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1 Introduction

Turbulent boundary layers are important for high-Reynolds number flow in appli-

cations. In many physical situations flows dominated by inertia interact with solid

boundaries, these may be the wings of the aircraft, the blades inside a jet engine

or the ground or the ocean’s surface on windfarms. The famous log-law of Prandtl

[27] and von Kármán [35] is the most distinguished characteristic of such flows.

It says that the mean-velocity profile in the inertial region of the flow satisfies the

formula:

〈u〉/uτ = κ−1 ln(yuτ/ν)+B, (1)

where uτ =
√

τw/ρ is the friction velocity based on the wall stress τw, ρ is the fluid

density, ν is the kinematic viscosity, κ is the von Kármán constant and B is also

a constant. The log-law is well established both experimentally and numerically,

see reviews by Smits, McKeon and Marusic [33] and Jimenez [14]. It has proven

to be an invaluable tool in the theory of turbulent boundary layers.

In recent year a number of authors Marusic and Kunkel [18], Hultmark et al.

[12] and Marusic [17] and Marusic et al. [20] have proposed a universal law of

the form

〈(u′)2〉/u2
τ = B1 −A1 ln(y/δ) (2)
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for the streamwise fluctuations u′ = u−〈u〉, motivated by the ”attached eddy hy-

pothesis” of Townsend [34], Perry and Chong [25] and Perry, Henbest and Chong

[26]. δ is the height of the boundary layer or the channel, or in case of pipe flow,

the radius of the pipe. A1 is a universal constant but B1 is supposed to depend on

the particular flow geometry.

It was suggested by Meneveau and Marusic [19] that the log-law of the second

moment of the fluctuations (2) could by generalized to any monent p ≥ 2 by the

law

〈(u′)2p〉1/p = Bp −Ap ln(y/δ) = Dp(Reτ)−Ap ln(y+) (3)

where y+ = yuτ/ν are the viscous units and Dp = Bp +Ap lnReτ is a Reynolds

number Reτ dependent offset.

In this paper we will extend the theory of Birnir [5, 6] developed for homoge-

neous turbulence to boundary layers to prove (3) with a physically-based normal-

ization in the inertial range. We will show that the universal constants satisfy the

relationship

Ap =

(

1

l∗

)ζ1−ζp/p
C

1/p
p

C1
A1

where ζp = p/3+τp = p/9+2(1−(2/3)p/3) are the Kolmogorov-Obukhov-She-

Leveque (KOSL), scaling exponents of the structure functions of turbulence, see

[6], and l∗ is a small constant. The coefficients Cp are the Kolmogorov-Obukhov

scaling coefficients computed in [5, 6], and in Section 3. These coefficients are

not universal for general turbulent flows, as pointed out by Landau [15], [23], for

example the coefficients for channel flow will be different from those for pipe-

flow. However, the coefficients may be universal for pipe flow. The sub-Gaussian

behavior of the Aps is caused by the KOSL scaling. We will in fact show that if

A1 is finite then the Aps are finite for finite p:

supAp ≤ b
√

pA1, (4)

where b is a constant, for p sufficiently large. However, limp→∞ supAp = ∞.

We also compute the probability density functions of the fluctuations in the

inertial range and in the viscous range. In the inertial range the the PDFs turn

out to be Generalized Hyperbolic Distributions multiplied by a discrete measure,

see [8]. In the viscous range the PDFs are skewed Gaussians, analogous to the

moments of turbulent velocity, see Batchelor [2].
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2 The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the Navier-Stokes Equation

ut +u ·∇u = ν∆u−∇p, u(x,0) = u0(x)

with the incompressibility condition ∇ ·u = 0. Eliminating the pressure using the

incompressibility condition gives

ut +u ·∇u = ν∆u+∇∆−1trace(∇u)2, u(x,0) = u0(x).

The turbulence is quantified by the dimensionless Taylor-Reynolds number Reλ =
Uλ
ν [28].

2.1 Reynolds Decomposition

Following the classical Reynolds decomposition [29], we decompose the velocity

into mean flow U and the fluctuations u. Then the velocity is written as U + u,

where U describes the large scale flow and u describes the small scale turbulence.

We must also decompose the pressure into mean pressure P and the fluctuations

p, then the equation for the large scale flow can be written as

Ut +U ·∇U = ν∆U −∇P−∇ · (u⊗u), (5)

where in coordinates ∇ · (u⊗u) =
∂uiu j

∂x j
, that is ∇ is dotted with the rows of uiu j

and Ri j = u⊗u is the Reynolds stress, see [3]. The Reynolds stress has the inter-

pretation of a turbulent momentum flux and the last term in (5) is also know as

the eddy viscosity. It describes how the small scales influence the large scales. In

addition we get divergence free conditions for U , and u

∇ ·U = 0, ∇ ·u = 0.

Together, (5) and the divergence free condition on U give Reynolds Averaged

Navier-Stokes (RANS) that forms the basis for most contemporary simulations of

turbulent flow.

Finding a constitutive law for the Reynolds stress u⊗u is the famous closure

problem in turbulence and we will solve that by writing down a stochastic equation

for the small scale velocity u. The hypothesis is that the large scales influence the

small scales directly, through the fluid instabilities and the noise in fully developed
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turbulence. An example of this mechanics, how the instabilities magnify the tiny

ambient noise to produce large noise, in given in [4], see also Chapter 1 in [6].

Now consider the inertial range in turbulence. In Fourier space this is the range

of wave numbers k: 1
L
≤ |k| ≤ 1

η , where η = (ν3/ε)1/4 is the Kolmogorov length

scale, ε is the energy dissipation and L the size of the largest eddies, see [6]. If we

assume that dissipation takes place on all length scale in the inertial range then the

form of the dissipation processes are determined by the fundamental theorems of

probability. Namely, if we impose periodic boundary conditions (different bound-

ary conditions correspond to different basis vectores), then the (functional) central

limit theorem and the large deviation principle stipulate that the additive noise in

the Navier-Stokes equation for the small scale must be of the form:

∑
k 6=0

c
1
2

k dbk
t ek(x)+ ∑

k 6=0

dk|k|1/3dt ek(x),

where ek(x) = e2πik·x are the Fourier coefficient and c
1
2

k and dk are coefficients that

ensure the series converge in 3 dimensions. The first term describes the mean of

weakly coupled dissipation processes given by the central limit theorem and the

second term describes the large deviations of that mean, given by the large devia-

tion principle, see [6]. Thus together the two terms give a complete description of

the mean of the dissipation process similar to the mean of many processes in prob-

ability. The factor |k|1/3 implies that the mean dissipation has only one scaling.

The Fourier coefficients of the first series contain independent Brownian motions

bk
t and thus the noise is white in time, in the infinitely many directions in function

space. The noise cannot be white in space, hence the decaying coefficients c
1/2

k

and dk, because if it was the small scale velocity u would be discontinuous in 3

dimension, see [5]. This is contrary to what is observed in nature.

The other part of the noise, in fully developed turbulence, is multiplicative and

models the excursion (jumps) in the velocity gradient or vorticity concentrations.

If we let Nk
t denote the integer number of velocity excursion, associated with kth

wavenumber, that have occurred at time t, so that the differential dNk(t) = Nk(t+
dt)−Nk(t) denotes the number of excursions in the time interval (t, t +dt], then

the process d ft = ∑M
k 6=0

∫
R

hk(t,z)N̄
k(dt,dz), gives the multiplicative noise term.

One can show that any noise corresponding to jumps in the velocity gradients

must have this multiplicative noise to leading order, see [5]. A detailed derivation

of both the noise terms can be found in [5] and [6].

Adding the additive noise and the multiplicative noise we get the stochastic
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Navier-Stokes equations describing the small scales in fully developed turbulence

du = (ν∆u − u ·∇u+∇∆−1tr(∇u)2)dt + ∑
k 6=0

c
1
2

k dbk
t ek(x)+ ∑

k 6=0

dk|k|1/3dt ek(x)

− U ·∇u−u ·∇U +u(
M

∑
k 6=0

∫
R

hkN̄k(dt,dz)), u(x,0) = u0(x),(6)

where we have used the divergence free condition ∇ ·u = 0 to eliminate the small

scale pressure p. Each Fourier component ek comes with its own Brownian motion

bk
t and a deterministic bound |k|1/3dt. The terms −U ·∇u−u ·∇U describe how

the large scale flow (5) influences the small scale flow. The small scale equation

(6) can now be considered to be a stochastic closure of the large scale equation

(5).

2.2 Solution of the Stochastic Navier-Stokes

The next step is to figure out how the generic noise interacts with the Navier-

Stokes evolution. This is determined by the integral form of the equation (6),

u = eKte
∫ t

0 dqMtu
0 + ∑

k 6=0

∫ t

0
eK(t−s)e

∫ t
s dqMt−s(c

1/2

k dbk
s +dk|k|1/3ds)ek(x), (7)

where K is the operator K = ν∆+∇∆−1tr(∇u∇), and we have omitted the terms

−U ·∇u− u ·∇U in (6), to simplify the exposition. (These terms are easily in-

corporated using the machinery below.) The equation is an implicit solution of

the stochastic Navier-Stokes equation (6). We solve (6) using the Feynmann-

Kac formula, and using Girsanov’s Theorem from probability theory, see [6], to

get (7). Girsanov’s Theorem gives the Martingale Mt = exp{−
∫ t

0 u(Bs,s) · dBs−
1
2

∫ t
0 |u(Bs,s)|2ds}. The Feynmann-Kac formula gives the exponential of a sum of

terms of the form
∫ t

s dqk =
∫ t

0

∫
R

ln(1+hk)N
k(dt,dz)− ∫ t

0

∫
R

hkmk(dt,dz), see [5]

or [6] Chapter 2 for details. The form of the processes

e
∫ t

0

∫
R

ln(1+hk)N
k(dt,dz)−∫ t

0

∫
R

hkmk(dt,dz) = eNk
t lnβ+γ ln |k| = |k|γβNk

t(8)

was found by She and Leveque [30], for hk = β− 1. It was pointed out by She

and Waymire [31] and by Dubrulle [10] that they are log-Poisson processes. The

upshot of this computation is that we see the Navier-Stokes evolution acting on

the additive noise to give the Kolmogorov-Obukhov ’41 scaling, and the Navier-

Stokes evolution acting on the multiplicative noise to produce the intermittency
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corrections through the Feynmann-Kac formula. Together these two scaling com-

bine to give the scaling of the structure functions in turbulence. We will see below

how the two scalings separate in the invariant measure to give two distinct contri-

butions to the final scaling.

3 The Kolmogorov-Obukhov-She-Leveque Scaling

The scaling of the structure functions

Sp(x,y, t) = E(|u(x, t)−u(y, t)|p),

where E is the expectation, is

Sp ∼Cp|x− y|ζp, ζp =
p

3
+ τp =

p

9
+2(1− (2/3)p/3), (9)

p
3

being the Kolmogorov scaling and τp the intermittency corrections. The scaling

of the structure functions is consistent with Kolmogorov’s 4/5 law,

S∗3 =−4

5
ε|x− y|,

to leading order, were ε =−dE
dt

= 2ν
∫ ∞

0 k2E(k, t)dk is the energy dissipation.1 S∗3
is the third structure function without absolute values, so it can be negative.

The first structure functions are

S1(x,y,∞) =
2

C
∑

k∈Z3\{0}

|dk|(1− e−λkt)

|k|ζ1
|sin(πk · (x− y))|.

up to leading order in 1/Reτ and |k|. We get a stationary state as t → ∞, and for

|x− y| small,

S1(x,y,∞) =
2πζ1

C
∑

k∈Z3\{0}
|dk||x− y|ζ1,

where ζ1 = 1/3+ τ1 ≈ 0.37. Similarly,

S2(x,y,∞) =
4πζ2

C2 ∑
k∈Z3\{0}

[dk
2 +(

C

2
)ck]|x− y|ζ2,

1The energy is E =
∫ ∞

0 E(k, t)dt, E(k, t) being the energy density in Fourier space.
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when |x− y| is small, where ζ2 = 2/3+ τ2 ≈ 0.696, corresponding to the scaling

E(k,∞)∼ k−(1+ζ2), and

S3(x,y,∞)∼ 23π

C3 ∑
k∈Z3\{0}

[|dk|3 +3(C/2)ck|dk|]|x− y|.2

For the pth structure functions, we get the formula

Sp(x,y, t) =
2p

Cp ∑
k∈Z3\{0}

2p/2Γ( p+1
2
) (σk)

p
1F1

(

−1
2

p, 1
2
,−1

2
(Mk/σk)

2
)

|k|ζp

×|sinp(πk · (x− y))|.(10)

where 1F1 is the confluent hypergeometric function, Mk = |dk|(1−e−λkt) and σk =
√

(C/2)ck(1− e−2λkt), again up to leading order in 1/Reτ and |k|. The details of

the computations of these formulas are given in [5].

The velocities in the velocity differences δu are separated by the lag variable

l = |x− y|. One identifies three ranges for l in boundary flows:

1. The viscous range l << η = (ν3/ε)1/4 where viscous forces dominate and

Equations (9) does not apply.

2. The first inertial range discussed in Section 2.1 above. This is the range

η << l << z, where z is the distance to the wall. The Equations (9) apply in

this range. We will use this to compute the derivatives of u and the average

stress, below.

3. The second inertial range due to the boundary. This is the log range z <
l < δ. In this range the formula (3) applies to the fluctuations and to the

moments of the velocity differences as well, see [9], that have a logarithmic

dependance on l/δ in this range.

4 The Moments of the Velocity Fluctuations

We will now use the solution (7) of the stochastic Navier-Stokes equation to com-

pute the coefficients Ap in the formula (3) for the moments of the velocity fluctu-

ations. We can write the solution as

u =U +u′

2Here S3 is the third order structure function with absolute values inside the expectation.
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Figure 1: The first few coefficients Ap (divided by A1) as functions of 2p (red

squares), compared with data (blue dots), from [19], with Reynolds number Reτ =
19,030. The blue line represents the Gaussian case. The theoretical result uses a

normalization of the coefficients dk and ck, in Equation (25), that fixes the sum of

their first few symmetric functions to be one.
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where U represents the (laminar) flow along the boundary and u′ the turbulent

part of the solutions. The arguments above indicate that U by itself is unstable for

large Reynolds numbers and small perturbations grow from the boundary, so u′

vanishes at the boundary and grows throughout the viscous layer. In the inertial

layer u′ represents the fully developed turbulence. The implications of this are

that in the viscous layer

∂u

∂y
=

∂U

∂y
+

∂u′

∂y
, |∂u′

∂y
|<< 1,

whereas in the inertial layer

∂u

∂y
=

∂U

∂y
+

∂u′

∂y
, |∂U

∂y
|<< 1,

where | · | denotes the vector norm in R
3. We will now set the shear stress in the

flow equal to

τ = ν
∂u

∂y
, (11)

where u is the streamwise component of the flow, or u = (u,v,w), with a slight

abuse of notation. Our results both in the viscous and inertial range follow from

these formulas.

It is well-known that for a laminar boundary layer flow with a small Reynolds

number the streamwise velocity profile is parabolic

u =
τ0y

ν

(

1− y

δ

)

where τ0 = ν∂U
∂y
|y=0 is the shear stress at the wall and δ is half the thickness of the

boundary layer. For larger Reynolds number and turbulent flow the flow profile is

linear in a the viscous region closest to the wall

u =
τ0

ν
y,

whereas in the inertial range it has the form

u =
τ

1/2
0

κ
log(y+)+B,

where y+ =
τ

1/2

0

ν y. Both of these formulas satisfy ”law of the wall”, that u =

uτ f (y+), where uτ =
√

τ0/ρ, but whereas the first one follows from the boundary
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conditions and the Navier-Stokes equations, the second one can be derived from

the energy equation in the region of fully developed turbulence, see Townsend

[34]. In fact, both y dependances are the consequence of the geometry of the flow

and the boundary and the symmetries of the Navier-Stokes equations, and they can

be refined, see M. Oberlack [22] and Z-S. She, Y. Wu, Xi Chen and F. Hussain

[32] for more information.

We will make the hypothesis, following Meneveau and Marusic [19], that the

functional dependence on y can be extended to the fluctuations

u′+ =
u−〈u〉

uτ
,

where the superscript + denotes dimensionless normalization using wall units, i.e.

u′+= u′/uτ, both in the viscous and in the inertial range. Then using the stochastic

closure above we will be able to compute the coefficients Ap, in formula (3), in

the inertial range. We assume, following Meneveau and Marusic [19], that the

fluctuation in the inertial layer has the following scaling,

u′+(
y

δ
) =

τ
1/2
∗
uτ

g(
y

δ
). (12)

where τ∗ is the average stress (a random variable depend on time t); and function

g describes y-dependence. Accordingly,

〈(u′+)2〉= 〈τ∗〉
u2

τ

g2(
y

δ
) (13)

and

〈(u′+)2p〉= 〈τp
∗〉

u
2p
τ

g2p(
y

δ
). (14)

Therefore, we obtain the following relation

〈(u′+)2p〉1/p =
〈τp

∗〉1/p

〈τ∗〉
〈(u′+)2〉. (15)

Note that if 〈(u′+)2〉 is observed to display a log-law with coefficient A1, then

〈(u′+)2p〉1/p is also expected to display a log-law, with the coefficient

Ap =
〈τp

∗〉1/p

〈τ∗〉
A1. (16)
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Since 〈τ∗〉 (time ensemble average) is a constant, the relation between Ap and A1

is determined by the higher order term 〈τp
∗〉. It is notable that if τ

1/2
∗ is Gaussian

distributed, then Ap will be linear with A1, i.e. Ap → ((2p− 1)!!)1/pA1, as dis-

cussed by Meneveau and Marusic [19]. However, this disagrees with data, and a

refined estimation is presented below, based on the KOSL scaling.

Our hypothesis is that in the viscous range, the streamwise velocity fluctua-

tions have the form

u′+ =
τ∗

νuτ
y. (17)

This is the same form as for the velocity in the viscous range above, but takes into

account the normalization of the fluctuations by the friction velocity uτ and instead

of the shear stress at the wall τ0, the fluctuations are proportional to average shear

stress in the viscous range τ∗.

In the inertial range, the above argument amounts to the hypothesis, that the

streamwise fluctuations have the form

u′+ =
τ

1/2
∗

κuτ
log1/2(y/δ). (18)

(We will omit the + index for dimensionless quantities, below.) This form stems

from the ”attached eddy hypothesis”, but uses the average shear stress τ∗ in the

inertial range.

We first explore the implication of (17) in the viscous range. The relation for

u above in the viscous range implies that the average of the streamwise velocity is

〈u〉= τ0

ν
y =U (19)

since 〈u′〉 = 0 in the viscous range. Thus the moments of the fluctuations in the

viscous range become

〈(u′)p〉1/p = 〈(u−U

uτ
)p〉1/p =

1

uτν
〈(τ∗)p〉1/py. (20)

The solution of the stochastic Naiver-Stokes equation (7) does not quite tell us

how to compute the moments of the fluctuation in the viscous range because there

the coefficients dk and ck in (6) are still growing. However, substituting ∂U
∂y

+
∂u′
∂y
, |∂u′

∂y
| << 1, into (11), tells us that in the viscous range these moments are

more similar to those of the velocity in homogeneous turbulence, see [2], than the
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moments of the velocity difference δu = ∆u in turbulent flow, see [5]. We will see

the consequences of this below.

Now we use (18) to compute the coefficients Ap in the inertial range. The

formula (18) for the fluctuations implies that

〈(u′)2〉= B1 −〈 τ∗
u2

τκ2
〉 log(y/δ) = Dp −〈 τ∗

u2
τκ2

〉 log(y+) (21)

where δ is an outer length scale, that can be thickness of the boundary layer,

height of a channel or radius of a pipe, y+ =
τ

1/2

0

ν y are viscous units, and κ is the

von Kármán constant. Similarly,

〈(u′)2p〉1/p = Bp −
1

u2
τκ2

〈(τ∗)p〉1/p log(y/δ) = Dp −
1

u2
τκ2

〈(τ∗)p〉1/p log(y+)

(22)

in the inertial range. The coefficients B1 (Bp) are determined by the boundary

conditions at the end of the inertial range. We will now use the Formula (7) to

compute 〈(τ∗)p〉1/p in the inertial range. This permits us to compute the coeffi-

cients in Equations (3) and (22)

Ap =
1

u2
τκ2

〈(τ∗)p〉1/p. (23)

This is consistent with equation (16).

We start with the assumption that the average strain is proportional to the y

derivative of the velocity at some point (y∗) in the inertial range: τ∗ = ν∂u∗
∂y

. Then

by the mean-value theorem

τ∗ = ν
∂u∗

∂y
= ν

u(y∗+ l∗)−u(y∗)
l∗

where l∗ is some small value of the lag variable l, or

〈(τ∗)p〉1/p = 〈[νu(y∗+ ℓ∗)−u(y∗)
ℓ∗

]p〉1/p = ν
1

ℓ∗
[Cp(ℓ

∗)ζp]1/p = νC
1/p
p (ℓ∗)ζp/p−1

using the Kolmogorov-Obukhov-She-Leveque formula (9), where l∗ is now a

small number. This formula applies to the distances l∗ in mean-value theorem,

see discussion in Section 3. This now gives the formulas

A1 =
ν

κ2τ0
C1

(

1

l∗

)1−ζ1

,

12



and

Ap =
ν

κ2τ0
C

1/p
p

(

1

l∗

)1− ζp
p

, (24)

so

Ap =
C

1/p
p

C1

(

1

l∗

)ζ1−
ζp
p

A1. (25)

We also get that

Ap →
(

1

l∗

)ζ1−1/9
C

1/p
p

C1
A1 → b

√
p A1,

as p → ∞, where b is a constant. Indeed, the formulas for the structure functions

above give values for the limit,

C
1/p
p

C1
= 1

πζ1−ζp/p ×
[∑k∈Z3\{0} 2p/2Γ( p+1

2 ) (
√

(C/2)ck)
p

1F1(− 1
2 p, 1

2 ,− 1
2 (|dk|2/(C/2)ck))]1/p

∑k∈Z3\{0} |dk| ,

so

(

1

l∗

)ζ1−ζp/p
C

1/p
p

C1
≤ 1

(πl∗)ζ1−ζp/p

(

∑k∈Z3\{0}((C/2)ck+d2
k )
)1/2

∑k∈Z3\{0} |dk|
(Γ(

p+1

2
))1/p ∼ b

√
p,

for p large, using the asymptotics of the Gamma function, for p large,

(Γ(
p+1

2
))1/p ∼ (

4π

p+1
)1/2p(

p+1

2e
)1/2+1/2p(1+O(

2

p+1
))1/p,

with the coefficient

b =
1

(πl∗)ζ1−1/9
√

2e

(

∑k∈Z3\{0}((C/2)ck +d2
k )
)1/2

∑k∈Z3\{0} |dk|
.

The first few coefficients Ap are shown in Figure 1, where they are compared with

high Reynolds number data, see [19]. We conclude that if l∗ > 0, then all the Ap

are bounded, for finite p.

This shows that the sub-Gausssian behavior of the coefficients Ap, as p in-

creases, is caused by the KOSL scaling.
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Figure 2: The coefficients Ap for large values of p. The value of l∗ is the same

as in Figure 1, but in addition the normalizations of the coefficients dk and ck, in

Figure 1, fix the asymptotic coefficient b.

The underestimate

(

1

l∗

)ζ1−ζp/p
C

1/p
p

C1
≥ 1

(πl∗)ζ1−ζp/p
√

2e

(

∑k∈Z3\{0}((C/2)ck)
p/2

)1/p

∑k∈Z3\{0} |dk|
√

p,

for p large, gives us the limit

A∞ = lim
p→∞

Ap = ∞. (26)

Figure 2 shows the asymptotics of Ap to b
√

pA1, for large p.

5 The invariant measure of the stochastic Navier-

Stokes

The integral equation (7) can be considered to be an infinite-dimensional Ito pro-

cess, see [6]. This means that we can find the associated Kolmogorov backward
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equation for the Ito diffusion associated with the equation (7) and this equations

that determines the invariant measure of turbulence, see [5], is linear. This was

first attempted by Hopf [11] wrote down a functional differential equation for the

characteristic function of the invariant measure of the deterministic Navier-Stokes

equation. The Kolmogorov-Hopf (backward) equation for (7) is

∂φ

∂t
=

1

2
tr[PtCP∗

t ∆φ]+ tr[PtD̄∇φ]+< K(z)Pt,∇φ >, (27)

see [5] and [6] Chapter 3, where D̄ = (|k|1/3Dk), φ(z) is a bounded function of z,

Pt = e−
∫ t

0 ∇u drMt ∏m
k |k|2/3(2/3)Nk

t . The variance and drift are defined to be

Qt =

∫ t

0
eK(s)PsCP∗

s eK∗(s)ds, Et =

∫ t

0
eK(s)PsD̄ds. (28)

In distinction to the nonlinear Navier-Stokes equation (6) that cannot be solved

explicitly, the linear equation (27) can be solved. The solution of the Kolmogorov-

Hopf equation (27) is

Rtφ(z) =

∫
H

φ(eKtPtz+EI + y)N(0,Qt ) ∗PNt
(dy),

PNt
being the law of the log-Poisson process (8). The invariant measure of tur-

bulence that appears in the last equation can now be expressed explicitly, The

invariant measure of the Navier-Stokes equation on Hc = H3/2+(T3) is

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q−1/2EI|2N(0,Q)(dx)∑

k

δk,l

m

∏
j 6=l

δ
N

j
t

∞

∑
j=0

p j
ml

δ(Nl− j),

(29)

where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes

(8) and p
j
mk

= (mk)
je−mk

j!
is the the probability of Nk

∞ = Nk having exactly j jumps,

δk,l is the Kroncker delta function.

This shows that the invariant measure of turbulence is simply a product of

two measure, one an infinite-dimensional Gaussian that gives the Kolmogorov-

Obukhov scaling and the other a discrete Poisson measure that gives the She-

Leveque intermittency corrections. Together they produce the scaling of the struc-

ture functions in Equation (9).

The quantity that can be compared directly to experiments is the probability

density function (PDF) of either the velocity u or the velocity differences δu. We
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take the trace of the Kolmogorov-Hopf equation (27), see [6] Chapter 3, to com-

pute the differential equation satisfied by the PDE. First we do this ignoring the

intermittency corrections τp in Equation (9), see [7] for details. The stationary

equation satisfied by the PDF without intermittency corrections is

1

2
φrr +

1+ |c|
r

φr =
1

2
φ. (30)

6 The Probability Density Function (PDF)

The PDF, without intermittency corrections, is a Generalized Hyperbolic Distri-

bution (GID) of Barndorff-Nilsen [1]:

f (x) =
(γ/δ)λ

√
2πKλ(δγ)

Kλ− 1
2

(

α
√

δ2 +(x−µ)2
)

eβ(x−µ)

(

√

δ2 +(x−µ)2/α
)λ− 1

2

(31)

where Kλ is modified Bessel’s function of the second kind with index λ, γ =
√

α2 −β2. α,β,δ and µ are parameters. (31) is the solution of (30), see [7] for de-

tails of the proof, and the PDF that can be compared a large class of experimental

data.

The PDF becomes more complicated when the intermittency is included. Then

it becomes impossible to have a single PDF for all the different moments and

instead one has to have a distribution that is a product of a discrete and continuous

distributions. One can put in the intermittency correction in the equation (30)

defining the PDF and get different PDF for each moment, this is done in [7].

In [8] a different approach was taken and the invariant measure (29) projected

to a PDF that is a product of a continuous and a discrete measure analogous to

the invariant measure itself. The continuous part of the PDF is the Generalized

Hyperbolic Distribution (31).

Following [8], we start with the log-Poisson process |x|
(

2
3

)Nk
t and the mean

mk = ln(|x|−6) of the associated Poisson distribution. Now the mixed continuous

and discrete distribution is given by:

µ̄(·) =
∫ ∞

−∞

∞

∑
j=0

(ln(|x|−6)) j

j!
|x|6δNk

t − j(·) f (x)dx, (32)

where µ̄ denotes the projection of the measure (29). We assume that the velocity

is a Hölder continuous function of Hölder index 1/3, see [6]. Then evaluating the
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measure on the pth moment of the velocity differences gives,

∫ ∞

−∞

∞

∑
j=0

(ln(|x|−6)) j

j!
|x|6δNk

t − j(|x|
(

2

3

)Nk
t

)
p
3 f (x)dx =

∫ ∞

−∞
|x|

p
3 |x|6(1−(2/3)

p
3 ) f (x)dx

=
∫ ∞

−∞
|x|p+3τp f (x)dx =

∫ ∞

−∞
|x|3ξp f (x)dx,

where

ξp =
p

3
+ τp

is the scaling exponent (9) of the pth structure function, with the intermittency

correction τp. The upshot is that the discrete part of the PDF adds the intermit-

tency correction |x|3τp to the pth moment and

µ̄(|δu|p) =
∫ ∞

−∞
|x|p+3τp f (x)dx, (33)

where δu are the velocity differences and the intermittency corrections are τp =

2(1− (2/3)
p
3 ).

Thus to recap, the PDF for the velocity differences in turbulent flow is a prod-

uct of a discrete and a continuous measure:

dµ =
∞

∑
j=0

(ln(|x|−6)) j

j!
|x|6δNk

t − j(·) f (x)dx, (34)

where dx denotes Lebesgue measure and f (x) is the Generalized Hyperbolic Dis-

tribution (31). The evaluation of this measure on the pth power of the absolute

value of the velocity differences |δu|p gives the continuous measure

dη = |x|3ζp f (x)dx,

where again f (x) is given by (31).

7 The PDF of the Fluctuations

In this section, we use DNS data to check above analysis. The DNS database used

for comparison in this paper is built by solving the three-dimensional Navier-

Stokes equations for an incompressible turbulent channel flow. The equation of
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motion have been discretized using a staggered central second-order finite differ-

ence scheme in an orthogonal coordinate system based on a fractional step and

factorization method [24]. A third-order Runge-Kutta scheme is used to advance

the equations in time. Moreover, a mean parabolic velocity profile with random

fluctuations is used as an initial condition in the entire domain to trigger turbu-

lence until a fully developed turbulent channel flow is reached. Periodic boundary

conditions are used along the spanwise and streamwise directions, and isothermal

condition is applied for the walls. In the present study, a constant flow rate is

imposed by applying an external force due to energy dissipation. The Reynolds

number in this study is 394, Reτ = uτh/ν, where ν is the kinematic viscosity and

uτ is the friction velocity of the channel flow. The dimension of the computational

box are selected as follows: Lz = πh, Ly = 2h and Lx = 8πh, where h is the length

of half channel. A grid-independence test was performed and details are given in

[16]. The mesh configuration is: 193×193×1153, which represent the numbers

of points along the spanwise (z), normal (y) and streamwise (x) directions, respec-

tively. The present DNS data is validated by comparing with other DNS data as

shown in figures below. It can be seen from Figure 3 that the mean streamwise

velocity of the present study has a very good agreement with other DNS data at

similar Reynolds numbers, and the present velocity fluctuation distributions also

show fairly good agreements. This fact confirms the acceptable resolution of the

selected mesh configuration and quality of simulations.

Then from the vantage point of homogeneous turbulence, see [2], the above

analysis of the coefficients Ap can be interpreted to say that the fluctuations of

the fluid velocity have the properties of velocity differences in the inertial layer

but of velocity, in homogeneous turbulence, in the viscous layer. We now confirm

this by computing the PDF for the fluctuations in those two layers. The PDF in

the inertial layer are well modeled by the Generalized Hyperbolic Distributions

(GHD) above, whereas the PDF in the viscous layers are skewed-Gaussians, see

Figure 4. The normalized velocity gradient

du+

dy+
=

ν

u2
τ

du

dy
≈ ν

u2
τ

∆u

∆y

has similar properties as the fluctuations. We will compare the PDFs of the veloc-

ity gradient to the NIG distributions based on direct numeric simulation of Navier-

Stokes equation (The NIG is a special case of the GHD and the parameters δ and

α of GHD can be adjusted to closely approximate the NIG.)

The comparison between DNS data and theoretical results are shown in Figure

5 and below.
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Figure 3: Current DNS results (solid line - [16]) compared with previous simu-

lations in literatures (dashed line - [21]; dashed dotted line - [13]) showing good

agreements with each other. [left] Mean velocity U+ = U/uτ as a function of

wall distance y+. [right] Turbulent kinetic energy in different directions, 〈u′u′〉+,

〈v′v′〉+, 〈w′w′〉+ as function of y+.

We see that in the inertial range the PDFs are similar to the PDFs of turbulent

velocity differences δu (31) but in the viscous range, the PDF are similar (except

for their skewness) to the PDFs of the velocity in homogeneous turbulence. This

confirms the above observations.

8 Conclusions

We have derived the generalized log-law for the fluctuations in boundary-value

flows, in the inertial range,

〈(u′)2p〉1/p = Bp−Ap ln(y/δ) = Dp(Reτ)−Ap ln(y+), (35)

suggested by Meneveau and Marusic [19] and inspired by the log-law of the sec-

ond moment of the fluctuations [18, 12, 17, 20]. The ideas that go into the deriva-

tion are simple, first the attached eddy hypothesis [34] says that the number of

eddies decreases as one over the distance to the wall, as we move away from the

wall. This gives the logarithmic dependence of the variance on the distance to the
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Figure 4: A comparison of the PDFs (in the log-linear coordinate) for the fluctua-

tion in the inertial and viscous range. Channel flow at Reτ=390. PDFs of velocity

gradient at different y+ locations
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Figure 5: PDF of velocity gradient at y+ = 390. Red: DNS data; Blue: GHD. [up]

log-linear coordinate; [bottom] linear-linear coordinate.
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Figure 6: PDF of velocity gradient at y+ = 80. Red: DNS data; Blue: GHD. [up]

log-linear coordinate; [bottom] linear-linear coordinate.
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Figure 7: PDF of velocity gradient at y+ = 40. Red: DNS data; Blue: GHD. [up]

log-linear coordinate; [bottom] linear-linear coordinate.
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Figure 8: PDF of velocity gradient at y+ = 4. Red: DNS data; Blue: Skew-

Gaussian. [up] log-linear coordinate; [bottom] linear-linear coordinate.
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wall, see [34]. Then we assume a ”law of the wall” for the fluctuations

u′+(
y

δ
) =

τ
1/2
∗
uτ

g(
y

δ
) (36)

where τ∗ is the average shear stress in the inertial range. This relation gives the

relation
Ap

A1
=

〈τp
∗〉1/p

〈τ∗〉
. (37)

for the coefficients Ap. The third idea is to use that the averaged shear stress in the

inertial range is give by the Kolmogorov-Obukhov scaling of the structure func-

tions of the velocity differences, with the She-Leveque intermittency corrections.

The final idea is to use the stochastic closure theory of Birnir [5, 6] to compute

the coefficients Ap

Ap =

(

1

l∗

)ζ1−ζp/p
C

1/p
p

C1
A1

where ζp = p/3+τp = p/9+2(1−(2/3)p/3) are the Kolmogorov-Obukhov-She-

Leveque (KOSL), scaling exponents and the coefficients Cp are given in terms of

the mean and variance of the turbulent velocity, see (10). These coefficients are

the raw-moments of a Gaussian. The sub-Gaussian behavior of the coefficients

Ap is given by an interplay between the function
(

1
l∗
)ζ1−ζp

produced by the KOSL

scaling and the ”square root of Gaussian” behavior of the coefficients Cp. As p

become large the former function approaches a constant in p :
(

1
l∗
)ζ1−1/9

, whereas

Cp/C1 ∼ b
√

p, where b is a constant. The Gaussian behavior would be Ap/A1 ∼
cp, where c is a constant. In particular, limp→∞ Ap = ∞. Thus the sub-Gaussian

behavior for p large is caused by the formulas (36) and (37); that the variance of

the fluctuations is proportional to 〈τp
∗〉 but not 〈τ2p

∗ 〉.
The PDFs for the velocity moments in homogeneous turbulence are well-

known to be Gaussians, see [2, 34], whereas the PDFs of the structure function of

velocity differences are Generalized Hyperbolic Distributions with intermittency

corrections (33), see [5, 6, 8]. We showed that the PDFs of the moments of the

fluctuations in the viscous range are similar to the former, except for also being

skewed, whereas they are similar to the latter in the inertial range.

One can also use the stochastic closure theory in [5, 6] to compute the Reynolds

number dependance of the moments of the fluctuations (35) but this will be done

in another publication.
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