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Abstract: We derive an operator based factorization theorem for the energy-energy cor-

relation (EEC) observable in the back-to-back region, allowing the cross section to be

written as a convolution of hard, jet and soft functions. We prove the equivalence of the

soft functions for the EEC and color singlet transverse-momentum resummation to all-

loop order, and give their analytic result to three-loops. Large logarithms appearing in the

perturbative expansion of the EEC can be resummed to all orders using renormalization

group evolution. We give analytic results for all required anomalous dimensions to three-

loop order, providing the first example of a transverse-momentum (recoil) sensitive e+e−

event shape whose anomalous dimensions are known at this order. The EEC can now be

computed to next-to-next-to-next-to-leading logarithm matched to next-to-next-to-leading

order, making it a prime candidate for precision QCD studies and extractions of the strong

coupling constant. We anticipate that our factorization theorem will also be crucial for

understanding non-perturbative power corrections for the EEC, and their relationship to

those appearing in other observables.
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1 Introduction

Event shapes in e+e− provide a theoretically and experimentally clean environment for

precision studies of QCD and extractions of the strong coupling constant, αs. The pertur-

bative description of event shapes requires both the calculation of fixed order corrections,

which are currently known to next-to-next-to-leading order (NNLO) [1–4], as well as the all

orders resummation of singular logarithmic terms [5]. There has been significant progress in

both of these areas in recent years: advances in fixed order subtractions [6–9], have enabled

a number of new NNLO calculations [6, 7], and resummation to next-to-next-to-leading

logarithmic (NNLL) order has been performed for a wide variety of observables [10–16],

and implemented in a fully generic manner [17, 18].

Resummation to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy has

been achieved using the soft collinear effective theory (SCET) [19–22], which allows re-

summation to be performed using renormalization group evolution, in virtuality or rapid-

ity [23–25], of field theoretic operators. Resummed predictions at N3LL accuracy have

been made for thrust [26, 27], the C-parameter [28] and heavy jet mass [29], enabling

precision extractions of αs [26, 27, 29, 30]. However, all of these observables are “recoil

free”, or transverse-momentum (qT ) insensitive (described by SCETI), meaning that at

leading power, soft partons are not able to recoil the qT of the jet. Unfortunately, there

are no examples of qT sensitive observables in e+e− which are known at N3LL accuracy,

which could complement αs fits using recoil free observables. Recoil typically significantly
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complicates perturbative calculations. For example, calculations of jet broadening [31–33]

are complicated by issues of recoil, jet regions, and by the fact that it is a scalar sum

which become complicated at multiple emissions. Indeed, elliptic functions appear already

at NNLL for broadening [11], making extensions to higher orders seem difficult.

Recently, the three-loop soft function governing the color singlet qT spectrum at small

qT was computed [34]. This calculation used bootstrap techniques from N = 4 super Yang-

Mills theory [35–39], a supersymmetric decomposition in transcendental weight, a newly

introduced rapidity regulator [40], multi-dimensional factorization [41, 42], and recently

computed master integrals [43–48]. The final result has a remarkably simple structure and

exhibits interesting relations to other anomalous dimensions [34, 49, 50]. The computation

to this order was ultimately enabled by the simple structure of the observable: it is a vector

sum, which preserves the maximal number of rotational symmetries, and does not involve

any jet regions, or projections onto axes whose precise definition can modify the perturba-

tive structure [51, 52]. It is therefore interesting to ask whether this anomalous dimension

controls the resummation of any e+e− event shape observables. This is interesting both

phenomenologically, as it could provide information for αs extractions complimentary to

that from recoil free observables, as well as for understanding all orders relations between

different observables.

In this paper, we derive an all orders factorization theorem for the energy-energy cor-

relation (EEC) in the back-to-back region. In this factorization theorem, the soft radiation

does not contribute directly to the observable at leading power, but instead contributes

only via recoil. We are able to show that the soft function appearing in the factorization is

identical to that for the color singlet qT distribution, up to the direction of the Wilson lines.1

Using a recently introduced rapidity regulator [40], which allows both the regulator and

the measurement function to be described by spacetime shifts of the Wilson lines, we prove

that the soft function is invariant under the crossing of the Wilson lines, allowing us to use

the recently derived results for qT soft function to derive the anomalous dimension and soft

function for the EEC. This provides the first example of a qT sensitive observable in e+e−

whose anomalous dimensions are known to three-loops. It also illustrates the utility of op-

erator definitions in factorization theorems, which allow for the identification of universal

structures in apparently different situations. As a further consequence of our analysis, the

anomalous dimension and soft function could also be used for identified hadron production

in the back-to-back limit, allowing it to be extended to N3LL perturbative accuracy.

The EEC, one of the earliest examples of an infrared and collinear (IRC) safe observ-

able, is defined as [54]

EEC =
∑

a,b

∫
dσV→a+b+X

2EaEb
Q2σtot

δ(cos(θab)− cos(χ)) , (1.1)

1The similarity between the resummation for EEC and qT in the back-to-back region has long been

known, and has been used to perform the resummation to NNLL using the Collins-Soper-Sterman form as

an ansatz, see e.g. [10, 16]. However, we were not able to find a factorization theorem for the EEC in the

literature, or an all orders proof of this relation between the anomalous dimensions. The steps for a proof

of factorization along with a leading log resummation formula were given in [53].
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Figure 1. An illustration of the EEC observable in e+e− annihilation, which is defined as the

energy-energy correlation of two calorimeter cells with opening angle χ.

where the sum is over all different pairs of hadrons ha and hb in the event, cf. figure 1.

It has been studied extensively in the QCD literature [10, 55–66], and has been computed

analytically to NLO in planar N = 4 super Yang-Mills theory, exploiting a relation to

correlation functions [67–69], as well as at strong-coupling [70] using the AdS/CFT corre-

spondence [71]. There has also been progress towards the NLO calculation in QCD [72].

Recently it was computed at NNLL+NNLO [16] using the NNLO calculation of [6, 7] and

used to fit αs from data. Our results will allow this to be extended to N3LL’+NNLO,

matching the state of the art precision for recoil free (SCETI) observables.2

An outline of this paper is as follows. In section 2 we discuss the kinematics of the

EEC in the back-to-back limit, and illustrate the relationship between the EEC and qT .

In section 3 we present our factorization theorem for the EEC observable, discussing in

detail how soft radiation contributes to the observable. In section 4 we prove that both

the anomalous dimensions, as well as the full soft function, are identical to those governing

the color singlet qT spectrum, and we use this relation to give explicit results for the soft

function to three-loop order. In section 5 we use our factorization theorem to give the all

orders form for the resummed cross section in the back-to-back limit. We conclude and

discuss future directions in section 6. Additional calculations, and a comparison to NNLO

of the logarithmic structure as predicted by our factorization theorem with results in the

literature, are given in the appendices.

2Here the prime on the logarithmic accuracy indicates the inclusion of the three-loop boundary conditions

for the soft and collinear functions, as has been included for thrust and C-parameter [26–28]. See also [73]

for a detailed discussion of order counting.
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2 Kinematics

In this section we discuss in detail the kinematics of the EEC observable in the back-to-

back region, χ→ π in eq. (1.1). This will be important in understanding the derivation of

the factorization theorem, and the relation to the qT observable. It will be convenient to

work with the dimensionless variable

z =
1− cos θij

2
, (2.1)

in terms of which we have

dσ

dz
=

1

2

∑

ij

∫
dxidxjxixj

d3σ

dxidxjdz
, (2.2)

where d3σ
dxidxjdz

is the triple differential cross section measuring the energy fraction with

respect to half of the center of mass energy, xi,j = 2Ei,j/Q, and relative angle z. Note that

this triple differential distribution is not IRC safe. IRC safety is recovered after summing

over different particles. Here the summation is over different pair of hadron in the final state

with momentum pi and pj . The back-to-back limit is then characterized by χ = θij → π,

or z → 1.

In the back-to-back limit, the event consists of two nearly back-to-back jets, along with

additional low energy (soft) radiation. Additional hard jets are power suppressed (for a

detailed discussion, see [25]). This situation is illustrated schematically in figure 2. We

denote the momentum of the two jets by pµa = (p0
a, ~pa) and pµb = (p0

b , ~pb). We then define

two light-cone directions nµa = (1, ~na) and nµb = (1, ~nb), with ~na(b) = ~pa(b)/|~pa(b)|. We also

define the conjugate directions n̄a(b) = (1,−~na(b)). The relevant modes in the effective

theory are easily determined by considering on-shell modes that contribute to the EEC

observable at leading power. They are found to be soft, collinear, and anti-collinear, with

the scalings in light-cone coordinates

ps ∼ Q(λ, λ, λ) , pc ∼ Q(λ2, 1, λ) , pc̄ ∼ Q(1, λ2, λ) , (2.3)

where

λ ∼
√

1− z . (2.4)

In particular, we see that the EEC is an SCETII [74] observable. This is intuitively obvious,

since the EEC directly measures angles between hadrons and is therefore sensitive to recoil

at leading power. With the above definition, we have n̄a(b) ·pa(b) = Q+O(λQ).

Using the definition of the observable in eq. (2.2), and the power counting of the

modes in eq. (2.3), we can now expand the EEC observable to leading power in the z → 1

limit. We begin by noting that the contribution of soft modes to the observable is power

suppressed. Soft radiation therefore will contribute only by recoiling the jet sectors. This

is quite interesting, and in particular, it implies that it is sufficient to know the total vector

transverse momentum of the soft sector.3

3We find it interesting that recoil, which often leads to complications, in fact leads to the remarkable

simplicity of the soft function for the EEC.
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~kh⊥,s

~na
~nb

~khi
~khj

~kh⊥,i
~kh⊥,j

θij

n̄a · pa = Q+O(λQ)

n̄b · pb = Q+O(λQ)

π−θij
2 ≈ 1

Q

∣∣∣∣
~kh⊥,i

xi
+

~kh⊥,j

xj
− ~k h⊥,s

∣∣∣∣

Figure 2. A schematic of the kinematics relevant for the description of the EEC observable in the

back-to-back limit, z → 1. The total transverse momentum of final-state hadrons perpendicular

to the thrust axis (the black dashed line) is denoted as ~kh⊥,s. The three-momentum of a pair of

collinear hadrons which enter weighted sum in eq. (2.2) are denoted as ~khi,j . The corresponding

transverse components perpendicular to the jet axis ~na,b are ~kh⊥,i and ~kh⊥,j . Soft radiation acts

only to recoil the two collinear sectors, denoted by ~na,b, with respect to each other, but does not

contribute directly to the observable.

Contributions to the observable arise only from correlations between collinear partons

in different collinear sectors. It is therefore a simple geometric exercise to relate their

perpendicular momentum to z, as relevant for the EEC. Considering the configuration

shown in figure 2, to leading power we find

1− z =
1

Q2

∣∣∣∣∣
~kh⊥,i
xi

+
~kh⊥,j
xj
− ~kh⊥,s

∣∣∣∣∣

2

+O(1− z) , (2.5)

where kh⊥,s is the total transverse momentum of soft final-state hadrons relative to thrust

axis, and kh⊥,i(j) is the tranverse momentum of a collinear hadron relative to its respective

jet axis, defined as the direction with largest energy flow. We emphasize that eq. (2.5)

only holds in the back-to-back limit. With these definitions, we have the conservation of

transverse momentum within each jet

∑

i∈jet a

~kh⊥,i = O(λ2Q) ,
∑

j∈jet b

~kh⊥,j = O(λ2Q) , (2.6)

and the conservation of total transverse momentum perpendicular to the thrust axis

~kh⊥,s + ~p⊥,a + ~p⊥,b = O(λ2Q) , (2.7)

– 5 –
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where ~p⊥,a(b) is the transverse momentum of jet a(b) perpendicular to the thrust axis.

Eq. (2.5) clearly shows the relationship between the EEC observable and qT . This ex-

pression also hints at the simplicity of the EEC. Most importantly, 1 − z is related to the

vector sum of the transverse-momentum in the different sectors, and in particular, the only

property of the soft radiation that is measured is the total transverse-momentum. This

is much simpler than other recoil sensitive e+e− observables such as broadening, where it

is ultimately the scalar sum of the transverse momentum that is measured, making the

measurement function extremely complicated for configurations with multiple emissions.

3 Factorization theorem for the EEC in the back-to-back region

Having understood the kinematics of the EEC observable in the back-to-back region, we

can now derive a factorization theorem describing the all orders singular behavior in the

z → 1 (χ→ π) limit. This factorization theorem will allow us to express the leading power

cross section for the EEC as a product (convolution) of a hard matching coefficient, H,

a soft function, S, which describes wide angle soft radiation, and jet functions, J , which

describe collinear radiation in the jets. Each of these functions will describe the dynamics

at a single scale, and large logarithms in the cross section can be resummed through their

renormalization group evolution, which is given in section 3.2.

We will present this factorization in the language of SCET [19–22], giving gauge in-

variant operator definitions for the jet and soft functions. While the resummation of the

EEC to NNLL order has been performed in the Collins-Soper-Sterman (CSS) [53, 75–78]

formalism (see e.g. [10, 16]), we are not aware of a factorization theorem in terms of hard,

jet and soft functions. Such a factorization will ultimately allow us to prove the equivalence

of the soft function for the EEC and for qT in color singlet production, and to extend the

perturbative accuracy of the EEC observable to N3LL.

3.1 Factorization theorem

We will derive the factorization theorem for the case of e+e− → dijets through an off-shell

photon or Z. The extension to other underlying hard processes, such as e+e− → gg through

an off-shell Higgs, is trivial. Our proof will use as a starting point the factorization theorem

for identified hadron production in the back-to-back limit [53, 75], and we will formulate

the factorization for the EEC observable by marginalizing over this factorization theorem.

Since a factorization theorem, and in particular the cancellation of Glauber modes, has

been proven for back-to-back identified hadron production, we will also be able to use this

argument to conclude that Glauber modes do not contribute to the EEC and therefore

that they do not violate the factorization at all orders.

Since the derivation of the factorization starts from identified hadron production in

the back-to-back limits, we will use fragmentation functions, and their transverse momen-

tum dependent (TMD) counterparts, extensively. We therefore begin by reviewing their

– 6 –
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definitions. We define the standard fragmentation functions (FFs) as [79–82]

fq→h(zh) =
1

4zhNc

∑

X

∫
dξ+

4π
e−ip

−
h ξ

+/zh (3.1)

〈0|T
[
W̃ †nqj

]
a

(
ξ+

2

)
|X,h〉γ−ij 〈X,h|T̄

[
q̄iW̃n

]
a

(
−ξ

+

2

)
|0〉 ,

and their TMD extensions (TMDFFs) as [83, 84]

Fq→h(~b⊥, zh) =
1

4zhNc

∑

X

∫
dξ+

4π
e−ip

−
h ξ

+/zh (3.2)

〈0|T
[
W̃ †nqj

]
a

(
ξ

2

)
|X,h〉γ−ij 〈X,h|T̄

[
q̄iW̃n

]
a

(
−ξ

2

)
|0〉 .

Here Wn is a Wilson line, defined in momentum space as

Wn =

[ ∑

perms

exp
(
− g

n̄ · P n̄ ·An(x)
)]

, (3.3)

and q are lightcone projected fermionic fields. Here ξ = (ξ+, 0−,~b⊥), with ~b⊥ the conjugate

variable to ~kh⊥, the transverse momentum of h perpendicular to jet axis ~n, which is aligned

with the total jet three momentum. The lightcone vector nµ in the operator definition of

fq→h and Fq→h is then defined by nµ = (1, ~n). We also define the conjugate lightcone vector

n̄µ = (1,−~n). We are therefore working in the center-of-mass frame, in contrast to the

more conventional hadron frame [83]. Note that the only difference between the definition

for the TMDFF and the standard FF is in the positions of the fields. The renormalized

fragmentation functions satisfy the following sum rule

∑

h

1∫

0

dx x fq→h(x, µF ) = 1 , (3.4)

which will play an important role in our derivation.

To derive a factorization theorem for the EEC in the back-to-back region, we begin by

factorizing the multi-differential cross section which appears in its definition

dσ

dz
=

1

2

∑

ij

∫
dxidxjxixj

d3σ

dxidxjdz
. (3.5)

Furthermore, in the back-to-back limit, we can exchange the variable z for an auxiliary

transverse momentum, ~k⊥ = ~kh⊥,i/xi + ~kh⊥,j/xj − ~kh⊥,s, by writing

d3σ

dxidxjdz
=

∫
d2~k⊥

d3σ

dxidxjd2~k⊥
δ

(
1− z −

~k2
⊥
Q2

)
. (3.6)

In the back-to-back limit we can write a factorized expression for this cross section using

the result for identified hadrons in the back-to-back region as was studied in the seminal

– 7 –
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papers [53, 75]. In [53, 75] a factorization theorem was proven, and in particular it was

shown that Glauber modes do not contribute, using techniques developed in [85–87] (see

also [82, 83] for a review). Since we will formulate our factorization for the EEC from

this starting point, this implies also that Glaubers cancel from the EEC observable. Using

these results, we have

d3σ

dxidxjd2~k⊥
= H(Q,µ)

∫
d2~kh⊥,i

∫
d2~kh⊥,j

∫
d2~k⊥,s δ

(2)

(
~k⊥ −

(
~kh⊥,i
xi

+
~kh⊥,j
xj
− ~k⊥,s

))

· Fq→i(~kh⊥,i, xi, µ, ν)Fq→j(~k
h
⊥,j , xj , µ, ν)SEEC(~k⊥,s, µ, ν) , (3.7)

where the triple differential distribution is written as convolution over transverse mo-

mentum of collinear hadrons perpendicular to jet axis, and transverse momentum of soft

hadrons perpendicular to thrust axis. For the soft sector we do not distinguish partonic

and hadronic momentum, as the impact of soft modes to the factorization formula is only

through recoil. Here H(Q,µ) is the hard matching coefficient for e+e− → qq̄, Fq→i are the

transverse momentum dependent fragmentation functions defined in eq. (3.2), and SEEC is

the soft function. The µ and ν are the virtuality and rapidity renormalization scales, re-

spectively. The dependence on rapidity scale arises because the naive TMD fragmentation

function and soft function suffer from rapidity divergences, and need regularization and

renormalization, similar to the TMD PDF. The renormalization group evolution of each of

the functions appearing in the factorization theorem will be given in section 3.2.

The soft function, SEEC, is defined as a vacuum matrix element of Wilson lines. Since

it will play a central role in our discussion, we will carefully define SEEC, paying particular

attention to the directions of the Wilson lines, and the definition of the rapidity regulator.

We begin by defining four distinct soft Wilson lines

Sn+ (z) = P exp


ig

0∫

−∞

ds n ·Aus(z + sn)


 , (3.8)

S†n− (z) = P̄ exp


−ig

0∫

−∞

ds n ·Aus(z + sn)


 , (3.9)

S†n+ (z) = P exp


ig

∞∫

0

ds n ·Aus(z + sn)


 , (3.10)

Sn− (z) = P̄ exp


−ig

∞∫

0

ds n ·Aus(z + sn)


 . (3.11)

Here zµ is a reference vector defining the starting (ending) position of the Wilson line. For

a detailed discussion of the Wilson line directions appearing in soft functions arising from

factorization, see e.g. [88, 89]. The Wilson lines in different directions will be required

to discuss both the soft functions appearing for the EEC, and for the color singlet qT
spectrum, and to allow for an understanding of the relation between the soft functions

appearing in these two cases.
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The soft function requires a rapidity regulator to be well defined. Here we use the re-

cently introduced rapidity regulator of [40], which is implemented by displacing the Wilson

lines from the origin. This is most easily formulated in position space (impact parameter

space), obtained by performing a Fourier transform in the ⊥ momentum [75]. Here we take
~b⊥ to be conjugate to ~k⊥. The offset of the Wilson lines is defined as

yν(~b⊥) = (ib0/ν, ib0/ν,~b⊥) , (3.12)

where b0 = 2e−γE . We can now define the soft function for the EEC as

SEEC(~b⊥, µ, ν) = lim
ν→+∞

1

Nc
tr〈0|T

[
S†n̄+(0)Sn−(0)

]
T̄
[
S†n+

(
yν(~b⊥)

)
Sn̄−

(
yν(~b⊥)

)]
|0〉 .
(3.13)

The limit appearing in eq. (3.13) means to keep only the leading terms, dropping all terms

that vanish as ν → ∞. The shift of the Wilson lines implements both the measurement

of the ⊥ momentum, as well as the regularization. Since the regularization can be imple-

mented as a spacetime shift, it is well defined non-perturbatively. For a detailed discussion

of the properties of this regulator, see [40].

The full expression for the leading power EEC cross section in the back-to-back limit

can now be written as

dσ

dz
=

1

2

∑

ij

∫
dxidxjxixj

∫
d2~k⊥δ

(
1− z −

~k2
⊥
Q2

)

·H(Q,µ)

∫
d2~kh⊥,i

∫
d2~kh⊥,j

∫
d2~k⊥,sδ

(2)

(
~k⊥ −

(
~kh⊥,i
xi

+
~kh⊥,j
xj
− ~k⊥,s

))

· Fq→i(~kh⊥,i, xi, µ, ν)Fq→j(~k
h
⊥,j , xj , µ, ν)SEEC(~k⊥,s, µ, ν) . (3.14)

In its current form, this expression is still quite complicated, and furthermore, it involves

the non-perturbative TMDFFs, despite the fact that the EEC is an IRC safe observable.

To simplify this result, we can perform an operator product expansion (OPE) of the

TMDFF onto the standard FF, and use the sum rule of eq. (3.4) to eliminate the dependence

on the FF. The OPE of the TMD FF onto the standard FF is given in momentum space

by [83, 90–92]

Fi→h(~kh⊥, zh) =
∑

j

∫
dz

z3
Iij
(
~kh⊥
z
,
zh
z

)
fj→h(z, µ)

[
1 +O

(
Λ2

QCD

(~kh⊥)2

)]
. (3.15)

Here Iij are infrared finite matching coefficients. Explicit results are given in appendix A.

Inserting this expression into eq. (3.24), and changing variables to

τi =
xi
zi
, dxidzi = zidτidzi . (3.16)

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
0

We then find

dσ

dz
=

1

2

∑

ij

∫
dτidτjτiτj

∫
d2~k⊥δ

(
1− z −

~k2
⊥
Q2

)

·H(Q)

∫
d2~k⊥,i

∫
d2~k⊥,j

∫
d2~k⊥,sδ

(2)

(
~k⊥ −

(
~k⊥,i
τi

+
~k⊥,j
τj
− ~k⊥,s

))

· Iqi
(
~k⊥,i, τi

)[∑

h

∫
dzi zi fi→h(zi, µ)

]
· Iqj

(
~k⊥,j , τj

)[∑

h′

∫
dzj zj fj→h′(zj , µ)

]

· SEEC(~k⊥,s) , (3.17)

where we have changed the convolution from hadronic transverse momentum ~kh⊥,i(j) to par-

tonic transverse momentum ~k⊥,i(j). The relation between hadronic and partonic transverse

momentum is given by ~kh⊥,i = zi~k⊥,i and ~kh⊥,j = zj~k⊥,j , which hold up to O(ΛQCD). We

also use this relation to rewrite the measurement function. It then allows us to use the

momentum-conservation sum rule

∑

h

∫
dz z fj→h(z, µ) = 1 , (3.18)

to cancel non-perturbative fragmentation functions, and we have

dσ

dz
=

1

2

∑

ij

∫
dτidτj τiτj

∫
d2~k⊥δ

(
1− z −

~k2
⊥
Q2

)

·H(Q)

∫
d2~k⊥,i

∫
d2~k⊥,j

∫
d2~k⊥,sδ

(2)

(
~k⊥ −

(
~k⊥,i
τi

+
~k⊥,j
τj
− ~k⊥,s

))

· Iqi(~k⊥,i, τi) · Iqj(~k⊥,j , τj)SEEC(~k⊥,s) . (3.19)

This makes it clear that what we have is an expression in terms of the perturbative matching

coefficients for the TMDFFs, Iij , which are by construction IR finite. This is of course not

a surprise, since the EEC observable is IRC safe, however, it is interesting to see explicitly

how it arises from the sum rule for the FFs.

We can further simplify the convolution structure by transforming to impact parameter

space [75]. In addition to simplifying the convolution in the k⊥,i variables, as is familiar

from the case of qT factorization, here we will find that this also simplifies the integrals

over the momentum fractions xi. Using the Fourier representation of delta function, we

can write

δ(2)

(
~k⊥−

(
~k⊥,i
τi

+
~k⊥,j
τj
−~k⊥,s

))
=

∫
d2~b⊥
(2π)2

exp

[
−i~b⊥ ·~k⊥+i~b⊥ ·

(
~k⊥,i
τi

+
~k⊥,j
τj
−~k⊥,s

)]
.

(3.20)
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The momentum convolutions are now in complete factorized form. We define the Fourier-

transformed matching coefficients and soft function as

Iqi(~b⊥,i, xi, µ, ν) =

∫
d2~k⊥,i Iqi(~k⊥,i, xi, µ, ν)ei

~b⊥,i·~k⊥,i ,

SEEC(~b⊥,s, µ, ν) =

∫
d2~k⊥,s SEEC(~k⊥,s, µ, ν)ei

~b⊥,s·~k⊥,s , (3.21)

where to simplify notation, we use only the argument of the function to indicate that it is

Fourier transformed. This allows us to simplify our factorized expression to

dσ

dz
=

1

2

∑

ij

∫
dxidxjxixj

∫
d2~k⊥δ

(
1−z−

~k2
⊥
Q2

)
(3.22)

·H(Q)

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥ ·Iqi

(
~b⊥
xi
,xi,µ,ν

)
Iqj
(
~b⊥
xj
,xj ,µ,ν

)
SEEC(~b⊥,µ,ν)

=

∫
d2~k⊥δ

(
1−z−

~k2
⊥
Q2

)∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥ ·H(Q,µ) (3.23)

·
[∑

i

∫
dxi xi Iqi

(
~b⊥
xi
,xi,µ,ν

)]
∑

j

∫
dxj xj Iqj

(
~b⊥
xj
,xj ,µ,ν

)
SEEC(~b⊥,µ,ν) .

In this form, it is clear that only certain flavor summed moments of the matching coeffi-

cients for the fragmentation functions appear, and furthermore, that the integrals in the

momentum fraction variables, xi, are factorized. In particular, we can define the quark jet

function relevant for the EEC as

JqEEC(~b⊥) =
∑

i

1∫

0

dx x Iqi
(
~b⊥
x
, x

)
, (3.24)

and similarly for the anti-quark jet function. The one-loop result for JqEEC is given in

appendix A. This allows us to write our final factorized expression as

dσ

dz
=

1

2

∫
d2~k⊥

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥H(Q,µ)Jq

EEC(~b⊥,µ,ν)J q̄
EEC(~b⊥,µ,ν)SEEC(~b⊥,µ,ν)δ

(
1−z−

~k2
⊥
Q2

)
.

(3.25)

This provides a fully factorized description of the EEC in the back-to-back region into

hard, jet and soft functions, and is one of the main results of this paper. We verify that

this produces the known logarithmic structure at NNLO in appendix B.

We find it interesting that this factorization theorem of eq. (3.25) is as close as possible

to a direct crossing of the factorization theorem for qT for color singlet production,4 which

4It would also be interesting to study semi-inclusive DIS with measured transverse momenta of an

identified outgoing hadron. In this case, while it has been argued that the partially crossed soft function

should be used [93, 94], the analysis of [95] indicates that future pointing Wilson lines should be used. We

leave a study of this question in our framework to future work. We thank John Collins for discussions on

this point.
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can be written in impact parameter space as

1

σ

d3σ

d2~qTdY dQ2
= H(Q,µ)

∫
d2~b⊥
(2π)2

ei
~b⊥·~qT [B ×B] (~b⊥, µ, ν)S⊥(~b⊥, µ, ν) . (3.26)

Here, instead of TMDFFs, transverse momentum dependent beam functions (also known

as TMDPDFs) appear, and the soft function, referred to as the TMD soft function, is

identical to the EEC soft function up to the direction of the Wilson lines in its definition.

Explicitly, for the soft function, we have

S⊥(~b⊥, µ, ν) = lim
ν→+∞

1

Nc
tr〈0|T

[
S†n̄−(0)Sn+(0)

]
T̄
[
S†n−

(
yν(~b⊥)

)
Sn̄+

(
yν(~b⊥)

)]
|0〉 .

(3.27)

The precise definitions of the beam functions will not be important for the present discus-

sion, but can be found in [91, 96, 97].

The key reason for the utility of this factorization theorem of eq. (3.25) is that all

the ingredients are related (or identical) to other functions that have been calculated to

high perturbative accuracy, namely the TMDFFs, and the TMD soft function. This will

allow us to directly use these results to improve the perturbative understanding of the EEC

observable. This ability to relate different functions highlights a benefit of operator based

factorization theorems.

3.2 Renormalization group evolution

Large logarithms in the back-to-back region can be resummed by the renormalization group

evolution of the functions appearing in the factorization theorem of eq. (3.25). Since this

factorization theorem is constructed from well known objects, namely TMDFFs and the

TMD soft function, we can immediately write down their renormalization group evolu-

tion. The qT dependent beam function and soft function were computed in the η regu-

lator of [23, 25] to NNLO [98]. The NNLO TMDPDF and soft function were calculated

in [96, 97, 99]. The unpolarized TMDFF at NNLO was calculated in [84], from which it is

possible to obtain the EEC jet function using eq. (3.24). The qT dependent beam and jet

functions will be calculated in the exponential regulator of [40] that was used for the calcu-

lation of the three-loop soft function for color singlet qT [34] in a future publication [100].

The hard function satisfies a multiplicative RGE in µ

µ
d

dµ
H(Q,µ) = 2

[
Γcusp(αs) ln

Q2

µ2
+ γH(αs)

]
H(Q,µ) , (3.28)

and is independent of ν. Here Γcusp is the cusp anomalous dimension [101] (which is known

analytically to three-loop order [102], and numerically to four loops [103]), and γH is the

non-cusp anomalous dimension of hard function, which can be found, for example, in [96].

The hard function is independent of the IR measurement, and its anomalous dimension can

be obtained from the quark form factor, which is known to three-loops [104–106]. Since

the result is well known (see e.g. [27]), we do not explicitly give it here.
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The EEC soft function satisfies RG equations in µ

µ
dSEEC(~b⊥, µ, ν)

dµ
=

[
2Γcusp(αs) ln

µ2

ν2
− 2γsEEC(αs)

]
SEEC(~b⊥, µ, ν) , (3.29)

and in ν [23, 25, 34]

ν
dSEEC(~b⊥, µ, ν)

dν
= 2


−

µ2∫

b20/
~b2⊥

dµ̄2

µ̄2
Γcusp(αs(µ̄)) + γrEEC(αs(b0/|~b⊥|))


SEEC(~b⊥, µ, ν) .

(3.30)

The anomalous dimensions γsEEC and γrEEC are known perturbatively to three-loops, and

will be given in section 4.1.

The matching coefficients, Iik, for the TMDFFs satisfy the µ RG

µ
dIik(~b⊥/z, z, µ, ν)

dµ
=

[
−Γcusp(αs) ln

Q2

ν2
+ 2γJEEC(αs)

]
Iik(~b⊥/z, z, µ, ν) (3.31)

− 2
∑

j

Iij(~b⊥/z, z, µ, ν)⊗ Pjk(z, αs) ,

where the convolution is defined as

A(x)⊗B(x) =

1∫

0

dy

1∫

0

dzδ(x− yz)A(y)B(z) . (3.32)

Note that the coefficient functions depend on the impact parameter through ~b⊥/z in the

argument. The additional 1/z factor compared with the more traditional TMDFF evo-

lution comes from different convention in the normalization of fragmentation function.5

Additional discussion on this point will be presented in ref. [100]. The ν RG is given by

ν
dIik(~b⊥/z, z, µ, ν)

dν
=




µ2∫

b20/
~b2⊥

dµ̄2

µ̄2
Γcusp(αs(µ̄))− γrEEC(αs(b0/|~b⊥|))


 Iik(~b⊥/z, z, µ, ν) .

(3.33)

Here Pjk are the time-like j → k splitting functions, which are known to three

loops [102, 107] and for the non-singlet case to four loops in the large Nc limit [103].

The anomalous dimension γJEEC is also known to three-loops due to the consistency of the

factorization, as will be discussed shortly.

Using the known RG evolution equations for the TMDFFs we can derive the RG evo-

lution equations for the jet function JqEEC(~b⊥, µ, ν) appearing in our factorization formula

5We thank Alexey Vladimirov for pointing out to us the standard though unusual normalization of the

TMD fragmentation functions.
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for the EEC. We have

µ
dJqEEC(~b⊥, µ, ν)

dµ
=
∑

k

1∫

0

dxx





[
−Γcusp(αs) ln

Q2

ν2
+ 2γJEEC(αs)

]
Iqk(~b⊥/x, x, µ, ν)

−2
∑

j

Iqj(~b⊥/x, x, µ, ν)⊗ Pjk(x, αs)



 . (3.34)

The second line of eq. (3.34) can be simplified to

− 2
∑

k

∫ 1

0
dxx

∑

j

∫
dy dz Iqj(~b⊥/y, y, µ, ν)Pjk(z, αs)δ(x− yz)

= −2
∑

j

∫
dy y Iqj(~b⊥/y, y, µ, ν)

∑

k

∫
dz z Pjk(z, αs)

= 0 , (3.35)

where in the last line we have applied the momentum conservation sum rule for the time-like

splitting function,

∑

j

1∫

0

dx x Pij(x) = 0 . (3.36)

The µ RG for the jet function now simplifies to

µ
dJqEEC(~b⊥, µ, ν)

dµ
=

[
−Γcusp(αs) ln

Q2

ν2
+ 2γJEEC(αs)

]
JqEEC(~b⊥, µ, ν) . (3.37)

The anomalous dimensions for the quark and anti-quark jet functions are identical, and

therefore we will simply use the notation γJEEC for both.

The ν RG for JqEEC follows trivially from the ν RG for Iij in eq. (3.33), since it does

not involve evolution in the momentum fraction. We therefore have

ν
dJqEEC(~b⊥, µ, ν)

dν
=




µ2∫

b20/
~b2⊥

dµ̄2

µ̄2
Γcusp(αs(µ̄))− γrEEC(αs(b0/|~b⊥|))


 J

q
EEC(~b⊥, µ, ν) . (3.38)

From the RG invariance of the total cross section, we can immediately derive several

relations between the different anomalous dimensions. For the µ anomalous dimensions,

we have

1

2
γH + γJEEC −

1

2
γsEEC = 0 . (3.39)

We have already used the consistency relations for the ν anomalous dimension in writing

eqs. (3.30) and (3.33), where the same γrEEC appears in both functions. This implies that

the hard anomalous dimension, which is known and observable independent, combined with

the soft anomalous dimension, which will be given in section 4, are sufficient to determine

γJEEC, and hence to completely fix the renormalization group evolution for all functions

required to describe the EEC in the back-to-back region.
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Figure 3. The soft functions for qT for color singlet production in (a) and for the EEC in (b), as

defined in the exponential rapidity regulator of [40]. Solid black lines denotes Wilson lines. Both

the rapidity regulator and the measurement are defined in terms of space-time shifts of the Wilson

lines, allowing an all orders proof of the equivalence of these two soft functions.

4 Three-loop anomalous dimensions and soft function

As was noted earlier, the factorization theorem of eq. (3.25), which describes the singular

structure of the EEC observable in the back-to-back limit, is closely related to the fac-

torization theorem for qT for color singlet production given in eq. (3.26). In particular,

the soft functions are identical up to the directions of the Wilson lines, as illustrated in

figure 3. In this section, we study the relationship between the soft functions for the EEC

and for qT . In section 4.1, we use this relation to give the three-loop µ and ν anomalous

dimensions for the EEC soft function, using the recently calculated results for the qT soft

function. In section 4.2 we prove the equivalence of the soft function for qT and the EEC

to all orders, i.e. the independence of the soft function on crossing the directions of the

Wilson lines, which allows us to give the three-loop finite terms of the soft function for

the EEC.

4.1 Anomalous dimensions

The anomalous dimensions for the soft function are independent of the direction of the

Wilson lines. This can be proven following [92], by noting that the jet and beam function

(TMDFF and TMDPDF) anomalous dimensions can be proven to be equal from their

operator definitions. The consistency relations for the anomalous dimensions in eq. (3.39)

then imply that the anomalous dimensions of the soft function must be independent of the

directions of the Wilson lines to all orders. We therefore have the relations

γrEEC = γrqT ≡ γ
r , γsEEC = γsqT ≡ γ

s . (4.1)

Due to their equivalence, and to simplify our notation, we will drop the subscripts and

simply write γr and γs. The one- and two-loop anomalous dimensions were calculated long
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ago [108–110], while the three-loop anomalous dimensions were calculated quite recently.

We expand the anomalous dimensions perturbatively as

γr =
∑

n≥0

(αs
4π

)n+1
γrn , γs =

∑

n≥0

(αs
4π

)n+1
γsn . (4.2)

The soft anomalous dimensions up to three-loops are [111]

γs0 = 0 ,

γs1 = CACF

(
−808

27
+

22

3
ζ2 + 28ζ3

)
+ CFnf

(
112

27
− 4

3
ζ2

)
,

γs2 = C2
ACF

(
−136781

729
+

12650

81
ζ2 +

1316

3
ζ3 − 176ζ4 − 192ζ5 −

176

3
ζ3ζ2

)

+ CACFnf

(
11842

729
− 2828

81
ζ2 −

728

27
ζ3 + 48ζ4

)

+ C2
Fnf

(
1711

27
− 4ζ2 −

304

9
ζ3 − 16ζ4

)
+ CFn

2
f

(
2080

729
+

40

27
ζ2 −

112

27
ζ3

)
. (4.3)

The rapidity anomalous dimensions up to three-loops are [34]

γr0 = 0 ,

γr1 = CFCA

(
−808

27
+ 28ζ3

)
+ CFnf

112

27
,

γr2 = CFC
2
A

(
−297029

729
+

6392

81
ζ2 +

12328

27
ζ3 +

154

3
ζ4 − 192ζ5 −

176

3
ζ3ζ2

)

+ CFCAnf

(
62626

729
− 824

81
ζ2 −

904

27
ζ3 +

20

3
ζ4

)
+ CFn

2
f

(
−1856

729
− 32

9
ζ3

)

+ C2
Fnf

(
1711

27
− 304

9
ζ3 − 16ζ4

)
. (4.4)

Following the original calculation of the three-loop result in [34], this result was verified

in [49] using an equivalence between rapidity and virtuality anomalous dimensions [49, 50].

Using the consistency relations of eq. (3.39), along with the known result for the hard

anomalous dimension, this completely determines all anomalous dimensions governing the

RG evolution of the EEC in the back-to-back region, and allows for resummation to N3LL.

Interestingly, in planar N = 4 SYM the result for the rapidity anomalous dimension

can be extended to higher orders. Using the equivalence between the rapidity anomalous

dimension and the eikonal collinear anomalous dimension [49, 50], we can use the results

of [112] to relate γr and the collinear anomalous dimension G0 as

γr = −G0 + 2B . (4.5)

Here B is the virtual anomalous dimension, i.e. the coefficient of δ(1 − x) in the DGLAP

kernel. It is known to all orders in planar N = 4 SYM using integrability [113–115].

Remarkably, the collinear anomalous dimension was recently analytically computed to
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four-loops [116] (it was computed numerically to four-loops in [117]), providing also the

rapidity anomalous dimension for the EEC at this order. The knowledge of these anomalous

dimensions to such high orders, along with the hope that they may be computed to all orders

using integrability, makes the EEC an interesting playground for studying the perturbative

structure of resummation at high orders for a physical observable.

4.2 Equivalence of soft functions and the three-loop boundary condition

While the anomalous dimensions of the soft functions are independent of the direction of

the Wilson lines, this is not in general true for the full soft function due to the presence

of Glauber modes. At one- and two-loops, it has been shown that a wide class of soft

functions are independent of the directions of the Wilson lines [118]. This result can also

be seen using an EFT approach [119] that allows the Glauber region to be separated. Up

to two-loops, Glaubers contribute at most a phase (iπ), which cancels out of the squared

amplitude. However, starting at three-loops, which is the order of interest in the current

paper, such Glauber contributions could begin to contribute, making the soft function

depend on the direction of the Wilson lines. For a general soft function, this must be

assumed to be true. To be able to achieve N3LL’ accuracy (where the prime denotes the

inclusion of the three-loop boundary condition for the soft and collinear functions, see

e.g. [73] for a discussion of order counting), we would like to understand whether or not

the qT and EEC soft functions are identical.6

It was argued in [120–122] that the qT soft function is independent of the direction

of the Wilson lines.7 While we agree with the conclusions of [120–122], details related

to the time ordering and the regularization of the matrix element, which can lead to

subtleties, were not made explicit.8 Here we will use the exponential regulator of [34, 40]

to prove the independence of the soft function on crossing the Wilson line directions.

However, we still believe that it would be an interesting exercise to explicitly compute the

Glauber contributions in the EFT approach of [119] to understand their invariance under

the crossing of the Wilson lines. Some of the required integrals were performed in [130].

Our proof of the all orders equivalence of the soft function is specific to the qT soft

function with Wilson lines along back-to-back directions, as well as to the particular form

of the regulator of [34, 40]. Most importantly, both the measurement function, and the

regulator take the form of a spacetime shift on the Wilson lines appearing in the soft

6We note that the fact that Glaubers do not contribute to the EEC or color singlet qT distributions is a

distinct statement from whether or not the soft function is independent of the Wilson line directions. The

statement that Glaubers cancel in a physical observable should be more precisely stated as the fact that

they can be absorbed into the soft or collinear sectors by an appropriate choice of Wilson line directions. In

the language of CSS, this is the statement of whether contours can be deformed out of the Glauber region,

and in the EFT language it is related to whether the choice of Wilson line direction can be made such that

their is a cancellation between the Glauber zero-bin and the Glaubers themselves. Since these proofs force

a direction of the Wilson lines, they cannot also be used to prove independence on the direction of the

Wilson lines. This would amount to circular reasoning.
7Arguments similar to those presented here, using spacetime symmetries to relate soft and collinear

functions have been discussed in great detail in [120–128], particularly in relation to the Sivers effect [129].
8For more detailed discussions and an alternative treatment of these issues to that presented here,

see [83].
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function. This is shown in figure 3. This is specific to the qT measurement function, and

also allows the regulator to be formulated to all orders (and non-perturbatively) greatly

simplifying the proof.9

For convenience, we recall the definitions of the soft functions for qT and the EEC. For

the case of the EEC, we have

SEEC(~b⊥, µ, ν) = lim
ν→+∞

tr

Nc
〈0|T

[
S†n̄+(0)Sn−(0)

]
T̄
[
S†n+

(
yν(~b⊥)

)
Sn̄−

(
yν(~b⊥)

)]
|0〉 ,

(4.6)

and for the case of the color-singlet qT soft function

S⊥(~b⊥, µ, ν) = lim
ν→+∞

tr

Nc
〈0|T

[
S†n̄−(0)Sn+(0)

]
T̄
[
S†n−

(
yν(~b⊥)

)
Sn̄+

(
yν(~b⊥)

)]
|0〉 . (4.7)

Again, we emphasize that due to the particular nature of the measurement, and the im-

plementation of the regulator as a spacetime shift, this is a vacuum matrix element of

(shifted) Wilson lines. Here we have also made the (anti-) time ordering explicit (For a

discussion of the importance of the time-ordering, see [91]). The time ordering must be

treated carefully, since when using time reversal arguments to flip the directions of the

Wilson lines, the time ordering also flips, as can be seen for a simple bosonic field

T [φ(t1)φ(t2)] = φ(t1)φ(t2)Θ(t1 − t2) + φ(t2)φ(t1)Θ(t2 − t1)

T−→ φ(−t1)φ(−t2)Θ(−t1 + t2) + φ(−t2)φ(−t1)Θ(−t2 + t1)

= T̄ [φ(−t1), φ(−t2)] . (4.8)

For general soft functions, where the regulator and measurement cannot be formulated as a

shift, one has a time ordered matrix element squared, and the time ordering can disrupt the

proof of Wilson line direction independence, as noted in [118]. However, as seen in eqs. (4.6)

and (4.7), for our particular soft function of interest both time ordered and anti-time or-

dered contributions appear in the matrix element, which will exchange under time reversal.

To prove the universality of the soft function we start with the EEC soft function, and

apply time reversal symmetry,10 using the fact that the vacuum states are invariant

SEEC(~b⊥, µ, ν) = lim
ν→+∞

tr

Nc
〈0|T

[
S†n̄+(0)Sn−(0)

]
T̄
[
S†n+

(
yν(~b⊥)

)
Sn̄−

(
yν(~b⊥)

)]
|0〉

T−→ lim
ν→+∞

tr

Nc
〈0|T

[
Sn+

(
yTν (~b⊥)

)
S†n̄−

(
yTν (~b⊥)

)]
T̄
[
Sn̄+(0)S†n−(0)

]
|0〉 .

(4.9)

Here the time reversal changes the displacement of the Wilson lines11

yν(~b⊥) = (ib0/ν, ib0/ν,~b⊥)

T−→ yTν (~b⊥) ≡ (−ib0/ν,−ib0/ν,~b⊥) . (4.10)

9In particular, it is much simpler than the case of hemisphere soft functions considered in [118], where

the measurement function cannot in general be formulated as a spacetime shift.
10For a detailed discussion of the transformation properties of Wilson lines, see e.g. [83].
11We have used the superscript notation for the transformed vector to distinguish it from the time ordering

operator.
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We can now use the translation invariance of the matrix element, combined with the fact

that the soft function depends only on ~b2⊥, to translate the arguments back to the original

positions defining the S⊥ soft function. This set of transformations can also easily be

understood by looking at the positions of the two Wilson lines in figure 3. We therefore

obtain

SEEC(~b⊥, µ, ν) = S⊥(~b⊥, µ, ν) . (4.11)

In summary the proof used that the measurement and regulator were formulated as space-

time shifts, that there were only two Wilson line directions, that the soft function is in-

dependent of n ↔ n̄, depends only on x = −~b2⊥ν2/b20, and that one has time reversal

invariance, and translation invariance. It is therefore quite specific to the particular case

of interest, and we do not make claims for more general soft functions.

Using this equivalence, and the recently computed three-loop result for the qT soft

function [34], we can give the three-loop constant for the EEC soft function, which acts

as the boundary condition for the RG evolution. Using the non-Abelian exponentiation

theorem [131–133], which is preserved by the exponential regulator, we can write the soft

function as

SEEC(~b⊥, µ, ν) = exp

[(αs
4π

)
SEEC

1 +
(αs

4π

)2
SEEC

2 +
(αs

4π

)3
SEEC

3 +O(α4
s)

]
. (4.12)

The boundary conditions are then given by the soft function evaluated at its natural scales

cEEC
i ≡ SEEC

i

(
~b⊥, µ =

b0

|~b⊥|
, ν =

b0

|~b⊥|

)
. (4.13)

Using the results of [34], we can now give the explicit result for the EEC soft function

constant to three-loops:

cEEC
1 = −2CF ζ2 ,

cEEC
2 = CACF

(
2428

81
− 67

3
ζ2 −

154

9
ζ3 + 10ζ4

)

+ CFnf

(
−328

81
+

10

3
ζ2 +

28

9
ζ3

)
,

cEEC
3 = CFC

2
A

(
5211949

13122
− 297481

729
ζ2 −

151132

243
ζ3 +

3649

27
ζ4

+
1804

9
ζ5 +

1100

9
ζ2ζ3 −

3086

27
ζ6 +

928

9
ζ2

3

)

+ CFCAnf

(
−412765

6561
+

74530

729
ζ2 +

8152

81
ζ3 −

416

27
ζ4 −

184

3
ζ5 +

40

9
ζ3ζ2

)

+ C2
Fnf

(
−42727

486
+

275

9
ζ2 +

3488

81
ζ3 +

152

9
ζ4 +

224

9
ζ5 −

80

3
ζ3ζ2

)

+ CFn
2
f

(
− 256

6561
− 136

27
ζ2 −

560

243
ζ3 −

44

27
ζ4

)
. (4.14)
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The full result for the soft function evaluated at a general scale is given in appendix B.

This is an important ingredient for resummation to N3LL’ accuracy for the EEC. Here

the superscript ′ denotes the inclusion of the constant terms in the functions in the EFT.

It is often found that this improves the matching to the NNLO fixed order result, see

e.g. [27, 28]. This represents the state of the art for any event shape observable in QCD,

and furthermore, this is the first time that this accuracy has been achieved for a recoil

sensitive (SCETII) e
+e− event shape.

5 Resummation formula

The factorization theorem in eq. (3.25) can be used to resum all large logarithms of 1 − z
appearing in the back-to-back region through RG evolution in both rapidity and virtuality.

By rotational symmetry, we can integrate out ~k⊥ and the angular component of ~b⊥, giving

dσ

dz
=

1

2

∞∫

0

b db

2
J0(bQ

√
1− z)H(Q,µ)jqEEC(b, µ, ν)j q̄EEC(b, µ, ν)SEEC(b, µ, ν) , (5.1)

where J0(x) is the Bessel function of the first kind, and we have made it clear that the jet

and soft functions only depend on the magnitude of ~b⊥, b =
√
~b2⊥.

Resummation can be achieved by setting the renormalization and rapidity separately

for each of the factorized ingredient to minimize the large logarithms, and then evolving

all scales to a common value. The natural scales for the hard, jet and soft functions are

µh = Q, µj = b0/b, µs = b0/b, νj = Q, νs = b0/b . (5.2)

Below we choose to evolve the hard function and soft function to the jet function scales.

Other choices could also be used, as guaranteed by the consistency of the anomalous di-

mensions. The evolution for the hard function is

H(Q,µ) = H(Q,µh) exp



µ2∫

µ2h

dµ̄2

µ̄2

(
Γcusp(αs(µ̄)) ln

Q2

µ̄2
+ γH(αs(µ̄)

)

 . (5.3)

For the soft function, we have evolution both in renormalization scale and rapidity scale,

SEEC(b, µ, ν) = SEEC(b, µs, νs) exp



µ2∫

µ2s

dµ̄2

µ̄2

(
Γcusp(αs(µ̄)) ln

b2µ̄2

b20
− γsEEC(αs(µ̄))

)

+ ln
ν2

ν2
s


−

µ2∫

b20/b
2

dµ̄2

µ̄2
Γcusp(αs(µ̄)) + γrEEC(α(b0/b))





 . (5.4)
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Substituting eqs. (5.3) and (5.4) into eq. (5.1), and setting µ = b0/b, ν = Q, we obtain

dσ

dz
=

1

4

∞∫

0

db bJ0(bQ
√

1− z)H(Q,µh)jqEEC(b, b0/b,Q)j q̄EEC(b, b0/b,Q)SEEC(b, µs, νs)

·
(
Q2

ν2
s

)γrEEC(αs(b0/b))

exp



µ2h∫

µ2s

dµ̄2

µ̄2
Γcusp(αs(µ̄)) ln

b2µ̄2

b20

+

b20/b
2∫

µ2h

dµ̄2

µ̄2

(
Γcusp(αs(µ̄)) ln

b2Q2

b20
+ γH(αs(µ̄))

)
−

b20/b
2∫

µ2s

dµ̄2

µ̄2
γsEEC(αs(µ̄))


 . (5.5)

Eq. (5.5) gives our final formula for the resummation of large logarithms of 1 − z for the

EEC in the back-to-back region, and is another main result of this paper. It shows the all

orders resummation of logarithms of 1− z, and we have given field theoretic definitions for

all ingredients appearing in the formula, in particular, for the anomalous dimensions γrEEC,

γsEEC, and γH , which control the renormalization group evolution. At each perturbative

order, remaining scale uncertainties are estimated by varying µh, µs, and νs around their

nominal values.

Here we have performed the resummation directly in impact parameter space. There

has been recent work on understanding the resummation of qT sensitive observables in

momentum space [134–136]. This has been done in [134] using a coherent branching type

formalism [17, 18], and in [135] by solving distributional evolution equations. We hope

that the particularly simple form of the resummation for the EEC, and the fact that it is

a non-perturbatively well defined observable even in a conformal theory, may allow it to

be a useful observable for studying many of these issues.

Finally, we note that we have considered in this section only the perturbative distri-

bution. Non-perturbative corrections to the EEC have been studied in [10, 16, 62, 66]. An

important aspect of our factorization theorem is the operator definitions of the jet and soft

functions that describe the dynamics of the EEC in the back-to-back limit. This enables

non-perturbative effects to be studied, and related to other observables, in particular, qT .

Conversely, there has been significant interest in the non-perturbative functions appearing

in the description of the qT distribution, such as gK(bT ) (see e.g. [137] for definitions and a

recent discussion), which is closely related to our rapidity anomalous dimenion γrEEC. The

fact that these functions also appear in the EEC, which is an inclusive event shape, may

facilitate their study.

6 Conclusions

In this paper we have presented an analytic result for the three-loop soft function for the

EEC observable in the back-to-back region. This result was derived from a new factoriza-

tion theorem describing the leading power dynamics in the back-to-back region, whose soft

function is identical to the case of qT for color singlet production up to the direction of the

Wilson lines. This factorization theorem provides an operator level correspondence between

the EEC observable, and qT , which is the most important advantage of our approach com-

pared to approaches taken previously in the literature, for example in ref. [10]. In ref. [10],
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the NNLL resummation formula is established by matching a CSS like formula with the

single logarithmic term at O(α2
s) from an explicit two-loop perturbative calculation. In

our formula, predictions at NNLL accuracy are fully determined using one-loop matching

calculation for the soft and jet function, and the well-known anomalous dimensions from

qT resummation, thanks to the correspondence between Drell-Yan and e+e− process as was

explained in section 4. Furthermore, our formula can also predict the coefficient of δ(1−z).

An explicit example at NLO is given in the appendix B. Our factorization theorem thus

enables the resummation of all large logarithms appearing in the perturbative expansion

of the EEC in the back-to-back region beyond NNLL, and we provided analytic results for

all anomalous dimensions to three-loop order, allowing resummation to N3LL.

The EEC is now the qT sensitive (SCETII) observable about which the highest order

perturbative information is known, making it a prime candidate for precision extractions of

αs from LEP data, which will complement those from SCETI observables. This has already

been pursued recently in ref. [16] at NNLL matched to NNLO, and it would be interesting

to improve the perturbative precision to N3LL. In addition to the anomalous dimensions

presented here, the full calculation at N3LL+NNLO will also require the calculation of

the NNLO jet functions. This can be accomplished by crossing ingredients used in the

calculation of the transverse momentum dependent beam functions, and results with the

exponential regulator used here will be presented in a future publication [100]. Along

similar lines, the distinct perturbative and non-perturbative structure as compared with

recoil free observables will make the comparison of precision calculations for the EEC with

Monte Carlo parton shower programs useful for improving the modeling of quark and gluon

jets, as was considered for thrust in [15].

The exceptional perturbative control of both the EEC and color singlet qT spec-

trum motivates an improved understanding of non-perturbative effects for qT sensitive

observables. While non-perturbative effects have been studied for broadening [138],

qT [108, 109, 138–140], groomed fragmentation [141], semi-inclusive DIS [142], and the

EEC [10, 16, 62, 66], it has been found in a variety of studies that the standard shape func-

tion parametrizations used were not sufficient to describe non-perturbative effects [10, 16].

It will be essential to achieve an improved understanding for precision extractions of αs,

and we hope that this will also help in understanding the non-perturbative corrections for

the qT spectrum.

There are a number of additional directions that will be interesting to pursue involv-

ing the EEC. In the χ→ 0 limit, the EEC can be calculated at LL accuracy using the jet

calculus [143] (see also [69]), however, it would also be interesting to formulate an operator

based factorization theorem in terms of jet and soft functions, to allow improved pertur-

bative control in this limit. It may also be interesting to study higher point energy-energy

correlations in e+e−. This has been done successfully in jet substructure [144–149], but

could hopefully be done in a manner which preserves the simple perturbative structure

of the EEC. Finally, the simplicity of the EEC observable may also prove useful for the

study of the analytic structure of fixed order corrections to perturbative event shapes, and

of their perturbative power corrections [150–155]. We hope that these many interesting

directions can generate renewed interest in the EEC observable.
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A Matching coefficients for the TMDFF and EEC jet function

The matching coefficient Iji(x,~k⊥) from the TMDFF to the conventional fragmentation

function can be calculated perturbatively as the probability of finding a parton i from a

parton j, with momentum fraction x and transverse momentum ~k⊥ relative to the par-

tonic jet axis, which is aligned with the total jet three momentum. At LO the matching

coefficients are trivial,

Iji(x,~b⊥) =

{
δ(1− x) if i = j ,

0 if i 6= j .
(A.1)

At NLO, the matching coefficients before zero-bin subtraction [156] can be calculated from

the LO splitting kernel P
ĩk
→ pik, where pi and k are on-shell momentum. Explicitly,

we have

αs
4π
I(1),bare
ji =

1

z
µ2ε lim

τ→0

∫
d4−2εk

(2π)3−2ε
Θ(k0)δ(k2)δ

(
k−

Q
− (1− z)

)
g2
s

1

sik
p

(0)
ji (z, ε)

· exp

[
−b0τ

2
(k+ + k−) + i~b⊥ · ~k⊥

]
, (A.2)

where τ = 1/ν, b0 = 2e−γE , and Q = P−
ĩk

is the label momentum of the jet. The 1/z factor

comes from phase space factorization, and sik = (pi + k)2 = ~k2
⊥/(z(1− z)). For the quark

FF, the relevant splitting kernel are

p(0)
qq (z, ε) = 2CF

[
1 + z2

1− z − ε(1− z)

]
,

p(0)
qg (z, ε) = pqq(1− z, ε) . (A.3)

The integral in eq. (A.2) can be done analytically in the limit of τ → 0, keeping only the

leading power terms in τ . The results are

Ĩ(1)
qq =CF

(
−2L2

⊥−2L⊥LQ−4L⊥Lν+3L⊥−
π2

3

)
δ(1−z)−CFL⊥P (0)

qq (z)+2CF (1−z) ,

Ĩ(1)
qg =CF

(
−L⊥P (0)

qg (z)+2z
)
, (A.4)
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where

P (0)
qq (z) = 3δ(1− z) + 2

1 + z2

[1− z]+
,

P (0)
qg (z) =

4− 4z + 2z2

z
. (A.5)

Note that there is no need to regularize P
(0)
qg (z) in eq. (A.5), since in the jet function it is

weighted by z in the numerator. In eq. (A.4) we have defined

L⊥ = ln
~b2⊥µ

2

b20
, Lν = ln

ν2

µ2
, LQ = ln

Q2

ν2
. (A.6)

The results in eq. (A.4) have a non-trivial zero-bin. In the exponential regularization

scheme [40], the zero-bin is the same as the soft function. The zero-bin can be straightfor-

wardly removed by dividing the fragmentation function by the soft function. We find that

the zero-bin subtracted TMDFF coefficients are

I(1)
qq = CF

(
−2L⊥LQ + 3L⊥)δ(1− z)− L⊥P (0)

qq (z) + 2(1− z)
)
,

I(1)
qg = Ĩ(1)

qg = CF

(
−L⊥P (0)

qg (z) + 2z
)
. (A.7)

Using these results we can compute the tree level and one-loop result for the jet function

appearing in the EEC factorization theorem. Recall that it was defined as

JqEEC(~b⊥) =
∑

i

1∫

0

dx x Iqi
(
~b⊥
x
, x

)
. (A.8)

Using eq. (A.1), we find

J
q(0)
EEC(~b⊥) = 1 . (A.9)

At NLO, we can write the logarithm appearing in the splitting functions as

ln

(
~b2⊥µ

2

x2b20

)
= ln

(
~b2⊥µ

2

b20

)
− ln

(
x2
)
. (A.10)

The calculation of logarithmically enhanced terms is then made trivial using the sum rule

for the tree level splitting functions

∑

i

1∫

0

dx x P
(0)
ij (x) = 0 . (A.11)

However, the splitting functions enter the calculation of the constant, and we find

cJ1 =

1∫

0

dx x CF

[
ln
(
x2
)
P (0)
qq (x) + 2(1− x)

]
+

1∫

0

dx x CF

[
ln
(
x2
)
P (0)
qg (x) + 2x

]

= (4− 8ζ2)CF . (A.12)

We therefore find that the one-loop jet function for the EEC is given by

J
q(1)
EEC(~b⊥) = CF (−2L⊥LQ + 3L⊥) + cJ1 . (A.13)
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B Logarithmic structure to NNLO

In this appendix we perform a check of our factorization formula for the EEC observable

by reproducing the known logarithmic structure up to NNLO. We begin by collecting a

number of ingredients that will be required, namely the hard, jet and soft functions, their

associated anomalous dimensions, and results for vector plus functions that will allow us

to treat the integrals appearing in the factorization theorem.

The full scale dependent soft function is given by

SEEC(~b⊥,µ,ν) = exp

{(αs
4π

)[
cEEC

1 +
1

2
Γcusp

0 L2
⊥+γr0Lr−L⊥ (γs0 +Γcusp

0 Lr)

]

+
(αs

4π

)2
[
cEEC

2 +γr1Lr+
1

6
Γcusp

0 L3
⊥β0+L2

⊥

(
Γcusp

1

2
− γ

s
0β0

2
− 1

2
Γcusp

0 Lrβ0

)

+L⊥

(
−γs1 +c⊥1 β0+Lr (−Γcusp

1 +γr0β0)
)]

+
(αs

4π

)3
[
cEEC

3 +γr2Lr+
1

12
Γcusp

0 L4
⊥β

2
0

+L3
⊥

(
Γcusp

1 β0

3
+

1

3
−γs0β2

0−
1

3
Γcusp

0 Lrβ
2
0 +

Γcusp
0 β1

6

)

+L2
⊥

(
Γcusp

2

2
−γs1β0+c⊥1 β

2
0−

γs0β1

2
+Lr

(
−Γcusp

1 β0+γr0β
2
0−

Γcusp
0 β1

2

))

+L⊥

(
−γs2 +2c⊥2 β0+c⊥1 β1+Lr (−Γcusp

2 +2γr1β0+γr0β1)
)]

+O(α4
s)

}
,

(B.1)

where Lr = ln
(
ν2~b 2
⊥/b

2
0

)
is the rapidity logarithm, and L⊥ = ln(~b 2

⊥µ
2/b20), as before.

Expanded to O(α2
s), as is relevant for our check to NNLO, we find

SEEC(~b⊥,µ,ν) = 1+
(αs

4π

)[
cEEC

1 +
1

2
Γcusp

0 L2
⊥+γr0Lr+L⊥ (−γs0−Γcusp

0 Lr)

]

+
(αs

4π

)2
[
cEEC

2 +γr1Lr+
1

6
Γcusp

0 L3
⊥β0+L2

⊥

(
Γcusp

1

2
− γ

s
0β0

2
− 1

2
Γcusp

0 Lrβ0

)

+L⊥
(
−γs1 +cEEC

1 β0+Lr (−Γcusp
1 +γr0β0)

)
]

+
1

2

(αs
4π

)2
[
cEEC

1 +
1

2
Γcusp

0 L2
⊥+γr0Lr−L⊥ (γs0 +Γcusp

0 Lr)

]2

+O(α3
s) . (B.2)

We will normalize the hard function so that its tree level value is 1, by pulling out the tree

level total cross section

σ0 =
4πα2

Q2

∑

q

σqe
2
q . (B.3)
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The scale dependent hard function is then given to two-loops by (see e.g. [26])

H = 1 +
(αs

4π

)(
−1

2
Γcusp

0 L2
H + γH0 LH + cH1

)
(B.4)

+
(αs

4π

)2
[

1

8
(Γcusp

0 )2L4
H −

(
β0Γcusp

0

6
+
γH0 Γcusp

0

2

)
L3
H

+

(
(γH0 )2

2
+
β0γ

H
0

2
− Γcusp

1

2

)
L2
H + γH1 LH + cH1

(
−Γcusp

0

2
L2
H + LH(β0 + γH0 )

)
+ cH2

]

+O(α3
s) ,

which is sufficient for our purposes. Here LH = ln µ2

Q2 , and the hard function constants are

given by

cH1 = CF (14ζ2 − 16) , (B.5)

cH2 = CACF

(
1061ζ2

9
+

626ζ3

9
− 16ζ4 −

51157

324

)
+ C2

F

(
−166ζ2 − 60ζ3 + 201ζ4 +

511

4

)

+ CFnf

(
−182ζ2

9
+

4ζ3

9
+

4085

162

)
. (B.6)

The hard anomalous dimensions are given by

γH0 =−6CF , (B.7)

γH1 =C2
F (−3+24ζ2−48ζ3)+CFCA

(
−961

27
−22ζ2+52ζ3

)
+CFTFnf

(
260

27
+8ζ2

)
. (B.8)

We will also need the one-loop running of αs, which is given by

αs(µ) = αs(µR)

(
1− αs(µR)

4π
β0 ln

(
µ2

µ2
R

)
+O(α2

s)

)
, (B.9)

where

β0 =
11

3
CA −

2

3
nf . (B.10)

The quark cusp anomalous dimensions are [101]

Γcusp
0 = 4CF , (B.11)

Γcusp
1 = CACF

(
268

9
− 8ζ2

)
− CFnf

40

9
. (B.12)

Since we have set up our factorization as a marginalization over ~k⊥, at intermediate

stages of our calculation we will encounter vector plus distributions. Definitions of vector

plus distributions can be found in [25, 135]. In particular, we will use the logarithmic plus

distributions

Ln(~p⊥, µ) ≡ 1

πµ2

[
µ2

~p 2
⊥

lnn
~p 2
⊥
µ2

]µ

+

. (B.13)
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Since we will be interested in extracting the fixed order expansion of our resummed result,

we will choose particular µ and ν scales. After having done this, all logarithms will appear

in the form

Lnb ≡ lnn

(
~b 2
⊥Q

2e2γE

4

)
. (B.14)

Relevant results for Fourier transforms of logarithms can be found in [135]. Here we will

explicitly need

FT−1[1] = δ(~p⊥) , (B.15)

FT−1[Lb] = −L0(~p⊥, Q) , (B.16)

FT−1[L2
b ] = 2L1(~p⊥, Q) , (B.17)

FT−1[L3
b ] = −3L2(~p⊥, Q)− 4ζ3δ(~p⊥) , (B.18)

FT−1[L4
b ] = 4L3(~p⊥, Q) + 16ζ3L0(~p⊥, Q) . (B.19)

We can now show that our result reproduces the known leading power results for the

EEC observable. We will expand the cross section perturbatively as

1

σ0

dσ

dz
=
dσ(0)

dz
+
dσ(1)

dz
+
dσ(2)

dz
+ · · · , (B.20)

where the superscript indicates the perturbative order. At LO and in the back-to-back

region, we have

dσ(0)

dz
=

1

2
H(0)(Q)

∫
d2~k⊥

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥δ

(
1− z −

~k2
⊥
Q2

)

=
1

2
H(0)(Q)δ(1− z) . (B.21)

Note that we have ignored the collinear region, which gives a 1
2δ(z) at LO. To reproduce

the NLO and NNLO fixed order results, we choose to evaluate everything at the jet scale

µ2
J =

b20
~b2⊥

, νJ = Q . (B.22)

This is convenient, since this is the natural µ scale for both the soft and jet functions. We

then have

LH → −Lb , Lr → Lb , L⊥ → 0 . (B.23)

This considerably simplifies the expression for the soft function

SEEC

(
~b⊥, µ

2 =
b20
~b2⊥
, ν = Q

)
= 1 +

(
αs(µJ)

4π

)[
cEEC

1 + γr0Lb
]

+

(
αs(µJ)

4π

)2 [
cEEC

2 + γr1Lb
]

+
1

2

(
αs(µJ)

4π

)2 [
cEEC

1 + γr0Lb
]2

+O(α3
s) . (B.24)
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For the hard function, we have

H

(
µ2 =

b20
~b2⊥

)
= 1+

(
αs(µJ)

4π

)(
−1

2
Γcusp

0 L2
b−γH0 Lb+cH1

)
(B.25)

+
(
αs(µJ)

4π

)2
[

1

8
(Γcusp

0 )2L4
b+

(
β0Γcusp

0

6
+
γH
0 Γcusp

0

2

)
L3
b

+

(
(γH

0 )2

2
+
β0γ

H
0

2
− Γcusp

1

2

)
L2
b−γH1 Lb+cH1

(
−Γcusp

0

2
L2
b−Lb(β0+γH0 )

)
+cH2

]

+O(α3
s) .

Finally, the one-loop constant for the jet function is

JqEEC

(
~b⊥, µ

2 =
b20
~b2⊥
, ν = Q

)
= 1 +

(
αs(µJ)

4π

)
cJ1 +O(α2

s) , (B.26)

where the term at O(α2
s) is purely a constant with no logarithmic dependence, due to the

choice of scales.

At NLO, we find

dσ(1)

dz
=

1

2
H(0)(Q)

(
αs

4π

)∫
d2~k⊥

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥

[
(cH1 +2cJ1 +cEEC

1 )−γH0 Lb− 1

2
Γcusp

0 L2
b

]
δ

(
1−z−

~k2⊥
Q2

)

=
1

2
H(0)(Q)

(
αs

4π

)∫
d2~k⊥

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥CF

[
(−4ζ2−8)+6Lb−2L2

b

]
δ

(
1−z−

~k2⊥
Q2

)

=
1

2
H(0)(Q)

(
αs

4π

)
CF

∫
d2~k⊥

[
(−4ζ2−8)δ(2)(~k⊥)−6L0(~k⊥,µ)−4L1(~k⊥,µ)

]
δ

(
1−z−

~k2⊥
Q2

)

=H(0)(Q)
(
αs

4π

)(
CF (−2ζ2−4)δ(1−z)−3CF

[
1

1−z

]
+
−2CF

[
ln(1−z)

1−z

]
+

)
. (B.27)

To perform the final integral over the ~k⊥ appearing in the factorization theorem, we used

∫
d2~k⊥Ln(~k⊥, Q)δ

(
1− z −

~k2
⊥
Q2

)

= πQ2

∫
d|~k⊥|δ

(
|~k⊥| −Q

√
1− z

)
Ln(~k⊥, Q) = Ln(1− z) , (B.28)

where

Ln(1− z) =

[
ln(1− z)

1− z

]

+

, (B.29)

is the standard one-dimensional logarithmic plus distribution.

For the NNLO result, we provide slightly more details of the calculation. We begin

by expanding the result in impact parameter space, keeping only the logarithmic terms.
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We find

H

(
µ2 =

b20
~b2⊥

)[
JqEEC

(
~b⊥,µ

2 =
b20
~b2⊥
,ν=Q

)]2

SEEC

(
~b⊥,µ

2 =
b20
~b2⊥
,ν=Q

)∣∣∣∣∣
α2
s

=
(
αs(µJ)

4π

)2 1

8
(Γcusp

0 )2L4
b

+
(
αs(µJ)

4π

)2
[(

β0Γcusp
0

6
+
γH
0 Γcusp

0

2

)
− 1

2
Γcusp

0 γr0

]
L3
b

+
(
αs(µJ)

4π

)2
[(

(γr
0)2

2
+

(γH
0 )2

2
+
β0γ

H
0

2
−
(

Γcusp
1

2

))
+(cEEC

1 +2cJ1 +cH1 )
(
−Γcusp

0

2

)
−γH0 γr0

]
L2
b

+
(
αs(µJ)

4π

)2 [
γr1−γH1 −cH1 (β0+γH0 )+2cJ1γ

r
0−2cJ1γ

H
0 −γH0 cEEC

1 +γr0c
H
1

]
Lb . (B.30)

In the literature, it is conventional to write the above expression evaluated with αs at the

hard scale, Q, which can be done using

αs(µJ) = αs(Q)

(
1 +

αs(Q)

4π
β0Lb

)
. (B.31)

This modifies the NNLO result by β0 terms multiplying the NLO result, namely by

(
αs(Q)

4π

)2 [
−1

2
Γcusp

0 β0L
3
b − γH0 β0L

2
b + (2cJ1 + cH1 + cEEC

1 )β0Lb

]
. (B.32)

Written with αs at the hard scale, we then have

H ·(JqEEC(~b⊥))2 ·SEEC(~b⊥) =

(
αs(Q)

4π

)2 1

8
(Γcusp

0 )2L4
b (B.33)

+

(
αs(Q)

4π

)2[
−β0

3
+
γH0
2
− γ

r
0

2

]
Γcusp

0 L3
b

+

(
αs(Q)

4π

)2[(γr0)2

2
+

(γH0 )2

2
−β0γ

H
0

2
−Γcusp

1

2
−γH0 γr0−

Γcusp
0

2
(cEEC

1 +2cJ1 +cH1 )

]
L2
b

+

(
αs(Q)

4π

)2 [
γr1−γH1 −cH1 γH0 +2cJ1γ

r
0−2cJ1γ

H
0 −γH0 cEEC

1 +γr0c
H
1 +(2cJ1 +cEEC

1 )β0

]
Lb .

Performing the Fourier transform, we find
∫
d2~b⊥e

−i~b⊥·~k⊥H ·(Jq
EEC(~b⊥))2 ·SEEC(~b⊥) =

(
αs(Q)

4π

)2
1

8
(Γcusp

0 )2(4L3(~k⊥,Q)+16ζ3L0(~k⊥,Q)) (B.34)

+

(
αs(Q)

4π

)2 [
−β0

3
+
γH0
2
− γ

r
0

2

]
Γcusp

0 (−3L2(~k⊥,Q))

+

(
αs(Q)

4π

)2 [
(γr0)2

2
+

(γH0 )2

2
− β0γ

H
0

2
−Γcusp

1

2
−γH0 γr0−

Γcusp
0

2
(cEEC

1 +2cJ1 +cH1 )

]
(2L1(~k⊥,Q))

+

(
αs(Q)

4π

)2 [
γr1−γH1 −cH1 γH0 +2cJ1 γ

r
0−2cJ1 γ

H
0 −γH0 cEEC

1 +γr0c
H
1 +(2cJ1 +cEEC

1 )β0

]
(−L0(~k⊥,Q)) .
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This allows us to immediately write down the final result for the cross section in terms of

the z variable

dσ(2)

dz
=

1

2

(
αs(Q)

4π

)2 1

2
(Γcusp

0 )2L3(1−z) (B.35)

+
1

2

(
αs(Q)

4π

)2[
β0−

3γH0
2

+
3γr0
2

]
Γcusp

0 L2(1−z)

+
1

2

(
αs(Q)

4π

)2 [
(γr0)2+(γH0 )2−β0γ

H
0 −Γcusp

1 −2γH0 γ
r
0−Γcusp

0 (cEEC
1 +2cJ1 +cH1 )

]
L1(1−z)

+
1

2

(
αs(Q)

4π

)2 [
2(Γcusp

0 )2ζ3−γr1 +γH1

+cH1 γ
H
0 −2cJ1γ

r
0 +2cJ1γ

H
0 +γH0 c

EEC
1 −γr0cH1 −(2cJ1 +cEEC

1 )β0

]
L0(1−z) .

Plugging in the values of the different anomalous dimensions, we have

dσ(2)

dz
=
(
αs(Q)

4π

)2

4C2
FL3(1−z) (B.36)

+
(
αs(Q)

4π

)2 [
18C2

F +
22

3
CACF− 4

3
nfCF

]
L2(1−z)

+
(
αs(Q)

4π

)2 [
CFCA

(
4ζ2− 35

9

)
+

2

9
CFnf+C2

F (8ζ2+34)
]
L1(1−z)

+
(
αs(Q)

4π

)2 [(45

2
+24ζ2−8ζ3

)
C2
F +
(
−35

2
+22ζ2+12ζ3

)
CFCA+(3−4ζ2)CFnf

]
L0(1−z) .

We can compare this result to a previous NNLL result in the literature [10], computed in

the CSS formalism. The result of [10] was written as

1

σT

dσ

d cosχ
=

1

4y

αs(Q)

π

[
−A(1) ln y +B(1)

]

+
1

4y

(
αs(Q)

π

)2 [1

2
(A(1))2 ln3 y +

(
−3

2
B(1)A(1) +

β0

4
A(1)

)
ln2 y

+

(
−A(2) − β0

4
B(1) + (B(1))2 −A(1)H(1)

)
ln y

+ B(2) +B(1)H(1) + 2ζ3(A(1))2

]
, (B.37)

where y = sin2(π−χ)/2 = 1−z. The required constants appearing in eq. (B.37) are given by

A(1) =
Γcusp

0

4
, A(2) =

Γcusp
1

16
, (B.38)

B(1) = −3

2
CF , B(2) = −1

2
γ(2)
q + CF

β0

4
(5ζ2 − 2) , (B.39)

H(1) = −CF
(

11

4
+ ζ2

)
, (B.40)

and

γ(2)
q = C2

F

(
3

8
− 3ζ2 + 6ζ3

)
+ CFCA

(
17

24
+

11

3
ζ2 − 3ζ3

)
− CFnfTR

(
1

6
+

4

3
ζ2

)
. (B.41)
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Note that to perform the comparison, one must take into account that the formula of

eq. (B.37) from [10] normalizes to the NLO total cross section

σT = σ0

(
1 + 3

(
αs(Q)

4π

)
CF

)
, (B.42)

while in eq. (B.35), we have normalized only to σ0. We find exact agreement with their

result. The result of eq. (B.37) was verified by comparison with the fixed order program

Event2 [157, 158], and was shown to correctly reproduce the logarithmic structure to this

order. This provides a highly non-trivial check of our factorization theorem. In particu-

lar, the difference found in [10] between the B(2) coefficient for the EEC and B
(2)
q,NS (see

equations 19 and 21 in [10]) is naturally reproduced by our factorization theorem.
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