(T )〉 =
∑

Θ

[B]ΣΘ|Θ(0)〉, (2.79)

where [B]ΣΘ = 〈Θ(0)|Σ(T )〉 is the holonomy matrix. If we start with an eigenstate

|ψΣ(0)〉 = |Σ(0)〉, then the final state is given by:

|ψΣ(T )〉 = e−
i
~

∫ T
0
E(t) dtUB|Σ(0)〉, (2.80)

where

U = P exp

(
i

∫ T

0

A(t)dt

)
(2.81)

is the Berry matrix, and

[A(t)]ΣΘ = i〈Σ(t)| d
dt
|Θ(t)〉 (2.82)

is the Berry connection.

To understand B, consider the starting with a ground state |α(I)〉. For every such α,

there is a unique β such that |β(I)〉 = S|α(I)〉, where the operator S is the product of

minimal spectacle operators enclosing the braided region, as shown below.

Such a spectacle operator must exist because the braiding encloses an even number of
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plaquettes. This operator is equivalent to a single W(σ,I) loop enclosing the braided

region.

Therefore, replacing |α(I)〉 with S|β(I)〉 yields the following diagram.

Fusing the W(σ, I) simplifies the diagram.

Here, we have removed the W(ψ,I) that results from the fusion by freely creating a W(ψ,I)

enclosing the braided region from the ground state |β〉 and fusing the two W(ψ,I). Using

Eq. (2.41) and the fact that W(ψ,I) can be passed over plaquette centers with a factor of
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−1, this can be reduced to a state proportional to |β(2)〉.

Thus, B takes states in H(I) to states in H(ψ) and vice versa:

B =




0 b(ψ)→(I)

b(I)→(ψ) 0


 . (2.83)

Furthermore, b(ψ)→(I) = b(I)→(ψ) because the W(ψ,I) of O(ψ) can be moved arbitrarily

far away so that the braiding process cannot be affected by it. This can always be

done provided the path of the braid is sufficiently distant from the two nonparticipating

W(σ,I) endpoints. Thus, we conclude that B is block off-diagonal, and both the blocks

are identical:

B =



0 b

b 0


 . (2.84)

To understand U , we can view the adiabatic evolution as a series of small local

hoppings of the endpoint being braided.
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Each of these hoppings is facilitated by local operators and therefore forbidden from

taking a state inH(I) to a state inH(ψ) due to topological protection proved in App. A.12.

Therefore, A takes states in H(I) to states in H(I) and states in H(ψ) to states in H(ψ):

A =



a(I)→(I) 0

0 a(ψ)→(ψ)


 . (2.85)

Furthermore, a(I)→(I) = a(ψ)→(ψ), because the W(ψ,I) of O
(ψ) can be moved arbitrarily

far away so that the braiding process cannot be affected by it. Thus, we conclude that

U is block diagonal, and both the blocks are identical.

U =



u 0

0 u


 . (2.86)

Since B is block off-diagonal and U is block diagonal, the adiabatic braiding process

maps states in H(I) to states in H(ψ) and vice versa. This is similar to the non-Abelian

braiding of (σ, I) anyons that would occur in the smooth topological phase, as shown in

Eq. (2.41).

Thus, the Ising σ flux phase exhibits topologically protected non-Abelian braiding

even in the presence of an extensive ground state degeneracy. In the next sections, we

show that this extensive degeneracy can be gapped out by local perturbations, and the

resulting system is actually in the toric code phase. In this phase, the above braiding of

σ anyons can be viewed as braiding of confined defects. [30]

Condensation into Toric Code

Recall from Sec. 2.5.1 that the ground state degeneracy of the Ising σ flux phase

on a lattice with an even number of plaquettes supported by a torus is 16 × 2N−2,
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spanned by 2N−2 spectacle operators and 16 different configurations of string operators

acting around nontrivial cycles of the torus. If we perturb the system with the local

operator
∑

i Vi, where Vi penalizes a σ string occupying link i, then the states acted on

by spectacle operators become gapped and W(I,σ), W(σ,I), W(σ,ψ), and W(ψ,σ) become

confined. As a result, only four of 16× 2N−2 original ground states remain ground states

after the perturbation: |I, I; 1〉, |I, ψ; 1〉, |ψ, I; 1〉, and |ψ, ψ; 1〉. These four states are

equal superpositions of closed ψ string loops on a torus, i.e. the toric code ground states.

The appearance of the toric code phase here is to be expected: as previously remarked

in Sec. 2.5.1, the Hamiltonian H
(σ)
Ising\σ of the Ising σ flux phase in the absence of σ

strings is equivalent to the toric code Hamiltonian H
(0)
Z2

. Interestingly, however, the

transition into the toric code phase can also be understood as the condensation of the

(ψ, ψ) boson.[33] The (ψ, ψ) boson is allowed to condense because an open W(ψ,ψ) does

not create excitations at its endpoints in the σ flux phase. The reason it condenses is

because the local operator Vi can be essentially thought of as creating (or annihilating)

(ψ, ψ) bosons in the two adjacent plaquettes that share the i link as an edge. Thus,

the perturbation
∑

i Vi allows for spontaneous pair creation and annihilation of (ψ, ψ)

bosons, encouraging the formation of its bose condensate.

In the condensed phase, the new anyon spectrum is given by:

Ĩ = (I, I) + (ψ, ψ) (2.87)

ẽ = (σ, σ)1 (2.88)

m̃ = (σ, σ)2 (2.89)

f̃ = (I, ψ) + (ψ, I) (2.90)

σ̃+ = (σ, I) + (σ, ψ) (2.91)

σ̃− = (I, σ) + (ψ, I) (2.92)
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This new spectrum exhibits all three features of anyon condensation: identification, con-

finement, and splitting of anyons. We explain them in detail below, using the diagram-

matic action of string operators described in App. A.2 and the details of the Ising string

operators given by Table A.1 of App. A.4.

The following anyons are identified: (I, I) ∼ (ψ, ψ), (I, ψ) ∼ (ψ, I), (σ, I) ∼ (σ, ψ),

and (I, σ) ∼ (ψ, σ). Their identification occurs because their string operators only differ

by how they act on σ strings, which are absent in the low energy subspace. For example,

both W(I,I) and W(ψ,ψ) act trivially on I and ψ strings:

= (2.93)

= (2.94)

Thus, they are indistinguishible and must be identified.

The σ̃+ and σ̃− anyons are confined. Their confinement occurs because they are

composed of anyons with different topological spin, and thus braid nontrivially with the

vacuum. It can also be explained by the fact that they create σ strings when acting on

I or ψ strings. For example, consider W(σ,I) and W(σ,ψ):

= (2.95)

= i (2.96)

Therefore, they cost energy proportional to their length and are confined.

The (σ, σ) anyon is split into two anyons: ẽ and m̃. To understand this splitting,

recall that a string operator is acted on the lattice by drawing the operator over the

fattened lattice, resolving every overcrossing using the Ω symbols, joining the string tails

between adjacent overcrossings, discarding the diagrams where these joined strings do
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not match, and finally using the F symbols to express the diagram in terms of strings

on the lattice. For W(σ,σ), the rules for resolving overcrossings over I and ψ strings are

given by:

= + (2.97)

= − + (2.98)

Consider acing this operator on a string-net. Starting at one endpoint and resolving the

first overcrossing gives a superposition of two diagrams, one with two I string tails (first

rules on right-hand sides of the above equations) and another with two ψ string tails

(second rules on the right-hand sides). Let us focus on the I strings case. Resolving the

next overcrossing will again give a superposition of two diagrams, but we can immediately

discard the diagram with ψ string tails at the second overcrossing because it would not

match with the I strings we chose at the first overcrossing. So, choosing the I string tails

case at the first overcrossing fixes the rest of the overcrossings. Thus, there are actually

only two diagrams superimposed: one where we only use the first rules on the right-hand

side of the above equations, and the other where we only use the second rules. These

rules correspond to the m̃ and ẽ particle of the toric code, respectively.

Note that the transition to the toric code depends crucially on the density of the

σ flux present in the ground state. When the σ flux is dense, e.g. one flux in every

plaquette as in the σ flux phase, then local interactions between the fluxes can lift the

extensive ground state degeneracy and drive the transition. However, if the σ fluxes are

sparse and well-seperated, then we would expect the degeneracy to be protected against

local perturbations.
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2.5.2 General Properties

The Ising σ flux phase was exactly solvable due to the deep connection between

Ising× Ising and the toric code. In general, we do not expect non-Abelian flux phases to

be exactly solvable, and therefore expect them to be playgrounds of many rich properties.

Non-Abelian flux phases will generally have an extensive ground state degeneracy.

More specifically, a flux phase with a non-Abelian anyon a in every plaquette will have

ground state degeneracy of dNa for large N , where N is the number of plaquettes. For

doubled Chern-Simons theories, this extensive degeneracy originates from the degeneracy

of the fusion tree formed by fusing the non-Abelian fluxes, as demonstrated in App. A.6

and App. A.10.

We expect that this degeneracy will be lifted by generic local perturbations. However,

it is unclear in general whether it will be lifted into a gapless spectrum of states or simply

gapped out (as with the Ising σ flux phase). The former case would be interesting because

if the phase also exhibits topological protected braiding, then it would be a lattice model

of a true quasi-topological phase. The latter case would also be interesting because the

resulting phase may be a different topological phase, and this topological phase transition

may be an example of anyon condensation. For example, we expect certain non-Abelian

flux phases of SU(2)k to undergo condensation.[33]
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Chapter 3

Topological Enrichment of

Luttinger’s Theorem

3.1 Introduction

Free electrons in a translationally invariant system form a Fermi sea. Interacting

electrons may be described by Landau’s Fermi liquid theory, which, when applicable,

asserts that interactions between electrons do not qualitatively modify the free electron

picture, at most dressing the electrons as quasiparticles, which are fermions with renor-

malized quantities, such as mass. In particular, the Fermi volume VF of these emergent

quasiparticles is precisely determined by the filling fraction ν of the underlying electrons

per unit cell:

ν =
VF

(2π)D
mod 1, (3.1)

where the relation holds modulo an integer, which physically represents the number of

filled bands. This relation, fixing the Fermi volume for a specified electron density, is

the content of Luttinger’s theorem [34], which is a rare example of an exact result for an
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interacting system.

While Luttinger’s theorem was originally proved perterbatively, it was later recast

as a “quantization” condition for Fermi liquids by Oshikawa [35], who proved it non-

perturbatively by drawing inspiration from Laughlin’s flux threading argument [5, 36, 37]

and Lieb, Schultz, and Mattis’s variational argument [38]. Later, it was found that

Luttinger’s theorem may require modification for a fractionalized Fermi liquid, i.e. a

Fermi liquid that is accompanied by symmetry enriched topological (SET) order, and

that this modification, at least for some simple cases, may be understood by generalizing

Oshikawa’s arguments [39, 40, 41].

In this paper, we apply Oshikawa’s arguments to 2D systems with general SET or-

der [30]. By studying the interplay between symmetries, topological order, and the Fermi

sea, we derive a topologically enriched generalization of Luttinger’s theorem for fraction-

alized Fermi liquids:

ν − νtopo =
VF

(2π)2
mod 1, (3.2)

where, assuming that the underlying degrees of freedom effectively decouple into an SET

sector and a Fermi liquid sector, νtopo is the filling fraction of the SET sector. For

2D systems, there is a precise general definition of νtopo; it is the U(1) charge of the

background anyonic flux per unit cell that is specified by the SET order [31], as we will

describe. In higher dimensions, we expect a similar definition (and verify it for specific

3D examples), but a general formalism of higher dimensional topological and SET order

is currently lacking. Our result reaffirms the intuition that the underlying degrees of

freedom that topologically order should not contribute to the Fermi volume.

A consequence of the topologically enriched Luttinger’s theorem is that experimental

observation of a Fermi volume that deviates from that of an ordinary Fermi liquid may

point to the existence of a fractionalized Fermi liquid phase. Moreover, the SET order
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that is allowed for a given deviation is constrained by the corresponding value of νtopo.

Our paper is organized as follows. In Sec. 3.2, we review Oshikawa’s proof of Lut-

tinger’s theorem. In Sec. 3.3, we review 2D symmetry fractionalization, focusing on U(1)

and translational symmetries, and show that flux threading argument places a constraint

on which SET phases are allowed at some given filling. In Sec. 3.4, we derive the topo-

logically enriched version of Luttinger’s theorem for a general 2D fractionalized Fermi

liquid, apply it to the Z2 fractionalized Fermi liquid (FL*), and examine some examples

of 3D Z2 fractionalized Fermi liquids. Finally, in Sec. 4.6, we discuss further possible

applications and generalizations of our work.

3.2 Oshikawa’s Argument

In essence, Oshikawa’s argument involves starting with a periodic system in its ground

state, adiabatically inserting a flux along one of the directions, applying a large gauge

transformation to remove the flux, and finally comparing the resulting state with the

original state in order to derive constraints for the system. This yields the commensu-

rability condition if the system is gapped [42], and Luttinger’s theorem if the system is

gapless with a Fermi surface of charged quasiparticles [35]. We review these arguments

in more detail.

We consider a D dimensional periodic system of size L1 × · · · × LD with a global

U(1) symmetry and a corresponding filling fraction, specifying the density per unit cell

ν = p/q for some coprime integers p and q. We assume the system is described by a

translationally invariant Hamiltonian H(0) and is in a ground state |Ψ(0)〉. Let the state

|Ψ(0)〉 be an eigenstate of the translation operator RT1 with eigenvalue eiP1(0), i.e. it has

momentum P1(0). (We set ~ = e = 1.)

Next, we consider adiabatically inserting a U(1) flux so that a uniform electric field
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✦

② ①

Figure 3.1: A 2D periodic lattice depicted as a torus. A flux inserted to induce a
uniform electric field in the x-direction can be thought of as threading the handle of
the torus.

is induced along the x̂1-direction, for which the Hamiltonian is H(Φ) and adiabatic

path of ground states is given by |Ψ(Φ)〉. In the 2D case, where the periodic system is

effectively a torus, the flux can be thought of as threading the handle of the torus, as

illustrated in Fig. 3.1. Since inserting a 2π flux returns the system to the same point

in configuration space, the spectra of H(2π) and H(0) are identical, and there exists a

large gauge transformation G that removes the flux: GH(2π)G−1 = H(0). Therefore,

G|Ψ(2π)〉must be an eigenstate ofH(0). Also, since [RT1,H(Φ)] = 0 throughout the flux

threading process, |Ψ(2π)〉 has momentum P1(0), and since GRT1G
−1 = ei2πνL2···LDRT1 ,

the state G|Ψ(2π)〉 has momentum P1(0) + 2πνL2 · · ·LD mod 2π.

If the system is gapped and remains gapped throughout the flux threading process,

then the adiabatic theorem guarantees that G|Ψ(2π)〉 is a ground state of H(0) 1. By

choosing arbitrary integers L2, . . . , LD that are coprime with q, we find q degenerate

ground states with different momenta. In the absence of topological order, these degen-

1For subtleties regarding adiabatic flux insertion and quasi-adiabatic evolution of gapped, degenerate
Hamiltonians, see Ref. [43].
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erate ground states must be the result of spontaneous translational symmetry breaking.

Their period in the x̂1-direction must be an integer multiple of q, and therefore the new

unit cell, which is the original unit cell enlarged by a factor of q, has an integer filling

fraction. This is Oshikawa’s commensurability condition [42], which was later rigorously

proven for 2D systems by Hastings [44]. In the presence of topological order, transla-

tional symmetry need not be spontaneously broken, since topological phases can have

translationally-invariant, degenerate ground states on a torus. In 2D, however, only cer-

tain topological orders can coexist with U(1) and translational symmetry for a given ν, as

we will explain in Sec. 3.3.4. In the rest of this paper, we assume there is no spontaneous

symmetry breaking in the system.

If the system is gapless, then G|Ψ(2π)〉 is no longer necessarily a ground state. How-

ever, it is still true that its momentum is shifted by 2πνL2 · · ·LD, and this shift can be

compared with the momentum shift of the emergent degrees of freedom. For example, if

the system is a Fermi liquid of charge 1 quasiparticles, then threading the flux applies a

Galilean boost to the Fermi sea, shifting the momentum of each of the NF quasiparticles

by 2π/L1. Equating the two momentum shifts yields the constraint

ν =
VF

(2π)D
+

n

L2 · · ·LD
, (3.3)

for some integer n, where VF ≡ (2π)DNF/L1 · · ·LD is the Fermi volume. Similarly, in-

serting flux along the other directions yields more constraints on ν, which are compatible

for coprime integers L1, . . . , LD iff

ν =
VF

(2π)D
mod 1. (3.4)

This is Oshikawa’s derivation of Luttinger’s theorem [35]. In Appendix B.1, we provide
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a derivation of Luttinger’s theorem for the 2D Kondo model, under the assumption that

it is in a Fermi liquid phase.

3.3 Symmetry Fractionalization

A symmetric system with topological order can manifest distinct SET phases, which

cannot be adiabatically connected to each other while respecting the symmetry [30]. A

distinguishing signature of these phases is symmetry fractionalization [29, 30], a phe-

nomenon that allows quasiparticles to carry fractionalized quantum numbers of the

symmetry. For example, U(1) fractionalization leads to quasiparticles with fractional

charge [6, 20], while translational symmetry fractionalization leads to a nontrivial back-

ground anyonic flux in the system [45, 31]. (Both of these examples will be described in

more detail.)

In general, symmetry fractionalization in a 2D topologically ordered phase is classified

by the cohomology group H2
ρ(G,A), where G is the symmetry group, A is the group of

Abelian anyons under fusion, and ρ is the symmetry action, which may permute anyon

types. We first review the derivation of this classification and, in doing so, introduce

relevant notation and concepts. (See Ref. [30] for more details.) We will assume that the

topological order is bosonic and that symmetries are unitary. We also focus on the case

where the symmetry action ρ does not permute anyon types, which must be the case for

symmetries described by a continuous and connected group, such as U(1).

3.3.1 Review of On-Site Symmetry Fractionalization

Consider a symmetric 2D system in a topological phase with symmetry group G,

whose elements g act linearly on the Hilbert space by the unitary on-site operators

Rg =
∏

k∈I R
(k)
g . Let |Ψ{a1,...,an}〉 be a state with n quasiparticles carrying topological
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charges a1, . . . , an, respectively, which collectively fuse to the trivial (vacuum) topological

charge. Assuming the action of the symmetry does not permute anyon types, it takes

the form

Rg|Ψ{a1,...,an}〉 =
n∏

j=1

U (j)
g |Ψ{a1,...,an}〉, (3.5)

where U
(j)
g are unitary operators whose nontrivial action is localized in a neighborhood

of the jth quasiparticle. The local operators form projective representation of G, with

multiplication given by

U (j)
g U

(j)
h |Ψ{a1,...,an}〉 = ηaj (g,h)U

(j)
gh |Ψ{a1,...,an}〉, (3.6)

where ηa(g,h) ∈ U(1).

The phases ηa(g,h) must satisfy certain constraints, which provide a classification

of the possible way symmetry can be fractionalized. Since RgRh = Rgh, the fact that

Eq. (3.5) holds for any configuration of topological charges allowed by fusion requires

that

ηa(g,h)ηb(g,h) = ηc(g,h), (3.7)

whenever c is an allowed fusion outcome of a and b, i.e. N c
ab 6= 0. This property allows

us to write the projective phases as [30]

ηa(g,h) =Ma,w(g,h), (3.8)

where w(g,h) ∈ C2(G,A) is an A-valued 2-cochain, i.e. a A-valued function on G2, and

Ma,b is the mutual braiding statistics between anyons a and b.
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Associativity of the local operators requires that

ηa(h,k)ηa(g,hk) = ηa(gh,k)ηa(g,h). (3.9)

This implies w(g,h) ∈ Z2(G,A) is a 2-cocycle, i.e. that

w(h,k)×w(g,hk) = w(gh,k)× w(g,h). (3.10)

However, ηa(g,h) have some redundancy. The local operators U
(j)
g can be “trivially”

redefined to Ũ
(j)
g , such that

Ũ (j)
g |Ψ{a1,...,an}〉 = ζaj (g)U

(j)
g |Ψ{a1,...,an}〉, (3.11)

where ζa(g) ∈ U(1), as long as ζa(g)ζb(g) = ζc(g) whenever c is an allowed fusion outcome

of a and b. Under this redefinition,

η̃a(g,h) =
ζa(gh)

ζa(h)ζa(g)
ηa(g,h), (3.12)

and therefore projective phases ηa(g,h) related by such transformations are physically

equivalent. Since they respect fusion, the redefinition phases can similarly be written as

ζa(g) =Ma,z(g), where z(g) ∈ C1(G,A) is a 1-cochain. In this way, the redundancy of the

local operators corresponds to a redundancy of the 2-cocycles w(g,h) given by redefinition

by 2-coboundaries dz(g,h) = z(h)× z(gh)× z(g) ∈ B2(G,A). Thus, the possible manner

in which symmetry can fractionalize, as encoded in the allowed projective phases ηa(g,h)

modulo the redundancy, is classified by the elements of the second cohomology group

[w(g,h)] ∈ H2(G,A) =
Z2(G,A)

B2(G,A)
. (3.13)
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3.3.2 U(1) Symmetry Fractionalization

Consider a system with an on-site U(1) symmetry, which may be a subgroup of the

full symmetry group. For example, it can be the U(1) associated with particle number

conservation or U(1) < SO(3) associated with spin rotational symmetry. Let us label

the elements of U(1) as θ ∈ [0, 2π), and their local action on the anyons as U
(j)
θ . We can

choose the 2-cocycles

w(θ1, θ2) = v(θ1+θ2−[θ1+θ2]2π)/2π, (3.14)

where v ∈ A, to represent the distinct cohomology classes [w] ∈ H2(U(1),A) = A.

While w(θ1, θ2) is not gauge invariant, since it can be redefined by 2-coboundaries, v =

w(θ, 2π − θ) is gauge invariant. Therefore, we label U(1) fractionalization classes by v.

Physically, the anyon v is associated with the “vison,” which is the quasiparticle created

by threading a 2π U(1) flux [31].

Let Qa be the U(1) charge of anyon a. Rotating a state by an arbitrary θ results in

Rθ|Ψ{a1,...,an}〉 = eiθQ|Ψ{a1,...,an}〉, (3.15)

where the total charge Q =
∑

j Qaj must be an integer, since R0 = R2π. Meanwhile, the

local operators act as

U
(j)
θ |Ψ{a1,...,an}〉 = eiθQaj |Ψ{a1,...,an}〉, (3.16)

where Qa need not be integers. This action of U
(j)
θ is not gauge invariant, but a gauge

invariant statement can be obtained by applying a complete 2π rotation [with the use of

Eq. (3.8)]:

U
(j)
θ U

(j)
2π−θ|Ψ{a1,...,an}〉 =Maj ,v|Ψ{a1,...,an}〉. (3.17)

57



Topological Enrichment of Luttinger’s Theorem Chapter 3

Thus, the anyon a has a possibly fractional charge Qa, which is given by the relation

ei2πQa =Ma,v. (3.18)

3.3.3 Translational Symmetry Fractionalization

Consider a 2D system in a topological phase with Z2 translational symmetry. The

fractionalization of this symmetry requires a straightforward modification of the on-

site formalism. In particular, the state vector |Ψ{a1,...,an}〉 on the right hand side of

Eq. (3.5) must have the positions of its quasiparticles translated (according to the applied

translation operator) with respect to |Ψ{a1,...,an}〉 on the left hand side, and the local

unitary operators U
(j)
g should be understood to act nontrivially in a neighborhood of the

translated quasiparticle positions [30]. Let us label the generators of translation as Tx

and Ty and their corresponding local unitary operators as U
(j)
x and U

(j)
y .

We can choose the 2-cocycles

w(Tmx
x Tmy

y , T nx
x T ny

y ) = bmynx , (3.19)

where b ∈ A, to represent the distinct cohomology classes [w] ∈ H2(Z2,A) = A. While

w(Tmx
x T

my
y , T nx

x T
ny
y ) is not gauge invariant, since it can be redefined by 2-coboundaries,

the quantity w(Ty, Tx)×w(Tx, Ty) = b is gauge invariant and, moreover, completely spec-

ifies cohomology class. Therefore, we can label translational symmetry fractionalization

classes by b ∈ A.

Physically, the anyon b can be thought of as the background anyonic flux per unit
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cell. This is because

(U
(j)
Ty

)−1(U
(j)
Tx

)−1U
(j)
Ty

U
(j)
Tx

|Ψ{a1,...,an}〉

=
ηaj (Ty, Tx)

ηaj (Tx, Ty)
|Ψ{a1,...,an}〉

=Maj ,w(Ty ,Tx)Maj ,w(Tx,Ty)
|Ψ{a1,...,an}〉

=Maj ,b|Ψ{a1,...,an}〉. (3.20)

That is, when an anyon a is transported around a unit cell, the wavefunction acquires a

phase corresponding to braiding a around b.

3.3.4 Flux Threading Argument

Consider a system with both on-site U(1) symmetry and Z2 translational symmetry.

Using Künneth formula for group cohomology, one has [31]

H2(U(1)× Z
2,A) = H2(U(1),A)×H2(Z2,A), (3.21)

which means that the fractionalization for the combined symmetries are determined by

that of the U(1) and translational symmetries, which can be independently specified.

Suppose the system belongs to U(1) fractionalization class v and translational symmetry

fractionalization class b.

If we consider a state that has 2π U(1) flux through a handle of the torus and transport

an anyon a around the handle, so that it winds around the flux once, the wavefunction

will acquire the Aharanov-Bohm phase ei2πQa . By Eq. (3.18), this is identical to the

phase Ma,v that is acquired by braiding a around v. Therefore, the effect of threading

the flux through a handle of the torus should be gauge equivalent to creating a vison
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✟ ❂ ✷✙

② ① ✈

G|Ψ(2π)〉 = Wv|Ψ(0)〉
Figure 3.2: Threading a 2π flux through the handle of the torus creates a v anyon
loop (blue). The dots represent the anyonic flux per unit cell b (red).

✈

✈

② ①

(RTx)
−1(Wv)

−1RTxWv|Ψ(0)〉 = (Mv,b)
Ly |Ψ(0)〉

Figure 3.3: The RTx eigenvalue of Wv|Ψ(0)〉 is determined by the mutual braiding
statistics between v and b. To go from the l.h.s. to the r.h.s., we partially fused the
adjacent v anyon loops, being careful not to pass them through the anyonic flux b
lines emanating from the center of every cell of the torus.
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loop that wraps around the handle, as illustrated in Fig. 3.2. That is

G|Ψ(2π)〉 = Wv|Ψ(0)〉, (3.22)

where Wv is an operator that creates a v anyon loop wrapping around the handle of the

torus. 2 (See Appendix B.2 for a more direct argument.)

The state Wv|Ψ(0)〉 has momentum Px(0) + 2πQbLy mod 2π, since

(RTx)
−1(Wv)

−1RTxWv|Ψ(0)〉 = (Mv,b)
Ly |Ψ(0)〉, (3.23)

which can be understood from the relation in Fig. 3.3. On the other hand, we know

the state G|Ψ(2π)〉 has momentum Px(0) + 2πνLy mod 2π. Equating the momenta of

G|Ψ(2π)〉 and Wv|Ψ(0)〉, and repeating the argument in the other direction yields

ν = Qb ≡ νtopo mod 1. (3.24)

In other words, the filling fraction of a 2D SET phase is equal to the U(1) charge of the

background anyonic flux per unit cell.

Eq. (3.24), which relates microscopic and emergent properties of the system, can be

viewed as a constraint on the allowed SET order that may exist at a given filling. For

example, consider the Ising anyon model, which contains Abelian anyons I and ψ, and

non-Abelian anyon σ. The fact that MI,I = MI,ψ = Mψ,ψ = 1 implies that Qb = 0 for

any fractionalization pattern, and so it is impossible to have the pure Ising topological

order at a non-integer fractional filling.

2The application of Wv to a ground state is equivalent to creating a v− v̄ pair of anyons, adiabatically
transporting v around the cycle of the torus, and then annihilating the pair to vacuum.
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3.4 Fractionalized Fermi Liquid

A fractionalized Fermi liquid is a gapless system with U(1) and translational SET

order, whose gapless modes are well-described by Fermi liquid theory, and whose symme-

tries are fractionalized. We assume that topological excitations and gapless excitations

coexist, but are effectively decoupled from one another, i.e. the system decouples into an

SET sector and a Fermi liquid sector, and is consequently in a strong quasi-topological

phase [32]. We consider a 2D system for which the SET order belongs to U(1) fraction-

alization class v and translational symmetry fractionalization class b.

Similar to the situation described in Sec. 3.3.4, starting from a ground state |Ψ(0)〉

of a fractionalized Fermi liquid and threading a 2π flux through the handle of a torus

is gauge equivalent to applying a vison loop that wraps around the handle to the state

|Ψ′(0)〉,

G|Ψ(2π)〉 = Wv|Ψ′(0)〉, (3.25)

where |Ψ′(0)〉 is |Ψ(0)〉 with a Galilean boosted Fermi sea, so that it is in the same

topological sector as |Ψ(0)〉, but has a shifted momentum. Note that the assumption of

the decoupling between the SET sector and the Fermi liquid sector is crucial here, since it

allows us to separate the effect of flux threading on the SET sector, i.e. wrapping a vison

loop around the handle, from its effect on the Fermi liquid sector, i.e. boosting the Fermi

sea. If the topological excitations were to interact with the Fermi liquid quasiparticles in

a manner that nontrivially coupled the SET sector and the Fermi liquid sector, then the

effect of flux threading may not be so cleanly separable.

The state |Ψ′(0)〉 has momentum Px(0)+2πNF/Lx mod 2π, due to the Fermi liquid

quasiparticles. As explained in Sec. 3.3.4, the state Wv|Ψ′(0)〉 has momentum 2πQbLy

relative to the state |Ψ′(0)〉. On the other hand, we know the state G|Ψ(2π)〉 has mo-

mentum Px(0) + 2πνLy mod 2π. Equating the momenta of G|Ψ(2π)〉 and Wv|Ψ′(0)〉
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and repeating the argument in the other direction yields Luttinger’s theorem for a 2D

fractionalized Fermi liquid:

ν = Qb +
VF

(2π)2
mod 1. (3.26)

This is essentially a combination of Eq. (3.4) and Eq. (3.24). We see that the background

anyonic flux can appropriate some of the charge available to the emergent degrees of

freedom, thus changing the Fermi volume. Or, put differently, the Fermi volume is

determined by the filling fraction of the Fermi liquid sector:

ν − νtopo =
VF

(2π)2
mod 1. (3.27)

3.4.1 Z2 Fractionalized Fermi Liquid: FL*

Consider a 2D periodic lattice with νc = νc↑ + νc↓ conduction electrons and νs spin-
1
2

localized spins per unit cell, governed by the Kondo model Hamiltonian

H = −t
∑

〈jk〉,α
(c†jαckα + h.c.) + U

∑

j

nj↑nj↓

+K
∑

j

~sj · ~Sj + J
∑

〈jk〉

~Sj · ~Sk, (3.28)

where ~sj =
∑

αβ c
†
jα~σαβcjβ/2. As explained in App. B.1, the above Hamiltonian has two

global U(1) symmetries, denoted U(1)↑ and U(1)↓, which correspond to the independently

conserved quantities νc↑+msνs and νc↓−msνs, respectively, wherems is the magnetization

per localized spin.

In the ordinary Fermi liquid phase of the Kondo model, these two symmetries lead
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to the Luttinger’s theorems

νc↑ +

(
1

2
+ms

)
νs =

VF↑
(2π)2

mod 1, (3.29)

νc↓ +

(
1

2
−ms

)
νs =

VF↓
(2π)2

mod 1, (3.30)

which can be combined to give the spin-summed Luttinger’s theorem

νc + νs =
VF

(2π)2
mod 2. (3.31)

See App. B.1 for details.

If the Kondo model is placed on a geometrically frustrated lattice, e.g. triangular

lattice, then at low temperatures and small enough values of K, the localized spins are

believed to topologically order. In this case, the system may enter the so-called FL*

phase of the Kondo model [39, 46, 47], which is a fractionalized Fermi liquid. Let us

assume that K = 0, so that the electrons are decoupled from the spins, and that the

spins form a Z2 spin liquid with toric code topological order.

In this case, the localized spins carry U(1)↑ and U(1)↓ charge values of 1/2. Conse-

quently, the Luttinger’s theorems are modified by νtopo = νs/2 to give

νc↑ +msνs =
VF↑
(2π)2

mod 1, (3.32)

νc↓ −msνs =
VF↓
(2π)2

mod 1, (3.33)

which can be combined to give the spin-summed Luttinger’s theorem for the FL* phase

νc =
VF

(2π)2
mod 2. (3.34)
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We emphasize that this result for the FL* phase differs from the result in Eq. (3.31) for

the ordinary Fermi liquid phase when the number of localized spins per unit cell νs is

odd. This difference can be understood by studying symmetry fractionization of the Z2

spin liquid, as we now explain in more detail.

Recall that the toric code [15] has four types of anyons: trivial excitations I, bosons

e and m, and fermionic composites f = e ×m. They are all Abelian and obey Z2 × Z2

fusion rules. The nontrivial braiding statistics are Me,m = Me,f = Mm,f = −1. Let the

U(1)↑ and U(1)↓ symmetry fractionalization class be specified by v = m. In this case,

QI = Qm = 0 and Qe = Qf = 1/2, i.e. e is a spin-1
2
spinon, m is a spinless vison, and

f is a spin-1
2
fermion. 3 If νs is even, then, by Eq. (3.24), the translational symmetry

fractionalization class is either b = I or b = m, and Eq. (3.31) agrees with Eq. (3.34).

However, if νs is odd, then the translational symmetry fractionalization class is either

b = e or b = f . In this case, Eq. (3.31) and Eq. (3.34) clearly disagree, and the topological

enrichment of Luttinger’s theorem for the FL* phase is manifest.

3.4.2 3D Z2 Fractionalized Fermi Liquid

Consider a spinless Fermi liquid that is accompanied by 3D bosonic toric code (Z2

gauge theory) topological order. The 3D bosonic toric code has four types of topological

3Observe that the spin symmetry of the localized spins has been fractionalized. To see this, first note
that while the localized spins have SU(2) spin symmetry, the relevant symmetry group is actually SU(2)
modded by its center Z2: SU(2)/Z2 = SO(3). In other words, the Hilbert space factorizes into two
disjoint subspaces, and the SU(2) operators act as a direct product of SO(3) operators on each subspace.
The representations of SO(3) are classified by Z, i.e. integer spins. Indeed, local operators such as S+

j

and S−

j change the spin by an integer. Thus, an excitation must normally have integer spin. However,

in the Z2 spin liquid, the e and f are spin- 1
2
excitations.

Alternatively, we may view the localized spins as electrons, in which case the relevant symmetry group
is the product of the SU(2) spin symmetry group and the U(1) charge symmetry group, modded by its
center Z2: SU(2)×U(1)/Z2 = U(2). The representations of U(2) are classified by (s, q), where 2s and
q are integers whose sum is even. Therefore, a particle with spin s and charge q must obey 2s + q
mod 2 = 0. The electron, for instance, transforms as the (1

2
, 1) representation. However, in the Z2 spin

liquid, the e and f are spin- 1
2
chargeless excitations.

65



Topological Enrichment of Luttinger’s Theorem Chapter 3

⑦❆

①

②
③

G|Ψ(2π)〉 = Wm|Ψ′(0)〉
Figure 3.4: Inserting a 2π flux along the x direction is equivalent to having an m
membrane (blue) in the yz plane. The dots represent an e occupying every cell (red).
(The underlying 3D periodic lattice is not shown.)

(RTx)
−1(Wm)

−1RTxWm|Ψ(0)〉 = (Mm,e)
LyLz |Ψ(0)〉

Figure 3.5: The RTx eigenvalue of Wm|Ψ(0)〉 is determined by the mutual braiding
statistics between m and e. To go from the l.h.s. to the r.h.s., we have partially fused
the adjacent m membranes, being careful not to pass them through the e at the center
of every cell.

66



Topological Enrichment of Luttinger’s Theorem Chapter 3

excitations: trivial excitations I, point excitations e, loop excitations m, and composite

loop excitations f = e ×m [48, 49]. Topological loop excitations are created along the

boundary of a fluctuating surface operator, similar to how topological point excitations

are created at the endpoints of fluctuating string operators. While the fusion rules and

exchange statistics of excitations in a 3D topological order are more intricate than in

2D, our discussion will simply rely on the fact that Me,m = −1, which now expresses the

phase obtained by taking an e quasiparticle around a circuit that links a m loop once. As

in 2D, the topological enrichment of Luttinger’s theorem can be understood in terms of

the symmetry fractionalization. Although 3D symmetry fractionalization currently lacks

a general formalism, it has been recently studied for the 3D toric code [50].

Suppose that U(1) charge symmetry is fractionalized such that e is charge-1
2
, and

translational symmetry is fractionalized such that an e occupies every unit cell, and

hence we have νtopo = 1/2. Then, at least for our purposes, inserting a flux such that an

uniform electric field is induced along the x-direction is gauge equivalent to introducing

anm membrane in the yz-plane, as shown in Fig. 3.4, since transporting an e anyon along

the x-direction around a nontrivial cycle of the torus results in the wavefunction acquiring

a phase of −1 in both cases. (Since the m membrane is created by a non-contractible

surface operator Wm that has no boundary, it does not create an m loop excitation,

but still acts nontrivially on the ground states.) Mathematically, this is expressed as

G|Ψ(2π)〉 = Wm|Ψ′(0)〉, where |Ψ′(0)〉 is in the same topological sector as |Ψ(0)〉.

The state |Ψ′(0)〉 has momentum Px(0)+2πNF/Lx mod 2π, due to the Fermi liquid

quasiparticles. The state Wm|Ψ′(0)〉 has momentum πLyLz relative to |Ψ′(0)〉, since

(RTx)
−1(Wm)

−1RTxWm|Ψ(0)〉 = (Mm,e)
LyLz |Ψ(0)〉, (3.35)

which can be understood from the relation in Fig. 3.5. On the other hand, we know that
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the state G|Ψ(2π)〉 has momentum Px(0) + 2πνLyLz mod 2π. Equating the momenta

of G|Ψ(2π)〉 and Wv|Ψ(0)〉 and repeating the argument in the other directions yields the

topologically enriched Luttinger’s theorem

ν − 1

2
=

VF
(2π)3

mod 1. (3.36)

In the context of the 3D Kondo model, a fractionalized Fermi liquid phase is realized

when the localized spins acquire the 3D bosonic toric code topological order. If the U(1)↑

and U(1)↓ symmetries are fractionalized such that e quasiparticles carry spin-1
2
, and the

translational symmetry is fractionalized such that an e (or f) occupies each unit cell,

then the topologically enriched Luttinger’s theorem is

νc + νs − 1 =
VF

(2π)3
mod 2. (3.37)

3.5 Discussion

We have extended Oshikawa’s arguments to systems that possess SET order. For

fractionalized Fermi liquids, this led to a topologically enriched version of Luttinger’s

theorem. The modified Luttinger’s theorem of Eq. (3.2) determines how the presence

of topological order can change the Fermi volume. From the opposite perspective, this

relation places strict constraints on the possible SET order allowed to manifest in a

fractionalized Fermi liquid with an experimentally observed Fermi volume that deviates

from the näıve value expected for an ordinary Fermi liquid.

While we have focused on systems whose SET sector and Fermi liquid sector are

effectively decoupled, it would be interesting to apply our arguments to other gapless

topological systems, e.g. Z2 and U(1) gapless spin liquids. For gapless spin liquids, the
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challenge is understanding their symmetry fractionalization and their behavior under

flux threading, particularly when there are nontrivial interactions between the gapless

topological excitations and the gapless Fermi liquid quasiparticles. In general, it would

be interesting to relax our assumption that the SET sector and Fermi liquid sector of a

fractionalized Fermi liquid are decoupled. Introducing some interaction that mixes these

sectors would drive the system into a weak quasi-topological phase, and may nontrivially

modify our results.

Finally, a natural extension of our arguments would be to fully understand their

generalization to higher dimensional systems. As mentioned, we expect Eq. (3.2) to hold

for a general D-dimensional fractionalized Fermi liquid, but our ability to establish this

relation is limited by the fact that the theory of higher dimensional topological order and

symmetry enrichment is not yet fully developed.
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Chapter 4

Anyonic Entanglement and

Topological Entanglement Entropy

4.1 Introduction

Entanglement, “the characteristic trait of quantum mechanics” [51], underlies some

of the most exotic phenomena in condensed matter physics, including quantum criti-

cal points [52, 53], quantum spin liquids [54], and topologically ordered phases of mat-

ter [14, 16]. Topological order occurs in gapped, many-body systems whose microscopic

degrees of freedom possess daedal entanglement in their ground states. In particular,

topological phases exhibit emergent universal phenomena that depend only on the global

(topological) properties of the system, making them robust to local perturbations and

incapable of being identified by any local probe of the system. Among the most intriguing

of such emergent phenomena is the ability to support anyons – quasiparticle excitations

with a topological (nonlocal) state space and exotic exchange statistics characterized by

braiding [9, 10, 11, 12, 13].

Beyond their fundamental interest as exemplars of the ways nature can give rise to
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emergent properties that are not intrinsic to the microscopic degrees of freedom, anyons

provide a technologically promising platform for quantum information processing. Topo-

logical quantum computing [15, 55, 16], the nonlocal storage and manipulation of quan-

tum information in an anyonic system, is robust against errors due to local perturbations

and noise from the environment.

The topological entanglement entropy (TEE) [7, 8] is a signature of topological order

that has been the focus of numerous theoretical [48, 56, 57, 58, 59, 60, 61, 62, 63, 64]

and numerical studies [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Despite

these efforts, an intuitive understanding of the origin and form of the TEE has remained

elusive and only an inchoate connection between the TEE and the anyonic excitations of

the system has been established.

In this work, we examine entanglement and entropy of anyonic systems. In doing

so, we demonstrate that TEE is a natural consequence of the conservation of topological

charge. We obtain our results using anyon models, which are the algebraic description of

the long-ranged, low-energy effective theories of quasiparticles. Mathematically, anyon

models are known as unitary modular tensor categories (UMTCs) and apply beyond the

context of anyons [12, 79, 13, 18, 19, 80, 81]. We use the formalism for anyonic density

matrices developed in Refs. [82, 83]. Our analysis applies to bosonic topological phases

of matter on compact, orientable surfaces in two spatial dimensions.

This paper is organized as follows. In Section 4.2, we briefly review classical and

quantum entropy. In Section 4.3, we discuss anyonic entanglement, introducing the

anyonic entanglement entropy (AEE) and entropy of anyonic charge entanglement, as

well as presenting a new derivation of the TEE for a disk in the plane. In Section 4.4,

we discuss the state space of anyon models on higher genus surfaces. In Section 4.5,

we apply this formalism to derive the TEE on higher genus surfaces. In Section 3.5, we

conclude and place our results in the broader context of lattice models, topological defects,
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fermionic topological phases, non-orientable surfaces, and three-dimensional topological

phases.

4.2 Entropy

4.2.1 Classical and Quantum Entropies

Entropy is the measure of uncertainty in a state of a physical system. Classically, if

an unknown variable X has value x with probability px, the Shannon entropy is

H({px}) ≡ −
∑

x

px log px. (4.1)

The Shannon entropy quantifies our uncertainty in the value of X , or equivalently, how

much information we gain by learning the value of X .

The classical Rényi entropy of order α is defined by

Hα({px}) ≡
1

1− α
log

(
∑

x

pαx

)
(4.2)

for α > 0. Note that limα→1Hα({px}) = H({px}), thus the Rényi entropies may be

understood as a generalization of the Shannon entropies. The Rényi entropies are nor-

malized to vanish for a pure state ({px} = {δxy} for some y) and to be maximized for a

uniform distribution ({px} = {1/N}).

Classical entropies can be easily extended to describe quantum states by replacing

probability distributions with density matrices and sums with traces over the degrees of

freedom in the system. The quantum analogue of the Shannon entropy for a quantum
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state ρ is the von Neumann entropy,

S(ρ) ≡ −Tr(ρ log ρ), (4.3)

which can be re-expressed as the Shannon entropy of the eigenvalues λx of ρ,

S(ρ) = H({λx}) = −
∑

x

λx log λx. (4.4)

The quantum Rényi entropy of order α is similarly generalized as

S(α)(ρ) ≡ 1

1− α
log[Tr(ρα)]. (4.5)

There exist many other entropy-related quantities. The relative entropy measures the

closeness of two quantum states ρ and σ:

S(ρ||σ) ≡ Tr (ρ log ρ)− Tr (ρ log σ) . (4.6)

The mutual information measures how much information is shared between two subsys-

tems. That is, if a system with state ρ has two subsystems A and B, then the mutual

information is

I(A : B) ≡ S(ρA) + S(ρB)− S(ρ), (4.7)

where ρA = TrBρ and ρB = TrAρ. Both the relative entropy and the mutual information

can be defined for classical probability distributions in the natural way.
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4.2.2 Entanglement Entropy

Consider partitioning a system into a region A and its complement Ā. If we are

interested only in A, then we would like to describe the state with degrees of freedom

local to A, rather than the state of the full system, ρ. When the Hilbert space of the

system admits a factorization

H = HA ⊗HĀ, (4.8)

where HA has support in A, then we can define the reduced density matrix ρA by

ρA = TrĀρ. (4.9)

The partial trace TrĀ means we sum over all degrees of freedom local to Ā, essentially

retaining only the information associated with A. For any operator O = OA ⊗ OĀ, where

OA has support in A, the partial trace is the unique operator satisfying Tr (ρO) =

TrA (ρAOA) [84].

Note that ρA is a pure state only when ρ = ρA ⊗ ρB is separable and ρA = |ψA〉 〈ψA|.

In general, if there is some entanglement between A and Ā, ρA will be a mixed state.

The von Neumann entropy of the reduced density matrix,

S(ρA) ≡ −TrA[ρA log ρA], (4.10)

is a measure of this entanglement; it can only decrease when acted upon by operators local

to A. We call S(ρA) the entanglement entropy. If ρ for the full system is a pure state,

then S(ρA) is the unique entanglement measure that is (1) invariant under operators

acting only on A, (2) continuous, and (3) additive when there are several copies of the

system.
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4.2.3 Topological Entanglement Entropy

In a gapped two dimensional system partitioned into regions A and Ā with smooth

boundaries, the ground state of the A∪ Ā is expected to have entanglement entropy that

scales linearly with the boundary separating A and Ā. If the state is topologically ordered,

the entanglement entropy will have a universal constant correction to this “boundary

law” that is completely determined by topological invariants [48, 7, 8]. The ground

state wavefunction of a topological phase on the plane, partitioned into a disk A and its

complement Ā, has entanglement entropy

SA = αL+ Stopo +O(L−1) (4.11)

where L is the linear size of A, α is a non-universal constant dependent upon the short

distance physics of the system, and

Stopo ≡ − logD (4.12)

is the topological entanglement entropy (TEE) [7]. The quantity D is the total quantum

dimension of the system. For a topological phase whose corresponding TQFT is described

by the UMTC C, the total quantum dimension is defined by

D =

√∑

a∈C
d2a, (4.13)

where da is the quantum dimension of the anyon with topological charge a (see C.1 for

a review). Eq. (4.11) also holds in the context of string-nets [8, 25, 85], see Section 4.6.1

for further discussion.

At first consideration, Stopo might seem like a rather crude quantity to use for charac-
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D2 UMTCs

1 Z1 (Trivial)

2 Z
(p)
2 , p = 1

2
, 3
2

3 Z
(p)
3 , p = 1, 2

φ+ 2 Fib±1

4 Z
(1/2)
2 × Z

(3/2)
2 ; Kν , ν = 0, 1, . . . , 15

5 Z
(p)
5 , p = 1, 2

6 Z
(p)
6 , p = 1

2
, 5
2
, 7
2
, 11

2

7 Z
(p)
7 , p = 1, 3

2 (φ+ 2) Fib±1 × Z
(p)
2 , p = 1

2
, 3
2

Table 4.1: A TQFT in (2 + 1)D is described by a UMTC, which can be classified
according to its value of the total quantum dimension D. This table lists all distinct

UMTCs with D2 < 8, as determined from Refs. [82, 88, 89]. (φ = 1+
√
5

2 ≈ 1.6 is the
Golden ratio.) For most values of D, there are very few possible UMTCs. Moreover,
the UMTCs with a given value of D are usually very closely related. Additional details
may be found in C.2.

terizing a topological phase, as it is a single number. Indeed, other entanglement-based

probes of the system, such as the “entanglement spectrum” [86], will generally provide

more information about the system. However, topological order is highly constrained, so

the information contained in the single number Stopo can be used, with a bit of algebraic

effort, to significantly narrow the field of possibilities when trying to identify a topological

phase. Indeed, for many cases, knowing Stopo is sufficient to completely determine the

topological order (up to chirality). To be more specific, in the context of anyon models,

if N refers to the number of anyon types in a theory, one can easily show (from the fusion

rules) that N ≤ D2. It was shown in Ref. [87] that, for a given rank N , there are only

a finite number of possible UMTCs. It follows that there are only a finite number of

possible UMTCs for a particular value of D. Moreover, the UMTCs with a given value

of D are usually very closely related. In Table 4.1, we list all UMTCs for D2 < 8.

Since the seminal works of Refs. [7, 8], TEE has received a significant amount of at-

tention. Theoretical studies have investigated the connections between TEE and ground
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state degeneracy [61], derived the TEE for Chern-Simons theories on higher genus sur-

faces [56, 63], derived TEE for certain systems with topological defects [60], and ex-

plored the TEE in the context of (3 + 1)-dimensional topological phases [57, 59, 62, 64].

In numerical studies, TEE has become a useful quantity for identifying topological

phases [65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78] (though it has been demon-

strated that the accuracy of numerical extractions of TEE requires some caution [68, 71]).

Nonetheless, the meaning and origin of Stopo has remained somewhat nebulous. In this

paper, we attempt to demystify these concepts by analyzing entanglement entropy and

TEE in the context of anyon models.

Our calculations of the entanglement entropy and the TEE only take into account the

long-range physics encoded in the TQFT describing the topological phase. If the system

is away from the purely topological, zero correlation length limit, microscopic details of

the system will modify the length-dependent terms in Eq. (4.11). However, the universal

contribution to the entanglement entropy, Stopo, will be the same.

For an arbitrary compact, orientable surface (possibly including genus, punctures,

and quasiparticles) partitioned into regions A and Ā, the entanglement entropy between

A and Ā takes the form

SA =
N∑

k=1

(
αLk − logD +

∑

c

p(k)c log dc

)
+ S̃(ρ̃A) +O(L−1

k ), (4.14)

where k = 1, . . . , N labels the connected components of the partition boundary between

A and Ā; Lk is the length of the kth connected component of the partition boundary;

ρ̃A is the anyonic reduced density matrix for region A (including boundaries); p
(k)
c the

probability of the state ρ̃A being in a configuration wherein the kth joint boundary

component carries topological charge c; dc is the quantum dimension of topological charge

c; and S̃(ρ̃) is the anyonic entropy of the anyonic state ρ̃. These quantities will be defined
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and explained in detail in this paper.

4.3 Anyonic Entropy and Entanglement

We proceed by applying the standard notions of entropy, discussed in Section 4.2,

to anyon models, reviewed in C.1. In doing so, we elucidate the unique ways in which

entanglement arises in a topologically ordered system. For clarity, we denote an anyonic

state (density matrix) and its associated entropy with a tilde; ρ̃ and S̃(ρ̃) respectively.

The anyonic von Neumann entropy is

S̃(ρ̃) = −T̃r(ρ̃ log ρ̃), (4.15)

where T̃r denotes the quantum trace, see C.1. In C.3, we prove that the anyonic von

Neumann entropy has many of the important properties that the conventional von Neu-

mann entropy has. Moreover, when the state has Abelian total charge, the quantum

trace is equivalent to the conventional trace, in which case the anyonic density matrix ρ̃

is a properly normalized conventional density matrix and S̃(ρ̃) = S(ρ̃).

The anyonic Rényi entropy is

S̃(α)(ρ̃) =
1

1− α
log T̃r(ρ̃α). (4.16)

The relation between the conventional von Neumann and Rényi entropies holds for the

anyonic counterparts:

lim
α→1

S̃(α)(ρ̃) = S̃(ρ̃). (4.17)
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4.3.1 Pure States and Mixed States

An anyonic state on the sphere (or plane with no topological charge on the boundary)

must have trivial total fusion channel. This constraint derives from the conservation of

topological charge; a single anyon with nontrivial charge cannot be created from the

vacuum. This simple statement has important consequences for anyonic entanglement,

which we now explore.

Similar to the conventional quantum states, we define an anyonic pure state to be

the ones whose anyonic density matrix ρ̃ has vanishing anyonic von Neumann entropy,

or equivalently, T̃r (ρ̃2) = 1. When T̃r (ρ̃2) < 1, the anyonic state is mixed.

Our intuition from conventional quantum mechanics can be misleading when applied

to anyonic states. As an illustrative example, consider the density matrix of a single

anyon with definite charge a:

ρ̃a =
1

da
|a〉 〈a| = 1

da
Ia =

1

da a
. (4.18)

One can write |a〉 〈a| as |a, 0; a〉 〈a, 0; a| to maintain the proper association of bras and

kets with trivalent vertices. At first glance, Eq. (4.18) may appear to be a pure state, as

there is no degeneracy in the local state space associated with a single anyon. However,

it must be kept in mind that, due to conservation of topological charge, a single anyon

cannot truly exist by itself. Such a nontrivial state must be obtained from the state of

multiple anyons by tracing out all but one, e.g.,

ρ̃a = T̃rā


 1

da a ā

a ā

 =

1

da

a ā

a ā

=
1

da
a . (4.19)

If the charge a of the remaining anyon is non-Abelian, and hence da > 1, this state is not
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pure, as can be seen from

T̃r
[
ρ̃2a
]
= 1/da < 1. (4.20)

The remaining single anyon is in an anyonic mixed state as a consequence of the anyonic

entanglement it had with the other anyons from the traced out subsystem. This simple

example highlights the type entanglement we wish to quantify.

One can check that S̃ (ρ̃a) is nonzero. The anyonic Rényi entropy of ρ̃ is

S̃(α) (ρ̃a) =
1

1− α
log T̃r (ρ̃αa ) =

1

1− α
log T̃r


 1

dαa
a


 =

1

1− α
log


 1

dαa
a




=
1

1− α
log d1−αa = log da.

(4.21)

Taking the (trivial in this example) limit α→ 1, we see

S̃(ρ̃a) = log da ≡ S̃a, (4.22)

which is nonzero when a is non-Abelian. Eq. (4.22) is the anyonic entropy associated

with the topological charge a, due solely to the topological nature of the system. Recall

from regular quantum mechanics that a quantum system with a d-dimensional Hilbert

space has log d as its maximal von Neumann entropy. From this perspective, one may

think of this anyonic entropy as arising from some locally inaccessible internal degrees

of freedom of anyons. This is precisely what gives rise to the nonlocal topological state

space associated with non-Abelian anyons.

Let |ψc〉 denote a state with overall topological charge c. From the above example,

we see that an anyonic pure state has anyonic density matrix ρ̃ that can be written

as ρ̃ = |ψc〉 〈ψc|, such that c is Abelian. The term “anyonic pure state” is sometimes

defined to only include states with trivial overall topological charge 0, but here we expand
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the definition to include states with overall Abelian charge, because from the entropic

perspective they have all the same properties.

A general state of a system of two anyons can be diagonalized into sectors of distinct

charge. Let ρ̃AB be the state of a system of two anyons A and B, where the capital letters

denote that there can be sums over external fusion trees. We can write

ρ̃AB =
∑

c,µc

pABµc
dc

|µc〉 〈µc| =
∑

c,µc

pABµc
dc

∑

a,b,α,
a′,b′,α′

ψ
(µ)
a,b,c,α

(
ψ

(µ)
a′,b′,c,α′

)∗√
dc

(dadbda′db′)
1/4

c

ba

a′ b′

α

α′ , (4.23)

where the state vectors

|µc〉 =
∑

a,b,α

ψ
(µ)
a,b,c,α

(
dc
dadb

)1/4

c

ba

α (4.24)

have coefficients ψ
(µ)
a,b,c,α chosen such that

〈νc|µc〉 =
∑

a,b,α

ψ
(µ)
a,b,c,α

(
ψ

(ν)
a,b,c,α

)∗
c = δµ,νIc. (4.25)

The decomposition can always be done in terms of vectors |µc〉 with definite overall

charge c because superpositions of different values of overall topological charge are always

incoherent, i.e. the density matrix is always block diagonal in sectors of distinct overall

topological charge c.

The anyonic von Neumann entropy of ρ̃AB is

S̃ (ρ̃AB) = −∂α
(
T̃r (ρ̃AB)

α
)
α=1

= −∂α
(
∑

µc,c

dc

(
pABµc
dc

)α)

α=1

= −
∑

c,µc

pABµc log

(
pABµc
dc

)
=
∑

c

H
(
{pABµc }

)
+
∑

c

pAB
c
S̃c,

(4.26)
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where

pABc =
∑

µc

pABµc (4.27)

is the probability of the state having overall topological charge c. In particular, the

only way for Abelian anyonic states to have nonzero entropy is through incoherent su-

perpositions of the charges of localized anyons, which is just the Shannon entropy of

classical origin. This represents the fact that there are no fusion degeneracies to evoke a

multidimensional state space for Abelian anyons.

One might be tempted to think of the term

∑

c,µc

pABµc S̃c (4.28)

as the “topological” contribution to the entropy of this system, since it results from the

overall charge of the system, and it appears to be the difference between the anyonic

entropy and the entropy of a non-anyonic system with orthonormal decomposition co-

efficients pABµc . However, this is a misleading superficiality and one cannot partition the

provenance of entropy in this manner. The fusion category structure of anyon models is

not a simple tensor product and the topological effects and qualities of the system are

subtly encoded throughout the fusion channel description of an anyonic state.

4.3.2 Anyonic Entanglement

Having gained some insight from the examples of the previous section, we turn now

to characterizations of anyonic entanglement. In ordinary quantum mechanics, entangle-

ment arises from correlations between local degrees of freedom. For example, in the Bell

state

|Φ+〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (4.29)
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all degrees of freedom of the system are local to either qubit A or qubit B, and the state

of qubit A is correlated with that of qubit B. In a topological phase, the anyonic Hilbert

space generally does not admit a tensor product structure. Thus, there exist nonlocal

emergent degrees of freedom which cannot be assigned to a particular region, e.g. the

total topological charge of a collection of anyons. These nonlocal degrees of freedom arise

from topological correlations in the system and imprint signatures in the entanglement

of the state.

One probe of the system’s topological correlations is the entropy of anyonic charge

entanglement

S̃ace(A : B) = S̃ (DA:B[ρ̃])− S̃ (ρ̃) , (4.30)

where DA:B is the charge line decoherence superoperator that severs charge lines in the

density matrix that connect the subsystems A and B. DA:B may be enacted by a vertical

ω0-loop applied to the diagrammatic density matrix that encloses topological charge lines

connecting the two regions. This definition of S̃ace(A : B) is intended to extract only the

entropy associated directly with the anyonic charge lines that connect the two subsystems

A and B (as will be made more clear).

More explicitly, if subsystems A and B are connected by the diagram (suppressing

vertex labels and the fusion trees of anyons within subsystems A and B)

a b

c

a′ b′

, (4.31)
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then DA:B acts on the system by applying the ω0-loop as shown below [90]:

ω0

a b

c

a′ b′

=
∑

e

[
F ab
a′b′

]
ce

ω0
ba

b′a′

e =

√
dc
dadb

δa,a′δb,b′ ba . (4.32)

The state ρ̃AB has no anyonic charge entanglement between subsystems A and B if

ρ̃AB ∈ V A1,...,Am

A′
1,...,A

′
m

⊗ V B1,...,Bn

B′
1,...,B

′
n
, (4.33)

which implies that ρ̃AB = DA:B[ρ̃AB]. Again, the capital letters imply that there can

be sums over external fusion trees. Diagrammatically, ρ̃AB can be written such that no

nontrivial charge lines connect the anyons of subsystem A with those of subsystem B [83].

Alternatively, we can investigate the entanglement using the anyonic analogue to

Eq. (4.10). For a state ρ̃AB in region A ∪ B, the anyonic entanglement entropy (AEE)

of A with B is

S̃(ρ̃A) ≡ −T̃r(ρ̃A log ρ̃A), (4.34)

where ρ̃A = T̃rB(ρ̃AB) is the reduced density matrix of subregion A.

The AEE captures all correlations between the two subsystems, while the entropy

of anyonic charge entanglement extracts the correlations due to nontrivial dimension of

the charge line connecting the two subsystems. This distinction becomes more apparent
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when comparing the following three states:

ρ̃1 ≡
∑

a

paρ̃a ⊗ ρ̃ā =
∑

a

pa
d2a a ā

(4.35)

ρ̃2 ≡
∑

a

pa
da a ā

a ā

(4.36)

ρ̃3 ≡
∑

a,a′

√
papa′

dada′ a′ ā′

a ā

. (4.37)

By comparing ρ̃j with ρ̃2j , one can easily check that ρ̃1 is a mixed state, ρ̃2 is a mixed

state unless pa = δa,b for a particular charge b, and ρ̃3 is a pure state. (We note that

when pa = δa,b for a particular charge b, the states ρ̃1 and ρ̃2 can be obtained from each

other through the use of an interferometric “forced measurement” procedure [91]. With

these operational resources, either of these states may be used as entanglement resources

for an anyonic analogue of quantum state teleportation [92, 91].)

The states ρ̃1, ρ̃2, and ρ̃3 have exactly the same reduced density matrix

ρ̃A = T̃rA (ρ̃1) = T̃rA (ρ̃2) = T̃rA (ρ̃3) =
∑

a

pa
da a

, (4.38)

and, therefore, the same AEE

S̃ (ρ̃A) = H ({pa}) +
∑

a

paS̃a. (4.39)
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However, the states have distinct entropy of anyonic charge entanglement:

S̃ace (ρ̃1) = 0 (4.40)

S̃ace (ρ̃2) = 2
∑

a

paS̃a (4.41)

S̃ace (ρ̃3) = H({pa}) + 2
∑

a

paS̃a. (4.42)

Eq. (4.40) is easily seen from the fact that no charge lines connect A with Ā in ρ̃1.

Eq. (4.41) differs from Eq. (4.42) because, even thoughDA:Ā[ρ̃2] = DA:Ā[ρ̃3] = ρ̃1, S̃(ρ̃2) 6=

S̃(ρ̃3).

For a slightly more in-depth example of how to calculate S̃(ρ̃) and S̃ace(ρ̃), consider

the pure state

|ψ〉 =
∑

~a,~e,~µ,
~b, ~f,~ν,c

ψ~a,~e,~µ,~b, ~f,~ν,c(
d~ad~b

)1/4

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bn

νn

c c̄

. (4.43)

For brevity, we write the product of quantum dimension factors as d~a = da1da2 . . . dan

and the index ~a to mean a1, a2, . . . , an; and use similar abbreviations ~b, ~e, ~f, ~µ, and ~ν. We

calculate the entropy of anyonic charge entanglement between the left charges ai and the

right charges bi.
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The decohered state DA:B

[
|ψ〉 〈ψ|

]
is

DA:B

[
|ψ〉 〈ψ|

]
=

∑

~a,~e,~µ,
~b, ~f,~ν,c
~a′,~e′,~µ′,
~b′, ~f ′,~ν′,c′

ψ~a,~e,~µ,~b, ~f,~ν,cψ
∗
~a′,~e′,~µ′,~b′, ~f ′,~ν′,c′(

d~ad~bd~a′d~b′
)1/4

ω0

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

νn

bn

c c̄

a′1 a′2

µ′2 e′2

a′n

µ′n

b′1b′2

ν′2f ′2

b′n

ν′n

c′ c̄′

=
∑

~a,~e,~µ,
~b, ~f,~ν,c
~a′,~e′,~µ′,
~b′, ~f ′,~ν′

ψ~a,~e,~µ,~b, ~f,~ν,cψ
∗
~a′,~e′,~µ′,~b′, ~f ′,~ν′,c(

d~ad~bd~a′d~b′
)1/4

1

dc

a1 a2

µ2 e2

an

µn

c

b1b2

ν2f2

νn

bn

c̄

a′1 a′2

µ′2 e′2

a′n

µ′n

b′1b′2

ν′2f ′2

b′n

ν′n

.

(4.44)

The second equality follows from

ω0

c c̄

c′ c̄′

=
∑

e

[
(F cc̄

c′c̄′)
−1
]
0e

ω0
c̄c

c̄′c′

e =
[
(F cc̄

cc̄ )
−1
]
00
δc,c′ c̄c =

δc,c′

dc
c̄c . (4.45)

The entropy of anyonic charge entanglement is

S̃ace (|ψ〉 〈ψ|) = S̃
([
DA:B |ψ〉 〈ψ|

])
− S̃ (|ψ〉 〈ψ|) = −

∑

c

pc log

(
pc
d2c

)
− 0

= H ({pc}) + 2
∑

c

pcS̃c,

(4.46)

where we have defined the probability of the anyons in subsystem A fusing to c (or the
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anyons in subsystem B fusing to c̄) to be

pc =
∑

~a,~e,~µ,
~b, ~f,~ν

ψ~a,~e,~µ,~b, ~f,~ν,cψ
∗
~a,~e,~µ,~b, ~f,~ν,c

. (4.47)

We emphasize that the S̃ace has isolated entropic quantities that are solely associated

with the anyonic charge lines connecting the subsystems A and B: the details of the

state within the two subsystems are unimportant, as only the probability of the overall

topological charge of each subsystem contributes to S̃ace. Notice that Eqs. (4.46) and

(4.42) are identical. The first term in Eq. (4.46) is the classical Shannon entropy of the

probability distribution {pc} associated with the charge c lines connecting the subsystems

A and B. The second term, which is nonzero only if at least one of the charge lines

connecting subsystems A and B is non-Abelian, is the anyonic entropy associated with

the charge c lines themselves.

We can check (e.g. using the method of Lagrange multipliers) that Eq. (4.46) is

maximized by pa = d2a/D2, and the corresponding maximum value is

max
|ψ〉

[
S̃ace (|ψ〉 〈ψ|)

]
= 2 logD. (4.48)

In fact, this is the maximum value of S̃ace for a general (possibly mixed) state whose

overall topological charge is trivial. We return to this point in the next section when

discussing anyon pair-production.

We now calculate the AEE for the pure state given in Eq. (4.43). Tracing over the b
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charges gives the reduced density matrix for the a charges

ρ̃A =
∑

~a,~e,~µ,
~a′,~e′,~µ′,
~b, ~f,~ν,c

ψ~a,~e,~µ,~b, ~f,~ν,cψ
∗
~a′,~e′,~µ′,~b, ~f,~ν,c

(d~ad~a′)
1/4 √dc

a1 a2

µ2 e2

an

µn

c

a′1 a′2

µ′2 e′2

a′n

µ′n

. (4.49)

We can define a matrix Mc whose components are given by

[Mc](~a,~e,~µ),(~a′,~e′,~µ′) =
∑

~b, ~f,~ν

ψ~a,~e,~µ,~b, ~f,~ν,cψ
∗
~a′,~e′,~µ′,~b, ~f,~ν,c

. (4.50)

Then, one can easily check that

ρ̃αA =
∑

~a,~e,~µ,
~a′,~e′,~µ′,

c

[Mα
c ](~a,~e,~µ),(~a′,~e′,~µ′)

dα−1
c (d~ad~a′)

1/4 √dc

a1 a2

µ2 e2

an

µn

c

a′1 a′2

µ′2 e′2

a′n

µ′n

, (4.51)

from which it follows that

T̃r[ρ̃αA] =
∑

c

Tr[Mα
c ]

dαc
dc =

∑

c,j

(
λ
(j)
c

dc

)α

dc. (4.52)

In the last equality, we have defined λ
(j)
c to be the jth eigenvalue of Mc. Therefore, the

AEE is

S̃[ρ̃A] = −
∑

c,j

λ(j)c log

(
λ
(j)
c

dc

)
=
∑

c

H({λ(j)c }) +
∑

c

pcS̃c, (4.53)

where in the last equality we have noted that
∑

j λ
(j)
c = pc from Eq. (4.47). The above
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result could have equivalently been achieved by first performing a Schmidt decomposition

on the state |ψ〉.

Several previous works have investigated anyonic entanglement through the entan-

glement entropy. Ref. [93] used a skein theory approach to evaluate the bipartite entan-

glement entropy of a pure state in the context of SU(2)k Chern-Simons theory. Ref. [94]

defined an operational entanglement measure, based on Eq. (4.10), for bipartite anyonic

pure states with vacuum total charge. More generally, Ref. [95] used anyon models to eval-

uate the AEE on surfaces of arbitrary genus, constructing the reduced density matrix from

a given partitioning of a surface. We give an alternative construction in Section 4.4.2.

All three of the above-mentioned works identify the second term of Eq. (4.53) as the TEE

for an anyonic system. In this paper, we reserve the term TEE for Stopo = − logD of

Refs. [7, 8], which cannot be derived used the methods of Refs. [93, 94, 95]. In the next

section, we explain how Stopo may be wheedled out of the anyonic state description.

4.3.3 Topological Entanglement Entropy in Anyon Models I

The extraction of the TEE in the context of anyonic states is subtle. Consider a

sphere partitioned into two disks: region A and its complement, region Ā. In order to

obtain the (microscopic) density matrix for the subsystem A, we trace out the subsystem

Ā. Topologically, we view this as first cutting the system along the partition boundary

∂A = ∂Ā to yield two disjoint compact systems (disks) A and Ā, for which ∂A 6= ∂Ā,

and then tracing out Ā. When the system is cut into disjoint compact subsystems, each

resulting connected genus zero surface must individually have trivial total topological

charge. Thus, if the interior of a resulting disk contains topological charge c, e.g. from a

collection of quasiparticles in that region, then its boundary must carry a total topological

charge of c̄.

90



Anyonic Entanglement and Topological Entanglement Entropy Chapter 4

In the case of the ground state on the sphere, there are no topological excitations in the

system, so int(A) and int(Ā) have trivial topological charge (c = c̄ = 0). Before cutting

the surface, the anyonic state representing this configuration is the trivial (vacuum) state,

i.e. the empty diagram. If we use the trivial anyonic state |0〉, the corresponding AEE

obviously vanishes, so one might näıvely expect the TEE between regions A and Ā to

also vanish. This deduction is clearly invalid [7, 8].

The resolution to this apparent discrepancy is that a spatial cut of the system is an

operation that is both topological and microscopic. That is, a cut has effects on length

scales that are large compared to the topological correlation length ξ and length scales

that are small compared to the regularization length ℓ, i.e. the lattice spacing or magnetic

length (roughly the correlation length). In particular, degrees of freedom along either side

of the spatial partition boundary effectively change from being adjacent to being infinitely

separated as a result of a spatial cut (i.e. from strongly-interacting to non-interacting).

This process evinces anyonic correlations across the partition boundary that could not

be resolved within the uncut system, because they exist below the regularization length,

which is why they were not captured by the anyonic state describing the system before

cutting. That is, one can think of cutting as locally creating many anyons along the

newly created boundaries, but since the total topological charge of each boundary is

trivial, there is a projection of the total charge of these anyons along each boundary.

In this section, we provide a heuristic description of these subtle anyonic correlations

that exist across a spatial partition and explain how the topological charge projection

imposed on the partition boundaries by the cutting operation generates the decrease in

entropy (increase in order) characterized by the TEE. We will return to a more rigorous

derivation of these in Section 4.5.

Since we are interested in the correlations across the partition boundary, let us begin

by focusing on the local correlations across the boundary between degrees of freedom in
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a small disk-like region B1 straddling the partition boundary between A and Ā, whose

linear size is on the order of the regularization length ℓ. (As a notational note, we will

denote regions that do not strictly belong to A, or which result from a discretization of

A, with calligraphic letters.) We choose B1 in this way to represent a short segment of

the partition boundary. However, if we cut the system along the partition boundary,

then we must similarly partition the region B1 along the same partition boundary. For

this, we define ∂A1 = A ∩ B1 and ∂Ā1 = Ā ∩ B1, and wish to consider the correlations

between degrees of freedom in regions ∂A1 and ∂Ā1. In general, there will be non-

universal contributions to the entanglement entropy from the microscopic details of the

local correlations. We are, however, interested in extracting the universal contributions

to the entanglement entropy, so we focus on the anyonic correlations captured by the

anyonic state formalism.

Since we are now considering a region B1 whose size is smaller than the resolution

length scale, we can heuristically think of the region as being microscopically populated

with pair-created anyons; the separation of these anyons is too small to resolve their

individual existence, and since they are pair-created from vacuum, the total topological

charge within region B1 is trivial, as it should be. In this picture, the region ∂A1 will

contain topological charge a1 and ∂Ā1 will necessarily contain the (pair-created partner)

topological charge ā1, with some probability pa1 . When the entire uncut system is in the

ground state, we expect that pair-produced anyons of region B1 will be unentangled with

regions that are disjoint from B1, so the anyonic correlations between regions ∂A1 and

∂Ā1 can be represented by a two-anyon pure state. Moreover, we expect the anyonic state

representing the local anyonic correlations at the regularization scale to have maximal

anyonic charge line entanglement between the two subsystems. Therefore, the density

matrix describing quasiparticle pair production is the pure state of Eq. (4.37) with pa1 =
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Figure 4.1: The boundary between subsystems A (blue) and Ā (white) is covered
by a disjoint set of small disk-like regions Bj (yellow), each of which is partitioned
into subregions ∂Aj and ∂Āj, which are contained in regions A and Ā, respectively.
Cutting along the partition evinces local anyonic correlations between regions ∂Aj

and ∂Āj that can heuristically be thought of in terms of pair-created anyons in a
maximally anyonic charge entangled state, which could not be resolved as separate
anyons for the uncut system in the ground state. Cutting the system into disconnected,
compact regions A and Ā imposes a topological constraint that the total topological
charge of regions A is trivial (after the cut). This yields a topological correlation of
the boundary anyons of region A, which is the origin of the TEE Stopo ≡ − logD.

d2a1/D2 [see discussion around Eq. (4.48)]:

ρ̃B1 =
∑

a1,a′1

da1d
′
a1

D2

1√
da1d

′
a1

a1 ā1

a′1 ā′1

.
. (4.54)

If we trace out the anyon in region ∂Ā1, the density matrix for region ∂A1 is given by

ρ̃∂A1 = T̃r∂Ā1
[ρ̃B1 ] =

∑

a1

da1
D2

a1

. (4.55)

We now envision covering the partition boundary ∂A with similar small disk-like

regions B1, . . . ,Bn that are all disjoint from each other, as shown in Figure 4.1. These

divide the boundary ∂A into n segments ∂Aj = ∂A ∩ Bj associated with the local
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boundary regions. In this way, the boundary length is roughly L ∼ nℓ. The same

description of B1 above applies to each region Bj . Thus, if we start with the ground state

of the uncut system and trace out Ā, we expect the state of subsystem A after cutting

to have an anyon corresponding to each segment of the discretized boundary, which is

similarly described by the reduced density matrix

ρ̃∂Aj
=
∑

aj

daj
D2

aj

. (4.56)

However, the anyonic reduced density matrix for subsystem A is not simply given by the

tensor product

ρ̃∂A ≡ ρ̃∂A1 ⊗ · · · ⊗ ρ̃∂An (4.57)

of those of the local boundary regions ∂Aj . The compact region A must have trivial

total topological charge, so it is necessary to apply a projection of the overall topological

charge onto the trivial charge. Denoting the anyonic reduced density matrix that takes

into account the localized boundary charges as ρ̃A, we have

ρ̃A ≡ Π0ρ̃∂AΠ0

T̃r
[
Π0ρ̃∂AΠ0

] =
Π0 (ρ̃∂A1 ⊗ · · · ⊗ ρ̃∂An)Π0

T̃r
[
Π0 (ρ̃∂A1 ⊗ · · · ⊗ ρ̃∂An) Π0

]

=
∑

~a

d~a
D2n

ω0

a1 a2 . . . an

=
∑

~a,~e,~µ

√
d~a

D2n−2

a1

e2µ2

a2

e3µ3

a3

en−2

µn−1

an−1

ān

an

a1

e2
µ2

a2

e3
µ3

a3

en−2

µn−1

an−1

ān

an

.

(4.58)

The last equality of Eq. (4.58) is obtained by performing a series of F -moves to write the
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state in a tree-like form, so that the ω0-loop is applied to a single charge line.

It follows that, when taking into account the anyonic correlations along the partition

boundary, the anyonic entanglement entropy for the ground state is given by

S̃ (ρ̃A) = nS̃
(
ρ̃∂Aj

)
− 2 logD, (4.59)

where we have written the anyonic entropy of a single “boundary anyon” as

S̃
(
ρ̃∂Aj

)
= −

∑

aj

d2aj
D2

log

(
daj
D2

)
. (4.60)

The explicit derivation of S̃ (ρ̃A) from ρ̃A will be given in Section 4.5.

A few comments are in order:

1. There is a subtle over-counting in this heuristic description of the anyonic correla-

tions across the boundary that produces twice the actual amount of entanglement

entropy between A and Ā. After correcting this inadvertent doubling found in

Eq. (4.59), the contribution to the entanglement entropy between regions A and Ā

is given by

S̃A =
1

2
S̃ (ρ̃A) =

n

2
S̃
(
ρ̃∂Aj

)
− logD. (4.61)

We address this point at the end of this section.

2. The first term of Eq. (4.61) describes a linear dependence of the anyonic entan-

glement entropy on the length L of the boundary, since n ∼ L/ℓ. The boundary

length-dependent term αL of the entanglement entropy Eq. (4.11), in general, will

have non-universal contributions from the microscopic details of the physical sys-

tem. The term n
2
S̃
(
ρ̃∂Aj

)
reflects a contribution to this from the topological sector

of the theory, for which the non-universal aspect is determined by the short-distance
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regularization of the theory, i.e. giving αtopo =
1
2
S̃
(
ρ̃∂Aj

)
ℓ−1.

3. The second term is the universal O(1) topological contributions to the entanglement

entropy Stopo ≡ − logD, i.e. the term that is independent of the size or shape of

the boundary. The origin of this term is the topological constraint that boundary

anyons collectively have total topological charge 0. This can be understood from

considering the difference between the entropy of the boundary anyons before and

after application of the topological charge projection, that is

S̃ (ρ̃∂A)− S̃ (ρ̃A) = −2Stopo = 2 logD. (4.62)

Thus, we view Stopo the reduction in the entanglement entropy due to the topo-

logical constraint that the total topological charge of the compact subsystem A

must be trivial (after cutting the original system), which imposes a correlation of

the boundary anyons charges. Notice that Eq. (4.62) is the multipartite mutual

information between the boundary anyons of regions ∂A1, . . . , ∂An, which is a mea-

sure of the correlation between them, or the amount of information that is shared

by them. This information is only accessible by considering the boundary regions

collectively. From this perspective, D can be thought of as the “dimension” of the

state space associated with a group of random anyons whose collective topological

charge is 0.

When the system is not in the ground state, but has quasiparticle excitations, we

can use this argument by including the anyonic state of the quasiparticles. We denote

the reduced density matrix describing the quasiparticles in the interior of region A as

ρ̃int(A). In the case where there is a single quasiparticle of topological charge c in region

A, we have ρ̃int(A) = ρ̃c. Following the same arguments for this case, the anyonic reduced
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density matrix (including the localized boundary anyons) for the compact region A after

the cut is

ρ̃A ≡ Π0 (ρ̃c ⊗ ρ̃∂A) Π0

T̃r
[
Π0 (ρ̃c ⊗ ρ̃∂A)Π0

] =
∑

~a

d~a
D2n

1

dc
ω0

ca1 a2 . . . an

=
∑

~a,~e,~µ

√
d~a

D2n−2d
3/2
c

a1

e2µ2

a2

e3µ3

a3

en−2

µn−1

an

c̄

c

a1

e2
µ2

a2

e3
µ3

a3

en−2

µn−1

an

c̄

c

.

(4.63)

The corresponding anyonic entanglement entropy is given by

S̃ (ρ̃A) = nS̃
(
ρ̃∂Aj

)
+ 2Stopo + S̃c, (4.64)

where S̃c = log dc is the anyonic entropy associated with the topological charge c, as

in Eq. (4.22). For anyonic states, S̃c was associated with the system having overall

topological charge c. Here, S̃c is associated with the the topological charge c̄ on the

boundary formed by the partition, which is the same thing as the interior of A having

overall topological charge c.

In the case of a more general configuration of quasiparticles, it is straightforward to

see that the reduced density matrix

ρ̃A ≡ Π0

(
ρ̃int(A) ⊗ ρ̃∂A

)
Π0

T̃r
[
Π0

(
ρ̃int(A) ⊗ ρ̃∂A

)
Π0

] =
Π0

(
ρ̃int(A) ⊗ ρ̃∂A1 ⊗ · · · ⊗ ρ̃∂An

)
Π0

T̃r
[
Π0

(
ρ̃int(A) ⊗ ρ̃∂A1 ⊗ · · · ⊗ ρ̃∂An

)
Π0

] (4.65)
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yields

S̃ (ρ̃A) = nS̃
(
ρ̃∂Aj

)
+ 2Stopo + S̃

(
ρ̃int(A)

)
, (4.66)

where S̃
(
ρ̃int(A)

)
is the anyonic entanglement entropy of the quasiparticles contained

within region A (before the cut), as defined in Eq. (4.53). For the purposes of separating

the contributions of the quasiparticles and the partition boundary to the entanglement

entropy, it is useful to write this last term as

S̃
(
ρ̃int(A)

)
=
∑

c

pcS̃c + S̃ (ρ̃A) , (4.67)

where pc is the probability of the anyonic state ρ̃A being in a configuration with topological

charge c on the partition boundary.

This leads us to one additional comment:

4. The contribution to the entanglement entropy coming from the quasiparticle con-

tent and total topological charge on the partition boundary for region A is not

inadvertently doubled in this heuristic argument, so the total contribution of the

anyonic correlations to the entanglement entropy between regions A and Ā is given

by

S̃A =
n

2
S̃
(
ρ̃∂Aj

)
+ Stopo +

∑

c

pcS̃c + S̃ (ρ̃A) . (4.68)

The fallacious doubling of the boundary contribution to the entanglement entropy

discussed above resulted from the improper assumption that the local anyonic correlations

across the boundary could be represented by localized anyons at fixed locations along

the partition boundary in the manner described above. For example, a system in a chiral

topological phase on a surface with boundary (e.g. a disk) will have a chiral, gapless CFT

on the edge. Unlike in the (gapped) bulk, anyonic excitations on such an edge cannot be

localized at a fixed point in space. While the heuristic picture described in this section
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is, strictly speaking, incorrect, the concept contains some truth and can be salvaged to

represent a doubling of the degrees of freedom. This may be understood from a number

of related perspectives.

One of these perspectives, which we will detail and utilize in Section 4.5, stems from

the method used in Ref. [7] to derive the TEE. In particular, the Kitaev-Preskill deriva-

tion involves (conceptually) introducing a time-reversal conjugate copy of the system

and connecting the two systems at various locations by wormholes threaded by trivial

topological flux. By locating such wormholes along the partition boundary (which is

mirrored on the conjugate copy of the surface), the partition boundary will pass through

the wormholes. In the doubled system with wormholes, the partition cut will cut the

tubes connecting the (now doubled) regions A and Ā (respectively corresponding to the

un-doubled regions A and Ā of the original surface), giving rise to boundaries (the circles

along which the tubes are cut) which carry topological charge values. The anyonic state

ρ̃A turns out to be equivalent to the anyonic state ρ̃A described above (see Section 4.5 for

details). The doubling of the boundary contribution to the entanglement entropy arises

in this picture because the system itself was doubled.

This doubling can also be understood in the context of state-sum and string-net mod-

els. From this perspective, the Kitaev-Preskill surface doubling is interpreted as repre-

senting the two chiral sectors of the emergent TQFT. More specifically, for a (spherical)

fusion tensor category F that describes the fusion structure of a MTC C, the emer-

gent TQFT associated with a state-sum or string-net model based on F is the Drinfeld

quantum double D(F) = C × C. One can think of C as living on one surface and its

time-reversal conjugate C on another, and the wormholes connecting these surfaces rep-

resent the plaquette centers of the string-net lattice model (which is the lattice dual of

the state-sum triangulation). In this way, the lattice degrees of freedom on the links,

which are described by F , are what is captured by the anyonic state ρ̃A at the partition
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boundary. As such, the lattice model with degrees of freedom in F provides a micro-

scopic regularization and correct accounting of the entropy for the TQFT D(F), which is

double that of C; for example, DF = DC =
√
DD(F). (See Section 4.6.1 for more details.)

Another perspective on the boundary entropy doubling comes from considering the

boundary degrees of freedom as an edge CFT, e.g. for a chiral topological phase. As

mentioned, such an edge cannot localize topological charge at specific locations along the

edge. Moreover, one cannot simply break such an edge into segments, as the chiral CFT

cannot terminate at the segment endpoints. In order to break the edge into segments in a

manner that is well-defined for the CFT, one can use a boundary CFT [96] (“boundary”

here refers to the endpoints of a 1D spatial segment on which the (1 + 1)D CFT lives,

not the 1D boundary of the 2D bulk region). Such boundary CFTs always have both

holomorphic and anti-holomorphic modes that are coupled to each other by the boundary

conditions, so the edge CFT degrees of freedom are necessarily doubled. This can also be

understood as another perspective on the Kitaev-Preskill derivation, wherein doubling the

surface and introducing wormholes creates boundary segments on the conjugate surface

carrying CFT modes that propagate in the opposite direction as that of the original

boundary. In other words, the boundary edge is split up into boundary circles of the

tubes connecting regions A and Ā and the edge segment on the original surface can

be viewed as carrying the holomorphic modes while the edge segment on the conjugate

surface carries the anti-holomorphic modes.

In Section 4.5, we provide the more rigorous derivation of Eqs. (4.58) and (4.61)

using a generalization of the Kitaev-Preskill arguments. This approach requires TQFT

methods in which we evaluate anyon diagrams associated with the topological state space

of higher genus surfaces. To aid our discussion, we develop the formalism of anyon models

for higher genus surfaces in the next section.
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4.4 Anyon Models for Higher Genus Surfaces

We now generalize the anyon model formalism, reviewed in C.1 for a surface of genus

zero, to higher genus, orientable, compact surfaces (possibly with boundary). The genus

g of a surface is the number of handles on it. The topology of an orientable, compact

surface is classified by its genus g and the number n of punctures, i.e., connected boundary

components.

The state space of anyon models on higher genus surfaces has previously been dis-

cussed by Ref. [97] and applied to anyonic entanglement in Ref. [95]. Our presentation

differs from that of Ref. [97] in notation and normalization conventions, but the funda-

mental understanding is the same. Our discussion of anyonic entanglement, particularly

our derivation of the reduced density matrix, differs from that of Ref. [95].

Ref. [95] focuses on the entanglement of anyonic states associated with the quasipar-

ticles in a subregion of the higher genus surface, rather than the entanglement between

different regions of the surfaces. Thus, when partitioning the surface into regions A and

Ā, Ref. [95] traces over the topological charge lines threading the boundary between A

and Ā. In our treatment, we wish to examine both the entanglement associated with the

anyonic states as well as the entanglement between A and Ā. We therefore include the

charge lines threading the boundary between A and Ā in our reduced density matrix ρ̃A,

which is what allows us to calculate Stopo in Section 4.5.

4.4.1 Topological State Space of a Higher Genus Surface

The topological Hilbert space of a compact surface with genus g and n punctures

can be constructed from that of the (2g + n)-punctured sphere with puncture labels

a1, ā1, . . . , ag, āg and c1, . . . , cn. The Hilbert space can be spanned by two canonical

bases: the “inside” basis and the “outside” basis.
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The inside basis is formed by expressing the fusion tree for the punctures inside the

sphere and gluing the punctures labeled a1, . . . , ag to their respective punctures labeled

ā1, . . . , āg outside the sphere. This leaves all the anyonic charge lines enclosed in the

interior of the resulting surface or ending at a remaining puncture.

The outside basis is formed by expressing the fusion tree for the punctures outside the

sphere and gluing the punctures labeled a1, . . . , ag to their respective punctures labeled

ā1, . . . , āg inside (through) the sphere. This leaves all the anyonic charge lines in the

region exterior to the resulting surface or ending at a remaining puncture.

The modular S-transformations interchange the two complementary cycles associated

with a given handle and, thus, provides a basis change between the inside and outside
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bases.

In the following, we primarily work with the inside basis.

Basis

The topological Hilbert space on a sphere is constructed from the fusion and splitting

spaces V e
ab and V

ab
e , see C.1 for a review. These vector spaces are supplemented on a higher

genus surface by spaces involving topological charge lines circling non-contractible cycles,

which we denote as V
(a)
e and V e

(a). The space V
(a)
e is spanned by the vectors

|(a); e, µ〉 = d1/4e
⊗

a

e
µ

, (4.69)

where e can be any anyon such that N e
aā 6= 0. The symbol ⊗ represents a non-contractible

cycle associated with a handle of the surface, for either the inside or outside basis. The

topological charge line a circling the non-contractible cycle is written in bra/ket notation

as (a) in order to distinguish it from the charges labeling boundaries or quasiparticles.
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The dual space V e
(a) is spanned by the covectors

〈(a); e, µ| = d1/4e ⊗
a

e
µ

, (4.70)

Larger spaces are constructed by taking tensor products. For example, consider the

anyonic Hilbert space V
(a)(b)c
0 of a genus g = 2 surface with topological charge lines a and

b wrapping around its two handles and an anyon c on its surface.

This Hilbert space can be constructed as

V
(a)(b)c
0

∼=
⊕

d,e

V
(a)
d ⊗ V (b)

e ⊗ V de
c̄ ⊗ V c̄c

0 , (4.71)

which is spanned by the vectors

|(a); d, µ〉 |(b); e, ν〉 |d, e; c̄, α〉 |c̄, c; 0〉 = 1

d
1/4
c

⊗
a

µ

⊗
b

ν
d e
α
c̄

c , (4.72)

where µ = 1, . . . , Nd
aā, ν = 1, . . . , N e

bb̄
, and d and e are any anyons such that Nd

aā ≥ 1,

N e
bb̄
≥ 1, and N c̄

de ≥ 1.

In general, the space V
(z1)...(zg)a1...an
e for a subsystem containing anyons a1, . . . , an and
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genus g is spanned by

|~z; ~x, ~ω〉 |~x, ~y, ~χ; d〉 |~a,~b, ~α; c〉 |d, c; e, µ〉

=

(
de
d~a

)1/4

⊗
z1

ω1

. . .

. . .

⊗
zg

ωg
x1

yg−1

xg

d

χg

a1 a2
an

b2
bn−1

α2

αn

.

. . .

c

e
µ

, (4.73)

We only use the bra/ket notation when the system is in the canonical basis written

above. When applying F -moves that take the state out of the canonical basis, the

diagrammatic representation of the topological Hilbert space is much easier to use, see

e.g., the entropy calculations of Section 4.5.

Finally, we note that, when considering states on compact surfaces, the overall topo-

logical charge of each connected component of the surface (including their boundaries)

is always the trivial charge 0. We return to this point in Section 4.4.1 when discussing

subtleties of performing the partial quantum trace.

Dimension

The dimension of V
(z1)...(zg)a1...an
0 is given by

dim(V
(z1)...(zg)a1...an
0 ) = N0

z1z̄1...zg z̄ga1...an , (4.74)

The dimension of the space of anyons a1, . . . , an on a surface with genus g is

Ng;a1...an ≡
∑

~z

dim(V
(z1)...(zg)a1...an
0 ) =

∑

~z

N0
z1z̄1...zg z̄ga1...an

, (4.75)
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which can also be expressed in terms of the S-matrix (see Section C.1.2) as

Ng;a1...an =
∑

x

(
dx
D

)2−n−2g

Sa1x . . .Sanx. (4.76)

In particular, if there are no anyons present, then

Ng;0 =
∑

x

(
dx
D

)2−2g

∼ |CAbelian|D2g−2 (4.77)

for large g, where |CAbelian| is the number of distinct Abelian topological charges in C.

Inner Product

Inner products of states on surfaces with non-contractible cycles can be evaluated

in the diagrammatic representation by cutting open the anyon lines encircling the non-

contractible cycle, introducing a factor of 1/
√
da for each anyon line a that is cut, and

then stacking the diagrams. For example, consider a ground state on the torus

|(a)〉 = ⊗
a

(4.78)

In order to compute the inner product of such states in the diagrammatic formalism, we

first cut open the diagram, as though we are cutting open the corresponding handle of

the surface (the torus), and multiply by a normalization factor for each of the new leaves

of the diagram, giving

|(a)cut〉 = |a, ā; 0〉 = 1√
da

āa
. (4.79)

Then, the inner product 〈(b)| (a)〉 can be expressed as

〈(b)| (a)〉 = 〈(b)cut| (a)cut〉 =
1√
dadb

b̄

ā

b

a
= δa,b

1

da a
= δa,b. (4.80)

106



Anyonic Entanglement and Topological Entanglement Entropy Chapter 4

In the above, we have included a dashed line to indicate where the topological charge

lines were cut and glued together.

Similarly, for the states of a punctured torus,

〈(a); c, µ| = d1/4c ⊗
a

c
µ

, (4.81)

the corresponding states when the handle is cut open are given by

|(a)cut; c, µ〉 = |a, ā; c, µ〉 =
(
de
d2a

)1/4
āa

c
µ . (4.82)

The inner product of two basis states of the punctured torus is

〈(b); e, ν|(a); c, µ〉 = 〈(b)cut; e, ν|(a)cut; c, µ〉 =
(
dcde
d2ad

2
b

)1/4

a ā

c
µ

b b̄

e
ν

= δa,bδc,eδµ,ν
c = δa,bδc,eδµ,ν |c〉 〈c| . (4.83)

More complicated diagrams can be similarly evaluated. In the general case, each addi-

tional endpoint in the diagram (boundary of the surface) of charge a that results from

cutting open a handle requires a normalization factor of d
−1/4
a in the diagrammatic rep-

resentation of the “cut” state.
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Operators

The space V
(Z1)...(Zg)A1...An

(Z′
1)...(Z

′
g)A

′
1...A

′
n

of operators acting on n anyons on a surface of genus g

can be constructed as

V
(Z1)...(Zg)A1...An

(Z′
1)...(Z

′
g)A

′
1...A

′
n
=
∑

~z,~z′,~a,~a′

⊕

c

V c
(z′1)...(z

′
g)a

′
1...a

′
n
⊗ V (z1)...(zg)a1...an

c . (4.84)

For example, the identity operator acting on the state space of a punctured torus is

I =
∑

a

I(a) =
∑

a,c,µ

|(a); c, µ〉 〈(a); c, µ| =
∑

a,c,µ

√
dc

⊗

⊗
a

a

c
µ

µ
. (4.85)

Trace

The trace of an operator involving non-contractible cycles is defined, as usual, to be

the sum of its diagonal elements, e.g.

Tr(|(a); c, µ〉 〈(a′); c, µ′|) = δa,a′δµ,µ′ . (4.86)

To evaluate the quantum trace T̃r for a system with charge lines circling non-contractible

cycles, cut open the anyon lines circling the non-contractible cycle, introduce a factor

1/
√
da for every cut charge line a, and join the outgoing charge lines of the operator’s

diagram back onto the incoming charge lines. In doing so, we remove the non-contractible

cycles, which can be understood as mapping the system to the sphere with certain charge
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lines identified [97]. As an example,

T̃r (|(a); c, µ〉 〈(a′); c, µ′|) = T̃r

(
√
dc

⊗

⊗
a

a′

c
µ

µ′

)
=

√
dc
dada′

δa,a′δµ,µ′
a ā

µ
c
µ

a ā

= dcδa,a′δµ,µ′ . (4.87)

The above agrees with Eq. (4.86) up to a factor of dc. This corresponds to the general

relation between the anyonic trace of an operator X ∈ V
(z1)...(zg)a1...an
(z′1)...(z

′
g)a

′
1...a

′
n

and the ordinary

trace, given by

T̃r(X) =
∑

c

dcTr([X ]c), (4.88)

Tr(X) =
∑

c

1

dc
T̃r([X ]c), (4.89)

where

[X ]c = ΠcXΠc ∈ V (z1)...(zg)a1...an
c ⊗ V c

(z′1)...(z
′
g)a

′
1...a

′
n

(4.90)

is the projection of X onto definite total charge c, with X =
∑

c[X ]c.

One can also compute the partial quantum trace of a surface of genus g by joining

the charge lines and cycles of only the subset of anyons being traced out. First, one

must specify which regions of the surface are being traced out, thereby identifying which

anyons and cycles are being traced over. In doing so, one is implicitly specifying the path

through which one performs the trace over anyonic charge lines 1. In general, the partial

1When considering anyons in a planar surface, one sometimes traces out anyons by “taking the anyons
to infinity.” This amounts to moving the anyons to the edge of the diagram by braiding them past other
anyons, a process that is not necessarily unique when the partition is not specified. One must be more
careful to specify the partition and to keep track of the boundary charges in a connected surface of
higher genus, as will be further discussed in the next section.
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quantum trace of X ∈ V
(z1)...(zg)(v1)...(vh)a1...anb1...bm
(z′1)...(z

′
g)(v

′
1)...(v

′
h)a

′
1...a

′
nb

′
1...b

′
m

over the anyons b1, . . . , bm and handles

v1, . . . , vh is related to the ordinary partial trace by

T̃r(v1)...(vh)b1...bm(X) =
∑

c,a

dc
da

[
Tr(v1)...(vh)b1...bm ([Xc])

]
a
, (4.91)

Tr(v1)...(vh)b1...bm(X) =
∑

c,a

da
dc

[
T̃r(v1)...(vh)b1...bm ([X ]c)

]
a
. (4.92)

4.4.2 Anyonic Density Matrices

An anyonic density matrix is a Hermitian, positive semi-definite anyonic operator

normalized by the quantum trace, T̃rρ̃ = 1, that describes the topological state of the

system. For any connected component of a compact surface, the overall topological

charge, including boundary charges and quasiparticles, is 0. Thus, if one includes the

boundaries (and their corresponding topological charges) that arise when tracing out

portions of the system, the corresponding anyonic density matrix calculated from the

quantum trace is equivalent to the ordinary density matrix calculated from the regular

trace.

The anyonic density matrix determines the expectation value of anyonic operators

acting on the system, 〈X〉 = T̃r (ρ̃X). On a higher genus surface, ρ̃ can involve anyons

living in the bulk or on the boundary of the surface, as well as anyonic charge lines

circling non-contractible cycles of the surface.

The reduced anyonic density matrix ρ̃A for a subsystem A is calculated by taking the

partial quantum trace over the degrees of freedom belonging to the complement Ā. For

any operator XA acting solely on degrees of freedom in A,

〈XA〉 = T̃r (ρ̃XA) = T̃rA (ρ̃AXA) . (4.93)
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That is, the expectation value of XA can be equivalently computed with the density

matrix for the full system or with the reduced density matrix for A.

One must be careful to include boundary charges when computing reduced density

matrices for surfaces with genus and multiple boundaries. In Section 4.3, we only consid-

ered states on genus zero surfaces with one partition boundary. To compute the reduced

density matrix for a region A, we specified which topological charge lines belonged to

A and which belonged to Ā, then moved the charge lines in Ā to the outside of the

diagram and joined the incoming and outgoing lines. In doing so, we did not keep track

of the charge associated with the boundary of A, which meant that we sometimes found

a density matrix with nontrivial overall charge. This can be reconciled with conservation

of topological charge by recognizing that, in the sphere or planar case, one is implicitly

specifying a disk-like region A and tracing out the complementary region Ā. Since there

is a single boundary component for the disk, quasiparticles inside region A cannot braid

with the boundary charge and, as long as the quasiparticles are kept far away from the

boundary, they cannot fuse with it either. Therefore, one can safely trace out the bound-

ary charge (or the charge at infinity), since the quasiparticles do not interact with the

boundary charge topologically. If one wishes to treat the states of more general systems

involving genus and boundaries, one must be careful to only trace out the parts of the

states corresponding to regions of the surface that will be considered “inaccessible.”

The following method allows computation of the anyonic reduced density matrix for

a region A on a general compact surface, assuming that the full system is in a pure state

|ψ〉:

1. Write the density matrix |ψ〉 〈ψ| for the full system A ∪ Ā in a basis such that the

charge lines for each connected component of region A are grouped together and

there is a single charge line threading each boundary component connecting A with
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Ā.

2. Cut the system along the boundary ∂A ∩ ∂Ā between A and Ā to form disjoint

compact surfaces A and Ā. For each charge line aj that is cut, introduce a factor

of d
−1/2
aj to normalize the state in the basis |ψcut〉 〈ψcut|. Each charge line that is

cut corresponds to a new pair of boundaries (carrying the corresponding charge)

produced by cutting the surface, one of which belongs to A and the other to Ā.

3. Perform a partial quantum trace over the portion of the anyonic state corresponding

Ā. The resulting state ρ̃A = T̃rĀ |ψcut〉 〈ψcut| is the reduced anyonic density matrix

for A.

In step 1, the requirement that only one charge line threads each boundary component

of ∂A comes from the TQFT statement that the charge associated with a puncture is

equivalent to the charge line threading it. As it is not well-defined to think of multiple

charges associated with the same puncture, before we introduce new punctures by cutting

the surface, we must apply F -moves so that there is a single charge line threading each

boundary component. In step 2, we again emphasize that each connected component

of the surface, both before and after cutting, has total charge 0, when including the

boundary charges. As a result, the partial quantum trace in step 3 will be equivalent

to the regular partial trace. Our construction of the reduced density matrix differs from

that of Ref. [95] in that we do not trace over the (new) boundary charges of A (see the

discussion at the beginning of Section 4.4).

As a demonstrative example, we compute the anyonic reduced density matrices ob-
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tained from the state (suppressing vertex labels)

|ψ〉 =
∑

a,b,c,d,e

ψa,b,c,d,e

d
1/4
c

⊗
a

⊗
b

d e

c̄

c (4.94)

of a surface with genus g = 2 and n = 1 puncture, when it is partitioned into the regions

A and Ā indicated by the dashed lines drawn on the surface:

.

Following the steps outlined above:

1. We write the full density matrix

ρ̃ = |ψ〉 〈ψ| =
∑

a,b,c,d,e
a′,b′,c′,d′,e′

ψa,b,c,d,eψ
∗
a′,b′,c′,d′,e′

(dcdc′)
1/4

⊗
a

⊗
b

d e

c̄

c

c̄′

c′d′ e′

⊗
a′

⊗
b′

. (4.95)
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2. We cut the surface:

|ψcut〉 〈ψcut| =
∑

a,b,c,d,e
a′,b′,c′,d′,e′

ψa,b,c,d,eψ
∗
a′,b′,c′,d′,e′

(dcdc′)
1/4 dbdb′

√
dddd′

⊗
a

d
d̄

b b̄

d e

b b̄

c̄
c

(A)

⊗
a′

d′
d̄′

b′ b̄′

(Ā)

c̄′

c′d′ e′

b̄′b′

.

(4.96)

3. We trace over region Ā:

T̃rĀ




d e

b b̄

c̄
c

c̄′

c′d′ e′

b̄′b′




= δb,b′δc,c′δd,d′

d e
b b̄

c̄ c

c̄ c

b b̄
d e′

= db
√
dcddδb,b′δc,c′δd,d′δe,e′

(4.97)

to find the reduced density matrix for A:

ρ̃A = T̃rĀ |ψcut〉 〈ψcut| =
∑

a,b,c,
d,e,a′

ψa,b,c,d,eψ
∗
a′,b,c,d,e

db
√
dd

⊗
a

d
d̄

b b̄

⊗
a′

d
d̄

b b̄

. (4.98)
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Alternatively, we can trace over the region A:

T̃rA




⊗
a

d
d̄

b b̄

⊗
a′

d′
d̄′

b′ b̄′




=
δa,a′δd,d′δb,b′

da

āa

d d̄

a ā

d̄d

b b̄

b b̄

= db
√
ddδa,a′δd,d′δb,b′

(4.99)

to find the reduced density matrix for Ā:

ρ̃Ā = T̃rA |ψcut〉 〈ψcut| =
∑

a,b,c,d,e,
c′,e′

ψa,b,c,d,eψ
∗
a,b,c′,d,e′

db
√
dcdd

d e

b b̄

c̄
c

c̄′

c′d e′

b̄b

. (4.100)

4.4.3 Framing

Finally, when working with anyon models on a higher genus surface it is necessary

to specify a framing of the charge lines. That is, charge lines should be thickened into

ribbons, so that the diagram accurately keeps tracks of twists in a ribbon. These twists

correspond to the phase a particle with fractional statistics picks up when undergoing

a 2π rotation. There is no canonical choice of framing for a general three manifold.

There is, however, a definite law for how partition functions transform under a change

of framing, i.e. under the modular T transformations, known as Dehn twists. Thus, we

must simply pick some framing and be consistent [98]. The framing can be defined as
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the continuous map from the topological charge line inside the surface to a projection of

the charge line on the surface, which defined a ribbon. One can think of the projection of

the line onto the surface as being specified by the path along which quasiparticles were

transported and fused in order to generate the corresponding state. Note that a Dehn

twist of the surface will put a corresponding twist in the ribbon.

While the framing is technically necessary, we note that it will have no effect on the

entanglement entropies we calculate in the following section. Similar to the conventional

entanglement entropy of Section 4.2.2, the AEE is only a well-defined entanglement mea-

sure if the full system is in a pure state ρ̃AĀ = |ψ〉 〈ψ|. Writing the Schmidt decomposition

of the state as |ψ〉 =∑α λα |ψAα 〉 |ψĀα 〉, we see the anyonic reduced density matrix for A

will take the form ρ̃A =
∑

α |λα|2 |ψAα 〉 〈ψAα |. The framing keeps track of twists in the

diagram, which contribute a phase to the untwisted diagram. This phase of |ψAα 〉 will

always be paired with its complex conjugate when considering the density matrix ρ̃A, and

thus will cancel out of the AEE calculations. We simplify our expressions in the next

section by neglecting the framing, which should be interpreted as some implicit choice

having been made.

4.5 Topological Entanglement Entropy in AnyonMod-

els II

We are now in a position to compute the AEE for a bipartition of a topological state

on a compact orientable surface with arbitrary genus and number of boundaries. Central

to our method is the derivation of the reduced density matrix from the partitioning of

the surface such that we account for correlations across the boundary. Our approach

may be viewed as a generalization of the Kitaev-Preskill derivation of the TEE.
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We first review the Kitaev-Preskill method for calculating the TEE, which used a

geometric cancellation argument to isolate the TEE from the entanglement entropies of

seven geometrically different partitions of the plane into a disk and its complement (we

refer the reader to Ref. [7] for more details):

1. Pair the plane with its time-reversal conjugate surface.

2. Join the two surfaces by adiabatically inserting four wormholes that connect the

surfaces and gluing the two planes together along a circle at infinity. “Adiabatic

insertion” means that the system remains in its ground state during the entire pro-

cess of inserting the wormholes. Thus, an anyon circling a wormhole should detect

no difference from an anyon circling a region in the plane containing no topologi-

cal excitations, i.e., each wormhole is threaded by a trivial topological charge line.

The location of the wormholes corresponds to the “corners” of the different disk

partitions of the plane.

3. For each choice of geometric partition, cut the surface along the partition bound-

ary, which now runs along the regions between wormholes, i.e. around the tubes

connecting the different partition regions. A partition cut divides the surface into

disjoint compact, orientable surfaces with either three or four punctures, depending

on the choice of partition.

4. Compute the state (reduced density matrix) and entanglement entropy of the re-

sulting surfaces using standard TQFT methods. More specifically, this involves

rewriting the state of the uncut doubled system in a basis that is more suitable to

the ensuing cut by (a) applying modular S-transformations to rewrite the trivial

charge line through each wormhole as an ω0-loop circling the throat of the worm-

hole, and (b) applying F -moves to all the topological charge lines threading the
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tubes that will be cut, so that there is a single topological charge line threading

each boundary component generated by the partition cut (i.e. to obtain the basis

states in which each resulting puncture has a definite value of topological charge).

5. Add and subtract the entanglement entropies of the seven geometric partitions such

that their linear dependence cancels and the topological contribution survives.

We generalize the Kitaev-Preskill method to enable the computation of all topological

contributions to the entanglement entropy, including the TEE and anyonic entanglement,

for any compact region A of a 2D topological phase living on a compact, orientable surface

M with any genus and number of punctures and/or quasiparticles using the following

steps, which will be illustrated in detail for several examples:

1. Pair the surface M with its time-reversal conjugate M∗. (When embedded in 3D,

we assume the original surface is enclosed by the conjugate surface.)

2. Adiabatically insert n wormholes along the original partition boundary ∂A. Each

wormhole is threaded by a trivial topological charge line. The system will now

look like two parallel surfaces connected by a series of tubes. 2 We denote this new

surface by M and the doubled regions corresponding to A and Ā of the un-doubled

system are denoted by A and Ā, respectively. The partition boundary ∂A has n

connected components, each running along the regions between two wormholes, i.e.

around the tubes connecting A and Ā.

3. Cut M along the partition boundary ∂A. The partition cut divides the surface

into disjoint compact, orientable surfaces A and Ā, each of which obtains n new

punctures from the cut, corresponding to the boundary components where regions

A and Ā were formerly connected.

2Not a big truck. [99]
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4. Compute the state (reduced density matrix) and AEE entropy of the resulting

surface A. More specifically, this involves rewriting the state of the uncut doubled

system in a basis that is more suitable to the ensuing cut by (a) applying modular

S-transformations to rewrite the trivial charge line through each wormhole as an

ω0-loop circling the throat of the wormhole, and (b) applying F -moves to all the

topological charge lines threading the tubes that will be cut, so that there is a

single topological charge line threading each boundary component generated by

the partition cut.

5. Taking n large, 3 the AEE of region A will exhibit a term that is linear in n, which is

identified as the contribution that is linear in the boundary length, and a constant

term, which is identified as the topological contribution. The contributions from the

boundary (i.e. the linear term and the TEE) are divided by two for the contribution

to the entanglement entropy of A, the original (un-doubled) system.

Given the topological reduced density matrix for region A, the AEE can be evaluated

using the anyonic formalism discussed in Section 4.4. When there are punctures and/or

quasiparticles in the system, one can choose whether or not to also double this content of

the system, as long as one is careful to correctly attribute the corresponding contributions

when accounting for the doubling. Similarly, if there is genus, one can choose different

states (topological charge lines winding around the non-contractible cycles). We will

utilize these options in our analysis when it simplifies the computations.

When writing the topological state of the doubled system with wormholes, one must

be careful to identify the correct total number of non-contractible cycles of the surface M.

On the doubled infinite plane, there is a one-to-one correspondence between wormholes

and non-contractible cycles. However, on the doubled sphere, the first wormhole inserted

3Taking n large corresponds to inserting as many wormholes along the boundary as possible. In other
words, one inserts roughly one wormhole per regularization length, so n ∼ L/ℓ, as before.
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does not create a non-contractible cycle, but simply yields the “connected sum” of the two

spheres, which is a single sphere. Each subsequent wormhole inserted will then increase

the genus of the resulting surface by one. A consequence of this is the the normalization

on the doubled sphere will differ from the normalization on the doubled plane by a factor

of D, when written with ω0-loops encircling every wormhole. More generally, when we

double a connected, compact surface of genus g and insert n wormholes attaching the

doubled surfaces, the resulting surface will have genus 2g+n−1. This is, again, because

the first wormhole inserted simply creates a connected sum of the two surfaces, and

each subsequent wormhole increases the genus by one. We will restrict our attention to

compact surfaces in order to make the analysis more rigorous, but similar methods can

be used for non-compact surfaces.

One might be worried that inserting a large number of closely spaced wormholes

would introduce non-contractible cycles whose lengths are too small to provide topological

protection of the corresponding state degeneracies associated with them. In particular, if

a cycle inM is not long compared with the correlation length ξ, non-universal microscopic

effects will generically lead to an energy splitting that favors different values of topological

charge lines threading that cycle. This is, however, not a problem for our construction for

the following reasons. The potentially small cycles introduced by inserting the wormholes

are Lthroat, the circumference of a given wormhole’s throat, and Ltube, the circumference

of the tubes connecting regions A and Ā. It is perfectly acceptable for Lthroat to be small,

because we are already requiring a specific value of topological charge line threading the

throat of the wormhole, namely the trivial charge 0. As long as the Hamiltonian of the

system is such that trivial charge line threading the wormhole is energetically favored

by the adiabatic insertion of the wormhole, its throat circumference can be arbitrarily

small (meaning down to the regularization length). In fact, this condition may be viewed

as part of the definition of the process of adiabatically inserting a wormhole. On the
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other hand, it is important that Ltube be much larger than ξ, because the ground state

of M will require superpositions of the values of topological charge line threading these

cycles. At first glance, one might think that this should dissuade us from inserting

wormholes separated by a distance d ≈ ℓ. However, the circumference of the tube is

roughly Ltube ∼ d+h, where h is the “height” of the wormholes, i.e. the spacing between

conjugate surfaces. Since we are free to choose h, we can let it be arbitrarily large, which

allows us to also have arbitrarily small d without sacrificing the necessary topological

degeneracy.

There are several benefits of the method we present: (1) It applies beyond the ground

state, to states containing anyonic excitations, i.e., boundaries and/or quasiparticles

carrying topological charge. (2) It makes the origin of the TEE more explicit. (3) It

captures the topological contribution to the boundary law term in the entanglement

entropy. (4) It may be used to extract the TEE from the Rényi entropy for arbitrary

topological phases.

In this section, we use our method (described above) to calculate the topological

contribution to the entanglement entropy. We first illustrate the approach in the simplest

example of the ground state on a sphere partitioned into two disks, Section 4.5.1. We

analyze this example in greater detail than subsequent examples, as it exhibits most of

the crucial methodology that will be repeated. In Sections 4.5.2-4.5.5, we apply the same

method to an excited state of a disk cut from the sphere, an annulus cut from the sphere,

an annular segment cut from the torus, and a 3-punctured sphere cut from the sphere. In

Section 4.5.6, we discuss the general form of the entanglement entropy for a subregion of

a compact, orientable surface of arbitrary genus and number of punctures/quasiparticles.
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4.5.1 Sphere Partitioned into Two Disks

Before diving into the derivation of the reduced density matrix, we first comment on

how to visualize the surfaces discussed in this section. Consider a sphere partitioned into

two disks, A and Ā. For ease of illustration, we zoom in so that locally the surface looks

planar.

We pair the original surface M with its time-reversal conjugate M∗, and join the two

surfaces by adiabatically inserting n wormholes along the partition boundary separating

A from Ā. The resulting surface M has genus g = n− 1.
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Here, we show the case with n = 3 wormholes. The partition boundary is now broken into

segments, each of which runs between two wormholes and pass through the wormholes

between the upper layer region of M and the lower layer region, as indicated in the above

by dashed lines. In order to find the reduced density matrix for the doubled region A,

we cut the surface along the new partition boundary, resulting in the following surfaces

for A and Ā:
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Each of these regions are topologically equivalent to a sphere with n punctures:

In the remainder of this section, we will omit the dashed lines indicating the partition

boundary in the pictures of the surfaces, but we will include them in the corresponding

anyon diagram representation of the state.

Having oriented ourselves to what the three-dimensional embedding of our surfaces

look like, we are now ready to derive the corresponding anyonic reduced density matrix

for A. First, recall that adiabatic insertion implies that each wormhole is threaded by a

trivial topological charge line.
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We can use the modular S-transformation to rewrite the topological charge line threading

a given wormhole in terms of an ω0-loop circling the throat of that wormhole, up to an

overall normalization factor of the state, essentially converting between the inside and

outside bases (see Section 4.4.1).

This claim is justified by first isolating a given wormhole of the surface (when there is

more than one wormhole), which locally takes the form of a punctured torus with charge

line 0 through the handle. Next, one can apply the modular S-transformation for a
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punctured torus, described in Section 4.4.1. When the topological charge threading the

handle is b = 0 for a punctured torus, the charge on the puncture it is necessarily c = 0,

i.e. the punctured torus state in the outside basis is |(0); 0〉outside. Applying the modular

S-transformation to the punctured torus state in the outside basis gives the state in

terms of the inside basis

|(0); 0〉outside =
∑

a

S0a |(a); 0〉inside =
∑

a

da
D |(a); 0〉inside , (4.101)

which is the same as representing the state by having an ω0-loop circling the throat of

that wormhole, up to an overall normalization factor. Thus, the state of the system can

be re-expressed in the basis represented by topological charge lines that thread the region

inside the surface M.

Using the diagrammatic formalism, we can write the state as

|ψ〉 = Dn−1

. . .
ω0 ω0

ω0

ω0 ω0

ω0

⊙ ⊙

⊙

⊙ ⊙

⊙
, (4.102)

where the dashed line indicates the partition boundary, and we have introduced the no-

tation ⊙ to represent the throats of the wormholes around which the ω0-loops wind.

This notation will be more convenient than expressing the state in terms of the non-

contractible cycles associated with the genus, because the ensuing boundary partition

cut is more naturally represented with respect to the wormholes. It is, however, straight-

forward to represent this state using the non-contractible cycles associated with the genus,

and doing so makes clear the extra factor of D−1 necessary for proper normalization. In

particular, because the genus of the surface is g = n− 1 (see the discussion at the begin-
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ning of Section 4.5), one of the ω0-loops encircling a wormhole is redundant. This can

be seen using the handle-slide property of the ω0-loop, which states that a topological

charge line may be passed through a nontrivial cycle (or other charge lines) if the cycle

is encircled by an ω0-loop:

ω0

⊗

a

=
ω0

⊗

a

. (4.103)

One of the ω0-loops circling a wormhole can be deformed around the surface using handle-

slide moves until it encircles nothing and can then simply be removed. If we treat that

same wormhole as the one that is not contributing to the genus (i.e. the one responsible

for first connecting the conjugate surfacesM andM∗), then the state may be re-expressed

in the notation of Section 4.4 for the state of a genus g = n− 1 surface as

|ψ〉 = Dn−1 ⊙ω0 ⊙ω0 . . . ⊙ω0

= Dn−1 ⊗ω0 . . . ⊗ω0

=
∑

x1,...,xn−1

dx1 · · · dxn−1

Dn−1

x1 . . .
xn−1⊗ ⊗ . (4.104)

Deforming the wormhole representation of the state of Eq. (4.102) and using Eq. (C.23),

we can fuse together the charge lines threading the same boundary region, so that it is
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expressed as (suppressing the fusion vertex labels)

|ψ〉 = Dn−1
ω0ω0 . . . ω0⊙ ⊙⊙

=
1

D
∑

~a

d~a
Dn

a2a1 . . . an⊙ ⊙ ⊙

=
1

D
∑

~a,~b

√
d~b

Dn

ā1
b1
ā1

a2
b2

a2

a3

a3 . . .
ān−1

bn−1

ān−1

an
bn

an

a1

a1⊙ ⊙ ⊙

.

(4.105)

The corresponding anyon diagram embedded in three dimensions looks like
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We can rewrite the state in a tree-like form using a series of F -moves 4:

|ψ〉 =
∑

~a,~b,e2,e′2

√
d~b

Dn+1

[
F a1b1b2
a3

]†
e′2a2

[
F a1b1b2
a3

]
a2e2

⊙ ⊙
a1

e2

a1

b1 b2

e′2
ā3

ā3

. . . ⊙
ān−1

bn−1

ān−1

an
bn

an

a1

a1

=
∑

a1,a3,...,an
~b,e2,e′2,e3,e

′
3

√
d~b

Dn+1
δe2,e′2

[
F a1e′2b3
a4

]†
e′3a3

[
F a1e2b3
a4

]
a3e3

⊙ ⊙

a1 e2
e3

a1

b1 b2

e′2

b3

e′3

ā4

ā4

b3

. . . ⊙
ān−1

bn−1

ān−1

an
bn

an

a1

a1

=
∑

a1,~b,~e

√
d~b

Dn+1
⊙ ⊙ ⊙

b3

e2
e3

b1

en−1

en a1

en a1

b2 bn

e2
e3

en−1

. . .⊙ =
∑

~b,
e2,...,en−2

√
d~b

Dn−1
⊙ ⊙ ⊙

b3

e2
e3

b1

b̄n

b2 bn

e2
e3

b̄n

. . .⊙ .

(4.106)

The unitarity of the F -symbols together with the summation over aj results in δej ,e′j

factors (and similarly for the suppressed vertex labels). In the last line, we collapse a

tadpole diagram in both A and Ā, 5 which sets en = 0 and en−1 = b̄n and results in a

factor of D2 when a1 is summed over. In the following, we write ~e to mean e2, . . . , en−2.

We note that the final expression could have alternatively been obtained from the state

written as n wormholes with ω0-loops around only n− 1 of the wormholes.

When embedded in three dimensional space, the anyon diagram corresponding to the

4This series of transformations also involves “bending” moves, i.e., vertex rotations [82]. The bending
transformations also cancel out, so we leave them implicit to avoid excessive clutter.

5Note that the outer loop in the second to last expression of Eq. (4.106) can be deformed around the
surface until it no longer encloses anything, i.e. it is truly a tadpole diagram.
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final representation of the state in Eq. (4.106) looks like

Now that each partition boundary component, i.e. each tube connecting A to Ā, is

threaded by a single topological charge line, when we cut the surface along the partition

boundary between A and Ā, indicated by the dashed lines in Eq. (4.106), each resulting

boundary components of A will correspondingly be ascribed the topological charge bj of

the charge line threading it, and similarly for the boundaries of Ā. The resulting state

after cutting is

|ψcut〉 =
∑

~b,~e

1

Dn−1

(A)

b1

e2

b2

e3

b3

b̄n

bn

(Ā)

b1

e2

b2

e3

b3

b̄n

bn

, (4.107)

where the diagram for A embedded in three dimensional space looks like
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or, equivalently,
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We can now find the reduced density matrix for A by tracing over Ā,

ρ̃A = T̃rĀ

[
|ψcut〉 〈ψcut|

]

=
∑

~b,~e,~b′,~e′

1

D2n−2

(A)

b1

e2

b2

e3

b3

b̄n

bn

b′1

e′2

b′2

e′3

b′3

b̄′n

b′n

(Ā)

b1

b′1

e2

b2

b′2

e3

b3

b′3

b̄n

bn

b′n

e′2

e′3

b̄′n
.

(4.108)

The quantum trace over Ā sets bj = b′j and ej = e′j , and evaluating the inner product

yields a factor of
√
d~b. Therefore, the anyonic reduced density matrix for A (restoring

the vertex labels) is

ρ̃A =
∑

~b,~e,~µ

√
d~b

D2n−2

b1

e2µ2

b2

e3µ3

b3

b̄n

bn

b1

e2
µ2

b2

e3
µ3

b3

b̄n

bn

. (4.109)

We note that this is precisely equal to the reduced density matrix ρ̃A from Eq. (4.58).

From the reduced density matrix, we can calculate the anyonic Rényi entropy. First,
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consider (ρ̃A)
2:

(ρ̃A)
2 =

∑

~b,~e,~µ,
~e′,~µ′

d~b
D4n−4

b1

e2µ2

b2

e3µ3

b3

b̄n

bn

e2
µ2

e3
µ3

b̄n

b1
e′2µ′2

b2

e′3µ′3

b3

b̄n

bn

b1

e′2
µ′2

b2

e′3
µ′3

b3

b̄n

bn

=
∑

~b,~e,~µ

√
d~b

D2n−2

(
d~b

D2n−2

)

b1

e2µ2

b2

e3µ3

b3

b̄n

bn

b1

e2
µ2

b2

e3
µ3

b3

b̄n

bn

.

(4.110)

It is then easy to generalize to ρ̃A raised to an arbitrary power:

(ρ̃A)
α =

∑

~b,~e,~µ

√
d~b

D2n−2

(
d~b

D2n−2

)α−1

b1

e2µ2

b2

e3µ3

b3

b̄n

bn

b1

e2
µ2

b2

e3
µ3

b3

b̄n

bn

. (4.111)
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Performing the quantum trace over Eq. (4.111) yields

T̃r (ρ̃A)
α =

∑

~b,~e,~µ

√
d~b

D2n−2

(
d~b

D2n−2

)α−1

b1
e2µ2

b2

e3µ3

b3

b̄n bn

e2
µ2

e3
µ3

b̄n

=
∑

~b,~e,~µ

(
d~b

D2n−2

)α
=
∑

~b

N0
b1...bn

(
d~b

D2n−2

)α
,

(4.112)

from which we see the anyonic Rényi entropy is

S̃(α) (ρ̃A) =
1

1− α
log
[∑

~b

N0
b1...bn

(
d~b

D2n−2

)α ]
. (4.113)

Taking the limit α → 1 yields the (von Neumann) AEE:

S̃ (ρ̃A) = lim
α→1

S̃(α) (ρ̃A) = −
∑

~b

N0
b1...bn

(
d~b

D2n−2

)
log

(
d~b

D2n−2

)

= −
∑

~b,~e

N e2
b1b2

N e3
e2b3

. . . N0
b̄n,bn

d~b
D2n−2

[
log

(
db1
D2

)
+ · · ·+ log

(
dbn
D2

)
+ 2 logD

]

= −n
∑

b

d2b
D2

log

(
db
D2

)
− 2 logD

= nS̃
(
ρ̃∂Aj

)
+ 2Stopo.

(4.114)

In the second to last equality, we used Eq. (C.2) to sum over the multiplicities. In the

last equality, we used Stopo ≡ − logD and the definition of the anyonic entropy of a

“boundary anyon” given in Eq. (4.60), which now applies to the anyonic state of the

topological charge on ∂Aj , the jth connected component of ∂A, i.e. S̃
(
ρ̃∂Aj

)
= S̃

(
ρ̃∂Aj

)
.
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At this point, the reason for the doubling of the topological contribution to the

entanglement entropy coming from the partition boundary should be clear: we doubled

the original region A and the original partition boundary in this method of computation.

Thus, the topological contribution to the entanglement entropy for the original region A

is given by

S̃A =
n

2
S̃
(
ρ̃∂Aj

)
+ Stopo. (4.115)

As shown in Ref. [100] for string-net and quantum double models, using the Rényi

entropy produces the same value of the TEE for any index α. This can be seen for more

general topological phases using our approach by rewriting Eq. (4.113) in powers of the

boundary length. Consider the matrix

[Kα]ee′ ≡
∑

b

N e′

ebd
α
b . (4.116)

Since db = db̄ and N e′

eb = N e
e′b̄
, it follows that Kα is normal and can, thus, be unitarily

diagonalized, allowing us to write it as

[Kα]ee′ =
∑

µ

κα,µ[vα,µ]e[vα,µ]
∗
e′. (4.117)

where κα,µ is the µth eigenvalue with corresponding normalized eigenvector vα,µ. We

note that [Kα]ee′ > 0 for all e and e′, since there must be some value of b such that

N e′

eb 6= 0. Thus, Kα obeys the Perron-Frobenius theorem, which implies that there is a

unique eigenvector which has all positive real components (up to an overall scalar), and

the corresponding eigenvalue of this eigenvector is positive and larger in magnitude than

all other eigenvalues. We label this eigenvector by µ = 0. It is straightforward to check

that [vα]e = de/D is a normalized eigenvector, so it must be the µ = 0 eigenvector. Its
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corresponding eigenvalue is

κα,0 =
∑

e

d1+αe . (4.118)

Thus, we find that

log


∑

~b

N0
b1...bnd

α
b1 . . . d

α
bn


 = log ([(Kα)

n]00) = log

(
∑

µ

κnα,µ[vα,µ]0[vα,µ]
∗
0

)

= log

(
κnα,0
D2

+
∑

µ6=0

κnα,µ[vα,µ]0[vα,µ]
∗
0

)

= n log κα,0 − logD2 + F (n, 0, Kα) . (4.119)

Here, we have defined

F (n, c,Kα) ≡ log

(
1 +

D2

dc

∑

µ6=0

(
κα,µ
κα,0

)n
[vα,µ]0[vα,µ]

∗
c

)
, (4.120)

which is exponentially suppressed in n for large n, since κα,µ < κα,0 for all µ 6= 0. More

specifically, |F (n, c,Kα)| = O(e−λn), where λ = − log(max
µ6=0

|κα,µ/κα,0|) is a constant that

only depends on the TQFT.

Plugging Eq. (4.119) back into Eq. (4.113), we have

S̃(α) (ρ̃A) = nS̃(α)(ρ̃∂Aj
) + 2Stopo +

F (n, 0, Kα)

1− α
, (4.121)

where we have denoted the anyonic Rényi entropy of a boundary anyon as

S̃(α)(ρ̃∂Aj
) = S̃(α)(ρ̃∂Aj

) =
1

1− α
log
(κα,0
D2α

)
. (4.122)

Eq. (4.121) has the same form as Eq. (4.11): a term that is linear in the length of the

boundary (n ∼ L/ℓ), a universal constant topological contribution, and sub-constant
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corrections. Again, for the topological contribution to the entanglement Rényi entropy

of the original (un-doubled) system, this should be divided by two

S̃
(α)
A =

n

2
S̃(α)(ρ̃∂Aj

) + Stopo +
F (n, 0, Kα)

2(1− α)
. (4.123)

Finally, we clarify why the original Kitaev-Preskill method of computing the TEE

must me modified when using the Rényi entropy. Let S̃n and S̃
(α)
n denote the anyonic

von Neumann and Rényi entanglement entropies, respectively, of the doubled region A

when n wormholes were inserted along the partition boundary in the doubling process,

i.e. A is an n-punctured sphere. The method of Ref. [7] utilized different geometric

partitions of the systems into disks that resulted in 3-punctured and 4-punctured spheres

after doubling and cutting, and showed that

Stopo = 2S̃3 −
3

2
S̃4. (4.124)

We see that this result holds given the form of Eq. (4.115). However, this result does not

extend to the anyonic Rényi entropies, as can be seen from the form of Eq. (4.113):

2S̃
(α)
3 − 3

2
S̃
(α)
4 = Stopo +

2F (3, 0, Kα)− 3
2
F (4, 0, Kα)

1− α
, (4.125)

as the second term is some constant that depends on the TQFT, with no dependence on

the boundary length. Our method recovers the boundary-law (linear length dependence)

of the entanglement entropy and the TEE when utilizing Rényi entropies.
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4.5.2 2-Punctured Sphere Partitioned into Two 1-Punctured

Disks

We now extend the results of the previous section to the case when the disk A hosts

an anyon c.

The line connecting c and c̄ along the surface can be thought of as the path through

which the topological charges were created and moved to the shown positions.

As before, we pair the system with its time-reversal conjugate, joining them by adi-

abatically inserting n wormholes along the boundary partition (n = 3 in the following

picture).
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The derivation of the anyonic reduced density matrix for A proceeds in much the

same way as for the unpunctured disk in Section 4.5.1, with the only difference being

that the topological charges c and c̄ are present. For instance, Eq. (4.105) is modified to

|ψ〉 = 1

D
∑

~a,~b

√
d~b√

dcDn

⊙ ⊙

c c̄

ā1
b1

ā1

a2
b2

a2

a3

a3 . . . ⊙
ān−1

bn−1

ān−1

an
bn

an

a1

a1

, (4.126)

where the charge lines embedded in the doubled surface look like
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As the charge line connecting c and c̄ lies below all other charge lines in the above picture,

the steps illustrated in Eq. (4.106) (i.e., F -moves to rewrite the state in tree-like form

and collapsing the tadpoles in A and Ā) also apply to the excited state considered here.

After applying these steps, we are left with the state in the form

|ψ〉 =
∑

~b,~e

√
d~b√

dcDn−1

⊙ ⊙ ⊙ ⊙

c c̄

b3

e2
e3

b1

en−2

b2

bn−1

bn

e2
e3

en−2

. . .
, (4.127)

with corresponding three dimensional embedding
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Now, before cutting the surface into A and Ā, we must first fuse c with the topological

charge line running through the same boundary region (taken in the picture to be b3 and

in the diagram to be bn):

|ψ〉 =
∑

~b,~e

√
d~b

dcDn−1
⊙ ⊙ ⊙ ⊙

c̄

b3

e2
e3

b1

en−2

en−1

c

b2

bn−1

bn

e2
e3

en−2

en−1

. . . . (4.128)

In rewriting the state into this final form, we have used a braiding transformation that

only contributes an overall phase to the state, which we therefore can drop. Additionally,

we applied a partition of identity and have relabeled bn as ēn−1 and instead used bn to

denote the fusion channel of ēn−1 and c̄ in the partition of identity. The shorthand

notation ~e now means e2 . . . en−1. This diagrammatic state embedded in the doubled

surface looks like
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We can now cut the doubled surface, resulting in the state

|ψcut〉 =
∑

~b,~e

1

dcDn−1

(A)

b1

e2

b2

e3

b3

en−2

bn

c̄

c

(Ā)

b1

e2

b2

e3

b3

en−2

bn

c

c̄

(4.129)

Finally, we write the density matrix in the cut Hilbert space, ρ̃ = |ψcut〉 〈ψcut|, and

then trace over Ā to find the reduced anyonic density matrix (restoring the vertex labels):

ρ̃A =
∑

~b,~e

√
d~b

d
3/2
c D2n−2

b1

e2µ2

b2

e3µ3

b3

en−2

µn−1

bn

c̄

c

b1

e2
µ2

b2

e3
µ3

b3

en−2

µn−1

bn

c̄

c

. (4.130)

Comparing Eq. (4.63) with Eq. (4.130), we see that the heuristic argument of Section 4.3.3

produced the same reduced anyonic density matrix ρ̃A for a disk containing a puncture or
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quasiparticle of topological charge c as did our method (generalizing the Kitaev-Preskill

method) using a doubled surface connected by wormholes.

Using the same steps outlined in Eqs. (4.116)-(4.120) for the unpunctured disk, we

can calculate the anyonic Rényi entropy

S̃(α) (ρ̃A) =
1

1− α
log


∑

~b

N c̄
b1...bn

(
d~b

dcD2n−2

)α

 . (4.131)

Taking the limit α → 1 yields the (von Neumann) AEE

S̃(ρ̃A) = lim
α→1

S̃(α) (ρ̃A) = nS̃
(
ρ̃∂Aj

)
+ 2Stopo + S̃c, (4.132)

which agrees with Eq. (4.64). Again, since we doubled the original surface in this method,

both the area law term and the TEE appear with an extra factor of two. The S̃c term

is not doubled, because we did not double the punctures carrying charge c and c̄ of the

original surface. Therefore, the topological contribution to the entanglement entropy of

the original system in region A is

S̃A =
n

2
S̃
(
ρ̃∂Aj

)
+ Stopo + S̃c, (4.133)

agreeing with Eq. (4.68).

As before, we can extract the topological contributions to the anyonic Rényi entropy

by rewriting Eq. (4.131) in powers of the boundary length. We find

S̃(α) (ρ̃A) = nS̃(α)
(
ρ̃∂Aj

)
+ 2Stopo + S̃c +

F (n, c̄, Kα)

1− α
, (4.134)

S̃
(α)
A =

n

2
S̃(α)

(
ρ̃∂Aj

)
+ Stopo + S̃c +

F (n, c̄, Kα)

2(1− α)
, (4.135)
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where F (n, c̄, Kα) is exponentially suppressed in n for large n, which is essentially the

regime in which the boundary length is large (n ∼ L/ℓ).

We note that the geometric cancelation method used in Ref. [7] to isolate Stopo also

cancels the S̃c contribution due to a topological charge c in the region, so it does not

isolate this term as well.

4.5.3 Punctured Sphere Partitioned into an Annulus and Two

1-Punctured Disks

We now consider a sphere with a pair of punctures (or quasiparticles) carrying topo-

logical charge c and c̄. We apply our method for a partition of the system into an annular

region A, chosen such that c and c̄ lie outside and on opposite sides of the annulus, i.e.

each of the disks that form Ā contains one of the punctures.

We follow the same approach as for the previous example of the disk. We create the

manifold M by pairing the system with its time-reversal conjugate and connecting the
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surfaces through an array of wormholes adiabatically inserted along the partition bound-

ary, which in this case is delineated by two concentric circles. We insert n wormholes

along one boundary component and m wormholes along the other. Each wormhole is

threaded by a trivial topological charge line. Then, analogous to Eq. (4.102) for the un-

punctured disk, we apply a modular S-transformation to express the state in the basis

represented by topological charge lines in between the two surfaces, i.e. the inside basis.

We then use F -moves to fuse the charge lines threading each new partition boundary

component of the doubled surface with wormholes, similar to Eq. (4.105). The charge

lines embedded in M look like:

We now apply the same series of F -moves outlined in the first three equalities of Eq. (4.106).
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The state can be written as (suppressing vertex labels)

|ψ〉 =
∑

~a,~b,

~e, ~f,
g1,h1

√
d~ad~b

Dn+m+1

1√
dc

c c̄

⊙ ⊙ ⊙
a3

e2
e3

a1

en−1

g1

g1

en

en

a2 an

e2
e3

en−1

. . .

⊙ ⊙ ⊙
b3

f2
f3

b1

fm−1

h1

h1

fm

fm

b2 bm

f2
f3

fm−1

. . .
, (4.136)

where the dashed lines indicate the partition boundary between A (corresponding to the

annulus A of the un-doubled system) and Ā (corresponding to the two disks comprising

Ā of the un-doubled system). We can collapse the two tadpole diagrams in region Ā (the

outermost g1 loop and the innermost h1 loop). In doing so, en and fm are both required

to equal the trivial charge 0. The remaining g1 and h1 loops in A (which both encircle a
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non-contractible cycle) can be fused together, resulting in the state:

|ψ〉 =
∑

~a,~b,k,
e2,...,en−2,
f2,...,fm−2

√
d~ad~b

Dn+m−2

1√
dc

dk
D c c̄

⊙ ⊙ ⊙
a3

e2
e3

a1

ān

k

a2 an

e2
e3

ān

. . .

⊙ ⊙ ⊙
b3

f2
f3

b1

b̄m

b2 bm

f2
f3

b̄m

. . . (4.137)

Here, we have used the property

∑

g,h

dgdh ⊗
h

g

=
∑

g,h,k

dgdhN
k
gh ⊗

k

=
∑

h,k

d2hdk ⊗

k

= D2
∑

k

dk ⊗

k

. (4.138)

Note that the loop labeled by k in Eq. (4.137) is actually an ω0-loop circling one of the

connected components of Ā (wrapping around a non-contractible cycle), because it is

weighted by dk in the sum over k. Similar to Eq. (4.128), we fuse the topological charge

c line to the charge lines threading the same boundary regions, taken here to be bm and

an. The state embedded in the doubled surface looks like:
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Finally, we cut along the partition boundary. After cutting, the region A of the doubled

system, which is an (n +m)-punctured torus (genus g = 1), looks like

and the state |ψcut〉 of the cut system (including A and Ā) can be represented diagram-

matically as

|ψcut〉 =
∑

~a,~b,

~e, ~f

1

Dn+m−3

1

d
3/2
c

a1a2

e2

anc̄

(Ā)

b1 b2

f2

bm c

(Ā)

a1 a2

e2

an b1b2

f2

bm

⊗
ω0 c c̄

(A)

(4.139)
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or, alternatively, as

|ψcut〉 =
∑

~a,~b,

~e, ~f

1

Dn+m−3

1

d
3/2
c

a1a2

e2

anc̄

(Ā)

b1 b2

f2

bm c

(Ā)

a1 a2

e2

an b1b2

f2

bm

⊗
ω0
c c̄

(A)

. (4.140)

The choice to represent |ψcut〉 as Eq. (4.139) or Eq. (4.140) amounts to a highly non-trivial

change of basis, or a mental exercise in topology (essentially turning the embedding of

region A inside-out). It is instructive to work with the more complicated looking repre-

sentation in Eq. (4.139) to convince oneself that the remaining steps of the computation

for the AEE are equally simple in either representation, provided one does not attempt

to transform to the canonical basis.

Given the density matrix of the cut state ρ̃cut = |ψcut〉 〈ψcut|, we can take the trace

over each of the disks of region Ā in the same way as shown in Eq. (4.108). The reduced

density matrix for A is (restoring the vertex labels):

ρ̃A =
∑

~a,~b,~e, ~f,~µ,~ν

1

D2(n+m−3)

√
d~ad~b
d2c

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

⊗
ω0

⊗
ω0

. (4.141)

As in the previous sections, in order to calculate the anyonic Rényi entropy and the

AEE we consider powers of the reduced density matrix. We square ρ̃A by stacking the
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diagrams. Note that

T̃r




c c̄

⊗
ω0

⊗
ω0

c c̄




=
∑

k

dk
D4

c c̄

c c̄

k

k

= T̃r




c c̄

⊗
ω0

⊗
ω0

c c̄




=
dc
D2

. (4.142)

Therefore,

(ρ̃A)
2 =

∑

~a,~b,

~e, ~f,
~µ,~ν,

~e′, ~f ′,
~µ′,~ν′

k

1

D4(n+m−3)

d~ad~b
d4c

d2k
D4

1

dk

k

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

⊗
ω0

µ′2 e′2

µ′n

ν′2
f ′2

ν′m

c c̄

a1 a2

µ′2 e′2

an

µ′n

b1b2

ν′2f ′2

bm

ν′m

c c̄
⊗
ω0

, (4.143)

where the k loop with prefactor dk/D4 comes from taking the inner product of two
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ω0-loops. Evaluating the middle diagram, we find

(ρ̃A)
2 =

∑

~a,~e,~µ
~b, ~f,~ν

1

D2(n+m−3)

√
d~ad~b
d2c

(
d~ad~b

D2(n+m−2)d2c

)

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

⊗
ω0

⊗
ω0

. (4.144)

From the previous equation, it is straightforward to see that

(ρ̃A)
α =

∑

~a,~e,~µ
~b, ~f,~ν

1

D2(n+m−3)

√
d~ad~b
d2c

(
d~ad~b

D2(n+m−2)d2c

)α−1

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

⊗
ω0

⊗
ω0

. (4.145)

Performing the quantum trace and summing over the vertex labels we find

T̃r (ρ̃A)
α =

∑

~a,~b

(
d~ad~b

D2(n+m−2)d2c

)α
N c
a1...an

N c̄
b1...bm (4.146)

The anyonic Rényi entropy is therefore

S̃(α) (ρ̃A) =
1

1− α
log


∑

~a,~b

N c
a1...an

N c̄
b1...bm

(
d~ad~b

D2(n+m−2)d2c

)α

 . (4.147)
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Taking the limit α → 1 yields

S̃ (ρ̃A) = −(n +m)
∑

a

d2a
D2

log

(
da
D2

)
− 4 logD + 2 log dc. (4.148)

Taking into account the doubling of the surface, the topological contribution to the

entanglement entropy of the original (un-doubled) system is

S̃A = −n +m

2

∑

a

d2a
D2

log

(
da
D2

)
− 2 logD + 2 log dc

= −n +m

2
S̃
(
ρ̃∂Aj

)
+ 2Stopo + 2S̃c. (4.149)

4.5.4 Torus Partitioned into Two Cylinders (Two Annuli)

We now consider a torus in the ground state |(c); 0〉inside, corresponding to a topolog-

ical charge line c running in the longitudinal direction, i.e. in the inside basis, and apply

our method for a partition the system into two cylindrical regions A and Ā.

As with the previous examples, we pair the system with its time-reversal conjugate.

Specifically, we introduce the conjugate inside the original torus, and choose it to be in
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the its ground state |(0); 0〉inside, as signified by the ω0-loops in the figure. (We draw two

ω0-loops instead of just one, the utility of which will become clear later.)

As before, to construct M we adiabatically insert wormholes (threaded by trivial topo-

logical charge lines) along the partition boundary, with n wormholes along one of the

boundary components and m wormholes along the other. Then we use the modular S-

transformation to re-express the state in the inside basis (where all the charge lines are

between the two surfaces).
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Analogous to Eq. (4.105) for the disk cut from the sphere, we apply a series of F -moves to

fuse topological charge lines that thread the new boundary components between regions

A and Ā.
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Similarly to the first three equalities in Eq. (4.106), we rewrite the state with further use

of F -moves.
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In the last equality of Eq. (4.106), we collapsed a tadpole diagram in both A and Ā. In the

present situation, the analogous “tadpole-like” diagrams now enclose a non-contractible

cycle, i.e. the inner torus. Nonetheless, we can contract these loops using the handle-

slide property of the ω0-loop, see Eq. (4.103). Thus, even though the tadpoles encircle a

nontrivial cycle, they can be passed through it due to the presence of the ω0-loop. In this

way, they become true tadpoles, and can be subsequently collapsed. (This step reveals

the reason for beginning with two ω0-loops: there needs to be one on either side of the

wormholes to help collapse the tadpoles.) The result is:

Fusing the topological charge c line into the other charge lines crossing the partition

boundary, similar to Eq. (4.128), we have the state
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Finally, we cut along the partition boundary to produce the cut state. Each of the

resulting regions A and Ā after cutting is a surface with genus g = 1 and n+m punctures,

and looks like:

Calculating the density matrix ρ̃ = |ψcut〉 〈ψcut| and tracing out region Ā yields the

reduced density matrix for region A. Once again, there is a choice of basis for how to

diagrammatically represent the region A, which essentially amounts to either projecting

the above picture to the plane as drawn, or turning the picture inside out so that the
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center tube becomes external to the region, resulting in the ω0-loop circling the c charge

line. The former results in the reduced density matrix

ρ̃A =
∑

~a,~e,~µ
~b, ~f,~ν

1

D2(n+m−3)

√
d~ad~b
d2c

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

a1 a2

µ2 e2

an

µn

b1b2

ν2f2

bm

νm

c c̄

⊗
ω0

⊗
ω0

, (4.150)

while the latter results in the reduced density matrix given in Eq. (4.141). Therefore, the

reduced density matrix for the region A of the doubled torus with wormholes is equivalent

to that of the doubled region A corresponding to when A was an annulus cut from a

sphere, as we would expect from topological considerations. It follows that the anyonic

Rényi entropy of region A is given by Eq. (4.147) and the topological contribution to the

entanglement entropy of A, the original (un-doubled) system, is given by Eq. (4.149).

4.5.5 3-Punctured Sphere Partitioned into a 3-Punctured Sphere

and Three 1-Punctured Disks

As a final example, we consider a sphere containing three punctures (or quasiparticles)

carrying topological charges x, y, and z. We partition the region so that each puncture

is contained in a separate disk, and apply our method for the three punctured sphere A

that remains when the three disks are removed.
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We follow the same steps as in the previous examples: (1) pair the system with

its time-reversal conjugate, (2) insert wormholes threaded by trivial charge lines along

the partition boundary, with l, m, and n wormholes along the three different boundary

components, respectively, (3) apply modular S-transformations to express the state in the

inside basis (all topological charge lines are between the two surfaces), (4) use F -moves

to fuse topological charge lines that thread each new partition boundary component, (5)

use further F -moves to write the state in a tree-like form, and (6) fuse the x, y, and

z charge lines to the topological charge line threading the same boundary component.

Analogous to Eq. (4.136) for the annulus, after step (5) each disk in Ā will contain a

tadpole that can be collapsed. Similar to Eq. (4.137), collapsing this tadpole results in

an ω0-loop in A encircling the corresponding region of Ā. Region A is a surface with

genus g = 2 and l+m+n punctures. After performing steps (1)-(6), the state embedded

in M is
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with the corresponding diagrammatic representation

|ψ〉 =
∑

~a,~b,~c,

~e, ~f,~g

√
d~ad~bd~c

Dl+m+n−5 (dxdydz)
3/4

a1 a2
e2

e2

al

x

⊙ ⊙ . . . ⊙

x

ω0 b1 b2
f2

f2

bm

y

⊙ ⊙ . . . ⊙

y

ω0 c1 c2
g2

g2

cn

z

⊙ ⊙ . . . ⊙

z

ω0

. (4.151)

The third ω0-loop can be brought around the other side of the sphere, so that it encloses

the other two ω0-loops. Then, using the handle-slide property of Eq. (4.103), it can be

slid over the other two ω0-loops, so that it does not enclose any non-contractible cycles.

Finally, we can collapse this ω0-loop, using

ω0
=
∑

a

da
D2 a

= 1. (4.152)
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Thus, the state can be written as

|ψ〉 =
∑

~a,~b,~c,

~e, ~f,~g

√
d~ad~bd~c

Dl+m+n−5 (dxdydz)
3/4

a1 a2
e2

e2

al

x

⊙ ⊙ . . . ⊙

x

ω0 b1 b2
f2

f2

bm

y

⊙ ⊙ . . . ⊙

y

ω0 c1 c2
g2

g2

cn

z

⊙ ⊙ . . . ⊙

z

. (4.153)

Cutting along the partition boundary (dashed lines), we have

|ψcut〉 =
∑

~a,~b,~c,

~e, ~f,~g

1

Dl+m+n−5 (dxdydz)
3/4

(A)

x y

z

⊗
ω0

⊗
ω0

a1 a2

e2

al b1 b2

f2

bmc1 c2

g2

cn

z cn c2 c1

g2

(Ā)

y bm b2 b1

f2

x al a2 a1

e2
,

(4.154)

where we have chosen to represent the region A in an analogous basis to that chosen

in Eq. (4.139) for |ψcut〉 of the annulus. The diagram for region A embedded in three-

dimensional space looks like
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Finally, we can trace over region Ā to find the anyonic reduced density matrix for

region A (restoring the vertex labels):

ρ̃A =
∑

~a,~b,~c,

~e, ~f,~g,

~µ,~ν,~λ

√
d~ad~bd~c

D2(l+m+n−5)dxdydz

x y

z

⊗
ω0

⊗
ω0

a1 a2

µ2 e2

al

µl

b1 b2

ν2 f2

νm

bmc1 c2

λ2 g2

λn

cn

x y

z

µ2 e2

µl

a1 cna2 al b1 b2

ν2 f2

νm

bm c1 c2

λ2 g2

λn
ω0ω0

⊗ ⊗

. (4.155)

Applying similar steps to those used in Eqs. (4.110)-(4.112) for the disk and in

Eqs. (4.143)-(4.146) for the annulus, we find that the anyonic Rényi entropy is

S̃(α) (ρ̃A) =
1

1− α
log



∑

~a,~b,~c,~e, ~f,~g,

~µ,~ν,~λ

(
d~ad~bd~c

D2(l+m+n−3)dxdydz

)α

 . (4.156)
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Taking the limit α → 1 yields the AEE for region A

S̃(ρ̃A) = lim
α→1

S̃(α)(ρ̃A) = −(l+m+n)
∑

a

d2a
D2

log

(
da
D2

)
−6 logD+log (dxdydx) . (4.157)

After taking into account the doubling of the surface, the topological contribution to the

entanglement entropy for the original (un-doubled) region A, i.e. the 3-punctured sphere,

is given by

S̃A = − l +m+ n

2

∑

a

d2a
D2

log

(
da
D2

)
− 3 logD + log dx + log dy + log dz

= − l +m+ n

2
S̃(ρ̃∂Aj

)− 3Stopo + S̃x + S̃y + S̃z. (4.158)

We see the entanglement entropy of region A is equal to the sum of the entanglement

entropies of three disks with matching boundary charge values [see Eq. (4.132)], as it

should. Crucially, this implies that each separate boundary component of the region A

contributes a universal O(1) topological term log (dc/D) to the entanglement entropy,

where c is the total topological charge on the corresponding boundary component.

4.5.6 General Result

Given the results of the prior examples, we can deduce the result for the general case

of an arbitrary partitioning of a compact, orientable surface with genus g and arbitrary

number of punctures or quasiparticles that carry topological charge. For a partitioning

of the surface into regions A and Ā, let us assume the joint boundary between A and Ā

(i.e. ∂A∩∂Ā) has N connected components, ∂A(1), . . . , ∂A(N). We denote the topological

state of the system by ρ̃, which can be described using the anyonic formalism of fusion

trees of topological charge lines of the punctures/quasiparticles and charge lines winding

around non-contractible cycles. We denote the topological state of the (un-doubled)
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region A, including the boundaries, by ρ̃A. We denote by p
(k)
c the probability of the state

ρ̃A being in a configuration wherein ∂A(k) carries topological charge c.

The topological contribution to the entanglement entropy associated with ∂A(k) is

S̃∂A(k) = −nk
2

∑

a

d2a
D2

log

(
da
D2

)
− logD +

∑

c

p(k)c log dc (4.159)

=
nk
2
S̃(ρ̃∂Aj

) + Stopo + S̃(ρ̃∂A(k)). (4.160)

Here, nk ∼ Lk/ℓ is a non-universal quantity that is essentially the discretized length of

the kth component of the partition boundary using some regularization.

The topological contribution to the entanglement entropy between regions A and Ā

is given by

S̃A =
N∑

k=1

S̃∂A(k) + S̃(ρ̃A). (4.161)

That is, it is the sum of the contributions from each of the partition boundary com-

ponents and the anyonic entropy of the reduced density matrix of region A (including

the boundary charges). Eq. (4.161) is consistent with previous studies on the entangle-

ment entropy of orientable, higher genus surfaces supporting an SU(2)k Chern-Simons

theory [56, 63].

Generally, the superposition of charges on different partition boundary components

cannot be described by independent probability distributions. As an example, the three-

punctured sphere considered in Section 4.5.5 could be generalized to the case where

the punctures have charges x, y, and z with probability pxyz. The constant terms in

the AEE would then depend on the probability distribution {pxyz} and it would not be

possible to completely separate the terms associated with the disk containing charge x

from the terms associated with the disk containing charge y. Therefore, we see that the

entanglement entropy is highly state-dependent, even when we neglect the boundary-law
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term. Nonetheless, the O(1) partition boundary terms show up in a universal way by

contributing a term
∑
c

p
(k)
c log

(
dc
D
)
for the corresponding kth component of the partition

boundary.

Thus, we have determined that the entanglement entropy for a topological phase

on an arbitrary compact, orientable surface (possibly including genus, punctures, and

quasiparticles) partitioned into regions A and Ā will take the form

SA =
N∑

k=1

(
αLk − logD +

∑

c

p(k)c log dc

)
+ S̃(ρ̃A) +O(L−1

k ), (4.162)

where Lk is the length of the kth connected component of the partition boundary.

4.6 Discussion

In this paper, we have investigated the rich entanglement structure of two-dimensional

topological phases with anyons by applying the standard notions of entropy to the di-

agrammatic representation of the TQFT. In Section 4.3, we probed the correlations

between subsystems of anyons using the anyonic entanglement entropy (AEE) and the

entropy of anyonic charge entanglement. We found that the fusion tensor category struc-

ture of the Hilbert space gives rise to entanglement associated with the topological charge

line connecting two subsystems, a type of correlation not present in traditional quantum

systems. We further found, in Sections 4.3.3 and 4.5, that the TEE is naturally explained

from a decrease in the entropy (increase in order) evoked by a nonlocal (topological) con-

straint imposed on any region of the system by its topological order. The total fusion

channel of topological charges encoding local correlations across the partition boundary

is fixed when the system is cut, resulting in a very specific reduction of the AEE. We

now place our results in a broader context. First, we discuss the relation of our results
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to the string-net formalism of Ref. [85]. Then, we explain how our analysis also applies

to topological defects and generalizes straightforwardly to fermionic topological phases.

Finally, we discuss possible extensions of our methods to non-orientable surfaces and

(3 + 1)-dimensional topologically ordered systems.

4.6.1 Relation to String-Net Models

String-nets are exactly solvable models of topological phases [85] in which “strings,”

labeled by the elements of a unitary fusion tensor category (UFTC) F , lie on the links of

a lattice. A set of fusion rules constrains which strings may meet at a vertex. In general,

the string-net model built from F realizes a topological phase described by the Drinfeld

center D(F) of F . In the special case where F describes the fusion structure of a MTC

C, the Drinfeld center takes the form D(F) = C × C.

Ref. [8] found that the entanglement entropy of the (fixed point) string-net ground

state of the plane partitioned into a disk region A whose boundary is crossed by n links

of the lattice is

SA = −n
∑

i∈F

d2i
D

log

(
di
D

)
− logD, (4.163)

where i and di are the labels and quantum dimensions, respectively, of the lattice strings.

The quantity

D = D2
F =

∑

i∈F
d2i =

√ ∑

a∈D(F)

d2a = DD(F) (4.164)

is equal to the total quantum dimension DD(F) of the emergent TQFT D(F).

In this paper, we found the entanglement entropy for a topological phase described

by a UMTC C by pairing the system with its time-reversal conjugate described by C̄, and

inserting wormholes along the partition boundary to glue the two surfaces together. This

process can be related to a string-net model based on the UFTC F describing the fusion
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structure of the UMTC C. More specifically, the graph of anyon charge lines representing

the state of the system in the basis where all anyon charge lines are between the two

(doubled) layers of the surface (hosting C and C̄) is instead interpreted as the underlying

lattice of the string-net model hosting F . The lattice can be thought of as defining a

surface (the original surface in the prior approach) and the wormholes are now thought

of as passing through the (empty space at the) center of the plaquettes of the lattice.

The plaquette operator Bp imposes trivial flux through the plaquettes, i.e. the ω0-loops

circling the wormholes. Consequently, our result in Eq. (4.114), the AEE obtained from

doubling a disk region of the original system, is identical to Eq. (4.163), the string-net

result, when both aj and i belong to C, so that D = D2
C.

Furthermore, when the UMTC C describing the topological phase can itself be written

as C = E × Ē for some UMTC E , then this phase can realized by the string-net model

built out of the UFTC E . 6 In this case, Eq. (4.61), the topological contribution to the

entanglement entropy for a topological phase described by C, equals Eq. (4.163) for the

corresponding string-net model built from E , where aj ∈ C and i ∈ E . While the TEE for

a general UMTC C always agrees with the string-net computation, since D = DD(F), it

is interesting that the boundary length (n) dependent terms matches in this case where

C = E × E , that is

1

2

∑

a∈C

d2a
D2

C
log

(
da
D2

C

)
=

1

2

∑

aL∈E
aR∈E

d2aLd
2
aR

D2
ED2

E
log

(
daLdaR
D2

ED2
E

)
=
∑

i∈E

d2i
D

log
di
D
. (4.165)

In the case where a UFTC F does not describe the fusion structure of any UMTC,

so that D(F) 6= E × E for any E , it is not necessarily the case that there is equality

between 1
2

∑
a∈D(F)

d2a
D2

D(F)

log

(
da

D2
D(F)

)
and

∑
i∈F

d2i
D
log di

D
, so the linear terms (proportional to

n) of Eq. (4.61) and Eq. (4.163) do not generally agree.

6In this case, the string-net lattice model provides a microscopic regularization of the theory.
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Finally, we note that the string-net formalism gives an intuitive understanding for

the form of Stopo. Consider a string-net model built out of an Abelian UFTC F . Then

di = 1 for i ∈ F , and D is simply the number of underlying string types D = |F| = N .

From Eq. (4.163), we see that the entanglement entropy is given by SA = (n− 1) logN .

We can understand the form of SA in this case as follows. The state space of each link in

the lattice hosting the string-net has dimension N . Without conservation of topological

charge, the entanglement entropy would be the sum of each link lying across the par-

tition boundary, i.e., n logN . The constraint on the total charge of the lattice strings

on the boundary essentially fixes the state of the last link, reducing the entanglement

entropy by logN = logD = −Stopo. For a string-net built out of a UFTC F describing

a non-Abelian theory, the probability of a link carrying a given string is weighted by

the quantum dimension of that string type, which also enters the entanglement entropy

when a boundary component carries a corresponding topological charge.

4.6.2 Topological defects

The analysis in this paper also applies to (2 + 1)-dimensional topologically ordered

systems that contain topological defects whose universal properties can be described

by “G-crossed UMTCs.” This includes on-site symmetry defects [30] and translational

symmetry defects [31]. In such cases, the topological defects in the system have fusion and

associativity properties that are precisely the same as that of quasiparticles, and they have

a generalization of braiding that incorporates the symmetry action. In particular, this

means the defects have quantum dimensions in the same sense as do quasiparticles. There

is also a generalization of modular transformations in the presence of defects and defect

branch lines, which allows one to apply the methods of our paper in a straightforward

manner. Specifically, a wormhole with trivial topological flux threading it can be re-
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expressed in terms of the inside basis with topological charge lines circling the throat

of the wormhole. In this case, if there is a g-defect branch line around the location

where the wormhole is inserted, the modular S-transformation maps from the 0-sector

for the outside basis, where topological charge lines threading the throat of the wormhole

correspond to quasiparticles, to the g-sector for the inside basis, where topological charge

lines circling the throat of the wormhole correspond to g-defects. Since the charge line

through the wormhole is trivial, the amplitudes of the defect charge lines of the inside

basis are proportional to their quantum dimensions, i.e. S(0,g)
0ag =

dag
D0

, where the total

quantum dimension D0 is that of the quasiparticle sector of the G-crossed theory, i.e.

the total quantum dimension of the UMTC that describes the topological order without

defects (see Ref. [30] for more details). It follows that the results in the presence of

topological defects are exactly the same as in Eqs. (4.159)-(4.162), but the partition

boundary components are now allowed to carry topological charges corresponding to

quasiparticles or defects from the G-crossed MTC describing the system. This has been

confirmed in the case of “twist defects” in the toric code model [60].

4.6.3 Fermionic Topological Phases

The analysis in this paper utilizes (2+1)-dimensional TQFTs, which describe bosonic

topological phases of matter in two spatial dimensions. However, the results are straight-

forwardly generalized to fermionic topological phases by utilizing (2 + 1)-dimensional

fermionic TQFTs, also known as topological spin theories [101]. A fermionic topological

phase includes a physical fermion ψ, which has trivial braiding statistics with all quasi-

particles in the theory, i.e. the physical fermion is transparent. The quasiparticles of the

theory (including the physical fermion) are described by a super-modular tensor category

(SMTC) C0, which is a unitary braided tensor category in which the fermion ψ is trans-
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D̂2 SMTCs C0
1 Z

(1)
2 (Trivial)

2 Z
(1)
2 × Z

(1/2)
2

3 Z
(1)
2 × Z

(p)
3 , p = 1, 2

φ+ 2 Z
(1)
2 × Fib±1

4 Z
(1)
2 ×Kν , ν = 0, 1, . . . , 7

5 Z
(1)
2 × Z

(p)
5 , p = 1, 2

6 Z
(1)
2 × Z

(p)
6 , p = 1

2
, 5
2

4 + 2
√
2 SO(3)6

7 Z
(1)
2 × Z

(p)
7 , p = 1, 3

Table 4.2: The quasiparticle sector of a fermionic TQFT in (2 + 1)D is described by
a SMTC, which can be classified according to its value of the super total quantum
dimension D̂. This table lists all distinct SMTCs with D̂2 ≤ 7, as determined from

Refs. [82, 103, 89]. (φ = 1+
√
5

2 ≈ 1.6 is the Golden ratio.) For most values of D̂,

there are very few possible SMTCs. Moreover, the SMTCs with a given value of D̂
are usually very closely related. Additional details may be found in C.2.

parent and the braiding is only two-fold degenerate, i.e. the degeneracy associated with

the fermion. While charges in a bosonic topological phase are described by superselection

sectors a of the corresponding UMTC, for the fermionic case we must think in terms of

supersectors, â = {a, a× ψ}, with associated quantum dimension dâ = da. Forming su-

persectors, we find that the topological S-matrix takes the form S = Sfermion ⊗ Ŝ, where

Sfermion is the degenerate 2 × 2 S-matrix of a trivial fermion theory (i.e. the only topo-

logical charges are the vacuum and the fermion) and Ŝ is the S-matrix of supersectors.

The two-fold braiding degeneracy is equivalent to the condition that Ŝ is unitary. For

modular transformations of the fermionic topological phase, we must specify the spin

structure for every nontrivial cycle of the surface (i.e., we must fix periodic or antiperi-

odic boundary conditions of the ψ Wilson loop for every nontrivial cycle), as this plays a

crucial role in the structure of the fermionic modular transformations (see Ref. [102] for

further details).

Given a fermionic TQFT, one can carry out the same steps and analogous calculations
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for fermionic topological phases as in the method presented in this paper for bosonic

topological phases. The main differences in the analysis will be that each wormhole will

carry a trivial supersector flux 0̂ = {0, ψ}, the choice of spin structures on the surfaces

must be specified, and fermionic modular transformations, which act on spin structures,

are used. It turns out, however, that the choice of spin structure does not affect the

TEE result. We find that the TEE associated with each distinct partition boundary

component for a fermionic topological phase is

Ŝtopo = − log D̂, (4.166)

where we have defined the super total quantum dimension by

D̂ =

√∑

â∈Ĉ0

d2â =

√
1

2

∑

a∈C0

d2a. (4.167)

This result has been confirmed for various fermionic fractional quantum Hall states [66,

67, 58, 68, 74, 75, 78].

Similar to the case of UMTCs, there are only a finite number of possible SMTCs for

a particular value of D̂. In Table 4.2, we list all SMTCs for D̂2 ≤ 7.

4.6.4 Non-orientable surfaces

An interesting future direction would be to generalize our analysis to study the entan-

glement entropy on non-orientable surfaces. We expect the construction of the reduced

density matrix outlined in the beginning of Section 4.5 will differ for non-orientable sur-

faces in step 3. That is, the S-transformation on a non-orientable surface will no longer

necessarily result in an ω0-loop. Rather, the superposition of charges circling each worm-

hole will be a subset of all charges in the theory (see Ref. [104] for a discussion of state
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sums on non-orientable surfaces). Nonetheless, we anticipate that the TEE will still

originate from the conservation of topological charge.

4.6.5 Three dimensional topological phases

Finally, one could also extend our method of calculating the entanglement entropy

to (3+ 1)-dimensional topological phases. Previous investigations of the TEE in (3+ 1)-

dimensions have utilized a linear combination of spatial regions to isolate the boundary-

independent contribution to the entanglement entropy, similarly to the (2+1)-dimensional

Kitaev-Preskill method [57, 59, 62, 64]. Dividing the partition boundary into smaller

regions, as in our method for (2 + 1)-dimensions, could elucidate how the conservation

of more general topological quantum numbers results in a reduction of the entanglement

entropy in (3 + 1)-dimensions. This analysis could be carried out for exactly solvable

models [57, 68, 105, 106], or more generally using TQFT methods.
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A.1 Z
(1/2)
2 (Doubled Semion)

The Z
(1/2)
2 model[107] uses the Z

(1/2)
2 UFTC:

• String types 0 and 1,

• Allowed branchings {0, 0, 0}, {0, 1, 1},

• Quantum dimensions d0 = 1, d1 = −1, and

• F 110
110 = −1. All other admissible F ijm

kln = 1.

The Hamiltonian is

H
(0)

Z
(1/2)
2

= −
∑

v

Qv −
∑

p

1

2

(
B0

p −B1
p

)
. (A.1)

The ground state is given by:

|0〉 =
∑

|X〉∈closed loop
string-nets

(−1)nC(|X〉)|X〉, (A.2)

where nC(|X〉) is the number of closed loops in |X〉. Using Appendix A.5, the ground

state degeneracy on a manifold with genus g is 4g.
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If we represent the strings as spin-1
2
particles, where the 0 string is |+z〉 and the 1

string is |−z〉, then Qv and B
(0)
p can be written in terms of Pauli matrices:

Qv =
1

2

(
1 +

∏

i∈v legs

σz
i

)
(A.3)

B(0)
p =

1

2

(
1−

∏

i∈p edges

σx
i ·

∏

j∈p legs

i
1−σ

z
j

2

)

×
∏

v∈p vertices

Qv (A.4)

Omitting the
∏

v Qv term in B
(0)
p , which acts trivially on the ground state, this Hamil-

tonian is equivalent to,

H = −
∑

v

∏

i∈v legs

σz
i −

∑

p

∏

i∈p edges

σx
i ·

∏

j∈p legs

i
1−σ

z
j

2 , (A.5)

up to a factor of 2 and an overall energy shift. (Actually, when written in terms of Pauli

matrices, B
(0)
p needs to be modified in order for H

(0)

Z
(1/2)
2

to be exactly solvable. [108])

There are four string operators, which belong to the Z
(1/2)
2 ×Z

(1/2)
2 MTC. When acting

along a path P, they can be written in terms of Pauli matrices:

WI = I, (A.6)

Ws =
∏

i∈P edges

σx
i ·

∏

j∈P r-legs

i
1−σ

z
j

2 ·
∏

k∈P l-legs

(−1)θk, (A.7)

Ws̄ =
∏

i∈P edges

σx
i ·

∏

j∈P r-legs

(−i)
1−σ

z
j

2 ·
∏

k∈P l-legs

(−1)θk , (A.8)

Wb =
∏

i∈P r-legs

σz
i . (A.9)

Here, θk =
1
4
(1− σz

i )(1− σz
j ), where i and j are the links that come just before and just

after the link k along the path, respectively. An open Ws creates a Qv violating semion
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s at each of its endpoints, Ws̄ creates a Qv violating semion s̄, and Wb creates a B
(0)
p

violating boson b. (If we do not omit the
∏

v Qv term in the definition of B
(0)
p , then Ws

and Ws̄ also create three B
(0)
p violations at their endpoints.)

The S and T matrices are:

S
Z
(1/2)
2 ×Z

(1/2)
2

=
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




, (A.10)

T
Z
(1/2)
2 ×Z

(1/2)
2

= diag(1, i,−i, 1). (A.11)

The rows and columns of S and T correspond to I, s, s̄, b. The s and s̄ quasiparticles

are anyons of opposite chiralities, while b is a boson.

A.2 String Operators

A string operators Wa can be represented strings acting along an open or closed

paths on the fattened honeycomb lattice.

The fattened honeycomb lattice is obtained by slightly thickening every link of a regular

honeycomb lattice. The string operator on the fattened lattice can be reduced to lattice
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states by using the following rules:

1. i

a
=
∑

jstΩ
j
a,sti ij

i

s

t
.

2.
i

a

=
∑

jst Ω̄
j
a,sti

i
ji

s

t

3. i = i .

4. i = di .

5. i jk

l
= δij

i jk

l
.

6.
i

j k

l
m =

∑
n F

ijm
kln

i

j k

l
n .

Thus, the string operators are characterized by (Ωja,sti, Ω̄
j
a,sti).

The Ω symbols are constrained by the fact that string operators are isotopy invariant,

i

a

=
i∗

a

, (A.12)

and can be passed freely over the vertices of the lattice along their middle,

k
i

j

a

= k
i

j

a

. (A.13)

These two conditions are expressed, respectively, by the following equations:

Ω̄ja,sti =
∑

k

Ωka,sti∗F
it∗k
i∗sj∗, (A.14)

∑

s

Ω̄ma,rsjF
sl∗i
kjm∗Ωla,sti

vjvs
vm

=
∑

n

F ji∗k
t∗nl∗Ω

n
a,rtkF

jl∗n
krm∗ . (A.15)

For a given UFTC, there are only a finite number of irreducible solutions to these equa-

tions, due to Ocneanu rigidity.
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The operator Bs
p is a string operator that creates a loop of string s in the plaquette

p:

Bs
p

∣∣∣∣∣

〉
=

∣∣∣∣∣ s

〉
, (A.16)

which can be reduced to Eq. (2.8) using the above rules.

A.3 Corrections to S and T

The original S and T matrices were defined as:[24]

[S]ab =
1

DD(C)
〈0| ba |0〉, (A.17)

[T ]ab =
〈0| a |0〉
〈0| a |0〉 δab. (A.18)

These are incorrect for models with underlying strings whose quantum dimension are

negative.

For example, using the original definitions applied to the Z
(1/2)
2 model yields the

incorrect results

S = S
Z
(1/2)
2

⊗ S∗
Z
(1/2)
2

=
1

2




1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1 1 1 1




, (A.19)

T = T
Z
(1/2)
2

⊗ T ∗
Z
(1/2)
2

= diag(1,−i, i, 1), (A.20)
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where S
Z
(1/2)
2

and T
Z
(1/2)
2

are from the Z
(1/2)
2 MTC:

S
Z
(1/2)
2

=
1√
2




1 −1

−1 −1


 , (A.21)

T
Z
(1/2)
2

= diag(1, i). (A.22)

(Compare Eq. (A.19) and (A.20) with Eq. (A.10) and (A.11).)

The origin of this correction lies in the distinction between diagrams in anyons models

and diagrams in string-net models. In anyon models, diagrams represent states in the

topological Hilbert space. For example, pair creating a and a∗ from the vacuum results

in the state:

|a, ā; 0〉 = a a∗

0
, (A.23)

where we have omitted the usual isotopy normalization. Unitarity requires that all states

in anyon models have non-negative norms. For example,

〈a, ā; 0|a, ā; 0〉 =
0

a a∗

a a∗

0

= da > 0. (A.24)

On the other hand, the above diagram in a string-net model represents a closed Wa

string operator acting on the ground state,

〈0| a |0〉, (A.25)

and could possibly be negative. The disagreement between these two results is captured

by κa.
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The S matrix is technically defined by an inner product in the anyon model: create

a pair of a and a∗ and a pair of b and b∗ from vacuum, braid a∗ around b, and compute

the inner product of the resulting state with the initial state before the braid.

[SD(C)]ab =
1

DD(C)

0

a a∗

a a∗

0

0

b b∗

b b∗

0

(A.26)

Thus, when expressing the S matrix with a similar string-net diagram, we must be careful

to include factors of κa and κb.

The same reasoning also applies to the T matrix.

A.4 Ising String Operators

The Ω symbols that define the nine string operators of the Ising model are given in

Table A.1.

We can view these string operators as a pair of Ising strings running above and below
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a (aA, aB) θa Ωja,sti Visual Representation

0 (I, I) 0 ΩI0,III = 1 =

Ωσ0,IIσ = 1 =

Ωψ0,IIψ = 1 =

1 (I, σ) −π
8

Ωσ1,σσI = 1 =

ΩI1,σσσ = 1√
2
e−

πi
8 , Ωψ4,σσσ = 1√

2
e

3πi
8 = 1√

2

(
e−

πi
8 + e

3πi
8

)

Ωσ1,σσψ = −i = −i
2 (I, ψ) π Ωψ2,ψψI = 1 =

Ωσ2,ψψσ = −i = −i
ΩI2,ψψψ = −1 = −

3 (σ, I) π
8

Ωσ3,σσI = 1 =

ΩI3,σσσ = 1√
2
e

πi
8 , Ωψ3,σσσ = 1√

2
e−

3πi
8 = 1√

2

(
e

πi
8 + e−

3πi
8

)

Ωσ3,σσψ = i = i

4 (σ, σ) 0 ΩI4,III = 1, Ωψ4,ψψI = 1 = +

Ωσ4,Iψσ = e
πi
4 , Ωσ4,ψIσ = e−

πi
4 = e

πi
4 + e−

πi
4

Ωψ4,IIψ = −1, ΩI4,ψψψ = 1 = − +

5 (σ, ψ) −7π
8

Ωσ5,σσI = 1 =

ΩI5,σσσ = 1√
2
e−

7πi
8 , Ωψ6,σσσ = 1√

2
e

5πi
8 = − 1√

2

(
e

πi
8 + e−

3πi
8

)

Ωσ5,σσψ = i = i

6 (σ, I) π Ωψ6,ψψI = 1 =

Ωσ6,ψψσ = i = i

ΩI6,ψψψ = −1 = −
7 (ψ, I) 7π

8
Ωσ7,σσI = 1 =

ΩI7,σσσ = 1√
2
e

7πi
8 , Ωψ7,σσσ = 1√

2
e

−5πi
8 = − 1√

2

(
e−

πi
8 + e

3πi
8

)

Ωσ7,σσψ = −i = −i
8 (ψ, ψ) 0 ΩI8,III = 1 =

Ωσ8,IIσ = −1 = −
Ωψ8,IIψ = 1 =

Table A.1: Ising model string operators.
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the lattice, i.e. a = (aA, aB), where aA, aB ∈ {I, σ, ψ}. To show this, note that

aB

i
aA

=
∑

stkl

vsvt
daAdaB

vkvl
vaAvaBdi

aB

i k
l i

aA

aB
aA
s

t
aB
aA

=
∑

stkl

vsvt
daAdaB

vkvl
vaAvaBdi

(RaAi
k )−1RiaB

l

aB

i k i
l i

aA

aB
aA
s

t
aB
aA

=
∑

stjkl

vkvl
vaAvaBdi

(RaAi
k )−1RiaB

l

F aAki
aBlj

F aBjk
iaAs

F aAjl
iaBt

i j
i

aB
aA

s

t
aB
aA

(A.27)

where we have used the R symbols of the Ising MTC. Since it can be explicitly checked

that for all a,

Ωja,sti =
∑

kl

vkvl
vsdi

(RaAi
k )−1RiaB

l F aAki
aBlj

F aBjk
iaAs

F aAjl
iaBt

, (A.28)

and since the same argument holds for Ω̄ja,sti, we can view the string operators as pairs

of Ising strings.

A.5 GSD from Verlinde Equation

Consider a system in an ideal topological phase with n quasiparticles on a manifold

of genus g. The ground state degeneracy Ng,{a1,...,an} can be counted by threading an

anyon through each of the handles, and then counting the degeneracy of the resulting
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fusion tree.

c1 c2
· · ·

cg

d1
d2

dg

e1

e2
· · · eg−1

eg

a1

a2

· · · an

b1 b2· · · bn

This degeneracy is given by:

∑

c1···cg

∑

d1···dg

∑

e1···eg

∑

b1···bn

δd1e1δa1b1δegb∗n

× [Nc1 ]c∗1d1 · · · [Ncg ]c∗gdg

× [Ne1 ]d2e2 · · · [Neg−1 ]dgeg

× [Nb1]a2b2 · · · [Nbn−1 ]anbn. (A.29)

Using the Verlinde formula, unitarity of S, and [S]ab = [S]ba = [S]∗a∗b yields: [109]

Ng,{a1,...,an} =
∑

x

[S]2−2g−n
0x [S]a1x · · · [S]anx. (A.30)

For doubled Chern-Simons theories, we can also calculate the ground state degeneracy

using App. A.6.

A.6 GSD for Doubled Chern-Simons Theories

For doubled Chern-Simons theories, a flux phase can be viewed as an underlying

string passing through each plaquette. We can exploit this property to calculate the

ground state degeneracy in a different way than App. A.5. We show this by considering

the smooth phase and flux phases of the Ising model.
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A.6.1 Ising Smooth Phase

Consider the case when the lattice is supported by a manifold with genus g. Since

there is I flux passing through every plaquette, every handle is free to have a I, σ, or

ψ string wrapping around it on the outside as long as we can form a fusion tree out of

these strings that results in a net I string.

For example, on a torus there are three possibilities:

i

, (A.31)

where i can be a I, σ, or ψ string. In general, there are four ways of wrapping strings

around a handle:

× , × , × , × , (A.32)

where × represents a handle. Note that the fourth configuration must come in pairs, so

that the resulting fusion is a I string. Counting the number of ways to assign pairs of

the fourth configuration to some of the handles and the first three configurations to the

rest yields:

⌊g/2⌋∑

n=0



g

2n


 3g−2n = 2g−1(2g + 1). (A.33)

Since the same argument can be applied independently inside the manifold, the ground

state degeneracy is:
(
2g−1(2g + 1)

)2
= 4g−1(2g + 1)2. (A.34)
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This result agrees with App. A.5:

Ng = 4g−1(2g + 1)2. (A.35)

A.6.2 Ising ψ Flux Phase

Consider the case when a lattice with an even number of plaquettes is supported by

a manifold with genus g . The ψ flux strings outside of the manifold can all be fused to

a single string. Since there are an even number of plaquettes, the result of this fusion is

a I string. For example, when a lattice with four plaquettes is supported by a torus, the

fusion tree would look like:

(A.36)

Therefore, every handle is free to have a I, σ, or ψ string wrapping around it on the

outside as long as we can form a fusion tree out of these strings that results in a net I

string. For example, on the torus there are three possibilities:

i

(A.37)

where the string i can be 0, σ, or ψ. This degeneracy was counted in Sec. A.6.1 to be

2g−1(2g+1). Since the same argument can be applied independently inside the manifold,

the ground state degeneracy is:

(2g−1(2g + 1))2 = 4g−1(2g + 1)2. (A.38)
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Now consider the case when a lattice with an odd number of plaquettes is supported

by a manifold with genus g. Again, the ψ flux strings outside of the manifold can all be

fused to a single string. Since there are an odd number of plaquettes, the result of this

fusion is a ψ string. For example, when the lattice with three plaquettes is supported by

a torus, the fusion tree would look like:

(A.39)

Therefore, every handle is free to have a I, σ, or ψ string wrapping around it on the

outside as long as we can form a fusion tree out of these strings that results in a net ψ

string. For example, on the torus there is only one possibility:

(A.40)

Counting the degeneracy of this, following an argument similar to that of Sec. A.6.1,

yields:

⌊g/2⌋∑

n=0




g

2n+ 1


 3g−(2n+1) = 2g−1(2g − 1). (A.41)

Since the same argument can be applied independently inside the manifold, the ground

state degeneracy is:

(2g−1(2g − 1))2 = 4g−1(2g − 1)2. (A.42)

These results agree with Appendix A.5:

Ng,{(ψ,ψ),...,(ψ,ψ)} = 4g−1(1 + (−1)N2g+1 + 4g), (A.43)
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where {(ψ, ψ), . . . , (ψ, ψ)} represents N number of (ψ, ψ).

A.6.3 Ising σ Flux Phase

Consider the case when a lattice with an even number of plaquettes is supported by

a manifold with genus g. Then, the σ fluxes outside of the manifold can all be fused to

a single string. Since there are an even number of plaquettes, the result of this fusion is

I or ψ, each with a degeneracy of 2N/2−1. Therefore, every handle is free to have a I,

σ, or ψ string wrapping around it on the outside as long as we can form a fusion tree

out of these strings that results in a net I or ψ string. The degeneracy of this, following

arguments similar to those of Sec. A.6.1, is 4g. Since the same argument can be applied

independently inside the manifold, the ground state degeneracy is:

(
2N/2−14g

)2
= 2N−216g. (A.44)

Now consider the case when a lattice with an odd number of plaquettes is supported

by a manifold with genus g. The σ fluxes outside of the manifold can all be fused to a

single string. However, since there are an odd number of plaquettes, the result of the

fusion is now a σ string. Therefore, every handle is free to have a I, σ, or ψ string

wrapping around it on the outside as long as we can form a fusion tree out of these

strings that results in a net σ string. However, this is impossible. So, we conclude that

the ground state is frustrated and one of the N plaquettes must have a I or ψ flux, while

the N − 1 remaining plaquettes form a fusion tree with a degeneracy of 2(N−1)−216g.

Thus, the ground state degeneracy is:

2N × 2(N−1)−216g = N2N−216g. (A.45)
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These results agree with Appendix A.5:

Ng,{(σ,σ),...,(σ,σ)} = 2N−3(1 + (−1)N)16g, (A.46)

where {(σ, σ), . . . , (σ, σ)} represents N number of (σ, σ).

A.7 Z
(1/2)
2 Flux Phase

The Hamiltonian is:

H
(1)

Z
(1/2)
2

= −
∑

v

Qv −
∑

p

1

2

(
B0

p +B1
p

)
(A.47)

= −
∑

v

1

2

(
1 +

∏

i∈v legs

σz
i

)

−
∑

p

1

2

(
1−

∏

i∈p edges

σx
i

)
, (A.48)

where we have again omitted the
∏

v Qv in the definition of B
(1)
p .

Since the Z
(1/2)
2 UFTC can be made into a MTC, the ground state corresponds to

having a 1 string passing through every plaquette. It is given by:

|0〉 =
∑

|X〉∈closed loop
string-nets

(−1)nP(|X〉)+nC(|X〉)|X〉, (A.49)

where nP(|X〉) is the number of plaquettes contained by closed loops in |X〉 and nC(|X〉)

is the number of closed loops. Using App. A.5, the ground state degeneracy for a latice

with an even number of plaquettes N on a manifold of genus g is Ng,{(1,1),...,(1,1)} = 4g ,

where {(1, 1), . . . , (1, 1)} represents N number of (1, 1). For a lattice with an odd number

of plaquettes, the system is actually frustrated and the ground state degeneracy is 4gN .
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The four string operators of the smooth phase can still be applied in the flux phase

to create excitations, but Ws and Ws̄ now acquire a factor of −1 every time they are

passed over a plaquette.

A.7.1 Even Plaquette Solution

For a lattice with an even number of plaquettes, we can use a change of basis to solve

H
(1)

Z
(1/2)
2

. We mark links on the latttice in such a way that each hexagon has exactly one

marked link, as shown in Fig. 2.2, and apply the change of basis Λ:

Λ = Λ−1 =
∏

i∈marked
links

Λi (A.50)

where

Λi = σz
i =



1 0

0 −1


 (A.51)

multiplies the amplitude of a lattice state by a factor of −1 if its link i is occupied by a

1 string. Since every hexagon has exactly one marked link, and

σz
i σ

x
j σ

z
i =





σx
j , i 6= j

−σx
j , i = j

, (A.52)

the change of basis transforms the flux Hamiltonian into the smooth Hamiltonian:

H̃
(1)

Z
(1/2)
2

= Λ−1H
(1)

Z
(1/2)
2

Λ = H
(0)

Z
(1/2)
2

. (A.53)

Thus, we can understand the flux phase by applying the change of basis to the smooth

phase results.
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The ground state in the flux phase is

|0〉 =
∑

|X〉∈closed loop
string-nets

(−1)nM(|X〉)+nC(|X〉)|X〉, (A.54)

where nM(|X〉) = nP(|X〉) is the number of marked links occupied by 1 strings in the

string-net |X〉. This agrees with Eq. (A.49).

The four modified string operators of the flux phase, which pass through plaquettes

freely, are WI , (−1)nM(P)Ws, (−1)nM(P )Ws̄, Wb, where nM(P) is the number of marked

links along the path P.

A.8 ZN Flux Phases

For every positive integer n, there is a Zn UFTC. When n is even, there is also a

Z
(1/2)
n UFTC, which differs from Zn in its quantum dimensions and F symbols.[26, 110]

The Zn model uses the Zn UFTC and realizes the D(Zn) phase. It is specified by:

• String types 0, 1, . . . , n− 1,

• Allowed branchings {i, j, [i+ j]n}, where i, j ∈ {0, 1, . . . , n− 1},

• Quantum dimensions di = 1 for all i, and

• All admissible F ijm
kln = 1.

The smooth phase Hamiltonian is

H
(0)
Zn

= −
∑

v

Qv −
1

n

∑

p

Bs
p. (A.55)
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To define the flux Hamiltonian, we use the following unitary matrix, which simultaneously

diagonalizes Ni:

[P ]jk =
1√
n
e

2πi
n
jk. (A.56)

The j flux Hamiltonian is

H
(j)
Zn

= −
∑

v

Qv −
1

n

∑

p

∑

s

e−
2πi
n
jsBs

p, (A.57)

where j ∈ {1, . . . , n − 1}. We wish to find a map from the j flux phase Hamiltonian to

the smooth phase Hamiltonian.

When the number of plaquettes in the lattice is a multiplie of n, we can apply the

following change of basis Λ(j):

Λ(j) =
∏

i∈marked
links

(
Λ

(j)
i

)mi

(A.58)

where marked links and their associated mi are shown in Fig. A.1, and Λ
(j)
k acts on the

link k, taken to be directed right for convention, as the diagonal matrix:

Λ
(j)
k = diag(1, e

2πi
n
j , e

2πi
n

2j , . . . , e
2πi
n

(n−1)j). (A.59)

Under this change of basis, the branching matrices transform as:

(
Λ

(j)
k

)−1

NlΛ
(j)
k = e

2πi
n
jlNl. (A.60)

Recall that the loop operator acts on a plaquette as:

Bs
p

∣∣∣∣∣
g

h
i

j
k

l

a

b c

d

ef

〉
=

∑

g′h′i′j′k′l′

Bg′h′i′j′k′l′

s,ghijkl

∣∣∣∣∣
g′

h′

i′

j′

k′
l′
a

b c

d

ef

〉
, (A.61)
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Figure A.1: Change of Basis

where

Bg′h′i′j′k′l′

s,ghijkl = F al∗g
s∗g′l′∗ · · ·F fk∗l

s∗l′k′∗ . (A.62)

We can write this as

Bg′h′i′j′k′l′

s,ghijkl = Bg′h′i′j′k′l′

s,ghijkl [Ns]gg′′ · · · [Ns]ll′′, (A.63)

since

[Ns]gg′ · · · [Ns]ll′ =





1 if Bg′h′i′j′k′l′

s,ghijkl 6= 0

0 if Bg′h′i′j′k′l′

s,ghijkl = 0.
(A.64)

Now, since Λ
(j)
k acts diagonally on the link k, Eq. (A.60) implies:

∑

k′k′′

[
Λ

(j)
k

]
k′′k′′′

Bg′h′i′j′k′′l′

s,ghijk′l

[
Λ

(j)
k

]
kk′

=

e
2πi
n
jsBg′h′i′j′k′′′l′

s,ghijkl . (A.65)

Every hexagon has two marked links, with the top link directed left and the bottom link

directed right. Taking these directions into account, the above equation implies that
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applying the change of basis to these two links results in:

(
Λ(j)

)−1
Bs

pΛ
(j) = e

2πi
n
jsBs

p. (A.66)

Thus, Λ(j) maps H
(j)
Zn

to H
(0)
Zn

, as desired.

The Z
(1/2)
n model, for n even, uses the Z

(1/2)
n UFTC and realizes the Z

(1/2)
n × Z

(1/2)
n

phase. It is specified by:

• String types 0, 1, . . . , n− 1,

• Allowed branchings {i, j, [i+ j]n}, where i, j ∈ {0, 1, . . . , n− 1},

• Quantum dimensions di = (−1)i, and

• All admissible F ijm
kln = e

πi
n
i([j]n+[k]n−[j+k]n).

The smooth phase Hamiltonian is

H
(0)

Z
(1/2)
n

= −
∑

v

Qv −
1

n

∑

p

Bs
p. (A.67)

To define the flux Hamiltonian, we use the following unitary matrix, which simultaneously

diagonalizes Ni:

[P ]jk =
(−1)(j+k)√

n
e

2πi
n
jk. (A.68)

The j flux phase Hamiltonian is

H
(j)

Z
(1/2)
n

= −
∑

v

Qv −
1

n

∑

p

∑

s

e−
2πi
n

(j+n/2)sBs
p, (A.69)

where j ∈ {1, . . . , n − 1}. We wish to find a map from the j flux phase Hamiltonian to

the smooth phase Hamiltonian.
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When the number of plaquettes in the lattice is a multiple of n, we can apply the

change of basis Λ(j+n/2), defined above. Following the arguments above, this change of

basis results in:
(
Λ(j+n/2)

)−1
Bs

pΛ
(j+n/2) = e

2πi
n

(j+n/2)sBs
p. (A.70)

Thus, Λ(j+n/2) maps H
(j)

Z
(1/2)
n

to H
(0)

Z
(1/2)
n

, as desired.

A.9 Abelian vs. Non-Abelian Fluxes

A flux j is Abelian iff there exists some unique k (corresponding to j∗) such that a

plaquette with flux j and a plaquette with flux k will always have definite total flux 0:

B(j)
p1
B(k)

p2
= B(j)

p1
B(0)

p1p2
, (A.71)

where B
(0)
p1p2 projects the total flux of plaquettes p1 and p2 onto trivial flux. Since

B(j)
p1
B(k)

p2

∣∣∣∣∣
p1

p2

〉

=
∑

st

a(j)s a
(k)
t

∣∣∣∣∣ s

t

〉

=
∑

stui

a(j)s a
(k)
t

vu
vsvt

F t∗u∗s∗

uti

∣∣∣∣∣
t

u
i

〉
, (A.72)
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and

B(j)
p1
B(0)

p1p2

∣∣∣∣∣
p1

p2

〉

=
∑

tu

a(j)u
dt
D2

C

∣∣∣∣∣
t

u

〉
, (A.73)

we need

∑

s

a(j)s a
(k)
t

vu
vsvt

F t∗u∗s∗

uti =





a
(j)
u

dt
D2

C
if i = 0

0 if i 6= 0.
(A.74)

After simplification, we find that flux j is Abelian iff there exists a unique k such that

for all i 6= 0, t, and u, we have

[P ]tj[P ]tk[P ]0k
[P ]0j

=
d2t
D2

C
, (A.75)

∑

s

v−1
s [P ]sjF

t∗u∗s
uti = 0. (A.76)

Otherwise, it is non-Abelian.

A.10 Ising Change of Basis

The Hamiltonian for ψ flux phase of the Ising model is:

H
(ψ)
IS = −

∑

v

Qv −
∑

p

1

4

(
BI

p −
√
2Bσ

p +Bψ
p

)
. (A.77)

We wish to find a map from the flux Hamiltonian to the smooth Hamiltonian.

When number of plaquettes in the lattice is even, we can apply the change of basis
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Λ:

Λ = Λ−1 =
∏

i∈marked
links

Λi, (A.78)

where marked links are shown in Fig. 2.2 and

Λi = diag(1,−1, 1) (A.79)

multiplies the amplitude of a lattice state by a factor of −1 if its link i is occupied by a

σ string. Under this change of basis, the branching matrices transform as:

Λ−1
i NIΛi = NI (A.80)

Λ−1
i NσΛi = −Nσ (A.81)

Λ−1
i NψΛi = Nψ. (A.82)

Therefore, by the arguments of Appendix A.8:

Λ−1BI
pΛ = BI

p (A.83)

Λ−1Bσ
pΛ = −Bσ

p (A.84)

Λ−1Bψ
pΛ = Bψ

p . (A.85)

Thus, Λ maps H
(ψ)
IS to H

(I)
IS .

It is useful to visualize why this change of basis works. The ground state of the ψ
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flux phase has a ψ string passing through every plaquette.

We can fuse the ψ flux strings of adjacent plaquettes above and below the lattice. Since

two ψ strings must fuse into a I string, we are essentially left with loops of ψ strings

enclosing certain links.

Using the facts:

= , = − , = , (A.86)

we can replace every link enclosed by a ψ string loop with a marked link and apply the

change of basis Λ.

The result is a lattice with I flux through every plaquette.
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This visualization also explains why changing basis does not work as simply for the

σ flux phase. The ground state of the σ flux phase has a σ string passing through every

plaquette.

Imagine fusing the σ flux strings of adjacent plaquettes above and below the lattice. For

example:

Since we are not left with σ loops around links, we cannot reduce the σ flux phase to

the smooth phase with a change of basis. Note that since two σ strings can fuse into

a I or ψ string, there are 2N−2 possible configurations of the fusion tree formed by flux

lines above and below the lattice, which is precisely the degeneracy given by spectacle

operators. In fact, the spectacle operator changes the the fusion channel between two 1

fluxes:

= . (A.87)
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A.11 Properties of Spectacle Operators

When applying the same minimal spectacle operator twice, we get S2
p1p2

= B
(σ)
p1

B
(σ)
p2

:

1

4

∣∣∣∣∣

〉
=

1

4

∣∣∣∣∣

〉

=
1

4

∣∣∣∣∣

〉
, (A.88)

where

1

2

∣∣∣∣∣

〉
=

1

2

∣∣∣∣∣

〉

− 1

2

∣∣∣∣∣

〉

= B(σ)
p

∣∣∣∣∣

〉
. (A.89)

Therefore, when acting on the ground state of the σ flux Ising Hamiltonian, S2
p1p2

= I.

Spectacle operators are also Hermitian. To show this we first note that:

Sp1p2 =
√
2Bσ

p1p2
−Bσ

p1
Bσ

p2
, (A.90)

where Bσ
p1p2

is a closed W(σ,I) enclosing the plaquettes p1 and p2. Since Bσ
p1

and Bσ
p2

commute and are Hermitian, we only need to show Bσ
p1p2

is Hermitian. In fact, we show
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that any closed string operator enclosing two plaquettes is Hermitian.

∣∣∣∣∣
a

b c
d

e

fg

h

i
j

k l
m

n
o

pq
r s

〉
=

=
∑

α,β,′,′′

vαvβΩ
s′

βαsΩ̄
s′′

αβs

F lks
αs′k′F

cjk
αk′j′F

bij
αj′i′F

ari
αi′r′F

hqr
αr′q′F

psq
αq′s′′

F lk′s′

sβl′ F
mdl
l′βm′F nem

m′βn′F
ofn
n′βo′F

pgo
o′βp′F

s′′q′p
p′βs

∣∣∣∣∣
a

b c
d

e

fg

h

i′
j′

k′l′

m′

n′

o′
p′q′

r′ s

〉
(A.91)

So, we need to show:

∑

αβs′s′′

vαvβΩ
s′

βαsΩ̄
s′′

αβs

F lks
αs′k′F

cjk
αk′j′F

bij
αj′i′F

ari
αi′r′F

hqr
αr′q′F

psq
αq′s′′

F lk′s′

sβl′ F
mdl
l′βm′F nem

m′βn′F
ofn
n′βo′F

pgo
o′βp′F

s′′q′p
p′βs

=
∑

αβs′s′′

vαvβΩ̄
s′

βαsΩ
s′′

αβs

F l′k′s
αs′kF

cj′k′

αkj F
bi′j′

αji F
ar′i′

αir F
hq′r′

αrq F p′sq′

αqs′′

F l′ks′

sβl F
m′dl′

lβm F n′em′

mβn F o′fn′

nβo F p′go′

oβp F s′′qp′

pβs (A.92)
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Using F ijm
kln = vmvn

vjvl
F inl
kmj =

vmvn
vivk

F njk
mli on the right-hand side yields:

∑

αβs′s′′

vαvβΩ
s′

βαsΩ̄
s′′

αβs

F lks
αs′k′F

cjk
αk′j′F

bij
αj′i′F

ari
αi′r′F

hqr
αr′q′F

psq
αq′s′′

F lk′s′

sβl′ F
mdl
l′βm′F nem

m′βn′F
ofn
n′βo′F

pgo
o′βp′F

s′′q′p
p′βs

=
∑

αβs′s′′

vαvβΩ̄
s′

βαsΩ
s′′

βαs

F l′ks′

αsk′ F
cjk
αk′j′F

bij
αj′i′F

ari
αi′r′F

hqr
αr′q′F

p′s′′q
αq′s

F lks
s′βl′F

mdl
l′βm′F nem

m′βn′F
ofn
n′βo′F

pgo
o′βp′F

sqp
p′βs′′ (A.93)

So we need to show:

∑

s′

Ωs
′

βαsF
lks
αs′k′F

lk′s′

sβl′ =
∑

s′

Ω̄s
′

βαsF
l′ks′

αsk′ F
lks
s′βl′ , (A.94)

and:
∑

s′′

Ω̄s
′′

αβsF
psq
αq′s′′F

s′′q′p
p′βs =

∑

s′′

Ωs
′′

βαsF
p′s′′q
αq′s F

sqp
p′βs′′ . (A.95)

To prove the first condition we use Ω̄jsti =
∑

k Ω
k
stiF

itk
isj :

∑

s′

Ωs
′

βαsF
lks
αs′k′F

lk′s′

sβl′ =
∑

s′t

Ωs
′

βαsF
sαs′

sβt F
l′kt
αsk′F

lks
tβl′ (A.96)

Finally, using F ijm
kln = vmvn

vjvl
F nil
mkj and reordering yields:

F k′ls′

sαk F
l′lβ
s′sk′ =

∑

t

F l′kt
αsk′F

l′lβ
stk F

sαs′

sβt , (A.97)

which is just the Pentagon equation. The proof for the second condition is similar. Thus,

spectacle operators are Hermitian.
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Spectacle operators always either commute or anticommute with closed string op-

erators. To see this, consider a minimal spectacle operator acting on the two adjacent

plaquettes p1 and p2. If the closed string operator does not act on the link shared by p1

and p2, then its string can be passed over the lattice vertices to make its action manifestly

commute with the spectacle operator. However, if the closed string operator does act

on the link shared by p1 and p2, then to show commutativity or anti-commutativity we

need to show that the (ψ, I) string either commutes or anti-commutes with every string

operator:

a
= ±

a
, (A.98)

for all a. This is equivalent to showing

Ωja,stψ = ±Ωsa,ssIΩ̄
j
(ψ,0),ψψsδst, (A.99)

for any choice of j, s, and t strings, which can be checked explicitly.

Note that because W(ψ,I) either commutes or anti-commutes with every string oper-

ator, it does not matter if we define the spectacle operator with W(σ,I) and W(ψ,I), or

with W(I,σ) and W(I,ψ) strings.

A.12 Proof of Topological Protection

Consider the case when a lattice with an even number of plaquettes is supported by

a sphere, and only perturbations that commute with spectacle operators are allowed.

The ground state degeneracy is 2N−2, spanned by spectacle operators. We label these

orthogonal states as |α〉, where α ∈ {1, . . . , 2N−2} represents a configuration of spectacle

operators.
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Let O(I) be composed of two non-intersecting open W(σ,I), as shown below.

When acting on the ground state subspace this operator creates the subspace H(I)

spanned by |α(0)〉 = O(I)|α〉. Let O(ψ) be O(I) with a W(ψ,I) string connecting the

W(σ,I) strings, as shown below.

When acting on the ground state Hilbert space this operator creates the Hilbert space

H(ψ), spanned by |α(ψ)〉 = O(ψ)|α〉.

We show that 〈α(I)|β(ψ)〉 = 0 for all α and β. This is clear when α 6= β, because |α(0)〉

and |β(2)〉 will have mismatching σ strings. So, we need to show 〈α(I)|α(ψ)〉 = 0 for all α.

To show this, imagine drawing a Gaussian surface around one of the W(σ,I) strings.
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In general, the links of |α(I)〉 and |α(ψ)〉 crossing this surface may have σ strings created

by spectacle operators. However, we can remove these spectacle operators:

〈α(I)|α(ψ)〉 = 〈α|
(
O(I)

)†
O(ψ)|α〉

= 〈α̃|
(∏

S
)† (

O(I)
)†
O(ψ)

(∏
S
)
|α̃〉

= 〈α̃|
(
O(I)

)†
O(ψ)

(∏
S
)(∏

S
)
|α̃〉

= 〈α̃|
(
O(I)

)†
O(ψ)|α̃〉

= 〈α̃(I)|α̃(ψ)〉, (A.100)

where in the second line |α̃〉 no longer has any 1 strings crossing the Gaussian surface,

in the third line we have used the fact that spectacle operators commute with O(I) and

O(ψ) and are Hermitian, and in the fourth line we used the fact that S2 = 1 when acting

on the ground state. But 〈α̃(I)|α̃(ψ)〉 = 0, because |α̃(I)〉 and |α̃(ψ)〉 have different parity

of 2 strings crossing the Gaussian surface. Thus, 〈α(I)|β(ψ)〉 = 0 for all α and β.

We may worry the above argument fails because spectacle operators acting on pla-

quettes containing the endpoints of the (1, 0) strings may not commute with O(0) and

O(2), but we may circumvent this issue by simply enlarging the Gaussian surface at the

endpoints so that it never passes through plaquettes which contain the endpoints.

Now we show that 〈α(I)|V |β(ψ)〉 = 0 for all α and β, and any local operator V , if the

simply connected cover of the support of V does not contain endpoints from both the

W(σ,I) strings. Consider the case when we can draw a Gaussian surface around one of

the W(σ,I) strings of O(I) and O(ψ) which is always at least a plaquette away from the
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support of V .

Then, 〈α(I)|V |β(ψ)〉 = 0 by the arguments of the previous paragraph. Now, consider the

case when it is seemingly impossible to draw such a Gaussian surface.

Then, we can move one of the W(σ,I) strings using spectacle operators:

The new O(ψ) has a W(σ,I) string that can be surrounded by a Gaussian surface.
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Mathematically,

〈α(I)|V |β(ψ)〉 = 〈α|
(
O(I)

)†
V O(ψ)|β〉

= 〈α̃|
(∏

S
)† (

O(I)
)†
V O(ψ)

(∏
S
)
|β̃〉

= 〈α̃|
(
Õ(0)

)†
V Õ(ψ)|β̃〉. (A.101)

So, again 〈α(I)|V |β(ψ)〉 = 0 by the arguments of the previous paragraph. More generally,

this is true as long as the simply-connected cover of the support of V does not con-

tain endpoints from both the W(σ,I) strings. For example, an operator whose action is

nontrivial on the region shown below would not satisfy this condition.

In order to show that H(I) and H(ψ) are topologically protected, we also need to show

that 〈α(I)|V |β(I)〉 = 〈α(ψ)|V |β(ψ)〉. This is clear if the support of V does not include the

W(ψ,I) and W(σ,I) strings of O
(ψ). When the support of V includes W(σ,I) string, we can

move the W(σ,I) string away by passing it over an even number of plaquettes. When the

support of V also includes the W(σ,I) string, we can use spectacle operators to move the
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W(σ,I) string away:

〈α(I)|V |β(I)〉 = 〈α|
(
O(I)

)†
V O(I)|β〉

= 〈α|
(
Õ(I)

)† (∏
S
)†

V
(∏

S
)
Õ(I)|β〉

= 〈α|
(
Õ(I)

)† (∏
S
)† (∏

S
)
V Õ(I)|β〉

= 〈α|
(
Õ(I)

)†
V Õ(I)|β〉 (A.102)

Here, Õ(I) no longer has its half spectacle in the support of V , and is identical to Õ(ψ) in

this region. Therefore, 〈α(I)|V |β(I)〉 = 〈α(ψ)|V |β(ψ)〉. Note that we had to assume that

the spectacle operators commute with V .
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B.1 Luttinger’s Theorem for Kondo Model

Consider a 2D periodic lattice with νc = νc↑ + νc↓ conduction electrons and νs spin-

S localized spins per unit cell, governed by the translationally invariant Kondo model

Hamiltonian

H = −t
∑

〈jk〉,α
(c†jαckα + h.c.) + U

∑

j

nj↑nj↓ +K
∑

j

~sj · ~Sj + J
∑

〈jk〉

~Sj · ~Sk (B.1)

= −t
∑

〈jk〉,α
(c†jαckα + h.c.) + U

∑

j

nj↑nj↓ +
1

2
K
∑

j

[
(nj↑ − nj↓)S

z
j + c

†
j↓cj↑S

+
j + c

†
j↑cj↓S

−
j

]

+J
∑

〈jk〉

[
Sz
jS

z
k +

1

2
(S+

j S
−
k + h.c.)

]
, (B.2)

where ~sj =
∑

αβ c
†
jα~σαβcjβ/2.

The above Hamiltonian has two global U(1) symmetries, corresponding to the con-

served quantities νc↑+msνs and νc↓−msνs, where ms is the magnetization per localized

spin. The first of these, which we denote as U(1)↑, is generated by the transformations:

c
†
j↑ → eiθc†j↑, cj↑ → e−iθcj↑, and S±

j → e±iθS±
j . This global symmetry can be promoted

to a local symmetry by introducing a gauge field Ajk that couples to spin up electrons
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and the localized spins, modifying the Hamiltonian to

H ′ = −t
∑

〈jk〉
(eiAjkc

†
j↑ck↑ + c

†
j↓ck↓ + h.c.) + U

∑

j

nj↑nj↓

+
1

2
K
∑

j

[
(nj↑ − nj↓)S

z
j + c

†
j↓cj↑S

+
j + c

†
j↑cj↓S

−
j

]

+J
∑

〈jk〉

[
Sz
jS

z
k +

1

2
(eiAjkS+

j S
−
k + h.c.)

]
, (B.3)

which now has the local U(1)↑ symmetry given by the transformations: cj↑ → eiθjcj↑,

c
†
j↑ → e−iθjc†j↑, S

±
j → e±iθjS±

j , and Ajk → Ajk + θk − θj .
1

Consider starting in a ground state |Ψ(0)〉 with RTx eigenvalue eiPx(0) and threading

a 2π U(1)↑ flux through the handle of the torus. This can be accomplished by tuning the

vector potential from ~A(0) = (0, 0) to ~A(2π) = (2π/Lx, 0), i.e. Ajk =
∫ ~rk
~rj
d~r · ~A =

[~rj−~rk]x
Lx

after the flux insertion. Although H ′(2π) 6= H ′(0), the large gauge transformation

G↑ = ei2π
∑

j

[~rj ]x

Lx
(nj↑+Sz

j ), (B.4)

removes the flux, i.e. G↑H
′(2π)G−1

↑ = H ′(0). Therefore, the state G↑|Ψ(2π)〉 must be

an eigenstate of H ′(0).

Since [RTx ,H
′(Φ)] = 0 throughout the flux threading process, |Ψ(2π)〉 has momen-

tum Px(0), and since

G
−1
↑ RTxG↑ = RTxe

i2π
[

1
Lx

∑

j(nj↑+Sz
j )+

∑

j|[~rj ]x=1 S
z
j

]

, (B.5)

1This U(1) symmetry may seem artificial. A more physical viewpoint is to let the conduction electrons
have a U(1)Sz ×U(1)c spin and charge symmetry, and the localized spins have a U(1)Sz spin symmetry.
In this case, we carry out Oshikawa’s argument by threading 2π U(1)Sz flux and π U(1)c flux, so that the
spin up electrons experience a 2π(+ 1

2
)+π = 2π flux, the spin down electrons experience a 2π(− 1

2
)+π = 0

flux, and the localized spins experience a 2πS flux.
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the state G↑|Ψ(2π)〉 has momentum Px(0) + 2π [νc↑ + (S +ms)νs]Ly mod 2π.

This shift can be compared with the momentum shift of the emergent degrees of

freedom. Assuming the system is a spinful Fermi liquid, threading the flux shifts the

momentum of each of the NF↑ spin up quasiparticles by 2π/Lx.

Equating the two momentum shifts and repeating the argument in the other direction

yields Luttinger’s theorem for spin up quasiparticles:

νc↑ + (S +ms)νs =
VF↑
(2π)2

mod 1 (B.6)

where VF↑ ≡ (2π)2NF↑/LxLy is the Fermi volume.

The U(1)↓ symmetry is defined similarly for the spin down quasiparticles, and the

same arguments give the corresponding Luttinger’s theorem:

νc↓ + (S −ms)νs =
VF↓
(2π)2

mod 1. (B.7)

Combining these results and using the fact that the number of filled bands for spin up

electrons is equal to the number for spin down electrons gives the spin-summed Lut-

tinger’s theorem:

νc + 2Sνs =
VF

(2π)2
mod 2. (B.8)

B.2 Gauge Equivalence Between Flux Threading and

Creating Anyon Loop

In this appendix, we establish the equivalence between adiabatically threading a 2π

U(1) through a handle of the torus and creating a vison v anyonic flux loop around the

handle. Consider a system with on-site U(1) symmetry. Starting with the Hamiltonian
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H(0) and state |Ψ(0)〉, threading a 2π U(1) flux through the handle of the torus results

in the Hamiltonian H(2π) and state |Ψ(2π)〉, where H(2π) = G
−1H(0)G for some large

gauge transformation

G = ei2π
∑

j

[~rj ]x

Lx
qj =

∏

j

R
(j)
2π[~rj ]x/Lx

. (B.9)

Here, qj measures the U(1) charge of site j, while R
(j)
θ = eiθqj rotates it by θ. The state of

the system after threading the flux and applying the gauge transformation is G|Ψ(2π)〉.

For simplicity, let us assume that the Hamiltonian consists of on-site and nearest

neighbor terms only, i.e.

H(0) =
∑

j

hj +
∑

〈jk〉
hjk, (B.10)

and investigate its transformation under G−1H(0)G. Since

R
(j)
−θhjR

(j)
θ = R−θhjRθ = hj, (B.11)

the on-site terms in the Hamiltonian are unaffected by G:

G
−1hjG = hj. (B.12)

Similarly, since

R
(j)
−θR

(k)
−θhjkR

(j)
θ R

(k)
θ = hjk, (B.13)

the y-direction nearest neighbor terms in the Hamiltonian are unaffected. Only the x-

direction nearest neighbor terms are transformed nontrivially by G. Specifically, we have

G
−1hjkG =





R
(k)
2π/Lx

hjkR
(k)
−2π/Lx

if ~rj − ~rk = (1, 0),

R
(j)
2π/Lx

hjkR
(j)
−2π/Lx

if ~rj − ~rk = (−1, 0),

hjk otherwise.

(B.14)
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This modification is identical to that created by defect loops winding around the y-

direction, as we now explain.

Following the construction of on-site symmetry defects specified in Ref. [30], consider

an Iθ defect loop that winds in the negative y-direction along the line x = r∗x − 1
2
, where

r∗x ∈ {1, 2, . . . , Lx}. Let CL = {j : [~rj ]x = r∗x} be all the sites to the immediate left of Iθ

and CR = {j : [~rj ]x = r∗x − 1} be all the sites to the immediate right. For the nearest

neighbor Hamiltonian with on-site U(1) symmetry assumed in this section, Iθ can be

created by the modification:

hj → hj (B.15)

hjk →





R
(k)
θ hjkR

(k)
−θ if [~rj ]x = r∗x, [~rk]x = r∗x − 1,

R
(j)
θ hjkR

(j)
−θ if [~rj ]x = r∗x − 1, [~rk]x = r∗x,

hjk otherwise.

(B.16)

By comparing this modification with Eq. (B.12) and Eq. (B.14), we see that H(2π) is

essentially H(0) with I2π/Lx defect loops wrapping the torus in the negative y-direction

along the lines x = 1
2
, x = 3

2
, . . . , x = Lx − 1

2
. Since |Ψ(2π)〉 is a ground state of H(2π),

it is essentially |Ψ(0)〉 with these defect loops.

Finally, we turn to G|Ψ(2π)〉. Rewriting the large gauge transformation as

G =
∏

j:[~rj]x=1

R
(j)
2π/Lx

∏

j:[~rj]x=2

R
(j)
4π/Lx

· · ·
∏

j:[~rj]x=Lx−1

R
(j)
2π−2π/Lx

, (B.17)

and recalling that defects lines obey the fusion rules

Iθ1 × Iθ2 = w(θ1, θ2)I[θ1+θ2]2π , (B.18)
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where w(θ1, θ2) describes the U(1) fractionalization, we can study the action of G on

|Ψ(2π) rangle step by step.

Step 1 Applying
∏

j:[~rj]x=1R
(j)
2π/Lx

moves I2π/Lx at x = 1
2
to x = 3

2
, where it can be fused

with I2π/Lx already there to form I4π/Lx .

Step 2 Applying
∏

j:[~rj]x=2R
(j)
4π/Lx

moves I4π/Lx at x = 3
2
to x = 5

2
, where it can be fused

with I2π/Lx already there to form I6π/Lx .

...

Step Lx − 1 Applying
∏

j:[~rj]x=Lx−1R
(j)
2π−2π/Lx

moves I2π−2π/Lx at x = Lx − 3
2
to x =

Lx − 1
2
, where it can be fused with I2π/Lx already there to form a v anyon loop

along the negative y direction, where v = w(θ, 2π − θ).

Since |Ψ(2π)〉 is |Ψ(0)〉 with defect loops wrapping around the torus in the y-direction,

and G|Ψ(2π)〉 is |Ψ(2π)〉 with all these defects loops fused to form a single v anyon loop

around the y-direction of the torus, we conclude that G|Ψ(2π)〉 = Wv|Ψ(0)〉.
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C.1 Anyon Models on a Sphere

In this appendix, we review the description of anyon models on a sphere [82, 83].

Since punctures may be represented by anyons existing on their boundaries, this section

also applies to spheres with punctures, e.g., a disk.

C.1.1 Fusion Algebra

Anyon models, or modular tensor categories (MTCs), consist of a finite set of objects,

or anyons, which obey a commutative, associative fusion algebra:

a× b =
∑

c

N c
abc, (C.1)

where N c
ab is a non-negative integer that specifies the number of different ways anyons a

and b can fuse to c. An anyon a is non-Abelian if
∑

cN
c
ab > 1 for some b, and Abelian

otherwise.

The fusion algebra must obey certain conditions. There must exist a unique vacuum

anyon 0 such that N c
a0 = δac, and each anyon a must have a dual anyon ā such that
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N0
ab = δbā. We also have the important relation

dadb =
∑

c

N c
abdc, (C.2)

where da, the quantum dimension of a, is the largest eigenvalue of the fusion matrix Na,

(whose elements are [Na]bc = N c
ab.) For non-Abelian anyons, da > 1, while for Abelian

anyons, da = 1.

The total quantum dimension of an anyon model C is

D =

√∑

a∈C
d2a. (C.3)

C.1.2 Anyonic Hilbert Space

The anyonic Hilbert space of topological system consists of all of its possible topolog-

ically distinct states. It can be constructed and expressed diagramatically as follows.

Basis

The building blocks of the anyonic Hilbert space for the sphere is the space V ab
c of

two anyons a and b with definite total charge c, which is spanned by the vectors

|a, b; c, µ〉 =
(

dc
dadb

)1/4
a b

c
µ , (C.4)

where µ = 1, . . . , N c
ab. The dual space V c

ab is spanned by the covectors

〈a, b; c, µ| =
(

dc
dadb

)1/4

a b

c
µ . (C.5)

Larger spaces are constructed by taking tensor products. For example, the space V abc
d
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of three anyons a, b, and c with definite total charge d can be constructed as

V abc
d

∼=
⊕

e

V ab
e ⊗ V ec

d , (C.6)

which is spanned by

|a, b; e, µ〉 |e, c; d, ν〉 =
(

dd
dadbdc

)1/4 a b
c

d

e
µ

ν
, (C.7)

where µ = 1, . . . , N e
ab, ν = 1, . . . , Nd

ec, and e is any anyon such that N e
ab ≥ 1 and Nd

ec ≥ 1.

The space V abc
d can also be constructed as

V abc
d

∼=
⊕

e

V bc
e ⊗ V ae

d , (C.8)

which is spanned by

|b, c; e, µ〉 |a, e; d, ν〉 =
(

dd
dadbdc

)1/4
a

b c

d

e
µ

ν
. (C.9)

where µ = 1, . . . , N e
bc, ν = 1, . . . , Nd

ae, and e is any anyon such that N e
bc ≥ 1 and Nd

ae ≥ 1.

These constructions are isomorphic, and their basis vectors are related by an F -move:

a b
c

d

e
µ

ν
=
∑

f

[
F abc
d

]
(e,µ,ν)(f,α,β)

a
b c

d

f
α

β
, (C.10)

where the F -symbols F abc
d are unitary matrices that must satisfy the Pentagon consistency

equations.

In general, the space V a1...an
c of anyons a1, . . . , an with definite combined charge c
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can be constructed as

V a1...an
c

∼=
⊕

~b

V a1a2
b2

⊗ V b2a3
b3

⊗ · · · ⊗ V bn−1an
c , (C.11)

which is spanned by

|~a,~b, ~α; c〉 = |a1, a2; b2, α2〉 · · · |bn−1, an; c, αn〉

=

(
dc

da1 · · · dan

)1/4 a1 a2
an

c

b2
bn−1

α2

αn

.

. . .

. (C.12)

where ~b and ~α take values that are allowed by fusion.

We can also write the F -move with two lower and two upper legs. This basis change

is given by
ba

dc

e =
∑

f,µ,ν

[
F ab
cd

]
(e,α,β)(f,µ,ν)

a b

c d

f , (C.13)

where the F -symbol in the above equation is related to the regular F -symbol by

[
F ab
cd

]
(e,α,β)(f,µ,ν)

=

√
dedf
dadd

[
F ceb
f

]∗
(a,α,µ)(d,β,ν)

(C.14)

and is also a unitary transformation.

Dimension

The dimension of V a1...an
c is given by

dim(V a1...an
c ) =

∑

~b

N b2
a1a2

N b3
b2a3

. . . N c
bn−1an

≡ N c
a1...an

. (C.15)
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The total dimension of the space of anyons a1, . . . , an is

∑

c

dim(V a1...an
c ) =

∑

c

N c
a1...an ≡ Na1...an , (C.16)

In particular, if a1 = · · · = an = a, then the dimension grows as Na...a ∼ dna for large

n. Note that a collection of Abelian anyons can only produce 1-dimensional spaces, but

non-Abelian anyons can give rise to higher dimensional spaces. When considered by

itself, a single anyon does not possess a multi-dimensional Hilbert space, so, from the

perspective of individual anyons, the meaning of the quantum dimension is not so clear.

We also define

d~a ≡ da1 · · · dan =
∑

c

N c
a1...an

dc. (C.17)

Note that Na1...an = Tr(Ia1...an) and d~a = T̃r(Ia1...an), where Tr and T̃r are defined below,

and that they both grow with the same scaling as n→ ∞.

Inner Product

Inner products can be evaluated by stacking diagrams, e.g. the fact that

〈a′, b′; c′, µ′|a, b; c, µ〉 = δa,a′δb,b′δc,c′δµ,µ′Ic (C.18)

can be expressed as

(
d2c

dadbda′db′

)1/4

a b

c
µ

a′ b′

c′
µ′

= δa,a′δb,b′δc,c′δµ,µ′ c . (C.19)

Note that in the diagramatic notation, δa,a′ and δb,b′ ensure that the branches of the

splitting vertex can be joined with those of the fusion vertex, while δc,c′ enforces the
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conservation of anyonic charge. More complicated diagrams can be similarly evaluated.

Operators

The space V
a′1...a

′
n

a1...an of operators acting on anyons a1, . . . , an can be constructed as

V a′1...a
′
n

a1...an
=
⊕

c

V c
a1...an

⊗ V a′1...a
′
n

c , (C.20)

which is spanned by

|~a′,~b′, ~α′; c〉 〈~a,~b, ~α; c| =
(

d2c
d~ad~a′

)1/4

a′1 a′2
a′n

c

b′2
b′n−1

α′
2

α′
n

.

. . .

a1 a2
an

b2

bn−1

α2

αn
.

. . .

, (C.21)

where ~b, ~α, ~b′, and ~α′ take values that are allowed by fusion.

For example, the identity operator for a pair of anyons a and b is

Iab =
∑

c,µ

|a, b; c, µ〉 〈a, b; c, µ| , (C.22)

or, diagramatically,

a b =
∑

c,µ

[F ab
ab ]0,(c,µ,ν)

a b
ν
c
µ

a b

=
∑

c,µ

√
dc
dadb a b

µ
c
µ

a b

, (C.23)

and the braiding operator for the pair is

Rab =
∑

c,µ

[Rab
c ]µν |a, b; c, µ〉 〈b, a; c, ν| , (C.24)
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or, diagramatically,

ab

=
∑

c,µ,ν

√
dc
dadb

[Rab
c ]µν

b a
ν
c
µ

a b

, (C.25)

where the R symbols Rab
c are unitary matrices that must satisfy the Hexagon consistency

equations.

S-matrix

The topological S-matrix is defined by

Sab =
1

D T̃r
(
RbāRāb

)
. (C.26)

The quantum dimension is related to the S-matrix by

da =
S0a

S00
. (C.27)

For a modular tensor category (MTC), the S-matrix is unitary and provides a unitary

projective representation of the modular S-transformations. In this case, the fusion

coefficients can be expressed in terms of the S-matrix by the Verlinde formula

N c
ab =

∑

x

SaxSbxS∗
cx

S0x
. (C.28)

It follows that the dimension of V a1...an
c , given in Eq. (C.15), can also be expressed in

terms of the S-matrix as

N c
a1...an =

∑

x

S1−n
0x Sa1x · · · SanxS∗

cx. (C.29)
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ωa-loops

The ωa-loop is defined by

ωa =
∑

x

S0aS∗
ax

x

, (C.30)

and acts a projector on all charges threading the loop,

bωa = δab
b . (C.31)

Trace

The trace of an operator is defined, as usual, to be the sum of its diagonal elements,

e.g.

Tr(|a′, b′; c, µ′〉 〈a, b; c, µ|) = δa,a′δb,b′δµ,µ′ (C.32)

Its diagramatic equivalent is the quantum trace T̃r, (also called the anyonic trace,) which

is obtained by joining the outgoing anyon lines of the operator’s diagram back onto the

corresponding incoming lines, e.g.

T̃r

((
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′
)

=

(
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′

= dcδa,a′δb,b′δµ,µ′ , (C.33)
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which agrees with Eq. (C.32) except for the factor of dc. In general, the anyonic trace of

an operator X ∈ V a1...an
a′1...a

′
n

is related to its ordinary trace by

T̃r(X) =
∑

c

dcTr([X ]c), (C.34)

Tr(X) =
∑

c

1

dc
T̃r([X ]c) (C.35)

where [X ]c = ΠcXΠc ∈ V a1...an
c ⊗ V c

a′1...a
′
n
is the projection of X onto definite total charge

c, with X =
∑

c[X ]c.

The partial anyonic trace is obtained by joining only the outgoing and incoming lines

of the anyons being traced over, e.g.

T̃rb

((
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′
)

=

(
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′

=
dc
da
δa,a′δb,b′δµ,µ′ a . (C.36)

Before computing the partial trace, all the anyons being traced over must moved to the

edge of the diagram by braiding them past the other anyons, a process which is not

necessarily unique. In general, the partial anyonic trace of X ∈ V a1...anb1...bm
a′1...a

′
nb

′
1...b

′
m

over the

anyons b1, . . . , bm is related to its ordinary partial trace by

T̃rb1...bm(X) =
∑

c,a

dc
da

[Trb1...bm([X ]c)]a, (C.37)

Trb1...bm(X) =
∑

c,a

da
dc
[T̃rb1...bm([X ]c)]a. (C.38)

221



Chapter C

C.1.3 Anyonic Density Matrix

An anyonic density matrix ρ̃ is an anyonic operator normalized by the quantum

trace T̃rρ̃ = 1, that describes the topological state of the system. The anyonic density

matrix ρ̃ determines the expectation value of anyonic operators acting on the system,

〈X〉 = T̃r(ρ̃X). For example, the density matrix describing a pair of anyons a and b with

definite total charge c is

ρ̃ab =
1

dc
|a, b; c, µ〉 〈a, b; c, µ| = 1√

dadbdc a b
µ
c
µ

a b

, (C.39)

which is normalized such that T̃r(ρ̃ab) = 1, while the most general state for the pair is

given by

ρ̃ab =
∑

a,b,µ
c

a′,b′,µ′

ρ(a,b;c,µ)(a′,b′;c,µ′)
dc

|a, b; c, µ〉 〈a′, b′; c, µ′|

=
∑

a,b,µ
c

a′,b′,µ′

ρ(a,b;c,µ)(a′,b′;c,µ′)
(dadbda′db′d2c)

1/4
a b

µ
c
µ′

a′ b′

, (C.40)

where the coefficients are normalized such that
∑

a,b,µ,c ρ(a,b;c,µ)(a,b;c,µ) = 1.

For a collection of anyons a1, . . . , an, b1, . . . , bn, the reduced anyonic density matrix

ρ̃a1...an = T̃rb1...bn(ρ̃a1...anb1...bn) (C.41)

describes the topological state of the anyons a1, . . . , an, i.e. for any operator X ∈ V a1...an
a′1...a

′
n
,

〈X〉 = T̃r(ρ̃a1...anb1...bnX) = T̃r(ρ̃a1...anX). (C.42)

222



Chapter C

C.2 Examples of Braided Tensor Categories

In this Appendix, we provide additional details of the braided tensor categories

(BTCs) mentioned in this paper. In particular, we list the fusion rules (which are com-

mutative), quantum dimensions, and topological twist factors. (The F -symbols and

R-symbols for these theories are uniquely determined, up to gauge freedom, by this data,

and can be found in the literature, such as Ref. [82].)

C.2.1 Z
(p)
N

The Z
(p)
N BTC for N a positive integer can have p ∈ Z for all N and p ∈ Z + 1

2
for

N even. The total quantum dimension is D2 = N . This BTC has N topological charges

labeled by {0, 1, . . . , N − 1}, for which the fusion rules, quantum dimensions, and twist

factors are

a× b = [a + b]N , (C.43)

da = 1, (C.44)

θa = ei
2πp
N
a2 , (C.45)

where [a]N = a(mod N).

For odd N , Z
(p)
N is modular when [p]N 6= 0 and gcd(N, [p]N) = 1. For even N , Z

(p)
N is

modular when p ∈ Z+ 1
2
and gcd(N, 2[p]N) = 1. Notice that p is periodic in N , so we can

restrict our attention to 0 ≤ p < N . In some cases, there is a redundancy where distinct

values of p describe the same BTC when the topological charge values are relabeled (i.e.

a 7→ a′ = [na]N for some integer n). For example, in the case of Z
(p)
5 , p = 1 and 4 are the

same BTC, and p = 2 and 3 are the same BTC; in the case of Z
(p)
7 , p = 1, 2, and 4 are

the same BTC, and p = 3, 5, and 6 are the same BTC.
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The trivial fermion SMTC is described by Z
(1)
2 .

C.2.2 Fib±1

The Fibonacci (Fib±1) MTCs has two topological charges {0, 1}, for which the fusion

rules are given by

0× a = a, 1× 1 = 0 + 1. (C.46)

The quantum dimensions are given by

d0 = 1, d1 = φ, (C.47)

where φ = 1+
√
5

2
is the Golden ratio, so D2 = φ+ 2. The twist factors are

θ0 = 1, θ1 = e±i
4π
5 . (C.48)

C.2.3 Kν

We use the notation Kν with ν = 0, 1, . . . , 15 to denote Kitaev’s 16-fold way of

MTCs [81], which have chiral central charge c−(mod)8 = ν and total quantum dimension

D2 = 4.

For ν odd, there are three topological charge values, which we denote {I, σ, ψ}, where

the vacuum charge here is denoted I. The fusion rules are given by

I × a = a, ψ × ψ = I, ψ × σ = σ, σ × σ = I + ψ. (C.49)
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The quantum dimensions and twist factors are given by

dI = 1, dσ =
√
2, dψ = 1,

θI = 1, θσ = ei
π
8
ν , θψ = −1.

(C.50)

ν = 1 corresponds to the Ising TQFT, ν = 3 corresponds to SU(2)2, and ν ≥ 5 can be

realized by SO(ν)1 Chern-Simons field theory.

For ν even, there are four topological charge values, all of which have quantum di-

mension da = 1. It is useful to further split them into two categories, as follows.

For ν = 0, 4, 8, and 12, the fusion rules are Z2 × Z2. The twist factors are

θ(0,0) = 1, θ(0,1) = θ(1,0) = ei
π
8
ν , θ(1,1) = −1. (C.51)

ν = 0 corresponds to the toric code D(Z2), ν = 8 corresponds to the three fermion theory

SO(8)1, and ν = 4 and 12 correspond to Z
(±1/2)
2 × Z

(±1/2)
2 , respectively.

For ν = 2, 6, 10, and 14, the fusion rules are Z4. The twist values are

θ0 = 1, θ1 = θ3 = ei
π
8
ν , θ2 = −1. (C.52)

Thus, these correspond to the Z
(ν/4)
4 MTCs.

C.2.4 SO(3)6

The SO(3)6 SMTC can be obtained as the restriction of the SU(2)6 MTC to its integer

spin topological charge values. It has four topological charge values {0, 1, 2, 3}, which

have the fusion rules

0× a = a, 3× a = 3− a, 1× 2 = 1 + 2 + 3, 1× 1 = 2× 2 = 0 + 1 + 2. (C.53)
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The quantum dimensions and twist factors are given by

d0 = 1, d1 = 1 +
√
2, d2 = 1 +

√
2, d3 = 1,

θ0 = 1, θ1 = i, θ2 = −i, θ3 = −1.
(C.54)

C.3 Proofs

We now prove various properties of anyonic entropy S̃, following Ref. [84] and adapting

the proofs appropriately. We make use of the following definitions: the anyonic relative

entropy is

S̃(ρ̃‖σ̃) ≡ T̃r(ρ̃ log ρ̃− ρ̃ log σ̃). (C.55)

and the anyonic mutual information between the two subsystems is

Ĩ(A : B) ≡ S̃(ρ̃A) + S̃(ρ̃B)− S̃(ρ̃AB). (C.56)

Anyonic Entropy is non-negative

Statement: S̃ (ρ̃) ≥ 0 with equality iff ρ̃ is pure.

Proof: Positivity follows from the definition. To see this, it may be helpful to write the

anyonic density matrices in diagonalized form

ρ̃ =
∑

c,αc

pαc

dc
|αc〉 〈αc| (C.57)

where |αc〉 are orthonormal states with total charge c. This gives

S̃ (ρ̃) = −
∑

c,αc

pαc log

(
pαc

dc

)
(C.58)

= H ({pαc}) +
∑

c,αc

pαc log dc, (C.59)
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which is positive, since dc ≥ 1 (and dc = 1 iff c is Abelian).

Relative Anyonic Entropy is non-negative

Statement: S̃ (ρ̃‖σ̃) ≥ 0 with equality iff ρ̃ = σ̃.

Proof: Start by diagonalizing the anyonic density matrices

ρ̃ =
∑

c,αc

pαc

dc
|αc〉 〈αc| , (C.60)

σ̃ =
∑

c,βc

qβc
dc

|βc〉 〈βc| , (C.61)

where |αc〉 and |βc〉 are possibly different orthonormal bases for the space of states with

total charge c. Now we can write

S̃ (ρ̃‖σ̃) =
∑

c,αc

[
pαc log

(
pαc

dc

)
− dc 〈αc| ρ̃ log σ̃ |αc〉

]

=
∑

c,αc

pαc

[
log

(
pαc

dc

)
−
∑

βc

Pαc,βc log

(
qβc
dc

)]

=
∑

c,αc

pαc

[
log pαc −

∑

βc

Pαc,βc log qβc

]
, (C.62)

where we used

Pαc,βc ≡ 〈αc |βc 〉 〈βc |αc 〉 ≥ 0, (C.63)

and the fact that it satisfies

∑

αc

Pαc,βc =
∑

βc

Pαc,βc = 1 (C.64)

because the basis states are orthonormal. Now the rest of the proof from Ref. [84] applies.
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Maximum of Anyonic Entropy

Statement: The entropy for a state ρ̃ of anyons with topological charges a1, . . . , an

satisfies the bound

S̃ (ρ̃) ≤ log

(
n∏

i=1

dai

)
=
∑

j

log daj , (C.65)

with equality obtained iff

ρ̃ =
Ia1...an∏n
i=1 dai

= ρ̃a1 ⊗ ρ̃a2 ⊗ · · · ⊗ ρ̃an . (C.66)

Proof: Using the relative entropy with σ̃ =
Ia1...an
∏n

i=1 dai
, we see

0 ≤ S̃ (ρ̃‖σ̃) = −S̃ (ρ̃) + log

(
n∏

i=1

dai

)
(C.67)

Anyonic Entanglement Entropy of Pure States

Statement: The entanglement entropy of a composite system in a pure state ρ̃AB =

|ψc〉 〈ψc| has S̃ (ρ̃A) = S̃ (ρ̃B).

Corollary : For a pure state ρ̃AB, I (A : B) = 2S̃ (ρ̃A).

Proof: Begin by Schmidt decomposing the state

|ψc〉 =
∑

a,αa

√
pαa |αa〉A |αb〉B , (C.68)

where b = ā × c is uniquely determined by a and has db = da, since c is Abelian. Now
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we have

ρ̃A =
∑

a,αa

pαa

da
|αa〉 〈αa| (C.69)

ρ̃B =
∑

a,αa

pαa

da
|αā×c〉 〈αā×c| (C.70)

which clearly gives

S̃ (ρ̃A) = S̃ (ρ̃B) = −
∑

a,αa

pαa log

(
pαa

da

)
. (C.71)

Entropy of Tensor Product of States

Statement: The entropy of the tensor product ρ̃AB = ρ̃A⊗ ρ̃B of two states is S̃ (ρ̃AB) =

S̃ (ρ̃A) + S̃ (ρ̃B).

Corollary : If ρ̃AB = ρ̃A ⊗ ρ̃B, then Ĩ (A : B) = 0

Proof: Same as proof in Ref. [84].

Entropy of Distribution of Orthogonal States

Statement: For a probability distribution pi of states ρ̃i with orthogonal support (ρ̃iρ̃j =

0 for i 6= j), the entropy is

S̃

(
∑

i

piρ̃i

)
= H ({pi}) +

∑

i

piS̃ (ρ̃i) . (C.72)

Proof: Begin by decomposing the density matrix ρ̃i as

ρ̃i =
∑

c,α
(i)
c

q
(i)
αc

dc
|α(i)
c 〉 〈α(i)

c | . (C.73)
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It follows that

S̃

(
∑

i

piρ̃i

)
= −

∑

i,c,α
(i)
c

piq
(i)
αc

log

(
piqα(i)

c

dc

)

= −
∑

i

pi log pi −
∑

i

pi


∑

c,α
(i)
c

q
α
(i)
c
log

(
q
α
(i)
c

dc

)


= H({pi}) +
∑

i

piS̃ (ρ̃i) .

(C.74)

Joint Entropy

Statement: For a set of states ρ̃i and an orthogonal set of pure states |i〉 〈i|, then

S̃

(
∑

i

pj |i〉 〈i| ⊗ ρ̃j

)
= H ({pi}) +

∑

i

piS̃ (ρ̃i) . (C.75)

Proof: This follows from the previous result. If necessary, we could introduce a set

of unpure orthogonal states |i〉 〈i| with non-Abelian collective charge, which will require

modification of this equation.

Decoherence Due to Projective Measurement Increases Anyonic Entropy

Statement: Consider a projective measurement given by the complete, orthogonal set

of projectors Πi. The decoherence of a state ρ̃ due to this measurement is given by the

transformation ρ̃′ =
∑

iΠiρ̃Πi. Then S̃ (ρ̃′) ≥ S̃ (ρ̃), with equality iff ρ̃ = ρ̃′.
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Proof: We use the fact that

T̃r [ρ̃ log ρ̃′] = T̃r

[
ρ̃ log

(
∑

i

Πiρ̃Πi

)]

= T̃r

[
∑

j

Πj ρ̃ log

(
∑

i

Πiρ̃Πi

)
Πj

]

= T̃r

[
∑

j

Πj ρ̃Πj log

(
∑

i

Πiρ̃Πi

)]

= T̃r [ρ̃′ log ρ̃′] (C.76)

and the previous results to get

0 ≤ S̃ (ρ̃‖ρ̃′) = −S̃ (ρ̃)− T̃r [ρ̃ log ρ̃′]

= −S̃ (ρ̃) + S̃ (ρ̃′) . (C.77)

Subadditivity

Statement: For a composite state ρ̃AB, we have

S̃ (ρ̃AB) ≤ S̃ (ρ̃A) + S̃ (ρ̃B) , (C.78)

with equality iff ρ̃AB = ρ̃A ⊗ ρ̃B.

Proof: Let ρ̃ = ρ̃AB and σ̃ = ρ̃A ⊗ ρ̃B. Then we have

0 ≤ S̃ (ρ̃‖σ̃) = −S̃ (ρ̃)− T̃r [ρ̃AB log σ̃]

= −S̃ (ρ̃AB) + S̃ (ρ̃A) + S̃ (ρ̃B) . (C.79)

231



Chapter C

Triangle Inequality

Statement: For a composite state ρ̃AB, we have S̃ (ρ̃AB) ≥
∣∣∣S̃ (ρ̃A)− S̃ (ρ̃B)

∣∣∣, with equal-

ity iff ρ̃A is already maximally entangled with the environment by its existing correlations

with ρ̃B.

Proof: Let R be a system which purifies systems A and B. Then S̃(ρ̃AR) = S̃(ρ̃B) and

S̃(ρ̃R) = S̃(ρ̃AB) because ρ̃ABR is a pure state. If we consider the composite state of ρ̃AR,

then from subadditivity we have

S̃(ρ̃AR) ≤ S̃(ρ̃A) + S̃(ρ̃R)

S̃(ρ̃B) ≤ S̃(ρ̃A) + S̃(ρ̃AB)

S̃(ρ̃AB) ≥ S̃(ρ̃B)− S̃(ρ̃A).

(C.80)

Similarly,

S̃(ρ̃BR) ≤ S̃(ρ̃B) + S̃(ρ̃R)

S̃(ρ̃A) ≤ S̃(ρ̃B) + S̃(ρ̃AB)

S̃(ρ̃AB) ≥ S̃(ρ̃A)− S̃(ρ̃B).

(C.81)

Taken together, the above equations imply

S̃(ρ̃AB) ≥ |S̃(ρ̃A)− S̃(ρ̃B)|. (C.82)

From subadditivity we know that S̃(ρ̃AR) = S̃(ρ̃A) + S̃(ρ̃R) iff ρ̃AR = ρ̃A ⊗ ρ̃R.

Concavity

Statement: S̃(
∑

j

pj ρ̃j) ≥
∑

j

pjS̃(ρ̃j), with equality iff all the ρ̃j are the same.

Proof: Let the sum on j run from 1 to n. We introduce an auxillary system B whose
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state space has an orthonormal basis {|ψk〉}, such that at least n basis states have Abelian

total charge. We enlarge the set {pj} by setting pj = 0 for j > n. One choice of auxillary

system is for a particular basis state |ψk〉 to correspond to k copies of c̄ and c fusing

to vacuum for some nontrivial charge c in the anyon model describing the system. The

proof from here follows that in Ref. [84].
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