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Virtual Ontogeny of Cortical Growth Preceding Mental Illness
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Abstract

BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, 

with neurobiology and developmental origins mostly undetermined. Deviations in the tangential 

growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations 

in cortical surface area later in life.

METHODS: Interregional profiles of group differences in surface area between cases and controls 

were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including 

those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, 

major depressive disorder, schizophrenia, and high general psychopathology (through the Child 

Behavior Checklist). Similarity of interregional profiles of group differences in surface area and 

prenatal cell-specific gene expression was assessed.

RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/

hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal 

association cortices. The same interregional profiles were also associated with interregional 

profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and 

intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, 

namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). 

Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes 

coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, 

birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were 

enriched with genes associated with maternal hypertension and preterm birth.

CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental 

illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from 

typical brain development during pregnancy.

The majority of symptoms of mental illness, from hallucinations and delusions in psychosis 

to the impaired attention and cognitive control in attention-deficit/hyperactivity disorder 

(ADHD), are rooted in disturbances of perceptual, cognitive, and affective processes 

subserved by the cerebral cortex. The human cerebral cortex is a highly folded sheath of 

tissue (~1800 cm2 of surface area) containing approximately 12 billion neurons and 17 

billion non-neuronal cells (1). Both global and regional expansion of the primate cerebral 

cortex are driven by biological events taking place during fetal development; the phase of 

symmetrical division of progenitor cells in the proliferative zones during the first trimester 
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is particularly important for tangential growth through addition of ontogenetic columns (2). 

Although neurogenesis—and related additions of ontogenetic columns—ends before birth, 

the surface area of the cerebral cortex continues to increase during the first 2 to 4 years of 

human life (3). But subsequent changes in the surface area of the human cerebral cortex, 

as estimated with magnetic resonance imaging (MRI), are comparatively minimal (4–6). 

Quantitively, a majority of the cortical expansion occurs prenatally and perinatally, with the 

most prominent rate in cortical expansion occurring during prenatal development (Figure 

S1) (7–10). Moreover, cortical surface area in children, adolescents, and young adults is 

correlated with birth weight, a common indicator for healthy neurodevelopment (11,12). The 

genetics of cortical surface area also implicates neurodevelopmental proliferative cells as 

compared with adult cell types (13,14). Therefore, in the adult brain, measures of cortical 

surface area provide a window into events shaping prenatal and early postnatal growth of the 

cerebral cortex that predate a broad array of mental illnesses (13,15–17).

To gain insights into the neurodevelopmental events that may underlie differential growth 

of the cerebral cortex in individuals with mental illness and/or the presence of clinically 

significant psychopathology (vs. healthy individuals) and the influence of external risk 

factors, we first estimated the extent of such group differences between cases1 and controls 

in the surface areas of 11 cortical regions (due to corresponding availability of fetal gene 

expression data). We then identified cellular elements underlying interregional variations 

in these group differences using virtual ontogeny, through which interregional profiles 

of group differences in surface area were correlated with interregional profiles of gene 

expression. The latter were restricted to transcripts expressed during 12 to 22 postconception 

weeks (PCWs) and to the following cell types: radial glia, intermediate progenitor cells 

(IPCs), excitatory neurons, interneurons, oligodendrocyte progenitor cells, microglia, and 

endothelial and mural cells. Finally, we asked which of these cell types might mediate the 

impact on cortical growth of prenatal factors reported to increase the risk of developing 

psychosis—risk factors applicable to many mental illnesses in general.

METHODS AND MATERIALS

Meta-analytic Group Differences in Cortical Surface Area

T1-weighted MRI scans were acquired in 89 cohorts participating in the ENIGMA 

(Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium. The ENIGMA 

Consortium is a collaborative initiative in global neuroscience and focuses on studying the 

human brain in health and disease through genetics and imaging (18). Sample demographics 

and MRI acquisition details per cohort are provided in Tables S1–S7. FreeSurfer cortical 

reconstruction software was used to extract surface area according to a parcellation scheme 

that intersects with tissue sampling from the PsychENCODE Consortium, described in 

Supplemental Methods and presented in Figure S2. Individual ENIGMA cohorts performed 

multiple linear regression analysis, modeling surface area of each cortical region separately 

as a function of diagnosis status, age, age squared, sex, and site-specific covariates (such as 

1Cases are defined as individuals with a diagnosis of the following conditions: schizophrenia, autism spectrum disorder, attention-
deficit/hyperactivity disorder, bipolar disorder, and major depressive disorder, or by the presence of symptoms of psychopathology as 
assessed with the Child Behavior Checklist in a large community-based sample of children (the ABCD Study).
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MR scanner, multiple sites). Cohort-specific information regarding diagnostic and sampling 

criteria are described in previously published ENIGMA reports (19–23). Individual cohorts 

obtained institutional ethics approval, and informed consent was obtained from study 

participants or guardians. Cohort-level summary statistics were then meta-analyzed using 

an inverse variance–weighted random effects model from the “metafor” R package (24). 

Meta-analytic estimates are provided in Tables S8–S12.

The ABCD (Adolescent Brain Cognitive Development) Study is a longitudinal cohort 

study of brain development on roughly ~11,500 children sampled across the United States 

from the general community (25). T1-weighted MRI data from the ABCD Study were 

processed with FreeSurfer version 7.1 on the Compute Canada Niagara server (26). MRI and 

sample recruitment procedures for the ABCD Study have been described previously (25,27). 

Psychopathology was indexed by the total problem score from the parent-completed Child 

Behavior Checklist (CBCL)—a simple index of global psychopathology (28). The top and 

bottom 20% of the CBCL total score distribution (stratified by sex and ethnicity) was used to 

classify cases and controls, respectively (Figure S2B). Note that this extremes-only approach 

minimizes possible noise in CBCL data resulting from the known discrepancies between 

parental reports (used here) and self-reports. Linear mixed-effects models for each cortical 

region were run as a function of high/low psychopathology, age, age squared, sex, ethnicity, 

and random effects (family structure and MRI machine). The “lme4” R package was used to 

run mixed-effects models (29).

Virtual Ontogeny

To gain insights into the relationship between prenatal development and postnatal group 

differences in cortical surface area, we proceeded by following three steps (depicted in 

Figure 1). First, we identified gene-expression markers specific to a set of cells present in 

the human cerebral cortex toward the end of the first and throughout the second trimester 

(30–32). To do so, we used publicly available single-cell data from the developing cerebral 

cortex of 5 donors, with postconception age ranging from 5 to 22 PCWs (30) (Figures S4 

and S5). Second, we used these cell-specific genes and calculated the median value of their 

expression (200 genes per cell type) for each of the 11 cortical regions for which group 

differences in surface area were examined (steps 2 and 3 from Figure 1). These expression 

values were derived from the PsychENCODE bulk RNA sequencing dataset (14 donors, 12–

22 PCWs) (33). The processing of single-cell and bulk RNA sequencing data is described 

in the Supplement. Third, the interregional profiles of the (median) expression of these 

marker genes were correlated with the interregional profiles of group differences in cortical 

surface area from Figure 2A (step 4 from Figure 1). The average MRI-expression correlation 

was tested for significance using a permutation-based approach with 10,000 resamplings of 

random gene lists, as described in detail in the Supplement (step 5 from Figure 1). We also 

performed two additional sensitivity analyses 1) to estimate the distribution of the average 

correlation coefficient between MRI and cell-specific gene expression by bootstrapping the 

200 gene expression profiles per cell type and 2) to use gene set enrichment analysis as a 

test of over-representation of cell-specific genes within the rank-ordered list of MRI–gene 

expression correlations (34,35).
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Gene Coexpression and Enrichment Analyses

The virtual ontogeny analysis focused exclusively on the limited set of cell-specific genes. 

To expand the focus of genes investigated while simultaneously interjecting findings 

from our cell-specific approach, we used genome-wide coexpression analysis including all 

prenatal donors from the PsychENCODE dataset. Modeling of coexpression is presented 

in the Supplement. Next, coexpressed gene panels for cell types that showed significance 

from virtual ontogeny were used as inputs for several enrichment analyses, including 1) gene 

ontology enrichment, 2) disorder-related gene set enrichment, 3) cortical surface area gene 

enrichment from prior ENIGMA genome-wide association study data, and 4) enrichment 

with genes associated with risk factors for psychosis. The details for each analysis are 

presented in the Supplement.

RESULTS

Case-Control Differences in Surface Area and Expression of Proliferative-Cell Genes

Meta-analytic profiles of group differences in cortical surface area were quantified 

using structural T1-weighted brain MRI scans. Cohorts from the ENIGMA Consortium 

contributed MRI scans of individuals diagnosed with schizophrenia (SCZ), ADHD, 

autism spectrum disorder (ASD), bipolar disorder, and major depressive disorder. In 

addition, children from the ABCD Study were classified into two groups with high or 

low psychopathology, defined as the top and bottom 20%, respectively, of the CBCL 

total problem score (Figure S2). This cohort of children allowed us to extend findings 

obtained in patients with an established clinical diagnosis to young people with emerging 

psychopathology from the general community (25). In total, 27,359 individuals contributed 

to group differences in cortical surface area across 11 cortical regions (Figure 2A, B; Tables 

S2–S6). These specific regions (and time period) were selected based on the availability of 

gene expression data during gestation (Figures S3 and S4) (33).

Case-control differences in surface area were greatest in patients with SCZ and ADHD, and 

in the community sample of children with high CBCL psychopathology scores (Figure 2A; 

Tables S7–S12). Interregional profiles across the 11 cortical regions were highly correlated 

between SCZ and ADHD (Figure 2C). At the nominal level of significance (p < .05), we 

also observed correlations between the CBCL profile and both the ADHD and SCZ profiles 

(Figure 2C).

What neurodevelopmental processes might underlie these group differences? To answer 

this, we related interregional profiles of cell-specific gene expression in the developing 

cerebral cortex (12–22 PCWs) with interregional profiles of group differences in cortical 

area across the same 11 regions. These case-control group differences were used as input 

to the analytic framework depicted in Figure 1. This “virtual ontogeny” analysis revealed 

positive associations between prenatal expression profiles of proliferative cells, namely 

radial glia and IPCs, and postnatal profiles of group differences in SCZ, ADHD, CBCL, 

and ASD (Figure 3A, B; Table S13). Likewise, these group contrasts showed negative 

associations with a number of differentiated cells, namely excitatory neurons and endothelial 

and mural cells2. We tested the sensitivity of these findings using two different statistical 
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approaches: 1) boot-strapped estimation of the correlation-coefficient distribution and 2) 

gene-set enrichment analysis (Figures S6 and S7, respectively). These somewhat more 

conservative analyses confirm the general opposing pattern of enrichment with radial glia/

IPCs and excitatory neurons with ADHD, SCZ, and ASD. This association was nominally 

significant for CBCL. In the next steps, we focused on results specific to SCZ, ADHD, and 

CBCL because these profiles presented robust group differences in surface area (Figure 2A).

Multimodal Associative Versus Primary/Unimodal Cortex

Unsupervised hierarchical clustering of interregional profiles of group differences in surface 

area revealed two distinct sets of cortical regions (Figure 4A). Cluster 1 consisted of 

multimodal associative cortices3 while cluster 2 contained mostly primary and unimodal 

cortices4. The group differences in cortical surface area for SCZ, ADHD, and CBCL 

were greater in multimodal versus primary/unimodal cortices (Figure 4B; Figure S8). Cell-

specific gene expression trajectories during gestation also revealed remarkable differences 

between these two clusters: proliferative (i.e., undifferentiated) cells have greater cell-

specific expression in the multimodal cortices while differentiated cells have greater 

expression in primary/unimodal cortices (Figure 4C; Table S14).

Genetics of Psychiatric Conditions and Cortical Growth: Intersection With Cell-Specific 
Gene Coexpression Networks

As described above, we observed a certain degree of similarity in interregional profiles of 

group differences in the cortical surface area among the different mental health conditions 

(particularly with SCZ, ADHD and CBCL) (Figure 2C). To capture these similarities, 

we carried out principal component (PC) analysis of the interregional profiles. This 

analysis revealed clear demarcation between the multimodal and primary/unimodal clusters, 

respectively (Figure 5A), with PC1 explaining 50% of the variance and PC1 correlating 

highly with SCZ, ADHD, and CBCL (Figure 5B). As expected from the condition-specific 

analyses (Figure 3), virtual ontogeny of the PC1 loadings showed positive associations 

with radial glia and IPCs and showed negative associations with excitatory neurons 

and endothelial and mural cells (Figure 5C; Figure S9). Sensitivity analyses confirmed 

significant associations with radial glia, IPCs, and excitatory neurons, with a weaker 

finding for the mural cells (Figure S10). To investigate further the processes underlying 

the association between PC1 and cell-specific genes, we generated coexpression panels 

of genes for each cell type associated with PC1, expanding the scope of our work from 

cell-specific genes to all related genes. Gene Ontology enrichment analysis revealed a 

number of specific biological processes associated with each cell type–specific coexpressed 

panel. Thus, radial glia and IPC genes were highly enriched for biological processes relating 

to cell division, while vasculature-forming endothelial and mural cells as well as excitatory 

neurons were enriched, respectively, for blood vessel morphogenesis and synaptic signaling/

2Undifferentiated (radial glia, intermediate progenitor cells); differentiated (neurons, microglia, oligodendrocytes, and mural and 
endothelial cells). Oligodendrocyte progenitor cells are a hybrid state.
3Multimodal associative cortices in cluster 1 (intermediate progenitor cell, orbital frontal cortex, medial frontal cortex, dorsal frontal 
cortex).
4Primary/unimodal cortices in cluster 2 (primary visual cortex, ventral frontal cortex, primary motor cortex, primary somatosensory 
cortex, primary auditory cortex, superior temporal cortex).
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organization (Figure 5D–F). Genes associated with schizophrenia, as derived from genetic 

variant studies (36), were enriched in coexpression networks of the radial glia and excitatory 

neurons (Figure 5G). Genes associated with the cortical expansion of multimodal cortices, as 

derived from genome-wide association studies (14), were enriched in coexpression networks 

of the radial glia and IPCs (Figure 5H; Table S14). Note that the latter enrichment was 

not found in the case of unimodal cortices, pointing again at the distinction of the two 

types of cerebral cortices with respect to their neurodevelopmental characteristics and/or 

developmental timing.

Cell Types and Prenatal Risk for Psychosis

Experimental studies have pointed to a number of external factors that may interfere 

with typical development of the cerebral cortex in nonhuman primates (37,38). Similarly, 

epidemiological studies have identified a number of pre/perinatal risk factors associated with 

later emergence of psychosis (such as low birth weight and preterm birth) (39). These risk 

factors can be generalizable to most neurodevelopmental disorders.

Here, we tested which of the cell types associated with the PC1 profile of group differences 

in surface area might mediate the impact of risk factors for psychosis on prenatal growth 

of the human cerebral cortex. Prenatal risk factors for psychosis were identified from 

a systematic review and meta-analysis that included 152 studies (Figure 6A) (39). We 

selected, a priori, sets of genes linked to each of these risk factors using either relevant 

Gene Ontology terms (40) or genes associated with a particular condition (e.g., congenital 

abnormalities), as identified in curated datasets based on genome-wide association study 

catalogs, animal models, and the greater scientific literature (Table S15) (36,41). The results 

showed that genes implicated in congenital abnormalities were enriched with the radial 

glia, IPCs, and mural cell–specific coexpressed panels (Figure 6B; Table S17). Genes 

pertaining to birth weight, hypoxia, and famine were also enriched in the radial glia panel. 

In contrast, genes pertaining to the regulation of blood pressure (and, therefore, relevant to 

maternal hypertension during pregnancy), as well as genes associated with preterm birth, 

were enriched in the mural panel. Although preeclampsia was not a significant risk factor 

for psychosis [odds ratio = 1.32, p = .059 from (39)], genes associated with this condition 

intersected with those included in the endothelial and mural panels (Figure S11).

DISCUSSION

It appears that the differential growth of the cerebral cortex preceding mental illness and 

general psychopathology in childhood 1) is more pronounced in multimodal (vs. primary/

unimodal) cortical regions, 2) is related to the spatial pattern of prenatal expression of genes 

underlying neuro- and angiogenesis, and 3) might be reflective of influences of known risk 

factors acting on these cellular processes during prenatal development.

Cortical regions that show the largest case-control group differences in surface area are 

regions with greater prenatal expression of proliferative cells (radial glia, IPCs) and 

lower expression of differentiated cells such as excitatory neurons and endothelial and 

mural cells during the first trimester. This implies potential disruption in processes of 

progenitor expansion and subsequent differentiation, with possible cascading effects in later 
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(postnatal) developmental periods. Radial glia serve as a key progenitor population driving 

neurogenesis and creating a vertical scaffold for neuronal migration from proliferative zones 

to the cortical plate (2). According to the radial unit hypothesis, the cortical surface area of 

a given region depends on the number of contributing proliferative units (2); experimental 

enhancement of the neural progenitor population results in greater surface expansion and 

folding (42). Subtle deviations in progenitor cell division may have a profound impact on the 

resulting neuronal population owing to the self-renewing (amplifying) nature of radial glia 

and IPCs: two radial glia cells may generate more than 80 neurons following eight rounds 

of cellular division (43). For instance, loss of the DISC1 gene, a genetic locus of relevance 

for schizophrenia among other mental illnesses, reduces neural-progenitor proliferation, 

leading to premature differentiation (44). This parallels the observed intersection between 

genes associated with SCZ and genes in the radial glia coexpression network associated 

with group differences in cortical surface area between patients with SCZ and healthy 

control subjects (Figures 2A and 4H). We also observed associations with endothelial and 

mural cells, components of the developing cortical blood vessels. The development, growth, 

and maturation of cerebral vasculature and neural structures occurs simultaneously with 

bidirectional signaling and influences [reviewed in (45)]. Neural- derived signals control 

angiogenesis and blood vessel patterning, while vascularization modulates the extent of 

neurogenesis and progenitor differentiation. Given that neurogenic niches require hypoxic 

conditions for progenitor cell expansion, a spatiotemporal balance between expansion and 

differentiation is controlled, in part, by blood vessel formation and subsequent oxygenation 

(45,46).

Multimodal (association) cortices appear to stand out, with regard to both the observed 

group differences in their surface area and the spatiotemporal pattern of prenatal expression 

of genes specific to undifferentiated (proliferative) and differentiated (neurons, vasculature) 

cells. Generally speaking, these cortical regions subserve complex perceptual and cognitive 

processes, building on information received from unimodal cortices. Previous studies 

have pointed to a prolonged developmental time course as one of the characteristics 

distinguishing multimodal and primary cortices. Evidence supporting this view includes 

a prolonged existence of the transient associative subplate as compared with primary 

cortices (47), less dendritic shaft/spine growth at birth (48), and a delayed maturation of 

projection fibers in associative white matter (49). The prolonged existence of the associative 

subplate may be of particular importance for disorders characterized by alterations in 

complex perceptual and cognitive processes because these neurons play key roles in axonal 

pathfinding, cell survival, and guiding cortical circuitry maturation and, as such, in the 

development of corticocortical associative fibers [see review in (50)]. Postnatally, functional 

MRI and structural (tract tracing) studies in humans and macaques, respectively, have 

shown a principal gradient in cortical connectivity of multimodal regions distinct from 

the primary cortex (51). These regions are also situated in key nodes of the default mode 

network, in which aberrant activity is implicated in many, if not all, psychiatric conditions 

(51,52). Taken together, delayed maturation of association cortices correlates with greater 

vulnerability to genetic or environmental perturbations.

The neurodevelopmental theory of schizophrenia, as per Murray (53) and Weinberger 

(54,55), has sparked intense interest in early events that may increase the risk of developing 
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this mental illness later in life. As summarized recently, a number of prenatal and 

perinatal factors appear to increase the risk to developing psychosis (39). Here, we 

provide initial evidence that links, albeit indirectly, such risk factors to SCZ via cellular 

processes underpinning cortical growth during prenatal development (Figure 5). We have 

identified two possible—mutually nonexclusive—pathways. The first one—at play in cases 

of low birth weight, hypoxia, and famine—involves radial glia (i.e., proliferation). The 

other one—at play in cases of maternal hypertension, preeclampsia, and preterm birth

—involves endothelial and mural cells (i.e., vasculature). Nutrient restriction in animal 

models (nonhuman primates and other vertebrates) produces impaired function of progenitor 

cells, cell-cycle arrest, and increased cell death (38,56). Likewise, rat models of hypoxia-

ischemia–related injury in the developing cortex show marked reduction in the population of 

neural stem cells (57). In contrast, experimental models of preeclampsia (a hypertensive 

syndrome) have shown abnormal cerebrovascular morphology and permeability/growth 

[reviewed in (58)]. The latter parallels our intersection between maternal hypertension (and 

preeclampsia) and endothelial and mural cells. Finally, the broad classification of congenital 

malformations was strongly associated with radial glia/IPC genes as well as endothelial and 

mural cells, hinting at the close (likely bidirectional) relationship between corticogenesis 

and developing blood vessels [reviewed in (45)].

Limitations and Considerations

It is important to qualify the findings from this report, given the nature of the comparisons 

between different datasets and periods in time. Group differences in cortical surface area 

likely indicate a general vulnerability to developing psychopathology, but it is not a feature 

that distinguishes what kind of disorder an individual may manifest later in postnatal life.

These findings allow us and others to formulate follow-up hypotheses to be tested 

experimentally, possibly with the advancement in cortical organoid modeling (59). The 

findings were limited by the availability of prenatal gene-expression data given the limited 

sampling of cortical regions (only 11 regions) and the limited number of donors from 

various periods of gestation (missing data from very early and later stages of prenatal 

development). Statistically, it would be most straightforward to relate the spatial profile 

of group differences in surface area with the average gene-expression profile specific to 

cell types; with only 11 regions, however, there is little statistical power. To address this 

limitation, we have used resampling-based approaches along with sensitivity analyses to 

test for cell-specific associations. Likewise, the gene-expression dataset was sampled from 

the cortical plate, while cellular division, differentiation, and maturation take place within 

the ventricular, subventricular, and intermediate zones of the developing cerebral cortex. 

This necessitates the assumption of similar interregional expression profiles reflected across 

developing lamina, as postulated in the protomap hypothesis (2).

We investigated exclusively the prenatal period in relation to group differences in cortical 

surface area for several reasons: 1) the dominance of prenatal period vis-a-vis the tangential 

growth of the cerebral cortex (surface area) as shown from experimental (37,60) and 

genetic (13,14) studies, 2) epidemiologic evidence implicating birth weight (an index of 

healthy brain growth) and risk for psychiatric disorder diagnosis (16), and 3) enrichment 
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of neurodevelopmental cell types/processes in genetic variants associated with multiple 

psychiatric disorders (13,15,17). Even so, this is not to say that developmental disturbances 

during postnatal life, especially during infancy, may not contribute to the surface area 

sampled later in life. There are three key periods of cortical expansion: 1) greatest expansion 

during gestation, 2) expansion from birth to the first 2 years of life, and 3) subtle increases 

until the end of childhood (depicted in Figure S1) (7–10). It is very likely, however, that 

different processes underly cortical expansion in these different stages of brain development. 

Prenatally (before birth), expansion is determined through addition of ontogenetic columns 

(2,43). Between birth and the first 2 years of life, cortical growth may be a consequence 

of the expansion in neuropil and cortical minicolumns (61–63). Following 2 years of age, 

cortical expansion may be related to the growth of underlying white matter (64). The 

processes governing cortical expansion after birth have not been systematically evaluated. 

Nonetheless, we observe signals relevant to neurodevelopmental cells (radial glia/IPCs) in 

cohorts with vastly different age ranges such as those in the ENIGMA ASD, ENIGMA 

ADHD, and ABCD CBCL groups, which were predominately younger, as compared with 

the (older) ENIGMA SCZ group. This supports our assumption about the importance of 

the pre/perinatal environment and cortical surface area. Taken together, it is likely that 

perturbations of early development may have a sizable impact on cortical surface area 

measured later in life, primarily through neurogenesis and subsequent expansion of neuropil.

Conclusions

In summary, we show that a simple in vivo measure of brain structure, namely surface 

area of a set of cortical regions, acquired many years after birth provides an anchor 

for identifying developmental processes at play before birth and for suggesting cellular 

mechanisms that may mediate the known associations between common pre- and perinatal 

risk factors and severe mental illness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Methodological workflow for virtual ontogeny. Step 1 (top left): identify top 200 cell-

specific genes from single-cell RNA sequencing data of the developing neocortex (30). 

Step 2 (top right): quantify median gene expression (bulk RNA) across donors for each 

of 11 cortical regions sampled from the PsychENCODE dataset (33). Cell specificity was 

defined as the ratio of expression of a gene in a given cell type divided by the expression 

across all cells. For instance, the gene SLC1A3 was in the top 200 specific genes for the 

radial-glia panel. The expression of this gene is plotted in step 2 (top right). Step 3 (bottom 

left): quantify meta-analytic group differences in surface area between cases and controls 

across the 11 cortical regions sampled in the PsychENCODE dataset. Group differences 

for SCZ are plotted as an example. Step 4 (bottom right, top half): correlation between 

cell-specific gene expression and an MRI-derived profile, in this case, SLC1A3 expression 

and case-control differences for SCZ. This is repeated for all 200 genes specific to a cell 

type (in this case, radial glia) to create a distribution of correlation coefficients in step 

5 (bottom right, bottom half). A1C, primary auditory cortex; ABCD, Adolescent Brain 

Cognitive Development; AMY, amygdala; CBC, cerebral cortex; DFC, dorsal frontal cortex; 

ENIGMA, Enhancing Neuro Imaging Genetics through Meta Analysis; HIP, hippocampus; 

IPC, inferior parietal cortex; IPCs, intermediate progenitor cells; ITC, inferior temporal 
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cortex; M1C, primary motor cortex; MD, mediodorsal nucleus of thalamus; MDD, major 

depressive disorder; MFC, medial frontal cortex; MRI, magnetic resonance imaging; OFC, 

orbitofrontal cortex; OPC, oligodendrocyte progenitor cell; PCW, postconception week; 

S1C, primary somatosensory cortex; SCZ, schizophrenia; STC, superior temporal cortex; 

STR, striatum; V1C, primary visual cortex; VFC, ventral frontal cortex.
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Figure 2. 
Regional differences in cortical surface area across multiple psychiatric conditions. (A) 
Meta-analytic estimates of group differences in cortical surface between cases and controls. 

Contrast shown as controls minus cases, where positive values indicate smaller surface 

area in cases. (B) Schematic location of regions of interest from which surface area was 

quantified. (C) Cross-disorder correlation matrix of profiles from panel (A). *Nominal 

p < .05; ***false discovery rate–corrected p < .05. A1C, primary auditory cortex; 

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar 

disorder; CBCL, Child Behavior Checklist; DFC, dorsal frontal cortex; IPC, inferior parietal 
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cortex; ITC, inferior temporal cortex; M1C, primary motor cortex; MDD, major depressive 

disorder; MFC, medial frontal cortex; OFC, orbitofrontal cortex; SA, surface area; S1C, 

primary somatosensory cortex; SCZ, schizophrenia; STC, superior temporal cortex; V1C, 

primary visual cortex; VFC, ventral frontal cortex.
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Figure 3. 
Virtual ontogeny. (A) Distribution of correlation coefficients between prenatal cell-specific 

gene expression and postnatal group differences in cortical surface area. Gray box around 

zero represents 99% confidence intervals from the null distribution generated through 

10,000 resamplings of gene expression and group-difference profiles. Black vertical line 

represents the mean correlation coefficient (biweight midcorrelation) of the distribution, 

also plotted in panel (B). *False discovery rate–corrected p value < .01. ADHD, attention-

deficit/hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar disorder; bicor, 

biweight midcorrelation; CBCL, Child Behavior Checklist; IPC, intermediate progenitor 

cell; MDD, major depressive disorder; OPC, oligodendrocyte progenitor cell; SCZ, 

schizophrenia.
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Figure 4. 
Differences in cortical surface area cluster into associative and primary/unimodal cortex. 

(A) Hierarchical clustering dendrogram of group differences in cortical surface area with 

k = 2 clusters. (B) Boxplot depicting group differences between clusters for each of the 

six profiles investigated. (C) LOESS model fits of cell-specific gene expression trajectories 

stratified by cortical cluster. Expression (y-axis) is unit scaled. Shaded gray region around 

the model fit represents 95% confidence intervals. Vertical black dashed lines represent 

prominent windows of neurodevelopment reported previously (33). A1C, primary auditory 

cortex; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; 

BD, bipolar disorder; CBCL, Child Behavior Checklist; DFC, dorsal frontal cortex; IPC, 

intermediate progenitor cell; IPC, inferior parietal cortex; ITC, inferior temporal cortex; 

M1C, primary motor cortex; MDD, major depressive disorder; MFC, medial frontal cortex; 

OFC, orbitofrontal cortex; OPC, oligodendrocyte progenitor cell; PCW, postconception 
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week; S1C, primary somatosensory cortex; SCZ, schizophrenia; STC, superior temporal 

cortex; V1C, primary visual cortex; VFC, ventral frontal cortex.

Patel et al. Page 28

Biol Psychiatry. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Enrichment of cell-specific gene panels. (A) Principal component analysis plot of regional 

loadings of PC1 and PC2. (B) Correlation between disorder-specific profiles and PC1/PC2 

loadings. (C) Virtual ontogeny analysis depicting distributions of correlation between 

interregional variation in cell-specific gene expression and PC1 loadings (across the 11 

regions). *FDR p < .01. (D–F) Gene Ontology enrichment analysis of coexpressed cell-

specific gene panels. Gene ratio represents the proportion of genes in the cell-specific panel 

that intersect with a Gene Ontology term with the total size of the gene set. (G) Enrichment 

analysis for disorder-associated genes for the three disorders loading strongest on PC1 

(SCZ, ADHD, and ASD) and for (H) cortical surface area–associated genes of clusters 1 

and 2. A1C, primary auditory cortex; ADHD, attention-deficit/hyperactivity disorder; ASD, 

autism spectrum disorder; BD, bipolar disorder; CBCL, Child Behavior Checklist; DFC, 
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dorsal frontal cortex; FDR, false discovery rate; IPC, intermediate progenitor cell; IPC, 

inferior parietal cortex; ITC, inferior temporal cortex; M1C, primary motor cortex; MDD, 

major depressive disorder; MFC, medial frontal cortex; OFC, orbitofrontal cortex; OPC, 

oligodendrocyte progenitor cell; PC, principal component; S1C, primary somatosensory 

cortex; SCZ, schizophrenia; STC, superior temporal cortex; V1C, primary visual cortex; 

VFC, ventral frontal cortex.
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Figure 6. 
Risk factors of psychosis with implicated cell types. (A) Z scores for pre/perinatal risk 

factors for psychosis from Davies et al. (39) are represented by the size of the circle, and the 

corresponding odds ratio is in the text below. (B) Enrichment between genes implicated in 

risk factors for psychosis and coexpressed cell-specific gene panels identified to be related 

to group differences in cortical surface area. Horizontal dashed line represents FDR < .05. 

FDR, false discovery rate; IPC, intermediate progenitor cell; OR, odds ratio.
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KEY RESOURCES TABLE

Resource 
Type

Specific Reagent or 
Resource Source or Reference Identifiers Additional Information

Add 
additional 
rows as 
needed for 
each 
resource type

Include species and sex 
when applicable.

Include name of 
manufacturer, company, 
repository, individual, or 
research lab. Include PMID 
or DOI for references; use 
“this paper” if new.

Include catalog 
numbers, stock 
numbers, database IDs 
or accession numbers, 
and/or RRIDs. RRIDs 
are highly encouraged; 
search for RRIDs 
at https://scicrunch.org/
resources.

Include any additional information or 
notes if necessary.

Deposited 
Data; Public 
Database

Human single cell RNA 
seq of developing fetal 
cortex PMID: 31996853 GSE132672

Expression matrix: https://
organoidreportcard.cells.ucsc.edu

Deposited 
Data; Public 
Database

Human bulk RNA seq of 
developing fetal cortex PMID: 30545854 dbGAP phs000755 http://development.psychencode.org/

Deposited 
Data; Public 
Database

Group differences in 
cortical surface area 
between cases and 
controls from the 
ENIGMA consortium 
(ADHD, ASD, BD, 
SCZ, MDD) and 
ABCD study (between 
those with high 
general psychopathology 
(measured via CBCL). 
In humans, both sexes. This paper Supplemental tables See methods/supplement for details.

Software; 
Algorithm

FreeSurfer (various 
versions across cohort, 
5.3, 6.0, 7.x) PMID: 22248573 RRID:SCR_001847

Use to quantify surface area of 
cerebral cortex from T1w MRI scans.

Software; 
Algorithm R software enrviornment 

(v 4.0) https://www.r-project.org/ RRID:SCR_001905

Individuals libraries used throughout 
the manuscript are described in the 
methods and supplement

Software; 
Algorithm Parcellation fragmenter

https://github.com/miykael/
parcellation_fragmenter NA See methods/supplement for details.
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