
UC Berkeley
International Conference on GIScience Short Paper 
Proceedings

Title
Deserts in the Deluge: TerraPopulus and Big Human-Environment Data

Permalink
https://escholarship.org/uc/item/76z9g4vb

Journal
International Conference on GIScience Short Paper Proceedings, 1(1)

Authors
Manson, Steven
Kugler, Tracy
Haynes, David

Publication Date
2016

DOI
10.21433/B31176z9g4vb
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/76z9g4vb
https://escholarship.org
http://www.cdlib.org/


Deserts in the Deluge: TerraPopulus and Big Human-
Environment Data 

 
S. M. Manson1, T. A. Kugler2, D. Haynes II2 

 
1 Department of Geography, Environment, and Society. University of Minnesota. 414 Social Sciences, 267 19th Avenue South, 

Minneapolis, MN 55455, USA 
Email: manson@umn.edu 

 
2 Minnesota Population Center, 50 Willey Hall, 225 – 19th Avenue South, Minneapolis, MN 55455 

Email: takugler; dhaynes@umn.edu 
 

Abstract 
Terra Populus, or TerraPop, is a cyberinfrastructure project that integrates, preserves, and 
disseminates massive data collections describing characteristics of the human population and 
environment over the last six decades. TerraPop has made a number of GIScience advances in 
the handling of big spatial data to make information interoperable between formats and across 
scientific communities. In this paper, we describe challenges of these data, or ‘deserts in the 
deluge’ of data, that are common to spatial big data more broadly, and explore computational 
solutions specific to microdata, raster, and vector data models. 

1. Introduction 
Over the past six decades, the world’s population more than doubled. Sharp interregional 
differences in growth rates—together with unprecedented urbanization and international 
migration—led to dramatic spatial redistribution of population. Economic changes were 
equally remarkable, as world per-capita gross domestic product roughly doubled (Rosa et al. 
2010; Bloom 2011). This extraordinary global demographic and economic growth has ushered 
in alarming environmental degradation, resource depletion, and climate change (Ehrlich, 
Kareiva, and Daily 2012).  

Scientific and policy bodies have called for more richly-detailed data to support the 
research and informed decisions necessary to meet the challenges of rapid social and 
environmental change (Millett and Estrin 2012). There is particular interest in the ‘data deluge’ 
or ‘big data’, or research based on datasets that are vastly larger than those traditionally used 
in most fields, and which in turn entail new forms of processing and analysis. 

However, there are deserts in the deluge of data. At the level of data as such, scholars 
untangling human-environment interactions face a dearth of spatially-detailed multidecadal 
data. While some relevant data are available, such as climate observations, there is surprisingly 
little detailed information about many social and natural features for most of the globe before 
the year 2000 (Nelson et al. 2010). At the level of methods, there are similar shortfalls in our 
ability to store, manipulate, and analyze spatial big data (Wang and Liu 2009). And at the level 
of theory, we face many unresolved challenges in representing social and biophysical entities 
and relationships that operate at multiple levels of organization, over space, and through time 
(O'Sullivan and Manson 2015). TerraPop address these deserts in deluge of big spatial data. 

2. TerraPop 
TerraPop addresses challenges in data, methods, and theory in big spatial data by using 
location-based data integration to make heterogeneous data interoperable and thereby break 
down barriers to interdisciplinary research. Researchers can combine data across three major 
data classes – microdata, raster, and area-level. For example, TerraPop can summarize raster 
data derived from satellite images to determine the percentage of each municipio in Brazil 
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covered by trees, and then attach that contextual information to each record of census microdata 
(or data that represents an individual person or set of household). TerraPop has population data 
for over 170 countries, global long-term climate data, a variety of global land cover and land 
use datasets, and the geographic boundaries necessary to support integration across the 
collection. Many of these data sets are unique (especially those on demographics and 
socioeconomic characteristics) and help address one of the primary deserts in the deluge, the 
dearth of data on human populations for much of the globe prior to 2000. TerraPop makes these 
global datasets interoperable across time and space, disseminates them to the public and to 
multiple research communities, and preserves these resources for future generations.  

3. Spatial high-performance computing 

We addressed a number of fundamental GIScience challenges in order to integrate and 
disseminate this vast data collection. We developed workflows and supporting software tools 
for processing data and metadata. We developed a suite of Python-ArcGIS tools that enable 
efficient boundary data processing of current and historic population datasets, automate 
temporal harmonization, and manage regionalization to protect respondent confidentiality 
(Kugler et al. 2015). We also developed a metadata management application that tracks data 
provenance from the original sources through all TerraPop processing steps and produces 
complete descriptions of the final data. 

At the core of the TerraPop infrastructure is a set of spatial high-performance computing 
solutions that transform microdata, vector data, and raster data. We have microdata describing 
250 billion microdata characteristics, 300 billion vector data points, and over a trillion pixels 
of raster data. These data are available via a web interface or application program interface 
(Figure 1). These large datasets create research opportunities and challenges. Parallel 
computation, the usual solution for such problems, is fundamentally difficult for big 
spatiotemporal data (Eldawy and Mokbel 2015). Many computational problems are 
“embarrassingly parallel” because they can be solved by partitioning and distributing data 
among nodes in a computing cluster, solving the problem for a subset of data on each node, 
and then collating the results. 

 

 
 

Figure 1. TerraPopulus web interface for combining and abstracting data. 
 
Standard high-performance computing approaches are often inefficient or unworkable for 

spatiotemporal data, due to the difficulty of preserving spatial and temporal relationships across 
nodes (Ding and Densham 1996). Microdata require a distribution algorithm that preserves 
relationships between individuals and their households. Raster data and vector data embody 
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complex spatial and topological relationships that are essential for answering most spatial 
problems, relationships that must be preserved when partitioning across nodes. Parallel 
computing for spatial big data is an area of active research, but most existing computing 
platforms cannot handle multiple spatial data models or perform spatial data handling and 
analytics commonly found in even the most basic geographic information systems (Ray et al. 
2015). In particular, most approaches to parallelization are limited in scope or provide 
extensions to existing frameworks such as MapReduce and column store databases. While this 
work is very promising, no existing systems are robust or wide-ranging enough for GIScience 
production environments like TerraPop (Haynes et al. 2015). 

Microdata. Microdata are most often stored as hierarchical fixed-width text or binary files, 
where each line represents an individual person or set of household characteristics. Challenges 
to high-speed processing of individual-level data derive from the size and complexity of the 
data and the need to conduct complicated queries across multiple samples with thousands of 
attributes and multiple embedded relationships. We implemented Apache Spark’s Parquet 
columnar storage database and found significant performance gains across these queries over 
standard Java-based approaches. Query execution speed has increased by a factor of 10 to 300 
for a variety of common operations and using Parquet promises further gains because Parquet 
offers record shredding and assembly (Armbrust et al. 2015). 

Vector data. Large vector datasets are difficult to parallelize because spatial relationships 
such as adjacency and connectivity must be preserved across nodes (Ray et al. 2013; Puri and 
Prasad 2013). We use the leading open-source spatial computing framework, 
PostgreSQL/PostGIS, because it offers deep data handling and analytical capabilities.  
However, PostgreSQL does not natively support parallel queries, though multiple projects are 
trying to scale PostgreSQL onto machine clusters (e.g., GridSQL, Stado, Postgres-XC, 
CitusDB and Postgres-XL). We extensively tested these projects and determined that they do 
not support parallel spatial processing well (although several projects are working on the 
problem) so we have been developing a prototype vector analytic engine that partitions a 
PostgreSQL database across computing nodes. We chose this approach based on evidence that 
parallel relational databases like PostgreSQL can perform significantly better than MapReduce 
systems (Pavlo et al. 2009). Our work to date has significantly improved performance in 
analyzing vector datasets, offering near linear speedup when adding nodes by sharding spatial 
queries across a cluster of machines where a PostgreSQL database instance is run on each node 
for simple topographical operations such as determining whether a polygon intersects a line or 
other polygon (Haynes et al. 2015; Ray et al. 2014). This work thereby addresses fundamental 
research needs in spatial high performance computing (Vo, Aji, and Wang 2014). 

Raster data. Large raster datasets are difficult to parallelize because of the sheer volume of 
data involved, the need to preserve spatial relationships among grid cells, and the large number 
of varying raster operations that are needed to manipulate data. While the combination of 
PostgreSQL/PostGIS offers a comprehensive set of raster analytics, that approach does not 
handle large rasters well because row limit sizes are often exceeded by raster datasets 
(Stonebraker et al. 2011). By experimenting with array data structures, we have doubled or 
tripled performance for most operations while ensuring that larger raster layers do not fail 
outright. We are also experimenting with web applications to offer easy and fast access to these 
data via textual and web mapping interfaces (Manson et al. 2012). 

4. Conclusion 

TerraPop incorporates the largest and most comprehensive available collections of data on 
human activities and behavior, along with important global environmental datasets. The 
population and environmental data are multiscale over time and space, have multiple levels of 

GIScience 2016 Short Paper Proceedings

185



hierarchy, and cover a remarkable range of topics. To manage the scale, complexity, and 
heterogeneity of the data, we will engage the leading edge of data science and develop new 
technologies and processes. Innovative solutions are needed through the entire data life cycle, 
including collection, preservation, analysis, dissemination, and long-term access and 
management. TerraPop will provide open-source software, metadata, and workflows that can 
overcome these challenges and that can readily be adapted to spatiotemporal data in multiple 
scientific domains. In particular, our work on spatial high-performance computing will address 
critical bottlenecks in the integration and dissemination of massive spatiotemporal datasets. 
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