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Oscillatory Behaviors of microRNA
Networks: Emerging Roles in Retinal
Development
Elizabeth S. Fishman, Jisoo S. Han and Anna La Torre*

Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States

A broad repertoire of transcription factors and other genes display oscillatory patterns of
expression, typically ranging from 30min to 24 h. These oscillations are associated with a
variety of biological processes, including the circadian cycle, somite segmentation, cell
cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional
feedback loops in which transcriptional activities are inhibited by their corresponding gene
target products. Oscillatory transcriptional patterns have been proposed as a mechanism
to drive biological clocks, the molecular machinery that transforms temporal information
into accurate spatial patterning during development. Notably, several microRNAs
(miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit
rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of
these new findings in the context of the developing retina. We propose that miRNA
oscillations are a powerful mechanism to coordinate signaling pathways and gene
expression, and that addressing the dynamic interplay between miRNA expression and
their target genes could be key for a more complete understanding of many developmental
processes.
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INTRODUCTION

The surge of new techniques to survey the transcriptome over the last few decades has led to the
identification of numerous types of non-coding RNAs. While protein-coding sequences constitute
less than 1.5% of the human genome, large-scale screenings have revealed that virtually the entire
genome is transcribed to generate myriads of non-coding RNAs (Kapranov et al., 2002; Carninci
et al., 2005; Mattick and Makunin, 2006; Birney et al., 2007). These RNA molecules are differentially
expressed in distinct cell types and dynamically regulated during development (Hangauer et al., 2013;
Mercer and Mattick, 2013).

Among non-protein coding RNAs, microRNAs (miRNAs) have emerged as key post-
transcriptional regulators of gene expression (Bushati and Cohen, 2007; Bartel, 2009; Chekulaeva
and Filipowicz, 2009). MiRNAs are small (~22-nucleotide (nt) long), evolutionarily conserved
molecules. First described in Caenorhabditis elegans (Lee et al., 1993), miRNAs are also present in a
wide diversity of organisms in the bacteria, archaea, and eukaryote domains (Dexheimer and
Cochella, 2020).

MiRNAs are transcribed from DNA sequences as long transcripts called primary miRNAs
(pri-miRNAs) that contain double-stranded hairpin-like structures in which at least one of the
two strands includes a mature miRNA (Figure 1). About half of all currently identified miRNAs
are intergenic, mostly localized in introns, and controlled by the regulatory elements of the host
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gene; the other half are intragenic and are regulated
independently by their own promoters (Ha and Kim, 2014).
About 25% of all miRNAs are arranged in clusters and
transcribed as longer transcripts that contain more than one
mature miRNA sequence. Intergenic miRNAs are processed by
the splicing machinery, while intragenic pri-miRNAs are
cleaved by the microprocessor complex that includes
Drosha ribonuclease and DiGeorge critical region 8
(DGCR8). In both cases, this first cleavage step produces a
precursor miRNA (pre-miRNA) of about 70-nt that is
exported out of the nucleus. Pre-miRNAs are further
processed by the enzyme Dicer, which removes the loop of
the hairpin, yielding a mature miRNA duplex that can be
loaded onto the RNA-Induced Silencing Complex (RISC,
Figure 1). Mature miRNAs bind to their target mRNAs,
usually to the 3′ untranslated region (3′UTR), through
imperfect base-pairing, hindering the stability and
translation of their target mRNAs (Eulalio et al., 2008).
Hence, miRNAs are part of complex networks where one
individual miRNA can regulate a large number of genes,
frequently from a similar biochemical pathway, and where a
single target mRNA can be regulated concomitantly by
multiple miRNAs. Thus far, about 2,500 mature miRNAs
have been identified in the human genome (miRBase.org)
(Kozomara and Griffiths-Jones, 2011), and bioinformatics
studies have estimated that over 60% of the human
transcriptome is regulated by miRNAs (Friedman et al., 2009).

A large body of research suggests that this previously unknown
miRNA-based regulation is crucial for many physiological and
pathophysiological events and that the complex interactions
between transcription factors and miRNAs could be
instrumental in delineating developmental programs.

miRNAs in the Developing Retina
To gain further understanding of the roles of miRNAs in ocular
tissues, several groups have attempted to characterize the retina
miRNome by in situ hybridization, computational predictions,
and profiling techniques. Hundreds of different miRNAs have
been identified in the retina of different species (Loscher et al.,
2007; Xu et al., 2007; Bak et al., 2008; Hackler et al., 2010; Karali
et al., 2010, 2016; Fishman et al., 2021) and several miRNAs show
a significantly enriched expression in the retina compared to
other tissues (Table 1). Two early reports by Hackler et al.
(Hackler et al., 2010) and Xu et al. (Xu et al., 2007) compared
miRNA expression patterns at different developmental ages in the
mouse retina and brain. Consistent with other studies (Lewis
et al., 2003), the authors found that miRNAs with identical seed
sequences exhibited highly similar expression profiles.
Additionally, these studies and others have defined the
repertoire of miRNAs expressed at different time points
during retinal development (Table 1). Two main miRNA
categories have been consistently identified: miRNAs expressed
primarily at early developmental stages (embryonic day (E)10-
E16 in the mouse) and miRNAs present at later stages of retinal

FIGURE 1 |miRNA biogenesis. Primary miRNAs (pri-miRNAs) are transcribed as double-stranded hairpin-like structures. Intragenic pri-miRNAs are processed via
the canonical pathway, where the clusters of hairpin-like structures are cleaved into individual precursor miRNAs (pre-miRNAs) by the microprocessor complex.
Intergenic pri-miRNAs are processed by the splicing machinery. The resultant pre-miRNA from both pathways is an individual hairpin-like structure of 70-nt. After being
exported from the nucleus via Exportin5, pre-miRNAs are further processed by Dicer into mature miRNA duplexes. One miRNA strand is loaded into the RNA-
Induced Silencing Complex (RISC). Mature miRNA binds to its target mRNA, inhibiting mRNA translation and inducing mRNA decay. This figure was created with
BioRender.com.
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TABLE 1 | Summary of miRNAs highly expressed in the developing retina.

miRNA Enriched
in

retina

Development
expression

Known function Proposed roles
in retinal
diseases

References

Let-7a no late development neural differentiation;
competence progression,
repression of regeneration

Retinoblastoma (Arora et al., 2007; Bak et al., 2008; Georgi and
Reh, 2010; Hackler et al., 2010; Mu et al., 2010;
Ramachandran et al., 2011; La Torre et al.,
2013; Xia and Ahmad, 2016; Fairchild et al.,
2019)

Let-7b no late development neural differentiation;
competence progression,
repression of regeneration

Retinoblastoma, diabetic
retinopathy

(Makarev et al., 2006; Bak et al., 2008; Hackler
et al., 2010; Mu et al., 2010; Georgi and Reh,
2011; Xia and Ahmad, 2016; Fairchild et al.,
2019; Smit-McBride et al., 2020)

Let-7c no late development neural differentiation;
competence progression,
repression of regeneration

AMD, Retinoblastoma (Bak et al., 2008; Hackler et al., 2010; Mu et al.,
2010; Georgi and Reh, 2011; Ertekin et al.,
2014; Xia and Ahmad, 2016; Fairchild et al.,
2019)

Let-7d no late development neural differentiation;
competence progression,
repression of regeneration

Retinobastoma (Bak et al., 2008; Hackler et al., 2010; Mu et al.,
2010; Georgi and Reh, 2011; La Torre et al.,
2013; Fairchild et al., 2019)

Let-7e no late development neural differentiation;
competence progression,
repression of regeneration

Retinobastoma (Bak et al., 2008; Hackler et al., 2010; Mu et al.,
2010; Georgi and Reh, 2011)

Let-7f no late development neural differentiation;
competence progression,
repression of regeneration

Retinobastoma (Ryan et al., 2006; Bak et al., 2008; Hackler
et al., 2010; Georgi and Reh, 2011;
Ramachandran et al., 2011; La Torre et al.,
2013)

miR-101a late development (Arora et al., 2007; Georgi and Reh, 2011)

miR-103 late development (Xu et al., 2007; Fishman et al., 2021)

miR-106 yes early development AMD (Xu et al., 2007; Hackler et al., 2010; La Torre
et al., 2013; Ertekin et al., 2014)

miR-107 early development (Arora et al., 2007; Xu et al., 2007; Hackler et al.,
2010)

miR-124 no late development neuronal fate determination AMD and other
neurodegenerations

(Deo et al., 2006; Makarev et al., 2006; Ryan
et al., 2006; Arora et al., 2007; Loscher et al.,
2007; Xu et al., 2007; Bak et al., 2008; Qiu et al.,
2009; Karali et al., 2011; Chu-Tan et al., 2018;
Wohl et al., 2019)

miR-125b no late development/ no
change

Competence progression
neuronal differentiation

AMD, Retinoblastoma (Makarev et al., 2006; Ryan et al., 2006; Loscher
et al., 2007; Bak et al., 2008; Georgi and Reh,
2010; Hackler et al., 2010; Yang and Mei, 2015;
Berber et al., 2017)

miR-127 no late development (Xu et al., 2007; Hackler et al., 2010)

miR-128a no (Xu et al., 2007; Bak et al., 2008)

miR-129 early development photoreceptor/bipolar fate (Decembrini et al., 2009)

miR-139 (Arora et al., 2007; Xu et al., 2007)

miR-140 yes (Arora et al., 2007; Xu et al., 2007)

miR-15a downregulated
postnatally

(Wohl and Reh, 2016a)

miR-15b enriched in fovea,
downregulated
postnatally

Diabetic retinopathy (Wohl and Reh, 2016a; Wang et al., 2016;
Fishman et al., 2021)

miR-151 yes (Xu et al., 2007)

miR-155 early development photoreceptor/bipolar fate AMD (Decembrini et al., 2009)

(Continued on following page)
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TABLE 1 | (Continued) Summary of miRNAs highly expressed in the developing retina.

miRNA Enriched
in

retina

Development
expression

Known function Proposed roles
in retinal
diseases

References

miR-16 no early development (Arora et al., 2007; Georgi and Reh, 2010;
Hackler et al., 2010)

miR-17 no early development Retinal progenitor proliferation,
circadian oscillator regulator

AMD, Retinoblastoma (Arora et al., 2007; Hackler et al., 2010; Georgi
and Reh, 2011; Sage and Ventura, 2011; Wohl
and Reh, 2016a; Gao et al., 2016b; Berber et al.,
2017)

miR-18 no early development Retinoblastoma (Hackler et al., 2010; Georgi and Reh, 2011;
Yang and Mei, 2015)

miR-181a late development Glaucoma, LHON (Arora et al., 2007; Loscher et al., 2007; Hackler
et al., 2010; Karali et al., 2016; Indrieri et al.,
2019)

miR-181b late development Glaucoma, LHON (Lagos-Quintana et al., 2003; Wienholds et al.,
2005; Makarev et al., 2006; Ryan et al., 2006;
Arora et al., 2007; Xu et al., 2007; Indrieri et al.,
2019)

miR-181c yes late development (Arora et al., 2007; Xu et al., 2007; Hackler et al.,
2010)

miR-182 yes Enriched in
photoreceptors

photoreceptor physiology,
circadian oscillator regulator

(Lagos-Quintana et al., 2003; Wienholds et al.,
2005; Ryan et al., 2006; Arora et al., 2007;
Loscher et al., 2007; Xu et al., 2007; Bak et al.,
2008; Hackler et al., 2010; Georgi and Reh,
2011; Lumayag et al., 2013; Busskamp et al.,
2014; Karali et al., 2016; Fogerty et al., 2019;
Fairchild et al., 2021; Fishman et al., 2021)

miR-183 yes Enriched in
photoreceptors

photoreceptor physiology,
circadian oscillator regulator

RP (Lagos-Quintana et al., 2003; Wienholds et al.,
2005; Ryan et al., 2006; Arora et al., 2007;
Loscher et al., 2007; Xu et al., 2007; Bak et al.,
2008; Hackler et al., 2010; Georgi and Reh,
2011; Lumayag et al., 2013; Busskamp et al.,
2014; Karali et al., 2016; Fogerty et al., 2019;
Fairchild et al., 2021; Fishman et al., 2021)

miR-184 yes AMD (Lagos-Quintana et al., 2003; Loscher et al.,
2007; Xu et al., 2007; Bak et al., 2008; Karali
et al., 2016; Intartaglia et al., 2020)

miR-185 yes (Lagos-Quintana et al., 2003; Xu et al., 2007)

miR-191 (Georgi and Reh, 2011)

miR-194 yes (Xu et al., 2007)

miR-200b* AMD, Diabetic
retinopathy, Glaucoma

(Georgi and Reh, 2011; Gao et al., 2016a;
Dantas da Costa et al., 2019)

miR-204 retina and lens development AMD, Coloboma,
Glaucoma

(Wienholds et al., 2005; Deo et al., 2006; Ryan
et al., 2006; Xu et al., 2007; Conte et al., 2010;
Villarreal et al., 2011; Karali et al., 2016;
Intartaglia et al., 2020)

miR-21 no late development AMD (Makarev et al., 2006; Hackler et al., 2010)

miR-210 yes (Xu et al., 2007; Bak et al., 2008; Hackler et al.,
2010)

miR-211 yes (Arora et al., 2007; Xu et al., 2007; Bak et al.,
2008)

miR-214 early development photoreceptor/bipolar fate (Decembrini et al., 2009)

miR-219 yes (Arora et al., 2007; Xu et al., 2007)

miR-222 early development photoreceptor/bipolar fate (Decembrini et al., 2009)

(Continued on following page)

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8317504

Fishman et al. microRNAs in Oscillatory Networks

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


development (E16-postnatal day (P)7) and maturation (>P7).
Specifically, miR-17, miR-18, miR-19, miR-20, miR-93, miR-
106, and miR-130 are down-regulated throughout
development, while the let-7 family, miR-7, miR-9, miR-9*,

miR-96, miR-101, miR-124, miR-181, miR-182, and miR-183
are some of the miRNAs that increase during retinal
development from E10 to adulthood in mice. Additional
studies have also identified cell-specific expression of

TABLE 1 | (Continued) Summary of miRNAs highly expressed in the developing retina.

miRNA Enriched
in

retina

Development
expression

Known function Proposed roles
in retinal
diseases

References

miR-24a late development inhibition of apoptosis AMD, Glaucoma (Walker and Harland, 2009; Intartaglia et al.,
2020)

miR-25 yes downregulated
postnatally

circadian oscillator regulator Retinoblastoma (Arora et al., 2007; Xu et al., 2007; Yang and
Mei, 2015; Wohl and Reh, 2016a)

miR-26a yes circadian oscillator regulator AMD (Ryan et al., 2006; Loscher et al., 2007; Georgi
and Reh, 2011; Ertekin et al., 2014)

miR-29b late development AMD, Diabetic
retinopathy, Glaucoma

(Arora et al., 2007; Dantas da Costa et al. 2019;
Xu et al., 2007; Hackler et al., 2010; Villarreal
et al., 2011; Intartaglia et al., 2020)

miR-29c late development Glaucoma (Arora et al., 2007; Hackler et al., 2010; Karali
et al., 2010; Villarreal et al., 2011)

miR-30 no late development (Wienholds et al., 2005; Ryan et al., 2006; Arora
et al., 2007; Bak et al., 2008; Hackler et al.,
2010; Georgi and Reh, 2011; Fishman et al.,
2021)

miR-31 yes (Ryan et al., 2006; Loscher et al., 2007; Xu et al.,
2007; Bak et al., 2008)

miR-320 yes Diabetic retinopathy (Xu et al., 2007; Smit-McBride et al., 2020)

miR-342-5p late development,
enriched in peripheral/
nasal retina

neural stem cell proliferation AMD (Ertekin et al., 2014; Gao et al., 2017; Fishman
et al., 2021)

miR-361 yes (Xu et al., 2007)

miR-550 late development (Georgi and Reh, 2011)

miR-690 late development (Georgi and Reh, 2011)

miR-7 no early development (Arora et al., 2007; Xu et al., 2007; Bak et al.,
2008; Georgi and Reh, 2011)

mir-709 late development (Georgi and Reh, 2011)

miR-720 (Georgi and Reh, 2011; La Torre et al., 2013)

miR-9/9* yes late development neuronal fate determination AMD, Macular
Telangiectasia Type 2

(Wienholds et al., 2005; Deo et al., 2006; Arora
et al., 2007; Loscher et al., 2007; Xu et al., 2007;
Hackler et al., 2010; Georgi and Reh, 2011; La
Torre et al., 2013; Thomas et al., 2021)

miR-92 yes progenitors Retinoblastoma (Deo et al., 2006; Kapsimali et al., 2007; Xu et al.,
2007; Sage and Ventura, 2011)

miR-93 early development (Arora et al., 2007; Hackler et al., 2010; Georgi
and Reh, 2011; Fishman et al., 2021)

miR-96 yes late development photoreceptor physiology,
circadian oscillator regulator

RP (Lagos-Quintana et al., 2003; Wienholds et al.,
2005; Ryan et al., 2006; Arora et al., 2007;
Loscher et al., 2007; Xu et al., 2007; Bak et al.,
2008; Hackler et al., 2010; Georgi and Reh,
2011; Lumayag et al., 2013; Busskamp et al.,
2014; Karali et al., 2016; Fogerty et al., 2019;
Fishman et al., 2021)

Retina enrichment is defined as increased expression compared to brain samples; early development refers to E10-E16 and late development refers to E16-P7, as defined by the
progenitor states in Clark et al. (Clark et al., 2019). Acronyms: AMD, age-related macular degeneration; LHON, Leber’s hereditary optic neuropathy; RP, retinitis pigmentosa.
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subsets of these miRNAs (Georgi and Reh, 2010; Ohana et al.,
2015; Wohl and Reh, 2016a) (Table 1).

Dicer and DGCR8 transgenic models (Damiani et al., 2008;
Decembrini et al., 2008; Georgi and Reh, 2010, 2011; Pinter and
Hindges, 2010; Davis et al., 2011; Iida et al., 2011; La Torre et al.,
2013; Busskamp et al., 2014; Sundermeier et al., 2017), miRNA
mutants (Lumayag et al., 2013; Barbato et al., 2017; Fogerty et al.,

2019), sponge strategies (Zhu et al., 2011), and miRNA inhibitors
(Decembrini et al., 2009; La Torre et al., 2013; Taylor et al., 2019;
Wohl et al., 2019) have been extensively used to shed some light
on the specific roles of miRNAs during retinal development.
While many miRNA functions have been elucidated using these
strategies, far less is known about miRNA target genes and the
specific circuits that regulate development and

FIGURE 2 |Oscillatory patterns of miRNAs in biological processes. (A)Oscillatory behavior of the miR-183 complex. miR-96 directly targets PER2, causing an out-
of-phase oscillation pattern with PER-2 peaking during light andmiR-183/96/182 peaking in dark hours. (B) Let-7 oscillatory behavior. The fluctuation of let-7 expression
in accordance with the cell cycle changes at different stages of development. Early in development (let-7 early), let-7 expression is at its lowest at the start of the cell cycle
in G1, and peaks in S-phase. The phase of oscillation shifts later in development (let-7 late), when let-7 expression is at its highest in mitosis and lowest in S-phase.
(C) Hes1/miR-9 ultradian oscillator. (Top) Hes1 oscillation is self-driven with a rhythmicity of 2–3 h. The Hes1 oscillator represses Ascl1 and Notch ligands, consequently
driving their oscillation patterns. MiR-9 and Hes1 participate in a negative feedback loop. (Bottom) Hes1 and miR-9 have out-of-phase expression patterns and are
dependent on one another. As miR-9 continues to accumulate during proliferation, Hes1 is consequently dampened. RPC differentiation is induced when miR-9 levels
reach a threshold to maintain high, steady levels while dulling Hes1 oscillations, resulting in neuronal maturation.
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pathophysiological processes in the retina. Furthermore, these
global analyses do not capture the dynamic nature of miRNA
expression and activity. Importantly, several miRNAs are
involved in complex feedback and feed-forward regulations
with their target genes, allowing for increased robustness of
protein expression towards gene background noise (Borenstein
and Ruppin, 2006). MiRNAs also participate in negative feedback
loops, where target mRNAs regulate miRNA expression, leading
to the occurrence of biological rhythms. Correspondingly,
miRNAs have been shown to display rhythmic behaviors in
the retina and other organs, and to regulate the circadian
clock, the cell cycle, and the Hes1 ultradian oscillator
(Figure 2). Here, we summarize some of the recent findings
on miRNA oscillatory behaviors, their regulatory mechanisms,
and some of their possible functions during retinal development.

miR-183, -96, -182 and the Circadian Clock
The textbook view of the circadian clock consists of a light-dark
pattern of approximately 24 h (Figure 2A) that governs
rhythmicity within the organism and is regulated by two
interwoven feedback loops with positive and negative
components (Figure 3). One of these regulatory mechanisms
involves the heterodimeric transcriptional activators CLOCK and
BMAL1, which trigger the expression of repressors such as Period
(PER1, PER2, and PER3) and Cryptochrome (CRY1 and CRY2)
that, in turn, will repress the transcriptional activity of their
activators (Sangoram et al., 1998; Zylka et al., 1998; Lowrey and
Takahashi, 2004). The second loop involves the expression of
Rev-Erbα and Rorα genes also regulated by CLOCK and BMAL1.
Subsequently, REV-ERBα and RORα proteins compete for
binding to the Bmal1 promoter (Lowrey and Takahashi, 2004).

These self-sustaining feedback clocks are reset by fluctuating
inputs, including light, temperature, or feeding patterns, to
synchronize the molecular clock with the environment and the
Earth’s rotation. This timing mechanism is controlled by a master
pacemaker in the suprachiasmatic nuclei (SCN) of the
hypothalamus, but independent circadian oscillators are
present throughout the organism. Studies in the early 80’s
already demonstrated that the circadian clock was present in
the Xenopus retina (Besharse and Iuvone, 1983), and further
analyses have added that the retinal circadian rhythm controls
many aspects of the vertebrate ocular physiology, including
melatonin and dopamine synthesis, photoreceptor disk
shedding, visual sensitivity, and intraocular pressure (LaVail
and Ward, 1978; Doyle et al., 2002; Maeda et al., 2006; Storch
et al., 2007; Tosini et al., 2008). Dysregulation of these retinal
circadian clocks can lead to ocular diseases and have impacts on
the circadian rhythm within the whole body (Ko, 2020).

Mathematical modeling predicted decades ago that the
regulation of mRNA stability is essential for rhythmic protein
output (Wuarin et al., 1992). More recently, high-throughput
analyses have shown that 25–50% of all rhythmically expressed
proteins do not exhibit transcriptional rhythmicity (Mauvoisin
et al., 2014). Accordingly, instead of the simplified transcription-
translation view, the circadian rhythm undergoes very complex
and dynamic regulatory processes that include polyadenylation,
RNA splicing, and miRNA regulation.

Numerous miRNAs exhibit circadian rhythmicity, although
the mechanisms that regulate these oscillations often remain
unclear. In some cases, miRNA coding regions contain E-Box
or RORE upstream elements that could be regulated by the core
components of the circadian clock (Cheng et al., 2007). Dicer
expression has also been reported to display diurnal rhythmicity
(Yan et al., 2013), which could lead to a rhythmic pattern of
miRNA maturation.

By means of microarray technologies and other tools, early
screenings identified the miR-183 cluster (miR-183, miR-96, and
miR-182) as miRNAs robustly regulated by the circadian clock
(Xu et al., 2007; Yang et al., 2008). For instance, circadian
fluctuations in dme-miR-263a and dme-miR-263b expression,
the Drosophila orthologues of the miR-183 cluster, were detected
in wild type flies and the levels of these miRNAs were significantly
reduced in the arrhythmic clock mutant cyc01 (Yang et al., 2008).
Likewise, in the adult mouse retina, the expression of these
miRNAs obeys a circadian rhythm, with the miRNA levels
being significantly higher during zeitgeber time (ZT) 17
(midnight) compared to ZT 5 (noon) (Xu et al., 2007). The
expression of these miRNAs is also regulated by light in the
mammalian retina and the total levels of miR-183, miR-96, and
miR-182 shift quickly (within 30 min) after light or dark
adaptation (Krol et al., 2010).

MiR-183, -96, and -182 are part of a highly-conserved
polycystronic miRNA cluster that plays multiple roles in
sensory tissues including the retina (Lagos-Quintana et al.,
2002; Xu et al., 2007), the inner ear (Weston et al., 2006), and
the olfactory epithelium (Xu et al., 2007). In the vertebrate retina,
this cluster has been shown to elicit neuroprotective functions in
photoreceptors, modulate outer segment maintenance, and

FIGURE 3 | Overview of the molecular components of the circadian
rhythm. Circadian rhythm is regulated by two interwoven feedback loops. The
first loop involves CLOCK and BMAL1 activating regulatory elements
containing E-boxes to induce expression of repressors. PER and CRY
proteins bind to CLOCK/BMAL1 to repress the transcriptional activity of their
activators. MiR-182 targets CLOCK, among other circadian rhythm
regulators, and miR-9 targets PER-2. The second loop involves REV-ERBα
and RORα competing for binding on RORE binding elements, which promotes
Bmal1 transcription. This figure was created with BioRender.com.
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enhance light responses in stem cell-derived retinal organoids
(Loscher et al., 2007; Krol et al., 2010; Lumayag et al., 2013;
Busskamp et al., 2014). Many reports indicate that the miR-183
cluster is a key regulator of apoptosis and programmed cell death
and validated target genes include CASP2, FOXO1, SLC1A1, and
PDCD4 (Zuzic et al., 2019). Recent studies have indicated that the
miR-183 cluster is also an important morphogenetic factor
regulating multiple signaling pathways involved in
photoreceptor differentiation and maintenance. In this
direction, the miR-183 cluster targets PAX6 (Peskova et al.,
2020), a highly conserved paired-box transcription factor that
is critical for eye morphogenesis in a wide range of species (Glaser
et al., 1992, 1994; Lauderdale et al., 2000; Davis et al., 2021).

The exact mechanisms that regulate the oscillatory expression
of this miRNA cluster are not well understood. The putative
promoter region of the miR-183 cluster contains several binding
sites for transcription factors known to regulate the circadian
rhythm in the eye, including RORα (Xu et al., 2007), but there is
currently no experimental data to confirm this transcriptional
regulation. Genetic variants with abnormal processing of pre-
miR-182 have been described (Saus et al., 2010) and neuronal
miRNAs have been shown to have very quick turn-over ratios
(Krol et al., 2010) compared to nonneuronal cells (Bhattacharyya
et al., 2006; Hwang et al., 2007; Krol et al., 2010). Thus, the
regulation of miRNA processing and/or degradation could also
play important roles in its oscillatory behavior.

A recent phenotype-driven genome-wide miRNA screen using
reporter human cell lines identified several miRNAs with the
potential to modulate circadian rhythms (Zhou et al., 2021).
Among 989 miRNAs tested, this study identified 120 miRNAs
that significantly changed the period length in a dose-
dependent manner, including let-7, miR-17, and the miR-
183 cluster. Importantly, these changes were tissue-specific
and the inactivation of the miR-183 cluster shortened the

circadian period in the retina but did not change the period
length of the SCN in mice. All three members of the miR-183
cluster can modulate circadian rhythms and luciferase-based
assays have shown that miR-182 potentially targets CLOCK
(Saus et al., 2010) as well as the circadian rhythm regulators
ADCY6 and MITF (Xu et al., 2007), while miR-96 directly
targets PER-2 (Zhou et al., 2021) (Figure 3). Similarly,
experimental evidence in zebrafish indicates that miR-183
targets other circadian regulators such as E4BP4-6 and
AANAT2 (Ben-Moshe et al., 2014). However, these results
do not exclude possible additional regulation through non-cell
autonomous mechanisms.

Finally, while it is not known whether the oscillatory behavior
of miR-183 has any effects on retinal development, the removal of
circadian clock genes led to defective dorso-ventral patterning of
cones, thinner inner retinal nuclear and plexiform layers, and
reduced photoreceptor viability (Ait-Hmyed et al., 2013; Baba
et al., 2018). Future studies might shed light on the role of the
miR-183 cluster in these phenotypes and the interplay between
the circadian rhythmicity and miRNA roles in photoreceptor
differentiation and function.

Let-7 Levels Oscillate With the Cell Cycle in
the Embryonic Retina
The cell cycle is a precisely regulated oscillatory process essential
for growth and maintenance of tissues as well as for coordinating
the timing of major cellular events during development. The cell
cycle is classically divided into four different phases: Gap1 (G1),
DNA Synthesis (S), Gap2 (G2), and Mitosis (M) (Norbury and
Nurse, 1992). The ability of the cells to progress though these
phases to ultimately produce two daughter cells is generally
attributed to two classes of molecules: Cyclin-dependent
kinases (CDKs), a large family of serine/threonine kinases, and
their binding partners named Cyclins because their concentration
varies in a cyclical manner (Malumbres and Barbacid, 2001). The
abundance of individual Cyclins, and the consequent activation
of the appropriate CDKs at specific phases, orchestrates the
orderly completion of DNA replication and cell division and
constitutes the core cell cycle oscillator (Figure 4). Thus,
CyclinD/CDK4,6 activity ensures G1 progression, CyclinE/
CDK2 promotes the G1/S transition, while CyclinA/CDK2
regulates the transition between S and G2. Finally, CyclinB/
CDK1 warrants the G2/M transition and entry of cell into
mitosis (Malumbres and Barbacid, 2001). However, cell cycle
progression is not only regulated by the rise and fall of Cyclin
molecules’ concentrations, but is tightly regulated at several levels
and through many different mechanisms (Figure 4).

The first studies on miRNAs published three decades ago
already suggested a role for the miRNA let-7 in the cell cycle of C.
elegans (Ambros, 2001; Lee and Ambros, 2001). Let-7 is part of
the heterochronic pathway required in the nematode seam cells to
determine the timing of stage-specific developmental events
(Ambros and Horvitz, 1984; Moss et al., 1997). Since then,
numerous studies have revealed that let-7 is a master regulator
of cell proliferation. Accordingly, let-7 alters cell cycle
progression, controls the timing of cell cycle exit, and inhibits

FIGURE 4 | Let-7 regulation of the cell cycle. Let-7 regulates the cell
cycle kinetics by both promoting cell cycle exit and lengthening distinct
phases. Let-7 targets Cyclin D, CDK4, and CDK6, CDC25A, Cyclin A, and
CDC34, affecting the G1/S, S/G2, and G2/M transitions, respectively.
This figure was created with BioRender.com.
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self-renewal, and disruptions in let-7 coding genes can enhance
oncogenic transformation (Johnson et al., 2005; Sampson et al.,
2007; Zhao et al., 2010).

Elegant genetic studies from the Ruvkun laboratory
(Pasquinelli et al., 2000; Reinhart et al., 2000) revealed that
let-7 is a genetic switch that controls major developmental
transitions in bilaterally symmetrical animals, from flies and
worms to vertebrates. In the developing mammalian retina,
let-7 regulates the developmental transition that allows the
retinal progenitors to generate the late cell types (amacrine
cells, rod photoreceptors, bipolar cells, and Müller glia) (La
Torre et al., 2013; Xia and Ahmad, 2016), and also plays a
central role in Müller glia-dependent regeneration
(Ramachandran et al., 2010; Wohl et al., 2019). Similar roles
have been described in other parts of the developing CNS, where
let-7 is required for the generation of the later cell populations in
different species (Wu et al., 2012; Patterson et al., 2014; Shu et al.,
2019).

In the developing retina, let-7 regulates cell cycle kinetics by
both promoting cell cycle exit and lengthening S/G2 phases
(Fairchild et al., 2019). Notably, no differences were detected
in G1 length in time-lapse experiments using the fluorescent
reporter FUCCI (Fluorescence Ubiquitination-based Cell Cycle
Indicator) in combination with gain-of-function or loss-of-
function of let-7 (Fairchild et al., 2019). Given that let-7 levels
normally increase throughout developmental time in the retina
(Arora et al., 2007; La Torre et al., 2013; Xia and Ahmad, 2016)
(Table 1), these data correlate with classic experiments using
3H-thymidine cumulative labeling that indicated that the cell
cycle lengthens during retinal development mainly due to an
increase in S-phase length (Alexiades and Cepko, 1996).

The cell cycle proteins CDC25A, CDC34, CDK4, CDK6,
Cyclin A, Cyclin D1, D2, and D3 are known let-7 targets
(Bueno and Malumbres, 2011) (Figure 4) as well as TLX
(Zhao et al., 2010), another cell cycle regulator, and oncogenic
chromatin proteins such as HMGA1 and HMGA2 (Lee and
Dutta, 2007; Xia and Ahmad, 2016). However, since the
specific effects of let-7 overexpression or inhibition are
different in different experimental paradigms (e.g., induction
of cell cycle arrest vs cell cycle lengthening), let-7’s ability to
target these genes may be concentration and/or context
dependent. Similarly, the human genome contains 10 different
mature miRNAs in the let-7 family (let-7a, let-7b, let-7c, let-7d,
let-7e, let-7f, let-7g, let-7i, mir-98, miR-202), produced from 13
precursor sequences. As each of these miRNAs have identical
seed sequences and highly conserved regions for target
recognition and thus, the individual roles and targets for each
let-7 are not well characterized.

Strikingly, not only does let-7 regulate developmental
transitions and cell cycle, but its expression and activities
also oscillate concurrently with the cell cycle across the
developing CNS, including the retina (Fairchild et al., 2019)
(Figure 2B). Neural progenitors undergo interkinetic nuclear
migration between the apical and basal surfaces in concert with
the cell cycle (Sauer, 1935; Miyata, 2008; Norden et al., 2009).
Thus, mitotic cell bodies are only found in the apical surface,
and cell somas move basally in G1. Cells in S-phase are found

at the most basal positions, which move again apically in G2.
Intriguingly, let-7 levels also fluctuate within these regions,
suggesting that let-7 oscillates in coordination with cell cycle
(Fairchild et al., 2019). Mathematical modeling also supports
that oscillatory levels of let-7 are required for the complex
balance between let-7 and Cyclin/CDK complexes (Gerard
et al., 2019) and more recently, these fluctuations have been
validated by flow cytometry analyses and time-lapse imaging
(Fairchild et al., 2019).

The cell cycle-dependent fluctuation of let-7 suggests that
some cell cycle genes may be regulating its expression;
however, given that the let-7 family is located in 13 different
loci in the genome, the transcriptional regulation of these
miRNAs is still poorly understood. E2F transcription factors
have been shown to directly regulate let7a-d and let-7i
expression and c-MYC represses the expression of several let-7
clusters (Bueno and Malumbres, 2011). Additionally, CyclinD1
can regulate the expression of Dicer (Yu et al., 2013) and thus, cell
cycle-dependent miRNA processing may have an impact on let-7
fluctuations. Consistent with this idea of negative feedback loops,
the miRNA machinery can be directly regulated by miRNAs, for
example, a loop involving let-7 and Ago2 is critical to maintain
pluripotency (Liu et al., 2021). Importantly, miRNA stability and
turn-over rates could also be regulated in a cell cycle-dependent
manner.

FIGURE 5 | Summary of the Notch pathway. Notch signaling is initiated
when a transmembrane Notch receptor (Notch1-4) on one cell is activated by
a neighboring cell’s ligand (Delta, Jagged/Serrate), prompting proteolytic
cleavage events by ADAM and γ-secretase to release the Notch
receptor’s intracellular domain (NICD). Inside the cell, NICD translocates into
the nucleus to form a transcriptional complex with a number of co-activators
to in turn activate the expression of genes, including the Hes and Hey families.
The miRNA miR-9 regulates several members of this pathway.
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The specific role(s) of the periodicity of let-7 expression and
activity have not been previously explored but it can be speculated
that cell cycle-coupled miRNA oscillatory circuits may be an
important strategy to coordinate division rates with complex
cellular activities as well as the timing of cell cycle exit and fate
decisions.

MiR-9 Is Part of the Notch Ultradian
Oscillator
Proper retina development relies on the tight balance between
retinal progenitor cell (RPC) proliferation and differentiation. It
is well-documented that Notch activation perpetuates RPC
maintenance, whereas Notch pathway disruption leads to
neuronal differentiation (Dorsky et al., 1995; Tomita et al.,
1996; Jadhav et al., 2006; Nelson et al., 2007; Kaufman et al.,
2019). Notch also regulates neural patterning (Baek et al., 2006;
Bosze et al., 2020), cell fate specification (Yaron et al., 2006;
Riesenberg et al., 2009; Chen and Emerson, 2021), is essential for
Müller glia development (Furukawa et al., 2000; Bernardos et al.,
2005; Nelson et al., 2011), and a key mediator of regeneration
(Conner et al., 2014; Sahu et al., 2021). Together, a growing body
of literature supports the notion that the Notch pathway is
dynamic and remarkably pleiotropic, and that the timing and
levels of Notch signaling must be precisely regulated to maintain
the temporal control driving normal retinal development.

Since the Notch receptor was first identified inDrosophila over
100 years ago (Dexter, 1914), genetic and molecular interaction
studies have helped map the Notch signaling pathway that is
recognized today (Figure 5) (reviewed in Louvi and Artavanis-
Tsakonas, 2006; Pierfelice et al., 2011; Bray, 2016). Briefly, the
intracellular signaling pathway is initiated by cell-cell contacts,
where the transmembrane Notch receptor (Notch1–4) on one cell
is activated by a ligand (Delta-like (Dll1, Dll3, and Dll4), or Jagged
(Jag1 and Jag2)) on a neighboring cell. Ligand binding prompts a
series of proteolytic cleavage events that culminates in the release
of the Notch receptor’s intracellular domain (NICD). NICD
translocates into the nucleus, where it forms a transcriptional
complex with Rbpj (recombination signal-binding protein for
immunoglobulin kappa J region) and Maml1 (Mastermind-like
transcriptional co-activator 1) to activate gene expression. The
best characterized Notch targets are the Hes (Hes1, Hes3, and
Hes5) and related Hey genes (Ohtsuka et al., 1999), which encode
inhibitory basic helix-loop-helix (bHLH) proteins that suppress
pro-neural bHLH genes Ngn1, Ngn2 (Neurogenins 1–2),
NeuroD1, NeuroD2, NeuroD4, NeuroD6 (Neuronal
Differentiation 1-2,4,6), and Ascl1 (Acheate-Scute) (Taylor
et al., 2015; Dennis et al., 2019). Importantly, Hes proteins
also repress the expression of Notch ligands, affecting the
Notch activity of their neighbors (Jarriault et al., 1995).

These cross-regulatory activities raise a hypothetical problem:
in the absence of Hes1, cells prematurely differentiate into
neurons, but then how is the progenitor pool maintained if
Hes1 reduces Notch signaling in neighboring cells? Several
pioneering studies from the Kageyama laboratory solved the
conundrum and showed that the expression of Hes1, Ascl1,
and Dll1 display oscillatory behaviors (Figure 2C top) using

luciferase-based reporters in several contexts (Masamizu et al.,
2006), including neural progenitors (Shimojo et al., 2008;
Imayoshi et al., 2013). These oscillatory expression patterns
are driven by the Hes1 oscillator (Hirata et al., 2002). Hes1
protein represses its own expression by binding to N-box
regulatory elements in the Hes1 promoter, and both Hes1
protein and mRNA have very short half-lives. Thus, upon
repression, the levels of Hes1 decline rapidly, leading to the
reactivation of Hes1 transcription with a rhythmicity of 2–3 h
(Hirata et al., 2002). These oscillations are key in maintaining
pools of progenitor cells from precociously differentiating;
when Hes1 oscillations are quenched, even if the Notch
signaling pathway can still be activated, neural progenitors
undergo premature cell cycle exit (Shimojo et al., 2016).
Importantly, these rhythmic patterns can in part explain the
heterogeneity of gene expression observed in individual RPCs
with “snapshot” techniques such as immunostaining and
sequencing (Cepko, 2014; Dixit et al., 2014; Clark et al.,
2019; Sridhar et al., 2020).

Many signaling pathways are common beneficiaries of
miRNA-mediated regulation, and the Notch pathway is no
exception (Inui et al., 2010; Roese-Koerner et al., 2016). In
fact, functional relationships between Notch and miRNA
pathways have been described in the developing retina as
Dicer conditional knockout mice showed downregulation of
Notch pathway components and at the same time,
overexpression of NICD in Dicer-null retinas did not lead to
classic “Notchy” phenotypes such as induction of glial fates
(Georgi and Reh, 2011).

FIGURE 6 | The Hes1/miR-9 oscillator. Activation of the Notch pathway
leads to the activation of Hes1 transcription. Hes1 protein then dimerizes and
binds to N-box domains to repress its own expression as well as miR-9
transcription. In turn, miR-9 reduces Hes1 levels by controlling the
stability of Hes1 mRNA and inhibiting its translation, resulting in oscillatory
behaviors.
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MiR-9, a miRNA highly expressed in the developing CNS,
interacts with Notch components in several organisms (Tan et al.,
2012). Target prediction analyses have shown that miR-9 may
directly target components of the Notch pathway, including
Notch ligands, Rbpj, and Maml1 (Roese-Koerner et al., 2017).
Additionally, bioinformatics analyses have identified miR-9-
binding sites in mouse, rat, and human Hes1 (Baek et al.,
2006), zebrafish her5 and her9 (Leucht et al., 2008), and
Xenopus hairy1 (Bonev et al., 2011). Manipulation of miR-9
activity by antisense inhibitors resulted in increased levels of
Hes1, and overexpression of miR-9 conversely reduced the half-
life of Hes1 (Bonev et al., 2012).

In humans, miR-9 is transcribed from three independent
genomic loci (pri-miR-9-1, pri-miR-9-2, and pri-miR-9-3) that
give rise to two functional miRNAs, miR-9-5p and miR-9-3p.
Hes1 reduces miR-9 expression, as observed by in situ
hybridization of pri-miR-9-2 in the mouse cortex and binds to
several N-boxes in the putative miR-9 promoters of all three miR-
9 genes (Figure 6). However, Hes1 only regulates the expression
of pri-miR-9-1 and pri-miR-9-2, but not pri-miR-9-3 (Bonev
et al., 2012). These promoters are embedded within CpG islands
and thus, they could also be regulated by epigenetic mechanisms
or other indirect means.

Importantly, the cross-regulations between miR-9 and Hes1
(Figure 6) also contribute to the Hes1 oscillator, and
overexpressing or inhibiting miR-9 has been shown to
reduce Hes1 oscillations (Bonev et al., 2012). The negative
feedback loops between miR-9 and Hes1 creates an out-of-
phase oscillatory pattern of expression (Figure 2C top), which
is important for limiting Hes1 oscillations (Roese-Koerner
et al., 2016). As development continues, miR-9 accumulates
(due to its longer half-life than the less-stable Hes1 mRNA and
protein) until it reaches a threshold for differentiation
(Shimojo et al., 2016). At that point, Hes1 oscillations are
dampened, and miR-9 maintains high, steady levels allowing
for neural differentiation to proceed (Figure 2C bottom)
(Bonev et al., 2012). Although oscillations of miR-9 have
not been observed directly, mathematical modelling analyses
incorporating miR-9 into the Hes1 oscillator recapitulate the
behaviors observed experimentally (Goodfellow et al., 2014).

During retinal development, miR-9 expression increases in
RPCs over developmental time and regulates cell fate acquisition
(La Torre et al., 2013). Mir-9 is also important in the mature
mouse retina to maintain homeostasis of the Müller glia (Wohl
et al., 2017) and can potentiate Müller glia conversion into
progenitor-like cells in culture in combination with miR-124
(Wohl and Reh, 2016b). While the molecular mechanisms
downstream of these functional roles remain widely
unexplored, it can be speculated that the oscillatory interplay
between Notch and miR-9 in combination with the increasing
levels of mature miR-9 over time may be one of the mechanisms
that enables cells with an ability to keep track of time while
maintaining the ability to adapt to external stimuli. This model
accommodates the existing evidence indicating that fate decisions
during retinal development are both cell autonomous and
strongly influenced by external factors.

Recently, a novel CIS-regulatory element of pri-miR-9-2 has
been described for its association with retinal diseases such as
Macular Telangiectasia Type 2 and Macular Degeneration
(Thomas et al., 2021). Interestingly, the deletion of this
enhancer leads to reduced miR-9 levels, a decrease in the
number of rod photoreceptors, and perturbation of Müller glia
homeostasis in human retinal organoids. Transcriptional data
indicates that the Notch pathway is affected in these cells, but the
exact nature of this regulation and whether the oscillatory
behaviors and feedback loops between Notch and miR-9 play
any roles have not yet been investigated.

CONCLUSIONS AND PERSPECTIVES

During normal development, different cell fates are specified with
exquisite spatial and temporal accuracy. Oscillatory feedback
circuits that integrate temporal cues are part of the machinery
that establishes the robustness of developmental transitions and
progenitor outcomes. It is now obvious that miRNAs are
functionally integrated in many of these oscillatory pathways.
Beyond the examples offered in this review, a reciprocal
relationship between miRNAs and transcription factors that in
turn regulate miRNA expression may be a common theme in a
variety of developmental contexts.

Despite all the evidence accumulated in the last few years, we
are only starting to understand the relevance of these rhythmic
behaviors, largely because most of the miRNA expression data to
date comes from studies that used sequencing technologies that
do not capture dynamic changes of expression within a cell. Thus,
efforts to develop tools to show miRNA levels longitudinally with
cellular resolution need to be advanced.

In addition, our understanding of miRNA transcriptional
regulation is still quite limited. The complex regulation of
miRNA processing and turn-over may similarly open new
avenues to further understand the regulatory networks that
govern neural development.
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