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Abstract

Alchemical free energy campaigns can be planned using graph theory by building up networks 

that contain nodes representing molecules that are connected by possible transformations as 

edges. We introduce Konnektor, an open-source Python package, for systematically planning, 

modifying, and analyzing free energy calculation networks. Konnektor is designed to aid in the 

drug discovery process by enabling users to easily setup free energy campaigns using complex 

graph manipulation methods.

The package contains functions for network operations including concatenation of networks, 

deletion of transformations, and clustering of molecules, along with a framework for combining 

these tools with existing network generation algorithms to enable the development of more 

complex methods for network generation. A comparison of the various network layout features 

offered is carried out using toy datasets. Additionally, Konnektor contains visualization and 

analysis tools, making the investigation of network features much simpler.

Besides the content of the package, the paper also offers application examples, demonstrating how 

Konnektor can be used and how the different networks perform from a graph theory perspective. 

Konnektor is freely available via GitHub at https://github.com/OpenFreeEnergy/konnektor under 

the permissive MIT License.
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Introduction

In silico binding free energy (FE) calculations using alchemical molecular dynamics (MD) 

simulations1,2 are the current state-of-the-art in computer-aided drug design (CADD), 

yielding potency estimates that help drive key decisions such as the prioritization of 

synthesis and testing of candidates in drug discovery.3,4 Free energy methods can help 

save materials and time, potentially leading to more sustainable and efficient drug discovery 

pipelines.5 The vast number of successful applications and developments that have been 

described in the literature back up the use of FE calculations.6–23

Many different methods fall within the broader category of free energy calculations. Binding 

free energies between a protein and ligand are the paradigmatic example of the free energies 

that guide CADD efforts. Generally, binding free energy methods can be divided into 

relative binding free energies (RBFE) and absolute binding free energies (ABFE) methods 

(see Figure 1 A).24 ABFE calculations directly yield the desired binding affinity of one 

molecule to a target ΔGAbind, but they are also significantly more expensive to calculate 

compared to the widely used RBFEs.10,25–27 RBFE calculations yield the difference 

between two candidates in different environments (ΔGBAwater and ΔGBAcomplex) which then can 

be used to recover their binding free energy difference ΔΔGBAbind.
5,9,13,16,28,29 Both methods 

can be used to generate an FE network based on multiple ΔΔGBAbind (see Figure 1 B). The FE 

network can then be translated into a ranking of all candidates, provided the candidates are 

connected by at least one relative comparison (see Figure 1 C).30 The resulting ranking can 

be used, for example, as a priority list, helping to steer drug discovery efforts in the direction 

of improving ligand potency.

Despite these benefits, it is still challenging to run FE campaigns due to a lack of easily 

accessible automatized setup tools. The lack of such tools makes executing campaigns 

challenging for non-experts, and also inhibits development of larger-scale approaches to 

FE calculations.4,31,32 Additionally, RBFE calculations, even though cheaper than ABFE 

calculations, are still notably time-consuming, often taking several hours even with state-

of-the-art GPUs. This computational cost underlines the significance of well-planned FE 
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network calculation strategies, which can dramatically enhance the efficiency of building 

a candidate ranking.24 Generally, there is a trade-off to be made between, on the one 

hand, a minimal number of required calculations (ΔΔGBAbinds to be calculated) and, on the 

other, added redundancy in order to increase robustness and gain enhanced insights into the 

statistics of the final results via thermodynamic cycle analysis.29,33

Several approaches have been described to find good calculation strategies/networks. Some 

examples were directly borrowed from graph theory, such as the minimal spanning tree 

(MST) and star networks.13,30,34 More sophisticated approaches have also been suggested. 

A widely used example being LOMAP5,29,35 a rule-based algorithm developed around the 

requirements that, first, each node needs to be present in at least one cycle, and second, 

a network should require only a relatively small number of calculations connecting each 

ligand with each other. Recently HIMAP36 was proposed, which is an algorithm that uses a 

density-based clustering step and an additional optimization phase for building up a network 

around these design concepts: an n log n  desired number of edges, and a certain number of 

graph cycles. These more sophisticated methods demonstrate the interest in approaches that 

plan free energy calculation networks, while optimizing multiple features of networks.

Here we present Konnektor, a package which assists users in formulating their FE 

calculation strategies through the provision of network generation tools. Konnektor is 

contained in the Open Free Energy (OpenFE)37 environment, allowing for importing 

Konnektor via openfe and seamlessly integrating Konnektor code with OpenFE code. 

Konnektor can also be used as a standalone lightweight package.

In applications of FE calculations, desirable network characteristics maybe highly dependent 

on the features of the system being studied and on the FE calculation method. Konnektor’s 

network tools give users the ability to develop new methods for network generation, or 

easily create bespoke networks to optimize for a specific criteria.

Implementation

Konnektor is an open-source Python 338 package under the MIT license. The source code 

can be retrieved from GitHub: https://github.com/OpenFreeEnergy/Konnektor. Alternatively, 

the package can be installed via conda-forge.39

The package is built into the OpenFE environment by making use of the reusable abstract 

base classes and tools under the gufe package (https://github.com/OpenFreeEnergy/gufe/). 

As the base, or translation, layer of OpenFE, gufe provides a common set of base types 

for representing components of alchemical simulations, allowing seamless development 

of new features and interaction with different packages in the OpenFE environment. 

For further information about the architecture of the OpenFE environment, see https://

docs.openfree.energy/en/stable/cookbook/index.html.

The implementation of Konnektor relies on Python packages like NetworkX,40 NumPy,41 

scikit-learn42 and scikit-mol,43 and RDKit44 (a full list of dependencies can be found in the 

GitHub repository).
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Package Content

Konnektor is structured into two functional compartments: network planners and tools for 

basic network operations, visualization, and analysis. The network planner module is the 

core module of Konnektor and allows the generation of a network from a set of molecules. 

The network tools enable further processing and investigation of transformation networks.

Problem statement

The theoretical model for Konnektor’s algorithms is strongly influenced by graph theory. 

This approach allows us to represent for example each drug candidate as a node n in a 

graph G (see Figure 1 B). Next, each potential FE calculation comparing two molecules is 

represented by an edge e in G. The estimated difficulty of calculating a well converged and 

accurate ΔΔGbind is represented by a score between 0 and 1 that is assigned to an e as a 

weight. By convention, 1 is a good score (expressing a likely accurate and well converged 

result) and 0 is a bad score. Algorithms for producing these estimates are outside the scope 

of this work, but are an active area of investigation in the field.5,45 Finally, the task of 

planning a free energy calculation network to rank all candidates can be converted into a 

weighted graph construction problem, with the minimal requirement that the resulting graph 

must be connected.

Network Planning

The weighted graph construction problem can be solved as a Maximal Network (or 

fully connected graph, with each node connected to every other node) (see Figure 2-A). 

This approach provides a maximal number of edges Ne Ne = Nn * Nn − 1 ,46 which is 

a very inefficient approach for calculating a candidate ranking (see Figure 2). To build 

a comprehensive candidate ranking, only a connected graph is necessary, and from a 

thermodynamic standpoint (with perfect calculations leading to exact ΔΔGbind) no additional 

information is obtained by incorporating more edges into such a graph. Still, the Maximal 

Network approach is very important, acting as a precursor in network generation, with 

all subsequent network types pruning relevant edges to achieve their desired network 

layout. The generation of the Maximal Network is a time-critical step in the network 

planning phase, as all possible edges are generated and scored. Therefore, we implemented 

a parallelization scheme for this algorithm to speed up the calculations for larger numbers 

of molecules, which will affect all other network planning algorithms. However, for very 

large-scale approaches, this parallelization might not be sufficient.

Given the inefficiency of calculating the Maximal Networks, the purpose of Konnektor 

is to allow the user to explore different trade-offs between efficiency and other desirable 

properties. The approach we have used is to implement algorithms from graph theory to 

generate several distinct network topologies that may be of interest to the user, in addition to 

providing simple tools for modifying networks to allow more user control.

Reduced Network Topologies—The Heuristic Maximal Network is a special form of 

the Maximal Network (see Figure 2-B), allowing a drastic reduction of the cost of the 

network generation by picking randomly a subset of Ne = Ne
n * Nn if Ne

n ≫ Nn (Ne
n with as 
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the number of edges per node, as default Ne
n = 100), leading to a highly connected network, 

instead of a maximally connected network.

Opposite to the Maximal Network, the most edge-efficient network layouts are the Star 

Network and the Minimal Spanning Tree (MST) Network (see Figure 2-C), for which 

Konnektor uses the Kruskal Algorithm,34 with Ne = Nn − 1. From a network cost perspective, 

the MST Network is more efficient than the Star Network (see Figure 2-D), which has 

to find a compromise for the central molecule. The Star Network is more robust in 

retrieving a ranking of most molecules when some calculations fail. Calculation failures 

might occur from non-optimally chosen edge weights, very large molecule perturbations, 

or other unforeseen failures, like outages of computing nodes. Therefore, redundant edges 

can safeguard the network against calculation failures and the resulting disconnectivity. The 

Redundant MST Network (see Figure 2-F) executes the Kruskal Algorithm Nr times, always 

removing already selected edges from the input. Afterward, the overlay of all generated 

networks yields the Redundant MST Network with Ne = Nr * Nn − 1 , with Nr: redundancy 

number, default: 3. The N-Edges Network (see Figure 2-G) builds a network with a MST 

basis followed by a greedy algorithm selecting the best scoring Nr − 1 edges per n leading to 

Ne ≤ Nr * Nn − 1 ,with Nr: redundancy number, default: 3.

An additional benefit of redundancy is the possibility of spotting outliers and improving the 

overall estimates with thermodynamic cycles.29,33 The Twin Star Network (see Figure 2-E) 

follows the design principle of building up a significant number of cycles by generating 

a special form of the Star Network. In the Konnektor implementation, the two nodes that 

perform best in average over all edges and edge weights are used as centers, building up 

the number of cycles of size three as Nc 3 = n − 2, leading to Ne < = Nc * Nn − 1 , with Nc: 

minimal node cycle number. The Cyclic Network (see Figure 2-H) is generated by a greedy 

algorithm that builds up all possible cyclic paths around each node of a given size range 

(default: [3]), with the sum of the contained edge scores as path score. Next the Nc
x best 

score performing cyclic paths are selected for each node and merged into the final network. 

The number of generated cycles is more complex to determine as the edge cycles might 

overlap, therefore the number of cycles can be estimated as: Nc 3 ≤ n * Nc
x.

Network Tools

In addition to network planning algorithms, Konnektor offers features for network 

operations, visualization, and analysis.

Network Operations—Network operations include common tasks like addition or 

removal of edges or nodes, provided by the following functions: The merge_networks 
function is the most efficient means of combining two networks into a new one, provided 

they share a node, by leaving the network edges unmodified. The concatenate_networks and 

append_component functions can be utilized when no node is shared, employing specific 

types of network planners solving a bipartite graph matching and returning a chosen number 

of edges in order to concatenate two networks. Removing elements from a network is 

possible using delete_transformation or delete_component.

Ries et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2025 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Molecule Clustering—The Clusterer classes in Konnektor assist in separating the 

molecules based on their properties. In the following we will provide three examples.

Konnektor contains functionality for separating molecules by their fingerprint 

diversity using scikit-mol as a direct interface into scikit-learn with the 

ComponentsDiversityClusterer. This allows users to use a plethora of different fingerprint 

generators implemented in scikit-mol and clustering algorithms from scikit-learn.

The ChargeClusterer simply separates a set of molecules into groups by formal charge, 

while the ScaffoldClusterer clusters molecules by common structure scaffolds using the 

scaffold network module in RDKit by Kruger et al..47

Network Visualization—The visualization module offers two methods for network 

visualization. The draw_network function produces a Matplotlib48 figure of the network, 

which can be easily converted into an image file (.png) (see 3). Alternatively, an interactive 

visualization variant is available for use in IPython49 environments using IpyCytoscape50 

in the function draw_network_widget.

Network Analysis—The Analysis module provides users with functions to determine 

graph properties of a network, like the network_cost, which gives the sum of all edge 

weights as a cost. More in-depth insights can be obtained with the component_connectivity 
functions, calculating how many edges are connected to each individual node, or the 

component_score, returning the sum of all edge weights the node is involved in. The 

component_cycle functionality calculates the number of cycles in which the node is present. 

The robustness_measure is a function that samples the graph to test if it remains connected 

after a certain proportion of edges are randomly removed (see Figure 2-1-6).

Advanced Network Algorithms

Finally, Konnektor allows for more advanced network layouts and contains an advanced 

network algorithm example, the Starry Sky Network, that combines multiple steps in order 

to build up a more complex network layout. The Starry Sky Network Planner (see Figure 

2-I) was inspired by HIMAP,36 combining the following steps with the tools from the 

section Network Tools:

1. HDBSCAN clustering51 using Morgan fingerprints52 as features for the 

molecules

2. Constructing Star Networks for each cluster.

3. Concatenating (explained below) the networks to one Starry Sky Network after 

adding the n best performing edges between the clusters.

The idea of this algorithm is to build an efficient network layout while optimizing the 

number of edges and graph score. In the clusters, similar molecules are expected to 

group, allowing the usage of low edge redundancy inside the clusters. Outside the clusters, 

additional redundant edges are used to increase the network robustness in case of calculation 

failure, ensuring graph connectivity.
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Applications

In the following section, we demonstrate how Konnektor can be used for generating FE 

simulation campaigns.

Generating Networks

A very simple starting point is the generation of a Cyclic Network from a randomized 

dataset and visualizing the result (Figure 3). The input values are generated with 

Konnektor’s randomized toy dataset functionality, leading to a random set of molecules, 

and additionally returns a specific mapper and scorer for these artificial molecules. 

Next, the generated input values are used to construct the network planner class for 

cyclic networks called CyclicNetworkGenerator. The network is generated by calling the 

generate_ligand_network function and passing the list of molecules. Finally, the network is 

visualized using the draw_ligand_network function (see Figure 3).

The presented example can be tested in the provided Jupyter Notebook on GitHub, alongside 

more advanced examples, a real-world case, and building a charge separating network, using 

a wider range of tools in Konnektor and the interactive widget visualization (see https://

github.com/OpenFreeEnergy/konnektor/blob/main/examples/konnektor_example.ipynb).

Systematic Network Comparison

In the following systematic comparison of network layouts, we applied graph analysis tools 

(1-6) to different-sized random data sets arranged in each of the network layouts (A-I) 

defined above (see Figure 2). As a test range, we selected 10 molecule sets starting with 

sizes from 5 to 200 molecules. The data sets were generated three times randomly and each 

possible edge was assigned a weight from a random normal distribution.

Comparing Network Cost, Number of Edges, and Number of Cycles—Network 

cost aggregates all edge weights of a network, indicating the overall difficulty of all 

calculations finishing successfully in a network. The smaller the cost, the more likely a 

network and its Transformations will converge well and yield reasonable FE estimates.

The MST Network shows the lowest network cost in this comparison (2-1.C), a result 

expected from graph theory. Next follows the Redundant MST and N-Node Edges 

Networks: both optimize the edge cost but use significantly more edges than the MST 

Network, increasing the required computational cost (2–1,2.F-G).

The Star Network and the Twin Star Network perform less well on network cost, as they use 

the arithmetic mean of cost for choosing the central molecule(2-1.D-E). However, the Star 

Network is the only approach that uses the same number of edges as the MST Network. For 

the Twin Star Network, a key feature is the number of generated cycles in the graph, which 

is rivaled only by the Cyclic Network (2-2.E,H).

The Cyclic Network shows an improved network cost over the Twin Star Network that is 

similar to the Star Network; however, it uses a similar number of edges to the Twin Star 

Network to generate cycles (2-1,2.D,E,H).
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The Starry Sky network performs slightly better on network cost than the Star Network, 

since it can define multiple centers depending on the clustering, but uses slightly more edges 

(2-2.D,I). The network layout generates a notable number of cycles too, but the number of 

cycles and edges vary strongly depending on the dataset (2-3.I).

For completion, we present the Maximal Network and the Heuristic Maximal Network 

as extreme-case examples of a maximal number of Edges, Cycles, and network cost 

(2-1-3.A,B).

Comparing Network Robustness—Next, we tested graph robustness, measuring when 

the loss of an edge leads to a disconnected graph, since disconnection translates to the loss 

of molecules in a final ranking Random edge failure rates of 10% and 25% were used and 

repeated for each network 50 times (2-4,5).

As expected, the most efficient network layouts like the MST Network and the Star Network 

form disconnected graphs if even one edge is removed (2-4,5.C,F). For the MST Network 

case, it is hard to predict how many Components would be lost in a final ranking, as the 

loss highly depends on where in the structure the Transformation fails. The Star Network 

will lose as many molecules as failing edges (a 10% loss of edges, leads to 10% loss of 

molecules in the final ranking). As a practical note, a good transformation score function 

is one under which higher network cost directly correlates with more edge failures in the 

network. This meaning of cost has not been considered in this toy system.

The Twin Star Network is more robust than the most edge efficient approaches but 

loses robustness quickly with an increased number of molecules: since the condition for 

disconnection is two edges being removed from a single molecule, the probability of this 

condition being met increases with the total number of edges removed (2-4,5.E). The 

N-Node Edges Network, the Redundant MST Network, and the Cyclic Network are more 

robust network approaches which rarely show disconnected graphs at an edge failure rate 

of 10% (2-4.F-H). However, the networks also start to break down with a 25% failure rate 

and increasing numbers of molecules(2-5.F-H). The two variants of the Maximal Network 

approaches were the most robust approaches in both failure rate cases (2-4,5.A,B). The 

Heuristic Maximal Network approach however gets disconnected with small numbers of 

molecules, which is expected as the method is only proposed for a very large number of 

molecules.

Network Generation Cost—The final parameter we tested was the time cost of Network 

generation (2-6). In our assessment, we focused on network planning and want to note, 

that with molecules from drug design projects and real-world edge generation methods, e.g. 

using LOMAP atom mapper and scorer,5 the calculation time will be increased. Benchmarks 

were carried out using a single core of an AMD Ryzen 9 7900X CPU.

The Maximal Network approaches are the baseline of time consumption in our approaches, 

as each other network layout uses them as a basic solution that is filtered down to the desired 

network layout (2-6.A).
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In the benchmark, the MST Network and Star Network are the fastest algorithms (2-6.C,D). 

The Twin Star-, Redundant MST, and N-Node Edges Networks are slightly slower, which 

might only matter for very large numbers of molecules (2-6.E-G). The slower algorithms 

are the Starry Sky and Cyclic Network generating algorithms, which show a clear increase 

in calculation time (2-6.H,I). Interestingly, the Starry Sky Network shows noisy generation 

cost averages. This observation is a dataset dependency caused by the number of clusters 

contained in the randomized toy dataset.

Conclusion

We have introduced Konnektor, a tool for systematically planning, modifying, and analyzing 

FE calculation networks. Konnektor enables users to plan their free energy calculation 

networks and to augment these networks to adjust the calculations according to the needs 

of drug design projects, like adding new molecule designs or handling multiple crystal 

structure dependent networks. Method developers can rapidly construct more complex 

network generation algorithms relying on the tools in Konnektor, which could address 

applications including large-scale networks with many ligands, networks involving mixed 

FE calculation methods, or even multistate FE methods. Our application examples show how 

Konnektor can be used and how the different networks perform based on graph analysis 

metrics. We hope that Konnektor will encourage a more creative application of graph 

theory to the problems of Free Energy calculations. We exhort practitioners to use the 

tools presented here to develop even more sophisticated network generation algorithms and 

unleash the Free Energy methods of a new era, freed from the constraints of star networks.
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Figure 1: 
The thermodynamic cycle describes how to calculate a comparison of the binding affinities 

of two molecules ΔΔGBAbind (A). These comparisons can be used to build up a FE network 

of thermodynamic cycles or edges. The difficulty to calculate one FE calculation can be 

described as an edge weight prior to calculating the ΔΔGBAbind (B). The edge weights can 

be used to build up efficient connected networks to calculate a set of ΔΔGBAbind that can be 

translated into a ranking. The final ranking can be used to support drug discovery, in order 

to find the most promising candidates due to their binding affinity, helping to prioritize 

synthesis (C).
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Figure 2: 
Comparison of network layouts (A-I) using randomized toy datasets and graph analysis 

functions (1-6).
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Figure 3: 
Network visualization of the output of the Cyclic Network generation code example. Each 

node represents a molecule and each edge is a potential FE calculation
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