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ABSTRACT OF THE DISSERTATION

On Kähler manifolds with certain curvature bounds

By

Yucheng Ji

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Zhiqin Lu, Chair

This dissertation discusses the Frankel conjecture and the Kähler-Ricci flow approach to

it. Frankel conjecture (first proved by Mori and Siu-Yau independently) states that every

compact Kähler manifold of positive bisectional curvature is biholomorphic to the complex

projective space. On the other hand, the Ricci flow introduced by Hamilton was used by

Bando and Mok to generalize Siu-Yau’s theorem to nonnegative bisectional curvature case.

It’s natural to ask if there is a primarily flow proof of the original Frankel conjecture.

The convergence of Kähler-Ricci flow on compact manifolds with positive bisectional cur-

vature would imply such a proof, however not yet been completed. The advances closest

to this target might be a series of papers by Phong-Song-Sturm-Weinkove along with the

improvements by Cao-Zhu and Zhang. We are going to survey their works in this thesis, and

also cover some new result proved by the author.

This thesis is organized as follows. In chapter one, we first collect some fundamental facts

of Kähler geometry, and then go over the convergence theory of Kähler-Ricci flow on Fano

manifolds built on stability conditions. In chapter two, we review known results on bisec-

tional curvature, and then relate the curvature to the former stability conditions. Finally

we will state and prove our new result.

v



Introduction

Frankel conjecture, which states that every compact Kähler manifold of positive bisectional

curvature is biholomorphic to the complex projective space, was first made by T. Frankel [15]

in 1961. The dimension two case was settled by Andreotti-Frankel [15] and dimension three

case by T. Mabuchi [25]. In 1980, Siu-Yau [34] solved Frankel conjecture in full generality,

by using harmonic map from complex projective line into the manifold, and characterization

of the complex projective space obtained earlier by Kobayashi-Ochiai [24]. An independent

proof was given by S. Mori [27] in 1979, where he used algebraic method to prove the

Hartshorne conjecture, which includes Frankel conjecture as its special case.

On the other hand, in 1982, R. Hamilton [20] introduced the Ricci flow as a new powerful

tool in differential geometry. Its version on Kähler manifolds, the Kähler-Ricci flow was used

right afterwards by S. Bando [2] to generalize Siu-Yau’s theorem to nonnegative bisectional

curvature case, in dimension three. The n-dimensional classification was done by N. Mok

[26] combining flow method and Mori’s algebraic method. Later H. Gu [19] simplified Mok’s

arguments. Since all their proofs rely on Kähler-Ricci flow, it’s natural to ask if there is a

primarily flow proof of the original Frankel conjecture.

The first attempt along this direction is the work of Chen-Tian [11][12]. With first assuming

the Frankel conjecture, they proved that the Kähler-Ricci flow starting from any initial metric

with positive bisectional curvature, would converge to the Fubini-Study metric. Later, G.
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Perelman showed the convergence of the the flow with only assuming the existence of a

Kähler-Einstein metric (detailed proof can be found in [5], chapter 6). In 2009, Chen-Sun-

Tian [10] obtained a proof of Frankel conjecture by using Kähler-Ricci flow and soliton. They

used induction on dimension, part of Siu-Yau’s idea and some Morse theory. After a couple

of years, He-Sun [22] gave another independent proof through so-called Sasaki-Ricci flow.

However, up to now, the convergence of Kähler-Ricci flow on compact manifolds with positive

bisectional curvature, has not yet been completely proved, without a priori assuming the

Frankel conjecture. The advances closest to this target might be a series of papers by

Phong, Sturm, Song and Weinkove [31][29][30], along with the improvements by Cao-Zhu [8]

and Z. Zhang [36]. We are going to survey their works in this note.

This note is organized as follows. In chapter one, we first collect some fundamental facts

of Kähler geometry, and then go over the convergence theory of Kähler-Ricci flow on Fano

manifolds built on stability conditions, due to [31][29] and [36]. In chapter two, we review

Mok’s result on bisectional curvature and the improvements by [10][8], and then relate the

curvature to the former stability conditions as in [30]. Some new result by the author is also

included. We try to make the note as self-contained as much, with assuming that the reader

is familiar with Kähler-Ricci flow at the level of standard textbooks (such as [5], chapter 3

and 5).
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Chapter 1

Kähler-Ricci Flow on Fano Manifolds

In this chapter, we first collect the basic definitions and results in Kähler geometry which

will be used later, and then cover the convergence theory of Kähler-Ricci flow developed by

Phong-Song-Sturm-Weinkove [29]. They reduced the convergence to some stability condi-

tions, but we will adapt Z. Zhang’s method [36] on some steps, since his approach seems

more simple and transparent.

.1 Preliminaries

.1.1 Kähler manifolds

Let (Xn, g) be a compact complex manifold of complex dimension n with the Hermitian

metric g. In local holomorphic coordinates (z1, · · · , zn), denote its Kähler form by

ω =

√
−1

2

∑
i,j

gij̄dz
i ∧ dz̄j > 0.
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By definition, g is Kähler means that its Kähler form ω is a closed real (1, 1)-form, or

equivalently,

∂kgij̄ = ∂igkj̄ and ∂k̄gij̄ = ∂j̄gik̄

for all i, j, k = 1, · · ·n.

The cohomology class [ω] represented by ω in H2(X,R) is called the Kähler class of metric

gij̄. By the Hodge theory, two Kähler metrics gij̄ and g̃ij̄ belong to the same Kähler class if

and only if gij̄ = g̃ij̄ + ∂i∂j̄ϕ, or equivalently,

ω = ω̃ +

√
−1

2
∂∂̄ϕ

for some real-valued smooth function ϕ on X.

The volume of (X, g) is written as

Vol (X, g) =

∫
X

ωn

n!
=

∫
X

det(g) ∧nk=1 (

√
−1

2
dzk ∧ dz̄k).

Clearly, by Stokes’ theorem, Vol (X, g) = Vol (X, g̃) if g and g̃ are in the same Kähler class.

We will just use V to denote Vol (X, g).

The Christoffel symbols of the metric gij̄ are given by

Γkij = g
¯̀k∂igj ¯̀ and Γk̄īj̄ = gk̄`∂īg`j̄

where (gj̄i) = (gij̄)
−1. Given any T 1,0-tensor vi, its covariant derivatives are defined as

∇jvi = ∂jvi − Γkijvk and ∇j̄vi = ∂j̄vi.
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The covariant derivatives of T 0,1-tensor are just defined as the conjugate of the above.

The curvature tensor of the metric gij̄ is given by R j

i k ¯̀ = −∂¯̀Γ
j
ik, or by lowering j to the

second index:

Rij̄k ¯̀ = gpj̄R
p

i k ¯̀ = −∂k∂¯̀gij̄ + gq̄p∂kgiq̄∂¯̀gpj̄.

From the Kähler condition, it’s not hard to see

Rij̄k ¯̀ = Rkj̄i¯̀ and Rij̄k ¯̀ = Ri¯̀kj̄, (1st Bianchi identity)

∇pRij̄k ¯̀ = ∇kRij̄p¯̀ and ∇q̄Rij̄k ¯̀ = ∇¯̀Rij̄kq̄. (2nd Bianchi identity)

The commutation rules of covariant differentiations are as follows:

[∇k,∇j]vi = 0, [∇k̄,∇j̄]vi = 0,

[∇k,∇j̄]vi = −Rkj̄i¯̀v
¯̀
, [∇k,∇j̄]w¯̀ = Rkj̄i¯̀w

i.

We say that (X, g) has positive (holomorphic) bisectional curvature, or positive holomorphic

sectional curvature at a point x ∈ X, if

Rij̄k ¯̀vivj̄wkw
¯̀
> 0, or Rij̄k ¯̀vivj̄vkv

¯̀
> 0

respectively, for all nonzero vectors v and w in the holomorphic tangent space T 1,0
xX.

The Ricci tensor of the metric gij̄ is obtained by taking the trace of Rij̄k ¯̀:

Rij̄ = g
¯̀kRij̄k ¯̀ = −∂i∂j̄ log det(g).
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It is clear that the Ricci form

Ric =

√
−1

2

∑
i,j

Rij̄dz
i ∧ dz̄j

is real and closed. It is well known that the first Chern class c1(X) ∈ H2(X,Z) of X is

represented by the Ricci form:

[Ric ] = πc1(X).

A compact Kähler manifold is called Fano if its first Chern class is positive, i.e., contains a

positive representative.

Finally, the scalar curvature of the metric gij̄ is

R = gj̄iRij̄.

Hence, the total scalar curvature

∫
X

R
ωn

n!
=

∫
X

Ric ∧ ωn−1

(n− 1)!

depends only on the Kähler class of ω and the first Chern class c1(X).

From now on, by abusing the notations, we will just write ωn to denote the volume form

ωn/n!.

.1.2 Kähler-Einstein metric and Futaki invariant

A Kähler metric gij̄ is called Kähler-Einstein if

Rij̄ = λgij̄

6



for some real number λ ∈ R. A classical example is the complex projective space CPn with

Fubini-Study metric gFS:

gij̄ = ∂i∂j̄ log (1 +
n∑
k=1

|zk|2)

which satisfies

Rij̄ = (n+ 1)gij̄.

Clearly, if X admits a Kähler-Einstein metric g, then the first Chern class is necessarily

definite, as

πc1(X) = λ[ωg].

When c1(X) = 0 it follows from S.-T. Yau’s solution [35] to the Calabi conjecture that, in

each Kähler class there exists a unique Calabi-Yau metric (i.e. Ricci-flat metric). Moreover,

when c1(X) < 0, T. Aubin [1] and Yau [35] independently proved the existence of a unique

Kähler-Einstein metric in the class −πc1(X).

However, in the Fano case (i.e. c1(X) > 0) Kähler-Einstein metric does not always exist.

Among many other ones, in 1983 A. Futaki [16] introduced his famous obstruction, which

now is called Futaki invariant, defined as follows:

Choose any Kähler metric g with [ωg] = πc1(X). Then its Kähler form and its Ricci form

lie in the same cohomology class. Hence, by the Hodge theory, there exists a real-valued

smooth function u, called the Ricci potential of metric g, such that

Rij̄ + ∂i∂j̄u = gij̄.

Let η(X) denote the space of holomorphic vector fields on X, and W be any element in

η(X). Then the functional F : η(X)→ C defined by

F (W ) =

∫
X

W (u)ωn =

∫
X

(W · ∇u)ωn

7



is called the Futaki invariant.

In [16], Futaki proved that F (W ) depends only on the class πc1(X), but not the special choice

of metric g. Obviously, if a Fano manifold X admits a positive Kähler-Einstein metric, then

the Ricci potential u must be constant, and the Futaki invariant F vanishes. F has strong

relation to the notion called ‘geometric stability’, which plays a central role in the existence

problem of Kähler-Einstein metric on Fano manifolds, in the general case.

.1.3 (Normalized) Kähler-Ricci flow

Now assume that we have a compact Fano Kähler manifold (Xn, g0) such that [ωg0 ] = πc1(X).

The normalized Kähler-Ricci flow is

∂

∂t
gij̄ = −Rij̄ + gij̄, g(0) = g0 (.1.1)

or equivalently

∂

∂t
ω = −Ric (ω) + ω, ω(0) = ω0(= ωg0).

From the second equation, the evolution of the Kähler class shows

∂

∂t
[ω] = −πc1(X) + [ω] ⇒ [ω] ≡ πc1(X).

So the normalized Kähler-Ricci flow preserves the Kähler class, and hence the total volume

of the manifold. H. Cao [6] proved that the solution to this flow exists for all t > 0.

With the metric evolving along the time, the Ricci potential u defined by

Rij̄ + ∂i∂j̄u = gij̄ (.1.2)
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also evolves along the time. If we normalize u by constraint

1

V

∫
X

e−uωn = 1, (.1.3)

then u is well-known to satisfy

∂

∂t
u = ∆u+ u− a, where a :=

1

V

∫
X

ue−uωn. (.1.4)

Since the solution ωt to (.1.1) always lies in the same cohomology class as ω0, there exists

smooth real-valued function φ(t) on X× [0,+∞) such that ωt = ω0 +
√
−1
2
∂∂̄φ. The evolution

equation of φ is

∂

∂t
φ = log

ωnt
ωn0

+ φ+ u(0), φ(0) = φ0 (.1.5)

which is equivalent to (.1.1). Compare (.1.1) and (.1.2), we can tell that u and ∂tφ are

identical up to at most a time-dependent constant.

By straightforward computations, we can find that the evolutions of the volume form and

curvatures are as follows:

∂

∂t
ωn = (n−R)ωn; (.1.6)

∂

∂t
R = ∆R +Rij̄R

j̄i −R; (.1.7)

9



∂

∂t
Rij̄ = ∆Rij̄ +Rij̄ab̄R

b̄a −Rik̄R
k̄
j̄; (.1.8)

∂

∂t
Rij̄k ¯̀ =∆Rij̄k ¯̀ +Rij̄k ¯̀ +Rij̄ab̄R

b̄a
k ¯̀ +Rib̄a¯̀Rb̄ a

j̄k −Riākb̄R
ā b̄
j̄ ¯̀

− 1

2

(
R a
i Raj̄k ¯̀ +Rā

j̄Riāk ¯̀ +R a
k Rij̄a¯̀ +Rā

¯̀Rij̄kā

)
. (.1.9)

Note here the Laplacian operator ∆ is defined as 1
2
gj̄i(∇i∇j̄ +∇j̄∇i).

One of the deepest results in the theory of Kähler-Ricci flow is the following estimate proved

by G. Perelman for a solution of (.1.1) (see [32] or chapter 5 in [5] for a detailed exposition).

The first part is bound for the Ricci potential u = u(t) defined by (.1.2) and (.1.3) and the

second part is a non-collapsing theorem:

(i) There exists a constant C depending only on gij̄(0) such that

‖u‖C0 + ‖∇u‖C0 + ‖R‖C0 ≤ C. (.1.10)

Note that taking trace of (.1.2) would yield ∆u = n−R.

(ii) Let ρ > 0 be given. Then there exists c > 0 depending only on gij̄(0) and ρ such that

for all points x ∈ X, all times t ≥ 0 and all r with 0 < r ≤ ρ, we have

∫
Br(x)

ωn > c r2n, (.1.11)

where Br(x) is the geodesic ball of radius r centered at x with respect to the metric

10



g = g(t).

If the solution gij̄(t) of the normalized Kähler-Ricci flow (.1.1) converges smoothly to a limit

metric g∞, then we must have limt→∞
∂
∂t
φ = 0. Equation (.1.5) tells that the limit metric

satisfies

0 = log
ωn∞
ωn0

+ φ∞ + u(0); (.1.12)

making ∂∂̄ acts on both sides of (.1.12), we get

0 = −Ric (ω∞) + Ric (ω0) +

√
−1

2
∂∂̄φ∞ +

√
−1

2
∂∂̄u(0)

= −Ric (ω∞) + Ric (ω0) + ω∞ − ω0 + ω0 − Ric (ω0)

= −Ric (ω∞) + ω∞,

which shows that the limit metric must be Kähler-Einstein:

Ric (ω∞) = ω∞. (.1.13)

From now on, we will write NKRF as brief notation of normalized Kähler-Ricci flow, and

K-E metric as brief notation of Kähler-Einstein metric. For convenience, we will also use

repeated indices to represent summations, as well as the upper-lower index summations.

11



.2 Convergence of the Flow

.2.1 The C0-estimate

In order to get the convergence of NKRF on compact Kähler manifold (Xn, g(t)), the stan-

dard step is to derive the so-called C0-estimates, i.e. uniform C0 bounds of the Kähler

potential φ and its time derivative ∂tφ; then all higher order estimates can be obtained for

free and so is the C∞-convergence of the flow ([35], [6], and [5], chapter 3 and chapter 6).

The boundness of ‖∂tφ‖C0 is already included in Perelman’s result (.1.10), so we just need

to figure out ‖φ‖C0 . The following proposition, which observes that that the integrability of

‖R− n‖C0 over t ∈ [0,∞) implies a uniform bound for ‖φ‖C0 , is due to Phong-Song-Sturm-

Weinkove [29]:

Proposition 1.1. Let (Xn, g(t)) be a compact Fano Kähler manifold with g(t) as the solution

to NKRF. Assume that the scalar curvature R(t) along the flow satisfies

∫ ∞
0

‖R(t)− n‖C0 dt < ∞, (.2.1)

then ‖φ‖C0 is uniformly bounded along the NKRF.

Proof of Proposition 1.1. Let’s recall the flow equation (.1.5)

∂

∂t
φ = log

ωnt
ωn0

+ φ+ u(0), φ(0) = φ0; (.2.2)

remember that Perelman’s estimate for u implies ‖∂tφ‖C0 ≤ C.

12



Take derivative

d

dt
( log

ωnt
ωn0

) = gj̄i∂tgij̄ = −(R− n),

thus for any t ∈ (0,∞),

∣∣∣∣ log
ωnt
ωn0

∣∣∣∣ =

∣∣∣∣∣
∫ t

0

(R− n) dt

∣∣∣∣∣ ≤
∫ ∞

0

‖R− n‖C0dt <∞.

On the other hand, (.2.2) can be rewritten as

φ = − log
ωnt
ωn0

+ ∂tφ− u(0),

then the uniform bound for ‖φ‖C0 follows from the uniform bound for | log (ωnt /ω
n
0 )| and

Perelman’s uniform estimate for ‖∂tφ‖C0 . �

From Proposition 1.1, we easily see that the exponential decay of ‖R(t) − n‖C0 to 0 would

give us the C0-estimate, hence the convergence of the NKRF.

.2.2 A smoothing lemma

The following smoothing lemma is due to Bando [3] and refined in [29], which shows that

the C0-norm of u could control the C0-norms of ∇u and ∆u at later time:

Lemma 1.2. There exist positive constants δ and K depending only on n with the following

property. For any ε with 0 < ε ≤ δ and any t0 ≥ 0, if

‖u(t0)‖C0 ≤ ε,

13



then

‖∇u(t0 + 2)‖C0 + ‖R(t0 + 2)− n‖C0 ≤ Kε.

The proof consists of some delicate maximum-principle arguments.

Proof of Lemma 1.2. Without loss of generality, we can assume t0 = 0 by making a transla-

tion in time. Recall the evolution equation (.1.4) of u:

∂

∂t
u = ∆u+ u− a, where a =

1

V

∫
X

ue−uωn.

It is convenient to define a new constant c = c(t) for t ≥ 0 by ċ = a + c, c(0) = 0; then set

û(t) = −u(t)− c(t). We have ‖û(0)‖C0 = ‖u(0)‖C0 ≤ ε and û evolves by

∂

∂t
û = ∆û+ û.

Following [3], we calculate

∂

∂t
û2 = ∆û2 − 2|∇û|2 + 2û2, (.2.3)

∂

∂t
|∇û|2 = ∆|∇û|2 − |∇∇û|2 − |∇∇û|2 + |∇û|2, (.2.4)

∂

∂t
∆û = ∆(∆û) + ∆û+ |∇∇û|2. (.2.5)

From (.2.3) we have

∂

∂t

(
e−2t(û2)

)
≤ ∆

(
e−2t(û2)

)
, (.2.6)

14



which gives ‖û(t)‖C0 ≤ e2ε for t ∈ [0, 2].

From (.2.4) we have

∂

∂t

(
e−2t(û2 + t|∇û|2)

)
≤ ∆

(
e−2t(û2 + t|∇û|2)

)
when t ≥ 1, (.2.7)

giving ‖∇û‖C0(t) ≤ e2ε for t ∈ [1, 2].

We shall now prove a lower bound for ∆û. Set

H = e−(t−1)(|∇û|2 − εn−1(t− 1)∆û)

and compute using (.2.4) and (.2.5),

∂

∂t
H = ∆H − e−(t−1)

(
εn−1∆û+ (1 + εn−1(t− 1))|∇∇û|2 + |∇∇û|2

)
.

For t ∈ [1, 2], using the inequality (∆û)2 ≤ n|∇∇û|2 we obtain

∂

∂t
H ≤ ∆H + e−(t−1)n−1(−∆û)(ε+ ∆û). (.2.8)

We claim that H < 2e4ε2 for t ∈ [1, 2]. Otherwise, at the point (x′, t′) ∈ X× (1, 2] when this

inequality first fails we have −∆û ≥ e4ε. But since ( ∂
∂t
− ∆)H ≥ 0 at this point, we also

have ε+ ∆û ≥ 0, which gives a contradiction. Hence at t = 2 we have H < 2e4ε2 and

∆û > −2ne5ε

on X.
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By considering the quantity

K = e−(t−1)(|∇û|2 + εn−1(t− 1)∆û),

we can similarly prove that ∆û < 2ne5ε at t = 2. Since ∇u = −∇û, ∆u = −∆û = n − R,

this completes the proof of the lemma. �

Remark 1.3. In the statement of the lemma, (t0 + 2) could be replaced by (t0 + ζ) for any

positive constant ζ, at the expense of allowing the constants δ and K to depend on ζ.

By combining Lemma 1.2 and Proposition 1.1, we know the exponential decay of ‖u(t)‖C0

to 0 would be enough to make the NKRF converge.

.2.3 From C0-norm to L2-norm

To further refine the condition for NKRF to converge, the authors of [29] proved the following

proposition, by making use of Perelman’s non-collapsing theorem:

Proposition 1.4. The Ricci potential u(t) and its average a(t) satisfy the following inequal-

ities, where the constant C depends only on gij̄(0):

(i) 0 ≤ −a ≤ ‖u− a‖C0;

(ii) ‖u− a‖n+1
C0 ≤ C ‖u− a‖L2.

Proof of Proposition 1.4. First, as a consequence of Jensen’s inequality and the convexity of
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exponential function,

a =
1

V

∫
X

u e−uωn ≤ log (
1

V

∫
X

eue−uωn) = 0. (.2.9)

On the other hand, from (.1.3) we know e−u has average 1 with respect to the measure ωn,

and thus maxX(u) ≥ 0. Hence −a ≤ maxX(u− a), and (i) is proved.

Next, let A = ‖u − a‖C0 = |u − a|(x0). Then |u − a| ≥ A
2

on the ball Br(x0) of radius

r = A
2‖∇u‖C0

centered at x0. If r < ρ, where ρ is some fixed uniform radius in Perelman’s

non-collapsing result (.1.11), then

∫
X

(u− a)2ωn ≥
∫
Br(x0)

A2

4
ωn ≥ c

A2

4

(
A

2‖∇u‖C0

)2n

(.2.10)

and thus

‖u− a‖n+1
C0 ≤ C1‖∇u‖nC0‖u− a‖L2 ≤ C ‖u− a‖L2 . (.2.11)

On the other hand, if r > ρ, then integrating over the ball Bρ(x0) gives

∫
X

(u− a)2ωn ≥
∫
Bρ(x0)

A2

4
ωn =

A2

4

∫
Bρ(x0)

ωn (.2.12)

and hence ‖u− a‖C0 ≤ C2 ‖u− a‖L2 , which turns out to be a stronger estimate than (ii). �

With Proposition 1.4 in hand, for the convergence of NKRF to a K-E metric, we just need

to prove that ‖u − a‖L2 converges exponentially fast to 0 along the flow. The next step is

to relate this target with some ‘stability conditions’. [29] first raised an approach to achieve

this goal, but we adapt the more simplified one by Z. Zhang [36] here. First we shall do

some preparations. The following observation is made in [29] and N. Pali [28]:
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Lemma 1.5. The time derivative of a(t) equals to

1

V

∫
X

|∇u|2e−uωn − 1

V

∫
X

(u− a)2e−uωn. (.2.13)

Proof of Lemma 1.5. Compute using (.1.4) and (.1.6):

d

dt
a =

1

V

d

dt

∫
X

ue−uωn

=
1

V

∫
X

(∆u+ u− a)e−uωn − 1

V

∫
X

ue−u(∆u+ u− a)ωn

+
1

V

∫
X

ue−u∆uωn

=
1

V

∫
X

∆ue−uωn − 1

V

∫
X

u(u− a)e−uωn

=
1

V

∫
X

|∇u|2e−uωn − 1

V

∫
X

(u− a)2e−uωn,

where in the last line we used the equality

∫
X

(∆u)e−uωn =

∫
X

|∇u|2e−uωn.

�

We also need the following Poincaré-type inequality on Fano manifolds (see for example,

[17], Theorem 2.4.3):

Lemma 1.6. Let u satisfy (.1.2). Then the following inequality

1

V

∫
X

f 2e−uωn ≤ 1

V

∫
X

|∇f |2e−uωn + (
1

V

∫
X

fe−uωn)2 (.2.14)

holds for all f ∈ C∞(X).
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Proof of Lemma 1.6. The desired inequality is equivalent to the fact that the lowest positive

eigenvalue λ of the following operator

L(f) := −gj̄i∇i∇j̄f + gj̄i∇iu · ∇j̄f = λf, (.2.15)

with eigenfunction f satisfies λ ≥ 1. Note that this operator is self-adjoint with respect to

the inner product

1

V

∫
X

( · )e−uωn,

and that its kernel consists of constants.

Applying ∇¯̀ and using commutation rule for covariant derivatives in the first term gives

−gj̄i∇i∇j̄∇¯̀f +Rp̄
¯̀∇p̄f + gj̄i∇¯̀∇iu · ∇j̄f + gj̄i∇¯̀∇j̄f · ∇iu = λ∇¯̀f.

Now integrate with respect to g
¯̀k∇kf e

−uωn and integrate by parts. In view of the fact that

Ri¯̀ + ∂i∂¯̀u = gi¯̀,

we obtain

∫
X

|∇∇f |2e−uωn +

∫
X

|∇f |2e−uωn = λ

∫
X

|∇f |2e−uωn, (.2.16)

from which the desired inequality λ ≥ 1 follows at once. �

We are ready to go over Zhang’s result in next subsection.
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.2.4 ‘Strong’ Poincaré-type inequality

Z. Zhang [36] used a smart argument to get the convergence of NKRF. His first theorem is

as follows:

Theorem 1.7. Let u(t) and a(t) be defined as in (.1.2) and (.1.4). If along the NKRF,

∫
X

|∇u|2e−uωn ≥ (1 + δ)

∫
X

(u− a)2e−uωn (.2.17)

holds for a uniform constant δ > 0 independent of t, then ‖u− a‖L2 converges exponentially

fast to 0; i.e. NKRF converges in the C∞ sense to a K-E metric.

We need to divide the proof into a couple of lemmas.

For convenience, let’s introduce notations

Y =
1

V

∫
X

(u− a)2e−uωn, Z =
1

V

∫
X

(|∇u|2 − (u− a)2)e−uωn

at each time t.

Lemma 1.8. Along the NKRF we have Z(t)→ 0 as t→∞.

Proof of Lemma 1.8. From Perelman’s result (.1.10), u(t) is uniformly bounded for all t > 0,

then so is its average a(t). By Lemma 1.5 and Lemma 1.6, Z(t) = da/dt ≥ 0 for any t. Then

observe that ∫ ∞
0

Z(t)dt = lim
t→∞

a(t)− a(0) <∞.

To show Z(t)→ 0, it suffices to prove that dZ/dt is uniformly bounded. Recall the evolution
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equations (.2.3) (.2.4):

∂

∂t
u2 = ∆u2 − 2|∇u|2 + 2u(u− a),

∂

∂t
|∇u|2 = ∆|∇u|2 − |∇∇u|2 − |∇∇u|2 + |∇u|2;

then by direct calculation:

dZ

dt
=

d

dt

1

V

∫
X

(|∇u|2 − (u− a)2)e−uωn

=
1

V

∫
X

[
∆|∇u|2 − |∇∇u|2 − |∇∇u|2 + 3|∇u|2 −∆(u− a)2

−2(u− a)2 − (|∇u|2 − (u− a)2)(u− a)
]
e−uωn

=
1

V

∫
X

[
− |∇∇u|2 − |∇∇u|2 + 3|∇u|2 − 2(u− a)2

+(|∇u|2 − (u− a)2)(−∆u+ |∇u|2 − u+ a)
]
e−uωn

is uniformly bounded by Perelman’s estimate (.1.10). Note that in the second equality, we

used

∂

∂t
(e−uωn) = (−∆u− u+ a+ n−R)e−uωn = −(u− a)e−uωn.

�

Lemma 1.9. Assume as in Theorem 1.7, then Y (t)→ 0 as t→∞.

Proof of Lemma 1.9. Lemma 1.5 and condition (.2.17) imply

Z =
da

dt
≥ δ

V

∫
X

(u− a)2e−uωn,

then use Lemma 1.8. �
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Again by Perelman’s estimate (.1.10), ‖u−a‖2
L2 =

∫
X

(u−a)2ωn and Y = 1
V

∫
X

(u−a)2e−uωn

are uniformly equivalent. To get the exponential decay of ‖u− a‖L2 , we just need to prove

the same thing for Y .

Lemma 1.10. Assume as in Theorem 1.7, then there exist positive constants γ and B

depending only on gij̄(0) and δ such that

Y (t) ≤ Be−γt, ∀t ∈ [0,∞).

Proof of Lemma 1.10. By Proposition 1.4 (ii) and Lemma 1.9, ‖u − a‖C0 → 0 as t → ∞.

Thus,

d

dt
Y =

1

V

∫
X

[
2(u− a)(∆u+ u− a− da

dt
)− (u− a)3

]
e−uωn

=
1

V

∫
X

[
2(u− a)|∇u|2 − 2|∇u|2 + 2(u− a)2 − (u− a)3

]
e−uωn

≤ 1

V

∫
X

[
(−2 + 2‖u− a‖C0)|∇u|2 + (2 + ‖u− a‖C0)(u− a)2

]
e−uωn

≤
(
(−2 + 2‖u− a‖C0)(1 + δ) + (2 + ‖u− a‖C0)

)
Y

≤ −δ · Y

whenever t is large enough. Note here we used the condition (.2.17) in the fourth line. This

suffices to complete the proof of the lemma, as well as Theorem 1.7. �

Our next job is to relate the convergence of NKRF with some stability conditions on

Fano manifolds. This idea was first explored by Phong-Sturm [31] and Phong-Song-Sturm-
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Weinkove [29], where they indeed got some nice theorems. Zhang basically recovered and

improved their results by using Theorem 1.7, which is more natural to be connected with

stability conditions. We will finish this part in next section.
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.3 Reduction to Stability Conditions

.3.1 Stability conditions

Let’s first introduce the stability conditions we are going to use later. As before, we always

assume (Xn, g(t)) evolves by NKRF.

One condition is the vanishing of the Futaki invariant, on the certain Kähler class πc1(X):

F (W ) =

∫
X

W (u)ωn =

∫
X

(W · ∇u)ωn = 0 (.3.1)

for ∀W ∈ η(X) and ω ∈ πc1(X).

Others are lower bounds for some second-order differential operators. Recall the operator in

(.2.15) acting on smooth functions:

L(f) = −gj̄i∇i∇j̄f + gj̄i∇iu · ∇j̄f ; (.3.2)

by Lemma 1.6, the lowest positive eigenvalue of L is 1. We will post condition on the second

positive eigenvalue of L, which we denote by ν, as in Zhang [36]. Namely,

ν(t) ≥ 1 + b for a uniform constant b > 0. (.3.3)

This condition is closely related to the lower bounds of second-order differential operators

on the space of smooth sections of T 1,0X. Introduce as in Phong-Song-Sturm-Weinkove [30]

two inner products on the space of smooth T 1,0-vector fields on X:

〈U,W 〉0 =
1

V

∫
X

gij̄U
iW jωn, 〈U,W 〉u =

1

V

∫
X

gij̄U
iW je−uωn.
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Define two operators on the same space:

−gj̄i∇i∇j̄, −gj̄i∇i∇j̄ + gj̄i∇iu · ∇j̄. (.3.4)

It’s clear that the first one is self-adjoint with respect to 〈 , 〉0 and second one to 〈 , 〉u.

Obviously both operators have 0 as their smallest eigenvalue and η(X) as the corresponding

eigenspace. Let µ(t) and µ̃(t) be the lowest positive (second smallest) eigenvalue of −gj̄i∇i∇j̄

and −gj̄i∇i∇j̄ + gj̄i∇iu · ∇j̄ respectively, then we can post the conditions:

µ(t) ≥ c for a uniform constant c > 0, (.3.5)

or

µ̃(t) ≥ c̃ for a uniform constant c̃ > 0. (.3.6)

Now we can summarize all stability conditions we need here:

(A) X has vanished Futaki invariant on πc1(X);

(B) ν(t) ≥ 1 + b for a uniform constant b > 0;

(C) µ(t) ≥ c for a uniform constant c > 0;

(C’) µ̃(t) ≥ c̃ for a uniform constant c̃ > 0.
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.3.2 More on stability conditions

Here we provide four lemmas on these conditions. Denote by π0 and πu the orthogonal

projections of T 1,0-vector fields onto η(X) with respect to 〈 , 〉0 and 〈 , 〉u. Let ∇u =

∇iu ∂
∂zi

= gj̄i∂j̄u
∂
∂zi

be the complex gradient field of u. The first lemma is observed by

Phong-Sturm [31]:

Lemma 1.11. If condition (A) holds, then π0(∇u) ≡ 0.

Proof of Lemma 1.11. From (.3.1), the vanishing of Futaki invariant means F (W ) =
∫
X

(W ·

∇u)ωn = 0 for ∀W ∈ η(X). Choose W to be π0(∇u), then

0 =
1

V

∫
X

(W · ∇u)ωn = 〈π0(∇u),∇u〉0 = 〈π0(∇u), π0(∇u)〉0,

which implies π0(∇u) ≡ 0. �

The second lemma is proved by Zhang [36]:

Lemma 1.12. Let ∇u = πu(∇u) + U be the orthogonal decomposition with respect to

〈 , 〉u. Then

〈πu(∇u), πu(∇u)〉0 ≤ 〈U,U〉0, (.3.7)

if condition (A) holds.

Proof of Lemma 1.12. Similarly, choosing W to be πu(∇u) yields

0 = 〈πu(∇u),∇u〉0 = 〈πu(∇u), πu(∇u)〉0 + 〈πu(∇u), U〉0,
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then the conclusion follows from the Cauchy-Schwarz inequality:

〈πu(∇u), πu(∇u)〉0 = −〈πu(∇u), U〉0 ≤ 〈πu(∇u), πu(∇u)〉1/20 · 〈U,U〉1/20 .

�

Now we turn to explore the properties of ν, µ and µ̃.

We know that 0, having η(X) as its eigenspace, is the smallest eigenvalue of operators

−gj̄i∇i∇j̄ and −gj̄i∇i∇j̄ + gj̄i∇iu · ∇j̄. Then µ and µ̃ as the second smallest eigenvalue(s),

can be determined as the largest numbers such that:

∫
X

|∇W |2ωn ≥ µ

∫
X

|W |2ωn, ∀〈W, η(X)〉0 = 0;∫
X

|∇W |2e−uωn ≥ µ̃

∫
X

|W |2e−uωn, ∀〈W, η(X)〉u = 0.

We also define oscX(u) := maxX(u) −minX(u), which is bounded for all time t ≥ 0 due to

Perelman’s uniform estimate (.1.10).

The following lemma is due to Phong-Song-Sturm-Weinkove [30] and refined in Zhang [36]:

Lemma 1.13. The eigenvalues µ and µ̃ satisfy

e− oscX(u)µ ≤ µ̃ ≤ eoscX(u)µ. (.3.8)

Or in other words, µ and µ̃ are uniformly equivalent to each other.

Proof of Lemma 1.13. Let U be a smooth T 1,0-vector field such that 〈U, η(X)〉u = 0 and
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decompose it with respect to 〈 , 〉0 as U = W + ξ with ξ ∈ η(X) and 〈W, ξ〉0 = 0. Then,

0 = 〈U, ξ〉u = 〈ξ, ξ〉u + 〈W, ξ〉u

yields 〈ξ, ξ〉u = −〈W, ξ〉u. Hence,

〈U,U〉u = 〈U,W 〉u = 〈W,W 〉u + 〈ξ,W 〉u = 〈W,W 〉u − 〈ξ, ξ〉u ≤ 〈W,W 〉u.

Now, since ξ ∈ η(X),

1

V

∫
X

|∇U |2e−uωn ≥ e−maxX(u) 1

V

∫
X

|∇U |2ωn = e−maxX(u) 1

V

∫
X

|∇W |2ωn

≥ µe−maxX(u)〈W,W 〉0 ≥ µe− oscX(u)〈W,W 〉u

≥ µe− oscX(u)〈U,U〉u.

In particular, µ̃ ≥ µe− oscX(u). The other inequality follows similarly. �

Our last lemma is observed also by Zhang [36]:

Lemma 1.14. The eigenvalues ν and µ̃ satisfy

ν ≥ 1 + µ̃. (.3.9)

Combined with Lemma 1.13, we have ν ≥ 1 + e− oscX(u)µ.

Proof of Lemma 1.14. Recall the equation (.2.16):

∫
X

|∇∇f |2e−uωn +

∫
X

|∇f |2e−uωn = λ

∫
X

|∇f |2e−uωn,

we can see that the eigenfunctions of L with λ = 1 are the ones whose complex gradient
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fields being holomorphic. Let ψ be an eigenfunction of λ = ν, then 〈∇ψ, η(X)〉u = 0. We

immediately get

(ν − 1)

∫
X

|∇ψ|2e−uωn =

∫
X

|∇ī∇j̄ψ|2e−uωn ≥ µ̃

∫
X

|∇ψ|2e−uωn.

�

Lemma 1.13 and Lemma 1.14 basically tell us that, condition (C) and (C’) are equivalent,

and either of them implies condition (B).

.3.3 Stability and convergence

Now we can prove the following main theorem due to Zhang [36]:

Theorem 1.15. Suppose on (X, g(t)), conditions (A) and (B) hold. Then along the NKRF,

∫
X

|∇u|2e−uωn ≥ (1 + δ)

∫
X

(u− a)2e−uωn (.3.10)

holds for a uniform constant δ > 0 depending only on the constant b in condition (B) and

the upper bound of oscX(u). By Theorem 1.7, we know NKRF converges in the C∞ sense to

a K-E metric.

From Lemma 1.13 and Lemma 1.14, we immediately have the following corollary:

Corollary 1.16. Suppose on (X, g(t)), conditions (A) and (C) (or conditions (A) and (C’))

hold. Then NKRF converges in the C∞ sense to a K-E metric.
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Remark 1.17. Some versions of Corollary 1.16, with slightly stronger assumptions, ap-

peared first in Phong-Song-Sturm-Weinkove [29] and [30].

Proof of Theorem 1.15. Denote by L2(X, e−uωn) the space of L2 functions on X with respect

to the inner product

1

V

∫
X

( · )e−uωn. (.3.11)

Let

λ0 = 0 < λ1 = 1 < λ2 = ν < λ3 · · ·

be the sequence of eigenvalues of the operator L = −gj̄i∇i∇j̄ +gj̄i∇iu ·∇j̄ acting on function

space L2(X, e−uωn).

We know the eigenspace of λ0 = 0 is just the kernel of L, which consists of constants. In

view of equation (.2.16), eigenfunctions of λ1 = 1 are the ones whose complex gradient fields

being holomorphic. Let Ek denote the eigenspace of λk, then we can write

u = u0 + u1 + u2 + · · ·

as the unique orthogonal decomposition with respect to the inner product (.3.11), where

uk ∈ Ek for each k. Note that u0 ≡ a and ∇u1 ∈ η(X).

For any k ≥ 2 we have λk(t) ≥ ν(t) ≥ 1 + b by condition (B). Thus, from integration by
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parts

∫
X

(u− a)2e−uωn =
∞∑
k=1

∫
X

|uk|2e−uωn =
∞∑
k=1

λ−1
k

∫
X

|∇uk|2e−uωn

≤
∫
X

|∇u1|2e−uωn +
∞∑
k=2

1

1 + b

∫
X

|∇uk|2e−uωn

=

∫
X

(|∇u1|2 +
1

1 + b
|U |2)e−uωn,

here U is defined by ∇u = πu(∇u) + U , where

πu(∇u) = ∇u1 and U =
∞∑
k=2

∇uk.

By Lemma 1.12, condition (A) implies

1

V

∫
X

|∇u1|2e−uωn ≤ e−minX(u)〈∇u1,∇u1〉0

≤ e−minX(u)〈U,U〉0 ≤ eoscX(u) 1

V

∫
X

|U |2e−uωn.

Hence, by direct calculation,

∫
X

(u− a)2e−uωn ≤
∫
X

(|∇u1|2 +
1

1 + b
|U |2)e−uωn

=

∫
X

(
b

1 + b
|∇u1|2 +

1

1 + b
|∇u|2)e−uωn

≤
∫
X

(
b

1 + b

eoscX(u)

1 + eoscX(u)
|∇u|2 +

1

1 + b
|∇u|2)e−uωn

=
beoscX(u) + eoscX(u) + 1

(1 + b)(1 + eoscX(u))

∫
X

|∇u|2e−uωn,

then we can choose

δ =
b

beoscX(u) + eoscX(u) + 1
> 0
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and proof of the theorem is complete. �

Up to now, we have finished the convergence theory of NKRF on Fano manifolds built on

stability conditions. We haven’t yet touched bisectional curvature or Frankel conjecture;

those would form the topics of next chapter.
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Chapter 2

The Role of Bisectional Curvature

In this chapter, we first prove that the Kähler-Ricci flow preserves the positivity of bisectional

curvature, due to S. Bando [2] and N. Mok [26] (this indeed provides a Kähler-Ricci flow

approach to the Frankel conjecture, thanks to Goldberg-Kobayashi [18]); then go over the

improved curvature pinching estimates obtained by Chen-Sun-Tian [10] and Cao-Zhu [8].

Later, we shall confirm that the curvature condition indeed implies the stability condition,

as in Phong-Song-Sturm-Weinkove [30]. At last, we state and prove some new result due to

the author.

.1 Bisectional Curvature along the Flow

.1.1 Preserving positive bisectional curvature

Let’s start with the following version of Hamilton’s strong tensor maximum principle proved

by Bando ([2], Proposition 1):

Proposition 2.1. Let (Xn, g) be an n-dimensional Kähler manifold with the metric g pos-
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sibly changes with time t. Consider a tensor h which has the same type and symmetric

properties as the curvature tensor, satisfying the following equation:

∂

∂t
h = ∆h+H(h).

Suppose the smooth function H has the following property:

(∗) If h ≥ 0 and there exist two nonzero vectors v, w ∈ T 1,0
xX such that hvv̄ww̄(x) = 0, then

H(h)vv̄ww̄(x) ≥ 0.

If h is nonnegative at t = 0, then it remains so. Moreover, if at t = 0, h is positive at one

point, then it’s positive everywhere for all t > 0.

We omit the proof of Proposition 2.1 since it’s a purely partial-differential-equation argument.

Based on Proposition 2.1, Bando [2] (in dimension 3) and Mok [26] (in all dimensions) proved

the theorem as follows:

Theorem 2.2. Let (Xn, g(t)) be a compact Kähler manifold with g(t) as the solution to

Kähler-Ricci flow (normalized or not normalized). Suppose g(0) has nonnegative bisectional

curvature, then so does g(t) for all t > 0; furthermore, if g(0) also has bisectional curvature

being positive at one point, then g(t) has positive bisectional curvature at ∀x ∈ X for all

t > 0.

We follow the simplified proof by H. Cao ([5], chapter 5):

First recall the evolution equation of the curvature tensor (for convenience, we lower all the

indices here):
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∂

∂t
Rij̄k ¯̀ =∆Rij̄k ¯̀ +Rij̄k ¯̀ +Rij̄ab̄Rbāk ¯̀ +Ri¯̀ab̄Rbākj̄ −Riākb̄Raj̄b¯̀

− 1

2
(RiāRaj̄k ¯̀ +Raj̄Riāk ¯̀ +RkāRij̄a¯̀ +Ra¯̀Rij̄kā). (.1.1)

Note that the normalization of the flow only adds the second term Rij̄k ¯̀ on right hand side

and doesn’t affect the argument here.

Let us denote by

H(Rm)ij̄k ¯̀ :=Rij̄k ¯̀ +Rij̄ab̄Rbāk ¯̀ +Ri¯̀ab̄Rbākj̄ −Riākb̄Raj̄b¯̀

− 1

2
(RiāRaj̄k ¯̀ +Raj̄Riāk ¯̀ +RkāRij̄a¯̀ +Ra¯̀Rij̄kā), (.1.2)

so that

∂

∂t
Rij̄k ¯̀ = ∆Rij̄k ¯̀ +Hij̄k ¯̀. (.1.3)

Then by Proposition 2.1, it suffices to show that the property (∗) holds: for any T 1,0-vectors

V = (vi) and W = (wi), we have

(∗) Hij̄k ¯̀vivj̄wkw
¯̀≥ 0 whenever Rij̄k ¯̀vivj̄wkw

¯̀
= 0,

or simply,

HV VWW := H(V, V ,W,W ) ≥ 0 whenever RV VWW := Rm(V, V ,W,W ) = 0.

We divide the proof into a couple of lemmas:
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Lemma 2.3. Assume as in Theorem 2.2. If RV VWW = 0, then we have

RV ZWW = RV VWZ = 0

for any T 1,0-vector Z.

Proof of Lemma 2.3. For real parameter s ∈ R, consider

G(s) = Rm(V + sZ, V + sZ,W,W ).

Since the bisectional curvature is nonnegative and RV VWW = 0, it follows that G′(0) = 0

which implies

Re (RV ZWW ) = 0.

Suppose RV ZWW 6= 0, and let RV ZWW = |RV ZWW |e
√
−1θ. Then, replacing Z by e−

√
−1θZ in

the above yields

0 = Re (e−
√
−1θRV ZWW ) = |RV ZWW |,

a contradiction. Thus, we must have

RV ZWW = 0.

Similarly, we also have RV VWZ = 0.

�

By Lemma 2.3, we see that if RV VWW = 0 then

HV VWW = RV V Y ZRZYWW + |RVWY Z |2 − |RV YWZ |2.
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Therefore, property (∗) follows immediately from the next lemma:

Lemma 2.4. Assume as in Theorem 2.2. Then, for any T 1,0-vectors Y and Z,

RV V Y ZRZYWW ≥ |RVWY Z |2 + |RV YWZ |2

if RV VWW = 0.

Proof of Lemma 2.4. Consider

I(s) =Rm(V + sY, V + sY ,W + sZ,W + sZ)

=s2
(
RV V ZZ +RY YWW +RV YWZ +RY V ZW +RV Y ZW +RY VWZ

)
+O(s3).

Here we have used Lemma 2.3.

Since I(s) ≥ 0 and I(0) = 0, we have I ′′(0) ≥ 0. Hence, by taking Y = ζkek and Z = η`e`

with respect to any basis {e1, · · · en}, we obtain a real, semi-positive definite bilinear form

Q(Y, Z):

Q(Y, Z) :=RV V ZZ +RY YWW +RV YWZ +RY V ZW +RV Y ZW +RY VWZ

=RV V k ¯̀ηkη
¯̀
+Rk ¯̀WW ζ

kζ
¯̀
+RV k̄W ¯̀ζ k̄η

¯̀
+RkV `W ζ

kη`

+RV k̄`W ζ
k̄η` +RkVW ¯̀ζkη

¯̀≥ 0.

Next, we need a useful linear algebra fact :

Proposition 2.5. Let M and N be two m×m real symmetric semi-positive definite matrices,
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and let K be a real m×m matrix such that the 2m× 2m real symmetric matrix

P1 =

 M K

KT N


is semi-positive definite. Then, we have

Tr(MN) ≥ Tr(KTK) = |K|2.

Proof of Proposition 2.5. Consider the associated matrix

P2 =

 N −K

−KT M

 ,

it is clear that P2 is also symmetric and semi-positive definite. Thus, we get

Tr(P1P2) ≥ 0.

However,

P1P2 =

 MN −KKT KM −MK

KTN −NKT NM −KTK

 ;

therefore,

Tr(MN)− |K|2 =
1

2
Tr(P1P2) ≥ 0.

�
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As a special case, by taking

P1 =



ReA ImA Re(B +D) Im(B −D)

−ImA ReA −Im(B +D) Re(B −D)

Re(B +D)T −Im(B +D)T ReC ImC

Im(B −D)T Re(B −D)T −ImC ReC


,

we immediately obtain the following :

Corollary 2.6. Let A,B,C,D be complex matrices with A and C being Hermitian. Suppose

that the (real) quadratic form

Ak ¯̀ηkη` + Ck ¯̀ζkζ` + 2Re(Bk ¯̀ηkζ`) + 2Re(Dk`η
kζ`), η, ζ ∈ Cn,

is semi-positive definite. If we write everthing out in real coordinates and use Proposition

2.5, we would have

Tr(AC) ≥ |B|2 + |D|2,

i.e.

∑
k,`

Ak ¯̀C`k̄ ≥
∑
k,`

|Bk ¯̀|2 + |Dk`|2.

Now, by applying Corollary 2.6 to the above real semi-positive definite bilinear form Q, we

get

RV V Y ZRZYWW ≥ |RVWY Z |2 + |RV YWZ |2.
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We have thus proved property (∗), which concludes the proof of Theorem 2.2. �

By Theorem 2.2, if the NKRF starting from any Kähler metric with positive bisectional cur-

vature CONVERGES, then the limit metric would be a K-E metric with positive bisectional

curvature. From a classical result of Goldberg-Kobayashi ([18], Theorem 5), such metric

must be globally isometric to the Fubini-Study metric. Thus, the underlying manifold is

biholomorphic to complex projective space. In other words, the convergence of NKRF with

positive bisectional curvature implies the Frankel conjecture.

To prove the convergence, we wish to show that the conditions (A) and (C) (in Chapter 1)

hold under positive bisectional curvature, due to Corollary 1.16. Before trying to do that,

we first strengthen our curvature condition, as in the following two subsections.

.1.2 On the lower bound of bisectional curvature

In the last subsection we already know the positivity of bisectional curvature is preserved

under NKRF. It will be interesting to study how the lower bound of bisectional curvature

behaves along NKRF, if the initial metric has bisectional curvature bounded below from 0.

The following theorem is due to Chen-Sun-Tian [10]:

Theorem 2.7. Let (Xn, g(t)) be a compact Kähler manifold with g(t) as the solution to

NKRF. Suppose that along the flow g(t) has positive bisectional curvature, and the Ricci

curvature of g(t) satisfies Ric(g(t)) ≥ Cg(t) for a uniform constant C > 0. Then the

bisectional curvature of g(t) has a uniform positive lower bound.

Remark 2.8. To study the lower bound of bisectional curvature under NKRF, it’s natural

to think of computing the evolution equation of tensor Rij̄k ¯̀− c(t)(gij̄gk ¯̀ + gi¯̀gkj̄); in fact,

this idea was carried out by X. Chen [9], where he obtained some pinching estimates for
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holomorphic sectional and bisectional curvatures. In our case, Chen-Sun-Tian considered a

different tensor to deal with and got the above result.

Proof of Theorem 2.7. First recall the NKRF equation and evolutions of curvatures:

∂

∂t
gij̄ = −Rij̄ + gij̄;

∂

∂t
R = ∆R + |Ric|2 −R;

∂

∂t
Ric = ∆Ric+Ric ·Rm−Ric2;

∂

∂t
Rij̄k ¯̀ =∆Rij̄k ¯̀ +Rij̄k ¯̀ +Rij̄ab̄Rbāk ¯̀ +Ri¯̀ab̄Rbākj̄ −Riākb̄Raj̄b¯̀

− 1

2
(RiāRaj̄k ¯̀ +Raj̄Riāk ¯̀ +RkāRij̄a¯̀ +Ra¯̀Rij̄kā).

Here we define

(Ric ·Rm)ij̄ := RbāRij̄ab̄, (.1.4)

and

(Ric2)ij̄ := Rik̄Rkj̄. (.1.5)
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Now we put S := Rm− c(g ∗Ric), where c is a function of t, and

(g ∗Ric)ij̄k ¯̀ := gij̄Rk ¯̀ + gk ¯̀Rij̄ + gi¯̀Rkj̄ + gkj̄Ri¯̀. (.1.6)

We shall compute the evolution of tensor Sij̄k ¯̀ and use maximum principle.

Taking trace on tensor S yields

Sk ¯̀ = (1− (n+ 2)c)Rk ¯̀− cR · gk ¯̀,

if we denote by Sick ¯̀ := gj̄iSij̄k ¯̀, then we can write the above equation as

Sic = (1− (n+ 2)c)Ric− cR · g. (.1.7)

Therefore, by a straightforward calculation, we obtain

∂

∂t
Rij̄k ¯̀ =∆Sij̄k ¯̀ +H(S)ij̄k ¯̀

+ c(g ∗∆Ric)ij̄k ¯̀ + c(g ∗Ric)ij̄k ¯̀

+ c[(g ∗ (Ric · S))ij̄k ¯̀ + (Ric ∗ Sic)ij̄k ¯̀] + I

− c[(Ric ∗Ric)ij̄k ¯̀ + (Ric2 ∗ g)ij̄k ¯̀], (.1.8)

where H(S)ij̄k ¯̀ is defined as (.1.2) with Rij̄k ¯̀ replaced by Sij̄k ¯̀:

H(S)ij̄k ¯̀ :=Sij̄k ¯̀ + Sij̄ab̄Sbāk ¯̀ + Si¯̀ab̄Sbākj̄ − Siākb̄Saj̄b¯̀

− 1

2
(RiāSaj̄k ¯̀ +Raj̄Siāk ¯̀ +RkāSij̄a¯̀ +Ra¯̀Sij̄kā),
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and

I := c2[(g ∗Ric)ij̄ab̄(g ∗Ric)bāk ¯̀ + (g ∗Ric)i¯̀ab̄(g ∗Ric)bākj̄

− (g ∗Ric)iākb̄(g ∗Ric)aj̄b¯̀]. (.1.9)

We also calculate:

∂

∂t
(−c(g ∗Ric)ij̄k ¯̀) =− c′(g ∗Ric)ij̄k ¯̀− c(

∂g

∂t
∗Ric)ij̄k ¯̀− c(g ∗

∂Ric

∂t
)ij̄k ¯̀

=− c′(g ∗Ric)ij̄k ¯̀− c(g ∗Ric)ij̄k ¯̀ + c(Ric ∗Ric)ij̄k ¯̀

− c(g ∗ (∆Ric))ij̄k ¯̀− c(g ∗ (Ric ·Rm))ij̄k ¯̀

+ c(g ∗ (Ric2))ij̄k ¯̀. (.1.10)
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It follows from (.1.8)∼(.1.10) that

∂

∂t
Sij̄k ¯̀ =∆Sij̄k ¯̀ +H(S)ij̄k ¯̀ + c(g ∗∆Ric)ij̄k ¯̀ + c(g ∗Ric)ij̄k ¯̀

+ c[(g ∗ (Ric · S))ij̄k ¯̀ + (Ric ∗ Sic)ij̄k ¯̀] + I

− c[(Ric ∗Ric)ij̄k ¯̀ + (Ric2 ∗ g)ij̄k ¯̀]

− c′(g ∗Ric)ij̄k ¯̀− c(g ∗Ric)ij̄k ¯̀ + c(Ric ∗Ric)ij̄k ¯̀

− c(g ∗ (∆Ric))ij̄k ¯̀− c(g ∗ (Ric ·Rm))ij̄k ¯̀ + c(g ∗ (Ric2))ij̄k ¯̀

=∆Sij̄k ¯̀ +H(S)ij̄k ¯̀ + c2(g ∗ (Ric · (g ∗Ric))ij̄k ¯̀

+ c(Ric ∗ Sic)ij̄k ¯̀ + I − c′(g ∗Ric)ij̄k ¯̀

=∆Sij̄k ¯̀ +H(S)ij̄k ¯̀ + c2(g ∗ (Ric · (g ∗Ric)))ij̄k ¯̀

+ c(Ric ∗Ric)ij̄k ¯̀− c2(Ric ∗ ((n+ 2)Ric+R · g))ij̄k ¯̀

+ I − c′(g ∗Ric)ij̄k ¯̀.

Note that I = O(c2). Since Ric(g(t)) ≥ Cg(t) for t ≥ 0, if c(t) ≡ c > 0 is sufficiently small,

we have

∂

∂t
Sij̄k ¯̀≥ ∆Sij̄k ¯̀ +H(S)ij̄k ¯̀. (.1.11)

Now apply the same proof of Theorem 2.2 with Rij̄k ¯̀ replaced by Sij̄k ¯̀, we see H(S)īijj̄ ≥ 0

whenever Sīijj̄ = 0. Then by Proposition 2.1, Sīijj̄ ≥ 0 for all t ≥ 0, i.e. Rīijj̄ ≥ c(g∗Ric)īijj̄ ≥

c · C(g ∗ g)īijj̄. �
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.1.3 On the lower bound of Ricci curvature

Theorem 2.7 tells us that a positive lower bound of bisectional curvature is preserved under

NKRF, provided that the Ricci curvature is uniformly bounded below from 0. Of course we

wish to remove this extra condition. It was done by Cao-Zhu [8]:

Theorem 2.9. Let (Xn, g(t)) be a compact Kähler manifold with g(t) as the solution to

NKRF. Suppose that along the flow g(t) has positive bisectional curvature. Then the Ricci

curvature of g(t) satisfies Ric(g(t)) ≥ Cg(t) for a uniform constant C > 0.

Putting Theorem 2.2, Theorem 2.7 and Theorem 2.9 together, we get a satisfactory curvature

pinching estimate:

Corollary 2.10. Let (Xn, g(t)) be a compact Kähler manifold with g(t) as the solution to

NKRF. Suppose that g(0) has positive bisectional curvature. Then the bisectional curvature

of g(t) has a uniform positive lower bound along the flow.

To prove Theorem 2.9, we need first invoke the so-called ‘Hamilton’s compactness theorem’

([21], Main Theorem 1.2):

Theorem 2.11. Let {Xk} = {(Xk, gk, xk, E
k)} be a sequence of evolving complete marked

Riemannian manifolds which are solutions to the Ricci flow. Here X is the underlying

manifold, g is the Riemannian metric, x is a marked point on X and E is an orthonormal

frame at x at t = 0 with respect to g(0).

Suppose that:

(i) The Riemann curvature tensors of Xk are uniformly bounded by a constant A for all

k and all t ≥ 0;

(ii) The injectivity radii of Xk at the xk at time t = 0 are uniformly bounded below by a

constant δ > 0 for all k.
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Then there exists a subsequence which converges to an evolving complete marked Rieman-

nian manifold X̃ = (X, g̃, x̃, Ẽ) which is also a solution of the Ricci flow, with its Riemann

curvature tensors bounded above by A and its injectivity radius at x at time t = 0 bounded

below by δ.

Proof of Theorem 2.9. We argue by contradiction. Suppose the conclusion is not true. Then

we can find a sequence of positive numbers εk → 0, and a sequence of points {(xk, tk)}∞k=1 in

space-time with xk ∈ X and tk →∞ as k →∞, such that

min
1≤i,j≤n

Rij̄(xk, tk) ≤ εk.

Now we can choose a unitary frame Ek = {ek1, · · · , ekn} at the point xk and the time tk so

that

R11̄(xk, tk) = min
1≤i≤n

Rīi(xk, tk).

By Perelman’s result (or by Cao-Chen-Zhu [7], see also chapter 5 in [5]), the scalar curvature

of g(t) is uniformly bounded. Since g(t) has positive bisectional curvature, its bisectional

curvatures are also uniformly bounded, and then so are all its curvature tensors. The condi-

tion (i) in Theorem 2.11 is satisfied. As for condition (ii), the injectivity radii are uniformly

bounded by Perelman’s non-collapsing theorem.

Thus we can apply Theorem 2.11, with adding the complex structure J into the data of

X. Namely, for a sequence of compact marked solutions {(X, J, g(tk + t), xk, E
k)} to NKRF

with positive bisectional curvature, there exists a subsequence converges to a compact marked

solution X̃ = (X, J̃, g̃(t), x̃, Ẽ) to NKRF with nonnegative bisectional curvature R̃īijj̄ ≥ 0
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and

R̃11̄(x̃, 0) = lim
k→∞

R11̄(xk, tk) = 0. (.1.12)

Here Ẽ is a unitary frame at the marked point x̃ at t = 0, and J̃ is a complex structure on

X, possibly different from J .

Now we use the following result of H. Gu ([19], Theorem 1.2):

Proposition 2.12. Given any Kähler metric hij̄ with nonnegative bisectional curvature on

a compact, irreducible, simply connected Kähler manifold Mn. Then, under the NKRF,

either the bisectional curvature becomes positive everywhere after a short time, or (Mn, h) is

isometrically biholomorphic to a Hermitian symmetric space of rank ≥ 2.

We know that any compact Fano Kähler manifold is simply connected, by Yau’s solution to

Calabi conjecture [35] and a result of Kobayashi [23]. Also, by a theorem of Bishop-Goldberg

[4] (see also [18], Theorem 4), the second betti number of X is 1. Hence, X is irreducible.

On the other hand, since (X, g̃) has nonnegative bisectional curvature, (.1.12) tells us that

for ∀t ∈ [0,∞), the bisectional curvature R̃īijj̄(t) vanishes along some direction at some point

on X at t. Therefore, Proposition 2.12 implies that (X, J̃, g̃) is isometrically biholomorphic

to a Hermitian symmetric space of rank ≥ 2.

This would lead to a contradiction, because g̃ is Kähler-Einstein, i.e., R̃ij̄ = g̃ij̄, in turn

implies that

||Rij̄ − gij̄||C0(tk)→ 0,

contradicting (.1.12). This finishes the proof of Theorem 2.9. �
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Now, remember that we already have Corollary 1.16 and Corollary 2.10 in hand. Therefore,

in order to prove Frankel conjecture by Kähler-Ricci flow, we just need to show that a positive

lower bound of bisectional curvature implies:

(A) The vanishing of Futaki invariant on πc1(X);

and

(C) A positive lower bound of the lowest positive eigenvalue µ of operator −gj̄i∇i∇j̄ on

smooth T 1,0-vector fields.

We will prove the (C) part in next section, following Phong-Song-Sturm-Weinkove [30];

however, the (A) part is still open up to today. It remains the only missing step of this

incomplete proof.

48



.2 Curvature and Stability Conditions

.2.1 The lower bound of µ

We follow Phong-Song-Sturm-Weinkove [30] here. To connect bisectional curvature and the

lower bound of µ, we need two steps: the first is to derive the curvature condition which

implies a lower bound of µ, by some standard Bochner-type technique; the second is to relate

the bisectional curvature with that curvature condition.

We introduce some notions of positivity. A tensor Tij̄k ¯̀ is called Griffiths nonnegative if

Tij̄k ¯̀vivj̄wkw
¯̀≥ 0 (.2.1)

for all T 1,0-vectors v, w. For brevity we write Tij̄k ¯̀ ≥Gr 0. It’s obvious that Rij̄k ¯̀ ≥Gr 0

means the condition of nonnegative bisectional curvature.

We say that a tensor Tij̄k ¯̀ is Nakano nonnegative if

Tij̄k ¯̀hikhj` ≥ 0 (.2.2)

for any T 1,0⊗T 1,0-tensor h, and we write Tij̄k ¯̀≥Na 0 for short. Clearly Nakano nonnegativity

is stronger than Griffiths nonnegativity.

Next lemma describes the curvature condition which guarantees a positive lower bound for

µ:

Lemma 2.13. Suppose that a Kähler metric g satisfies

Rij̄k ¯̀ +Rij̄gk ¯̀− c gij̄gk ¯̀≥Na 0 (.2.3)
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for some constant c > 0. Then µ ≥ c.

Proof of Lemma 2.13. Recall the commutation rules:

(∇i∇¯̀−∇¯̀∇i)V
k = gn̄kRi¯̀mn̄V

m,

(∇i∇¯̀−∇¯̀∇i)wj̄ = gq̄pRi¯̀pj̄wq̄.

Let V be an eigenvector of the operator −gj̄i∇i∇j̄ with eigenvalue µ; then

−gj̄i∇i∇j̄V
k = µV k. (.2.4)

Applying ∇¯̀ and using the commutation rules yield

−gj̄i∇i∇¯̀∇j̄V
k + gj̄ign̄kRi¯̀mn̄∇j̄V

m + gj̄igq̄pRi¯̀pj̄∇q̄V
k = µ∇¯̀V k. (.2.5)

Multiply by g
¯̀rgks̄∇rV s to obtain

− g ¯̀rgks̄g
j̄i∇rV s∇i∇¯̀∇j̄V

k + g
¯̀rgj̄iRi¯̀ms̄∇rV s∇j̄V

m

+ g
¯̀rgks̄g

q̄pRp¯̀∇rV s∇q̄V
k = µ g

¯̀rgks̄∇rV s∇¯̀V k. (.2.6)

By (.2.3), after integrating by parts:

µ

∫
X

|∇¯̀V k|2ωn ≥ c

∫
X

|∇¯̀V k|2ωn +

∫
X

|∇¯̀∇j̄V
k|2ωn, (.2.7)

and hence µ ≥ c. �

We have a version for the lowest positive eigenvalue µ̃ of operator −gj̄i∇i∇j̄ + gj̄i∇iu · ∇j̄

on smooth T 1,0-vector fields as well (though we won’t use it later):

50



Lemma 2.14. Suppose that a Kähler metric g satisfies

Rij̄k ¯̀ + (1− c̃)gij̄gk ¯̀≥Na 0 (.2.8)

for some constant c̃ > 0. Then µ̃ ≥ c̃.

Proof of Lemma 2.14. Recall that u is the Ricci potential. Let V be an eigenvector of

−gj̄i∇i∇j̄ + gj̄i∇iu · ∇j̄ with eigenvalue µ̃. Then

−gj̄i∇i∇j̄V
k + gj̄i∇iu · ∇j̄V

k = µ̃V k. (.2.9)

Applying ∇¯̀ as before, using the commutation rules and the definition of u we have

−gj̄i∇i∇¯̀∇j̄V
k + gj̄ign̄kRi¯̀mn̄∇j̄V

m + gj̄igq̄pRi¯̀pj̄∇q̄V
k

+gj̄i∇¯̀∇j̄V
k∇iu+∇¯̀V k − gj̄iRi¯̀∇j̄V

k = µ̃∇¯̀V k. (.2.10)

Multiply by g
¯̀rgks̄∇rV s to obtain

−g ¯̀rgks̄g
j̄i∇rV s∇i∇¯̀∇j̄V

k + (Rij̄k ¯̀ + gij̄gk ¯̀)∇j̄V `∇iV k

+g
¯̀rgks̄g

j̄i∇rV s∇¯̀∇j̄V
k∇iu = µ̃ g

¯̀rgks̄∇rV s∇¯̀V k. (.2.11)

Using (.2.8) and integrating with respect to e−uωn yield

µ̃

∫
X

|∇¯̀V k|2e−uωn ≥ c̃

∫
X

|∇¯̀V k|2e−uωn +

∫
X

|∇¯̀∇j̄V
k|2e−uωn, (.2.12)

and hence µ̃ ≥ c̃. �
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We also need the following proposition:

Proposition 2.15. Let (Xn, g) be a compact Kähler manifold. Suppose that the curvature

of metric g satisfies

Rij̄k ¯̀− c gij̄gk ¯̀≥Gr 0 (.2.13)

for some constant c > 0. Then

Rij̄k ¯̀ +Rij̄gk ¯̀− n c gij̄gk ¯̀≥Na 0. (.2.14)

Proposition 2.15 along with Lemma 2.13 would fulfill our purpose:

Theorem 2.16. Let (Xn, g) be a compact Kähler manifold. Suppose that the bisectional

curvature of metric g has a positive lower bound:

Rīijj̄ ≥ c gīigjj̄

for some constant c > 0. Then µ has a positive lower bound:

µ ≥ n c.

Proposition 2.15 is the analogy of a result by Demailly-Skoda [14] (see also [13], Proposition

10.14). It requires the following lemma ([13], Lemma 10.15):

Lemma 2.17. Let q ≥ 3 be an integer and let xλ, yλ for 1 ≤ λ ≤ n be complex numbers.

Let Un
q be the set of n-tuples of qth roots of unity and define complex numbers

x′(σ) =
n∑
λ=1

xλσλ, y′(σ) =
n∑
λ=1

yλσλ, for each σ = (σ1, . . . , σn) ∈ Un
q .

52



Then for every pair (α, β) with 1 ≤ α, β ≤ n, the following holds:

q−n
∑
σ∈Unq

x′(σ)y
′
(σ)σασβ =

 xαyβ, if α 6= β;∑n
λ=1 x

λyλ, if α = β.
(.2.15)

Proof of Lemma 2.17. We only require the following elementary claim: the coefficient of xγyδ

in the left hand side of (.2.15) is q−n
∑

σ∈Unq
σασβ σγσδ, and this is equal to 1 if {α, δ} = {β, γ}

and 0 otherwise. Indeed, for the second alternative, assume without loss of generality that

α /∈ {β, γ} and then observe that

∑
σ∈Unq

σασβ σγσδ =

 e2πi/q
∑

σ∈Unq
σασβ σγσδ, α 6= δ;

e4πi/q
∑

σ∈Unq
σασβ σγσδ, α = δ.

(.2.16)

To get (.2.16), replace σ by the element of Un
q obtained by multiplying the α component of

σ by e2πi/q. �

Proof of Proposition 2.15. For convenience, assume that we are calculating at a point where

gij̄ = δij. Fix a T 1,0 ⊗ T 1,0-tensor h, we want to show

(Rij̄k` +Rij̄gk ¯̀− n c gij̄gk ¯̀)hikhj` ≥ 0. (.2.17)

Define vectors

V(σ) = V i
(σ)

∂

∂zi
with components V i

(σ) =
n∑
λ=1

hiλσλ ∈ C;

W(σ) = W k
(σ)

∂

∂zk
with components W k

(σ) = σk ∈ C.
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Then, by assumption (.2.13),

0 ≤
∑
i,j,k,`

(Rij̄k ¯̀− c gij̄gk ¯̀)q−n
∑
σ∈Unq

V i
(σ)V

j
(σ)W

k
(σ)W

`
(σ)

=
∑
i,j

∑
k 6=`

Rij̄k ¯̀q−n
∑
σ∈Unq

V i
(σ)V

j
(σ)σkσ`

+
∑
i,j

∑
k=`

(Rij̄k ¯̀− c gij̄gk ¯̀)q−n
∑
σ∈Unq

V i
(σ)V

j
(σ)σkσ`

=
∑
i,j

∑
k 6=`

Rij̄k ¯̀hikhj` +
∑
i,j,k

(Rij̄ − n c gij̄)hikhjk,

where we have made use of Lemma 2.17 on the second equality. Hence

(Rij̄k ¯̀ +Rij̄gk ¯̀− n c gij̄gk ¯̀)hikhj`

=
∑
i,j

∑
k

Rij̄kk̄h
ikhjk +

∑
i,j

∑
k 6=`

Rij̄k ¯̀hikhj` +
∑
i,j,k

(Rij̄ − n c gij̄)hikhjk ≥ 0,

since the first term on right hand side is nonnegative by the assumption of nonnegative

bisectional curvature. �

.2.2 The vanishing of Futaki invariant

Unfortunately, up to now we still don’t know how to directly prove that the positivity of

bisectional curvature implies the vanishing of Futaki invariant.

Putting Corollary 1.16, Corollary 2.10 and Theorem 2.16 together gives us the following

conclusion (Phong-Song-Sturm-Weinkove [30], Cao-Zhu [8]):

Theorem 2.18. Let (Xn, g) be a compact Kähler manifold with positive bisectional curvature

and vanished Futaki invariant on πc1(X). If we run the NKRF on X, it converges to the

Fubini-Study metric. Thus X is biholomorphic to CPn.
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.3 An Alternative Attempt

It’s hard to find the direct relation of bisectional curvature and holomorphic invariant. So

we want to try something different. The following result is proved by the author, as the first

step of an alternative attempt to a Kähler-Ricci flow proof of Frankel conjecture:

Proposition 2.19. Let (Xn, g(t)) be a compact Fano Kähler manifold with g(t) as the so-

lution to NKRF with positive bisectional curvature. Assume that ‖R(t) − n‖L2 converges

exponentially fast to 0 along the flow. Then the NKRF converges to the Fubini-Study metric.

Proof of Proposition 2.19. From Proposition 1.1, the exponential decay of ‖R(t)−n‖C0 to 0

implies the convergence of NKRF. Then we just need to show that ‖R(t)−n‖C0 is controlled

by ‖R(t)− n‖L2 . The argument resembles the proof of Proposition 1.4 (ii).

We can take A = ‖R − n‖C0 = |R − n|(x1). Then |R − n| ≥ A
2

on the ball Br(x1) of radius

r = A
2‖∇R‖C0

centered at x1. If r < ρ, where ρ is some fixed uniform radius in Perelman’s

non-collapsing theorem, then

∫
X

(R− n)2ωn ≥
∫
Br(x1)

A2

4
ωn ≥ c

A2

4

(
A

2‖∇R‖C0

)2n

(.3.1)

and thus

‖R− n‖n+1
C0 ≤ C1‖∇R‖nC0‖R− n‖L2 . (.3.2)

By Cao-Chen-Zhu [7], all curvature tensors are uniformly bounded along NKRF with non-

negative bisectional curvature. Due to W. Shi’s estimate ([33], Theorem 1.1), the derivatives

of curvature tensors are also uniformly bounded. Hence

‖R− n‖n+1
C0 ≤ C1‖∇R‖nC0‖R− n‖L2 ≤ C ‖R− n‖L2 . (.3.3)
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On the other hand, if r > ρ, then integrating over the ball Bρ(x1) gives

∫
X

(R− n)2ωn ≥
∫
Bρ(x1)

A2

4
ωn =

A2

4

∫
Bρ(x1)

ωn (.3.4)

and hence ‖R− n‖C0 ≤ C2 ‖R− n‖L2 .

In either way, the exponential decay of ‖R(t)−n‖L2 implies the exponential decay of ‖R(t)−

n‖C0 .

Remark 2.20. In the above proposition, we actually only used the uniform boundness, but

not the positivity of bisectional curvature. More work needs to be done on connecting the

condition in Proposition 2.19 and the positivity of bisectional curvature.

�
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