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ABSTRACT OF THE DISSERTATION

Computational method development and analysis for DNA methylome studies

by

Wenbin Guo

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2024

Professor Matteo Pellegrini, Chair

DNA methylation underpins a wide range of biological processes and disease states, yet

significant challenges persist in its computational analysis and practical applications. This

dissertation presents advancements in three areas of DNA methylation research, including

simulation method development and analysis in disease and aging. These advancements

contribute to improved methodologies and a deeper understanding of the DNA methylome in

health and disease, paving the way for fundamental research and clinical translation.

In the first part, we introduce BSReadSim, a novel bisulfite sequencing simulator that

overcomes key limitations of existing tools, which often fail to capture the complexity of

real-world data. By accurately integrating genetic variants, methylation profiles, and technical

artifacts, BSReadSim produces synthetic datasets that closely resemble empirical observations.

This versatile resource provides a robust framework for designing experiments, developing

computational methods, and benchmarking analytical pipelines in DNA methylation research,

ultimately enhancing the rigor and reliability of epigenetic studies.

The second part of this dissertation pioneers the use of saliva DNA methylomes for type 2

diabetes (T2D) biomarker discovery and risk assessment. By integrating comprehensive Whole

Genome Bisulfite Sequencing (WGBS) and high-depth Targeted Bisulfite Sequencing (TBS),

we developed a cost-effective, two-step research strategy for DNA methylation studies and

identified T2D-associated methylation biomarkers in saliva. Importantly, we demonstrated
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that these epigenetic signatures are primarily intrinsic rather than driven by cell composition

shifts, establishing saliva DNA methylome as a compelling non-invasive medium for T2D

biomarker exploration. This approach holds substantial potential for both fundamental

research and clinical applications, ultimately informing improved disease detection, monitoring,

and personalized treatment strategies.

The third part of this work examines the interplay between epigenetic aging, cell com-

position, and breast cancer risk in normal breast tissue. By analyzing 181 normal breast

samples, we revealed systematic biases in existing epigenetic clocks, highlighting the need

for tissue-specific models to achieve accurate age predictions. Our findings established a

clear link between epigenetic age acceleration and shifts in cell composition, particularly

those associated with elevated breast cancer risk. Notably, we provided plausible molecular

evidence connecting estrogen exposure to accelerated epigenetic aging and increased cancer

susceptibility. These insights highlight the potential of epigenetic clocks as powerful tools for

cancer risk assessment and stratification.

Together, these studies advance the field of DNA methylation by expanding our capacity

to understand, interpret, and harness the wealth of information encoded within the DNA

methylome. Through developing a realistic synthetic data simulator, exploring non-invasive

avenues for disease biomarker discovery, and shedding light on the molecular underpinnings of

epigenetic aging, this dissertation establishes a strong foundation for more rigorous, scalable,

and impactful DNA methylation research. These advancements deepen our understanding

of epigenetic regulation in health and disease, ultimately paving the way for transformative

applications in diagnostics, risk assessment, and future epigenetic studies.

iii



The dissertation of Wenbin Guo is approved.

Xia Yang

Xinshu Xiao

Jingyi Li

Matteo Pellegrini, Committee Chair

University of California, Los Angeles

2024

iv



To my family

for their unconditional support and everlasting love

v



TABLE OF CONTENTS

Abstract ii

1 Introduction 1

1.1 Overview of DNA methylation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 DNA methylation: a key epigenetic regulator . . . . . . . . . . . . . . 1

1.1.2 Establishment and maintenance of DNA methylation . . . . . . . . . 2

1.1.3 Clinical and therapeutic relevance . . . . . . . . . . . . . . . . . . . . 3

1.2 DNA methylation profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Downstream analysis of DNA methylation . . . . . . . . . . . . . . . . . . . 5

1.3.1 Differential methylation analysis . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Epigenome-wide association studies . . . . . . . . . . . . . . . . . . . 6

1.3.3 Cell type abundance deconvolution . . . . . . . . . . . . . . . . . . . 6

1.3.4 Biomarker discovery and disease states prediction . . . . . . . . . . . 7

1.4 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 BSReadSim: a versatile and efficient simulator to generate realistic

bisulfite sequencing reads 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 BSReadSim overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 DNA fragment sampling model . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Methylation pattern model . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Sequencing quality and error model . . . . . . . . . . . . . . . . . . . 27

vi



2.2.5 Computational optimization strategies . . . . . . . . . . . . . . . . . 28

2.2.6 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Faithful incorporation of reference genetic variants . . . . . . . . . . . 31

2.3.2 Accurate preservation of reference methylation profiles . . . . . . . . 32

2.3.3 Effective capture of site-site dependency . . . . . . . . . . . . . . . . 33

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Type-2 diabetes biomarker discovery and risk assessment through saliva

DNA methylome 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Sample collection and preparation . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Whole genome bisulfite sequencing (WGBS) . . . . . . . . . . . . . . 56

3.2.3 WGBS data processing and DMR analysis . . . . . . . . . . . . . . . 57

3.2.4 Genomic region enrichment analysis and probe design . . . . . . . . . 57

3.2.5 Targeted bisulfite sequencing (TBS) . . . . . . . . . . . . . . . . . . . 58

3.2.6 TBS data processing and quality control . . . . . . . . . . . . . . . . 59

3.2.7 Cell type deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.8 Epigenome-wide association study . . . . . . . . . . . . . . . . . . . . 61

3.2.9 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 WGBS identifies DMRs associated with diabetes in saliva . . . . . . . 62

3.3.2 TBS enriches target regions with high sequencing depth . . . . . . . 63

vii



3.3.3 Cell type deconvolution reveals minimal T2D-related compositional

changes in saliva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 EWAS reveals differential DNA methylation associated with T2D status 65

3.3.5 Predictive performance of individual methylation sites for T2D status 66

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Systematic dissection of epigenetic age acceleration in normal breast

tissue reveals its link to estrogen signaling and cancer risk 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Study samples and specimens . . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 DNA and RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.3 DNA methylation quantification and processing . . . . . . . . . . . . 98

4.2.4 Bulk RNA sequencing and processing . . . . . . . . . . . . . . . . . . 99

4.2.5 Sample quality control . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.6 Epigenetic age and age acceleration calculation . . . . . . . . . . . . 100

4.2.7 Cell type deconvolution and immune enrichment score calculation . . 101

4.2.8 Cancer risk score calculation . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.9 Correlation and mediation analysis . . . . . . . . . . . . . . . . . . . 102

4.2.10 Epigenome-wide association study and genomic region enrichment analysis103

4.2.11 Differential expression and gene-set enrichment analysis . . . . . . . . 103

4.2.12 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.13 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



4.3.1 Age prediction accuracy of epigenetic clocks in normal breast tissue . 105

4.3.2 Systematic biases in epigenetic clocks and justification of age acceleration106

4.3.3 Age and other demographic related changes in breast cell composition 107

4.3.4 Changes in breast cell composition with breast epigenetic age . . . . 108

4.3.5 Changes in breast cell composition with breast age acceleration . . . 109

4.3.6 Association between breast age acceleration and breast cancer risk

measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.7 Identification of CpG sites associated with breast age acceleration and

its link to estrogen receptor . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.8 Transcriptomic alternations associated with breast age acceleration . 112

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Conclusion and future directions 147

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ix



LIST OF FIGURES

1.1 Overview of DNA methylation. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Three types of bisulfite sequencing technology. . . . . . . . . . . . . . . . . . 4

2.1 Overview of the Bisulfite Sequencing read Simulation (BSReadSim) Framework. 38

2.2 BSReadSim incorporates genetic variants to simulated read data. . . . . . . 39

2.3 BSReadSim preserves methylation profile in simulated read data. . . . . . . 40

2.4 BSReadSim captures of site-site dependency in real data. . . . . . . . . . . . 41

2.5 Potential applications of BSReadSim. . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Fragment sampling model for WGBS data. . . . . . . . . . . . . . . . . . . . 43

2.7 Fragment sampling model for RRBS data. . . . . . . . . . . . . . . . . . . . 44

2.8 Fragment sampling model for TBS data. . . . . . . . . . . . . . . . . . . . . 45

2.9 Heatmap of base quality transition probabilities. . . . . . . . . . . . . . . . . 46

2.10 Sequencing error profiles across base quality. . . . . . . . . . . . . . . . . . . 46

3.1 Study design for saliva DNA methylome analysis in Type 2 diabetes. . . . . 71

3.2 Differential methylation region and genomic region enrichment analysis for

saliva WGBS data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 TBS captures desired region with high depth with reduced cost. . . . . . . . 73

3.4 Differential cell type proportions between diabetic and non-diabetic samples. 74

3.5 EWAS analysis identifies methylation sites associated with diabetes status. . 75

3.6 ROC curve for diabetes status classification using individual methylation sites. 76

3.7 The increasing prevalence of diabetes across U.S. counties from 2004 to 2020. 77

3.8 GO pathway enrichment for DMR regions in WGBS analysis. . . . . . . . . 78

3.9 Depth distribution of targeted regions across probe sets in TBS. . . . . . . . 79

3.10 Cell-type specific methylation signatures at TBS sites. . . . . . . . . . . . . . 80

x



3.11 Simulated validation of TBS sites for accurate cell deconvolution. . . . . . . 81

3.12 Cell type compositions in saliva: existing scRNA-seq dataset reanalysis and

TBS deconvolution results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Correlation heatmap between methylation principal components (mPCs) and

demographical and cellular variables. . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Quantile-Quantile (Q-Q) plot for EWAS analysis. . . . . . . . . . . . . . . . 85

4.1 Study design and overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Age prediction accuracy across eight epigenetic clocks. . . . . . . . . . . . . 122

4.3 Cell composition’s correlation with epigenetic age and age acceleration. . . . 123

4.4 Age acceleration’s association with cancer risk estimates. . . . . . . . . . . . 125

4.5 Age-acceleration-related CpG sites enriching for estrogen receptor binding sites.126

4.6 Transcriptome analysis characterizing genes and pathways associated with age

acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7 Age deviation and Age difference comparison across different penalized regres-

sion methods in simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 Age deviation and Age difference comparison across epigenetic clocks in KTB

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 Correlations among epigenetic age, age acceleration, and the robustness of age

acceleration to sampling in KTB data. . . . . . . . . . . . . . . . . . . . . . 132

4.10 GTEx normal breast snRNA data for cell deconvolution. . . . . . . . . . . . 133

4.11 Association of immune cell scores with epigenetic age and age acceleration. . 134

4.12 Pairwise correlation heatmap of examined variables. . . . . . . . . . . . . . . 135

4.13 Association between cancer risk estimates and age acceleration. . . . . . . . 136

4.14 Manhattan and QQ plot for EWAS analysis. . . . . . . . . . . . . . . . . . . 137

4.15 Differential gene expression and gene set enrichment analysis. . . . . . . . . 139

xi



LIST OF TABLES

2.1 Summary of existing bisulfite sequencing read simulators . . . . . . . . . . . 37

3.1 Characteristics of the study population. . . . . . . . . . . . . . . . . . . . . . 70

4.1 Characteristics of the study population. . . . . . . . . . . . . . . . . . . . . . 118

4.2 Regression summary for eight epigenetic clocks in KTB data. . . . . . . . . . 120

xii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance, support, and
encouragement of many incredible individuals.

First and foremost, I would like to express my deepest gratitude to my advisor, Matteo
Pellegrini, for his unwavering support, boundless patience, and invaluable guidance throughout
my PhD journey. His brilliance as a scientist, kindness as a mentor, and calm, solution-driven
personality have been a constant source of inspiration, profoundly shaping both my academic
and personal growth.

I am deeply grateful to Dr. Jingyi Jessica Li for her teaching and mentorship, for opening
my eyes to the world of statistics, and for serving as a role model of academic excellence. I
also extend my heartfelt thanks to my committee members: Dr. Xinshu Grace Xiao for her
kind, encouraging words and constructive feedback, Dr. Xia Yang for her thought-provoking
questions and inspiring scientific insights. To my undergraduate mentor Dr. Tao Wang, for
inspiring my journey into bioinformatics and encouraging my professional growth. Their
collective wisdom and support have been a tremendous privilege and blessing to me.

I want to thank my collaborators, including Dr. Lili Yang, Dr. Yanruide Li, Dr. Derek
Lee, Dr. Mary Sehl, and Pranav Kannan, whose expertise and dedication have greatly
enriched my research. To my current and former lab members—Dr. Colin Farrell, Dr. Mike
Thompson, Dr. Marco Morselli, etc.—and my colleagues from JSB and so on, thank you for
making this journey both rewarding and enjoyable.

To my cohort—Yi Ding, Cyrillus Tan, Nick Bayley, and Russell Littman—and the UCLA
Bioinformatics Program, including Gene Gray and Eloy Lopez, thank you for fostering an
inclusive and supportive community. I am also deeply grateful to the QCBio Collaboratory
community for cultivating a collaborative environment and providing invaluable opportunities.

To my family—my mom, dad, sister, and extended family—your unconditional love and
support have been my foundation through every challenge and triumph. To my friends from
Southern California, San Francisco, Texas, and beyond, your presence has made my life
brighter and more meaningful.

Lastly, as I reflect on this journey, I am reminded of a special moment from UCLA’s
centennial celebration:

“ All of it is possible; generations have proven it, and now passing the torch to
you, how will you light the way? ”

To all who have lighted my way, thank you.

xiii



VITA

2014-2018 B.S. in Biological Science,

Wuhan University.

2016-2018 B.E. in Computer Science,

Huazhong University of Science and Technology.

2018-2024 Graduate student researcher in Bioinformatics,

University of California, Los Angeles.

2023-2024 Articulated M.S. student in Statistics,

University of California, Los Angeles.

PUBLICATIONS

(* indicates equal contributions)

Guo, W. and Pellegrini, M. “BSReadSim: a versatile and efficient simulator to generate
realistic bisulfite sequencing reads”. bioRxiv (2024)

Guo, W., Morselli, M., Paul, K. C., Thompson, M., Ritz, B., and Pellegrini, M. “Type-2
diabetes biomarker discovery and risk assessment through saliva DNA methylome”. medRxiv
(2024)

Sehl, M. E.*, Guo, W.*, Farrell, C., Marino, N., Henry, J. E., Storniolo, A. M., Papp, J., Li,
J. J., Horvath, S., Pellegrini, M., et al. “Systematic dissection of epigenetic age acceleration
in normal breast tissue reveals its link to estrogen signaling and cancer risk”. bioRxiv (2024)

Li, Y.-R.*, Zhou, Y.*, Yu, J.*, Kim, Y. J., Li, M., Lee, D., Zhou, K., Chen, Y., Zhu, Y.,
Wang, Y.-C., et al. “Generation of allogeneic CAR-NKT cells from hematopoietic stem and
progenitor cells using a clinically guided culture method”. Nature Biotechnology (2024),
pp. 1–16

Lee, D.*, Dunn, Z. S.*, Guo, W.*, Rosenthal, C. J., Penn, N. E., Yu, Y., Zhou, K., Li, Z., Ma,
F., Li, M., et al. “Unlocking the potential of allogeneic Vδ2 T cells for ovarian cancer therapy
through CD16 biomarker selection and CAR/IL-15 engineering”. Nature Communications
14.1 (2023), p. 6942

xiv



CHAPTER 1

Introduction

1.1 Overview of DNA methylation

1.1.1 DNA methylation: a key epigenetic regulator

DNA methylation, a key epigenetic modification discovered in the 20th century, is essential

for regulating gene expression beyond the genetic code [1]. This biochemical process entails

the addition of a methyl group to the 5th carbon of cytosine’s pyrimidine ring, forming

5-methylcytosine (5mC) (Figure 1.1). In mammals, DNA methylation predominantly occurs

at CpG dinucleotides [2], where a cytosine nucleotide is immediately followed by a guanine

nucleotide in the 5’ to 3’ direction. Regions enriched with CpG sites, known as CpG islands,

are often found in gene promoters. Methylating these regions generally represses gene

expression [3], providing a crucial mechanism for regulating gene activity across tissues and

developmental stages.

Beyond transcriptional regulation, DNA methylation is integral to numerous fundamental

biological processes, such as genomic imprinting [4], X-chromosome inactivation [5], trans-

posable element suppression [6], and embryogenesis [7]. Moreover, it orchestrates cellular

differentiation and mediates the maintenance of cell identity [8], exemplifying Waddington’s

epigenetic landscape where cells with identical genetic material can follow distinct develop-

mental trajectories to establish specialized functions [9]. The evolutionary conservation of

DNA methylation across species underscores its fundamental importance in these processes

[10], highlighting its indispensable role in biological systems.
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Figure 1.1: Overview of DNA methylation.

1.1.2 Establishment and maintenance of DNA methylation

The establishment and maintenance of DNA methylation is governed by DNA methyltrans-

ferases (DNMTs). DNMT1 preserves existing methylation patterns during DNA replication

[11], ensuring the faithful inheritance of epigenetic marks during cell division. DNMT3A

and DNMT3B establish de novo methylation patterns during development and in response

to environmental stimuli [12]. Demethylation can occur passively or actively, with active

removal mediated by ten-eleven translocation (TET) enzymes [13, 14]. This dynamic interplay

between methylation and demethylation is essential for regulating gene expression, directing

cell differentiation, and maintaining cellular identity. Dysregulation of these processes is

implicated in pathological conditions, such as cancer, where global hypomethylation and

site-specific hypermethylation of tumor suppressor genes are hallmark features [15, 16].
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1.1.3 Clinical and therapeutic relevance

DNA methylation has gained substantial attention in clinical research for its potential to

reflect disease status and elucidate disease mechanisms. Environmental factors such as diet

and lifestyle can induce lasting epigenetic modifications, linking DNA methylation to various

health outcomes and diseases [17, 18]. Aberrant methylation patterns have been linked to

numerous diseases, serving as both drivers and consequences of pathogenesis [19, 20]. These

discoveries have fueled the development of DNA methylation-based biomarkers, which were

utilized for disease detection, and monitoring [21, 22].

On the other hand, epigenetic therapies targeting DNA methylation, such as DNMT

inhibitors azacitidine and decitabine, are already in clinical use for certain hematological

cancers [23–25]. These therapies aim to reverse aberrant methylation patterns by epigenetic

reprogramming, offering promise for disease treatment. Besides cancer, DNA methylation-

based therapies are being explored in neurodegenerative diseases [26], autoimmune disorders

[27], and age-related conditions [28, 29], highlighting their potential for a broad spectrum

of epigenetically driven diseases. As our knowledge of DNA methylation expands, it is

increasingly evident that studying this epigenetic mechanism is crucial for advancing biological

discovery and developing innovative diagnostic and therapeutic strategies.

1.2 DNA methylation profiling

DNA methylation profiling encompasses a variety of techniques to measure methylation

status across the genome [30]. Among these, bisulfite sequencing [31] has emerged as an

essential tool, providing unparalleled precision to differentiate methylated and unmethylated

cytosines at single-nucleotide resolution. This approach involves treating genomic DNA with

sodium bisulfite, where unmethylated cytosines are converted into uracil and subsequently

read as thymine during sequencing, while methylated cytosines are left intact. By comparing

the treated DNA sequence to a reference sequence, researchers can reconstruct the original

3



methylation patterns on the DNA sequences. In practice, bisulfite sequencing can be performed

in different forms according to the research objective:

• Whole Genome Bisulfite Sequencing (WGBS): This approach profiles the entire

genome, providing a comprehensive view of DNA methylation. While WGBS delivers

an unbiased and complete methylation landscape, it generates a large volume of data,

incurring higher costs and demanding substantial computational resources for processing

and analysis.

• Reduced Representation Bisulfite Sequencing (RRBS): To optimize costs and

reduce data complexity, RRBS focuses on CpG-rich regions of the genome, such as

CpG islands. By using enzymatic digestion and size selection to enrich these regions,

RRBS offers a more targeted analysis while capturing key methylation patterns.

• Targeted Bisulfite Sequencing (TBS): TBS employs probes or primers to capture

and sequence specific regions of interest. This method achieves deep coverage of

selected loci, making it particularly suited for validating results from broader studies or

investigating candidate regions linked to disease.

TBSWGBS RRBS
1 2 3

Targeted Bisulfite SequencingReduced Representative Bisulfite SequencingWhole Genome Bisulfite Sequencing

Random 
fragmentation

Enzyme 
digestionT

C

C

A

G

G

C

G

T

A C

G

Probe 
enrichment

Figure 1.2: Three types of bisulfite sequencing technology.

Over the past two decades, bisulfite sequencing has seen remarkable advancements,

significantly improving its accuracy, efficiency, and research applicability. High-throughput

4



platforms like Illumina and PacBio now enable large-scale, cost-effective methylation studies

with high resolution. Enhanced library preparation methods [32, 33], including strategies

to mitigate bisulfite-induced DNA degradation, have further improved data quality and

reliability, solidifying bisulfite sequencing as the gold standard for DNA methylome profiling.

Beyond bisulfite sequencing, other innovative approaches such as EPIC microarray [34],

nanopore sequencing [35], and TAPS [36] have been developed, and the advent of single-cell

methylation profiling techniques [37–39] has further propelled the field. Collectively, these

technological advancements enable more precise DNA methylation profiling, advance the

study of epigenetic regulation, and broaden the applications of DNA methylation research in

both research and clinical applications.

1.3 Downstream analysis of DNA methylation

The DNA methylation profiling techniques provide a quantitative framework for assessing

methylation status at specific genomic loci, enabling a detailed exploration of the epigenetic

landscape. By comparing the methylation-supporting measure (e.g., signal intensity for

microarray data or methylated counts for sequencing data) to the total measure (e.g.,

combined signal intensity or total read counts covering a site), a ratio or fraction can be

calculated, representing the average methylation level at each site across the cell(s) in the

sample. The collection of DNA methylation levels (DNA methylome) enables a wide range

of downstream analyses and allows researchers to explore the alternation and regulation in

detail.

1.3.1 Differential methylation analysis

Differential methylation analysis aims to identify methylation changes associated with variables

of interest. This analysis typically involves testing methylation level differences across

conditions (e.g., disease versus non-disease), either at individual cytosines or within specific

genomic regions. Depending on the data characteristics, parametric tests like the Student’s
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t-test or nonparametric tests like the Mann-Whitney U test or the Kolmogorov-Smirnov

(KS) test can be applied [40]. Advanced methods such as DSS [41] and MACAU [42]

used hierarchical models with beta-binomial distributions to model the methylated and

unmethylated read counts. These models account for sampling variations and provide robust

estimates of differentially methylated sites or regions, achieving higher statistical power to

detect small effect sizes.

1.3.2 Epigenome-wide association studies

Epigenome-wide association studies (EWAS) aim to identify associations between DNA

methylation changes and specific traits or diseases across large populations. The analysis

examines the entire DNA methylome to uncover methylation changes correlating with complex

phenotypes, such as disease risk, environmental exposures, etc. Regression frameworks are

typically used in statistical tests, e.g. linear mixture models [43], to manage the vast number

of sites and adjust for potential confounders like population stratification and cell-type

heterogeneity. Additionally, regression frameworks utilizing beta-binomial framework [42] are

also used to account for technical and biological variability observed in bisulfite sequencing

data. By incorporating covariates and controlling for potential confounders, these methods

ensure precise identification of methylation changes associated with complex traits or diseases,

thereby providing insights into the underlying epigenetic mechanisms and allowing for the

discovery of potential diagnostic or prognostic biomarkers.

1.3.3 Cell type abundance deconvolution

Current DNA methylation profiling at the single-cell level still faces challenges such as

high costs and low sequencing coverage. Consequently, most DNA methylation profiling

is performed on bulk samples, which are composed of a mixture of cell types. Accurately

determining the proportion of each cell type within these bulk samples is essential for

interpreting epigenetic data and understanding the underlying biology of complex tissues.
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The deconvolution process typically involves using reference profiles of known cell types,

where cell-type specific methylation signatures can be identified. By applying algorithms

such as Non-negative Least Squares [44], the proportions of each cell type in the bulk sample

can be estimated by minimizing the construction loss for the observed bulk methylation data.

Advanced models, such as CIBERSORT [45] and EpiDISH [46], further enhance accuracy

through machine learning and Bayesian approaches, collectively enabling precise profiling of

cell proportional dynamics in complex tissues.

1.3.4 Biomarker discovery and disease states prediction

DNA methylation’s stable nature and critical role in reflecting biological and disease states

make it a compelling target for biomarker study in aging and a wide range of diseases.

With base-resolution profiling techniques, current research focuses on uncovering disease-

specific methylation patterns and leveraging them for early diagnosis, disease monitoring, and

personalized medicine. For example, hypermethylation of tumor suppressor genes is employed

for early cancer detection [47], while methylation changes in circulating free DNA (cfDNA)

are tracked through liquid biopsies to monitor disease progression [48]. Furthermore, machine

learning approaches are increasingly utilized to develop methylation-based risk scores for

complex diseases [49]. These advancements pave the way for personalized medicine, enabling

prevention and treatment strategies tailored to an individual’s epigenetic profile.

1.4 Structure of the dissertation

A comprehensive understanding of DNA methylation is pivotal for advancing epigenetic

research and enhancing clinical applications. This dissertation contributes to this field

by addressing several computational and analytical challenges in DNA methylome studies.

It focuses on developing a novel bisulfite sequencing simulator, identifying noninvasive

biomarkers, and understanding the role of DNA methylation changes in aging and disease.

chapter 1 introduces the foundational concepts of DNA methylation, covering its biological
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functions, establishment and maintenance, and relevance in both basic research and clinical

applications. It offers an overview of methylation profiling techniques, with a particular focus

on bisulfite sequencing, and discusses the methodologies used to analyze methylation data.

By establishing the necessary knowledge background, it sets the stage for the more specialized

discussions in the following chapters.

chapter 2 introduces BSReadSim, a novel generative framework for simulating realistic

bisulfite sequencing reads. Unlike existing tools, BSReadSim can integrate genetic variants

and methylation profiles, enabling profile-based simulations while accounting for technical

variabilities. By addressing limitations in current methodologies, it facilitates the experiment

design for DNA methylome studies, development and benchmark of computational tools. By

improving the realism and flexibility of bisulfite sequencing simulations, BSReadSim can

enhance the reliability and rigor of method development for DNA methylation analysis.

chapter 3 investigates the potential of using saliva DNA methylome for type 2 diabetes

(T2D) biomarker discovery and risk assessment. By combining comprehensive WGBS with

high-depth TBS, this study identifies and profiles diabetes-specific epigenetic signals in saliva,

while demonstrating a practical and cost-effective research scheme for epigenetic biomarker

discovery that achieves both broad coverage and targeted precision in DNA methylation

profiling. It validates, for the first time, saliva DNA methylation as a reliable, non-invasive

biomarker for T2D, offering a promising alternative for future research and clinical diagnostics.

chapter 4 examines the molecular and cellular changes in aging breast tissue and their

connection to cancer risk. By analyzing DNA methylation and gene expression from 181

normal breast samples, the study evaluates eight epigenetic clocks, highlighting their inherent

biases in age estimation and the need for refined definitions of age acceleration. It reveals how

age-related shifts in cell composition and CpG site methylation, particularly those enriched

for estrogen receptor binding, link accelerated aging to cancer risk. These findings underscore

the importance of addressing model biases and cellular heterogeneity when interpreting

epigenetic age estimates and highlight the potential of age acceleration metrics for cancer
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risk stratification and prevention.

chapter 5 summarizes the main findings of this dissertation, focusing on contributions

to developing computational tools, validating non-invasive biomarkers, and investigating

epigenetic changes in T2D disease and aging. It also outlines potential future research

directions to advance computational methods and analytical approaches in DNA methylome

studies.
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CHAPTER 2

BSReadSim: a versatile and efficient simulator to generate

realistic bisulfite sequencing reads

Abstract

Realistic bisulfite sequencing simulators are crucial for advancing method development in

computational epigenetics. However, existing tools often fall short due to oversimplified

generative models that fail to capture the complexity of real data. We present BSReadSim, an

efficient and versatile simulator that generatesrealistic bisulfite sequencing reads. BSReadSim

excels in integrating reference genetic variants and methylation profiles, offering unmatched

versatility across multiple sequencing technologies, including WGBS, RRBS, and TBS. By

accurately modeling methylation patterns, sampling biases, sequencing errors, and leverag-

ing optimized implementation, BSReadSim efficiently generates realistic synthetic datasets

tailored to specific experimental needs while maintaining computational feasibility. By en-

hancing the realism and flexibility of bisulfite sequencing simulations, BSReadSim supports

improved experiment design, method development, and benchmarking of computational tools,

ultimately advancing the reliability and rigor of DNA methylation analysis tools.

Key words: DNA methylation; Bisulfite sequencing; Simulation; Synthetic data; Compu-

tational tools;
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2.1 Introduction

DNA methylation is a crucial epigenetic modification involving the addition of a methyl

group to the fifth carbon of cytosine’s pyrimidine ring. In mammals, this modification

predominantly occurs at CpG dinucleotides and plays a critical role in regulating gene

expression [1], maintaining genomic stability [2], and underpinning fundamental biological

processes such as cellular differentiation [3], development [4], and responses to environmental

stimuli [5]. Aberrant DNA methylation has been linked to various diseases [6], establishing it

as a central focus in biomedical research for uncovering disease mechanisms and advancing

innovative diagnostic and therapeutic strategies.

Bisulfite sequencing (BS-seq) is widely recognized as the gold standard for profiling

DNA methylation at single-base resolution. In this approach, genomic DNA is treated with

sodium bisulfite, where unmethylated cytosines (C) are converted to (U) and subsequently

read as thymines (T) during sequencing. In contrast, methylated cytosines (mC) remain

unaltered, preserving their sequence identity (C) [7]. This chemical distinction allows for

precise differentiation between methylated and unmethylated cytosines, enabling accurate

quantification of methylation levels at individual cytosine sites. Despite its unparalleled

resolution and accuracy, BS-seq data present significant analytical challenges due to the

inherent complexity of DNA methylation dynamics, bisulfite-induced base changes, and

technical variability in the sequencing process.

Since the development of bisulfite sequencing, various computational tools have been

developed to analyze the bisulfite sequencing data, including specialized read aligners [8–18],

SNP-callers [14, 17–23], as well as tools for identifying allelic-specific methylation [22, 24, 25],

with nearly every method claiming to achieve the best performance. The pressing need for

rigorously benchmarking these tools calls for a reliable simulator to generate realistic bisulfite

sequencing data with ground truth. Additionally, a versatile simulator would be invaluable

in experimental design. By simulating various scenarios, researchers can determine the best
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sequencing strategy and optimal sequencing depth needed to obtain accurate methylation

measurements, ensuring that experiments are both cost-effective and well-powered. The dual

utilities highlight the profound importance of developing a comprehensive bisulfite sequencing

simulator to advance both computational tool development and epigenetic research.

Several bisulfite sequencing read simulators have been developed over the years, each

tailored to specific technologies with distinct limitations. Among these, Sherman [26], BSBolt

[27], and BSSim [28] focus on Whole Genome Bisulfite Sequencing (WGBS). Sherman

provides basic simulation functionality but lacks support for genetic variant input and

complex methylation profiles. BSBolt allows input of methylation profiles but fails to preserve

site-specific methylation levels during simulation. BSSim can support limited genetic variant

input through SNP frequency tables, yet it does not incorporate individual genotype data

or handle indels. For Reduced Representation Bisulfite Sequencing (RRBS), RRBSsim [29]

offers limited support for genetic variants but cannot integrate methylation profiles. Lastly,

MethylFASTQ [30] supports both WGBS and Targeted Bisulfite Sequencing (TBS). However,

its inability to differentiate between Watson and Crick strands in TBS compromises its

utility for targeted sequencing applications. Additionally, like other tools, it does not support

genetic variant input or methylation profile simulations. A comprehensive summary of the

capabilities and limitations of these simulators is provided in Table 2.1.

Despite their varying focuses, existing bisulfite sequencing simulators share several critical

limitations. First, they fail to fully integrate genetic and epigenetic profiles into the simulated

bisulfite sequencing data, constraining their utility in computational tool development,

benchmarking, and experimental design. Additionally, these simulators rely on oversimplified

generative models, where DNA fragments, base quality scores, and sequencing errors are

sampled using uniform probability models. This approach neglects the inherent complexity

of bisulfite sequencing data, resulting in less realistic simulations. Furthermore, many of

these tools struggle with computational efficiency, and none can simulate data across all three

technologies (WGBS, RRBS, and TBS), further limiting their practicality for large-scale
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applications.

To address these limitations, we propose a novel bisulfite sequencing simulator, BSReadSim,

incorporating advanced features such as detailed genetic variant and methylation profile inputs,

allele-specific methylation, non-uniform coverage sampling, and quality score and sequencing

error modeling. Designed with high-efficiency implementation, the simulator generates realistic

bisulfite sequencing data within a practical timeframe. By supporting multiple bisulfite

sequencing technologies (WGBS, RRBS, and TBS), BSReadSim provides a robust platform

for benchmarking and validating bioinformatics tools under realistic conditions, facilitating

experimental design and serving as a valuable resource for computational epigenomic research.

2.2 Methods

2.2.1 BSReadSim overview

BSReadSim is designed to generate realistic reads that mimic biological and technical

variations observed in real bisulfite sequencing data. The simulator’s workflow, depicted in

Figure 2.1, illustrates the integration of genetic variants, methylation profile, and technical

artifacts to produce high-fidelity simulated data. The simulation framework works as follows:

Haplotypes generation: The simulator begins with a reference genome sequence from a

FASTA file, duplicating each chromosome to represent a diploid organism. Genetic variants,

including single nucleotide polymorphisms (SNPs) and short insertions or deletions (indels),

can be introduced either by specifying a mutation rate for random mutations or using a pre-

defined VCF file. When phased genetic variants are provided in the VCF file, the haplotypes

are constructed to accurately reflect the phasing, preserving the true genetic and allelic

structure. These haplotypes form the foundation for subsequent simulation steps, including

the simulation of allele-specific methylation (ASM).
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Methylation database construction: Following haplotype generation, a methylation

database is created by scanning the methylable bases along the haplotypes and recording

their positions and sequence contexts (e.g., CG, CHG, CHH). Methylation levels are assigned

to these positions if provided in a CGmap or ASM file. For positions lacking predefined

methylation data, context-specific beta distributions, estimated from real methylation profiles,

are used to simulate methylation levels, ensuring biologically realistic representation.

Fragmentation: The simulator supports three bisulfite sequencing technologies—WGBS,

RRBS, and TBS—each employing a tailored fragmentation strategy. DNA fragments are

sampled from both haplotypes within a predefined length range (default: 100 to 1000 base

pairs). In WGBS, fragmentation sites are randomly distributed across the genome, simulating

an unbiased approach. RRBS uses enzyme digestion (e.g., MspI, which recognizes CCGG

sites) to concentrate on CpG-rich regions. Thus, DNA fragments are generated between the

restriction enzyme sites. For TBS, fragments are centered around provided probe locations,

with the exact positions simulated using a Gaussian distribution to account for variability.

Methylation pattern assignment: After generating DNA fragments, the simulator

assigns methylation patterns to each fragment using the previously constructed methylation

database. For each cytosine in a CpG context within the fragment, the methylation level

is retrieved from the database, and the methylation state (methylated or unmethylated) is

determined using one of two models: an independent Bernoulli model or a bidirectional Long

Short-Term Memory (LSTM) network. The Bernoulli model independently assigns each

cytosine’s methylation state based on the retrieved methylation level, simulating random

methylation patterns. In contrast, the LSTM model incorporates the sequence context and

surrounding bases to predict methylation states on the read, leveraging patterns learned from

real biological data to simulate biologically realistic methylation states.
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Bisulfite conversion: After assigning methylation patterns to the DNA fragments, the

simulator performs in silico bisulfite conversion. In this process, unmethylated cytosines

are converted to thymines, while methylated cytosines remain unchanged. To reflect the

imperfect nature of bisulfite treatment in real experiments, the simulator applies a fixed

conversion success rate, mimicking incomplete conversion. This accounts for scenarios where

unmethylated cytosines fail to convert and remain unchanged, ensuring that the final simulated

sequences accurately represent both the methylation status and the stochastic nature of

bisulfite conversion.

Sequencing quality/error assignment: Following bisulfite conversion, the simulator

generates a pair of sequencing reads from both ends of the DNA fragments based on the

specified read length. Base quality scores are assigned to each base on the reads, either set

uniformly across the read or simulated by a Markovian chain using the quality state transition

matrix. Sequencing errors are then introduced, either uniformly at a specified error rate or

using a quality-specific confusion matrix, ensuring realistic error patterns in the simulated

reads.

Reads Output and Processing: After sequencing error assignment, the simulator compiles

the sequencing reads into standard FASTQ files, including both the nucleotide sequences and

their corresponding quality scores. The read name encodes the origin of each read, specifying

the chromosome, start, and end positions. Additionally, annotations in the comment line of

each read record base changes, such as genetic variants, incomplete bisulfite conversions, or

sequencing errors. These detailed annotations provide ground truth, ensuring traceability for

each base observation and facilitating downstream benchmarking and analysis.

The generated synthetic reads can be processed and analyzed using the same procedure

as the real bisulfite sequencing reads. This may include alignment to a reference genome,

methylation and snp calling, or other analyses pertinent to bisulfite sequencing studies. By

accurately mimicking the characteristics of real sequencing data, these outputs provide a
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robust foundation for testing and validating bioinformatics tools and pipelines under controlled

conditions. The following sections will detail the modeling component of the simulator to

provide a thorough understanding of the simulator’s capabilities and utility, including data

sources, modeling details and parameters, as well as implementation specifics.

2.2.2 DNA fragment sampling model

To accurately replicate the distinct characteristics of different bisulfite sequencing technologies

(such as WGBS, RRBS, and TBS), BSReadSim employs DNA fragment generation and

sampling processes tailored for each technology. While it also supports the basic uniform

sampling approach, as other simulators did, BSReadSim can also offer a profile-based sampling

model, where the probability of sampling each DNA fragment is determined by specific

fragment features. This allows for more nuanced and realistic data generation.

1. Whole Genome Bisulfite Sequencing (WGBS):

In WGBS, the GC content of a DNA fragment—measured as the proportion of G or C

bases—can directly impact its over- or under-representation of fragments in the sequencing

output, a phenomenon known as GC bias [31]. The simulator leverages this relationship by

using the GC ratio as a primary predictor of sampling probability, expressed as

pi = f1(GCi) (2.1)

where GCi represents the GC ratio of the fragment i, with sampling probability pi. We

utilized a previously published WGBS dataset from PGP-UK [32] (Sample Accession ID:

ERR2359938) to estimate the empirical function f1. Specifically, the WGBS reads were

processed and aligned to the reference genome using BSBolt, which was then divided into

100-base pair windows. For each window, the GC ratio and sequencing depth were calculated.

To address variability in sequencing depth, the GC ratio spectrum was divided into 100

bins. Within each bin, the interquartile range (IQR) method was applied to identify and

23

https://www.ebi.ac.uk/ena/browser/view/ERR2359938


remove regions with extreme sequencing depths, which likely represent alignment artifacts

or repetitive elements. The remaining depth values were normalized to scale between 0 and

1 (relative depth), serving as the sampling probability for each region (Figure 2.6). During

simulation, the GC ratio for each fragment is calculated, and rejection sampling is applied

based on the corresponding sampling probability. This approach mimics the coverage biases

observed in real WGBS data.

2. Reduced Representation Bisulfite Sequencing (RRBS):

RRBS targets CpG-rich regions on the genome by utilizing restriction enzymes such as MspI,

which cut at specific recognition sites (e.g., CCGG). The simulator replicates this process

by first identifying the restriction sites on the haplotypes. It then generates all possible

DNA fragments within the predefined fragment length range as candidates based on these

restriction sites. The sampling probability for each fragment i is modeled as a function of its

GC ratio (GCi), fragment length (Li), and the number of restriction enzyme sites contained

within the fragment (Counti).

pi = f2(GCi, Li, Counti) (2.2)

To learn the function f2, we utilized a previously published RRBS dataset [29]. After

processing and aligning the reads to the reference genome, DNA fragments were identified

using the read pairs from the RRBS data. For each fragment, sequencing depth, GC ratio,

fragment length, and the number of restriction sites were counted. Outliers were removed,

and relative depths were calculated using an approach similar to WGBS data. To model the

relationship between these features and the observed relative depths, a multivariate spline

was fitted (Figure 2.7), allowing the simulator to estimate the sampling probability for each

potential fragment candidate. During the simulation, each fragment was assigned a sampling

probability predicted by the model and was subsequently sampled with these probabilities.

24



3. Targeted Bisulfite Sequencing (TBS):

TBS uses probes to enrich specific genomic regions of interest, with varying capture efficiencies

that influence the enrichment of target regions (Figure 2.8). In BSReadSim, this variability

is incorporated by assigning different sampling probabilities to the targeted regions. These

probabilities can either be directly provided or empirically estimated from real TBS data to

reflect probes’ efficiency or target regions’ accessibility. For empirical estimation, the depth

of each probe region is calculated and normalized to generate a relative depth value. During

simulation, DNA fragments are sampled from the targeted regions according to their assigned

sampling probabilities, ensuring that the simulated data realistically reflects the enrichment

and depth variations of real TBS experiments.

2.2.3 Methylation pattern model

sampled DNA fragments can utilize one of two models to assign methylation states to

methylable sites, reflecting varying levels of complexity and realism in simulating methylation

patterns.

1. Independent Bernoulli model

The Independent Bernoulli Model is a straightforward approach in which each methylable

cytosine site within a DNA fragment is independently assigned a methylation state based

on a Bernoulli distribution. The methylation level for site j, denoted as mj, determines the

probability of being methylated. The methylation state for site j on read i, denoted as yij , is

then determined by:

yij ∼ Bernoulli(mj) (2.3)

This model is computationally efficient and well-suited for generating baseline methylation

patterns. However, it does not consider dependencies between neighboring sites’ methylation
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states or the influence of genomic context, resulting in less realistic simulated methylation

patterns.

2. Bidirectional Long Short-Term Memory (LSTM) model

To account for site-site dependency, we model Yi, the methylation states of all sites on a read

i, as being simultaneously sampled from an unknown distribution g. This distribution is

determined by relevant features, including the methylation levels of sites on the read (Mi),

inter-site distances (Di), and genomic context (Ci), represented as the one-hot embedding of

the surrounding sequences. Formally, this can be expressed as:

Yi ∼ g(Mi, Di, Ci) (2.4)

In this work, we utilize a bidirectional LSTM (BiLSTM) model to implicitly learn this

function, capturing the intricate relationships among these features. By leveraging its

bidirectional architecture, the BiLSTM integrates upstream and downstream sequence and

methylation context, allowing it to account for both local and long-range dependencies. This

enables the BiLSTM to accurately simulate methylation patterns that reflect the dependencies

and variability observed in real biological systems.

To ensure the output methylation states maintain a marginal probability aligned with

the predefined methylation levels, we designed a composite loss function combining Binary

Cross-Entropy (BCE) loss and Mean Squared Error (MSE) loss. The BCE loss evaluates the

accuracy of predicted binary methylation states for each site, while the MSE loss ensures

that the averaged prediction state of a read matches the input methylation level. Together,

these loss functions guide the BiLSTM in capturing dependencies between adjacent sites

while maintaining input methylation levels. This ability to simulate realistic methylation

patterns on a read while maintaining methylation level fidelity at individual sites sets our

simulator apart from others that lack this capability.
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2.2.4 Sequencing quality and error model

Depending on the user’s needs, the sequencing quality and error on a read can be generated

using two approaches: a uniform model and an advanced state transition model. The

uniform model assigns a consistent quality score and introduces errors at a constant rate,

offering simplicity and computational efficiency. For users requiring greater realism, the

advanced model contains the following two parts and captures dependencies across sequential

base-calling cycles, providing more realistic simulations.

1. Quality transition matrix:

We adopt the same strategy as pIRS [33] and use a quality transition matrix to model quality

scores across sequencing cycles. Each element in the matrix represents the probability of

transitioning from a quality score in one sequencing cycle to a specific quality score in the

subsequent cycle. This approach accounts for the observation that the quality of base calls

often depends on the quality of preceding calls, particularly under conditions where the

sequencing quality deteriorates along the read. In our simulator, we constructed the quality

score transition matrix for read1 and read2, respectively, from the WGBS data, effectively

representing the potential difference for the read pairs. (Figure 2.9)

During the simulation, the quality score for the initial five bases is randomly drawn from

the empirical discrete distribution constructed from the real data. For subsequent bases, the

simulator uses the quality-transition matrix to determine the following quality score based

on the score of the preceding base. This method effectively captures the progressive nature

of quality deterioration characteristic of many sequencing platforms, particularly for longer

reads.

2. Sequencing error generation:

Each quality score has a specific sequencing error profile, with lower quality scores generally

indicating higher probabilities of errors and different base errors having different error rates. In

27



our simulator, we empirically derived the base transition matrices for each quality score from

real sequencing data. Unlike whole genome sequencing, where error rates can be more directly

estimated by comparing the aligned reads to the reference genome, bisulfite sequencing poses

additional challenges due to bisulfite conversion, where the observed difference between reads

and reference genome can be attributed to either sequencing error or bisulfite conversion.

To address this issue, we focus on the overlapped bases of read1 and read2 in paired-end

reads. Given the paired reads from the same DNA fragments, any observed discrepancies

in the overlapped region must be due to sequencing errors, thus providing a reliable means

of estimating errors and minimizing the confounding effects of bisulfite conversion. The

estimated error rate profile for each sequencing quality score is presented in Figure 2.10,

effectively capturing the relationship between quality scores and their corresponding error

rates.

During simulation, once a quality score is determined for each base, the corresponding

base transition matrices are applied to introduce potential sequencing errors using a discrete

distribution. This method ensures that the simulated reads realistically reflect the error

characteristics observed in actual sequencing experiments.

2.2.5 Computational optimization strategies

One major bottleneck of bisulfite sequencing read simulation lies in the computational speed.

To mitigate this issue, we implemented several computational optimization strategies to ensure

efficient processing, enabling the simulation of large datasets within a reasonable timeframe.

These strategies are particularly crucial for making the tool accessible and practical for

researchers working with high-throughput sequencing data. The following points summarize

the key techniques employed:

High-efficiency implementation: One key optimization was implementing computa-

tional and memory-intensive components of the simulator in C/C++, such as haplotype

generation, methylation database construction, and fragment sampling. This lower-level, high-
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performance language offers better control over memory management and enables efficient

data structures, significantly improving computational efficiency. For instance, haplotype

construction and the parsing of genetic variants and methylation profiles were implemented

using HTSLIB [34], a highly optimized C++ library specifically designed for handling next-

generation sequencing data. Additionally, the methylation database was constructed using a

customized data structure that utilizes pointers and vectors, ensuring efficient storage and

rapid access to site-specific methylation data.

Bit encoding and operations: To fully leverage the advantage of C++ and optimize

performance, we adopted the bit encoding and operation framework from WGSIM [35], a

tool to efficiently simulate whole-genome sequencing reads. By representing each nucleotide

(A, C, G, T) as a 2-bit binary value, this encoding reduces the memory footprint by a

factor of four compared to traditional byte-based representations. Additionally, bitwise

operations—such as AND, OR, XOR, and shifts—are used to perform computations directly

on these binary-encoded sequences. These operations are inherently faster than equivalent

arithmetic operations by directly manipulating the bits at the hardware level, reducing the

time required for tasks such as mutation introduction, fragment generation, and fragment

feature extraction. With the compact encoding and the use of fast bitwise operations,

BSReadSim not only reduces memory usage but also accelerates computational processes.

This dual benefit is particularly important when simulating large genomic datasets with

limited computing resources, where both memory efficiency and processing speed are critical.

Memory and data access optimization: Efficient memory management was a key

focus in our simulator’s design to handle large-scale simulations efficiently and effectively.

One of the critical optimizations involved sorting DNA fragments before retrieving their

corresponding methylation levels from the methylation database. By sorting fragments, we

increased data locality, meaning that related data is accessed sequentially, which significantly

reduces cache misses and thus improves processing speed. This approach also exemplifies the
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trade-off of space for time, as the temporary storage required for sorting is outweighed by

the performance gains achieved during data retrieval and processing. On the other hand, the

simulator processes genome fragments one chromosome at a time and generates sequencing

reads chunk by chunk on the fly, rather than holding all chromosomes and read data in

memory simultaneously, reducing the memory footprint and enabling the efficient processing.

Algorithmic function optimizations: We identified several frequently used functions

in BSReadSim and optimized them for improved performance, such as simulating vectors

from Bernoulli and discrete distributions. The Bernoulli distribution is heavily utilized in

methylation state assignment and bisulfite conversion; we re-implemented the function by

comparing a vector of random numbers to the target probabilities and directly mapping the

True/False results to 0/1 states. This optimization achieved a 30-fold speed increase compared

to the standard bernoulli.rvs() method for vectors of length 150. The discrete distributions

are frequently used for simulating sequencing quality and errors, we optimized the sampling

process by generating a uniform random number between 0 and 1 and comparing it against the

precomputed cumulative distribution function (CDF) derived from the discrete probabilities.

The monotonic nature of the CDF enables efficient identification of the corresponding discrete

class using binary search. This optimization reduces computational overhead, significantly

accelerating the sampling process, achieving a speed-up of approximately 13.5 times faster

than the standard np.random.choice() method.

Other optimization endeavors: Beyond the strategies outlined above, we also imple-

mented several additional techniques. The simulator’s scalable and modular design allows

efficient handling of datasets ranging from small targeted sequencing to large-scale whole-

genome studies, with individual components optimized as needed. Data compression and I/O

optimization, such as gzip compression, reduce storage demands and improve data access by

processing compressed data directly in memory. Parallel processing further accelerates perfor-

mance by distributing computational tasks across multiple CPU cores, significantly reducing
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runtime. These strategies ensure the simulator is both efficient and robust, addressing the

demands of high-throughput sequencing simulations.

Customizable trade-offs: Recognizing the diverse needs of researchers, we offer users

the flexibility to balance computational trade-offs. Users can choose between high-fidelity

simulations that prioritize accuracy at the cost of higher resource demands or lower-fidelity

simulations optimized for speed. This adaptability allows researchers to tailor simulations to

their specific goals and resource availability.

These optimizations significantly enhance the simulator’s performance, making it a valuable

tool for the DNA methylome community. By effectively balancing speed and resource efficiency,

our simulator provides a robust platform for simulating bisulfite sequencing reads across

multiple technologies, experiment design, and the development and testing of bioinformatics

methods with high fidelity and realism.

2.2.6 Code availability

The code is freely available at https://github.com/wbvguo/BSReadSim.git

2.3 Results

2.3.1 Faithful incorporation of reference genetic variants

To evaluate the effectiveness of our bisulfite sequencing reads simulator in integrating genetic

variants, we conducted a profile-based simulation using BSReadSim with a customized VCF

file aiming at a sequencing depth of 20. After simulation, the synthetic reads were aligned

to the reference genome and inspected using the Integrative Genomics Viewer (IGV) [36].

Figure 2.2 demonstrates the simulator’s ability to faithfully incorporate specified genetic

variants into simulated bisulfite sequencing reads.

Specifically, the VCF file contains a homozygous SNP on chromosome 10 at position

90,937, with the reference allele A and the alternate allele T, as shown in the top panel
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of Figure 2.2. In the BAM alignment track, all bases at the SNP locus are T, confirming

the accurate incorporation of the genetic variant as defined in the VCF file. These results

establish our simulator as the first tool to seamlessly integrate predefined genetic variants into

bisulfite sequencing reads, offering a reliable platform for advanced epigenomic research. This

capability is particularly advantageous for studies that require integrating genetic variants

into bisulfite sequencing data, such as developing and benchmarking tools for bisulfite SNP

calling, allele-specific methylation, and methylation QTL simulation.

2.3.2 Accurate preservation of reference methylation profiles

To further evaluate our simulator, we assessed its ability to accurately preserve the reference

methylation profiles—a critical feature for generating synthetic data that closely mimics real

data and facilitating experimental design. The simulation used a reference genome and a

prespecified methylation profile from a CGmap file, targeting at sequencing depth of 20.

The generated reads were then aligned to the reference genome, and methylation levels were

quantified. Fidelity was evaluated by comparing the designed methylation levels with the

estimated levels derived from the simulated data.

We repeat the same simulation procedure for both BSBolt and BSReadSim. The results

revealed that BSBolt failed to preserve the reference methylation profile accurately. As

shown in Figure 2.3, the widespread distribution of dots indicates significant discrepancies

between the designed and simulated methylation levels. This limitation arises because BSBolt

randomly assigns methylation values to CG sites from the reference profile, disregarding

their specific genomic location information. In contrast, BSReadSim exhibited much higher

fidelity in replicating the reference methylation profile. While minor deviations were observed,

primarily due to stochastic variations in sequencing depth, most simulated methylation

levels closely aligned with the reference profile, with data points clustering near the diagonal.

These results validate BSReadSim as a reliable tool for simulating bisulfite sequencing data,

particularly for applications requiring accurate preservation of input methylation profiles.
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2.3.3 Effective capture of site-site dependency

To evaluate the ability of our BiLSTM-based model to capture site-site dependency, we

compared the entropy-distance relationship observed in real data, BiLSTM-simulated data,

and Bernoulli-simulated data (Figure 2.4). Entropy was calculated based on the joint state

probabilities of adjacent sites (00, 01, 10, 11), which provides a measure of the methylation

concordance in adjacent sites and reflects the site-site dependency. Higher entropy indicates

lower concordance between adjacent sites, reflecting weaker site-site dependency. To ensure

robust measurement, only site pairs with read counts exceeding 20 were included for analysis.

In the real data, a weak but significant positive correlation between entropy and distance

was observed (R2 = 0.11), reflecting the gradual weakening of site-site dependencies with

increasing distance, consistent with previous finding [37]. The BiLSTM-simulated data closely

replicated this trend, showing a comparable positive correlation (R2 = 0.09), demonstrating

the model’s ability to capture realistic dependency structures. However, the entropy in the

BiLSTM-simulated data is consistently lower than in the real data, indicating that the real

data exhibits greater stochasticity than the model assumes [38]. Future work can consider

refining the model to capture the additional variability in the real data not fully captured by

the BiLSTM model.

On the other hand, the Bernoulli model assumes that sites are independent, leading to no

concordance between adjacent sites. As expected, this results in consistently high entropy

that does not vary with distance (R2 = 0.01). This behavior highlights the limitation of the

Bernoulli model in representing the spatial dependencies inherent in real methylation data.

These results emphasize the BiLSTM model’s capability to effectively preserve site-site

dependency, making it a valuable tool for generating methylation patterns that reflect

biological systems. By capturing both local and long-range dependencies, the BiLSTM-based

simulator offers significant advantages over the simpler independent Bernoulli model.
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2.4 Discussion

The field of bisulfite sequencing simulation has witnessed the development of several simulators

designed to generate synthetic data for various applications. However, existing tools such as

Sherman, BSBolt, and MethylFASTQ are limited in their ability to fully integrate genetic

and methylation profiles, often producing synthetic data that lacks the complexity of real

bisulfite sequencing. These tools also suffer from computational inefficiencies, making them

impractical for large-scale studies. To address these limitations, BSReadSim was developed

with advanced features, including detailed genetic variant input, allele-specific methylation,

and context-aware sequencing error modeling. Results show that BSReadSim can faithfully

incorporate reference genetic and methylation profiles while effectively preserve the site-site

dependency as observed in real data, providing a robust platform for generating realistic

bisulfite sequencing data.

Building on these strengths, BSReadSim can enhance the fidelity of simulations and

ensure synthetic data closely mirrors real-world sequencing outputs, making it particularly

valuable for benchmarking bioinformatics tools (Figure 2.5) and designing experiments.

1. Benchmarking Bisulfite Sequencing Aligners: Accurate alignment is crucial for

downstream tasks; however, methylation and bisulfite conversion introduce an additional

layer of complexity, complicating the alignment process and requiring specialized

handling. In the past, a number of aligners have been developed to tackle this challenge.

BSReadSim’s ability to generate realistic reads with known fragment origins can provide

a rigorous benchmarking framework for bisulfite sequencing aligners, helping identify

and refine the most effective alignment tools.

2. Benchmarking Bisulfite Sequencing SNP Callers: The identification of SNPs

in bisulfite sequencing data is complicated by sequencing errors and bisulfite-induced

changes. BSReadSim enables detailed benchmarking of SNP callers by providing

synthetic reads that faithfully incorporate genetic variants and provide traceable changes,
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thereby offering the ground truth necessary for reliable benchmarking of these tools.

3. Probe Design for Targeted Bisulfite Sequencing and Methylation Arrays:

Designing probes for TBS and methylation arrays requires careful consideration of

repetitive elements and potential off-target effects. BSReadSim enables researchers to

optimize probe design by simulating TBS data and aligning it back to the reference

genome, identifying potential off-target or multi-mapped probes. By providing the

feedback loop, BSReadSim can serve to refine the probe sets, thereby improving the

reliability and effectiveness of targeted sequencing studies.

Despite its advancements, several areas remain for improvement and further exploration.

BSReadSim currently preserves both genetic and methylation profiles, offering valuable realism

for simulating bisulfite sequencing data. However, further testing is needed to assess its unique

capability in simulating allele-specific methylation (ASM) [39], which is critical for developing

and benchmarking ASM detection tools. Additionally, comprehensive testing and comparisons

with existing simulators are necessary to fully evaluate BSReadSim’s computational efficiency

and advantages. For site-site dependency modeling, exploring advanced techniques such as

Gaussian processes [40] could be further explored to enhance the prediction accuracy. Finally,

leveraging BSReadSim to benchmark other bisulfite sequencing tools will be an important

step in demonstrating its utility across diverse applications and advancing computational

epigenetics research.

In summary, BSReadSim fills a critical gap in bisulfite sequencing by offering a versatile

and high-fidelity simulator capable of generating realistic bisulfite sequencing data efficiently.

With its unique advantages, BSReadSim supports various applications, including benchmark-

ing alignment and SNP calling tools and optimizing probe design for targeted sequencing

experiments. These features highlight its value to the epigenomics research community.

Further refinements, including evaluating allele-specific methylation, extensive testing against

other simulators, and its use in benchmarking bisulfite sequencing tools, will enhance its

impact on computational genetics and epigenomic research.
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2.6 Tables and figures

Table 2.1: Summary of existing bisulfite sequencing read simulators

Features Sherman BSBolt BSSim MethylFASTQ RRBSsim

Sequencing

technology
WGBS WGBS WGBS WGBS/TBS* RRBS

Genetic variant

input
No No Yes* No Yes*

Haplotype-aware No No No No No

Methylation

profile input
No Yes* No No No

Site-site

dependency
No No No No No

Allelic-specific

methylation
No No No No No

Adjustable bisulfite

conversion rate
Yes No Yes No Yes

GC-bias/non-

uniform coverage
No No No No No

Multi-thread

support
No No Yes Yes No

(*) denotes limited support:

•••• MethylFASTQ cannot distinguish between the Watson and Crick strands for Targeted
Bisulfite Sequencing (TBS).

• BSSim and RRBSsim only accept SNP input using a frequency table. They cannot
faithfully utilize given genotypes, preserve haplotype information, or handle indel variants.

• BSBolt randomly picks a value from the methylation reference input for simulation. As a
result, for a particular CG site, the simulated data and the reference profile will likely
have different methylation levels.
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Figure 2.1: Overview of the Bisulfite Sequencing read Simulation (BSReadSim) Framework.
Workflow illustrating the simulation process for bisulfite sequencing data. The process begins
with the reference genome, from which haplotypes are generated either through a provided
VCF file or by randomly introducing mutations. A methylation database (MethDB) is then
constructed, leveraging the methylable bases of the haplotypes and a specified methylation
profile (sourced from a CGmap/ASM file or context-specific beta distributions). Subsequently,
the haplotypes undergo fragmentation and sampling according to the selected sequencing
strategy—WGBS, RRBS, or TBS—to generate DNA fragments. The methylation state of
each cytosine within these fragments is determined using a Bernoulli or bidirectional LSTM
model. Following the assignment of methylation states, DNA fragments undergo in silico
bisulfite conversion, read generation, and the addition of base quality scores and sequencing
errors to produce realistic bisulfite sequencing reads. Finally, the read data are output in the
standardized Fastq file format and ready for downstream analysis.
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Figure 2.2: BSReadSim incorporates genetic variants to simulated read data. IGV visual-
ization of read alignment for simulated read data, highlighting the faithful incorporation of
predefined genetic variants. The top panel (VCF) displays the predefined VCF file, indicating
a homozygous SNP on chromosome 10 at position 90,937, with the reference allele A and
the alternate allele T. The middle panel (BAM coverage) illustrates the read coverage at
this region, with color-coded bars representing the proportion of reads supporting each base
(A: green; C: blue; G: orange; T: red) alongside the sequencing depth distribution. The
bottom panel (BAM) shows individual read alignments, where the presence of T alleles at
the SNP site is clearly visible, reflecting the homozygous SNP introduced in the simulation
and consistent with the input VCF file. The sequence at the bottom of the figure provides
the reference sequence context around the SNP. This figure demonstrates an example of the
simulator’s capability to faithfully incorporate predefined genetic variants into simulated
bisulfite sequencing data.
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Figure 2.3: BSReadSim preserves methylation profile in simulated read data. Figure compar-
ing the fidelity of methylation profile preservation between two simulators, BSBolt (left) and
BSReadSim (right). Each dot represents a methylable base in the genome, with the x-axis
depicting the reference methylation profile and the y-axis showing the methylation profile
calculated from the simulated bisulfite sequencing reads. In the BSBolt panel, the widespread
distribution of dots indicates a significant loss of location information. Conversely, the
BSReadSim panel shows dots closely aligned along the diagonal, demonstrating BSReadSim’s
ability to accurately replicate the reference methylation profile and maintain site-specific
methylation patterns across the genome. It’s important to note that randomness in sequencing
depth can introduce slight variability in the estimated methylation levels, rendering the dots
do not perfectly align on the diagonal in the right panel.
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Figure 2.4: BSReadSim captures of site-site dependency in real data. Comparison of entropy-
distance relationships in real data, BiLSTM-simulated data, and Bernoulli-simulated data.
The scatterplots depict the entropy of methylation states as a function of the genomic distance
between adjacent sites. The red line represents a linear regression fit to the data, with the
equation and R2 value shown in each panel. The left panel shows real data, where a weak
but consistent positive correlation is observed (R2 = 0.11). The middle panel represents
data simulated using the BiLSTM model, which closely approximates the real data pattern
(R2 = 0.09), demonstrating its ability to capture site-site dependencies. The right panel
shows data generated by the Bernoulli model, which lacks dependency between adjacent sites
and exhibits minimal correlation (R2 = 0.01), highlighting its limitation in reflecting realistic
methylation patterns.
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Figure 2.5: Potential applications of BSReadSim. The left panel illustrates synthetic data
generation by BSReadSim with known ground truth, including the true SNPs and the true
origin of reads. The synthetic data follows standard bisulfite sequencing read processing steps,
including alignment and SNP identification. Each aligner and SNP-caller’s performance can
be assessed by comparing the analyzed results to the designed ground truth (benchmarking
aligners by comparing the aligned locations to their true origins and benchmarking SNP-callers
by comparing identified SNPs to the true SNPs.). The right panel complements this by
applying a similar framework to real data from two sequencing modalities (WGS and WGBS),
allowing the evaluation of aligner and SNP-calling tools in real-world scenarios. Together,
these approaches provide a comprehensive benchmarking framework that integrates both
synthetic and real data.
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2.7 Supplementary materials
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Figure 2.6: Fragment sampling model for WGBS data. Figure showing the relationship
between GC content (x-axis) and relative sequencing depth (right y-axis) in WGBS data.
The genome is segmented into 100 bp bins, and the GC ratio and depth are calculated for
each bin. Blue boxplots represent the distribution of sequencing depth across different GC
ratios, with the central line indicating the median depth, the blue curve representing the
local trend, the box representing the interquartile range (IQR), and the whiskers extending
to 1.5 times the IQR. The relative depth (right y-axis) is normalized to range between 0 and
1, and the color gradient indicates fragment density (orange for higher density). The figure
highlights the GC bias in WGBS, where fragments with intermediate GC content have higher
sequencing depth than those with very low or high GC content.
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Figure 2.7: Fragment sampling model for RRBS data. Analysis of factors influencing
sampling probability in RRBS data and comparison of predictive models. (A) Correlation
matrix showing the relationships between sequencing depth and fragment features (GC ratio,
fragment length, restriction site count) in RRBS data. The size and color intensity of the
circles indicate the strength and direction of the correlations, with depth showing a negative
correlation with fragment length and a moderate positive correlation with GC ratio and the
number of restriction sites. (B-E) Comparison of different models for predicting relative
depth from the fragment features using linear regression (B), linear regression with logit
transformation (C), beta regression (D), and multivariate spline (E). The multivariate spline
model (E) shows the best fit, with an R2 of 0.41, indicating its superior performance in
capturing the complex relationship between sequencing depth and fragment features in RRBS
data.
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Figure 2.8: Fragment sampling model for TBS data. Density plot of sequencing depth for
targeted regions in Targeted Bisulfite Sequencing (TBS). The plot shows the distribution of
sequencing depth across probe-enriched regions, reflecting the variability in capture efficiency
of different probes. In the simulation, this variability is modeled by assigning sampling
probabilities to targeted regions based on either provided values or empirical estimates from
real TBS data. This approach ensures that the simulated reads accurately represent the
regional enrichment and depth variations observed in actual TBS data.
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Figure 2.9: Heatmap of base quality transition probabilities. Quality-transition matrices
for Read1 (A) and Read2 (B) in Whole Genome Bisulfite Sequencing (WGBS) data. These
matrices represent the probability of transitioning from a preceding quality score (Leading
Q) to a subsequent score (Following Q) across sequencing cycles on the read. Each element
shows the probability of a quality score change between cycles, with color intensity indicating
transition probability. The matrices capture the dependency of sequencing quality on
preceding bases and account for quality degradation along read length.

A

B

Figure 2.10: Sequencing error profiles across base quality. Base transition matrices for varying
quality scores in bisulfite sequencing data. Panels A and B show the probability of observed
bases (A, C, G, T) for given reference bases across different quality scores (2, 7, 11, 22, 27,
32, 37, 42) for Read1 and Read2, respectively. Lower quality scores correspond to higher
error probabilities.

46



2.8 References

[1] Mattei, A. L., Bailly, N., and Meissner, A. “DNA methylation: a historical perspective”.

Trends in Genetics 38.7 (2022), pp. 676–707.

[2] Smith, Z. D. and Meissner, A. “DNA Methylation: Roles in Mammalian Development”.

Nature Reviews Genetics 14.3 (2013), pp. 204–220.

[3] Farlik, M., Halbritter, F., Müller, F., Choudry, F. A., Ebert, P., Klughammer, J.,

Farrow, S., Santoro, A., Ciaurro, V., Mathur, A., et al. “DNA methylation dynamics of

human hematopoietic stem cell differentiation”. Cell stem cell 19.6 (2016), pp. 808–822.

[4] Greenberg, M. V. and Bourc’his, D. “The diverse roles of DNA methylation in mam-

malian development and disease”. Nature reviews Molecular cell biology 20.10 (2019),

pp. 590–607.

[5] Moore, L. D., Le, T., and Fan, G. “DNA methylation and its basic function”. Neu-

ropsychopharmacology 38.1 (2013), pp. 23–38.

[6] Jin, Z. and Liu, Y. “DNA methylation in human diseases”. Genes & diseases 5.1 (2018),

pp. 1–8.

[7] Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D.,

Pradhan, S., Nelson, S. F., Pellegrini, M., and Jacobsen, S. E. “Shotgun bisulphite

sequencing of the Arabidopsis genome reveals DNA methylation patterning”. Nature

452.7184 (2008), pp. 215–219.

[8] Xi, Y. and Li, W. “BSMAP: whole genome bisulfite sequence MAPping program”.

BMC bioinformatics 10 (2009), pp. 1–9.

[9] Krueger, F. and Andrews, S. R. “Bismark: a flexible aligner and methylation caller for

Bisulfite-Seq applications”. bioinformatics 27.11 (2011), pp. 1571–1572.

47



[10] Lim, J.-Q., Tennakoon, C., Li, G., Wong, E., Ruan, Y., Wei, C.-L., and Sung, W.-K.

“BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation”.

Genome biology 13 (2012), pp. 1–14.

[11] Guo, W., Fiziev, P., Yan, W., Cokus, S., Sun, X., Zhang, M. Q., Chen, P.-Y., and

Pellegrini, M. “BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data”.

BMC genomics 14 (2013), pp. 1–8.

[12] Pedersen, B. S., Eyring, K., De, S., Yang, I. V., and Schwartz, D. A. “Fast and accurate

alignment of long bisulfite-seq reads”. arXiv preprint arXiv:1401.1129 (2014).

[13] Harris, E. Y., Ounit, R., and Lonardi, S. “BRAT-nova: fast and accurate mapping of

bisulfite-treated reads”. Bioinformatics 32.17 (2016), pp. 2696–2698.

[14] Merkel, A., Fernández-Callejo, M., Casals, E., Marco-Sola, S., Schuyler, R., Gut, I. G.,

and Heath, S. C. “gemBS: high throughput processing for DNA methylation data

from bisulfite sequencing”. Bioinformatics 35.5 (2019), pp. 737–742.

[15] Zhang, Y., Park, C., Bennett, C., Thornton, M., and Kim, D. “Rapid and accu-

rate alignment of nucleotide conversion sequencing reads with HISAT-3N”. Genome

Research 31.7 (2021), pp. 1290–1295.

[16] Sena Brandine, G. de and Smith, A. D. “Fast and memory-efficient mapping of

short bisulfite sequencing reads using a two-letter alphabet”. NAR Genomics and

Bioinformatics 3.4 (2021), lqab115.

[17] Farrell, C., Thompson, M., Tosevska, A., Oyetunde, A., and Pellegrini, M. “BiSulfite

Bolt: A bisulfite sequencing analysis platform”. GigaScience 10.5 (2021), giab033.

[18] Zhou, W., Johnson, B. K., Morrison, J., Beddows, I., Eapen, J., Katsman, E., Semwal,

A., Habib, W. A., Heo, L., Laird, P. W., et al. “BISCUIT: an efficient, standards-

compliant tool suite for simultaneous genetic and epigenetic inference in bulk and

single-cell studies”. Nucleic Acids Research 52.6 (2024), e32–e32.

48



[19] Liu, Y., Siegmund, K. D., Laird, P. W., and Berman, B. P. “Bis-SNP: combined

DNA methylation and SNP calling for Bisulfite-seq data”. Genome biology 13 (2012),

pp. 1–14.

[20] Barturen, G., Rueda, A., Oliver, J. L., and Hackenberg, M. “MethylExtract: high-

quality methylation maps and SNV calling from whole genome bisulfite sequencing

data”. F1000Research 2 (2013).

[21] Gao, S., Zou, D., Mao, L., Liu, H., Song, P., Chen, Y., Zhao, S., Gao, C., Li, X.,

Gao, Z., et al. “BS-SNPer: SNP calling in bisulfite-seq data”. Bioinformatics 31.24

(2015), pp. 4006–4008.

[22] Guo, W., Zhu, P., Pellegrini, M., Zhang, M. Q., Wang, X., and Ni, Z. “CGmapTools

improves the precision of heterozygous SNV calls and supports allele-specific methy-

lation detection and visualization in bisulfite-sequencing data”. Bioinformatics 34.3

(2018), pp. 381–387.

[23] Nunn, A., Can, S. N., Otto, C., Fasold, M., Díez Rodríguez, B., Fernández-Pozo, N.,

Rensing, S. A., Stadler, P. F., and Langenberger, D. “EpiDiverse Toolkit: a pipeline

suite for the analysis of bisulfite sequencing data in ecological plant epigenetics”. NAR

genomics and bioinformatics 3.4 (2021), lqab106.

[24] Fan, Y., Vilgalys, T. P., Sun, S., Peng, Q., Tung, J., and Zhou, X. “IMAGE: high-

powered detection of genetic effects on DNA methylation using integrated methylation

QTL mapping and allele-specific analysis”. Genome biology 20 (2019), pp. 1–18.

[25] Abante, J., Fang, Y., Feinberg, A., and Goutsias, J. “Detection of haplotype-dependent

allele-specific DNA methylation in WGBS data”. Nature communications 11.1 (2020),

p. 5238.

[26] Bioinformatics, B. Sherman. https://github.com/FelixKrueger/Sherman/.

[27] Farrell, C., Thompson, M., Tosevska, A., Oyetunde, A., and Pellegrini, M. “BiSulfite

Bolt: A bisulfite sequencing analysis platform”. GigaScience 10.5 (2021), giab033.

49

https://github.com/FelixKrueger/Sherman/


[28] Xie, Q., Liu, Q., Mao, F., Cai, W., Wu, H., You, M., Wang, Z., Chen, B., Sun, Z. S.,

and Wu, J. “A Bayesian framework to identify methylcytosines from high-throughput

bisulfite sequencing data”. PLoS Computational Biology 10.9 (2014), e1003853.

[29] Sun, X., Han, Y., Zhou, L., Chen, E., Lu, B., Liu, Y., Pan, X., Cowley Jr, A. W., Liang,

M., Wu, Q., et al. “A comprehensive evaluation of alignment software for reduced

representation bisulfite sequencing data”. Bioinformatics 34.16 (2018), pp. 2715–2723.

[30] Piaggeschi, G., Licheri, N., Romano, G., Pernice, S., Follia, L., and Ferrero, G.

“MethylFASTQ: a tool simulating bisulfite sequencing data”. 2019 27th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP).

IEEE. 2019, pp. 334–339.

[31] Benjamini, Y. and Speed, T. P. “Summarizing and correcting the GC content bias in

high-throughput sequencing”. Nucleic acids research 40.10 (2012), e72–e72.

[32] Chervova, O., Conde, L., Guerra-Assunção, J. A., Moghul, I., Webster, A. P., Berner,

A., Larose Cadieux, E., Tian, Y., Voloshin, V., Jesus, T. F., et al. “The Personal

Genome Project-UK, an open access resource of human multi-omics data”. Scientific

data 6.1 (2019), p. 257.

[33] Hu, X., Yuan, J., Shi, Y., Lu, J., Liu, B., Li, Z., Chen, Y., Mu, D., Zhang, H., Li, N.,

et al. “pIRS: Profile-based Illumina pair-end reads simulator”. Bioinformatics 28.11

(2012), pp. 1533–1535.

[34] Bonfield, J. K., Marshall, J., Danecek, P., Li, H., Ohan, V., Whitwham, A., Keane, T.,

and Davies, R. M. “HTSlib: C library for reading/writing high-throughput sequencing

data”. Gigascience 10.2 (2021), giab007.

[35] Li, H. WGSIM. https://github.com/lh3/wgsim/.

[36] Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. “Integrative Genomics Viewer

(IGV): high-performance genomics data visualization and exploration”. Briefings in

bioinformatics 14.2 (2013), pp. 178–192.

50

https://github.com/lh3/wgsim/


[37] Affinito, O., Palumbo, D., Fierro, A., Cuomo, M., De Riso, G., Monticelli, A., Miele,

G., Chiariotti, L., and Cocozza, S. “Nucleotide distance influences co-methylation

between nearby CpG sites”. Genomics 112.1 (2020), pp. 144–150.

[38] Teschendorff, A. E. “On epigenetic stochasticity, entropy and cancer risk”. Philosophical

Transactions of the Royal Society B 379.1900 (2024), p. 20230054.

[39] Onuchic, V., Lurie, E., Carrero, I., Pawliczek, P., Patel, R. Y., Rozowsky, J., Galeev,

T., Huang, Z., Altshuler, R. C., Zhang, Z., et al. “Allele-specific epigenome maps reveal

sequence-dependent stochastic switching at regulatory loci”. Science 361.6409 (2018),

eaar3146.

[40] Chen, J., Mu, W., Li, Y., and Li, D. “On the identifiability and interpretability of

Gaussian process models”. Advances in Neural Information Processing Systems 36

(2023), pp. 70267–70278.

51



CHAPTER 3

Type-2 diabetes biomarker discovery and risk assessment

through saliva DNA methylome

Abstract

The rising prevalence of type 2 diabetes (T2D) motivates innovative strategies to deepen

disease understanding and enhance diagnostic capabilities. This study measures diabetes-

specific epigenetic signals in saliva, establishing saliva DNA methylome as a promising

medium for T2D screening and study. By integrating comprehensive whole-genome bisulfite

sequencing (WGBS) and high-depth targeted bisulfite sequencing (TBS), we developed a

cost-efficient two-step approach to profiling DNA methylation at regions of interest. WGBS

analysis confirmed T2D-specific methylation signatures in saliva, revealing their enrichment

in immune and metabolic regulation pathways. TBS enabled accurate cell type deconvolution,

revealing minimal differences in cellular composition between diabetic and non-diabetic

samples, suggesting intrinsic molecular changes drive the observed methylation changes.

Epigenome-wide association studies further identified significant CpG sites, notably in the

ABCG1 region, with strong potential for T2D status prediction. These findings validate the

saliva DNA methylome as a scalable, non-invasive resources for T2D biomarker discovery,

advancing opportunities in T2D screening, risk assessment, and personalized medicine.

Key words: DNA methylation; Type-2 Diabetes; Non-invasive diagnostics; Whole-genome

bisulfite sequencing; Targeted bisulfite sequencing; Epigenome-wide association study;

52



3.1 Introduction

Diabetes mellitus, a multifaceted metabolic disorder characterized by hyperglycemia, continues

to pose a considerable and escalating global health challenge. According to the World Health

Organization and the Centers for Disease Control and Prevention, the prevalence of diabetes

has surged more than fourfold since 1980 [1], affecting approximately 529 million individuals

worldwide [2] and 38.4 million in the United States in 2021 [3, 4]. Notably, over 90% of these

cases are type 2 diabetes (T2D) [5]. This alarming rise (Figure 3.7) underscores the urgent

need for deeper disease mechanism understanding, innovative diagnostic tools, as well as

effective management strategies. Timely detection and intervention are crucial for managing

diabetes, preventing associated complications, and reducing the economic burden on patients

and healthcare systems.

Recent years have witnessed burgeoning interest in the role of epigenetics underlying

diabetes [6–8], focusing on how environmental factors and lifestyle choices can induce gene

expression changes without altering the DNA sequence. Among various epigenetic modifi-

cations, DNA methylation has garnered substantial attention for its robust and dynamic

nature, playing important roles in gene regulation, cell differentiation, development and

maintenance of homeostasis [9, 10]. Alterations in DNA methylation can contribute to disease

and are often reflective of disease states, making them informative for disease mechanism

research and diagnostic purposes [6, 11]. In the context of T2D, DNA methylation has been

implicated in its onset [12, 13], progression [14], and complications [15–17], with emerging

evidence highlighting its utility for diabetes risk prediction [18, 19]. Aberrant methylation

patterns are also found in key genes associated with glucose metabolism [20], insulin secretion

[21], insulin resistance [22], and inflammatory responses [23, 24]. These findings establish

DNA methylation changes as valuable biomarkers for T2D, emphasizing their potential in

elucidating disease mechanisms and developing novel diagnostic and treatment strategies.

Despite advancements in understanding DNA methylation changes in diabetes, most
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studies have focused on tissues such as blood, skeletal muscle, adipose tissue, and pancreas [6–

8, 25–29], while the potential of saliva DNA methylation as a non-invasive biomarker remains

underexplored. Saliva offers a particularly appealing option due to its ease of collection

and high patient compliance, making it ideal for disease screening and routine monitoring.

Recent studies have demonstrated a high similarity in methylation profiles between blood and

saliva [30, 31], suggesting that disease-associated epigenetic signals identified in blood may

also be detectable in saliva. This evidence forms the basis of our hypothesis that the saliva

methylome can serve as a valuable medium for identifying T2D biomarkers. If validated, the

saliva methylome profiles could facilitate T2D screening and monitoring, paving the road for

future applications in T2D diagnostics and management.

A major challenge in current methylation profiling is the substantial resource demand,

particularly with whole-genome bisulfite sequencing (WGBS), which remains prohibitively

expensive for large-scale studies and clinical applications. While methylation microarrays

offer a more affordable alternative and are widely used in DNA methylation research [32,

33], they capture only a limited, predetermined subset of CpG sites, potentially overlooking

critical regions relevant to the disease of interest. Recognizing that many CpG sites exhibit

minimal variation across cell types [34, 35] and non-cancer diseases [36], we identified an

opportunity to reduce costs by selectively measuring the informative regions. In this study,

we devised and implemented a cost-effective two-step strategy for T2D biomarker research

(Figure 3.1). First, pooled WGBS of saliva DNA was conducted to identify T2D-associated

signals, revealing 1,358 differentially methylated regions (DMRs) between diabetic and non-

diabetic groups. Building on these findings, we designed custom probes to enrich these

DMRs and other informative regions for targeted bisulfite sequencing (TBS). This integrated

approach synergizes the broad genomic coverage of WGBS with the high-depth profiling of

TBS, enabling precise DNA methylation measurements in genomic regions OF interest. By

focusing sequencing efforts on relevant targets, this approach achieves cost-efficiency and

makes large-scale study and routine screening more economically feasible.
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Our study validated the presence of T2D-associated signals in the saliva methylome

for the first time and provided key biological insights into the molecular basis of T2D.

WGBS analysis revealed that the identified DMRs were significantly enriched in immune

and metabolic pathways, consistent with the established pathophysiology of T2D [37]. TBS

provided a high-depth profiling of the targeted regions and allowed for accurate cell-type

deconvolution. This analysis revealed no major differences in cell type composition between

diabetic and non-diabetic samples, suggesting the observed methylation changes are likely

driven by intrinsic molecular alterations rather than shifts in cellular proportions. To further

investigate the molecular changes underlying T2D, an epigenome-wide association study

(EWAS) was conducted on TBS data and identified 12 significant CpG sites with the top hit

in the ABCG1 region, replicating and reinforcing findings from previous blood-based studies

[32, 38]. Collectively, these findings establish saliva as a robust and practical medium for T2D

research, enabling the precise identification of T2D-associated biomarkers. By integrating

WGBS and TBS, this approach provides a cost-efficient and scalable framework for large-scale

screening and monitoring. This study underscores the transformative potential of saliva-based

epigenetic approaches in advancing T2D research and diagnostic applications.

3.2 Methods

3.2.1 Sample collection and preparation

This study involved saliva samples collected as part of the Parkinson’s Environment and Genes

(PEG) study [39–41]. While PEG is a case-control study focused on Parkinson’s disease (PD),

the saliva samples utilized in this study were primarily unrelated to PD. Participants were

recruited from various sources across three counties in the Central Valley of California (Kern,

Fresno, and Tulare) during two study waves (2000-2007 and 2009-2015). Population controls

were enrolled from the same regions using Medicare lists and residential tax assessor records.

Demographic data, medical history, medication use, and lifestyle information were collected
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through standardized interviews. Saliva collection tubes were mailed to participants, who then

returned them via shipping or during in-person examinations. For this study, samples from

participants with and without type 2 diabetes were randomly selected from those available in

the PEG study, ensuring that the diabetic and non-diabetic groups were matched for age,

sex, and ethnicity (Supplementary Data 1). Two batches of 96-well plates were prepared: the

first in 2020 (Diabetes n=48, Non-diabetic n=48) for Whole Genome Bisulfite Sequencing

(WGBS), probe design, and a pilot Targeted Bisulfite Sequencing (TBS) study, and the

second in 2022 (Diabetes n=42, Non-diabetic n=54) for an expanded TBS study. The batch

was included as a covariate in the downstream analyses. Each individual’s saliva samples

were sent to the UCLA Neuroscience Genomics Core (UNGC) for DNA extraction. Typically,

2.5 mL to 4 mL of saliva samples were collected using the Oragene saliva collection kit,

followed by the standard manufacturer protocol of the Qiagen Puregene DNA extraction kit.

After purification and extraction, the DNA concentration was measured using a NanoDrop

8000 spectrophotometer, and the extracted DNA samples were stored at -20°C before library

preparation.

3.2.2 Whole genome bisulfite sequencing (WGBS)

To optimize cost efficiency, the extracted saliva DNA samples from the first batch were

aggregated into four groups, matched by age and sex, as detailed in Supplementary Data

1. Each grouped DNA was pooled and subjected to whole genome bisulfite sequencing

(WGBS) following established protocols [42]. Specifically, one microgram of purified DNA

was sonicated using the Bioruptor Pico (Diagenode) for 15 cycles of 30 seconds ON and 90

seconds OFF, targeting a fragment size of 200-300 bp. The NEB Next Ultra II DNA kit

(New England Biolabs) was used for subsequent end-repair, A-tailing, and ligation of pre-

methylated unique-dual indexed adapters (Integrated DNA Technologies, custom synthesis).

Bisulfite conversion was performed with the EZ DNA Methylation-Gold kit (Zymo Research).

Final library amplification (12 PCR cycles) was conducted using KAPA HiFi U+ polymerase

56



(Roche Sequencing) and IDT xGen Primers. Library quality was assessed using the D1000

Assay on a 4200 Agilent TapeStation, and concentrations were quantified with the Qubit

dsDNA BR Assay (Life Technologies). Sequencing was conducted on a NovaSeq 6000 platform

(S4 lane), generating paired end reads of 150 base pairs.

3.2.3 WGBS data processing and DMR analysis

The raw sequencing reads underwent quality control using FastQC [43], followed by adapter

and low-quality base trimming with fastp [44]. The trimmed reads were aligned to the

reference genome (hg38) using BSBolt [45], with PCR duplicates marked with samtools [46].

Methylation levels of CpG sites were quantified for each sample, then aggregated into a

methylation matrix. For downstream analysis, only sites with at least five counts in all four

pooled samples were retained. The methylation matrix is available in Supplementary Data 2.

Differentially methylated region (DMR) analysis of the WGBS data was conducted using

metilene [47] (version 0.2-8), with each candidate region required to contain a minimum of

five CpG sites. In total, 162,833 genomic regions were analyzed. The statistical significance

of methylation differences between diabetic and non-diabetic groups was evaluated using

the Mann-Whitney U-test and the 2D Kolmogorov-Smirnov test for each region. Regions

were considered significantly differentially methylated if they exhibited p-values below 0.01

for both tests and an absolute methylation difference exceeding 0.2 between the two groups.

Supplementary Data 3 provides a comprehensive list of all candidate regions and identified

DMRs, including their genomic coordinates, absolute methylation differences, and statistical

significance levels.

3.2.4 Genomic region enrichment analysis and probe design

Following the identification of differentially methylated regions (DMRs) between diabetes

and non-diabetes WGBS data, we conducted a genomic region enrichment analysis using the

R package rGREAT [48] (version 2.4.0) in online mode. This analysis compared the DMRs
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against the total examined genomic regions as background, revealing significant enrichment

patterns and biological relevance of the observed methylation changes. The identified DMRs

were later submitted to Integrated DNA Technologies (IDT, https://www.idtdna.com/) for

probe design, resulting in 937 custom probes targeting these regions. To further understand

the regulatory context, we performed motif enrichment analysis using HOMER [49] (version

4.11), identifying enriched transcription factor binding sites (TFBS) for the probe-enriched

regions.

In addition to the newly designed probes, we also incorporated previously designed probes

targeting regions of interest from earlier studies [50, 51]. These probes were selected based

on loci identified in public epigenome-wide association studies (EWAS) related to aging, cell

types, and metabolic disorders. Due to an update in the probe set, there are slight differences

between the probes used in batch 1 and batch 2, each containing a small set of extended

probes labeled as ’batch1_extended’ and ’batch2_extended.’ The probes consistently used

throughout the TBS study are collectively labeled as the ’Total Panel’ and referred to as

’total probes’ throughout the manuscript. The complete panel of probes, including both the

Total Panel and extended probes, is detailed in Supplemental Data 4, with their sequences

and target regions provided.

3.2.5 Targeted bisulfite sequencing (TBS)

For targeted bisulfite sequencing (TBS), 250 to 500 ng of purified gDNA from each sample was

fragmented, and libraries were constructed following the same procedure as described in the

WGBS protocol. Groups of 16 libraries, each with a unique dual index adapter, were pooled

together, concentrated via SpeedVac, and subjected to targeted enrichment using custom

5’-biotinylated probes (IDT, xGen Custom Hybridization probe panel) (Supplemental Data 4).

Enrichments were performed with the xGen Hybridization Capture kit (IDT), following the

manufacturer’s instructions, including overnight hybridization at 65°C. Bisulfite conversion of

captured DNA was conducted using the EZ Methylation Gold kit (Zymo Research). Final
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PCR amplification employed KAPA HiFi Uracil+ (Roche) with the following conditions:

initial denaturation at 98°C for 2 minutes, followed by 16 cycles of 98°C for 20 seconds, 60°C

for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C for 5 minutes. PCR

products were purified using SPRI beads, and library quality control was conducted with the

High-Sensitivity D1000 Assay on the 4200 Agilent TapeStation. Pools of 96 libraries were

sequenced on a NovaSeq 6000 with paired-end 150-base reads.

3.2.6 TBS data processing and quality control

The raw sequencing reads of TBS data underwent a standardized preprocessing pipeline,

including quality control, trimming, alignment, PCR duplicate marking, and methylation

calling, as outlined in the WGBS data processing protocol. The methylation level of each

CpG site is computed as follows:

mi =
# methylated read count at site i

# total read count at site i
(3.1)

To ensure data quality, samples with fewer than 2.5 million unique reads post-PCR

deduplication or identified as outliers through PCA on the methylation level matrix were

excluded from further analysis. After the data quality control, a total of 182 samples (Diabetic

n=87, Non-diabetic n=95) were retained for further investigation.

We also performed quality control on the features. For epigenome-wide association studies,

we focused on count data, retaining only those sites with read counts exceeding 10 in at least

80% of the samples. For analyses focused on methylation levels, such as cell deconvolution or

machine learning model development, we retained only those sites that had at least 20 counts

in at least 80% of the samples to ensure a reliable methylation level estimate. Missing values

in the methylation level matrix were imputed using the KNN algorithm (k=5) implemented

by R package impute [52] (version 1.70.0).
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3.2.7 Cell type deconvolution

To ensure deconvolution accuracy, we first analyzed the cell composition in saliva using

a single-cell RNA-seq dataset (GSE158055) [53] from the CELLxGENE Discover Data

Portal (https://cellxgene.cziscience.com/), confirmed the predominance of epithelial

and immune cells (Figure 3.12A-B). Building on this confirmation, we then compiled a

comprehensive cell type methylation reference for deconvolution by integrating Whole Genome

Bisulfite Sequencing (WGBS) profiles from the DNA methylation atlas (GSE186458) [54].

This reference encompasses epithelial and key immune cell types—granulocytes, monocytes,

NK cells, B cells, and T cells (CD4, CD8, and naïve)—with detailed accession IDs and

labels provided in Supplementary Data 5. Cell type-specific differentially methylated regions

(DMRs) were identified by comparing each cell type against all others using metilene [47]

(version 0.2-8), with parameters aligned to prior DMR analyses. Regions with a methylation

difference exceeding 0.3 and an adjusted p-value below 0.05 (Benjamini-Hochberg correction)

were extracted, and CpG sites in these regions were used to create the cell type methylation

signature matrix. The resulting matrix, which serves as a robust reference for deconvolution,

is available in Supplementary Data 6.

Given the limited number of CpG sites captured by TBS data, we further validated

the deconvolution accuracy on TBS data using synthetic DNA methylation profiles. We

generated 100 in-silico samples by mixing DNA methylation profiles of cell types with known

proportions, with random gaussian noise (mean = 0, standard deviation = 0.05) added to

mimic the variability in methylation levels due to sequencing noise. These synthetic datasets

were then filtered to include only the CpG sites presented in the TBS methylation level

matrix. Deconvolution was performed using the Houseman method [55], a well-established

NNLS (non-negative least squares) approach for estimating cell-type compositions from bulk

methylation data. The deconvolution accuracy was assessed by comparing the estimated

and true cell proportions using key metrics, including R-squared and root mean square error

(RMSE), confirming the precision and reliability of the method for TBS sites. This validated
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framework was then applied to deconvolve cell-type compositions in bulk saliva samples.

Detailed cell proportions for each sample are provided in Supplementary Data 7.

3.2.8 Epigenome-wide association study

To prioritize the risk CpG sites associated with T2D, we conducted an epigenome-wide

association study (EWAS) using the methylation read counts data using R package DSS

[56]. Specifically, the DSS package utilized a beta-binomial modeling strategy to model the

methylated counts Yi based on the total counts Ni for site i by

Yi ∼ binom(Ni, pi) (3.2)

pi ∼ beta(πi, ϕi) (3.3)

where πi, ϕi are the mean and dispersion parameter for site i. The mean parameter was

modeled as g(πi) =
∑J

j=1Xjβj where g(·) is the link function and Xj for j = 1, . . . , J are the

covariates (including the variable of interest and other covariates). By testing the coefficient

βj = 0 using the F-test, the significance level of association between diabetes status and

methylation of site i can be assessed. For our analysis, we used the methylation count matrix

for the EWAS analysis, including age, sex, ethnicity, batch, and cell proportions as covariates,

and tested whether a site is associated with diabetes. A Manhattan plot is used to visualize

the testing results. Genes within 2kb window of the most prominent sites that passed the

with suggestive p-value (10−4) is annotated on to the plot. Detailed methylation count matrix

and test result are available in Supplementary Data 2.

3.2.9 Data availability

The raw data and processed supplementary data can be accessed in [57]
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3.3 Results

3.3.1 WGBS identifies DMRs associated with diabetes in saliva

To investigate DNA methylation changes associated with T2D while optimizing sequencing

efficiency, we implemented a carefully designed sample pooling strategy followed by Whole

Genome Bisulfite Sequencing (WGBS). In this study, we pooled 96 saliva samples with

matched demographical attributes into four groups: Diabetic Male, Diabetic Female, Non-

diabetic Male, and Non-diabetic Female, with a balanced sample size per group. This pooling

approach ensured adequate representation of each group and enabled robust comparisons

across groups at a reduced cost. The WGBS data were then processed and aligned to

the human reference genome (hg38) with CpG methylation levels quantified. Downstream

differential methylation region (DMR) analysis between diabetic and non-diabetic groups

revealed 1358 potential DMRs out of 162833 total regions ( 0.8%), visualized using a volcano

plot (Figure 3.2A) and a heatmap (Figure 3.2B). These findings highlight significant epigenetic

variations (both hypo- and hyper-methylation) between diabetic and non-diabetic individuals.

Genomic region enrichment analysis was conducted to elucidate the biological relevance

of the identified DMRs. The results exhibited substantial enrichment in genomic regions

associated with metabolic regulation and immune response pathways (Figure 3.2C, Figure 3.8),

underscoring their potential relevance in diabetes pathogenesis. Notably, several key pathways,

such as leukocyte-mediated immunity and neutrophil activation, were significantly enriched,

aligning with the current understanding of diabetes as a multifactorial disease involving

intricate interactions between metabolic dysfunction and immune responses [37]. Based on

the identified DMRs, we designed a set of probes (n=937) for targeted bisulfite sequencing.

Motif analysis of these probe-enriched regions revealed seven significant transcription factor

binding sites (p-value<0.01, adjusted p-value<0.1, Figure 3.2D), which are associated with

T2D [58] and related traits, such as glycolysis [59] and immune response [60]. This association

underscores the functional relevance of the identified DMRs and enriched regions with diabetes
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pathophysiology. Taken together, the WGBS analysis confirmed the presence of diabetes-

specific methylation signals in saliva and facilitated the screening of genomic regions enriching

these signals, paving the way for efficient profiling through Targeted Bisulfite Sequencing.

3.3.2 TBS enriches target regions with high sequencing depth

To enhance efficiency in large-scale epigenetic profiling, we implemented targeted bisulfite

sequencing (TBS) using a curated set of probes. This set includes probes designed to enrich

the identified DMRs from WGBS analysis, as well as additional probes targeting regions

associated with phenotypes such as aging, cell type, BMI and metabolic disorders [29, 50, 51].

A total of 8154 probes were used throughout the targeted bisulfite sequencing study, capturing

∼1M bases of the genome. Genomic coordinate overlap analysis with the existing EWAS

database [61, 62] revealed that more than 40% of the probes overlap with known EWAS sites

associated with diabetes and related traits, including BMI, obesity, fasting glucose levels,

insulin levels and resistance (Figure 3.3A), ensuring the capture of the diabetes-informative

methylation regions.

With the curated probe set, we conducted targeted bisulfite sequencing on two cohorts

(section 3.2), aiming for 10 million reads per sample. Our results confirmed that TBS can

effectively capture the targeted genomic regions with high depth (Figure 3.3B). Of note, the

enriched regions exhibited an average of 1300-fold higher depth than non-enriched background

regions (Figure 3.3C, Figure 3.9), and over 80% of the CpG sites within the targeted regions

had depth greater than 10 counts (Figure 3.3D). These findings demonstrate the remarkable

efficiency of TBS in profiling targeted genomic regions with high depth while achieving

cost efficiency. The successful capture of informative regions establishes TBS as a scalable

solution for high-throughput epigenetic studies. Its high-depth coverage of CpG sites within

targeted regions enables accurate and reliable DNA methylation quantification, ensuring

robust statistical power for detecting differential signals in downstream analyses.
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3.3.3 Cell type deconvolution reveals minimal T2D-related compo-

sitional changes in saliva

Both the WGBS and TBS technologies are applied to bulk saliva samples, which obscures the

specific cell type abundance associated with T2D in saliva. To address this, we first assessed

whether the TBS sites contain cell type information. We downloaded a WGBS dataset

containing a comprehensive methylation atlas of normal human cell types [54] and identified

cell type-specific regions. By overlapping with the TBS sites, we found a significant proportion

of the TBS sites fell within these cell type-specific regions, sufficiently distinguishing the

different cell types in saliva tissue (Figure 3.10). To further validate the utility of these

sites for cell type deconvolution, we generated in-silico mixtures of DNA methylation profiles

with known cell type proportions. Using these simulated datasets, we performed cell type

deconvolution analysis using the Houseman method [55] (Figure 3.11A), achieving a root

mean square error (RMSE) of less than 0.01 and an R-squared value approaching to 1

(Figure 3.11B). Repeated experiments consistently showed high accuracy (Figure 3.11C),

confirming that the TBS sites support accurate cell-type deconvolution.

Following this validation, we applied the deconvolution method to bulk saliva TBS data

to investigate cell type composition in our samples. The analysis revealed that monocytes,

granulocytes, and epithelial cells were the most abundant cell types in saliva, consistent

with previous literature and our reanalysis of recent single-cell RNA-seq data of human

sputum tissue [53] (Figure 3.12). Comparing cell type proportions between diabetic and

non-diabetic samples, we observed no significant changes in major cell types (Figure 3.4),

except for a marginally significant difference in naïve T cells. However, this association was

not significant after p-value adjustments. Our analysis also revealed that cell type proportions

are highly correlated with the top Principal Components (PCs) of the DNA methylation

matrix (Figure 3.13), emphasizing the dominant role of cell proportions in the epigenetic

variability [33] and echoing the importance of including these variabilities in EWAS analysis
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to account for cell type heterogeneity [63].

In conclusion, our analysis demonstrated that TBS sites capture cell-type information and

enable accurate cell-type deconvolution. Notably, the similar cell type proportions observed

between diabetic and non-diabetic groups suggest that diabetes-related epigenetic changes in

saliva are driven by intrinsic molecular alterations rather than shifts in cell composition.

3.3.4 EWAS reveals differential DNA methylation associated with

T2D status

Another distinct advantage of TBS is its ability to elucidate the epigenetic mechanisms

underlying diabetes at the molecular level, providing valuable insights into disease pathways

and potential therapeutic targets. To demonstrate this potential, we conducted an epigenome-

wide association study (EWAS) on the TBS data. In this analysis, we accounted for key

covariates such as age, sex, ethnicity, study batches, and cell-type proportions, to mitigate the

influence of confounding factors and identified CpG sites associated with diabetic states. The

EWAS results, visualized with a Manhattan plot (Figure 3.5A) and a QQ plot (Figure 3.14),

revealed 12 CpG sites significantly associated with T2D, with 7 of these sites near genes

previously implicated in diabetes pathogenesis, such as ABCG1 [32], LDLRAD4 [64], and

TYK2 [65]. Figure 3.5B shows methylation level differences at the top CpG sites between

diabetic and non-diabetic groups after adjusting for covariates.

Notably, the strongest signal was observed in the ABCG1 gene region, corroborating a

recent meta-analysis of blood-based EWAS [32] that identified ABCG1 as a top hit across five

cohorts with over 3,000 samples. ABCG1 plays a crucial role in regulating lipid metabolism

and cholesterol efflux, which are essential for maintaining cellular lipid homeostasis [66].

The dysfunction of ABCG1 is particularly detrimental in the context of diabetes, where

impaired cholesterol efflux can exacerbate insulin resistance and promote atherosclerosis [67],

a common complication of the disease. Furthermore, the accumulation of lipids can result in

cellular stress and apoptosis [68], which in turn triggers an immune response and leads to
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chronic inflammation, further accelerating diabetes progression and increasing cardiovascular

disease risk. The role of ABCG1 in lipid regulation and its broader impact on inflammation

and cell viability highlight its potential as a therapeutic target in diabetes management.

Our EWAS findings, particularly the significant signal at the ABCG1 region, highlight

the gene’s critical role in diabetes. These results validate the utility of saliva-based DNA

methylation analysis in diabetes research and emphasize the potential of these epigenetic

markers as biomarkers for diagnosing diabetes, predicting risk, and informing the development

of targeted therapeutic strategies.

3.3.5 Predictive performance of individual methylation sites for

T2D status

To evaluate the potential of DNA methylation as a biomarker for diabetes diagnosis, we

analyzed the predictive performance of individual methylation sites using ROC analysis.

Figure 3.6 illustrates the ROC curves of all tested sites, with chr19:10380958 (TYK2 ) and

chr21:42236481 (ABCG1 ) achieving AUC values of 0.683 and 0.681, respectively, indicating

moderate predictive ability. The shaded region, representing the 95% quantile range of ROC

curves across all sites, highlights the variability in predictive performance. These results

demonstrate that while some individual sites show moderate performance, most exhibit weak

signals, underscoring the importance of refining site selection. This validates the need for

a targeted sequencing strategy, as it can effectively enrich informative loci, improving the

signal-to-noise ratio and enabling precise and efficient methylation profiling.

Additionally, although the predictive power of individual loci is limited, combining

methylation profiles within multivariate or ensemble frameworks offers a promising path

forward. Future model development should focus on integrating information across multiple

loci to enhance predictive accuracy and robustness. These strategies have the potential to yield

reliable, clinically actionable tools for diabetes diagnosis and risk stratification, underscoring

the transformative potential of the saliva DNA methylome as a scalable, non-invasive approach

66



for advancing T2D biomarker discovery and improving disease management.

3.4 Discussion

The rising prevalence of type 2 diabetes (T2D) underscores the need for innovative approaches

that extend beyond traditional diagnostics to explore the molecular mechanisms underpinning

the disease. Identifying reliable biomarkers and investigating epigenetic modifications, such as

DNA methylation, can deepen our understanding of T2D pathogenesis, enable early detection,

and inform the development of targeted therapeutic strategies. To address the need for

accessible and noninvasive approaches, this study evaluated the potential of saliva DNA

methylome for T2D biomarker discovery and diagnostic applications, offering insights into

the molecular and cellular dynamics underlying the disease.

One key challenge in methylation profiling is the high cost of obtaining informative and

accurate measurements. Whole-genome bisulfite sequencing (WGBS) provides comprehensive

coverage but requires high sequencing depth, making it prohibitively expensive for large-scale

studies. Methylation arrays, while more affordable, capture only a fixed, small subset of

CpG sites, potentially overlooking critical variations relevant to disease. To overcome these

limitations, we developed a cost-efficient two-step strategy, combining WGBS to identify key

regions with targeted bisulfite sequencing (TBS) for high-depth profiling. This approach

significantly reduces costs while maintaining precision, making it suitable for broader and

cohort-level applications.

Using this combined strategy, we obtained compelling evidence supporting the use of saliva

DNA methylation for T2D biomarker discovery and risk assessment. Through WGBS, we

identified differentially methylated regions (DMRs) associated with T2D, particularly enriched

in pathways related to immune response and metabolic regulation. These results align with

existing blood-based studies [37], confirming that saliva, like blood, harbors diabetes-specific

epigenetic signatures. The subsequent application of targeted bisulfite sequencing (TBS)

enabled precise quantification of DNA methylation in these key regions at the cohort scale.
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Importantly, cell type deconvolution of the TBS data revealed no significant differences in

cell proportions between diabetic and non-diabetic groups, suggesting that the observed

methylation changes are primarily intrinsic rather than driven by shifts in cell composition.

Further supporting these findings, an epigenome-wide association study (EWAS) conducted

on the TBS data identified significant CpG sites, with the top hit in the ABCG1 gene region,

consistent with prior blood-based findings [32]. Collectively, our findings provide the first

validation of T2D-specific methylation signals in saliva, establishing a novel paradigm for

non-invasive diabetes screening and offering valuable insights into the epigenetic basis of this

prevalent disease.

Despite these promising findings, our study has limitations that warrant further investiga-

tion. The relatively small sample size may have reduced the statistical power of our findings,

potentially leading to missing important epigenetic signals. Expanding the sample size and

including a more diverse population would enhance the robustness and generalizability of the

results. Additionally, many diabetic participants were under good glycemic control, which

may have attenuated the strength of detectable epigenetic changes. Future studies should

include individuals at various stages of disease progression to capture a broader range of

epigenetic variations. While our probe panel targeted diabetes-related sites, it could be further

optimized by integrating prior knowledge to capture a wider range of diabetes-associated

signals, particularly regions near genes involved in insulin signaling, glucose metabolism, and

related pathways. Additionally, advanced machine learning approaches, such as ensemble

and contrastive learning [69, 70], hold promise for enhancing diagnostic model performance

by effectively integrating subtle signals linked to different disease states. Addressing these

limitations through larger cohorts, refined probe designs, and advanced modeling techniques

will be crucial for maximizing the potential of saliva DNA methylation in diabetes research

and diagnostics.

Looking ahead, further research could greatly enhance the utility and impact of our

approach. Advanced barcoding and multiplexing techniques, such as Time-Seq [71], could
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further reduce costs, making this method even more accessible for large-scale studies and

routine clinical applications. The non-invasive nature of saliva collection, combined with cost-

effective methylation profiling, offers a practical and scalable solution for diabetes screening

and longitudinal monitoring. Conducting longitudinal studies will be critical to establish

causal relationships between DNA methylation changes and T2D progression, providing deeper

insights into disease mechanisms and enabling timely interventions. Ultimately, integrating

saliva DNA methylation profiling into clinical practice has the potential to revolutionize

diabetes diagnostics and monitoring, facilitating earlier detection, personalized treatment,

and more effective disease management.

In conclusion, this proof-of-concept study validates diabetes-specific epigenetic signals in

saliva, establishing saliva DNA methylation as a promising biomarker source for non-invasive

T2D research and screening. By employing an innovative sequencing strategy that enhances

precision while reducing costs, we have made epigenetic profiling feasible for large-scale studies

and clinical applications. While further research with larger, more diverse cohorts is needed,

this approach lays the groundwork for transforming diabetes diagnostics and monitoring,

paving the way for more personalized and accessible care.
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3.6 Tables and figures

Table 3.1: Characteristics of the study population.

Diabetes No (N=95) Yes (N=87) p value
Age (years), mean ± SD 67.505 9.500 67.816 (8.165) 0.814
Sex (male), n (%) 54 (56.8%) 52 (59.8%) 0.689
Ethnicity (White), n (%) 73 (76.8%) 63 (72.4%) 0.492
Batch (1), n (%) 48 (50.5%) 47 (54.0%) 0.637
Parkinson Disease, n (%) 72 (75.8%) 64 (73.6%) 0.730
Smoker, n (%) 49 (52.1%) 41 (47.1%) 0.501

70



Saliva collection

Methylation level

B
B

B B

B B

c

c

T

UBisulfite
conversion

1 10Nucleotide

    G   T  C   A   T   G   A   C   T   G

DNA extraction
Fragmentation

Probe enrichment

Whole genome bisulfite sequencing
Pooled 
WGBS

Pooled 
WGBS

DMR detection
Probe 
synthesis

Targeted bisulfite sequencing

 B
 B

 B
 B

 B
 B

Read alignment 

Sequencing

BAM
File

DiabeticNon-diabetic

B. Computational analysis

A. Experimental procedure
Non-diabetic cohort

...

Diabetic cohort

...

Analysis

Sequencing 
reads

Methylation 
quantification

Preprocessing

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-lo
g 1

0(
P)

Chromosome

Mi = Ci / (Ci + Ti)

Cell type proportions (%)
0 10 15 20 255

Probes

Diabetes predictionCell deconvolution

Epigenome-wide association study

Figure 3.1: Study design for saliva DNA methylome analysis in Type 2 diabetes. (A) Experi-
mental procedure. Participants’ saliva samples were collected, followed by DNA extraction
and fragmentation. Pooled samples from non-diabetic and diabetic cohorts were then sub-
jected to whole-genome bisulfite sequencing (WGBS) to identify differentially methylated
regions (DMRs) associated with T2D. Probes targeting these DMRs were synthesized and
used for targeted region enrichment, followed by bisulfite conversion and sequencing in high-
efficiency Targeted Bisulfite Sequencing (TBS). (B) Computational Analysis. Sequencing
reads underwent preprocessing and alignment, with methylation levels quantified as the ratio
of methylated cytosine (C) counts to the total counts at each CpG site. The methylation data
were used for downstream analysis, including cell type deconvolution, an epigenome-wide
association study, and diabetes status prediction.

71



granulocyte activation
leukocyte degranulation

neutrophil activation
response to stimulus
biosynthetic process

myeloid leukocyte mediated immunity
neutrophil mediated immunity

neutrophil activation involved in immune response
neutrophil degranulation

leukocyte mediated immunity
immune effector process

cellular response to stimulus
regulation of primary metabolic process
regulation of cellular metabolic process

macromolecule metabolic process
regulation of macromolecule metabolic process

regulation of metabolic process
cellular metabolic process

metabolic process
regulation of biological process

primary metabolic process
organic substance metabolic process

regulation of cellular process
biological regulation

cellular process

0 1 2 3 4
Log10 value

Category Metabolic Immune Others

0

2

4

6

8

methylation

Lo
g 1

0
p

va
lu

e
Hypo-methylation Hyper-methylation

NS methylation p value p value & methylation

h h

0

A B

C
Rank Motif Name %Target / 

%Background p-value Adjusted 
p-value Phenotype

1 Jun-AP1(bZIP)/K562-cJun-
ChIP-Seq(GSE31477)/Homer 2.13% / 0.77% 1e-4 0.0249 Immune 

response

2 Fosl2(bZIP)/3T3L1-Fosl2-ChIP-
Seq(GSE56872)/Homer 2.56% / 1.10% 1e-3 0.0380 Immune 

response

3 Npas4(bHLH)/Neuron-Npas4-
ChIP-Seq(GSE127793)/Homer 8.96% / 6.02% 1e-3 0.0818 T2D

4
Lhx1(Homeobox)/EmbryoCarcin
oma-Lhx1-ChIP-
Seq(GSE70957)/Homer

11.74% / 8.62% 1e-3 0.0818 Glucose 
homeostasis

5 AP-1(bZIP)/ThioMac-PU.1-
ChIP-Seq(GSE21512)/Homer 5.34% / 3.30% 1e-3 0.0818 Immune 

response

6
LHX9(Homeobox)/Hct116-
LHX9.V5-ChIP-
Seq(GSE116822)/Homer

13.23% / 
10.07% 1e-2 0.0832 Glycolysis

7 Lhx2(Homeobox)/HFSC-Lhx2-
ChIP-Seq(GSE48068)/Homer 10.57% / 7.80% 1e-2 0.0929 T2D

C
T
A
G

T
C
G
A

ACGTACT
G

CGTAT
A
G
C

CGA
T

GTA
C

CGTAA
G
C
T

G
A
T
C

G
T
A
C

C
T
A
G

T
C
G
A

C
G
A
T

A
C
T
G

C
G
T
A
T
A
C
G

A
G
C
T

T
G
A
C

G
C
T
A

A
C
G
T

G
A
T
C

T
A
G
C

T
C
A
G

G
C
T
A
T
C
A
G

C
A
G
T

TG
A
C

GT
C
A

AG
T
C

A
T
C
G

T
G
C
A

G
T
A
C

C
A
G
T

G
A
T
C

C
G
T
A

C
A
T
G

AG
T
C

GA
C
T

TG
C
A

CGTAACG
T

AC
G
T

CT
G
A
T
C
A
G

T
C
G
A

ACGTCA
T
G

GCT
AT

A
G
C

CGA
T

GT
A
C

GCT
AA

C
G
T

A
T
G
C

A
T
G
C

T
A
C
G

A
G
T
C

GA
C
T

T
G
C
A

C
T
G
A

G
A
C
T

A
C
G
T

CT
G
A
T
C
A
G

AGC
T

GTC
A

CGTAACGTACG
T

CTG
A
TC
A
G

A
T
G
C

D

Figure 3.2: Differential methylation region and genomic region enrichment analysis for saliva
WGBS data. (A) Volcano plot showing differential methylation region (DMR) analysis results,
comparing diabetic group to non-diabetic controls. The x-axis represents the difference in
methylation levels (∆methylation), while the y-axis displays the -log10 p-values. Regions
where both ∆methylation and the p-value exceed their respective thresholds are highlighted
in red, representing hypo-methylation (left) and hyper-methylation (right). Regions where
only the ∆methylation or p-value passe their corresponding threshold are shown in green and
blue, respectively. Non-significant regions are depicted in gray. (B) Hierarchical clustering
heatmap of DMRs’ methylation levels across diabetic and non-diabetic groups. The color scale
represents z-scores, with hypo-methylated regions indicated in blue and hyper-methylated
regions in red, highlighting differential methylation between the two groups. (C) Bar plot
showing the genomic region enrichment analysis results of DMRs. The x-axis represents
the -log10 adjusted p-value of enrichment, and the y-axis lists the enriched Gene Ontology
(GO) terms of biological processes. Metabolic-related processes are highlighted in green,
immune-related processes in orange, and others in gray, with notable enrichment in pathways
related to cellular metabolic and immune responses. (D) Table summarizing the significantly
enriched transcription factor binding sites. Each motif was ranked by significance, and the
percentage of target versus background regions, p-value, adjusted p-value, and associated
phenotype were provided.
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Figure 3.3: TBS captures desired region with high depth with reduced cost. (A) Pie chart
illustrating the composition of the probe set (n=8154), highlighting its overlap with the
differentially methylated regions (DMRs) identified in WGBS data and the public EWAS
database. The probes are categorized as overlapping with DMR & EWAS (blue), DMR
only (red), EWAS only (yellow), and other regions (gray). (B) Coverage plot showcasing an
example of read coverage across a targeted genomic region (chr21:42,235,500-42,236,800) in a
sample’s TBS data. The x-axis represents the genomic coordinates, and the y-axis shows the
depth at each locus. Both Watson and Crick strands are displayed, with the targeted probe
region highlighted in blue. The plus signs indicate probes designed on the Watson strand
to capture the Crick strand. (C) Density plots showing the depth distribution of probes
targeting diabetes DMR regions (n=937) and the total probe set (n=8154) across two batch
samples. The red dashed line indicates the average depth of the enriched regions, with grey
dashed lines indicating the non-enriched background regions. (D) Box plots displaying the
percentage of CpG sites within the probe regions that achieve a sequencing depth greater
than 10x. The plots demonstrate the efficiency of TBS in achieving high sequencing depth
for the targeted regions across probe sets and batches.
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Figure 3.4: Differential cell type proportions between diabetic and non-diabetic samples.
Violin plots show the difference in cell type proportions between diabetic and non-diabetic
samples for each cell type after adjusting other covariates (age, sex, ethnicity, and batch).
Wilcoxon p-values are annotated in each subplot, revealing no significant difference in
cell proportions between the two groups, except a marginally significance for naïve T cell
(p=0.022).
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Figure 3.5: EWAS analysis identifies methylation sites associated with diabetes status. (A)
Manhattan plot depicting the epigenome-wide association between DNA methylation levels
and T2D status. Each dot represents a CpG site, with the -log10(p-value) plotted against
its chromosomal position. The horizontal dashed line indicates the suggestive significance
threshold (10−4). Genes located within a 2kb window of the top CpG sites are annotated,
with established diabetes-related genes highlighted in red, such as ABCG1, LDLRAD4, TYK2,
etc. (B) Boxplots illustrating the methylation levels (adjusted for covariates) at selected
top CpG sites. Each plot panel compares the methylation levels between diabetic (yellow)
and non-diabetic (blue) samples at the specific CpG site, highlighting their potential role in
diabetes pathogenesis.
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Figure 3.6: ROC curve for diabetes status classification using individual methylation sites.
This ROC curve highlights the classification performance of two key methylation sites,
chr19:10380958 and chr21:42236481, in predicting T2D status, with respective AUC values of
0.683 and 0.681. The shaded region denotes the 95% range of predictive performance across
all other analyzed methylation sites, providing context for the highlighted sites’ relative
performance, with the dashed diagonal line representing AUC 0.5 as a reference
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3.7 Supplementary materials

Figure 3.7: The increasing prevalence of diabetes across U.S. counties from 2004 to 2020.
Choropleth map displaying the escalating diabetes prevalence in U.S. counties from 2004
(A), through 2012 (B), to 2020 (C), which underscores the growing public health challenge
and the need for targeted interventions. The color gradient indicates the percentage of
the population with diabetes, with darker colors representing increasing prevalence, as
shown in the accompanying legend (4% to 20%). County-level diabetes prevalence data
was obtained from the United States Diabetes Surveillance System (https://gis.cdc.gov/
grasp/diabetes/DiabetesAtlas.html).
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Figure 3.8: GO pathway enrichment for DMR regions in WGBS analysis. Genomic region
enrichment analysis for differentially methylated regions (DMRs) identified in the Whole
Genome Bisulfite Sequencing (WGBS) data. The bar plot presents enriched GO terms
categorized by Biological Process (BP), Cellular Component (CC), and Molecular Function
(MF) ontologies, with the x-axis showing the -log10 of the adjusted p-values. Only GO
terms with an adjusted p-value below 0.05 are displayed. The analysis highlights significant
associations of DMRs with various biological processes, particularly those related to metabolic
functions and immune responses.
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Figure 3.9: Depth distribution of targeted regions across probe sets in TBS. Density plots
illustrate the depth distributions of different probe sets across two sample batches (upper panel:
batch1, lower panel, batch2). Each subplot corresponds to a specific probe group—Diabetes,
EPIC, EWAS, Opool, and SNPs—with the number of probes indicated in parentheses. Red
dashed lines indicate the average depth for each probe set, with grey lines showing non-
enriched background regions, underscoring the high efficiency of target enrichment achieved
by targeted bisulfite sequencing (TBS).
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Figure 3.10: Cell-type specific methylation signatures at TBS sites. Heatmap showing the
methylation profiles of various cell types, restricted to CpG sites that overlap with targeted
bisulfite sequencing (TBS) data. Each column represents a sample from a specific cell type,
with cell types indicated by the color bar at the top: B cells, epithelial cells, granulocytes,
monocytes, NK cells, cd4+, cd8+, and naive T cells. The z-scores reflect relative methylation
levels, with red indicating hypermethylation and blue indicating hypomethylation. The
distinct clustering patterns in the heatmap confirm that TBS sites retain sufficient cell type
identity information, allowing for a clear distinction between cell types. This demonstrates
the efficacy of TBS in capturing cell type-specific epigenetic signatures, reinforcing its utility
for studying cellular heterogeneity.
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Figure 3.11: Simulated validation of TBS sites for accurate cell deconvolution. Simulation of cell
deconvolution using targeted bisulfite sequencing (TBS) sites to confirm their support for accurate
cell type estimation. (A) Schematic of the simulation workflow for cell deconvolution. The process
begins with a true cell type proportion matrix, C, and a reference cell type methylation matrix,
R, which are combined with random errors, E, to generate a simulated methylation matrix, M.
This matrix is then refined to include only the sites overlapping with TBS data, creating a reduced
methylation matrix, M’. A deconvolution algorithm is subsequently applied to estimate cell type
proportions, C’, from the reduced methylation matrix. The accuracy of the deconvolution is then
evaluated by comparing these estimated proportions with the true proportions.
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Figure 3.11: (B) Scatter plots showing the deconvolution accuracy across different cell types in
a single simulated exaperiment, demonstrating high deconvolution accuracy. (C) Results from
repeating the simulation 100 times, consistently showing high R2 values and low RMSE across all cell
types, confirming that TBS sites robustly support accurate cell type deconvolution. (R2: coefficient
of determination; RMSE: Root Mean Squared Error)
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Figure 3.12: Cell type compositions in saliva: reanalysis of existing scRNA-seq dataset
and TBS deconvolution results. (A-B) Cell type composition in saliva was revealed by the
reanalysis of a previous single-cell RNA sequencing dataset from human sputum [53]. (A)
UMAP plot displaying distinct clusters of cells, each colored according to its identified cell type.
(B) Pie chart showing the abundance of cell type proportions, with Monocytes, Epithelial
cells, and Neutrophils being the most abundant, followed by smaller populations of other
immune cells. The reanalysis results validate the major cell types, confirming that immune
cells and Epithelial cells are predominant in saliva samples. (C) Boxplots illustrating the cell
type proportions in two batches (batch 1 and batch 2) derived from deconvolution analysis of
bulk TBS data, highlighting the reproducibility across different batches. The deconvolution
results show a similar pattern to the scRNA-seq findings, with Granulocytes, Monocytes, and
Epithelial cells constituting most of the cell population. In contrast, other immune cells are
present in lower proportions. The alignment between the scRNA-seq reanalysis and TBS
data deconvolution results supports the reliability of deconvolution analysis. The differences
in quantitative proportions may be attributed to inherent sample variation and technology
biases, such as the scRNA-seq conducted on sputum from COVID-19 patients, which could
have altered cell proportions and capture preferences.
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Figure 3.13: Correlation heatmap between methylation principal components (mPCs) and
demographical and cellular variables. Heatmap illustrating the correlations between the top
10 methylation principal components (mPC1 to mPC10) and various demographical and
cellular proportions. The color intensity and size of the squares represent the strength of the
correlation, with blue indicating positive correlations and red indicating negative correlations,
as shown by the color scale on the right. These correlations suggest that sex, age, ethnicity,
and cell proportions are dominant factors of DNA methylation variations in the TBS data.
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Figure 3.14: Quantile-Quantile (Q-Q) plot for EWAS analysis. The Q-Q plot compares
observed -log10(p-values) from the EWAS with expected values under the null hypothesis.
Points along the diagonal indicate concordance between observed and expected p-values,
while deviations from the diagonal, particularly at the upper tail, suggest the presence of
CpG sites with significant associations that exceed what would be expected by chance. The
plot shows a slight deviation from the diagonal in the higher -log10(p-value) range, indicating
the presence of true associations in the dataset.
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CHAPTER 4

Systematic dissection of epigenetic age acceleration in

normal breast tissue reveals its link to estrogen signaling

and cancer risk

Abstract

Breast aging encompasses intricate molecular and cellular changes that elevate cancer risk.

Our study profiled DNA methylation and gene expression of 181 normal breast samples and

systematically evaluated eight epigenetic clocks. We found that clocks trained using breast

tissues demonstrate improved age prediction in normal breast tissue, and bias universally exists

in epigenetic clocks, necessitating a proper definition of age acceleration. Cell composition

analysis revealed significant age-related alterations and highlighted its distinct associations

with age acceleration, including increased luminal epithelial and myoepithelial cells and

reduced adipocytes and immune cells, connecting age acceleration to carcinogenesis from a

cell compositional perspective. Additionally, CpG sites associated with age acceleration were

enriched for estrogen receptor binding sites, providing a mechanistic link between estrogen

exposure, accelerated aging, and cancer. These findings highlight the importance of cellular

heterogeneity in epigenetic age estimates and the potential of age acceleration to guide risk

stratification and prevention strategies.

Key words: Breast aging; epigenetic clocks; age acceleration; DNA methylation; tissue

heterogeneity; cell composition; estrogen receptor; breast cancer risk.
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4.1 Introduction

Aging is an intricate biological process accompanied by progressive molecular, cellular, and

tissue-level changes, leading to functional decline and increased disease susceptibility [1].

In breast tissue, aging induces a cascade of molecular alterations such as DNA damage

accumulation [2], telomere shortening [3] and epigenetic modifications [4]. At the cellular

level, these changes manifest as senescence [5], altered cell composition and disrupted tissue

architecture [6]. Specifically, breast aging is associated with the accumulation of dysfunctional

luminal epithelial cells [7], a reduction in hormone-sensitive cells [8], and an increase in

immune cell infiltration along with a decline in adaptive immune cells [9]. These alternations

contribute to genome instability and a pro-inflammatory environment with compromised

immune surveillance, heightening the risk of malignant transformation and breast cancer

development. Understanding these aging-related changes is essential for developing strategies

to alleviate the adverse effects of aging on breast health and prevent breast cancer.

The concept of epigenetic clock has emerged as a powerful tool for studying aging and

elucidating its molecular mechanisms. Various epigenetic clocks have been developed over

the years [10–16], each leveraging DNA methylation patterns at specific genomic loci to

accurately measure biological age. Previous research has shown significant associations

between epigenetic age and a wide range of age-related diseases, including breast cancer [17].

Beyond reflecting biological age, deviations in epigenetic age from a normal trajectory—known

as age acceleration or deceleration—have garnered considerable attention due to their profound

implications for diverse health outcomes [18]. In the breast aging field, pioneering work has

established the link between accelerated epigenetic aging with lifetime estrogen exposure

[19] and increased breast cancer risk [20]. Despite these advancements, a comprehensive

understanding of breast age acceleration, particularly its mechanistic link with estrogen

exposure and cancer risk from molecular and cellular perspectives, remains elusive.

A critical gap in current research is the lack of consideration for tissue heterogeneity. Breast
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tissue consists of diverse cell types, each potentially aging at different rates and in distinct

ways, while most existing epigenetic clocks are built with bulk DNA methylation mainly using

blood samples [21], failing to account for the complexity and variability of breast tissue. This

raises questions about the accuracy of these clocks in predicting breast biological age and

poses additional challenges on understanding breast-specific aging processes. Additionally,

most epigenetic aging studies overlook the complex cell compositional changes with age [22],

focusing instead on bulk tissue analysis, which can obscure insights into the dynamics of

specific cell types, their distinct relationships with epigenetic age and age acceleration, and

their implications for cancer risks. Detailed investigations and characterizations of breast age

acceleration from cellular, epigenetic, and transcriptomic perspectives are needed to elucidate

breast aging processes, providing insights into potential intervention targets to promote breast

health.

To address these gaps, we profiled and analyzed the DNA methylation and gene expression

of 181 normal breast samples aged 19 to 90 (Figure 4.1A-B). By deconvolving the cell type

abundance of breast tissue, we comprehensively studied the epigenetic aging at both the

molecular and cellular levels. First, we systematically evaluated the predictive accuracy of

eight epigenetic clocks in normal breast tissue, including two pan-tissue, two breast-specific,

two second-generation, and two first-generation clocks. Our findings show that pan-tissue

and breast-specific clocks accurately predicted age, while blood-based clocks underperformed

due to tissue heterogeneity. We also revealed systematic biases in epigenetic clocks for age

prediction and advocate for a proper definition of age acceleration to avoid confounding by

chronological age. Cell type abundance analysis indicated significant age-related changes in

breast tissue composition, including increased adipocytes and vascular endothelial cells, and

decreased luminal epithelial and basal myoepithelial cells. Notably, epigenetic age acceleration

was associated with distinct cellular changes, suggesting a higher risk of breast carcinogenesis

from a cellular population perspective. We also identified CpG sites associated with age

acceleration, enriched for estrogen receptor binding sites (ESR1), linking estrogen exposure
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to accelerated breast aging and increased cancer risk from the molecular level. Transcriptome

analysis revealed differentially expressed genes associated with age acceleration for each clock,

while the overlap among different clocks is minimal and the pathway enrichments reflect

unique biological signals captured by different clocks. Overall, our findings emphasize the need

for considering cellular and tissue heterogeneity in epigenetic aging studies, providing valuable

insights into the molecular mechanisms linking estrogen exposure, epigenetic aging, and

breast cancer risk. Future research should focus on refining epigenetic clocks and exploring

their clinical applications in breast aging and cancer risk assessment.

4.2 Methods

4.2.1 Study samples and specimens

We utilized breast tissue specimens from the Susan G. Komen Tissue Bank (KTB) at the

Indiana University Simon Comprehensive Cancer Center, a unique repository of samples

from healthy female donors. Each tissue sample is well annotated with the donor’s race

and ethnicity, height, weight, family history, reproductive history, and medication use. All

participants in the study have provided informed consent, and the study received approval

from the UCLA Institutional Review Board. Data for this study were collected as part of a

cross-sectional study designed to investigate the associations between breast epigenetic age

and hormonal factors. We initially recruited 200 female participants, categorized into four

groups: (i) premenopausal and nulliparous, (ii) premenopausal and with at least 1live birth,

(iii) postmenopausal and nulliparous, and (iv) postmenopausal and with at least one live

birth. Each donor underwent six core biopsies from the upper outer quadrant of one breast

under local anesthesia. Within five minutes of collection, one biopsy was immediately placed

into an embedding cassette and stored in 10% buffered formalin at room temperature before

being embedded in paraffin. The remaining five biopsies were flash frozen in liquid nitrogen,

then placed in labeled, chilled cryovials, and stored in liquid nitrogen, as described in our
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previous study [3, 19]

4.2.2 DNA and RNA extraction

Breast tissue samples, each weighing 50 milligrams, were shipped to the Neurogenetics Core

Sequencing Laboratory (UNGC) at UCLA for DNA methylation and transcriptome profiling.

Frozen tissue (30 mg) was lysed in 600 µL of guanidine-isothiocyanate-containing Buffer

RLT Plus in a 2.0 mL microcentrifuge tube and homogenized using TissueLyser II (Qiagen)

with 5 mm stainless steel beads. The tissue lysate was then processed following the AllPrep

protocol (Qiagen, catalog no. 80224) to simultaneously extract genomic DNA and total RNA,

utilizing RNeasy Mini spin column technology. Extracted DNA underwent bisulfite conversion

for methylation quantification, while RNA was used for transcriptome quantification and

analyses.

4.2.3 DNA methylation quantification and processing

DNA Methylation for each sample was measured using the Human Methylation EPIC (850K)

array BeadChip (Illumina). 500 nanograms of DNA was bisulfite-converted using the EZ

Methylation Kit (Zymo Research). Following bisulfite conversion, the DNA was hybridized to

the EPIC array probes. Fluorescence data from the hybridized chip were scanned on an iScan

(Illumina), where the methylated intensity (Mi) and unmethylated intensity (Ui) for each

CpG site i were measured. Probe quality control and data processing were conducted using R

package minfi (version 1.48.0). Specifically, we employed the processIllumina() function to

perform background subtraction and control normalization, and calculated DNA methylation

level (beta-value) for each CpG site based on the intensity ratio between methylated and an

unmethylated signal using the following formula

βi =
max (Mi, 0)

max (Mi, 0) + max (Ui, 0) + α
(4.1)
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where α (default 100) is an offset to regularize beta value when both methylated and

unmethylated probe intensities are low. By definition, the beta values range between 0 and 1,

with 0 indicating completely unmethylated, and values approaching 1 indicating completely

methylated.

4.2.4 Bulk RNA sequencing and processing

Transcriptome profiling was performed using the Lexogen QuantSeq 3’ mRNA-Seq FWD kit

to generate RNA sequencing libraries. Sequencing was conducted with 65 bp single-end reads

on an Illumina HiSeq 4000. The raw sequencing data underwent quality control using FastQC

[23] (version 0.11.9). Adapters and low-quality bases were trimmed using fastp [24] (version

0.23.2). Trimmed reads were subsequently aligned to the human reference genome (GRCh38)

with Ensembl annotation file (v84) using STAR [25] (version 2.7.9a). Gene expression counts

for each sample were obtained using HTSeq [26] (version 1.99.2) and merged into a gene

expression count matrix using in-house scripts. Genes with no more than 10 counts in less

than 10% of samples were excluded from further analysis. Finally, the gene expression count

per million (CPM) values were calculated using the cpm() function implemented in the edgeR

package [27] (version 3.33.5).

4.2.5 Sample quality control

Principal component analysis (PCA) was conducted on both the DNA methylation matrix

(beta values) and the gene expression matrix (log-transformed CPM values) to identify

potential sample outliers. After removing outliers and excluding samples from participants

with breast cancer, we retained 181 normal breast tissue samples with paired DNA methylation

and gene expression data. All downstream analyses were based on these 181 samples. The

demographic and clinical characteristics of the finalized study cohort are detailed in Table 4.1

and Supplementary Data 1.
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4.2.6 Epigenetic age and age acceleration calculation

To comprehensively assess the age prediction accuracy of DNA methylation (DNAm) epigenetic

clocks in normal breast tissue, we included two pan-tissue clocks: Horvath’s pan-tissue clock

[10] and AltumAge [16]. These clocks are designed to operate across various tissue and cell

types, including breast. Additionally, we examined two second-generation clocks, GrimAge

[14], and Phenotypic Age [12], tailored to predict overall health span and lifespan more

effectively, particularly in blood samples. GrimAge is of particular interest due to its

potential to predict cancer onset and its association with menopausal age. Our analysis

also included two first-generation clocks, the Hannum clock [11] and the Skin&Blood Clock

[13], representing previous efforts for biological age prediction. The methodological details

and applications of these clocks are further illustrated in Figure 4.1C, providing a clear

summary of their distinct characteristics and diverse biological contexts. DNA methylation

beta values were used to calculate the epigenetic age. Epigenetic age for Horvath, Hannum,

GrimAge, Phenotypic Age, Skin&Blood was calculated using DNA methylation Age Calculator

(https://dnamage.genetics.ucla.edu/home). AltumAge was calculated according to its

official tutorial (https://github.com/rsinghlab/AltumAge).

Additionally, we trained two breast-specific clocks using the KTB DNA methylation data.

One employs the Elastic Net algorithm [28] to predict age based on methylation levels, and

the other utilizes Epigenetic Pacemaker (EPM) model [15], which uses inverse regression to

derive age estimates from DNA methylation patterns. To avoid data leakage, we implemented

a nested cross-validation strategy: The outer loop used a leave-one-out approach to split the

data into training and testing sets, while the inner loop employed a 5-fold cross-validation to

tune the hyperparameters and train the epigenetic clocks. This strategy ensured that test

data was never seen during model training. The trained model was then used to predict the

age of each test data point, iterating through each sample to collect age predictions for all

samples.

The relationship between chronological age and epigenetic age of different clocks was
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assessed using a generalized additive model with a cubic spline; we confirmed that the trend

is predominantly linear on our data (Figure 4.8A) and thus computed age acceleration by

obtaining the residuals from a linear regression of epigenetic age on chronological age. This

residual measure, designed to be age-adjusted, showed no correlation with chronological age

(Figure 4.9B). Despite concerns about sampling uncertainty affecting the residual calculations,

we used bootstrapping to confirm that age acceleration of each subject remains stable against

variations in sample composition for each clock (Figure 4.9C). The robust measurement

underscores the reliability of age acceleration and our findings.

4.2.7 Cell type deconvolution and immune enrichment score calcu-

lation

To quantify the cell type abundance in normal breast tissue samples, we utilized the Genotype-

Tissue Expression (GTEx) v8 single-nucleus RNA-seq (snRNA-seq) data [eraslan2022single]

and extracted gene expression data specific to normal breast tissue. The snRNA-seq breast

dataset identified eight major cell types: adipocytes, luminal epithelial cells, basal myoep-

ithelial cells, vascular endothelial cells, lymphatic endothelial cells, immune cells (dendritic

cells/macrophages), pericytes & smooth muscle cells, and fibroblasts (Figure 4.10A-B). Cell

doublets and genes expressed in fewer than 10 cells were excluded from the snRNA-seq data.

The processed expression count matrix was converted into counts per million (cpm) values.

Using this data as a reference, we constructed a cell type signature matrix and deconvolved

the bulk RNA-seq data to determine cell type abundance proportions for each sample using

CIBERSORTx [29] with batch correction mode (S-mode).

To achieve higher resolution of immune cell composition in normal breast tissue, we

used ImmuneCellAI [30](http://bioinfo.life.hust.edu.cn/ImmuCellAI/) to calculate

enrichment scores for 24 immune cell types and immune infiltration scores for each sample

based on gene expression data. All software parameters were set as default unless otherwise

specified.
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4.2.8 Cancer risk score calculation

In addition to the Gail and Tyrer-Cuzick breast cancer risk measurements, which were

computed in previous work using demographic, reproductive and family history data [3],

we expanded our analysis to include cancer risk scores derived from molecular data in this

analysis. Specifically, we utilized the code in epiTOC2 [31] to compute cancer risk scores

for each sample based on the DNA methylation matrix. We also calculated cell senescence

scores using gene expression data by applying single-sample Gene Set Enrichment Analysis

(ssGSEA) with senescence signature genes from the CellAge database [32], implemented

through the GSVA package [33] (version 1.50.5). By integrating these molecular-based risk

scores with traditional risk assessments, we aimed to provide a more holistic view of breast

cancer risk. The processed data, including epigenetic age estimates, age acceleration of each

clock, cell proportions, immune enrichment scores, and cancer risk scores can be found in

Supplementary Data 2.

4.2.9 Correlation and mediation analysis

We computed the pairwise Pearson correlation coefficients among various variables of interest.

These include demographic variables, reproductive history, breast cancer risk and senescence

scores, epigenetic age from eight different clocks, age acceleration (both raw and adjusted

by cell proportions), the top 10 principal components from DNA methylation and gene

expression, eight cell type proportions, 24 immune cell scores, and immune infiltration scores.

The comprehensive correlation matrix is provided in Supplementary Data 3 and visualized in

Figure 4.12.

To examine how changes in cell type proportions mediate the relationship between

chronological age and epigenetic age, we conducted a mediation analysis. In this analysis,

chronological age served as the independent variable (IV), epigenetic age as the dependent

variable (DV), and each cell type abundance as mediators. The structural equation model

used for this analysis is detailed in the Supplementary Data 4. We utilized the R package
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lavaan [34] (version 0.6-18) to perform the mediation analysis for each clock, estimating both

direct and indirect effects and the contribution of each mediator.

4.2.10 Epigenome-wide association study and genomic region en-

richment analysis

We conducted an Epigenome-Wide Association Study (EWAS) to identify CpG sites associated

with age acceleration, controlling for chronological age and cell proportions. The EWAS

analysis was performed using GEMMA [35] (version 0.98.6), where the age acceleration for

each clock is the quantitative trait, and the CpG sites are the markers, with age and cell

proportions as covariates. Since the cell proportions sum up to 1, we excluded Pericyte/SMC

from the covariates to avoid the model identifiability issue. The association between each

CpG site and age acceleration was then tested using a linear mixed model framework

in GEMMA, with p-values calculated via likelihood ratio tests. CpG sites with q-values

smaller than 0.05 were considered significantly associated (Supplementary Data 5) and were

subsequently subjected to genomic region enrichment analysis using LOLA [36] (version

1.32.0), with all CpG sites serving as the background (Supplementary Data 6). The top 10

most significantly enriched Transcription Factor Binding Sites (TFBS) were extracted and

visualized in Figure 4.5.

4.2.11 Differential expression and gene-set enrichment analysis

To further explore the relationship between gene expression and age acceleration for each

clock, we conducted a differential expression (DE) analysis. First, we converted the gene

expression matrix (CPM) for each gene by applying an inverse Gaussian transformation,

ensuring that each gene’s expression value Yi follows a Gaussian distribution. Next, we

performed DE analysis using a linear regression framework with age and age acceleration

(AA) as covariates, both before (1) and after (2) adjusting for cell proportions:
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Yi ∼ AA+ Age (4.2)

Yi ∼ AA+ Age+ Cell1 + · · ·+ Cell(k−1) (4.3)

(4.4)

Where AA is the age acceleration of a specific clock, and k=8 is the total number of major

cell types. Since the cell proportions sum up to 1, we excluded Pericyte/SMC when fitting

the second model to avoid model identifiability issue. We implemented these models using

lm() function in R. For both models, we tested whether AA is associated with the response

Yi for each gene. The association p-values were obtained using t-tests (Supplementary Data

7).

Genes with an adjusted p-value less than 0.05 in model (2) were defined as differentially

expressed for each clock and subjected to Gene Ontology (GO) overrepresentation enrichment

analysis. Additionally, we performed Gene Set Enrichment Analysis (GSEA) using the

differential analysis results. Both GO overrepresentation and GSEA analyses were conducted

and visualized using clusterProfiler [37] (version 4.10.1). The gene expression enrichment

analysis results are provided in Supplementary Data 8.

4.2.12 Statistical analysis

Besides the statistical analysis described above, the pairwise Pearson correlation coefficient and

significance (p-values) are calculated using R package Hmisc [38] (version 5.1-2). Correlation

heatmaps displayed the Pearson correlation coefficients using the R package corrplot [39]

(version 0.92). To account for multiple hypothesis testing, we reported the adjusted p-values

using the Benjamini-Hochberg [40] procedure implemented by the p.adjust() function in R.

All statistical tests were conducted in R (version 4.3).
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4.2.13 Data availability

Raw and supplementary data can be obtained from [41].

4.3 Results

4.3.1 Age prediction accuracy of epigenetic clocks in normal breast

tissue

Evaluating the age prediction accuracy in healthy breast tissue using eight epigenetic clocks

(Figure 4.1C, Methods), we observed strong correlations between epigenetic age and chrono-

logical age across most clocks, except for Phenotypic Age (Figure 4.2, Table 4.2). Significant

correlations among different epigenetic age estimates were also noted (Figure 4.9A). Notably,

the pan-tissue and breast-specific clocks demonstrated high accuracy in predicting age in

breast tissue, with the ElasticNet clock trained on Komen Tissue Bank (KTB) breast tissue

showing the highest accuracy (Pearson correlation coefficient (Corr.) = 0.94, mean absolute

error (MAE) = 3.33 years). Other clocks such as HO (Corr. = 0.90, MAE = 7.92 years),

Altum (Corr. = 0.88, MAE = 5.24 years), and EPM (Corr. = 0.78, MAE = 6.56 years) also

performed well.

Conversely, blood-based (first- and second-generation) clocks that did not include breast

tissue in their original training set showed significantly lower correlations or higher MAEs,

indicating reduced predictive accuracy. An exception was GrimAge, which includes chrono-

logical age as a predictor and thus showed a high correlation of Corr.= 0.94, similar to the

best-performing breast-specific clocks, but with a much higher MAE (11.96 years). These find-

ings suggest that blood-based clocks tend to underperform for predicting age in breast tissue,

likely due to tissue heterogeneity. This underscores the importance of using tissue-specific or

pan-tissue clocks to minimize cross-tissue biases and improve age prediction accuracy.

Our analysis also revealed that the regression line between predicted (epigenetic) age
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and chronological age consistently exhibited a positive intercept and a slope less than 1,

regardless of the clock used. The large positive intercepts of first- and second-generation

clocks, indicating predicted age in breast tissue at chronological age zero, might suggest that

breast tissue appears "older" compared to other tissues such as blood [22]. However, the slope

being less than 1 raises concerns about underestimating age in older subjects, highlighting a

systematic bias in the epigenetic clock models. This issue will be further discussed in the

following section.

4.3.2 Systematic biases in epigenetic clocks and justification of age

acceleration

To elucidate the observed systematic biases in age estimation stemming from model bias, we

simulated a scenario where DNA methylation can fully explain the variance in chronological age.

Using penalized regression techniques (LASSO, Ridge, and Elastic Net regression) to construct

the clocks, we consistently found that the regression slope of predicted age on chronological

age was below 1 (Figure 4.7A). This occurs because penalized regression methods, used to

manage the high-dimensional challenge where features (CpG sites) outnumber samples, shrink

regression coefficients towards zero. As a result, predicted age (epigenetic age) rarely matches

chronological age exactly and tends to have reduced variance compared to chronological

age. Consequently, the prediction error (predicted age - chronological age) correlates with

chronological age (Figure 4.7C).

These biases complicate the definition of age acceleration. Throughout the literature, we

recognized various studies have used different definitions, with no consensus reached. Some

studies define the age acceleration as the difference between epigenetic age and chronological

age (difference definition), while others define it as the deviation of epigenetic age from

its expected value given chronological age (residual definition). A slope smaller than 1

indicates that age difference is inversely associated with chronological age (Figure 4.7C,

Figure 4.8C), leading to spurious associations between health outcomes and age differences
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due to confounding by chronological age. In contrast, the residual definition represents the

part of epigenetic age unexplained by chronological age and is orthogonal to chronological age

(Figure 4.7B, Figure 4.8B), eliminating age confounding concerns. In this study, we advocate

against the use of age difference definition since it can easily lead to false discoveries when

not calibrated with chronological age; And we defined the age acceleration as the regression

residual between epigenetic age and chronological age.

4.3.3 Age and other demographic related changes in breast cell

composition

We next investigated how cell type abundance changes with advancing age in breast tissue.

Using CIBERSORTx [29] with GTEx normal breast snRNA-seq data [42] as a reference,

we deconvolved the cell type abundance from bulk gene expression data for each sample

and observed significant age-related changes in breast tissue composition (Figure 4.3A-

B). Specifically, advancing chronological age is associated with a notable increase in the

proportion of adipocytes (p<4.12e-8, adjusted p<1.32e-06) and vascular endothelial cells

(p<1.02e-4, adjusted p<1.21e-03), and a significant decrease in proportions of luminal

epithelial cells (p<9.1e-11, adjusted p<5.83e-09) and basal myoepithelial cells (p<1.13e-4,

adjusted p<1.21e-03). Additionally, the proportion of immune dendritic cells/macrophages

significantly increased (p<1.93e-6, adjusted p<4.11e-05), indicating an elevated inflammatory

landscape with aging.

We also examined the associations between cell type abundance and various demographic

and reproductive variables (Supplementary Data 3). Hispanic ethnicity was associated with

a lower proportion of fibroblasts (p<0.017). Higher body mass index (BMI) correlated

with increasing proportions of immune dendritic cells/macrophages (p<0.014) and decreased

luminal epithelial cells (p<0.033). Tobacco smoking history was linked to a reduced propor-

tion of pericytes/smooth muscle cells (p<0.034), though these associations did not remain

significant after p-value adjustment. Interestingly, adipocyte proportion did not correlate
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with BMI (Figure 4.12), suggesting that an individual BMI is primarily related to overall

adiposity rather than the proportion of adipocytes in breast tissue. There were no significant

associations between cell proportions and age at menarche, parity, or history of breastfeeding.

4.3.4 Changes in breast cell composition with breast epigenetic age

Given that current epigenetic clocks primarily focus on bulk tissues with surrogate measures of

DNA methylation, it is intuitive that changes in cell composition could influence epigenetic age.

We investigated how cell type proportions correlate with epigenetic age for each clock, using

chronological age as a reference (Figure 4.3C). Our analysis revealed significant associations

between epigenetic age estimates and at least one cell type proportion for almost all clocks.

The correlation patterns generally mirrored those observed with chronological age, except

for the Phenotypic Age, Hannum clock, and Skin&Blood clock, which did not predict age

accurately in breast tissue.

Specifically, adipocyte proportions displayed negative correlations with epigenetic ages

across multiple clocks. Vascular endothelial cells consistently correlated positively with

epigenetic age, indicating vascular remodeling. Luminal epithelial and basal myoepithelial

cells exhibited strong negative correlations, reflecting a decline in breast density with epi-

genetic aging. The positive correlation between immune dendritic cells/macrophages and

epigenetic age highlights an increased inflammatory environment. These findings underscore

the complexity of epigenetic aging, validating the biological relevance of epigenetic clocks in

capturing aging-related cellular changes, and emphasize the importance of considering these

changes when interpreting epigenetic age estimates.

Beyond the major cell types, we also examined the correlation between epigenetic age and

immune cell enrichment scores calculated by immuneCellAI [30] using gene expression data.

We found that macrophage scores positively correlated with both chronological and epigenetic

age, while gamma-delta T (γδT) cell scores displayed a negative correlation (Figure 4.11A),

both well aligning with previous observations [9, 43]. The increased macrophage enrichment
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scores highlight an elevated inflammatory status, while decreased γδT cell enrichment scores

potentially reflect a decline in maintenance of tissue homeostasis [43]. Together, these

findings indicate altered immune surveillance dynamics during aging in the normal breast

microenvironment.

4.3.5 Changes in breast cell composition with breast age acceleration

We next investigated whether epigenetic age accelerations are associated with cell composi-

tional changes in breast tissue. Figure 4.3D illustrates the correlations between epigenetic

age acceleration and cell abundance for each clock measure and cell type. We first noted the

correlation variability among different clocks: Breast-specific clocks, optimized for predicting

chronological age, showed the least correlation with cell abundance. In contrast, other clocks

demonstrated significant associations with cell compositional changes. Specifically, blood-

based clocks (both first- and second-generation) showed significant correlations with immune

cell enrichment scores after p-value adjustment (Figure 4.11B). Notably, the pan-tissue clock

AltumAge exhibited greater sensitivity to cellular changes compared to the Horvath clock,

likely due to it used higher number (70 times more) of CpG sites for age prediction.

At the cell-type level, interestingly, we observed that adipocyte and vascular endothelial

cell proportions negatively correlated with epigenetic age acceleration across pan-tissue, first-,

and second-generation clocks (p<0.01, adjusted p-value< 0.05). This suggests a decrease in

these cells with advancing epigenetic age, contrasting with their positive correlation with

chronological age. Conversely, Luminal epithelial cells, basal myoepithelial cells lymphatic

endothelial cells showed significant positive correlations with age acceleration across clocks.

Additionally, the proportion of immune dendritic cells/macrophages was significantly lower

in accelerated breast aging tissue, reflecting compromised immune surveillance. These

findings underscore the distinct characteristics of accelerated breast aging compared to

normal aging. The increase in luminal epithelial and basal myoepithelial cells, along with

the reduction in immune cells in accelerated aging breast, suggests a potential higher risk of
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breast carcinogenesis from a cell compositional perspective.

To further explore whether cell composition mediates the increase in epigenetic age

during aging process, we conducted a mediation analysis. Consistent with the correlation

analysis findings, we found significant mediation effects for blood-based clocks (first- and

second-generation), with GrimAge being an exception due to its inclusion of chronological

age in the predictors. Our analysis also revealed that adipocytes negatively contribute to

epigenetic age, while luminal epithelial and basal myoepithelial cells positively contribute,

although the strength of these mediating effects were marginally significant.

4.3.6 Association between breast age acceleration and breast cancer

risk measurement

We further examined the association between breast epigenetic age acceleration and breast

cancer risk using the Breast Cancer Risk Assessment Tool (Gail Model) and the Tyrer-Cuzick

Risk Calculator (IBISv8, for 10-year and lifetime breast cancer risk). Figure 4.13A presents

the correlations between epigenetic age acceleration and breast cancer risk estimates for each

risk score and clock. Among them, only Horvath clock demonstrated a marginally significant

association (corr.=0.14, p=0.054) and lifetime Tyrer-Cuzick score (corr.=0.14, p=0.068).

Interestingly, after adjusting for the cell proportions, we observed an increase in correlation

between Horvath age acceleration and 10-year Tyrer-Cuzick score (corr.=0.17, p=0.022) and

lifetime Tyrer-Cuzick score (corr.=0.17, p=0.022) (Figure 4.4A), while the correlation for

other clocks remains insignificant (Figure 4.13B).

Beyond risk estimations derived from demographic and reproductive history, we also

assessed DNA methylation-based risk using epiTOC2 [31], a breast cancer risk calculator that

quantifies the total number of stem cell divisions. All but breast-specific clocks displayed a

significant positive association between epiTOC2 score and age acceleration adjusted by cell

proportions. These results showed that the link between age acceleration and cancer risk is

not purely due to the cell compositional changes, although different clocks showed varying
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association strengths with cancer risk scores.

4.3.7 Identification of CpG sites associated with breast age acceler-

ation and its link to estrogen receptor

To characterize the CpG sites associated with age acceleration after adjusting for cell

proportions, we performed an epigenome-wide association study (EWAS). Figure 4.14 presents

the QQ and Manhattan plot of the EWAS analysis results for each clock. CpG sites with

q-value smaller than 0.05 are defined as significant and summarized in Supplementary Data

5 for each clock, along with their nearby genes annotated. Notably, blood-based clocks

identified more significant CpG sites associated with age acceleration compared to both

pan-tissue clocks and breast-specific clocks.

To better understand the biological mechanisms underlying these CpG sites, we performed

genomic region set enrichment analysis on the significant CpG sites, using the total CpG

sites as the background. The top 10 most significantly enriched Transcription Factor Binding

Sites (TFBS) of each clock were collected and visualized in Figure 4.5. Our analysis revealed

that estrogen receptor 1 (ESR1) binding sites were among the top 10 enriched TFBS for most

clocks examined, providing a potential link between age acceleration and estrogen exposure.

Although the association between age acceleration and estrogen exposure has been reported

in our previous study [19], this analysis provides direct molecular evidence supporting the

association for the first time.

Estrogen is known to stimulate the division and proliferation of breast tissue, leading

to increased cellular turnover and DNA double-strand breaks [44]. This heightened cellular

activity, coupled with the accumulation of DNA damage, promotes genomic instability—a

hallmark of cancer development. Recent research also found that DNA double-strand breaks

erode the epigenetic landscape, contributing to mammalian aging [45]. Thus, the enrichment of

ESR1 binding sites for age acceleration-associated CpG sites provides a plausible mechanism

linking age acceleration and increased cancer risk: estrogen exposure accelerates aging
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through DNA double-strand breaks. These findings suggest that estrogen exposure may have

a significant role in the epigenetic changes observed in accelerated breast aging, potentially

heightening breast cancer risk.

4.3.8 Transcriptomic alternations associated with breast age accel-

eration

To identify genes whose expression is associated with age acceleration, we conducted a

differential gene expression (DE) analysis using a regression framework, testing the associations

between each gene’s expression and age acceleration, with chronological age included as

a covariate. This analysis was conducted for each epigenetic clock, both before and after

adjusting for cell proportions. We found that while thousands of genes were identified as DE

genes before accounting for cell compositional changes, this number dramatically decreased

after adjusting for cell proportions (Figure 4.15A), indicating that many observed differences

in gene expression were primarily due to cell population dynamics. Focusing on the DE genes

after adjusting cell proportions, we noticed there was minimal overlap among different clocks

(Figure 4.6A), suggesting that each clock captures distinct biological signals.

We also performed Gene Ontology (GO) enrichment analysis with the DE genes and fount

the enrichment results revealed distinct patterns in biological pathways for each epigenetic

clock (Figure 4.6B). Specifically, there were no enriched biological processes for the Horvath

and ElasticNet clocks. While the Altum clock showed enrichment for processes related

to epithelial migration, and the EPM clock highlighted pathways involved in extracellular

matrix organization. Blood-based clocks demonstrated greater overlap in enriched biological

pathways, emphasizing processes such as kinas activity regulation, steroid hormone signaling

and cell polarity. Furthermore, Gene Set Enrichment Analysis (GSEA) based on the DE

analysis shows a similar pattern where different clocks enrich for diverse pathways, with

the blood-based clocks to have bigger overlap, featuring immune and metabolic processes.

(Figure 4.15B).
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Collectively, these findings in the transcriptome analysis underscore the critical importance

of accounting for cell composition in epigenetic studies [46]. The pathway enrichment analysis

also highlight that different epigenetic clocks capture unique and complementary aspects

of biological aging in breast tissue, providing a nuanced understanding of the underlying

molecular mechanisms. This insight highlights the complexity of breast aging and interplay

between epigenetic dynamics and transcriptomic variations in breast aging processes, and

further investigation are needed to advance the precision and applicability of epigenetic clocks

in breast aging research and clinical interventions.

4.4 Discussion

In this study, we systematically evaluated the predictive accuracy of eight epigenetic clocks in

normal breast tissue, the associations between epigenetic age estimates and cell composition,

and their potential implications for breast cancer risk. Our findings demonstrate that

pan-tissue and breast-specific epigenetic clocks exhibit superior accuracy in age prediction

compared to clocks developed for other tissues. This discrepancy underscores the limitations

of cross-tissue applications of epigenetic clocks and emphasizes the importance of considering

tissue specificity in epigenetic age estimation. Our analysis also revealed systematic biases

in age prediction, with regression lines consistently showing positive intercepts and slopes

less than one. Simulations indicated that these biases arise from the shrinkage of regression

coefficients in penalized regression, which is common in high-dimensional data settings (e.g.,

epigenetic clock). While previous studies have reported the underestimate bias in the old

subjects of Horvath clock [47], we are, to our best knowledge, the first to illustrate that the

bias is a universal problem for all epigenetic clocks examined, and that it is rooted in the

statistical models used to construct the clocks. These biases complicate the definition of

age acceleration. To address this, we advocate for the residual definition of age acceleration,

which eliminates confounding by chronological age and provides a more robust measure for

studying age-acceleration-related health outcomes. Using cell type abundance estimated
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from transcriptomic data, we confirmed several cell compositional changes associated with

advancing chronologic age described in previous studies, including increased proportions

of adipocytes and vascular endothelial cells [48], and decreases in luminal epithelial and

basal myoepithelial cells. We also found that immune dendritic cells/macrophages increased

with advancing chronological age in healthy breast tissue. These findings indicate an age-

associated remodeling of breast tissue, characterized by a decline of breast density and an

elevated inflammatory landscape. The observed correlations between cell composition and

epigenetic age mirrored those with chronological age, validating the biological relevance of

epigenetic clocks in capturing aging-related cellular alterations. However, the variability

of correlations also highlights the influence of cell composition on epigenetic/biological age

estimates, emphasizing the necessity of considering cell composition heterogeneity when

interpreting epigenetic aging data.

While previous studies have examined cell compositional changes in breast tissue with

chronologic age, this is the first study to characterize the association between cell composition

and epigenetic age accelerations in normal breast tissue. Interestingly, we found that epigenetic

age acceleration of multiple clocks is associated with distinct changes of cell composition, with

a significant increase in both luminal epithelial and basal myoepithelial cell proportions, and

a decrease in adipocytes, vascular endothelial cells and immune dendritic cell/macrophages.

The rise in luminal and basal myoepithelial cells may heighten breast cancer risk, as these

cells are progenitors of common breast cancer subtypes [49]. Reduced adipocytes and

vascular endothelial cells can disrupt hormonal balance [50] and angiogenesis [51] respectively,

potentially affecting tissue homeostasis and contributing to an environment that favors

tumor development. Lastly, the decrease in immune dendritic cells/macrophages suggests

a compromised immune surveillance [9], allowing abnormal cells to proliferate unchecked.

These changes jointly highlight the unique cellular dynamics of accelerated breast aging and

implies a higher potential for breast carcinogenesis from a cellular population perspective.

Our study also explored the associations between breast epigenetic age acceleration and
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breast cancer risk. We assessed the association between epigenetic age acceleration and Gail or

Tyrer-Cuzick scores and did not find a significant association. Interestingly, age acceleration

in the Horvath clock is significantly associated with the Tyrer-Cuzick score after adjusting

for cell proportions, suggesting that cellular heterogeneity plays a role in modulating cancer

risk. The positive correlation between age acceleration and the total number of stem cell

divisions, as measured by epiTOC2, supports the link between accelerated epigenetic aging

and increased cancer risk. These findings highlight the potential utility of epigenetic clocks

in assessing breast cancer risk and underscore the importance of considering cell composition

in these cancer risk analyses.

Epigenome-wide association studies (EWAS) have identified a handful of CpG sites

associated with age acceleration after adjusting for cell proportions, with significant enrichment

for estrogen receptor 1 (ESR1) binding sites across multiple epigenetic clocks. Estrogen

exposure has been found to promote DNA double-strand breaks [52], which contribute

to mammalian aging [45], suggesting a mechanistic link between estrogen exposure and

accelerated epigenetic aging. Estrogen-driven cellular proliferation and DNA damage induce

genomic instability, a hallmark of both aging and cancer development [53, 54], linking the

age acceleration with cancer risk. Although previous studies have reported age acceleration

is potentially associated with estrogen exposure [19] and breast cancer risk [55], respectively,

our findings provide direct molecular evidence that estrogen exposure accelerates breast tissue

aging, potentially heightening the risk of breast cancer. Complementing these epigenetic

insights, differential gene expression analysis has revealed significant transcriptomic alterations

linked to age acceleration, many of which are driven by underlying shifts in cell composition.

Gene ontology and gene set enrichment analyses have highlighted distinct biological processes

associated with different epigenetic clocks, reflecting their unique biological signals. These

insights emphasize the complexity of breast aging, driven by the interplay between estrogen

exposure, epigenetic dynamics, and transcriptomic variations during aging. Understanding

these interactions is crucial for refining epigenetic clocks and enhancing their applicability in
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clinical settings to assess aging and cancer risk.

There are some limitations to our work. Firstly, the cross-sectional nature of the data,

similar to most epigenetic aging studies, makes it difficult to disentangle subject-specific

effects and aging effects on the epigenetic landscape. We believe longitudinal data will benefit

us and help us profile the aging rates and trajectories more accurately. Secondly, the relatively

short duration after sample collection did not allow us to assess breast cancer incidence among

the study population; we relied on breast cancer risk scores like the Gail or Tyrer-Cuzick

scores, which may not accurately reflect the future likelihood of developing cancer [56]. This

reliance limits our ability to assess the relationship between age acceleration and the true

potential of developing breast cancer.

Additionally, our analysis was based on bulk DNA methylation and gene expression data,

which lacks single-cell level resolution. While we recovered some cell type-level dynamics

via deconvolution, it can be further improved through the lens of single-cell techniques. We

envision that single-cell DNA methylation, coupled with single-cell transcriptomic profiling

technologies, would provide a more detailed understanding of how epigenomic changes interplay

with transcriptomics during normal aging. Future research should focus on longitudinal

studies and single-cell analyses to refine these clocks and explore their clinical applications in

breast aging and cancer risk assessment.

In summary, our study underscores the critical need for tissue-specific epigenetic clocks

to accurately predict age and assess age acceleration. The observed biases in age prediction

models highlight the importance of using appropriate definitions for age acceleration. Age-

related changes in breast cell composition and their impact on epigenetic age emphasize

the need to consider cellular heterogeneity in aging studies, and age acceleration shows a

distinct association with cell composition, suggesting its link with cancer risk from the cell

compositional perspective. Our findings also provide valuable insights into the molecular

mechanisms linking estrogen exposure, epigenetic aging, and breast cancer risk, paving the

way for future research and clinical interventions in breast aging. Future studies should focus
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on refining epigenetic clocks for broader applicability and investigating their potential for

early detection and prevention of age-related diseases, including breast cancer.
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4.6 Tables and figures

Table 4.1: Characteristics of the study population.

Variable Age < 50 years (n=89) Age ≥ 50 years (n=92) p-value

Demographics

Age (years),

mean ± SD
40.8 ± 7.7 59.0 ± 6.9 <2.2e-16

Ethnicity Hispanic,

n (%)
3 (3.4) 6 (6.5) 0.53

Body mass index,

mean ± SD
28.2 ± 7.4 28.3 ± 6.2 0.93

Tobacco smoking, ever,

n (%)
21 (23.6) 34 (37) 0.07

Alcohol use, current,

n (%)
61 (68.5) 64 (69.6) 1

Gynecologic history

Age at menarche,

mean ± SD
12.8 ± 1.6 12.7 ± 1.5 0.77

Premenopausal,

n (%)
81 (91) 14 (15.2) <2.2e-16

Age at menopause,

mean ± SD
36.7 ± 7.4 47.5 ± 6.6 0.0077

Continued on next page
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Variable Age < 50 years (n=89) Age ≥ 50 years (n=92) p-value

Total menstrual years,

mean ± SD
27.5 ± 8.1 35.6 ± 6.5 8.9e-12

Reproductive history

Nulliparous,

n (%)
43 (48.3) 46 (50) 0.94

Age at first full-term birth,

mean ± SD
27.3 ± 5.3 26.0 ± 4.8 0.23

Hormonal replacement therapy, ever,

n (%)
1 (1.1) 37 (40.2) <2.2e-16

Estimated breast cancer

risk scores

Gail score,

mean ± SD
13.3 ± 5.7 10.7 ± 5.3 0.0027

Tyrer-Cuzick, lifetime,

mean ± SD
2.6 ± 1.9 4.4 ± 3.0 2.7e-06

Tyrer-Cuzick, 10-year,

mean ± SD
15.6 ± 7.1 11.2 ± 6.4 2.5e-05

SD: Standard deviation; n: number of samples; %: percentage; p-value: Two-tailed Student’s
t-test for continuous variables and chi-square test for categorical variables.
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Table 4.2: Regression summary for eight epigenetic clocks in KTB data.

Clock Intercept Slope MAE RMSE Corr. p-value
adjusted

p-value

Horvath 28.09 0.58 7.92 9.25 0.90 9.25e-68 2.47e-67

AltumAge 16.24 0.74 5.24 6.42 0.88 1.16e-59 2.32e-59

ElasticNet 7.48 0.85 3.33 4.11 0.94 3.61e-83 1.44e-82

Epigenetic

Pacemaker
4.10 0.92 6.56 8.55 0.78 1.05e-38 1.68e-38

GrimAge 29.01 0.66 11.96 12.85 0.94 6.76e-88 5.41e-87

Phenotypic age 14.91 0.23 23.83 27.20 0.25 6.29e-04 6.29e-04

Hannum clock 12.64 0.34 20.39 22.03 0.60 6.95e-26 6.96e-26

Skin&Blood

clock
24.19 0.63 8.73 10.72 0.68 1.43e-25 1.63e-25

Intercept and Slope: the regression coefficients of epigenetic age against chronological age for
each clock; MAE: Mean Absolute Error; RMSE: Root Mean Square Error; Corr.: Pearson
Correlation coefficient; p-value: significance level of correlation via t-test; adjusted p-value:
significance level of correlation adjusted by Benjamini-Hochberg procedure. The best predic-
tion performance metrics (Intercept closest to 0, Slope closest to 1, smallest MAE/RMSE,
and biggest Corr.) are highlighted in bold font.
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Figure 4.1: Study design and overview. (A) In this study, 181 normal breast tissue samples
from Komen Tissue Bank (KTB) with paired DNA methylation and gene expression data were
analyzed. DNA methylation data were used to calculate the epigenetic age for different clocks.
Gene expression data were used to estimate cell type abundances. The DNA methylation, gene
expression, epigenetic age, and cell composition were then jointly analyzed to comprehensively
characterize the epigenetic aging and cell compositional landscape of normal breast tissue
during aging. (B) Histogram and density plot showing the chronological age distribution
of the 181 study samples. The vertical dashed line shows the median age (50 years old).
The solid line represents the distribution density. (C) Table summarizing the features of six
popular clocks, including two pan-tissue clocks, Horvath clock and AltumAge, two second-
generation clocks, GrimAge and Phenotypic Age, two first-generation clocks, Hannum clock
and Skin&Blood clock. Besides the six published clocks, we also trained two breast-specific
clocks in KTB samples using Elastic Net algorithms and Epigenetic Pacemaker and included
them in the following evaluations.
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Figure 4.2: Age prediction accuracy across eight epigenetic clocks. The top panel shows
the epigenetic clocks for pan-tissue (HO: Horvath clock, Altum: AltumAge) and breast-
specific clocks (ElasticNet: clock trained with Elastic Net algorithm, EPM: clock trained with
Epigenetic Pacemaker). The bottom panel shows blood-based epigenetic clocks, including
second-generation clocks (GR: GrimAge, PH: Phenotypic Age) and first-generation clocks
(HA: Hannum clock, SB: Skin&Blood clock). The dashed blue line shows a y=x diagonal line,
and the black line represents the regression line between epigenetic age and chronological age
for each clock, with the shadowed region indicating a 95% Confidence Interval for regression.
Pearson correlation coefficient statistics, regression line equation, and prediction error (MAE:
mean square error, RMSE: root mean square error) are annotated at the top of each panel
on the plot.
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Figure 4.3: Cell composition’s correlation with epigenetic age and age acceleration.

123



Figure 4.3: (A-B) Cell composition’s correlation with advancing chronological age. (A) Bar plot
showing the average cell proportion dynamics across age groups. (B) A scatterplot shows the trend
and strength of proportion change with chronological age for each cell type. The black line indicates
the regression line between proportion and chronological age, with the shadow region indicating
95% regression Confidence Intervals. The Pearson correlation coefficients and significance level are
annotated at the top of each panel on the plot. (C-D) Heatmap showing the correlation between
cell composition and epigenetic age (C) and age acceleration (D). Chronological age was added to
the top row as a reference. Circle size and color scale represent the strength of correlation, with
blue color showing positive correlation and red color indicating negative correlation. The asterisk
indicates the significance level after the p-value adjustment. *: adjusted p-value < 0.05; **: adjusted
p-value < 0.01; ***: adjusted p-value < 0.001; ****: adjusted p-value < 0.0001. (E) Forest plot
displaying the cell composition’s mediation effects on the relationship from chronological age to
epigenetic age for each clock. The total effects, direct effects, and indirect effects are annotated at
the top. Grey shadowed region shows the individual contribution of each cell type to epigenetic
age. The dot represents the effects of mediation analysis, with the line width representing the 95%
Confidence Interval.
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Figure 4.4: Age acceleration’s association with cancer risk estimates. (A) Scatter plot showing
the association between Tyrer-Cuzick score and chronological age, Horvath clock’s epigenetic
age, age acceleration, and age acceleration adjusted by cell proportions (top panel: 10-year
risk, bottom panel: lifetime risk). (B) Scatter plot showing the association between DNAm-
based cancer risk (epiTOC2 score) and age acceleration adjusted by cell proportions for each
clock. The black line represents the regression line with a shadowed region indicating 95%
Confidence Intervals. Pearson correlation coefficients and significance levels are annotated at
the top of each panel on the plot.
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Figure 4.5: Age-acceleration-related CpG sites enriching for estrogen receptor binding sites.
EWAS analysis was performed to identify CpG sites associated with age acceleration after
adjusting cell proportions for each clock, followed by genomic region enrichment analysis.
The top 10 most significantly enriched Transcription Factor Binding Sites (TFBS) for each
clock were visualized, with dots indicating the enrichment odds ratio of genomic regions for a
particular TFBS. Estrogen receptor 1 (ESR1) binding sites were found among the top 10
most significantly enriched TFBS for most clocks examined.
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Figure 4.6: Transcriptome analysis characterizing genes and pathways associated with age
acceleration.

127



Figure 4.6: (A) Differential expression (DE) analysis was performed to identify genes significantly
associated with age acceleration after adjusting cell proportions. The bar plot shows the set size of
DE genes of each clock and their intersections. Little overlap was found in the DE genes among
clocks. (B) Gene ontology (GO) enrichment analysis was performed on the DE genes of each
clock to characterize the enriched pathways for each clock. The top 10 most significantly enriched
pathways were shown for each clock and arranged into three categories (BP: Biological Pathways,
CC: Cellular Component, MF: Molecular Function). The dot size represents the gene ratio of a
specific pathway overlapping with DE genes, and the color scale represents the adjusted significance
level of enrichment.
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Figure 4.7: Age deviation and Age difference comparison across different penalized regression
methods in simulation. The scatter plot shows chronological age is strongly correlated with
predicted/epigenetic age (A), not correlated with Age deviation (B), and inversely correlated
with Age difference (C) across penalization methods in simulation, indicating the confounding
issue of using difference as age acceleration measurement. Columns represent the three
different penalization techniques (Lasso: least absolute shrinkage and selection operator,
Ridge: Ridge regression, ElasticNet: Elastic Net regression). The black line represents the
regression line with a shadowed region indicating a 95% Confidence Interval.
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Figure 4.8: Age deviation and Age difference comparison across epigenetic clocks in KTB
data.
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Figure 4.8: The scatter plot shows chronological age is strongly correlated with predicted/epigenetic
age (A) in KTB data, with the redline representing the cubic spline regression and confirming
the change tendency between epigenetic age and chronological age is predominantly linear across
epigenetic clocks. Chronological age is not correlated with Age deviation (B), and inversely correlated
with Age difference (C) in real data, indicating the confounding issue of using difference as age
acceleration measurement. The black line represents the regression line with a shadowed region
indicating a 95% Confidence Interval.
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Figure 4.9: Correlations among epigenetic age, age acceleration, and the robustness of age
acceleration to sampling in KTB data. (A-B) Scatterplot matrices for epigenetic age (A) and
age acceleration (B), with chronological age added as a reference. The lower panels show the
scatter plot of a variable pair. The upper panels display the pairwise Pearson correlation
coefficient and significance level (*: p < 0.05, **: p< 0.01, ***: p < 0.001). (C) Robustness of
age acceleration to variations of sample composition. Bootstrap sampling was conducted for
1000 times with bootstrap mean (x-axis) and standard deviation (y-axis) of age acceleration
calculated for each sample, shadowed region represents coefficients of variation (cv) greater
than 0.3, showing most samples have stable age acceleration across clocks.
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Figure 4.10: GTEx normal breast snRNA data for cell deconvolution. (A) UMAP showing
eight major cell types in GTEx normal breast tissue snRNA-seq data. (B) Heatmap showing
the single cell gene signature matrix constructed by CIBERSORTx and used for cell deconvo-
lution, the standardized gene expression value (z-score) is shown for each cell type.
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Figure 4.11: Association of immune cell scores with epigenetic age and age acceleration.
Correlation heatmap showing the relationship between immune cell scores and epigenetic age
(A) and age acceleration (B) across epigenetic clocks. Chronological age was added to the top
row as a reference. Circle size and color scale represent the strength of correlation, with blue
color showing positive correlation and red color indicating negative correlation. The asterisk
indicates the significance level after the p-value adjustment. *: adjusted p-value < 0.05; **:
adjusted p-value < 0.01; ***: adjusted p-value < 0.001; ****: adjusted p-value < 0.0001.
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Figure 4.12: Pairwise correlation heatmap of examined variables. Correlation heatmap
showing the pairwise correlation among demographical variables (Age, Ethnicity, BMI,
Smoker ever, Acholic drinks per week), reproductive history (Menopausal status, Age at
menarche, Total breastfeeding months), breast cancer risk estimates, eight epigenetic clocks’
epigenetic age, age acceleration, age acceleration adjusted by cell proportions, top 10 principal
components from DNA methylation (mPC1-mPC10) and gene expression (ePC1-ePC10),
eight cell proportions, 24 immune cell scores and immune infiltration score.
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Figure 4.13: Association between cancer risk estimates and age acceleration. Scatterplot
showing the association between cancer risk measurement and age acceleration before (A)
and after (B) adjusting cell proportions. Columns show the eight epigenetic clocks, and rows
represent the three breast cancer risk measurements. The black line represents the regression
line with a shadowed region indicating a 95% Confidence Interval. Pearson correlation
coefficient statistics are annotated on the top of each panel.
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Figure 4.14: Manhattan and QQ plot for EWAS analysis.
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Figure 4.14: (A-H) Manhattan plot of EWAS analysis for pan-tissue clocks: Horvath clocks (A) and
AltumAge (B), breast-specific clocks: clock trained using ElasticNet algorithm (C) and Epigenetic
pacemaker (D), second generation clocks: GrimAge (E) and Phenotypic age (F), first-generation
clocks Hannum clock (G) and Skin&Blood clock (H); Blue and red horizontal line on the Manhattan
plot shows 10−5 and 5∗10−8 p-value threshold, respectively. The top sites on each chromosome whose
p-value passed the Bonferroni correction threshold are labeled on the plot. (I): Quantile-Quantile
(QQ) plot for all eight clocks examined.
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Figure 4.15: Differential gene expression and gene set enrichment analysis. Differential
expression (DE) analysis was performed to identify genes associated with age acceleration for
each clock, followed by gene set enrichment analysis.
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Figure 4.15: (A) scatterplot showing the DE analysis before and after adjusting cell proportions.
Each dot is a gene with -log10 of adjusted p-value before (x-axis) and after (y-axis) adjusting cell
proportions. Vertical and horizontal dashed line indicates a 0.05 threshold. Genes with adjusted
p-values smaller than 0.05 are defined as differentially expressed (DE) genes, and the number of DE
pre/post adjusting cell composition, as well as their overlap, were summarized using the bar plot
annotated to the top-left of the scatter plot. The genes accumulating below the diagonal dashed line
indicate many of the differential genes are due to cell compositional changes. (B) Cnetplot displaying
the GSEA pathway enrichment analysis results. Large nodes with pinkish font represent pathways,
while small nodes with black font represent genes connected to the pathways by edges. Node size
represents the number of genes of a pathway, and the colors of large nodes indicate whether the
given pathway is enriched in the corresponding clocks.
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CHAPTER 5

Conclusion and future directions

5.1 Conclusion

Data simulation and data analysis are complementary aspects of research that together provide

a comprehensive framework for understanding complex systems and processes. Simulation

focuses on generating realistic data based on predefined truths (generative), while analysis

seeks to uncover the underlying truths from observed data (inferential). By addressing key

challenges in simulating bisulfite sequencing data and analyzing DNA methylome changes

associated with disease and aging, this dissertation aims to advance the understanding of

DNA methylation, enabling the development of more reliable computational tools, uncovering

novel biological insights, and paving the way for scientific research and clinical applications.

In chapter 2, the development of BSReadSim addressed key limitations in existing

bisulfite sequencing simulators by integrating genetic variants and methylation profiles while

accurately modeling biological and technical variations. BSReadSim demonstrated high

fidelity in replicating reference genetic and methylation profiles, establishing itself as a robust

platform for generating realistic bisulfite sequencing data. Its versatility enhances its utility for

benchmarking bioinformatics tools and optimizing experimental designs, ultimately improving

the reliability and rigor of computational methods for DNA methylation analysis.

chapter 3 introduced a novel approach for type 2 diabetes (T2D) biomarker study by

validating saliva DNA methylation as a non-invasive indicator. The study combined Whole

Genome Bisulfite Sequencing (WGBS) and Targeted Bisulfite Sequencing (TBS) to identify
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and profile diabetes-specific epigenetic signals in saliva, uncovering molecular alterations and

cellular dynamics associated with T2D. These findings demonstrate, for the first time, the

potential of saliva DNA methylation as a cost-effective and accessible biomarker, paving the

way for personalized and non-invasive diagnostics and monitoring.

In chapter 4, the study of epigenetic clocks in normal breast tissue offered critical insights

into the interplay between epigenetic aging, cell composition, and breast cancer risk. This

research underscored the importance of tissue-specific clocks for accurate age prediction

and revealed systematic biases in existing epigenetic clocks. The findings demonstrated a

link between epigenetic age acceleration and changes in cell composition, particularly those

associated with increased breast cancer risk, highlighting the potential of epigenetic clocks

for cancer risk assessment. Furthermore, the study provided molecular evidence connecting

estrogen exposure, accelerated epigenetic aging, and heightened cancer susceptibility.

5.2 Future work

While this dissertation presents several advancements, some future work can further enhance

the impact and applicability of the findings.

1. Application of BSReadSim to benchmark computational tools: Future work will

focus on using BSReadSim to benchmark aligners and SNP callers under realistic scenarios.

This approach will enable a detailed evaluation of these tools’ performance in handling bisulfite

sequencing data. Building on these benchmarks, BSReadSim will be extended to assess tools

for detecting allele-specific methylation (ASM), leveraging its capability to simulate ASM

scenarios. These efforts will provide critical insights into the strengths and limitations of

existing tools, advancing their development and application in epigenetics research.

2. Expansion of Saliva DNA Methylation Research Future studies should fully

unlock saliva DNA methylation’s potential as a biomarker for T2D. They should also include

larger, more diverse cohorts and refine probe designs to target a broader spectrum of
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relevant methylation sites. Additionally, further cost reductions through advanced sequencing

techniques, such as barcoding and multiplexing, would make this approach more feasible for

large-scale epidemiological studies and routine clinical diagnostics.

3. Refinement and Clinical Application of Epigenetic Clocks The insights gained

from studying epigenetic clocks in breast tissue suggest several directions for future research.

Longitudinal studies are needed to better understand the dynamics of epigenetic aging

and its relationship with cancer risk over time. Additionally, single-cell DNA methylation

and transcriptomic profiling could provide a more detailed understanding of the interplay

between epigenomic changes and cellular composition during aging. These advancements

could refine epigenetic clocks, enhancing their clinical utility for early detection and prevention

of age-related diseases, including breast cancer.

4. Integration of Multi-Omics Approaches Future research should explore integrating

DNA methylation data with other omics layers, such as transcriptomics, proteomics, and

metabolomics, to provide a more comprehensive understanding of the molecular mechanisms

underlying aging and disease. Multi-omics approaches could reveal new biomarkers, therapeu-

tic targets, and insights into the complex regulatory networks that govern cellular processes

in health and disease.

The research presented in this dissertation highlights the pivotal role of DNA methylation

in unraveling complex biological phenomena, including disease and aging. By developing

innovative tools and exploring noninvasive biomarkers, this work establishes a solid foundation

for future advancements in both research and clinical applications. As the field of epigenomics

continues to advance, the methodologies and insights provided by this dissertation will serve

as valuable resources for ongoing efforts to uncover the epigenetic mechanisms underlying

health and disease.
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