
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
An Efficient and General-Purpose Technique for Grouping Hand-Drawn Pen Strokes into 
Objects

Permalink
https://escholarship.org/uc/item/76s6d39t

Author
Peterson, Eric Jeffrey

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/76s6d39t
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

RIVERSIDE

An Efficient and General-Purpose Technique for Grouping Hand-Drawn Pen

Strokes into Objects

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

by

Eric Jeffrey Peterson

December 2010

Dissertation Committee:

Dr. Thomas F. Stahovich, Chairperson
Dr. V. Sudararajan
Dr. Christine Alvarado



Copyright by
Eric Jeffrey Peterson

2010



The Dissertation of Eric Jeffrey Peterson is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would like to thank everyone who has made possible my completion of graduate school.

Specifically I would like to thank my research advisor, Tom Stahovich, who has helped

me expand and craft my abilities. Thank you for challenging me and never letting me

settle for less than excellence. I would also like to thank the rest of my dissertation

committee, Christine Alvarado and V. Sundararajan, for helping guide me and my

research in meaningful directions. Additionally, I would like to thank my lab-mates,

they have provided an endless amount of help and entertainment: WeeSan, Ryan, Rumi,

Tyler, Jim, Jack, Josiah, Hank, Ehsan, Matt, John, and Seth. Special thanks go to Diana

for helping to edit this dissertation.

I could not have accomplished this without the support of my family, especially

my parents: Gordon and Myra. They have shown me how to work hard and enjoy life.

To my grandparents, for helping me get through school and for raising such wonderful

families, as well as my older sister Amber and her husband Dallas, and my younger

sister Josselyn, thank you.

Perhaps most of all, I thank my wife Christine, for loving me and having

patience as I spent so many long nights working on my research and this dissertation.

iv



This dissertation is dedicated to my loving wife Christine, who has stuck with

me through graduate school, and has supported my decisions every step of the

way. I love you Babe!

v



ABSTRACT OF THE DISSERTATION

An Efficient and General-Purpose Technique for Grouping Hand-Drawn Pen Strokes
into Objects

by

Eric Jeffrey Peterson

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, December 2010

Dr. Thomas F. Stahovich, Chairperson

Engineers use sketches in the early phases of design because their expressive-

ness and ease of creation facilitate creativity and efficient communication. Our goal

is to build software that leverages these strengths and enables natural sketch-based

human-computer interaction. Specifically, our work is focused on creating algorithms

that group hand-drawn strokes into individual objects so that they can be recognized.

Grouping strokes is a difficult problem. Many previous approaches have required the

user to manually group the strokes. Others have used a search process, resulting in a

computational cost that rises exponentially with the number of strokes in the sketch. In

this dissertation we present a novel method for grouping strokes into objects based on a

two-step algorithm that has a polynomial computational cost. In the first step, strokes

are classified according to the type of object to which they belong, thus helping to cre-

ate artificial separation between objects. In the second step, a pairwise classifier groups

strokes of the same class into individual objects. Both steps rely on general machine

learning techniques which seamlessly integrate spatial and temporal information, and
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which can be extended to new domains with no hand-coding. Our single-stroke classifier

is the first in literature to perform multi-way classification to facilitate efficient group-

ing, and it performs as well as or better than previous classifiers on text vs. non-text

classification. Our grouping algorithm correctly groups between 84% and 91% of the ink

in diagrams from four different domains, with between 61% and 82% of objects being

perfectly clustered. Our method runs in O(n2) time, where n is the number of points in

the sketch. Real-world performance is improved with a conservative filter to eliminate

consideration of distant strokes, and computation occurs incrementally as the sketch is

constructed. Even without the filter, the computation for a large sketch containing over

700 strokes took less than 12% of the time required to draw the sketch. Experimental

evaluation of our technique has shown it to be accurate and effective in four domains.
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Chapter 1

Introduction

Engineers often use sketches in the beginning stages of design because they are

an effective way to communicate and express ideas due to their ease of creation and flex-

ibility. Our overarching goal is to allow people to interact with a computer by sketching

in the same way that they can convey ideas to each other using sketches. Imagine a tool

that allows the user to design a logic circuit just by sketching it out, rather than inter-

acting with a complicated and clunky computer interface. Or an engineering-mechanics

tutorial program that provides immediate and relevant feedback as the student draws a

free-body diagram and solves the equilibrium equations. Both of these tools require the

computer to interpret the hand-drawn sketch. Automatic interpretation requires the

program to recognize the individual objects in the sketch. However, before the object

can be recognized, the strokes that comprise it must be located. Determining which

strokes belong to the same object is comparatively easy in a simple sketched equation,

like in Figure 1.1, because there is clear separation between the objects. However, group-

ing strokes into objects is a much more complicated task for a connected diagram, like
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the digital circuit sketch shown in Figure 1.2, where there is often no separation between

objects.

Figure 1.1: A simple sketched equation. The individual characters are separated from
each other, making it relatively easy to locate the objects.

It is difficult for a program to know that a group of strokes form a meaningful

shape without recognizing it, however the strokes must be grouped before they can be

recognized. For example, in Figure 1.1, previous methods would not know whether a

cluster containing the two strokes in the “x” represents a meaningful object without

recognizing it, but those two strokes must first be clustered. This dependency between

grouping and recognition is a chicken-and-egg problem that can have a very large search

space for possible groups of strokes. Most previous work has focused on generating a

large number of possible groupings (hypotheses), and using recognition to evaluate them

[1, 40]. One main drawback to this type of approach is that the number of possible

groupings to be evaluated grows exponentially with the number of strokes in the sketch,

leading to a system that is too slow for real-time interaction. Other attempts try to

reduce the size of the search space by limiting the way people draw, such as requiring

one object to be finished before the next begins [10, 38]. While some researchers have

tried to lessen the burden of these restrictions [37], their methods still do not leave the

user to draw in an unconfined manner. Another approach to addressing this challenge
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has been to create algorithms that exploit features specific to a given domain [20, 21],

but these are difficult to extend to new problems. We aim to create a stroke grouping

method that satisfies each of the following requirements:

1. Accuracy - It should provide accurate groupings of strokes.

2. Speed - It should be fast enough to provide real-time interaction between the user

and the computer.

3. Extensibility - It should be free of attributes that restrict it to a particular

domain, thereby allowing the method to be used in new applications.

4. Drawing Flexibility - It should allow the user to draw freely and naturally.

Figure 1.2: A sketch of a digital circuit. There is no clear boundary between adjacent
objects in the sketch

1.1 Approach

We have developed a novel two-step approach to locate objects in hand-drawn

diagrams. The overall process is shown in Figure 1.3. The first step separates the
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strokes within a sketch into classes, the second step groups the strokes of a given class

into objects. Figure 1.4 shows the single-stroke classification result for the digital circuit

in Figure 1.2 – sets of gate, wire, and text strokes. While it may appear that the strokes

in Figure 1.4 are already grouped together, a second step is required for the program to

determine which strokes belong together.

Single-Stroke
Classifier

Raw Strokes

Recognized Shapes

Grouping:

Pairwise Classifier

Shape
Recognizer

Stroke Class:
e.g., Gate, Wire, Text

Joined Strokes

Figure 1.3: A flow chart detailing the sketch recognition process. Our two-step approach
is outlined by the dashed box.

We use a classifier learned from labeled training examples to separate the

strokes into classes. Learned classifiers can quickly and accurately identify a stroke’s
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class without necessitating hand-coding – a driving characteristic in our decision to use

them. To identify a stroke’s class, the classifier uses a number of features based on

properties of the stroke, such as shape, size, location, drawing dynamics, and geometric

and temporal relationships with nearby strokes. The features are general, allowing

the method to be extended to new domains. Classifying strokes into different classes

creates spatial and temporal separation between individual objects, as shown in Figure

1.4. This separation allows the second step of our algorithm to more accurately and

efficiently determine which strokes belong together.

The second step uses sets of pairwise classifiers, one for each class of strokes,

to identify pairs of strokes that are likely to be part of the same object, thus forming

two-stroke clusters. The pairwise classifiers use features based on spatial and temporal

distances between the two strokes. The resulting two-stroke clusters are combined with

other clusters that have a stroke in common, a process we refer to as chaining. The

resulting clusters represent the individual objects in a sketch. For example, in Figure

1.2, after the gate strokes in the digital circuit have been classified, a pairwise classifier

determines which gate strokes belong together. Joined pairs of gate strokes are chained

to form complete gates.

We have evaluated our approach on sketches from four different domains: digi-

tal circuits, family tree diagrams, and two sets of solutions to statics problems (a field of

engineering mechanics). The first statics set is composed of sketches that include free-

body diagrams and equilibrium equations. The second set is artificially created from

the first by removing the equation related strokes. Full descriptions of these domains
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(a) The strokes that are part of gate objects.

(b) The strokes that are part of wire objects.

(c) The strokes that are part of (text) label objects for circuit inputs and outputs.

Figure 1.4: Stroke separation in the digital circuit sketch shown in Figure 1.2.

can be found in Chapter 4.
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1.2 Contributions

In this work we examine stroke grouping in freely-drawn diagrammatic sketches.

We make four significant contributions to stroke grouping and the larger task of sketch

understanding in this dissertation.

1. Separation for Grouping: We have shown the importance of single-stroke clas-

sification for stroke grouping.

2. Grouping Methods Survey: We present the first in-depth comparison of general-

purpose grouping techniques. We evaluate two novel approaches that do not rely

on recognition.

3. Single-Stroke Classification: We present a method for classifying single strokes

that is of comparable or better accuracy than other methods we tested for text

versus non-text classification. Our approach is also extended to multiple classes,

three for digital circuits, three for family tree diagrams, and four for both sets

of statics solutions. It can easily be used for more classes, although we have

found these class distinctions provide good separation for grouping. We provide an

extension to previous sets of features, mainly in the area of contextual information.

We find these features to be some of the most valuable for accurate classification.

4. Pairwise Classification: We have developed two classification techniques for

identifying pairs of strokes that belong together. These classification techniques

are typically more efficient than previous approaches because they do not attempt

to determine whether stroke groups of arbitrary size form a meaningful shape –
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an inherently exponential process.

1.3 Outline

This dissertation is organized as follows: Chapter 2 details our approach to

single-stroke classification (stroke separation). Chapter 3 describes our algorithms for

grouping strokes of a given class. Chapter 4 presents the details of the data used for

evaluating our algorithms. Chapter 5 presents results from evaluations of our single-

stroke classification and grouping methods. Chapter 6 discusses these results. Chapter

7 discusses work related to the research presented in this dissertation. Finally, Chapter

8 presents our conclusions.
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Chapter 2

Single-Stroke Classification

2.1 Introduction

Grouping freely-drawn pen strokes into salient objects is a very difficult part

of sketch understanding. One of the most challenging aspects of grouping is that strokes

may be close together or even intersecting, yet not belong to the same object. Our

insight is to use a classifier to create artificial separation between objects by classifying

strokes belonging to different types of objects, thus facilitating efficient stroke grouping.

We present here our approach for generalized stroke classification. For the

digital circuit shown in Figure 1.2, our approach classifies the strokes into gates, wires,

and labels. This classification creates separation between objects, as shown in Figures

1.4(a), 1.4(b), and 1.4(c). Similarly, for a family tree diagram sketch (such as Figure

2.1(a)), the classifier determines whether a stroke is part of a person, link, or text ob-

ject, as shown in Figures 2.1(b), 2.1(c), and 2.1(d), respectively. We have also applied

this classification technique to both of our sets of statics solution sketches. A complete
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statics solution sketch is shown in Figure 2.2(a). Here, the strokes are classified as

part of body, arrow, text, or “other” objects, as shown in Figures 2.2(b), 2.2(c), 2.2(d),

and 2.2(e), respectively. As these figures illustrate, classifying strokes in this way effec-

tively transforms a sketch with many interconnected objects into a number of smaller,

spatially-isolated sub-sketches, each of which is easier to group.

2.2 Methods

Our primary goal in designing our single-stroke classifier is to create a technique

that is effective at creating separation between sketched objects. Achieving this requires

careful choice of the classification algorithm, and careful design of the set of classes and

the set of features used for classification. Different domains may require different features

and different stroke classes.

2.2.1 Classes

When designing the set of classes, it is best to choose a set such that separation

between objects is maximized without splitting individual objects into multiple classes.

If classification can be done with perfect accuracy, more classes are generally better.

In practice, as the distinctions between classes becomes finer, accuracy decreases. For

example, in digital circuits, it may be more difficult to accurately distinguish between

fine-grained shapes such as wires, labels, and gates, or gates, nand gates, etc. than to

distinguish between gates in general, wires, and labels. In developing our approach, we

had to balance this tradeoff between granularity and accuracy.

10



(a) A family tree diagram sketch.

(b) The strokes that are part of people objects.

(c) The strokes that are part of link objects.

(d) The strokes that are part of text objects.

Figure 2.1: Stroke separation in a family tree diagram sketch.
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(a) A complete statics solution sketch, with free-body diagrams and equi-
librium equations.

(b) The strokes that are part of body
objects.

(c) The strokes that are part of arrow
objects.

(d) The strokes that are part of text
objects.

(e) The strokes in the sketch that
don’t fit into other categories, and
are part of “other” objects.

Figure 2.2: Stroke separation in a statics solution sketch.
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We divided each of the domains into a number of classes, as shown in Table 2.1.

For digital circuits, we found the best classes to be: gates, wires, and labels. For family

trees, we found the best classes to be: people, text, and links. For statics solutions

without equations, we found the best classes to be: bodies, arrows, labels, and “other.”

For complete statics solutions, we found the best classes to be: bodies, arrows, text, and

“other.” Each of the domains is explained in more detail in Chapter 4.

Domain Classes Shapes

Digital Circuits

Gates AND, OR, NAND, NOR, NOT, NOTBUBBLE,
XOR, XNOR, LabelBox, Other

Wires Wire
Labels Label

Family Trees
Persons Male, Female

Text Text
Links Marriage, Divorce, ChildLink, Other

Statics Solutions

Bodies Body, Box, Triangle
Arrows ForceArrow, MomentArrow, PointerArrow,

DimensionArrow, CoordSystem,
DoubleShaftArrow, ForceEqnArrow,

MomentEqnArrow, OtherArrow
Text Character
Other LeaderLine, Arc, Point, Divider, AngleSquare,

Angle, OtherGeometry, Ellipsis, Other

Statics (NoEqn)

Bodies Body, Box, Triangle
Arrows ForceArrow, MomentArrow, PointerArrow,

DimensionArrow, CoordSystem,
DoubleShaftArrow, ForceEqnArrow,

MomentEqnArrow, OtherArrow
Text ForceLabel, MomentLabel, AngleLabel,

DimensionLabel, LocationLabel, AxisLabel,
OtherLabel, OtherEquation, OtherText

Other LeaderLine, Arc, Point, Divider, AngleSquare,
Angle, OtherGeometry, Ellipsis, Other

Table 2.1: A list of domains for which we perform single-stroke classification. The Class
column indicates the general type of shape that a stroke belongs to; this is the label
used for training the single-stroke classifier. The Shape column enumerates the different
shapes that make up the class.
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2.2.2 Classifier

Our classification task is well suited to an inductive classifier, trained with

labeled examples as shown in Figure 2.3(a). Once the classifier has been trained, it

is used to classify unknown instances, as shown in Figure 2.3(b). A large number

of classification techniques have been developed. We evaluated several of them, and

found that AdaBoosted decision trees (adaptive boosting with a c4.5 decision tree base

classifier) had the best performance. We also evaluated multi-layer perceptrons (MLP),

c4.5 decision trees (without AdaBoost), AdaBoosted decision stumps, and AdaBoosted

MLPs. While the AdaBoosted decision trees performed best, ordinary decision trees,

such as c4.5, can be trained much more quickly and are easier to implement. We valued

accuracy more than training speed, so we use AdaBoosted decision trees, but different

classifiers may be better suited for some situations.

We used WEKA’s1 implementation of these algorithms to quickly train and

evaluate different classifiers [11]. Our classifier’s specifics are: AdaBoostM1 with 10

iterations, a seed of 1, no resampling, and a weight threshold of 100. The base classifier

specifics are: J48 decision tree (an implementation of c4.5), pruned, with a confidence

value of 0.25, and the minimum number of instances in a leaf is 2.2

1http://www.cs.waikato.ac.nz/ml/weka/
2Our code is written in C#, which uses the .NET framework. We are able to integrate WEKA (written

in Java) functionality using the IKVM.NET package, which enables Java and .NET interoperability. The
IKVM.NET project converts a Java .jar file into a .NET recognizable dynamic linked library (.dll). More
information about IKVM.NET can be found at http:www.ikvm.net.
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Labeled
Instances

Wire

Text

Gate

Classifier
TrainExtract

Features

(a) Training a Classifier from labeled examples.

Unknown
Instance

Classifier

Evaluate

Extract

Features?

Gate
(b) Classification using a trained classifier.

Figure 2.3: Features are extracted from labeled examples to train the single-stroke
classifier. This learned classifier can then be used to classify unknown instances. We
use an AdaBoosted decision tree classifier.

2.2.3 Features

While the choice of specific classifier can affect the efficacy of the method,

the choice of classifier inputs, called features, can have a more significant impact on

performance. Much of the motivation behind feature creation is an attempt to capture

certain perceptual aspects of drawing that a human uses to understand a sketch. The
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features are a general way of capturing the answer to the question, “What makes these

strokes different?” We have found that both the shape of a stroke and the context in

which it appears are critical to accurate classification. To this end we extract a total

of 27 features that characterize the stroke’s size and location, its shape, the drawing

kinematics, and its relationships with other strokes in the sketch. Presented here is our

complete set of features used for single-stroke classification (listed in Table 2.2). Some

of these features can be found in other work, such as that of Patel, et al. [30]. Our work,

however, includes novel features and outperforms their system. No individual feature is

an identifier for a specific stroke class, but rather the set of features work together to

identify the stroke’s class.

The first important property of a stroke is its size, which is represented by

four features. Bounding Box Width, Height and Area are properties of the minimum,

coordinate-aligned bounding box of the stroke. Arc Length is the total length of the

stroke measured as a sum of the distance between consecutive points:

ArcLength =

N
∑

i=2

√

(xi − xi−1)2 + (yi − yi−1)2 (2.1)

where N is the number of points in the stroke. These features are normalized by their

average values in the sketch, allowing the classifier to learn the importance of relative

stroke size during training.

One insight not captured by Patel et al.’s features is that, in many domains,

particular kinds of objects often appear in preferred locations on the drawing canvas

(defined here as the bounding box of the entire sketch). For example, diagram strokes
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Category Feature Name Description

Size

Bounding Box Width Width of the minimum bounding box
Bounding Box Height Height of the minimum bounding box
Bounding Box Area Area of the minimum bounding box
Arc Length Total length of the stroke (Eqn 2.1)

Location

Distance to Minimum distance between the stroke and the
Left / Right closer of the left or right edge of the canvas
Distance to Minimum distance between the stroke and the
Top / Bottom closer of the top or bottom edge of the canvas

Shape

End Point Ratio Degree to which the stroke forms a closed
path with itself (Eqn 2.2)

Self Enclosing Binary version of End Point Ratio
Self Intersections Number of times the stroke crosses itself
Sum of the (signed) Sum of each curvature value along the stroke
Curvature (Eqn 2.4)
Sum of the Abs Value Sum of the absolute value of each curvature
of the Curvature value along the stroke (Eqn 2.5)
Sum of the Squared Sum of the square of each curvature value
Curvature along the stroke (Eqn 2.6)
Sum of the Sqrt of Sum of the square root of each curvature
Curvature value along the stroke (Eqn 2.7)
Ink Density Compactness of the stroke (Eqn 2.8)

Drawing
Kinematics

Average Pen Speed Average Speed while drawing
Maximum Pen Speed Maximum instantaneous pen speed
Minimum Pen Speed Minimum instantaneous pen speed
Difference between Maximum pen speed minus minimum pen
Max and Min speed
Time to Draw Stroke Time from pen down to pen up

Geometric
Relations

‘LL’ Intersections Count of endpoint-to-endpoint intersections
with other strokes

‘XX’ Intersections Count of midpoint-to-midpoint intersections
with other strokes

‘XL’ Intersections Count of midpoint-to-endpoint intersections
with other strokes

‘LX’ Intersections Count of endpoint-to-midpoint intersections
with other strokes

Closed Path Binary feature - does the stroke help form a
closed path via ‘LL’ intersections

Inside Path Binary feature - is the stroke inside
a Closed Path

Temporal
Relations

Time to Previous Time between the end of the previous stroke
and the beginning of the current stroke

Time to Next Time between the end of the current stroke
and the beginning of the next stroke

Table 2.2: Features used for single-stroke classification.
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may be drawn in the center of the canvas, with text annotations near the periphery.

This phenomenon is captured by two positional features. Distance to Left/Right is the

minimum distance between the stroke and the closer of the left or right edge of the

canvas, divided by the width of the canvas. As an example, consider a stroke that

is, at its closest point, 1,000 units from the left edge of the canvas and 3,000 units

from the right edge, and the canvas is 10,000 units wide. In this case, the value for

Distance to Left/Right would be 1, 000/10, 000 or 0.100. Distance to Top/Bottom is

defined analogously, and represents the location relative to the top or bottom of the

canvas.

Eight features describe the shape of a stroke. The first three describe its

topological properties. EndPtRatio (Eqn 2.2) measures the degree to which the stroke

forms a closed path with itself. It is defined as the Euclidean distance between the

endpoints of the stroke divided by the arc length:

EndPtRatio =

√

(xN − x1)2 + (yN − y1)2

ArcLength
(2.2)

EndPtRatio can be particularly effective at distinguishing between some classes of strokes.

For example, many diagrammatic strokes are closed shapes such as circles, ellipses, or

squares, whereas most link type strokes (such as arrows or wires) typically have end-

points that are far away from each other. EndPtRatio ranges between 0.0 and 1.0. A

value of 0.0 indicates that the stroke’s endpoints are coincident, while a value of 1.0 indi-

cates that the stroke is a straight line. Self Enclosing is a binary form of the EndPtRatio.

If EndPtRatio is less than a threshold, T , the value of Self Enclosing is one, otherwise
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it is zero. The threshold T is the only hard coded threshold used in the single-stroke

classification task, and we use a value of 0.15. Self Intersections is the number of times

the stroke intersects (crosses) itself.

θi

Pi

Pi-1

Pi+1

Figure 2.4: Curvature at a point, θ, is the angle between the line segments connecting
it to the previous and next points.

The next four shape features characterize the stroke’s curvature, as illustrated

in Figure 2.4. The curvature, θi, at point i is defined as the angle between the segment

connecting point i − 1 to point i, and the segment connecting point i to point i + 1:

θi = arctan
δxiδyi−1 + δxi−1δyi

δxiδxi−1 + δyiδyi−1

(2.3)

where δxi = xi+1 − xi and δyi = yi+1 − yi. The four curvature features are obtained

by summing various functions of the curvature value at each point along the stroke (see

Eqns 2.4-2.7). Sum of the (signed) Curvature represents the total turning angle of the

stroke, where turns in one direction cancel turns in the other. For example, if the stroke

turns 360o clockwise and then 360o counterclockwise, Sum of the (signed) Curvature is
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zero, indicating that there is no net change in the direction of the stroke. Sum of the

Absolute Value of the Curvature provides a measure of how much the curve “wiggles,” or

deviates from a straight line. In the previous example, for instance, Sum of the Absolute

Value of the Curvature is 720o, even though there is no net change in direction. Sum of

the Squared Curvature emphasizes corners, or points of high curvature. Conversely, Sum

of the Square Root of Curvature emphasizes points of low curvature. The first three of

these features are from [35], while the last is of our own design.

SumSignedCurvature =

N−1
∑

i=2

θi (2.4)

SumAbsCurvature =

N−1
∑

i=2

|θi| (2.5)

SumSquareCurvature =
N−1
∑

i=2

θi
2 (2.6)

SumSqrtCurvature =

N−1
∑

i=2

√

|θi| (2.7)

Ink Density measures the compactness of the stroke. In previous work this was

particularly useful in helping to distinguish wires from components in analog circuits [10].

It is defined as the ratio of the square of the arc length to the area of the minimum

coordinate-aligned bounding box:

InkDensity =
ArcLength2

BoundingBoxArea
(2.8)

Arc length is squared so that it scales in the same way as bounding box area.
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Pen speed can provide important information about the intended class of a

stroke because people tend to draw familiar shapes differently than novel ones. For

example, a person usually writes their name faster than they draw the shape of an

airplane or other complicated object. To capture this, the drawing kinematics is rep-

resented in terms of four speed-based features: the Average Pen Speed, the Maximum

Pen Speed (instantaneous), Minimum Pen Speed (instantaneous), and the Difference

Between Maximum and Minimum instantaneous pen speeds. Pen speed is often near

zero at the two endpoints of a stroke, so when computing the minimum, a few points

at each end are ignored. Each speed-based feature value is normalized by the average

stroke pen speed in the sketch. The final kinematic feature is the Time to Draw the

stroke.

The remainder of the features characterizes the geometric and temporal re-

lationships the stroke has with other strokes in the sketch. The first four of these

features measures the number of different types of intersections the stroke has with

other strokes (as illustrated in Figure 2.5): endpoint-to-endpoint (“LL”), midpoint-to-

midpoint (“XX”), midpoint-to-endpoint (“XL”), and endpoint-to-midpoint (“LX”). We

have found that this distinction between intersections involving endpoints and mid-

points, which is not reported elsewhere in literature, is important for accurate stroke

classification.

Because sketches are typically messy, we use a distance tolerance to catch cases

where strokes nearly intersect. In effect, the strokes are extended at each end by a small

amount, as illustrated in Figure 2.6. A simple linear tolerance is too generous for long
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Figure 2.5: Shows the four types of intersections: endpoint-to-endpoint (green),
midpoint-to-midpoint (brown), endpoint-to-midpoint (pink), and midpoint-to-endpoint
(pink). The distinction between the last two is based on the stroke for which the feature
is being computed. For instance, the upper blue horizontal line “tees” into the vertical
red line. This is considered an endpoint-to-midpoint intersection for the blue stroke,
while it is a midpoint-to-endpoint intersection for the red stroke.

strokes, and too tight for short ones. Instead, our tolerance is derived from the sketch

average arc length, Lavg, as follows:

Ltol = min(Lavg,
Li + Lavg

2
) ∗ T (2.9)

where Li is the arc length of the stroke to be extended and T is the same threshold

defined earlier, with a value of 0.15. This formula produces a proportionally larger

tolerance for short strokes, and a proportionally smaller tolerance for long ones. Before

extending a stroke, the small “hooks” at the endpoints are removed, using the algorithm

described in [24], so that the direction at the endpoints is meaningful. If the intersection

point lies within distance Ltol of the actual endpoint of the stroke, it is considered an

endpoint intersection. Otherwise, it is considered a midpoint intersection. The case in
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which two extended strokes do not actually intersect, but their endpoints are within a

distance Ltol of one another, is still considered an endpoint intersection.

Figure 2.6: Strokes are extended to allow nearly touching strokes to be counted as
intersecting. A dynamic length is used, which extends short strokes proportionally
longer and long strokes proportionally shorter according to Eqn 2.9.

Our feature set includes two other novel features that characterize higher-level

geometric relationships. The binary Closed Path feature indicates whether or not the

stroke belongs to some set of strokes that connect to each other via ‘LL’ intersections to

form a closed path. The binary Inside Path feature indicates whether or not the stroke

is inside the coordinate-aligned minimum bounding box of some closed path. Using a

bounding box to test for Inside Path can result in false positives, but is inexpensive and

has worked adequately for our purposes.

The final two features for single-stroke classification capture temporal relation-

ships. Time to Previous is the elapsed time between the end of the previous stroke and

the start of the current one. Time to Next is defined analogously.

While we have a total of 27 features to characterize the individual strokes,
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not all of them provide the same amount of information. We have found that the

most important features vary from domain to domain; an analysis and list of ranked

importance is presented in Section 5.1.4. Each of these features provides evidence for the

classifier; no single feature should be considered specific to a given class. For instance,

while many gate strokes are part of a Closed Path, this feature, by itself, is not an

effective gate “recognizer.”
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Chapter 3

Grouping

3.1 Introduction

Classifying the individual pen strokes, as described in the previous section,

reduces the complexity of stroke grouping by decomposing the problem into smaller,

easier problems – one for each class. However, even for the strokes in a single class,

grouping is a nontrivial task. Our approach uses pairwise classifiers to identify pairs of

strokes that belong together. After these pairs have been identified, a “chainer” groups

joined pairs that have a stroke in common to form clusters of arbitrary size. For example,

the stroke pairs formed by the six strokes in Figure 3.1 are classified and then chained,

as illustrated in Figure 3.2. Here, the classifier identifies that stroke pairs AB (strokes

A and B), BC, DE, DF , and EF should be joined, while all other pairs should not

be joined. The chainer then forms two clusters. The first contains strokes A, B, and

C because the joined pairs AB and BC have stroke B in common. The second cluster

contains strokes D, E, and F because the joined pairs DE, DF , and EF have common
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strokes.

A

B

C

D E

F

Figure 3.1: Two different gate objects, each composed of three strokes.

We have implemented and tested two different types of pairwise classifiers in

an attempt to find a suitable algorithm. The Thresholded Pairwise Classifier (TPC) is

based on simple linear thresholds, while the Inductive Pairwise Classifier (IPC) is an

inductive learning technique. Both our TPC and IPC can use two join classes: Join and

NoJoin. Our IPC can also use three join classes, as described in Section 3.3.2. In this

chapter we present both classifiers, while Chapter 5 presents our evaluation of them and

discusses their performance.

Most previous grouping methods evaluated clusters with an arbitrary number

of strokes. Because the groups were of arbitrary size, the number of possible groups grew

exponentially with the number of strokes in the sketch. For example, for the strokes
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Output from Pairwise Classification
= Join, = NoJoin---- ---- Chainer

(Strokes in Common)

Figure 3.2: Each pair of strokes in Figure 3.1 is classified to be Join or NoJoin. The
chainer then clusters stroke pairs classified as Join which have a stroke in common.

in Figure 3.1, to determine the best set of clusters, a näıve (brute force) grouping

approach would need to evaluate all single-stroke clusters, all two-stroke clusters, and

so on until all strokes in the sketch are considered to be part of the same cluster. With

these six strokes, a total of 63 clusters would need to be evaluated, while there are only

two objects. For a sketch with 40 strokes, over one trillion clusters would need to be

evaluated. The number of possible clusters for a sketch of size m is 2m − 1. Because

this brute force approach quickly becomes unmanageable, most previous methods have

restricted the maximum cluster size and the maximum possible distance between the

strokes. Despite this, these types of algorithms are still exponentially expensive with

respect to the number of strokes. Using pairwise classification significantly reduces our
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computational complexity and running time.

3.2 Thresholded Pairwise Classifier

Our Thresholded Pairwise Classifier is based on a simple conjunction of dis-

tance and time thresholds. A pair of strokes is joined if the minimum distance between

them (dmin in Figure 3.4(a)) is less than or equal to a threshold TJD, and the elapsed

time between them is less than or equal to a time threshold TJT . The values for TJD and

TJT are learned from the training data. As discussed in Chapter 5, we evaluated this

approach in a user-independent fashion, thus the parameter sets used for a particular

user were learned from the others.

3.3 Inductive Pairwise Classifier

Our Inductive Pairwise Classifier considers a richer set of features for char-

acterizing the pair of strokes than the Thresholded Pairwise Classifier. These features

describe spatial and temporal relations between the strokes. Figure 3.3 illustrates how

the classifier is trained and used for classification.

As with the single-stroke classifier, we explored a variety of classification tech-

niques, including decision trees, multi-layer perceptrons, and AdaBoosted decision trees.

Based on the experimental results, we chose to classify stroke pairs using an AdaBoosted

decision tree. We found that they had higher accuracy than other classification tech-

niques. We again use WEKA’s implementation, with AdaBoostM1 and J48 decision

trees, with the same parameters as for single-stroke classification, as described in sec-
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Join

NoJoin

Extract

Features

Labeled
Instances

Train
Classifier

(a) Training a Classifier from labeled examples.

Gate
Strokes

Pair

Extract

Features

Unknown
Instance

Evaluate

Classifier

Join
(b) Pairwise classification using a trained classifier.

Figure 3.3: Labeled examples are used to train the pairwise classifier. It can then be
used to determine whether an unknown pair of strokes belongs together.

tion 2.2.2.

3.3.1 Features

The pairwise features are different from those used by the single-stroke clas-

sifier, and consist of both temporal and spatial measures. The temporal feature, Time

Gap, is the time between the end of the first stroke and the beginning of the second.

The spatial features include a variety of distance measures, overlap measures, perceptual
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dmax

dcentroid

dmin

dminXL

dminLL

(a) Pairwise Features: Distance

X-Overlap
(negative value)

Y-Overlap
(positive value)

(b) Pairwise Features: Overlap

Figure 3.4: Pairwise distance and overlap features are computed between the two strokes.

information, and distance ratios. The complete list of features is presented in Table 3.1.

Our distance measures are illustrated in Figure 3.4. The first is the Minimum

Distance (dmin) between the strokes, calculated on a pointwise basis. Similarly, the

pointwise Maximum Distance (dmax) is the farthest distance between a point on one

stroke and a point on the other. The Centroid Distance (dcentroid) provides a measure

of the distance between the “centers” of the strokes. Minimum Endpoint-to-Endpoint

Distance (dminLL) is the minimum value of the four inter-stroke endpoint distances.

Minimum Endpoint-to-Anypoint Distance (dminXL) is the minimum distance between

an endpoint of one stroke and any point in the other stroke. X-overlap and Y-overlap are

the length of the intersection between the projections of the two strokes onto the x-axis

and y-axis, respectively. Their values are negative if the projections do not intersect.

Each distance and overlap feature is normalized by the length of the sketch’s bounding

box diagonal, mapping all distance values to the range of 0.0 to 1.0 and all overlap values

to the range of -1.0 to 1.0, thus making these feature values scale-independent.

30



The next two features, ClosenessLarge and ClosenessSmall, compare the prox-

imity of the strokes to each other with their proximity to other strokes. If the pair

is comprised of Strokei and Strokej, ClosenessStrokei
compares the pair’s minimum

distance (dmin) to the minimum distance between Strokei and any stroke of the same

class, computed as:

ClosenessStrokei
=

min
Strokea∈Classc

(dmin(Strokei, Strokea)) + k

dmin(Strokei, Strokej) + k
(3.1)

where k is a constant offset to avoid division by zero1, ClosenessStrokej
is defined anal-

ogously for the second stroke in the pair. The closeness values range from 0.0 to 1.0. A

value close to 1.0 indicates that the stroke is close to the other stroke in the pair com-

pared to other strokes of the same class. This usually indicates that the pair should be

joined. ClosenessLarge is defined as the larger of ClosenessStrokei
and ClosenessStrokej

values. ClosenessSmall is the smaller of the two values. This is intended to aid the

classifier in learning by giving the two closeness values distinct meaning. The value of

this distinction is verified in the analysis of feature importance in Section 5.2.8.

RatioLL and RatioXL give an indication of whether or not the strokes are clos-

est to each other at their endpoints or elsewhere. RatioLL is the ratio of the pair’s mini-

mum distance dmin and the minimum distance between the strokes’ endpoints (dminLL):

RatioLL =
dmin(Strokei, Strokej) + k

dminLL(Strokei, Strokej) + k
(3.2)

1We use a value of 10,000 himetrics for k. Himetric units are a measure of length, and one himetric
is equivalent to ten micrometers.
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where k is again a constant offset. RatioXL is computed similarly, except that the

denominator uses the distance dminXL rather than dminLL. RatioLL and RatioXL have

values in the range of 0.0 to 1.0. The combination of these two values helps characterize

where the strokes are closest to each other. For example, in Figure 3.5(a), the two

strokes are closest at their endpoints, and both RatioLL and RatioXL are equal to 1.0.

In Figure 3.5(b), one stroke “tees” into the middle of the other, thus RatioLL is 0.67

and RatioXL is 1.0. In Figure 3.5(c), the strokes cross at their midpoints, and RatioLL

is 0.59 and RatioXL is 0.67.

The final feature used for pairwise classification is a Boolean value indicating

whether or not the two strokes are part of the Same Closed Path; these paths are the

same as those used for single-stroke classification.

The computational cost for the pairwise features is largely determined by the

pointwise distance calculations. Thus, computation is an O(n2) process, where n is the

number of points in the sketch. The computational cost of the entire grouping process

is determined by the pairwise feature computation. The features can be computed

incrementally as each new stroke is drawn, so after the last stroke is drawn, very little

computation is needed to complete the groups. See Section 5.3 for running time results.

3.3.2 Stroke Pair Labels

We use two classes for the Thresholded Pairwise Classifier : Join and NoJoin.

However, we have found that these two classes are not adequate for the Inductive Pair-

wise Classifier (IPC). These two classes can create confusion for the IPC because pairs
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dmin = 1, 000
dminLL = 1, 000
dminXL = 1, 000

RatioLL = 1,000+10,000
1,000+10,000

= 1.0

RatioXL = 1,000+10,000
1,000+10,000

= 1.0

(a)

dmin = 0
dminLL = 5, 000

dminXL = 0

RatioLL = 0+10,000
5,000+10,000

= 0.67

RatioXL = 0+10,000
0+10,000

= 1.0

(b)

dmin = 0
dminLL = 7, 071
dminXL = 5, 000

RatioLL = 0+10,000
7,071+10,000

= 0.59

RatioXL = 0+10,000
5,000+10,000

= 0.67

(c)

Figure 3.5: Examples of pairwise ratio features being computed. RatioLL is computed
according to Equation 3.2, with k = 10, 000, and both Strokei and Strokej have arc
lengths of 10,000. RatioXL is computed analogously.

of strokes that are far apart can belong to the same cluster, while pairs of strokes that

are close can belong to different clusters, making it difficult for the classifier to learn the

difference between these cases. For example, in Figure 3.1, strokes A and C are farther

apart than strokes A and D, despite the fact that A and C are part of the same cluster,

while A and D are not. As a remedy, we consider three classes of stroke pairs: NearJoin,

FarJoin, and NoJoin. As the name suggests, NearJoin pairs contain strokes that are
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Category Feature Name Description

Distance

dmin Minimum inter-stroke pointwise distance
dmax Maximum inter-stroke pointwise distance
dcentroid Distance between strokes’ centroids
dminLL Minimum inter-stroke endpoint-to-endpoint

distance
dminXL Minimum inter-stroke endpoint-to-anypoint

distance

Overlap
X-Overlap Intersection of strokes’ projection onto x-axis
Y-Overlap Intersection of strokes’ projection onto y-axis

Temporal
Time Gap Time between the end of the first stroke and

the beginning of the second stroke

Ratios

ClosenessStrokei
Comparison of dmin to the distance of
neighboring strokes to Strokei

ClosenessStrokej
Comparison of dmin to the distance of

neighboring strokes to Strokej

RatioLL Comparison of dminLL to dmin

RatioXL Comparison of dminXL to dmin

Perceptual
Same Closed Path Whether the two strokes are part of the

same closed path

Table 3.1: List of features for pairwise classification

part of the same object and are close to each other. Conversely, FarJoin pairs contain

strokes that are part of the same object, yet are far apart. In Figure 3.1, the stroke

pairs AB, BC, DE, DF , and EF are NearJoins. Stroke pair AC is a FarJoin. All other

pairs in the figure are NoJoins. Chaining assembles the pairs classified as NearJoin to

form larger clusters.

The classifier is usually able to reliably learn the difference between NearJoins

and NoJoins. However, it more regularly confuses FarJoin pairs with both NearJoins

and NoJoins. During chaining, we can rely on NearJoins to form the entire cluster

together, thus FarJoin pairs are not directly joined by the chainer, and instead rely on

intermediate NearJoins.

The key challenge is determining the optimal distinction between NearJoins
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and FarJoins. We have explored two approaches to this:

1. Minimum Distance – Uses the minimum distance between the strokes to de-

termine the pair’s label.

2. Iterative Re-Labeling – Uses cluster accuracy (post-chaining) to re-label pairs

in order to improve classifier training.

Minimum Distance Method

The Minimum Distance method is used to label pairs of strokes that belong to

the same object as either NearJoin or FarJoin. Pairs of strokes from different objects

are always labeled as NoJoin. A pair of strokes (Strokei and Strokej) from the same

object (Shapes) is labeled as a NearJoin if one or more of the following conditions are

satisfied:

1. Strokei is the nearest stroke to Strokej in Shapes, or vice versa.

2. The minimum distance between Strokei and Strokej is less than or equal to a

constant threshold, D0.

3. The minimum distance between Strokei and Strokej is about the same distance

as another NearJoin of Strokei or Strokej, found using Condition 1.

If none of these conditions is satisfied, the pair is labeled as a FarJoin.

These conditions can be expressed mathematically as follows. If dmin(Strokei, Strokej) ≤

DNJ then the pair is labeled as a NearJoin, otherwise it is labeled as a FarJoin. The

threshold DNJ (Distance for Near Join) is defined as:
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DNJ = max{TMDJ , (1 + T ) ∗ max{Closeness′Strokei
, Closeness′Strokej

}} (3.3)

where TMDJ (Threshold for Minimum Distance Join) is an empirical threshold of 200 hi-

metrics (2mm), and T is a constant threshold equal to 0.152. Closeness′ is the minimum

distance from a stroke to any other stroke in the same shape:

Closeness′Strokei
= min

Strokea∈Shapes

dmin(Strokei, Strokea) (3.4)

Closeness′Strokej
is defined analogously.

The term max{Closeness′Strokei
, Closeness′Strokej

} in Equation 3.3 represents

Condition 1. Condition 2 is represented by the TMDJ term. Condition 3 is represented

by applying the coefficient (1 + T ) to Condition 1.

We selected a value of 200 himetrics for TMDJ based on initial testing with the

Thresholded Pairwise Classifier (TPC) that showed 200 to be the best value for TJD for

digital circuits. While TJD can vary for each user in each domain3, 200 himetrics worked

well and is used for our Minimum Distance labeling method in each of our domains.

Iterative Re-Labeling Method

The Iterative Re-Labeling technique iteratively modifies the labels of the train-

ing data such that the final stroke clustering accuracy is optimized, rather than the

2
T is the same as the threshold used for computing stroke intersections and self enclosure, as described

in Section 2.2.3
3In fact, later (more fine-grained) analysis found different values for TJD than 200. Results from this

analysis are presented in Section 5.2.1.
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pairwise classification accuracy.

As an example of how the iterative re-labeling works, imagine that the stroke

pair DF from Figure 3.1 was initially labeled as NearJoin, but was classified as a FarJoin.

Also, stroke pairs DE and EF were labeled and classified as NearJoins, thus the chainer

created a cluster with strokes D, E, and F . Although pair DF was not directly joined, it

became part of the same cluster via chaining. Because the classifier incorrectly classified

stroke pair DF according to the initial label, yet it ended up not mattering, its label

was changed to FarJoin. This updated label (along with all the other updated labels)

allows the classifier to better learn the distinction between NearJoins, FarJoins, and

NoJoins in subsequent iterations.

A flowchart depicting the Iterative Re-Labeling algorithm is shown in Figure

3.6. It uses the rules in Table 3.2 to iteratively update NearJoin and FarJoin labels

based on the errors in the final clusterings. The stroke pair labels are initially set

(seeded) using the labels determined by the Minimum Distance method. We examine

the effects of using different values for TMDJ during this seeding process in Section

5.2.6. The training data is then split into two equal subsets, Set1 and Set2. Next, the

algorithm begins iterating by first training a classifier on Set1, then using it to classify

the instances in Set2. The results for Set2 are chained to produce clusters, at which

point the rules in Table 3.2 are used to determine the new labels for the instances in Set2.

A new classifier is then trained on the updated Set2, and used to classify the instances

in Set1. The pairs in Set1 are chained and then re-labeled. This process repeats for a

fixed number of iterations; we used five. Then, Set1 and Set2 are combined and their
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Figure 3.6: Flowchart showing the iterative re-labeling process. The hand-labeled train-
ing set is split evenly into Sets 1 and 2. Our algorithm performs five iterations to obtain
the final training set. Re-Labeling is performed according to the rules in Table 3.2.

latest labels are used to train a final pairwise classifier.
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Definitions

Abbreviation Description Possible Values

TLi True Label of pair i { Join, NoJoin }
(Labeled as part of same object)

PLi Psuedo Label of pair i { NearJoin, FarJoin, NoJoin }
(Label for classifier training)

ACi Actual Classification of pair i { NearJoin, FarJoin, NoJoin }
(Output from classifier)

CCi Chained Classification of pair i { Join, NoJoin }
(Part of same object based on
chaining of classifier output)

Rules

Condition Updated PLi =

ACi == TLi && TLi == Join NearJoin
ACi 6= TCi && CCi == TLi && TLi == Join FarJoin

ACi 6= TLi && CCi 6= TLi && TLi == Join NearJoin
ACi == TLi && TLi == NoJoin NoJoin

ACi 6= TCi && CCi == TLi && TLi == NoJoin NoJoin
ACi 6= TLi && CCi 6= TLi && TLi == NoJoin NoJoin

Table 3.2: Rules for updating grouping labels.

3.4 Summary

We have created two different grouping algorithms: the Thresholded Pairwise

Classifier and the Inductive Pairwise Classifier. Both of these algorithms classify pairs

of strokes to determine which strokes belong together. They also both use a post-

classification chaining technique to cluster stroke pairs that have a stroke in common.

The Inductive Pairwise Classifier classifies stroke pairs as NearJoin, FarJoin,

or NoJoin. We created two techniques to determine NearJoin versus FarJoin labels:

the Minimum Distance Method, and the Iterative Re-Labeling Method.
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Chapter 4

Test Data

We evaluated our algorithms on four different domains: digital circuit dia-

grams, complete statics solutions, statics solutions without equations, and family tree

diagrams. We collected the data for the first three domains ourselves, while the family

tree sketches are taken from a publicly available data set [28].

These domains differ from each other in several respects, and thus provide a

good evaluation of the generality of our approach. Sketches of family trees and digi-

tal circuits are typically comprised of connected sets of strokes, while statics solutions

usually contain multiple drawing regions which are separated from each other. The

distribution of strokes in digital circuits favors non-text (shape) strokes, while in statics

solutions, a large majority of the strokes are text. Each of the domains has a variety of

shapes, some are drawn very similar to their archetype, while others have an amorphous

shape. For instance, and gates (Table 4.1) are usually drawn such that they resemble

the archetypical and gate. However, bodies (Table 4.2) and wires (Table 4.1) do not

have predefined shapes. Based on the results from these four domains, we demonstrate
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that our methods are extensible to new domains.

4.1 Digital Circuits

The Digital Circuit data set was collected from 24 undergraduate students

at Harvey Mudd College and the University of California, Riverside. A total of 192

sketches of complete circuits were collected from the users. Each study was comprised

of two sessions, separated by a week’s time. One session was performed using a Tablet

PC, the other was performed using a digitizing pen on paper. In each session, the

subjects performed three tasks: repeatedly drawing isolated symbols, copying the circuit

diagrams shown in Figures 4.1(a) and 4.1(b), and synthesizing circuit diagrams to satisfy

the following logic equations:

Y =
(

(AB + C) ⊕ AC
)

+ B + C (4.1)

Y =
(

A + BC
) (

AB + AC + B
)

(4.2)

The orders of the sessions and tasks were evenly distributed among subjects, while

the order of sketches within a task was randomized. Our algorithms were trained and

evaluated using the complete circuit diagrams from the copy and synthesize tasks.

The subjects were asked to draw naturally, and were given no feedback from

the computer (the program simply recorded the ink as it was drawn). Each user-study

participant had previously taken, or was in the process of taking, a course covering
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(a) First Digital Logic Circuit.

(b) Second Digital Logic Circuit.

Figure 4.1: User-study participants were instructed to copy these two digital circuit
diagrams.

digital circuits and logic. An example sketch is shown in Figure 4.2. Appendix A

includes more examples of digital circuit diagram sketches. Table 4.1 shows a list of the

expected shapes in the digital circuit domain.

Digital Circuits

Class Name Archetype Examples

Gate AND

Continued on next page
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Table 4.1 – continued from previous page

Digital Circuits

Class Name Archetype Examples

Gate OR

Gate NAND

Gate NOR

Gate XOR

Gate XNOR Not Observed

Gate NOT

Gate NOTBUBBLE

Wire Wire

Label Label Characters

Table 4.1: Domain shapes for digital circuit diagrams.
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Figure 4.2: Example sketch from the digital circuit user study. This circuit was synthe-
sized from Equation 4.1 and was drawn using a digitizing pen on paper.

4.2 Statics Solutions

We performed a user study to collect solutions to engineering statics problems.

We collected sketches from 16 subjects at the University of California, Riverside, all of

whom were concurrently enrolled in a Statics course, and were therefore knowledgeable

about the topic but not expert. Each participant solved six multi-body (machine) prob-

lems by drawing the necessary free-body diagrams and constructing the equilibrium

equations necessary to solve for the specified forces. Subjects were instructed not to

solve the equilibrium equations. Figure 4.3 shows a typical problem from the study;

Figure 4.4 shows a solution to this problem that was collected during the study. Note

that the subject is not required to algebraically solve the equations to determine the

specific value for the moment M .

As in the digital circuit study (Section 4.1), subjects were instructed to draw
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The nose-wheel assembly is raised by the application of a torque M to link BC through 
the shaft at B. If the arm and wheel AO have a combined weight of W with center of 
gravity at G, find the value of M necessary to lift the wheel when D is directly under B, at 
which position the angle is θ. 
 

 
Figure 4.3: Prompt for a statics problem used in the study. The image and prompt are
from Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used
with permission. The image and prompt were modified, replacing all numeric values
with variables.

naturally and solve the problem as if it was homework or an exam. The program acted

as a recording interface with no recognition feedback. A total of six problems were
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solved by each subject: Figure 4.3 and Figures B.1-B.5. Table 4.2 shows examples of

each of the expected shapes for the statics domain.

Figure 4.4: Example statics solution collected during the user study to the problem
shown in Figure 4.3.

We have created two domains from the data collected during the statics user

study. The first includes all strokes and the sketches are referred to as complete stat-

ics solutions. The second is created from a subset of the complete statics domain by

removing all equation related strokes and it is referred to as statics solutions without

equations. We consider this domain because it is representative of an interface with two

drawing areas, one for free-body diagrams, and one for equations. A statics solution

sketch without equations contains the free-body diagram portion of the complete sketch.

In complete statics solution sketches, we labeled individual characters as their

own groups. For instance, the equation F1+P = 0 would be grouped into the characters:

F , 1, +, P , =, and 0. A side-effect of this labeling scheme is that there is an order of

magnitude more text objects than bodies, arrows, and “other” objects, combined. This
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imbalance skews the overall grouping accuracies towards the accuracies for the text class.

For statics solutions without equations, all characters in a label for a force, moment or

other object were grouped together. For example, the force label F1 is a single object

in this domain despite being comprised of two characters.

Statics

Class Name Archetype Examples

Body Bodies Body Outline

Body Box

Body Triangle

Arrow Force

Arrow Moment

Arrow Force Equation

Arrow Moment Equation

Continued on next page
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Table 4.2 – continued from previous page

Statics

Class Name Archetype Examples

Arrow Dimension

Arrow Pointer Arrow

Arrow Coordinate System

Arrow Double Shafted

Text Text Characters

Other Leader Line

Other Arc

Other Divider

Other Angle

Other Angle Square

Continued on next page
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Table 4.2 – continued from previous page

Statics

Class Name Archetype Examples

Other Point

Other Ellipsis ...
Table 4.2: Domain shapes for statics solution sketches.

4.3 Family Tree Diagrams

The family tree data is taken from the ETCHA Sketch1 corpus [28]. We use a

total of 27 sketches from 9 users, all drawn on a Tablet PC (sketches containing fewer

than 5 strokes, or those which are subsets of other sketches, were not used). Users drew

freely and received no recognition feedback. Figure 4.5 shows an example sketch; more

examples can be found in Appendix C. Examples of shapes in the family tree domain

are presented in Table 4.3. For this domain, entire words and descriptions of people

are considered single groups. For example, the name “Harold”, for the lowest person in

Figure 4.5, is a single group.

1http://rationale.csail.mit.edu/ETCHASketches/
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Figure 4.5: Example sketch of a family tree diagram from the ETCHA Sketch corpus.

Family Trees

Class Name Archetype Examples

People Male

People Female

Text Text Whole words / Titles

Links Marriage

Continued on next page
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Table 4.3 – continued from previous page

Family Trees

Class Name Archetype Examples

Links Divorce

Links Childlink

Table 4.3: Domain shapes for family tree diagrams.
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Chapter 5

Results

In this chapter we present evaluations of our algorithms on data sets presented

in Chapter 4. Section 5.1 presents single-stroke classification results. Section 5.2 presents

grouping results. Section 5.3 presents computational cost and running time results. We

discuss performance, strengths and weaknesses, and possible future work in Chapter 6.

5.1 Single-Stroke Classification Results

The goal of the single-stroke classifier is to classify strokes into categories which

result in separation between objects. After the strokes have been classified, strokes of

the same class are grouped into complete objects. To evaluate our single-stroke classifier

we perform user-holdout validations in each domain. Classifier models that are trained

in one domain are not used in others. The results presented in this section are the

aggregate of the individual user-holdouts, unless otherwise stated. In this section we

will address the following questions:
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1. Benchmarking: How well does this technique perform compared to previous

approaches in text versus non-text classification?

2. Multi-Way Classification: How well are strokes classified into different classes?

3. Effect of User-Specific Training Data: How does the inclusion of user-specific

data affect accuracy?

4. Single-Stroke Feature Importance: What are the most important features for

single-stroke classification?

5.1.1 Benchmarking

For our application, we classify strokes into three or more classes. However,

to benchmark our classifier we restrict it to two classes, text versus non-text, and com-

pare it to two state-of-the-art methods: the entropy approach presented in [3], and

Microsoft’s c© InkAnalyzer, a commercial product. The results of these comparisons in

each of the four domains are presented in Figure 5.1. The näıve classifier in the figure

classifies every stroke as the most frequent class, therefore its accuracy is the same as

the frequency of the most common class.

As can be seen in Figure 5.1, our method performs better than InkAnalyzer in

each of the four domains. Our method also performs better than the entropy method

in three of four domains, while in family tree sketches, the entropy method has slightly

higher accuracy.

For digital circuits, our method’s overall accuracy is 97.2%, as compared to

85.7% for the entropy method (which reverted to näıve classification) and 63.4% for
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2-Way Single-Stroke Classification of Text vs. Non-Text

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Digital
Circuits

Family
Trees

Statics Statics (No
Eqn)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Ours

Entropy: Bhat &
Hammond

Microsoft
InkAnalyzer

Naïve Classifier

Figure 5.1: Comparison of accuracy for text vs. non-text single-stroke classification
against two existing systems. Black lines represent the frequency of the most com-
mon class – this is the same as the accuracy of a näıve classifier. InkAnalyzer =
Microsoft c© InkAnalyzer (a commercial application), Entropy = method by Bhat and
Hammond [3].

InkAnalyzer. Table 5.1 shows the confusion matrices for the three methods on digital

circuits. Our method performs well for both classes, while InkAnalyzer classified many

NonText strokes as Text, and the entropy method classified every stroke as NonText.

In the family tree domain our method’s classification accuracy is 90.4%, which

is slightly lower than the entropy method’s 91.1% accuracy. Both methods performed

better than InkAnalyzer, which has an overall accuracy of 75.3%. Family tree sketches,

on average, were composed of 62.8% NonText strokes, thus all three classifiers performed

better than a näıve classifier. Confusion matrices are presented in Table 5.2. Our method

performed similarly for both classes, whereas InkAnalyzer again tended to classify many

NonText strokes as Text. The entropy method performed better for NonText than Text,
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Classified As
Method Actual Class Text NonText Accuracy

Ours
Text 1255 142 89.8%

NonText 133 8272 98.4%
TOTAL 97.2%

InkAnalyzer
Text 963 434 68.9%

NonText 3152 5253 62.5%
TOTAL 63.4%

Entropy
Text 0 1397 0.0%

NonText 0 8405 100.0%
TOTAL 85.7%

Table 5.1: Accuracy for single-stroke classification using Text vs. NonText on digital
circuit sketches. InkAnalyzer = Microsoft c© InkAnalyzer (a commercial application),
Entropy = method by Bhat and Hammond [3].

however both classes were fairly accurate.

Classified As
Method Actual Class Text NonText Accuracy

Ours
Text 555 62 90.0%

NonText 97 946 90.7%
TOTAL 90.4%

InkAnalyzer
Text 617 0 100.0%

NonText 410 633 60.7%
TOTAL 75.3%

Entropy
Text 505 112 81.8%

NonText 36 1007 96.5%
TOTAL 91.1%

Table 5.2: Accuracy for single-stroke classification using Text vs. NonText on family tree
diagram sketches. InkAnalyzer = Microsoft c© InkAnalyzer (a commercial application),
Entropy = method by Bhat and Hammond [3].

Our method outperforms the other two on statics sketches, with an overall

accuracy of 92.1%. InkAnalyzer has an overall accuracy of 88.1%, while the entropy

method is 85.4% accurate. Table 5.3 shows the confusion matrix; our method performs

well on Text, however it does not classify NonText accurately. Despite this, our NonText

accuracy is still much better than that of the other two methods. InkAnalyzer is very
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good at classifying Text, but once again has poor accuracy on NonText. The most likely

reason for low accuracy on NonText, for both our method and the entropy method, is

that there is an order of magnitude more Text strokes than NonText – 83.3% of the

strokes were Text. This imbalance skews the training process in favor of Text examples.

Classified As
Method Actual Class Text NonText Accuracy

Ours
Text 21300 703 96.8%

NonText 1378 3030 68.7%
TOTAL 92.1%

InkAnalyzer
Text 21911 92 99.6%

NonText 3041 1367 31.0%
TOTAL 88.1%

Entropy
Text 20558 1445 93.4%

NonText 2410 1998 45.3%
TOTAL 85.4%

Table 5.3: Accuracy for single-stroke classification using Text vs. NonText on complete
statics sketches. InkAnalyzer = Microsoft c© InkAnalyzer (a commercial application),
Entropy = method by Bhat and Hammond [3].

For statics sketches without equations, our method again outperforms the oth-

ers, with an overall accuracy of 86.8%. The confusion matrix is presented in Table 5.4.

Here, the entropy method is second best, with 77.9% overall accuracy, while InkAna-

lyzer is 65.7% accurate. The most common class was NonText, making up 52.5% of the

strokes.

5.1.2 Multi-Way Classification

In this section, we evaluate the accuracy of our single-stroke classifier for its

intended application. Examples of program output can be found in Appendices A-C.

Our overall single-stroke classification accuracy for each domain is presented in Figure
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Classified As
Method Actual Class Text NonText Accuracy

Ours
Text 3260 455 87.8%

NonText 581 3532 85.9%
TOTAL 86.8%

InkAnalyzer
Text 3663 52 98.6%

NonText 2630 1483 36.1%
TOTAL 65.7%

Entropy
Text 3306 409 89.0%

NonText 1321 2792 67.9%
TOTAL 77.9%

Table 5.4: Accuracy for single-stroke classification using Text vs. NonText on statics
sketches without equations. InkAnalyzer = Microsoft c© InkAnalyzer (a commercial ap-
plication), Entropy = method by Bhat and Hammond [3].

5.2.

Multi-Way Single-Stroke Classification
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Figure 5.2: Accuracy of the single-stroke classifier, as used in the complete grouping
process, in each domain.

In the digital circuit domain, strokes are classified as gate strokes, wire strokes,

or label strokes, and the classifier has an overall accuracy of 93.6%. Table 5.5 presents
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the confusion matrix for this domain. The accuracies on a per-class basis are similar to

one another, indicating that the classifier has not learned to classify one class of strokes

at the expense of the other classes. There is little confusion between the label and

wire classes. There is comparatively more confusion between these classes and the gate

class.1

Class
Classified As

Gate Wire Label Accuracy

A
ct

u
al Gate 3966 194 116 92.8%

Wire 170 3930 29 95.2%
Label 108 14 1275 91.3%

TOTAL 93.6%

Table 5.5: Accuracy for multi-way single-stroke classification of digital circuit diagrams.

For family tree diagrams, strokes are separated into three classes: people, text,

and links. In this domain the classifier has an overall accuracy of 88.0%. Similar to

digital circuits, all classes have similar accuracies.

Class
Classified As

People Text Link Accuracy

A
ct

u
al People 338 37 32 83.0%

Text 11 568 38 92.1%
Link 24 60 552 86.8%

TOTAL 87.8%

Table 5.6: Accuracy for multi-way single-stroke classification of family tree diagrams.

In statics solutions sketches without equations, the strokes are separated into

four classes: Bodies, Arrows, Labels, and Other. The overall accuracy is 80.3%, however

1Note that we also experimented with a two-step approach to multi-way classification by first classi-
fying strokes into text and non-text strokes, followed by classification of the non-text strokes into gates
and wires. This two-step approach performed slightly worse than using a single classifier to perform
multi-way classification.
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there is a wide range of per-class accuracies. Bodies are confused with each of the other

classes at roughly equivalent rates. Arrows and Labels are the most confused classes,

indicating that they have many of the same properties. Strokes in the Other class are

regularly confused with Arrows and Labels. This is likely due to the wide range of

strokes in this category, some of which look very similar to Arrows and Labels.

Complete statics solution sketches (including equations) are separated simi-

larly, using the classes: Bodies, Arrows, Text, and Other. The overall accuracy in this

domain is 88.8%. However, this is dominated by the Text classification accuracy of

96.7%. The other classes had poor accuracy and were regularly confused with text

strokes. The class distribution should be adjusted to improve the accuracy of the other

three classes in this domain. The two easiest ways to do this would be to use a subset

of the Text stroke training examples during training, or to weight the classes such that

each example of a non-text stroke is worth more than a text stroke. By weighting the

non-text strokes, the weighted number of strokes per class can be equalized.

We have also experimented with a larger number of classes in statics sketches.

The classes are: Bodies, Arrows, Labels, Equations, Geometry, Lines and Arcs, Points,

Class
Classified As

Body Arrow Labels Other Accuracy

A
ct

u
al

Body 632 60 75 49 77.5%
Arrow 40 1559 434 135 71.9%
Labels 17 272 3330 96 89.6%
Other 32 172 158 767 67.9%

TOTAL 80.3%

Table 5.7: Accuracy for multi-way single-stroke classification of statics solutions without
equations.
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Class
Classified As

Body Arrow Text Other Accuracy

A
ct

u
al

Body 608 82 101 42 73.0%
Arrow 51 1505 1164 89 53.6%
Text 24 474 20703 202 96.7%
Other 43 115 561 647 47.4%

TOTAL 88.8%

Table 5.8: Accuracy for multi-way single-stroke classification of statics solutions.

and Other. Although the classes are not the same, examples of all shapes are presented

in Table 4.2. Lines and Arcs are composed of leader lines, arcs, and dividing lines. The

Geometry class consists of angles and other strokes drawn by the user to help understand

the geometry and trigonometry involved in the statics problem. Labels are text strokes

drawn to label forces, moments, dimensions, etc. Equations are the remaining text

strokes (consisting of equations and other long strings of text). The confusion matrix

in Table 5.9 shows that the classifier is unable to learn the distinction between many of

the classes. The two types of text, Labels and Equations, are often confused. Geometry

strokes were never correctly classified, while Other strokes were classified correctly 10.7%

of the time. We have found that a good set of classes is necessary to perform accurate

classification, guidelines for this are presented in Section 6.1.1.

Class
Classified As

Arrow Body Eqn Geo Label L/A Other Pt Accuracy

A
ct

u
a
l

Arrow 1230 58 586 3 244 63 8 2 56.1%
Body 90 616 80 0 48 32 5 2 70.6%

Equation 238 26 16755 1 1138 132 14 7 91.5%
Geometry 17 8 27 0 6 1 0 0 0.0%

Label 157 9 1929 1 1611 34 3 3 43.0%
LineArc 87 44 306 2 52 358 16 2 41.3%
Other 29 9 87 0 24 22 22 12 10.7%
Point 2 4 8 0 10 1 15 115 74.2%

TOTAL 78.4%

Table 5.9: Single-stroke classification accuracy for 8-way classification of statics sketches.
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5.1.3 Effect of User-Specific Training Data

Often in classification, including user-specific training data can improve accu-

racy. We experimented with this in two domains: digital circuits, and complete statics

solutions. We performed a sketch-holdout in each domain (previous sections have used

user-holdout). Sketch-holdout is performed by training the classifier on data from every

sketch except for the one being evaluated. For instance, in statics each user drew six

sketches. For sketch-holdout, five sketches from a user were included in the training

data with that of other users, while the sixth sketch was used for testing. We repeated

this training and testing process for every sketch. Figure 5.1.3 compares the accuracy of

sketch-holdout with that of user-holdout. Sketch-holdout had higher accuracy in both

domains. These results indicate that we should include as much user-specific training

data as possible in our system.

Confusion matrices are presented in Tables 5.10 and 5.11 for digital circuits and

complete statics solutions, respectively. In these domains, the most dramatic increases

in accuracy were for Arrow and Other strokes in the statics sketches. With user-specific

training data included, Arrows and text were confused less frequently. This seems to

indicate that arrows are often drawn in a style that is unique to a particular user.

Class
Classified As

Gate Wire Label Accuracy

A
ct

u
al Gate 4019 175 82 94.0%

Wire 144 3965 20 96.0%
Label 89 8 1300 93.1%

TOTAL 94.7%

Table 5.10: Accuracy for multi-way single-stroke classification of digital circuit diagrams,
using sketch holdout rather than user holdout.
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Figure 5.3: The effect of including user-specific training data (Sketch Holdout) versus
the standard training method (User Holdout), for multi-way single-stroke classification.

Class
Classified As

Body Arrow Text Other Accuracy

A
ct

u
al

Body 612 95 81 45 73.5%
Arrow 41 1741 947 80 62.0%
Text 19 396 20830 158 97.3%
Other 39 103 482 742 54.3%

TOTAL 90.6%

Table 5.11: Accuracy for multi-way single-stroke classification of complete statics solu-
tions, using sketch holdout rather than user holdout.

5.1.4 Single-Stroke Feature Importance

Not all features are of equal worth to accurate classification. To determine the

most important features, we analyzed our data sets using WEKA’s information gain ratio

metric, and have listed the ranked order of important features for the various domains

in Table 5.12. We use WEKA’s Attribute Evaluator with the GainRatioAttributeEval
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method. This evaluator uses the Ranker search method with its default parameters, and

10-fold cross-validation. A feature’s rank is determined by its “merit,” which is output

by WEKA’s information gain ratio algorithm.

It is interesting to note that in most domains, high level (perceptual) features

were found to have the most information available for accurate classification. We have

two perceptual features: Part of a Closed Path and Inside a Closed Path. We use them

in an attempt to capture structural and contextual information, and they are novel to

this work. Their importance here leads us to believe that more research into perceptual

features could lead to more accurate single-stroke classification.

After the perceptual features, the most important features seem to be related

to both size and location. The features representing the size of the stroke were usually

in the top ten features, indicating that they are important in each of our domains. We

currently use the Arc Length and properties of the coordinate-aligned bounding box for

single-stroke classification. From this feature importance analysis, it seems that adding

more size-based features, such as the area of the stroke’s convex hull, may be beneficial.

In both the digital circuits and family tree domains the Distance to Left/Right was

important, but interestingly the Distance to Top/Bottom was not very important. This

makes sense in the digital circuit domain because the labels are usually either on the left

or right side of the drawing area. In computing location features, we use the bounding

box of the sketch to define the drawing area and normalize the feature values with the

sketch’s width to make the feature scale-independent. It may be better to normalize

using the area of the drawing window or the average stroke length. Using the bounding
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Rank Digital Circuits Family Trees Statics Solutions Statics (No Eqn)
1 Closed Path Inside Path Inside Path B-Box Area
2 Inside Path Closed Path # XX Intersect B-Box Height
3 Dist L/R Edge Self Enclosing B-Box Area Closed Path
4 # LX Intersect B-Box Area Arc Length Arc Length
5 B-Box Width EndPt-ArcLength B-Box Width B-Box Width
6 Time to Prev. Dist L/R Edge Time to Draw # XX Intersect
7 B-Box Height B-Box Width Avg Pen Speed Time to Draw
8 Arc Length Arc Length B-Box Height Sqrt of Thetas
9 EndPt-ArcLength B-Box Height Sqrt of Thetas Time to Prev.
10 # XX Intersect Time to Draw Closed Path Self Enclosing
11 Time to Draw Time to Prev. Time to Prev. Abs Val. Thetas
12 B-Box Area Time to Next Abs Val. Thetas Time to Next
13 Signed Thetas # XX Intersect # LL Intersect EndPt-ArcLength
14 Time to Next Path Density Max Pen Speed Avg Pen Speed
15 Self Enclosing Sqrt of Thetas (Max-Min) Speed (Max-Min) Speed
16 # LL Intersect Dist T/B Edge EndPt-ArcLength Max Pen Speed
17 Path Density # LX Intersect Time to Next Squared Thetas
18 Min Pen Speed Signed Thetas Self Enclosing # XL Intersect
19 # Self Intersect # XL Intersect # XL Intersect Sum of Thetas
20 Dist T/B Edge Avg Pen Speed Dist L/R Edge Dist L/R Edge
21 Abs Val. Thetas Abs Val. Thetas Squared Thetas Inside Path
22 (Max-Min) Speed Max Pen Speed # LX Intersect Path Density
23 Avg Pen Speed (Max-Min) Speed Dist T/B Edge Min Pen Speed
24 Squared Thetas Squared Thetas Signed Thetas # Self Intersect
25 Sqrt of Thetas # LL Intersect # Self Intersect # LL Intersect
26 Max Pen Speed Min Pen Speed Path Density Dist T/B Edge
27 # XL Intersect # Self Intersect Min Pen Speed # LX Intersect

Table 5.12: The best features for classification of individual strokes. Features are
ranked according to their average merit, as determined by WEKA’s information-gain-
ratio attribute-selection algorithm. Feature Color Code: Red = Perceptual, Orange =
Drawing Kinematics, Yellow = Location, Green = Size, Pink = Temporal Relations,
Grey = Intersections, Brown = Shape.
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box to scale features can give misleading values when the sketch has few strokes, because

the sketch’s bounding box can be comparatively smaller than with a larger sketch.

Sketches of statics solutions seem to have properties sufficiently different from

the other domains that many of the features that are important for statics are not

important elsewhere. For instance, the Average Pen Speed and the curvature related

features are more important than in other domains, indicating that the shape of the

stroke is more important in statics solutions, possibly because there are so many text

strokes. The importance of shape features suggests that we should investigate other

ways to represent it, such as entropy, as calculated in Bhat and Hammond’s work [3],

and the stroke’s best fit (line, circular arc, elliptical arc, polyline, complex, etc.).

Despite our efforts to improve the Minimum Pen Speed feature by considering

only points away from the end, this feature was usually at or near the bottom of the

ranked list. The Maximum Pen Speed was also not useful. This seems to suggest that

these instantaneous speed features are not reliable indicators for a class. Another feature

which was consistently ranked in the bottom half is the Number of Self Intersections.

This is likely due to the fact that few strokes actually cross themselves.

Table 5.13 is a list of the feature rankings when all domains are combined. We

combined the rankings from each of the domains by averaging their “average merit” (see

Tables D.1-D.4 for complete results). In this averaged list the perceptual features are

again ranked at the top, followed by mostly size-based features.
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Single-Stroke Feature Importance: Average of All Domains

Average Merit Attribute Name

0.25 Part of a Closed Path
0.195 Inside a Closed Path
0.14 Self Enclosing
0.127 Bounding Box Area
0.121 Bounding Box Width
0.113 Arc Length
0.111 Bounding Box Height
0.106 Distance To Left or Right Edge
0.102 Number of XX Intersections
0.099 Time to Draw Stroke
0.097 End Point to Arc Length Ratio
0.091 Time to Previous Stroke
0.074 Time to Next Stroke
0.072 Sum of Sqrt of Thetas
0.059 Number of LX Intersections
0.055 Average Pen Speed
0.052 Sum of Abs Value of Thetas
0.05 Path Density
0.049 Sum of Thetas
0.045 (Max - Min) Pen Speed
0.044 Maximum Pen Speed
0.042 Distance To Top or Bottom Edge
0.04 Sum of Squared Thetas
0.039 Number of XL Intersections
0.032 Number of LL Intersections
0.022 Minimum Pen Speed
0.018 Number of Self Intersections

Table 5.13: Ranked list of features for single-stroke classification in all domains (averaged
merit). Feature Color Code: Red = Perceptual, Orange = Drawing Kinematics, Yellow
= Location, Green = Size, Pink = Temporal Relations, Grey = Intersections, Brown =
Shape.

Additional Features

Based on our feature importance analysis, we added six additional features to

our single-stroke classifier. Our classifier performed worst on our two statics domains.

In this section, we show how the addition of these six features affected classification

accuracy.
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Contextual and size-based features were the most important for each of our

domains. We added Distance to Previous Stroke and Distance to Next Stroke in an

attempt to include more contextual information for the classifier. These features are

computed as the distance from the last point in a stroke to the first point in the next

stroke. To add to the size features, we compute the Convex Hull Area for a stroke. The

convex hull is defined as the minimum convex set of points which contains all points in

the stroke.

Drawing speed is indicative of drawing style and was also important for statics

solutions. To capture additional drawing style information we added three features

related to the pen-tip pressure: Average Pressure, Minimum Pressure, and Maximum

Pressure.

Incorporating these six features, the accuracy for complete statics solution

sketches increased from 88.8% to 89.5%. A confusion matrix is presented in Table 5.14.

Table 5.15 presents the confusion matrix for statics solutions without equa-

tions. There seems to be little new information provided by these additional features.

Similar to complete statics sketches, the accuracy for statics solutions without equations

Class
Classified As

Body Arrow Text Other Accuracy

A
ct

u
al

Body 616 82 89 46 73.9%
Arrow 53 1569 1118 69 55.9%
Text 27 411 20760 205 97.0%
Other 45 102 522 697 51.0%

TOTAL 89.5%

Table 5.14: Accuracy for multi-way single-stroke classification of statics solutions. Here,
six additional features were added.
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Class
Classified As

Body Arrow Labels Other Accuracy

A
ct

u
al

Body 623 74 71 48 76.3%
Arrow 42 1562 456 108 72.0%
Labels 13 257 3353 92 90.3%
Other 33 146 170 780 69.1%

TOTAL 80.7%

Table 5.15: Accuracy for multi-way single-stroke classification of statics solutions with-
out equations. Six additional features were added.

increased slightly, from 80.3% to 80.7%. This is discussed more in Section 6.1.3.

5.2 Grouping Results

After the strokes have been classified into different categories, the second step

of our algorithm groups the strokes in a given class into individual objects that represent

complete shapes. We define two different types of metrics to evaluate the correctness of

the shapes. The first characterizes the correctness in terms of the amount of ink (i.e., it

is stroke length sensitive) matching. The second is in terms of the number of incorrect

strokes. We use two values for the first metric: Ink Found and Ink Extra. Ink Found is

the percentage of expected ink (by arc length) that was correctly clustered. Ink Extra

is the percentage of unexpected ink that was clustered with the object. For the second

metric we compute the percentage of shapes that have no errors (“perfect clusters”),

those with one or fewer errors, and those with two or fewer errors. Consider, for example,

the cluster of strokes shown in Figure 5.4. The expected shape is comprised of three

strokes, A, B, and C, which have arc lengths of 100, 200, and 150 units, respectively.

If strokes B and C are grouped, but A is left out, and an additional stroke D (which

has an arc length of 125 units) is erroneously clustered with B and C, the accuracies for
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this shape would be: InkFound = 200+150

100+200+150
= 78%, InkExtra = 125

100+200+150
= 28%.

It would be counted only as a cluster with two or fewer errors. The accuracies reported

in the tables below are the average of the accuracies for each shape.

A

B

C

D

Figure 5.4: An example of how each grouping metric is computed. The two green strokes
were correctly grouped together and account for 78% of the ink by arc length, the blue
stroke was incorrectly left out of the group, accounting for the last 22% of the ink. The
red stroke was incorrectly grouped with the object, and was 28% of the length of the
expected shape. The group has a total of two errors (one missing and one extra stroke).
The accuracies for this group would be 78% InkFound and 28% InkExtra. It would be
counted as correct only in the category of two or fewer errors.

In order to compute grouping accuracies, we first match expected (hand-

labeled) shapes to the machine-generated clusters that our algorithm outputs, using

a greedy approach. First, the matching algorithm loops through each expected shape,

matching it to the cluster which has the most strokes in common. If there are no pre-

viously unmatched clusters which have a stroke in common with the expected shape, it

is not matched to any cluster.

In this section we address the following questions related to grouping accuracy:

1. Grouping Method Comparison: How well do different pairwise classifiers

work?

2. Effect of User-Specific Training Data: Can user-specific training data im-
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prove accuracy?

3. Sensitivity to Single-Stroke Errors: How sensitive is grouping to single-stroke

classification errors? When does single-stroke classification help, and hinder?

4. Effect of Perfect Single-Stroke Classification: How much improvement can

be had by improving the single-stroke classifier?

5. Sensitivity to the Number of Stroke Classes: How sensitive is grouping to

the number of single-stroke classes?

6. Iterative Re-Labeling Sensitivity to Seed Value: How robust is the Iterative

Re-Labeling method to its seed labels?

7. Shape to Cluster Matching: Should clusters be required to have the same class

as their expected shapes?

8. Pairwise Feature Importance: What are the most important pairwise features?

5.2.1 Grouping Method Comparison

We have implemented and evaluated four different grouping pairwise classi-

fiers. The first method is the Thresholded Pairwise Classifier (TPC). This classifier uses

thresholds for the minimum distance (TJD) and time gap (TJT ) between the strokes to

determine whether they should be joined. The values for TJD and TJT are unique to

each user in each domain, and were determined via a user-holdout parameter search.

We enumerated values for TJD between 50 and 500 himetrics (in increments of 25 hi-

metrics). Similarly, we enumerated values for TJT between 0.5 and 10.0 seconds (in
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increments of 0.5 seconds), as well as infinity. Setting TJT equal to infinity has the same

effect as removing that threshold and using only TJD to classify stroke pairs. The best

sets of parameters are determined by their resulting ink found grouping accuracy, and

are presented in Table 5.2.1.

Digital Circuits Family Trees Statics (No Eqn) Statics

User TJD TJT User TJD TJT User TJD TJT User TJD TJT

1 150 7.0 1 250 0.5 1 450 0.5 1 50 1.5
2 125 9.5 2 250 0.5 2 450 0.5 2 50 1.5
3 150 7.0 3 250 0.5 3 450 0.5 3 50 1.5
4 125 10.0 4 250 0.5 4 450 0.5 4 50 1.5
5 175 10.0 5 375 0.5 5 450 0.5 5 50 1.5
6 125 9.5 6 250 0.5 6 450 0.5 6 50 1.5
7 125 9.5 7 250 0.5 7 450 0.5 7 50 1.5
8 125 10.0 8 250 0.5 8 450 0.5 8 50 1.5
9 125 9.5 9 250 0.5 11 450 0.5 11 50 1.5
10 150 7.0 12 450 0.5 12 50 1.5
11 125 9.5 13 450 0.5 13 50 1.5
12 125 10.0 14 450 0.5 14 50 1.5
13 175 9.5 15 450 0.5 15 50 1.5
14 150 7.0 16 450 0.5 16 50 1.5
15 150 7.0 17 450 0.5 17 50 1.5
16 150 7.0 18 450 0.5 18 50 1.5
17 150 10.0
18 150 10.0
19 150 7.0
20 150 7.0
21 150 9.5
22 125 9.5
23 125 9.5
24 125 9.5

Table 5.16: The best parameters (TJD and TJT ) for the Thresholded Pairwise Classifier
(TPC) in each domain. The parameter sets for each user are found via a user-holdout
parameter search.

The three remaining methods use Inductive Pairwise Classifiers (IPCs), which

are trained using labeled examples. The second pairwise classification method (first IPC)

uses only Join and NoJoin classes (IPC-JnJ). The third method uses the Minimum Dis-
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tance method for determining NearJoins versus FarJoins (IPC-MD). The final method

uses the Iterative Re-Labeling approach to labeling the training instances (IPC-IRL).

All four pairwise classifiers rely on chaining to complete the grouping process.

Digital Circuit Sketches

We first look at how these four methods work for digital circuit sketches, with

grouping accuracy shown in Figure 5.5. Here we can see that the IPC-MD and IPC-IRL

methods performed the best in each category, and were roughly equivalent to each other.

Surprisingly, the TPC method performed slightly better than the IPC-JnJ method. This

shows that, for this domain, a simple classifier is better when two pairwise classes are

used.

Grouping Accuracy: Digital Circuits
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Figure 5.5: A comparison of the four different grouping methods, evaluated on the
digital circuit sketch data set.
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Table 5.17 presents the grouping accuracies for the IPC-MD method. Here, the

accuracies are similar for each class in digital circuit sketches, with an overall accuracy

of 90.9% ink found and 79.0% perfect clusters. Using the Iterative Re-Labeling method

improves overall accuracy to 91.8% ink found and 79.1% perfect clusters (Table 5.18).

The other two pairwise classifiers did not perform as well. Table 5.19 shows the accuracy

for the IPC-JnJ method. Here, the accuracy for gates goes down slightly, while the wire

accuracy goes down significantly. Overall, the grouping accuracy is 83.9% ink found

and 70.3% perfect clusters. The TPC method performs similarly, including a large drop

in wire accuracy, as shown in Table 5.20. The overall accuracy is 85.8% ink found and

69.2% perfect clusters.

These results show that adding the NearJoin versus FarJoin distinction is most

helpful for grouping wires. It is also helpful for gates, although most gates have enough

separation between them that the classifier is not often confused when using only Join

and NoJoin classes. The distinction is not as helpful for labels, likely because label

strokes are usually very close to each other if they belong to the same object.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 90.7% 4.4% 75.7% 92.7% 97.5%

Wire 90.4% 6.2% 79.7% 89.6% 94.1%

Label 92.8% 5.2% 83.9% 97.3% 99.5%

Overall 90.9% 5.4% 79.0% 92.1% 96.4%

Table 5.17: Grouping accuracy for digital circuit diagrams using the inductive pair-

wise classifier with the minimum distance labeling method (IPC-MD). Strokes are
classified into gate, wire, and label classes before pairwise classification.
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Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 91.8% 2.7% 77.4% 93.5% 97.9%

Wire 91.5% 6.7% 80.1% 90.3% 95.2%

Label 92.5% 8.6% 79.7% 95.3% 98.9%

Overall 91.8% 5.6% 79.1% 92.4% 96.9%

Table 5.18: Grouping accuracy for digital circuit diagrams using the inductive pair-

wise classifier using the iterative re-labeling method (IPC-IRL). Strokes are classi-
fied into gate, wire, and label classes before pairwise classification.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 88.0% 7.6% 71.6% 87.5% 95.7%

Wire 77.2% 14.9% 64.7% 75.4% 85.3%

Label 92.3% 6.6% 81.4% 96.7% 99.3%

Overall 83.9% 10.7% 70.3% 83.7% 91.7%

Table 5.19: Grouping accuracy for digital circuit diagrams using the inductive pair-

wise classifier using only Join and NoJoin labels (IPC-JnJ). Strokes are classified into
gate, wire, and label classes before pairwise classification.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 88.8% 8.1% 69.1% 91.8% 96.7%

Wire 80.8% 7.9% 62.6% 82.7% 89.9%

Label 92.4% 3.5% 85.4% 97.8% 99.8%

Overall 85.8% 7.2% 69.2% 88.8% 94.2%

Table 5.20: Grouping accuracy for digital circuit diagrams using the thresholded pair-

wise classifier (TPC). Strokes are classified into gate, wire, and label classes before
pairwise classification.

Family Tree Diagram Sketches

Next, we look at how the different grouping methods perform on family tree

sketches. An overview of these results is shown in Figure 5.6. Here, Thresholded Pair-

wise Classifier (TPC) method performs the best, followed by the IPC-MD method.

Surprisingly, the iterative re-labeling (IPC-IRL) method has noticeably worse perfect

cluster accuracy than the minimum distance (IPC-MD) method for the Inductive Pair-
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wise Classifier. Similar to digital circuits, the IPC-JnJ method performs the worst.

Grouping Accuracy: Family Trees
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Figure 5.6: A comparison of the four different grouping methods, evaluated on the family
tree diagram sketch data set.

The IPC-MD results are presented in Table 5.21; this method has an overall

accuracy of 86.5% ink found and 72.3% perfect clusters. The IPC-IRL results, for family

trees, are presented in Table 5.22; the iterative re-labeling approach has an overall

accuracy of 85.3% ink found and 67.8% perfect clusters. The IPC-JnJ method, with

only two pairwise classes (Join and NoJoin), has an overall accuracy of 82.7% ink found

and 66.6% perfect clusters (Table 5.23).

The surprising performance for family tree diagrams is the Thresholded Pair-

wise Classifier (Table 5.24), which not only had the highest overall accuracy, but also

the best per-class accuracies. The accuracy of this simple method indicates that the

sketches were able to be separated fairly well, either spatially or temporally. For in-
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stance, the links between people often overlap, but because there is often very little

time gap between strokes of the same shape, a tight time threshold (0.5 seconds) can be

used such that overlapping links are not joined.

Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 91.6% 2.3% 85.3% 93.9% 96.6%

Text 78.2% 17.7% 51.4% 65.4% 74.8%

Link 84.9% 8.5% 68.3% 90.9% 98.0%

Overall 86.5% 7.5% 72.3% 88.6% 94.4%

Table 5.21: Grouping accuracy for family tree diagrams using the inductive pair-

wise classifier using the minimum distance labeling method (IPC-MD). Strokes are
classified into people, text, and link classes before pairwise classification.

Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 90.7% 3.4% 81.9% 91.5% 95.9%

Text 72.0% 26.4% 37.4% 52.3% 65.4%

Link 84.8% 10.2% 65.5% 91.4% 98.7%

Overall 85.3% 9.9% 67.8% 86.2% 93.2%

Table 5.22: Grouping accuracy for family tree diagrams using the inductive pairwise

classifier using the iterative re-labeling method (IPC-IRL). Strokes are classified
into people, text, and link classes before pairwise classification.

Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 91.2% 4.4% 82.3% 92.8% 95.9%

Text 62.2% 34.3% 29.0% 43.0% 55.1%

Link 82.0% 9.7% 65.2% 88.7% 97.7%

Overall 82.7% 11.1% 66.6% 84.1% 91.3%

Table 5.23: Grouping accuracy for family tree diagrams using the inductive pair-

wise classifier using only Join and NoJoin labels (IPC-JnJ). Strokes are classified into
people, text, and link classes before pairwise classification.
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Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 92.6% 1.3% 83.6% 95.9% 99.3%

Text 78.2% 0.5% 51.4% 68.2% 78.5%

Link 88.3% 5.2% 71.0% 96.0% 99.7%

Overall 88.6% 3.2% 73.0% 92.2% 96.7%

Table 5.24: Grouping accuracy for family tree diagrams using the thresholded pair-

wise classifier (TPC). Strokes are classified into people, text, and link classes before
pairwise classification.

Statics Solutions Sketches Without Equations

Figure 5.7 shows the grouping results for statics sketches without equations.

In this domain, the Thresholded Pairwise Classifier (TPC) performed the best, slightly

ahead of both the Inductive Pairwise Classifier using the Minimum Distance label-

ing method (IPC-MD), and the Iterative Re-Labeling method (IPC-IRL). The IPC-JnJ

method again performed poorly, having the worst accuracy according to all five metrics.

Detailed results for each of the four methods are presented in Tables 5.25-5.28.

The IPC-MD method has an overall accuracy of 83.9% ink found and 61.6% perfect

clusters, per-class accuracies are shown in Table 5.25. As shown in Table 5.26, the IPC-

IRL method performs about the same as the IPC-MD method. The overall accuracy

is 83.6% ink found and 61.6% perfect clusters. Using the IPC-JnJ method, the overall

accuracy is 79.7% ink found and 55.3% perfect clusters, as shown in Table 5.27. The best

performing method for this domain is the TPC method, which has an overall accuracy

of 84.3% ink found and 66.2% perfect clusters, as shown in Table 5.28.

Looking at the per-class accuracies of the IPC-MD versus TPC methods, we see

that the IPC-MD method performs significantly better on bodies, while being worse for
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Grouping Accuracy: Statics (No Equations)
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Figure 5.7: A comparison of the four different grouping methods, evaluated on the
statics solutions (without equations) data set.

the other classes. The decrease in accuracy for bodies using the TPC method indicates

that users paused between drawing the various strokes of bodies, and the pauses were

longer than the threshold, TJT . Also of note, there is considerably less ink extra using

the TPC – an indication that this method groups less aggressively.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 91.3% 2.8% 68.3% 85.6% 93.4%

Arrow 80.7% 9.2% 56.6% 89.1% 97.9%

Label 87.3% 8.3% 64.5% 87.4% 96.5%

Other 78.1% 49.5% 60.8% 84.6% 91.3%

Overall 83.9% 14.9% 61.6% 87.4% 95.8%

Table 5.25: Grouping accuracy for statics solutions without equations using the induc-

tive pairwise classifier using the minimum distance labeling method (IPC-MD).
Strokes are classified into arrow, body, text, and “other” classes before pairwise classi-
fication.
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Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 90.5% 3.8% 66.8% 85.3% 93.1%

Arrow 79.8% 9.0% 54.9% 88.3% 98.3%

Label 87.5% 9.1% 65.7% 88.2% 96.3%

Other 77.8% 50.2% 62.1% 86.3% 93.1%

Overall 83.6% 15.3% 61.6% 87.7% 96.2%

Table 5.26: Grouping accuracy for statics solutions without equations using the induc-

tive pairwise classifier using the iterative re-labeling method (IPC-IRL). Strokes
are classified into arrow, body, text, and “other” classes before pairwise classification.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 85.1% 10.0% 58.6% 76.8% 88.1%

Arrow 77.8% 10.2% 52.4% 84.1% 96.6%

Label 82.2% 16.6% 55.7% 81.3% 93.5%

Other 74.6% 47.6% 58.6% 87.4% 93.3%

Overall 79.7% 18.9% 55.3% 82.9% 94.0%

Table 5.27: Grouping accuracy for statics solutions without equations using the induc-

tive pairwise classifier using only Join and NoJoin labels (IPC-JnJ). Strokes are
classified into arrow, body, text, and “other” classes before pairwise classification.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 71.3% 0.0% 56.4% 74.3% 82.8%

Arrow 84.5% 2.9% 61.0% 94.2% 98.4%

Label 87.3% 3.9% 70.4% 90.3% 97.2%

Other 83.3% 27.2% 71.7% 86.1% 92.1%

Overall 84.3% 7.1% 66.2% 89.5% 95.5%

Table 5.28: Grouping accuracy for statics solutions without equations using the thresh-

olded pairwise classifier (TPC). Strokes are classified into arrow, body, text, and
“other” classes before pairwise classification.

Complete Statics Solutions Sketches

The grouping results for complete statics sketches are shown in Figure 5.8.

Here, only three methods are compared: IPC-MD, IPC-JnJ, and TPC. The IPC-IRL
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method was not tested on this data set, mainly because it did not perform better than

the IPC-MD method for other domains. It also took significantly longer to train and

evaluate because of the multiple iterations – a problem for a data set as large as this.

Of the three methods considered, the IPC-MD method performed much better than the

other two methods, and again the IPC-JnJ method performed the worst.

Grouping Accuracy: Statics (Complete Sketches)
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Figure 5.8: A comparison of three different grouping methods, evaluated on the complete
statics solutions data set.

Detailed results for the evaluation of these three methods can be found in

Tables 5.29-5.31. The overall accuracy for the Minimum Distance method is 91.0% ink

found with 82.1% perfect clusters, as shown in Table 5.29. Using only two classes (Join

and NoJoin) with the Inductive Pairwise Classifier (IPC-JnJ), the overall accuracy is

74.1% ink found and 61.9% perfect clusters, as shown in Table 5.30. The Thresholded

Pairwise Classifier (TPC) has an overall accuracy of 83.6% ink found and 72.9% perfect
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clusters, as shown in Table 5.31.

The overall accuracy for the IPC-MD method is largely determined by the text

accuracy, because there are many more text objects than anything else. The accuracy for

the other three classes is particularly low in terms of the percentage of perfect clusters.

Despite the lower perfect clusters accuracy, the percentage of ink found is reasonably

good for bodies, and is not terribly low for arrows and “other.” There is a large amount

of extra ink for clusters in the “other” class; this is most likely due to the way we match

expected shapes to clusters. Clusters are matched according to the number of strokes,

which can be quite high for shapes such as dotted leader lines. When long strokes (by

arc length) are incorrectly clustered with these short dotted lines, they can show up

in the results as large amounts of extra ink for “other” shapes. For example, it is not

uncommon for ink extra to be greater than 300%.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 89.0% 3.8% 62.6% 82.8% 92.3%

Arrow 78.4% 5.4% 51.6% 92.1% 98.5%

Text 93.1% 6.8% 86.7% 97.9% 99.2%

Other 80.3% 47.7% 68.0% 85.8% 92.1%

Overall 91.0% 8.5% 82.1% 96.5% 98.7%

Table 5.29: Grouping accuracy for statics solutions using the inductive pairwise clas-

sifier using the minimum distance labeling method (IPC-MD). Strokes are classified
into arrow, body, text, and “other” classes before pairwise classification.

81



Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 86.1% 10.5% 56.4% 72.4% 85.9%

Arrow 59.6% 4.7% 35.5% 78.3% 97.7%

Text 77.1% 26.0% 66.3% 87.7% 96.9%

Other 43.7% 2.3% 37.6% 80.5% 89.1%

Overall 74.1% 22.6% 61.9% 86.2% 96.4%

Table 5.30: Grouping accuracy for statics solutions using the inductive pairwise clas-

sifier using only Join and NoJoin labels (IPC-JnJ). Strokes are classified into arrow,
body, text, and ‘other’ classes before pairwise classification.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 76.6% 0.2% 58.6% 73.9% 82.5%

Arrow 57.5% 1.6% 31.2% 80.0% 97.9%

Text 89.0% 2.3% 79.8% 98.0% 99.2%

Other 40.6% 1.4% 37.6% 78.1% 85.1%

Overall 83.6% 2.2% 72.9% 95.0% 98.1%

Table 5.31: Grouping accuracy for complete statics solutions using the thresholded

pairwise classifier (TPC). Strokes are classified into people, text, and link classes
before pairwise classification.

5.2.2 Effect of User-Specific Training Data

In this section, we evaluate grouping accuracy for the digital circuit and com-

plete statics solution domains when user-specific training data is included by performing

sketch-holdouts, rather than user-holdouts. We use the Inductive Pairwise Classifier

along with the Minimum Distance labeling method (IPC-MD) because it consistently

performed well in the evaluations from the previous section. Also, the inductive method

can be influenced by the small number of training examples that a user adds, especially

when using an AdaBoosted decision tree. The results of these evaluations for digital cir-

cuits and complete statics sketches are shown in Figures 5.9 and 5.10, respectively. The
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Grouping Accuracy: Digital Circuit Sketches 
Effect of Adding User-Specific Training Data
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Figure 5.9: A comparison of grouping accuracy when using no user-specific data (User
Holdout) versus including user-specific data (Sketch Holdout), for digital circuit sketches.
The IPC-MD grouping method is used for both cases. Strokes are classified into gate,
wire, and label classes before pairwise classification. Both the single-stroke classifier and
the pairwise classifier used user-specific data.

single-stroke classifiers used for this analysis were also trained using sketch-holdouts.

For digital circuits, the overall accuracy increased from 90.9% to 92.0% ink

found and from 79.0% to 80.6% perfect clusters. The detailed results for the inclusion

of user-specific training data is presented in Table 5.32; detailed grouping results without

user specific data is presented in Table 5.17. For this domain, including user-specific

training data does help, however the difference is not large.

For complete statics solution sketches, user-specific data has a similar effect.

The overall accuracies increase slightly, from 91.0% to 92.0% ink found, and from 82.1%

to 83.8% perfect clusters. Detailed grouping results showing the effects of user-specific
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Grouping Accuracy: Statics (Complete Sketches)
Effect of Adding User-Specific Training Data
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Figure 5.10: A comparison of grouping accuracy when using no user-specific data (User
Holdout) versus including user-specific data (Sketch Holdout), for complete statics so-
lution sketches. The IPC-MD grouping method is used for both cases. Strokes are
classified into body, arrow, text, and “other” classes before pairwise classification. Both
the single-stroke classifier and the pairwise classifier used user-specific data.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 92.4% 3.3% 79.7% 94.4% 98.1%

Wire 91.1% 8.3% 79.2% 89.8% 94.6%

Label 94.1% 5.9% 85.6% 96.4% 99.5%

Overall 92.1% 6.0% 80.6% 92.7% 96.8%

Table 5.32: Grouping accuracy for digital circuit diagrams using the inductive pair-

wise classifier using the Minimum Distance labeling method. Strokes are classified
into gate, wire, and label classes before pairwise classification. Both single-stroke clas-
sifiers and pairwise classifiers used user-specific data.

data are presented in Table 5.33; results without user-specific training data are presented

in Table 5.29.

The increases in accuracy in both the digital circuits and statics domains are
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Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 88.0% 6.9% 61.0% 82.5% 90.5%

Arrow 81.6% 3.8% 57.1% 94.1% 98.7%

Text 93.9% 7.4% 88.2% 98.0% 99.2%

Other 81.0% 16.0% 68.4% 86.8% 91.4%

Overall 92.0% 7.5% 83.8% 96.9% 98.7%

Table 5.33: Grouping accuracy for statics solutions sketches using the inductive pair-

wise classifier using the Minimum Distance labeling method. Strokes are classified
into body, arrow, text, and “other” classes before pairwise classification. Both single-
stroke classifiers and pairwise classifiers used user-specific data.

most likely attributable to an increase in single-stroke classification accuracy. As was

shown in Section 5.1.3, the digital circuits single-stroke classifier accuracy increased from

93.6% to 94.7% overall. Similarly for statics solutions, single-stroke accuracy rose from

88.8% to 90.6%.

5.2.3 Sensitivity to Single-Stroke Errors

Errors from the single-stroke classification process are unrecoverable during

grouping. In this section we explore the sensitivity of the overall grouping accuracy to

simulated single-stroke classification errors. To do this, we artificially created single-

stroke classification errors. Some fraction of strokes are randomly selected and assigned

a randomly selected incorrect label; the other strokes are labeled correctly. The program

then uses a pairwise classifier, trained as before in a user-holdout fashion.

When calculating the grouping accuracy for this technique, we require that a

cluster have the same class as the expected shape. For instance, if two strokes were

grouped together to form a valid arrow, but the strokes were classified (artificially) as

text strokes, the cluster would not be matched to the expected shape. We examine the
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effects of the different matching schemes more in depth in Section 5.2.7. Because the

incorrect labels are assigned randomly, and to random strokes, re-running this analysis

gives slightly different results. However, for large data sets such as the digital circuits

and complete statics solutions, the effects of this random nature are less pronounced

than in the other domains. We used the Inductive Pairwise Classifier with Minimum

Distance method for this evaluation.

Digital Circuits

Figure 5.11 shows the accuracy (ink found and perfect clusters) for digital cir-

cuits as a function of single-stroke classification errors. As the single-stroke classification

accuracy rises, the percentage of ink found accuracy rises in a nearly direct and linear

fashion. This is to be expected, as the strokes begin to have the correct label they can

be grouped correctly, and their clusters will have more ink correctly found, even if the

cluster is not complete. However, “perfect clusters” is an all-or-nothing accuracy, which

does not change so directly. For example, with a three stroke shape, two of the three

strokes in the cluster may be grouped, but it will not be counted as correct until all

three strokes are included in the cluster. This is reflected by the exponential nature of

the curve. If most of the shapes in the sketches have multiple strokes, the curve will

look similar to this one. However, if most of the shapes are single strokes, the curve

will be almost linear. Our single-stroke classifier typically performs in the high 80% to

mid 90% range. In this range for Figure 5.11 the perfect cluster accuracy rises at a

very rapid rate with increasing single-stroke accuracy. This indicates that even small

improvements in single-stroke classification accuracy can yield large increases in perfect
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cluster accuracy.

Effect of SSC Accuracy on Grouping - Digital Circuits
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Figure 5.11: The effect of simulated single-stroke classification accuracy on grouping
accuracy for digital circuits (using IPC-MD).

Figure 5.12 shows the ink found accuracy from Figure 5.11, while adding a red

line showing the accuracy if no single-stroke classification is done at all (i.e., all strokes

are part of the same class), and a green line showing accuracy with our single-stroke

classifier. Where the red line crosses the simulated ink found accuracy is the theoretical

point at which single-stroke classification becomes helpful. If the single-stroke classifier

is unable to achieve at least 86%, in this case it would be better to not classify strokes

before doing pairwise classification. Detailed results for grouping without single-stroke

classification are presented in Table 5.34. Without single-stroke classification, a single

pairwise classifier is used to identify strokes that should be joined. This pairwise classifier

is trained using all stroke pairs, regardless of stroke type.
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Using single-stroke classification increases the ink found accuracy by 9 per-

centage points, shown with a green line in Figure 5.12. In this domain, it is quite

advantageous to perform single-stroke classification before grouping.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 85.9% 25.4% 57.9% 82.3% 92.6%

Wire 75.3% 5.8% 60.4% 83.5% 91.9%

Label 90.2% 5.2% 87.4% 94.3% 98.7%

Overall 81.9% 12.9% 64.4% 85.1% 93.4%

Table 5.34: Grouping accuracy for digital circuit diagrams using the inductive pairwise
classifier and minimum distance labeling method, without single-stroke classification.

Effect of SSC Accuracy on Grouping - Digital Circuits
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Figure 5.12: The effect of single-stroke classification accuracy (artificially generated) on
ink found accuracy for digital circuits (using IPC-MD). The red line represents the ink
found accuracy if no single-stroke classification is performed. The green line represents
the percentage of ink found when using multi-way single-stroke classification.

Figure 5.13 is similar to 5.12, except that grouping accuracy is represented
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in terms of perfect clusters, rather than ink found. Again, performing single-stroke

classification significantly improves grouping accuracy.

Effect of SSC Accuracy on Grouping - Digital Circuits
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Figure 5.13: The effect of single-stroke classification accuracy (artificially generated)
on perfect cluster accuracy for digital circuits (using IPC-MD). The red line represents
the ink found accuracy if no single-stroke classification is performed. The purple line
represents the percentage of ink found when using multi-way single-stroke classification.

Family Tree Diagrams

Next, we consider grouping accuracy as a function of single-stroke accuracy for

family tree diagrams. Figure 5.14 shows this relationship for the percentages of ink found

and perfect clusters. Here, the shape of these curves resembles that for digital circuits,

however these appear noisier. The increase in noise is likely due to a much smaller data

set that is more sensitive to random variations in incorrectly labeling strokes.

Figure 5.15 shows part of the ink found curve from Figure 5.14, along with
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Effect of SSC Accuracy on Grouping - Family Trees
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Figure 5.14: The effect of single-stroke classification accuracy (artificially generated) on
grouping accuracy for family tree diagrams (using IPC-MD).

two lines. The red line represents ink found accuracy if no single-stroke classification

is performed, while the green line represents accuracy using our single-stroke classifier.

For family tree diagrams, the increase in accuracy is less pronounced than for digital

circuits, likely due to the fact that the single-stroke classifier is not as accurate in this

domain. For grouping without single-stroke classification, detailed results are presented

in Table 5.35.

The ink found accuracy without single-stroke classification crosses the simu-

lated ink found accuracy curve at around 90% simulated single-stroke accuracy. This

indicates that our classifier would need to perform better than 90% to be helpful, how-

ever our actual single-stroke accuracy is 87.8%. Despite this, our grouping accuracy

with our single-stroke classifier is higher than without it. This means that errors made
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by the single-stroke classifier are not the same as the simulated errors.

Effect of SSC Accuracy on Grouping - Family Trees
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Figure 5.15: The effect of single-stroke classification accuracy (artificially generated) on
ink found accuracy for family tree diagrams (using IPC-MD). The red line represents
the ink found accuracy if no single-stroke classification is performed. The green line
represents the percentage of ink found when using multi-way single-stroke classification.

Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 83.3% 7.0% 77.8% 91.1% 94.2%

Text 83.6% 68.1% 51.4% 64.5% 71.0%

Link 80.2% 14.6% 66.8% 87.7% 98.5%

Overall 81.8% 19.0% 68.8% 85.8% 93.2%

Table 5.35: Grouping accuracy for family tree diagrams using the inductive pairwise
classifier and minimum distance labeling method, without using single-stroke classifi-
cation.

Perfect cluster accuracy is shown in Figure 5.16. Similar to the ink found accu-

racy, performing single-stroke classification provides a meaningful, yet not particularly
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Effect of SSC Accuracy on Grouping - Family Trees
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Figure 5.16: The effect of single-stroke classification accuracy (artificially generated)
on perfect cluster accuracy for family tree diagrams (using IPC-MD). The red line
represents the ink found accuracy if no single-stroke classification is performed. The
purple line represents the percentage of ink found when using multi-way single-stroke
classification.

large benefit for family trees.

Statics Solutions Without Equations

For statics solutions without equations, grouping accuracy versus simulated

single-stroke classification accuracy is shown in Figure 5.17. Here, there is a similar

shape to that for digital circuits (Figure 5.11).

The comparison of ink found accuracy is shown in Figure 5.18. In this case,

there is a very small increase when using single-stroke classification. The details for

grouping accuracy without single-stroke classification are presented in Table 5.36. In
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Effect of SSC Accuracy on Grouping - Statics (No Eqn)
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Figure 5.17: The effect of single-stroke classification accuracy (artificially generated) on
grouping accuracy for statics solutions without equations (using IPC-MD).

comparison to the accuracies when using single-stroke classification (Table 5.25), ink

found is roughly equivalent. There is much more ink extra (overall) when not using

single-stroke classification due to arrows and “other” clusters having large amounts of

extra ink.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 84.6% 2.3% 64.9% 81.2% 87.8%

Arrow 81.4% 22.4% 63.7% 87.5% 97.8%

Label 88.9% 7.5% 76.7% 88.3% 97.6%

Other 72.4% 169.1% 50.6% 82.2% 89.8%

Overall 83.3% 38.6% 67.0% 86.4% 95.5%

Table 5.36: Grouping accuracy for statics solutions without equations using the inductive
pairwise classifier and minimum distance labeling method, without using single-stroke
classification.
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Effect of SSC Accuracy on Grouping - Statics (No Eqn)
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Figure 5.18: The effect of single-stroke classification accuracy (artificially generated) on
ink found accuracy for statics solutions without equations (using IPC-MD). The red line
represents the ink found accuracy if no single-stroke classification is performed. The
green line represents the percentage of ink found when using multi-way single-stroke
classification.

As shown in Figure 5.19, the percentage of perfect clusters actually improves

when not performing single-stroke classification, mostly due to an increase in perfect

“label” clusters. At the same time, the perfect cluster accuracy goes down for arrows

and “other.” Also, the accuracy for clusters with one or fewer errors is higher when using

single-stroke classification; this indicates that most erroneous clusters when using single-

stroke classification have only a single-stroke wrong. The increase in perfect “label”

clusters is most likely due to many labels having multiple strokes, and a single label

stroke is often confused with an arrow stroke by the single-stroke classifier. This single

wrong stroke prevents the cluster from being perfect, so removing classifications actually
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Effect of SSC Accuracy on Grouping - Statics (No Eqn)
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Figure 5.19: The effect of single-stroke classification accuracy (artificially generated) on
perfect cluster accuracy for statics solutions without equations (using IPC-MD). The red
line represents the ink found accuracy if no single-stroke classification is performed. The
purple line represents the percentage of ink found when using multi-way single-stroke
classification.

makes these labels more likely to be perfect.

Complete Statics Solutions

Figure 5.20 shows the relationship between grouping accuracy and simulated

single-stroke classification accuracy for complete statics solution sketches. These sketches

have a large number of single-stroke text shapes, making the perfect clusters curve much

more linear than in other domains.

Figure 5.21 shows that there is very little difference in ink found accuracy

between using single-stroke classification and not. Table 5.37 shows detailed results for
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Effect of SSC Accuracy on Grouping - Statics
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Figure 5.20: The effect of single-stroke classification accuracy (artificially generated) on
grouping accuracy for complete statics solutions (using IPC-MD).

grouping without using single-stroke classification. Omitting single-stroke classification

improves the accuracy of some classes (arrows), while it makes it worse for other classes

(bodies and others). This suggests that while the overall accuracy between these two

methods is roughly equivalent, they make different errors. A qualitative evaluation of

the differences between these two methods can be found in Section 6.2.2.

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 81.0% 3.1% 57.4% 76.7% 84.4%

Arrow 81.9% 17.9% 63.3% 89.5% 98.4%

Text 93.1% 10.2% 87.0% 97.6% 99.1%

Other 77.2% 210.5% 59.5% 83.2% 90.0%

Overall 91.1% 20.0% 82.9% 95.8% 98.4%

Table 5.37: Grouping accuracy for complete statics solutions using the inductive pairwise
classifier and minimum distance labeling method without single-stroke classification.
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Effect of SSC Accuracy on Grouping - Statics
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Figure 5.21: The effect of single-stroke classification accuracy (artificially generated)
on ink found accuracy for complete statics solutions (using IPC-MD). The red line
represents the ink found accuracy if no single-stroke classification is performed. The
green line represents the percentage of ink found when using multi-way single-stroke
classification.

Figure 5.22 shows perfect cluster accuracy for complete statics solutions. While

the percentage of perfect clusters increases with our single-stroke classifier, the percent-

age of clusters with one or fewer errors actually decreases. The perfect cluster accuracy

for bodies goes down significantly, while it increases for arrows. Text perfect clusters

accuracy is very slightly better, while “other” accuracy goes down without single-stroke

classification.
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Effect of SSC Accuracy on Grouping - Statics
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Figure 5.22: The effect of single-stroke classification accuracy (artificially generated) on
perfect cluster accuracy for complete statics solution sketches (using IPC-MD). The red
line represents the ink found accuracy if no single-stroke classification is performed. The
purple line represents the percentage of ink found when using multi-way single-stroke
classification.

5.2.4 Effect of Perfect Single-Stroke Classification

In the last section we examined the effect of varying single-stroke classification

accuracy, and how well the pairwise classifier works without the separation provided

by single-stroke classification. We found that in the case of statics sketches, we can

achieve better overall grouping accuracy by not performing single-stroke classification.

The relatively poor accuracy of the single-stroke classifier in the two statics domains

introduces many errors that are unrecoverable by the pairwise classifiers. In this section

we examine grouping accuracy when the strokes are perfectly labeled. This is the upper-

bound on grouping accuracy given our current pairwise classifiers. In this section, all
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results are found using inductive pairwise classifiers with the minimum distance labeling

method (IPC-MD).

In each of the domains, improving single-stroke classification provides large

increases in grouping accuracy. The results for each domain are shown Figures 5.23-5.26

and in Tables 5.38-5.41. The results for digital circuit sketches are presented in Table

5.38, and represent an over 60% (5.8 percentage points) reduction in Ink Found error for

all classes. Table 5.39 presents the results for family tree diagrams. Here, the accuracies

are not as high as with digital circuits, however there has been approximately a 50%

reduction in error compared to our single-stroke classifier. Table 5.40 shows the results

for statics solutions without equations. For this domain, the reduction in error is again

over 50%. Finally, for complete statics solutions the improvement is very large for non-

text objects, as shown in Table 5.41. However, because there are so many text shapes,

and those shapes did not improve very much, the overall accuracy did not improve as

significantly as other domains.

Digital Circuits Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Gate 96.5% 1.3% 92.0% 99.3% 100.0%

Wire 95.5% 2.6% 91.8% 94.5% 96.3%

Label 99.9% 0.1% 99.6% 100.0% 100.0%

Overall 96.7% 1.7% 93.3% 97.3% 98.3%

Table 5.38: Grouping accuracy for digital circuit diagrams using the inductive pair-

wise classifier and minimum distance labeling method, with artificially perfect
single-stroke classification.
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Grouping Accuracy: Digital Circuits
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Figure 5.23: A comparison of grouping accuracy when using perfect versus actual single-
stroke classification for digital circuits (using IPC-MD).

Family Trees Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

People 98.7% 1.1% 97.6% 98.3% 99.0%

Text 89.7% 11.6% 79.4% 81.3% 84.1%

Link 91.4% 6.1% 83.6% 95.0% 99.5%

Overall 93.8% 5.0% 88.2% 94.4% 97.2%

Table 5.39: Grouping accuracy for family tree diagrams using the inductive pairwise

classifier and minimum distance labeling method, with artificially perfect single-
stroke classification.

5.2.5 Sensitivity to the Number of Stroke Classes

The last two sections have discussed grouping accuracy related to single-stroke

classification accuracy, this section seeks to show the best number of single-stroke classes

to use. As shown in Figure 5.27, using different classes leads to widely different grouping

accuracy. We have used the complete statics solutions domain for this evaluation, be-

100



Grouping Accuracy: Family Trees
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Figure 5.24: A comparison of grouping accuracy when using perfect versus actual single-
stroke classification for family trees (using IPC-MD).

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 98.1% 3.3% 95.6% 98.4% 98.7%

Arrow 92.5% 6.5% 83.6% 93.9% 99.6%

Label 95.8% 1.4% 89.9% 92.9% 98.5%

Other 84.6% 43.5% 72.5% 88.1% 93.6%

Overall 93.0% 10.2% 85.5% 93.0% 98.1%

Table 5.40: Grouping accuracy for statics solutions without equations using the induc-

tive pairwise classifier and minimum distance labeling method, with artificially
perfect single-stroke classification.

cause it contains many different shapes, leading to multiple different ways to split them.

Here, determining which types of shapes should be part of the same class is nontrivial.

There are many different shape types, and there is often little distinction between them.

We use the IPC-MD grouping method for the comparisons in this section.

In Figure 5.27, the left-most point (one class) represents grouping without
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Grouping Accuracy: Statics (No Eqn)
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Figure 5.25: A comparison of grouping accuracy when using perfect versus actual single-
stroke classification for statics solutions without equations (using IPC-MD).

Statics Solutions Ink: Avg / Shape Shapes: X Errors or Less
Class Found Extra 0 1 2

Body 98.4% 3.1% 96.3% 98.2% 98.5%

Arrow 93.7% 5.3% 86.2% 94.1% 99.9%

Text 94.0% 7.7% 88.7% 98.1% 99.2%

Other 86.2% 49.1% 76.3% 88.2% 94.5%

Overall 93.7% 9.3% 88.0% 97.3% 99.1%

Table 5.41: Grouping accuracy for complete statics solutions using the inductive pair-

wise classifier and minimum distance labeling method, with artificially perfect
single-stroke classification.

single-stroke classification. The next point is for two classes: text and non-text. For

the four class point, strokes are split into bodies, arrows, text, and “other.” For eight

classes, strokes are classified as bodies, arrows, labels, equations, geometry, lines and

arcs, points, and “other.” The accuracies for the two, four, and eight class single-stroke

classifiers can be found in Section 5.1.
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Grouping Accuracy: Statics
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Figure 5.26: A comparison of grouping accuracy when using perfect versus actual single-
stroke classification for complete statics solutions (using IPC-MD).

When using perfect single-stroke classifications (dashed line), it is generally

beneficial to classify strokes into more classes. However, there is a point above which

using more classes does not help grouping, even with a perfect single-stroke classifier.

Real single-stroke classifiers are going to have more errors as the number of similar

classes increases. These errors will lead to more grouping errors.

Using two classes, text and non-text, the single-stroke classifier introduces la-

beling errors compared to without single-stroke classification. It does not separate the

objects in each class enough to offset them. The net result is a reduction in group-

ing accuracy. While the single-stroke classification accuracy decreases when using four

classes as compared to two, it also separates the shapes in each class enough to making

grouping within each class much easier. The net result of this is an increase in overall
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Effect of Number of Classes - Statics
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Figure 5.27: Effect of different numbers of classes for single-stroke classification on the
percentage of ink found in statics solutions. The dotted line shows the accuracy if we had
a perfect single-stroke classifier with a given number of classes. The solid line represents
using a single-stroke classifier trained on our data set, which does make errors. We use
the IPC-MD grouping method for this comparison.

grouping accuracy. Beyond this point, further separating the sketch does not help the

pairwise classifiers, yet it significantly decreases the accuracy of the single-stroke clas-

sifier. The single-stroke classifier creates many more unrecoverable errors than before,

making overall grouping accuracy much worse.

Determining exactly how many classes to use and what types of shapes to put

in each class can be quite difficult. There are a few guidelines that we have found useful;

they are discussed in Section 6.1.1.
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5.2.6 Iterative Re-Labeling Sensitivity to Seed Value

The Iterative Re-Labeling (IPC-IRL) pairwise labeling method described in

Section 3.3.2 must be seeded with an initial set of labels for each stroke pair. In this

section we examine the effects of using different seed labels. The sets of seed labels are

found using the Minimum Distance method, with different threshold values (D0). For

the IPC-IRL results reported earlier, we used seed values found using D0 = 200. In

this section, we examine the effects of using D0 values of: 100, 200, 400, 1000, and 5000

himetric units.

Figure 5.28 shows the grouping accuracy at each step of the process. The “Pre”

point is the grouping accuracy before any iterating begins. The subsequent steps show

the iteration as a number (1-5), while the a and b denote whether the classifier was

trained on Set1 or Set2, respectively. “Post” is the final accuracy after recombining

the two re-labeled data sets and training new pairwise classifiers on the combined set.

Each curve in the figure represents a different set of labels used to seed the iterative

re-labeling process (“Pre” step). With a threshold, D0, of 5000, almost no stroke pair is

labeled as FarJoin; in other words, it closely resembles labeling the pairs as only Join

or NoJoin.

For digital circuits, the classifiers from all five seed labels quickly converge to

the same accuracy, with little fluctuation between the accuracy of the two sets. Each

curve also ends at approximately the same accuracy. For digital circuits, the seed labels

seem to have no effect on the accuracy of the final classifiers.

Figure 5.29 shows the accuracies during the iterative process for family tree
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Iterative Re-Labeling - Digital Circuits
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Figure 5.28: The effect of seeding the iterative re-labeling process with different initial
labels on digital circuit sketches. The initial seed labels are found with the minimum
distance method, where the distance threshold D0 is the number in the legend.

diagrams. The family tree data set is significantly smaller than the digital circuit set,

which makes the accuracy more sensitive to the random split of the data. This is shown

as the fluctuations between accuracies for the “a” and “b” iteration steps. Interestingly,

the seed that started with the highest accuracy (D0 = 400) ended with the worst

accuracy, while the worst pre-iteration labels ended with the best accuracy (D0 = 5000).

The re-labeling does not improve the grouping accuracy in this domain; this is reflected

in Section 5.2.1, where the IPC-MD method outperforms the IPC-IRL method.

Results for statics solutions without equations are shown in Figure 5.30. Similar

to the family tree data, there are no gains in accuracy. The accuracy occasionally

fluctuates between the “a” and “b” steps, however the final accuracy is fairly similar for
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Iterative Re-Labeling - Family Trees
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Figure 5.29: Shows the effect of seeding the iterative re-labeling process with different
initial labels on family tree sketches. The initial seed labels are found with the minimum
distance method, where the distance threshold D0 is the number in the legend. The
minimum distance method uses a value of 200 himetric units.

each set of seed labels.

5.2.7 Shape to Cluster Matching

We have experimented with two different methods for matching the expected

shapes to the machine-generated clusters. The first method was described in Section

5.2, where machine-generated clusters are matched to the expected shapes based on the

number of strokes in common, and a cluster can be matched to any shape, regardless

of the class of the strokes in the cluster. For instance, if two strokes of an and gate

were classified as wires and then clustered together, this cluster would be matched to

the expected and gate (which is labeled as a gate rather than a wire). In this section we
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Iterative Re-Labeling - Statics Solutions Without Equations
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Figure 5.30: Shows the effect of seeding the iterative re-labeling process with different
initial labels on sketches of statics solutions without equations. The initial seed labels
are found with the minimum distance method, where the distance threshold D0 is the
number in the legend. The minimum distance method uses a value of 200 himetric units.

examine a second method, which matches expected shapes only to clusters containing

strokes of the correct class. “Class-dependent” matching allows shape recognizers to be

customized for a given class (shape recognizers are used after clusters are formed, as

shown in Figure 1.3).

The results for each domain are presented in Figures 5.31-5.34. For digital

circuit sketches (Figure 5.31), the percentage of ink found actually increases when us-

ing class-dependent matching, while perfect cluster accuracy decreases, both by very

small amounts. The accuracy for family tree diagrams is very slightly worse when us-

ing class-dependent matching (Figure 5.32). The effect is much more noticeable for

statics solutions, both with and without equations, as shown in Figures 5.34 and 5.33,
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respectively.

Cluster Maching Comparison: Digital Circuits
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Figure 5.31: The effect of using a class-dependent versus class-independent cluster
matching technique for digital circuit sketches. With a class-dependent matcher, clus-
ters of a given class can only be matched to expected shapes of the same class. Class-
independent matching allows any cluster to be matched to a given shape.

For digital circuits and family trees there is little difference in accuracy de-

pending on which cluster matching method is used. For shape recognition in these two

domains, it would be advisable to use class-dependent recognizers or templates. With

both statics domains however, the drop in accuracy between the two methods indicates

that there are quite a few clusters with the wrong class label. Therefore, it would most

likely be better to use a single shape recognizer that is not dependent on class.
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Cluster Maching Comparison: Family Trees
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Figure 5.32: The effect of using a class-dependent versus class-independent cluster
matching technique for family tree sketches. With a class-dependent matcher, clusters
of a given class can only be matched to expected shapes of the same class. Class-
independent matching allows any cluster to be matched to a given shape.

5.2.8 Pairwise Feature Importance

Similar to the single-stroke feature importance in Section 5.1.4, we have ana-

lyzed the importance of the pairwise features for each class in each domain. Again, we

did this with WEKA’s attribute selection methods, using information gain ratio and the

Ranker search method with 10-fold cross-validation. Figure 5.42 shows the ranked list

of the feature importance for the inductive pairwise classifier, where the merit (WEKA’s

internal measure of importance, in this case determined by the information gain ratio)

is averaged from each of the 14 pairwise classifiers, one for each class in each domain

(three for digital circuits, three for family trees, four for complete statics solutions, and

four for statics solutions without equations). Tables showing the feature importance for
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Cluster Maching Comparison: Statics Solutions Without Equations
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Figure 5.33: The effect of using a class-dependent versus class-independent cluster
matching technique for statics solution sketches without equations. With a class-
dependent matcher, clusters of a given class can only be matched to expected shapes of
the same class. Class-independent matching allows any cluster to be matched to a given
shape.

each of the 14 pairwise classifiers, individually, are presented in Tables D.5-D.18.

The two most important features for pairwise classification are: whether the

pair of strokes is part of the same closed path, and the minimum distance between the

strokes. These two features are not unexpected. Often times strokes belong together if

the are close to each other. Also, if two strokes are part of the same closed path, they

most likely belong together.

The two closeness features are also found to be important, however the smaller

of these two (ClosenessSmall) has a higher average merit. The other two features in the

top half of the ranking are the minimum endpoint-to-endpoint distance and minimum
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Cluster Maching Comparison: Complete Statics Solutions
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Figure 5.34: The effect of using a class-dependent versus class-independent cluster
matching technique for complete statics solution sketches. With a class-dependent
matcher, clusters of a given class can only be matched to expected shapes of the same
class. Class-independent matching allows any cluster to be matched to a given shape.

Feature Importance, Pairwise - Average of All Domains

Average Merit Attribute Name

0.392 Part of Same Closed Path
0.306 Minimum Distance
0.277 ClosenessSmall

0.255 Minimum Endpoint-to-Endpoint Distance
0.246 Minimum Endpoint-to-Anypoint Distance
0.234 ClosenessLarge

0.207 Centroid Distance
0.202 Time Gap
0.156 Maximum Distance
0.131 Y-Overlap
0.116 X-Overlap
0.072 Ratio XL
0.048 Ratio LL

Table 5.42: Ranked list of features for pairwise classification in all domains (averaged
merit).
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endpoint-to-anypoint distance.

The importance of the time gap between the strokes varies quite widely (see

Tables D.5-D.18), and is most important for all text and label shapes, as well as “other”

in the statics domains. The time gap is not particularly useful for wires, because they

are often not drawn sequentially.

The two overlaps and ratios were fairly consistently at the bottom of the rank-

ings. This is surprising at first glance, particularly the X-Overlap for text in statics

sketches (mostly equations). However, since one equation was often drawn directly

above another one, there are many cases where the strokes overlap in this direction

without belonging to the same character.

5.3 Running Time

One of the most important aspects of our stroke grouping method is the speed

with which it can group a sketch. Our method uses classifiers to determine whether a

pair of strokes is part of the same object, rather than relying on a search process with

recognition. For example, search methods can be exponentially expensive. Since our

algorithm compares pointwise distances between strokes, and this computation domi-

nates the cost of the feature calculation step, the computation time is expected to be

of order O(n2) where n is the number of points in the sketch. Figure 5.35 shows actual

computational cost versus the number of points in the sketch, n, confirming that the

cost is O(n2).

Fortunately, it is possible to reduce the computation cost using a simple filter.
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Effect of Sketch Size on Computation Time
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Figure 5.35: Computation time for all features in a sketch as a function of the number
of points in the sketch. Using a conservative filter of 50mm can significantly reduce
computation times. Both trend lines are polynomial (n2) fits. Each data point represents
the computation time for a sketch.

If two strokes are far enough apart, there is no need to compute the pairwise features,

because the strokes are very unlikely to be from the same cluster. Thus, we do not com-

pute the features for stroke pairs whose bounding boxes are greater than 5000 himetric

units (50 mm) apart at their closest points. We chose 50 mm as a conservative estimate

of the maximum dmin between a pair of strokes that are part of the same object. We

have found that filtering does not decrease the accuracy of the grouper; the results pre-

sented in the previous sections used classifiers trained using features from filtered pairs

of strokes. As Figure 5.35 shows, the process is still O(n2), but the constant coefficient

is lower than without filtering.

Once the features are computed, the actual classification of an instance (single-
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stroke or pairwise) is very fast, and is negligible in relation to the feature computation

time. For the largest sketch in the corpus (712 strokes), the user spent 20 minutes

drawing the solution to the statics problem, yet the feature computation time was only

about 140 seconds (11.1% of the drawing time)2. Without filtering, feature computation

time was always less than drawing time. Computation time ranged from 0.4%-12.0% of

the time taken to draw the entire sketch, with a median time of 2.0%. When filtering is

used, the times drop to a range of 0.3%-3.6%, with a median of 1.1% of the time to draw

the entire sketch. The features are computed incrementally as the user draws. Therefore,

only the features for the last drawn stroke need to be computed before the program can

group the final sketch. While this method is fast enough for an online system (grouping

as the user draws), we have spent little time optimizing the computation, and believe

that significant speed gains are possible. These gains likely would not be noticeable to

the user, but would consume fewer computation cycles and power. One of the easiest

ways to do this would be to down-sample the points in each stroke, which could reduce

n significantly.

2All speed tests run on an HP TC4400 Tablet PC - Intel Core 2 Duo T7200 @ 2.00GHz with 2GB
RAM, running Windows XP SP3 (Tablet PC Edition). This is the same type of computer that was used
for collecting the ink for statics and digital circuit sketches.
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Chapter 6

Discussion

We have developed a fast and accurate method for grouping strokes into ob-

jects. By classifying individual strokes into classes, we create separation between objects

of the same class, thereby making grouping easier. To group the strokes within a given

class, we have created two different types of pairwise classifiers (TPC and IPC). The

pairwise classifiers are used to determine pairs of strokes that should be joined. A

chainer then combines joined stroke pairs to form clusters.

Once the clusters have been created, our algorithm is finished. The clusters

can then be recognized and used in a higher-level program. Accurate and efficient clus-

tering is a very difficult part of sketch understanding, one that has kept sketch-based

approaches from being used in many applications. Our work helps to overcome this

roadblock. As discussed in Chapter 7, there have been a number of sketch recognition

systems created, however almost all of them use recognition to obtain accurate group-

ings. These systems often search through many erroneous clusterings, using recognition

to find a valid set of clusters. Our approach can complement these systems by providing
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an accurate set of initial clusters, thereby improving the system as a whole.

Our system quickly classifies and groups, once the features have been com-

puted. Feature computation is done as the user draws. This saves time when it matters:

at the time that the user has finished sketching and is expecting the system to recognize

the sketch and provide feedback or interaction.

6.1 Single-Stroke Classification

Single-stroke classification is an important part of our method. It simplifies

pairwise comparisons, leading to more efficient and accurate grouping. We have de-

veloped a classifier which uses adaptive boosting (AdaBoost) with decision trees and a

set of features that extends previous efforts at single-stroke classification. Our classifier

accurately classifies text versus non-text strokes (97.2% on digital circuits). In direct

comparison to the entropy method described in [3] and Microsoft’s c© commercial InkAn-

alyzer algorithm, our classifier performed significantly better in our digital-circuits and

both of our statics domains, while the entropy method provided slightly better results

in the family-tree domain. On their own data set, Bhat and Hammond report 92%

accuracy for their entropy method. Other work has reported single-stroke classification

accuracies on their own data sets: Patel et al. ([30]) reports approximately 70% accu-

racy, while Bishop et al. ([5]) report approximately 95% accuracy, and Qi et al.’s ([33])

report approximately 96% accuracy.

While previous stroke classifiers have performed two-way classification, our

classifier is shown to be accurate for three or more classes. When classifying strokes
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into multiple categories, it is important to select good class distinctions. A good set of

classes is one in which each class has characteristics that differentiate it from the others,

allowing the classifier to accurately learn the difference between them.

6.1.1 Picking Classes

In the case of complete statics solution sketches, we have examined the effect

of different sets of classes. Using only two classes, text and non-text, our classifier

is 92.1% accurate. However classifying into these two classes does not help grouping.

In fact, performing text versus non-text classification before grouping results in worse

accuracy than not classifying strokes at all. In this situation, the single-stroke classifier

introduces errors without significantly simplifying grouping. More classes are needed to

improve grouping. Using four classes: Body, Arrow, Text, and Other, the single-stroke

classifier is slightly less accurate (88.8%) than with two classes, yet the grouping accuracy

increases dramatically. Adding still more classes was detrimental to both single-stroke

and grouping accuracy.

In general, it is important to select a set of classes that is differentiable, and

that separates objects within a class. Having too many classes can make the classes

indistinguishable. For instance, there was a large amount of confusion between Label

and Equation strokes when using eight classes. Conversely, having too few classes results

in objects that are not adequately separated from each other after classification. An

example of this is when Arrows and Bodies are part of the same class, as they are in

the non-text class for two-way classification. In general, it is best to classify strokes

into as many classes as can be accurately distinguished. If accurate classification is not
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possible, it is sometimes better to perform grouping without stroke classification.

Additionally, for optimal accuracy, the class distribution should be roughly

equal. Having an unbalanced data set leads to a classifier that is good at classifying

one class at the expense of the others. For example, with statics sketches, there were

many more text strokes than non-text strokes. The classifier became very good at

identifying Text, while it performed poorly on the other classes. The class distribution

can not always be controlled, however the classes should be chosen such that they are

as balanced as possible.

The goal of single-stroke classification is to maximally separate the shapes,

unfortunately, there is no a priori way to pick the best set of classes. We have found

that using a general shape type usually gives a good starting point. For example in

digital circuits, using the class Gates worked better than having one class for and gates,

one for or gates, etc. If the shapes in a class are too close together, causing them to

incorrectly be clustered, more classes are needed to separate them. This is not always

possible, as is evidenced by the Links in family trees (Figure 2.1(c)), as well as Wires in

digital circuits. Finding a good set of classes is the most difficult and time-consuming

part of designing the system for a new domain.

6.1.2 Extension to New Domains

Once a good set of classes has been identified, and sketches have been labeled,

our method can be easily applied to new domains. There is no additional coding neces-

sary. To extend our method, the features must be computed from the sketches, and a

new set of classifiers can then be trained.
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We have demonstrated our method in four domains: digital circuits, family

trees, complete statics solutions, and statics solutions without equations. Our single-

stroke classifier performs best on digital circuits. For family tree diagrams, there are

only 27 sketches, compared to 192 digital circuit diagram sketches, which significantly

reduces the amount of training data. Some of the family-tree sketches and almost all of

the statics sketches had significantly more strokes and many looked “messier” than the

digital circuits; see Appendices A, B, and C for examples. The lack of training data and

the complexity of sketches likely contributed to poorer classification accuracy for family

trees and statics compared to digital circuits.

The domains we have considered have many different characteristics, and rep-

resent a fairly wide range of diagrammatic sketches. Digital circuit sketches have very

little text, and have sets of objects (gates) connected by wires that can overlap. Family

tree diagrams usually have more text, and the text objects contain multiple characters.

Family trees are similar to organizational charts in their construction, having enclosed

objects linked by various connectors – arrows, straight lines, and jagged lines. Statics

solutions do not have the same types of connected objects; instead there are objects

(bodies) with many other types of objects interacting with them. Arrows can overlap

with bodies, while text labels are often found around or inside of bodies. These sketches

also have large amounts of text in the form of equations.

Given the high performance on this wide range of sketches, we believe our

methods will work well for many other types of diagrammatic sketches, such as flow

charts, UML diagrams, and organizational charts. For our method, we have assumed

that a single stroke is not part of more than one object; this is not the case in some
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domains, such as analog circuit diagrams. Our method could potentially work for ana-

log circuits if the strokes were first segmented, and the single-stroke classification was

changed to single-segment classification.

6.1.3 Features

Some domains may benefit from the development of additional features. While

our approach strives to be domain independent, some domains have unique characteris-

tics that are not captured by our current set of features. For our four domains, we have

shown that perceptual and size-based features are often very important. Even still, the

feature rankings varied quite widely between the domains.

To examine the benefit of additional features in complete statics solution

sketches, we added six extra features. Doing so increased the single-stroke classifica-

tion accuracy from 88.8% to 89.5% overall. Similarly, for statics without equations,

accuracy increased from 80.3% to 80.7% overall. Despite these small increases, the

overall grouping accuracies did not measurably improve. It seems that much of the in-

formation that was gained by adding these features was already accounted for in others.

In other words, they did not contain much new information. While the addition of these

six features gave little increase in accuracy, it does not mean that other features can not

provide a large benefit. Additional features likely need to address different aspects of a

stroke in order to be effective.
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6.1.4 Single-Stroke Classification Importance

One of the major insights in this work is that if strokes can be accurately

classified, the sketch can be accurately grouped. For instance, when the strokes in

statics sketches without equations are perfectly classified, grouping accuracy using the

IPC-MD method is 93.0% ink found and 85.5% perfect clusters, compared to 83.9% ink

found and 61.6% perfect clusters when using our single-stroke classifier, which is 88.8%

accurate.

In general, increasing single-stroke classification accuracy directly leads to bet-

ter grouping. This is probably the most effective way to improve grouping, and is the

clearest path forward for improving our algorithm.

6.2 Grouping

We use pairwise classifiers to join strokes in an accurate and efficient manner.

By using pairwise classifiers we do not need to consider a large search space, thus keeping

computation tractable.

6.2.1 Classifiers

In most domains, the single-stroke classification is good enough at separating

the objects that a simple pairwise classifier works well. The Thresholded Pairwise Clas-

sifier (TPC) accurately groups some strokes, however it is not as flexible as our other

methods. The thresholds do not have enough information to accurately group strokes

such as Wires, which often overlap each other, and bodies, which often have long pauses
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between strokes.

There are many subtleties to grouping. For instance, it can be easy to overlook

the fact that the classifiers act on pairs of strokes. However, it is not the pairwise

classification accuracy that is important, but rather the accuracy of the final clusters of

strokes. Chaining stroke pairs which have a stroke in common makes it unnecessary to

actually classify every pair from the same object as being joined. This means that the

program can recover from false-negative joins. The opposite error, a false-positive join,

can be much more damaging because it is unrecoverable. This cost difference seems

to make this situation amenable to a cost-sensitive classifier, however our preliminary

studies of this indicate that there is little or no increase in performance, even with the

false-positive cost being two orders of magnitude greater than the false-negative cost.

This insensitivity to cost suggests that there are pairs of strokes that should not be joined

which have feature values that are virtually identical to many positive join examples.

One example situation where NearJoin and NoJoin instances have very similar

characteristics is in digital circuits when a notbubble is added to the input of a logic gate,

such as in Figure 6.1. These should be two separate objects: an inverter (not) and a

nor logic gate. However the pairwise features for the circle forming the inverter and

the back stroke of the nor gate (which is intersecting it), are very similar to those of

the circle on the right side of the nor gate and the stroke intersecting it. There may be

more cases similar to this which will be very difficult to fix with domain independent

methods.

Besides the TPC method, we also use an Inductive Pairwise Classifier (IPC)
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Figure 6.1: This example shows two different gates, the notbubble on the input side of
a nor gate. The grouping classifier has difficulty learning the difference between the
notbubble that should be joined on the output side of the gate, and the notbubble on the
input side that should not be joined to the gate.

to group strokes together. This method is more flexible, however there is more work

required to properly train the classifier. Using only Join and NoJoin labels, the IPC

is actually less accurate than the TPC. This is likely because the IPC is trained with

information that indicates that every stroke pair from the same object needs to be joined.

This is not the case, because chaining can join distant strokes via intermediate ones. To

improve accuracy, the Joins need to be split up into NearJoins and FarJoins; this allows

the classifier to reliably learn the difference between NearJoins (the most important

cases) and NoJoins. Combining the FarJoins with the NoJoins makes grouping slightly

less accurate for most domains. All three join classes should be kept for optimal classifier

learning.

We experimented with two different techniques for labeling stroke pairs from

the same object as either NearJoin or FarJoin (stroke pairs from different objects are al-

ways labeled as NoJoin). The Minimum Distance (MD) method uses a set of conditions

to determine if the pair is a NearJoin or FarJoin; if any of the three conditions is met,

it is labeled as a NearJoin. The second labeling method is called Iterative Re-Labeling

(IRL). It uses rules to update the labels for the pairwise training examples based on
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errors in the post-chaining clusters.

The MD and IRL methods have comparable accuracy. The advantage of the

MD method is that it is easier to implement, and is quicker to train. The MD method

uses a hard-coded threshold of 200 himetric units; this value is likely not optimal for

all situations. The IRL method does not require a threshold. It can be seeded with

most any set of labels, and within a few iterations will arrive at a near optimal solution.

In fact, we found that seeding the IRL with very little information regarding FarJoins

consistently produced high accuracy. By labeling very few instances as FarJoin in the

seed, the IRL is able to determine which labels are important without bias.

6.2.2 Single-Stroke Classification Errors

Grouping accuracy is greatly affected by the output of the single-stroke classi-

fier. The percentage of ink found is almost directly proportional to single-stroke accu-

racy, while the perfect cluster accuracy is even more dependent on accurate single-stroke

classification. When single-stroke accuracy is too low, it is better to simply skip it. In

these instances, it is better to perform pairwise classification on all nearby stroke pairs.

Here, we examine the differences in errors made for complete statics sketches

with and without single-stroke classification. The grouping accuracies are approximately

equal, however the individual errors are different. When using the single-stroke classifier,

there are more clusters with a missing stroke. This is mostly due to the stroke being

misclassified, and therefore unable to be appropriately grouped. Without the single-

stroke classifier, there are many more clusters that are merges of two shapes. This is

especially true with characters.
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About two-thirds of the clusters that are incorrect using one approach are

correct using the other. By combining the output from grouping with and without

single-stroke classification, we may be able to improve clustering compared to a single

approach on its own. However, there does not seem to be a distinct pattern to the errors,

making it difficult to decide which clustering interpretation to use if they conflict.

6.2.3 Improving Accuracy

We can improve the performance of single-stroke and pairwise classifiers by

incorporating user-specific training examples. We examined this for digital circuits

and complete statics solutions by performing a sketch-holdout validation. In doing

so, we achieved about a 10% reduction in error. For digital circuits, the single-stroke

classification accuracy rose from 93.6% to 94.7%. The grouping accuracy improved as

well, from 90.9% ink found and 79.0% perfect clusters, to 92.1% ink found and 80.6%

perfect clusters. The results are similar for statics solution sketches.

We demonstrated that, for statics solutions, the single-stroke accuracy can

be improved with the development of additional features. It is likely that additional

features would improve pairwise classifier accuracy as well.

6.3 Future Work

While we are able to achieve high accuracy in most domains, there is still

much room for improvement. The most promising path for future work is to improve

single-stroke classification accuracy. Here, we present four potential methods for doing

this.
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The first method improves features that are currently used by the single-stroke

classifier. For example, the Inside a Closed Path feature is currently computed by

checking whether the stroke is contained within the bounding box of the closed path,

which can be much larger than the closed path itself. By using the convex hull of the

closed path, we could more accurately determine whether a stroke is actually inside

the closed path. The convex hull area could also be used to more accurately compute

ink density. It currently uses the area of its bounding box, which can change based

on the stroke’s orientation. The intersection features could also be improved so that

they provide more information than just the number of intersections the stroke has. By

changing the intersection features to include the angle at which the stroke is intersected,

we may be able to better represent a stroke’s context.

The second method develops new features for the single-stroke classifier. We

demonstrated a small improvement for statics solutions by adding six features, and the

accuracy could be further improved with yet more features. Future work should study

how people differentiate objects, which may give insights into new ways to characterize

the stroke.

The third method improves the inductive classifier. We found that AdaBoosted

decision trees performed well, however, there are many classification techniques that we

did not explore. Alternatively, we could try to improve the AdaBoosted classifier. While

it would make the classifier more complex, adding more iterations may improve accuracy.

Different base classifiers may also be more accurate than decision trees, and should be

explored.

The forth method corrects single-stroke classification errors before grouping.
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By adding a post-single-stroke classification step, we may be able to fix some of the incor-

rectly classified strokes. For example, we could add another classifier (after single-stroke

classification) that uses features based on a stroke’s neighbors and their classifications.

Besides improving single-stroke classification accuracy, further research should

improve pairwise classification. It could be improved by adding new features, or improv-

ing the inductive classifier, similar to single-stroke classification. Also, using the output

from the Thresholded Pairwise Classifier in conjunction with that of the Inductive Pair-

wise Classifier may be helpful in determining the pair’s true classification. While we

explored a number of pair labeling techniques, there are likely some optimizations left

to be done.

We developed two different pairwise classifiers; future work should develop ad-

ditional techniques. For example, agglomerative clustering may work well for grouping

strokes after they have been separated. Since single-stroke classification creates separa-

tion between objects, some previously developed grouping techniques, which were too

computationally expensive before, may become tractable.

Finally, we have evaluated our technique using four domains. Future work

should extend this method to new domains, showing that our method is indeed extend-

able to a wide variety of situations.
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Chapter 7

Literature Review

As the field of sketch understanding grows, there are an increasing number of

systems that attempt sketch recognition. However, to our knowledge no one has pre-

viously created a general purpose method for grouping strokes, without using recog-

nition, in freely-drawn diagrammatic sketches. In this chapter we discuss previous

full sketch recognition systems [1, 5, 8, 10, 12, 16, 21, 19, 37, 40], symbol recognizers

[6, 13, 15, 22, 31, 32, 34, 35, 45, 48], and single-stroke classifiers [3, 4, 5, 30, 33, 43, 44]

as they relate to our work.

7.1 Full Sketch Recognition

Researchers have used a number of techniques for full sketch recognition sys-

tems, which group and recognize objects to interpret the sketch. Some systems avoid

automatic grouping by requiring the user to manually select strokes that belong together.

Other systems group strokes and recognize them using special heuristics that are unique
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to a domain. Many systems rely on search and recognition to interpret the sketch by

enumerating and evaluating many hypotheses. In this section we discuss examples of

each of these techniques.

One approach to sketch recognition is to simplify the problem by removing

automated grouping. LaViola and Zeleznik do this in MathPad2 by requiring the user

to manually select the strokes in a group [19]. The system then attempts to recognize

the selection as a string, which is to be evaluated by Matlab. While this is an effective

means of obtaining the groups in a sketch, it places a burden on the user to either

interrupt their sketching process or go back after completing the sketch and select all

of the groups. Doing this can be quite tedious, especially if there is a large number of

groups in the sketch.

Another (similar) approach is presented in [16]. Here, Hse and Newton “beau-

tify” strokes for use in PowerPoint slides using the recognition technique described in

[15]. However, like MathPad2, this system requires the user to provide an explicit cue

to group strokes together, although in this case it is a button click. After the user has

drawn a symbol, (s)he clicks the ‘recognize’ button which takes all strokes drawn since

the last click of the button and groups them together. While this may be adequate for

some domains, this type of interaction is not desirable in a free-sketch environment.

A more automated, yet domain-specific, approach is AC-SPARC, presented by

Gennari et al. [10]. It takes uninterrupted input from the user as (s)he draws an analog

circuit diagram and automatically detects the groups of stroke segments (fragments)

and recognizes them using a feature-based multi-stroke recognizer. AC-SPARC uses an

“ink-density” heuristic, computed for the preceding n strokes, to determine boundaries
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between symbols. The algorithm requires that a symbol be finished before the next one

is begun (i.e., interspersing of symbols is not allowed), and places an upper-bound on

the number of segments in a cluster to simplify and enable accurate grouping. These

constraints, along with relying solely on ink-density to locate clusters, prevent the system

from being extended to other domains.

Kara et al. have developed two systems which attempt free-sketch recognition:

SimuSketch [21] and VibroSketch [20]. SimuSketch is a graphical interface for Matlab’s

Simulink software package. It uses “mark-group-recognize” to understand the sketch;

this technique is part of the inspiration for our work. The marker symbols, which are

objects that can be easily found in the sketch, simplify grouping. In this application,

arrows act as marker symbols. Users draw Simulink objects that are connected by ar-

rows. The system automatically detects the marker arrows and associates the remaining

strokes with the nearest arrow head or tail. Strokes that are associated with the same

arrow endpoint or that have overlapping bounding boxes are clustered together to form

the sketched Simulink objects. The mark-group-recognize approach is also used in Vi-

broSketch to analyze vibratory systems. However, the marker symbols are no longer

arrows, and instead are mechanical bodies and grounds. By removing the marker sym-

bols from the vibratory sketch, the remaining objects (springs, dampers, and applied

forces) are spatially separated from each other, making the grouping part significantly

easier. VibroSketch groups the remaining objects using an agglomerative hierarchical

algorithm. These two systems are domain-specific and required hand tuning to ob-

tain effective marker symbols. Our work effectively generalizes the marking process by

separating the sketch into multiple classes, and it improves the grouping.
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Shilman et al. have developed a technique which performs a “layout analysis”

to identify strokes to cluster together based on how well they line up [41]. It first forms

strokes into “words,” then “lines,” and finally “paragraphs” using temporal information,

followed by spatially-based merges. It then classifies the strokes as either text or graphics

based on the number of fragments in the group and the linear regression error of the

fragments’ centroids. This work is similar to the work presented here in that it focuses on

grouping (layout analysis), and does not go on to recognize the individual components.

Instead it simply classifies the objects (and the strokes within them) as text or graphics.

This technique is highly tuned for text and cannot easily be generalized to diagrammatic

sketches.

In other work by Shilman et al., a statistical visual language model is created for

a domain to enable spatially-based parsing of ink strokes [39]. This method uses a hand-

generated grammar for each new domain, which requires a domain expert to implement

because the constraints between variables are hand-coded thresholds. Although new

thresholds are later learned from examples which overwrite the hand-coded values, this

type of system requires too much expert interaction for it to be considered an easily

extensible method. In later work Shilman and Viola developed a method to group and

recognize text and graphics in a purely spatial manner [40]. This technique forms a

neighborhood graph of the strokes and uses A* search to find the solution which best

explains all strokes in the sketch given a cost function and the recognition results. It

uses a vision-based recognizer similar to [29] to evaluate hypothetical clusters, and is

able to detect “garbage” stroke groupings. This technique has a few limitations, namely

that there is a fixed threshold for determining the neighborhood graph, a restriction on
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the maximum size of a group, and what appears to be a computational complexity that

is exponential in the number of strokes on the page.

Alvarado and Davis present an approach to full sketch recognition which uses

dynamically constructed Bayes nets and a bottom-up plus top-down hypothesis gener-

ation and recognition scheme which uses context to aid understanding [1]. As part of

the bottom-up step, the strokes are broken up into fragments which are then recognized

as geometric primitives. The primitives are then hypothesized to be part of various

shapes. The top-down step looks at hypothesized shapes and tries to match geometric

primitives to any missing constraints to complete the hypothesis. The most likely set of

non-conflicting hypotheses is used. The probabilistic framework makes this approach a

good fit for sketch understanding because of its ability to handle ambiguity. This method

suffers from two limitations. First, as the number of strokes in the sketch increases, the

computation time required to form and evaluate all hypotheses grows to a level that is

not manageable for interactive systems. Second, all strokes in a sketch require an ex-

planation, a problem when the sketch contains overstroking, or erroneous/meaningless

strokes.

Sezgin and Davis attempt to solve full sketch recognition using hidden Markov

models (HMMs) to exploit the temporal nature of sketching [38]. However, this tech-

nique limits the user to drawing objects sequentially, puts a cap on the number of stroke

primitives in an object, and requires the user to draw an object in a previously defined

stroke order. They studied human drawing behavior as it relates to the number of

unique stroke orderings and found that although the theoretical number of stroke or-

derings is quite large, only a small subset of those orderings is actually used, especially
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for a single user. Later work [37] was focused on removing the requirement to finish one

shape before starting the next (i.e., allow interspersed drawings), and was accomplished

by using dynamic Bayesian networks (DBNs) instead of HMMs. This work appears to

provide an efficient full sketch recognition technique in an almost freely-drawn manner,

however the system is unable to handle multiple interspersings. The system also requires

that the strokes be broken down into meaningful primitives. Further, the system seems

to be able to handle only line segment primitives (some of the features are based on

properties of line segments), restricting it to domains with shapes composed entirely of

line segments.

Feng et al. have created a system [8] for recognizing sketches that is similar

to Sezgin and Davis’ work [37]. They use a 2D dynamic programming approach to

parse segments and then recognize them using either a neural network classifier (for

circuit components) or a method based on least-squares fit error for connectors (wires).

This approach has some limitations. Perhaps the biggest is the use of a specially tuned

recognizer for connectors, making the approach more difficult to generalize than Sezgin et

al.’s. The system also places a number of constraints on shapes to simplify the segment

parsing (i.e., clustering). These include: a maximum number of stroke segments, a

maximum distance between stroke segments, and a maximum number of time-jumps

(interspersings).

Cowans and Szummer attempt simultaneous parsing and classification of stroke

segments using a graphical model based on the potentials of the individual fragments

and the pairwise potentials between fragments [7]. They report low error rates on

labeling the fragments, however they do not report accuracies for grouping. The method
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restricts stroke fragments to straight lines and the computational complexity increases

very rapidly with the maximum allowable clique (group) size.

7.2 Symbol Recognition

Symbol recognition is defined here as the process of recognizing an isolated

set of one or more strokes. It can be split into two general types: single-stroke and

multi-stroke. One of the most active areas of sketch recognition research has been the

development of multi-stroke symbol recognizers. Most of these recognizers use either

visual or shape information.

One of the most common approaches to multi-stroke recognition is to use the

visual information. One example of this is by Kara and Stahovich, who created an image-

based recognizer which compares an unknown symbol to exemplars and computes four

similarity metrics between the bitmap images of the unknown and exemplar symbols

[22]. More recently Ouyang and Davis created a visual approach to symbol recognition

that extracts feature images corresponding to stroke orientations and endpoints. It then

compares the set of feature images to templates that are stored hierarchically, which

decreases computation during comparison [29].

A recognizer by Hse and Newton converts the visual representation of a sym-

bol into features representing the Zernike Moments [15]. Calhoun et al. use a trainable

multi-stroke recognizer which learns definitions in terms of the symbol’s constituent

geometric primitives (lines and arcs) [6]. Here, a stroke is segmented using its speed

and curvature, and the segments are fit to geometric primitives. Taking a different
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approach, Lee et al. use a graph-based recognizer for multi-stroke symbols [25]. This

recognizer uses statistical models for symbol definitions and the geometry as well as

topology of the symbol to determine the best match. Hammond and Davis have de-

veloped a method which converts structural symbol descriptions into domain-specific

recognizers [13]. They use their LADDER language to describe relations between geo-

metric primitives in a symbol, which are used to identify an unknown symbol. These

four approaches are representative of a larger body of non-visual multi-stroke symbol

recognizers.

Single-stroke recognition techniques are typically simpler than multi-stroke

techniques and are usually referred to as gesture recognizers. One of the earliest gesture

recognizers was developed by Rubine [35]. It computes geometric and dynamic features

of the stroke for input to a linear discriminator for classification. More recent work

by Wobbrock et al. [45] uses a more structural description (resampled points along the

stroke’s path) and a simple template-matching algorithm to determine the most likely

result. Because of the restriction to recognize single strokes, these types of techniques

are not suited to full sketch recognition.

Primitive recognition is related to single-stroke symbol recognition. Here, a

single stroke is segmented by one of a number of algorithms ([42, 46, 47]), and the

resulting segments are then recognized as different geometric primitives – usually lines

and arcs, however some recognizers include more complex primitives [31, 32, 34, 42, 48].

There is a large body of work on symbol recognition, however this work requires

separate methods for grouping. Our work provides this grouping technique, and can be

used in combination with these recognizers to create a full sketch recognition system.
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7.3 Single-Stroke Classification

Identifying a stroke according to its general type is referred to here as single-

stroke classification. It is similar to single-stroke recognition, and it could indeed be

argued that some methods can be used for both. Here we make the distinction that

single-stroke classification refers to labeling strokes in a full sketch, as compared to

recognition which looks at strokes more in isolation. Additionally, classification differs

from recognition in the specificity of the output. Classification identifies a general label

while recognition identifies a specific label. For instance, a classifier might identify a

stroke as a character, while a recognizer identifies it as the letter a.

The most common application of single-stroke classification is dividing text

from graphics strokes [3, 5, 30, 44], allowing a system to send the text to a specialized

handwriting recognition system, while the graphics are usually not processed further.

Although classification is used for a different purpose than symbol and primitive recog-

nition (7.2), there is a large amount of overlap between algorithms and features used for

the different tasks.

Bishop et al. describe an algorithm for separating text from graphics using a

combination of the features of the individual strokes and gaps between them [5]. An

initial classification for each stroke is obtained with a multi-layer perceptron (MLP)

using each stroke’s geometric features as the input. The system then uses a hidden

Markov model (HMM) to optimize the sequence of stroke states using the transition

probabilities between class labels (uni-partite) or a combination of the stroke states and

the gap states (bi-partite). This method achieved low error rates on two separate data
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sets, however the prior class distribution is weighted heavily to text.

Wang et al. improve on Bishop et al.’s work by addressing the class distri-

bution issues [44]. They use an adjustment to the outputs of the MLPs to reflect a

priori probabilities, yielding more accurate estimates of the posterior probabilities.

Using a collection of ink features, Patel et al. perform text and graphic classi-

fication for diagram recognition [30]. They report error rates as low as 10.8% for shapes

and 8.8% for text, although it is unclear how they separated the training and test sets.

With a new diagram set their error rates increased, although it is unclear how the clas-

sifier was trained. The algorithm computes many features (some of which are used or

adapted in this dissertation) and uses their values as inputs to a decision tree classifier.

However it should be noted that they restrict themselves to classifying text vs. non-text

while we consider multiple classes, and that we report higher accuracies.

One of the most recent approaches to distinguishing text from graphics strokes

is presented by Bhat and Hammond [3]. Here they calculate the “entropy” of the

stroke as it relates to the sequence of angles between consecutive points. This approach

achieved high accuracy in their tests. However, it usually performed worse than our

method on the domains presented in this dissertation (see Section 5.1).

Not all previous stroke classification has been used for text versus non-text.

Bischel et al. present a method to separate gesture from non-gesture strokes in uncon-

strained multi-modal descriptions of mechanical devices [4]. This method is similar to

ours in that there are many features computed which are sent to a trained MLP classifier,

however the feature set, classifier, and the number of output classes differ. Many of the

features used are derived from transcripts of device description (verbal communication
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between users), which is a modality that is not available to our system.

Recognizing the importance of context in stroke classification, Szummer and

Qi developed a conditional random field (CRF) model of site and interaction potentials

to classify object and connector stroke fragments in hand-drawn diagrams [43]. This

approach assumes that text has already been separated from graphics, and allows the

classifications of stroke fragments to influence the classifications of neighboring strokes.

Improving on their previous technique, Qi et al. use a Bayesian CRF, with

model averaging, which avoids the over-fitting problems that can occur with maximum

likelihood (ML) and maximum a posteriori (MAP) trained CRFs [33].

Our work goes beyond each of the methods here by presenting results of multi-

class labeling of strokes. It is also of comparable or better accuracy than previous

methods. Further, we are the first to use single-stroke classification as a way to cre-

ate spatial and temporal separation between objects to facilitate efficient and accurate

grouping.
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Chapter 8

Conclusions

We have developed a novel and effective method to group strokes into objects

in hand-drawn diagrams. In this chapter we review the contributions detailed in this

dissertation.

• Our two-step grouping technique is the first to demonstrate that separating the

strokes in a sketch into classes, using a general classification algorithm, is an

effective method for enabling accurate stroke grouping. Single-stroke classification

is important because it creates spatial and temporal separation between objects.

• This work is the first to develop general-purpose techniques for stroke grouping

independent of recognition. To aid future work, we have provided results for two

grouping methods to serve as benchmarks. Additionally, our grouping accuracy

metrics are meaningful ways to describe a cluster’s correctness, and are based on

the length of the strokes in the cluster and the number of incorrectly grouped

strokes.
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• Our single-stroke classification technique is used to separate the strokes in a sketch,

and is the first reported work to classify strokes into three or more classes. Addi-

tionally, it performs as well as or better than two previous state-of-the-art tech-

niques for text versus non-text classification. Our set of features extends previous

work and includes many contextual features, which were found to be some of the

most important features for accurate classification.

• Finally, we have developed a method for grouping strokes in polynomial time

using pairwise classification of strokes to determine which pairs belong to the same

object. This is in contrast to many previous methods which require exponential

time or that limit drawing freedom.

Our two-step grouping technique is able to accurately cluster strokes much

faster than the user can draw, thus it can be used in an interactive system. We have

shown that separating the strokes in a sketch into several classes significantly reduces the

grouping complexity. Our techniques are general, and can be applied to a new domain

with little effort and no hand-coding. Further, they do not impose unnatural constraints

on how a user draws, such as requiring a shape to be finished before beginning a new

shape, or limiting the user to certain primitive shapes. Instead, our techniques learn

how people naturally draw from training examples. There has been much progress in

sketch recognition and interpretation, but previous approaches have lacked a robust and

efficient, general-purpose grouping algorithm. Our work is an important step towards

solving this challenging step, and provides a framework upon which sketch-based tools

can be created.
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Appendix A

Digital Circuit Diagrams

A.1 Examples of Single-Stroke Classifier Performance

Figure A.1: Example of the single-stroke classifier performing well on a digital circuit
sketch.
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Figure A.2: Example of the single-stroke classifier performing poorly on a digital circuit
sketch.

Figure A.3: Example of average performance of the single-stroke classifier on a digital
circuit sketch.
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A.2 Sample User-Study Sketches

Figure A.4: Sample digital circuit sketch, drawn on a Tablet PC by user number 2,
while copying a circuit.
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Figure A.5: Sample digital circuit sketch, drawn on a Tablet PC by user number 2,
while synthesizing a circuit from an equation.

Figure A.6: Sample digital circuit sketch, drawn using an ink pen on a digitizing tablet
by user number 2, while copying a circuit.

Figure A.7: Sample digital circuit sketch, drawn using an ink pen on a digitizing tablet
by user number 2, while synthesizing a circuit from an equation.
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Figure A.8: Sample digital circuit sketch, drawn on a Tablet PC by user number 5,
while copying a circuit.

Figure A.9: Sample digital circuit sketch, drawn on a Tablet PC by user number 5,
while synthesizing a circuit from an equation.

Figure A.10: Sample digital circuit sketch, drawn on a Tablet PC by user number 7,
while copying a circuit.

Figure A.11: Sample digital circuit sketch, drawn on a Tablet PC by user number 10,
while synthesizing a circuit from an equation.
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Figure A.12: Sample digital circuit sketch, drawn on a Tablet PC by user number 14,
while synthesizing a circuit from an equation.

Figure A.13: Sample digital circuit sketch, drawn on a Tablet PC by user number 16,
while copying a circuit.

Figure A.14: Sample digital circuit sketch, drawn on a Tablet PC by user number 16,
while synthesizing a circuit from an equation.
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Figure A.15: Sample digital circuit sketch, drawn on a Tablet PC by user number 23,
while copying a circuit.

Figure A.16: Sample digital circuit sketch, drawn using an ink pen on a digitizing tablet
by user number 23, while copying a circuit.
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Appendix B

Statics Solutions

B.1 User Study Prompts
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Figure B.1: Prompt for a statics problem used in the study. Image and prompt are from
Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used with
permission. The image and prompt were modified, replacing all numeric values with
variables.
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The simple crane supports the load with weight W. Determine the tension T in the cable 
and the magnitude of the pin reaction at O. 
 

Figure B.2: Prompt for a statics problem used in the study. Image and prompt are from
Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used with
permission. The image and prompt were modified, replacing all numeric values with
variables.
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When the crank AB is vertical, the beam CD is horizontal and the cable makes an angle θ 
with the horizontal. Compute the moment M required for equilibrium of the frame. 
 
 

   

Figure B.3: Prompt for a statics problem used in the study. Image and prompt are from
Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used with
permission. The image and prompt were modified, replacing all numeric values with
variables.
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Determine the compression force C exerted on the can for an applied force P when the 
can crusher is in the position shown. Note that there are two links AB and two links AOD, 
with one pair of linkages on each side of the stationary portion of the crusher. Also, pin B 
is on the vertical centerline of the can. Finally, note that small square projections E of the 
moving jaw move in recessed slots of the fixed frame. 
 

Figure B.4: Prompt for a statics problem used in the study. Image and prompt are from
Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used with
permission. The image and prompt were modified, replacing all numeric values with
variables.
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The car hoist allows the car to be driven onto the platform, after which the rear wheels 
are raised. If the loading from both rear wheels is W, determine the force in the hydraulic 
cylinder AB. Neglect the weight of the platform itself. Member BCD is a right-angle bell 
crank pinned to the ramp at C. 
 

Figure B.5: Prompt for a statics problem used in the study. Image and prompt are from
Engineering Mechanics: Statics [27], copyright John Wiley and Sons, Inc., used with
permission. The image and prompt were modified, replacing all numeric values with
variables.
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B.2 Examples of Single-Stroke Classifier Performance
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Figure B.6: Example of the single-stroke classifier performing well on a complete statics
solution sketch.

Figure B.7: Example of the single-stroke classifier performing poorly on a complete
statics solution sketch.
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Figure B.8: Example of the average performance of the single-stroke classifier on a
complete statics solution sketch.

B.3 Sample User-Study Sketches
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Figure B.9: Sample of a statics solution sketch, drawn by user 1, for the crane problem
shown in Figure B.2

Figure B.10: Sample of a statics solution sketch, drawn by user 1, for the car hoist
problem shown in Figure B.5
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Figure B.11: Sample of a statics solution sketch, drawn by user 2, for the crank problem
shown in Figure B.3
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Figure B.12: Sample of a statics solution sketch, drawn by user 2, for the can crusher
problem shown in Figure B.4

Figure B.13: Sample of a statics solution sketch, drawn by user 5, for the landing gear
problem shown in Figure 4.3
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Figure B.14: Sample of a statics solution sketch, drawn by user 5, for the slip-joint pliers
problem shown in Figure B.1

Figure B.15: Sample of a statics solution sketch, drawn by user 7, for the slip-joint pliers
problem shown in Figure B.1
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Figure B.16: Sample of a statics solution sketch, drawn by user 7, for the car hoist
problem shown in Figure B.5
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Figure B.17: Sample of a statics solution sketch, drawn by user 11, for the can crusher
problem shown in Figure B.4

Figure B.18: Sample of a statics solution sketch, drawn by user 11, for the landing gear
problem shown in Figure 4.3
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Figure B.19: Sample of a statics solution sketch, drawn by user 15, for the crane problem
shown in Figure B.2

Figure B.20: Sample of a statics solution sketch, drawn by user 15, for the crank problem
shown in Figure B.3
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Figure B.21: Sample of a statics solution sketch, drawn by user 16, for the car hoist
problem shown in Figure B.5

Figure B.22: Sample of a statics solution sketch, drawn by user 16, for the can crusher
problem shown in Figure B.4
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Appendix C

Family Tree Diagrams

C.1 Examples of Single-Stroke Classifier Performance

Figure C.1: Example of the single-stroke classifier performing well on a family tree
sketch.
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Figure C.2: Example of the single-stroke classifier performing poorly on a family tree
sketch.

Figure C.3: Example of average performance of the single-stroke classifier on a family
tree sketch.
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C.2 Sample User-Study Sketches

Figure C.4: Sample family tree sketch from user number 1.
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Figure C.5: Sample family tree sketch from user number 1.

Figure C.6: Sample family tree sketch from user number 1.

Figure C.7: Sample family tree sketch from user number 2.

Figure C.8: Sample family tree sketch from user number 2.
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Figure C.9: Sample family tree sketch from user number 4.

Figure C.10: Sample family tree sketch from user number 4.

Figure C.11: Sample family tree sketch from user number 5.

Figure C.12: Sample family tree sketch from user number 5.

Figure C.13: Sample family tree sketch from user number 8.
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Figure C.14: Sample family tree sketch from user number 8.
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Appendix D

Tabulated Results

D.1 Single-Stroke Feature Importance
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Feature Importance Digital Circuits - Single-Stroke Classification

Average Merit Average Rank Attribute Name

0.391 +- 0.003 1 +- 0 Part of a Closed Path
0.211 +- 0.004 2 +- 0 Inside a Closed Path
0.173 +- 0.019 3 +- 0 Distance To Left or Right Edge
0.115 +- 0.007 4.2 +- 0.4 Number of LX Intersections
0.108 +- 0.001 4.8 +- 0.4 Bounding Box Width
0.09 +- 0.009 7 +- 1.79 Time to Previous Stroke
0.086 +- 0.001 7.1 +- 0.54 Bounding Box Height
0.083 +- 0.007 8.7 +- 2.1 Arc Length
0.081 +- 0.003 9 +- 1.26 End Point to Arc Length Ratio
0.079 +- 0.002 9.4 +- 0.92 Number of XX Intersections
0.078 +- 0.003 10.3 +- 1 Time to Draw Stroke
0.073 +- 0.004 11.5 +- 0.92 Bounding Box Area
0.059 +- 0.002 13 +- 0 Sum of Thetas
0.052 +- 0.004 14.3 +- 0.46 Time to Next Stroke
0.048 +- 0.001 14.8 +- 0.6 Self Enclosing
0.043 +- 0.003 15.9 +- 0.3 Number of LL Intersections
0.038 +- 0.001 17 +- 0 Path Density
0.031 +- 0.001 18.9 +- 0.7 Minimum Pen Speed
0.029 +- 0.001 20.8 +- 1.08 Number of Self Intersections
0.03 +- 0.002 21 +- 1.67 Distance To Top or Bottom Edge
0.029 +- 0.001 21.1 +- 1.22 Sum of Abs Value of Thetas
0.028 +- 0.002 21.9 +- 1.81 (Max - Min) Pen Speed
0.027 +- 0.003 22.8 +- 2.52 Average Pen Speed
0.026 +- 0.007 22.9 +- 3.91 Sum of Squared Thetas
0.027 +- 0.001 23.5 +- 1.69 Sum of Sqrt of Thetas
0.024 +- 0.001 25.4 +- 0.92 Maximum Pen Speed
0.02 +- 0.001 26.7 +- 0.46 Number of XL Intersections

Table D.1: Ranked list of features for single-stroke classification in digital circuits.
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Feature Importance Family Trees - Single-Stroke Classification

Average Merit Average Rank Attribute Name

0.443 +- 0.01 1.1 +- 0.3 Inside a Closed Path
0.425 +- 0.006 1.9 +- 0.3 Part of a Closed Path
0.38 +- 0.006 3 +- 0 Self Enclosing
0.199 +- 0.018 5.1 +- 1.14 Bounding Box Area
0.196 +- 0.011 5.1 +- 1.22 End Point to Arc Length Ratio
0.191 +- 0.011 5.6 +- 0.92 Distance To Left or Right Edge
0.176 +- 0.01 6.3 +- 0.9 Bounding Box Width
0.158 +- 0.003 8.2 +- 0.6 Arc Length
0.151 +- 0.01 8.7 +- 0.46 Bounding Box Height
0.131 +- 0.006 10.8 +- 0.6 Time to Draw Stroke
0.129 +- 0.015 11.6 +- 2.01 Time to Previous Stroke
0.124 +- 0.008 12 +- 1.26 Time to Next Stroke
0.118 +- 0.006 13 +- 1.34 Number of XX Intersections
0.116 +- 0.006 13 +- 0.89 Path Density
0.104 +- 0.006 15.1 +- 0.83 Sum of Sqrt of Thetas
0.103 +- 0.004 15.7 +- 0.64 Distance To Top or Bottom Edge
0.085 +- 0.006 17.2 +- 0.87 Number of LX Intersections
0.083 +- 0.003 17.6 +- 0.49 Sum of Thetas
0.066 +- 0.005 19.6 +- 0.66 Number of XL Intersections
0.062 +- 0.004 19.7 +- 0.64 Average Pen Speed
0.049 +- 0.006 21.9 +- 1.04 Sum of Abs Value of Thetas
0.047 +- 0.006 22 +- 1.1 Maximum Pen Speed
0.045 +- 0.005 22.7 +- 0.78 (Max - Min) Pen Speed
0.041 +- 0.011 23.1 +- 1.58 Sum of Squared Thetas
0.022 +- 0.002 25.1 +- 0.3 Number of LL Intersections
0.017 +- 0.002 25.9 +- 0.3 Minimum Pen Speed

0 +- 0 27 +- 0 Number of Self Intersections

Table D.2: Ranked list of features for single-stroke classification in family trees.
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Feature Importance Statics - Single-Stroke Classification

Average Merit Average Rank Attribute Name

0.091 +- 0.002 1 +- 0 Inside a Closed Path
0.083 +- 0.001 2 +- 0 Number of XX Intersections
0.073 +- 0.003 3.2 +- 0.4 Bounding Box Area
0.068 +- 0.004 4 +- 0.63 Arc Length
0.066 +- 0.002 4.8 +- 0.4 Bounding Box Width
0.061 +- 0.002 6.2 +- 0.4 Time to Draw Stroke
0.055 +- 0.003 7 +- 0.63 Average Pen Speed
0.053 +- 0.001 7.8 +- 0.4 Bounding Box Height
0.044 +- 0.001 9 +- 0 Sum of Sqrt of Thetas
0.036 +- 0.001 10.7 +- 0.78 Part of a Closed Path
0.036 +- 0.002 11.3 +- 1.49 Time to Previous Stroke
0.035 +- 0.001 12.3 +- 0.9 Sum of Abs Value of Thetas
0.035 +- 0.001 12.8 +- 0.87 Number of LL Intersections
0.033 +- 0.003 14.4 +- 2.62 Maximum Pen Speed
0.032 +- 0.002 15.2 +- 1.4 (Max - Min) Pen Speed
0.031 +- 0.001 15.9 +- 1.04 End Point to Arc Length Ratio
0.031 +- 0.001 16 +- 1.34 Time to Next Stroke
0.03 +- 0.001 17.4 +- 0.8 Self Enclosing
0.026 +- 0.001 19.1 +- 0.3 Number of XL Intersections
0.024 +- 0.001 20.3 +- 0.64 Distance To Left or Right Edge
0.024 +- 0.001 20.6 +- 0.49 Sum of Squared Thetas
0.021 +- 0.001 22.1 +- 0.3 Number of LX Intersections
0.018 +- 0.001 23.3 +- 1 Distance To Top or Bottom Edge

0.015 +- 0 24.8 +- 0.6 Sum of Thetas
0.015 +- 0.001 24.8 +- 0.98 Number of Self Intersections
0.014 +- 0.002 25.4 +- 1.43 Path Density

0.013 +- 0 26.6 +- 0.66 Minimum Pen Speed

Table D.3: Ranked list of features for single-stroke classification in complete statics
solutions.
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Feature Importance Statics (NoEqn) - Single-Stroke Classification

Average Merit Average Rank Attribute Name

0.163 +- 0.001 1 +- 0 Bounding Box Area
0.152 +- 0.01 2.5 +- 1.02 Bounding Box Height
0.149 +- 0.003 3 +- 0.63 Part of a Closed Path
0.143 +- 0.005 3.7 +- 0.64 Arc Length
0.134 +- 0.004 5 +- 0.77 Bounding Box Width
0.128 +- 0.003 6.3 +- 0.64 Number of XX Intersections
0.126 +- 0.003 6.5 +- 0.5 Time to Draw Stroke
0.111 +- 0.002 8.4 +- 0.49 Sum of Sqrt of Thetas
0.109 +- 0.003 8.7 +- 0.64 Time to Previous Stroke
0.1 +- 0.003 10.1 +- 0.3 Self Enclosing

0.094 +- 0.003 11.2 +- 0.6 Sum of Abs Value of Thetas
0.088 +- 0.002 12.2 +- 0.6 Time to Next Stroke
0.08 +- 0.003 13.7 +- 0.64 End Point to Arc Length Ratio
0.077 +- 0.014 14.4 +- 2.65 Average Pen Speed
0.075 +- 0.003 14.4 +- 0.66 (Max - Min) Pen Speed
0.071 +- 0.003 15.7 +- 0.64 Maximum Pen Speed
0.068 +- 0.004 16.2 +- 1.17 Sum of Squared Thetas
0.043 +- 0.002 18.2 +- 0.4 Number of XL Intersections
0.04 +- 0.001 18.8 +- 0.4 Sum of Thetas
0.037 +- 0.002 20 +- 0 Distance To Left or Right Edge
0.033 +- 0.001 21.4 +- 0.49 Inside a Closed Path
0.033 +- 0.001 21.6 +- 0.49 Path Density
0.027 +- 0.001 23.8 +- 0.87 Minimum Pen Speed
0.028 +- 0.001 23.9 +- 0.7 Number of Self Intersections
0.027 +- 0.001 24.3 +- 0.78 Number of LL Intersections
0.017 +- 0.001 26 +- 0 Distance To Top or Bottom Edge
0.015 +- 0.001 27 +- 0 Number of LX Intersections

Table D.4: Ranked list of features for single-stroke classification in statics solutions
without equations.

176



D.2 Pairwise Feature Importance

Feature Importance, Pairwise - Digital Circuits - Gate

Average Merit Average Rank Attribute Name

.619 +- .003 1 +- 0 Part of Same Closed Path

.393 +- .002 2.5 +- 0.5 Minimum Distance

.378 +- .042 3 +- 1.18 Closeness Small

.341 +- .023 4.1 +- 0.7 Centroid Distance
.321 +- .03 4.9 +- .94 Closeness Large
.298 +- .017 5.8 +- .75 Minimum Endpoint to Endpoint Distance
.269 +- .029 7.3 +- 1.19 Minimum Endpoint to Any point Distance
.256 +- .015 7.7 +- .78 Time Gap
.235 +- .01 8.7 +- .64 Maximum Distance
.129 +- .005 10 +- 0 X-Overlap
.111 +- .003 11 +- 0 Y-Overlap
.009 +- 0 12 +- 0 Ratio XL
.008 +- 0 13 +- 0 Ratio LL

Table D.5: Ranked list of features for pairwise classification of gates in digital circuits.

Feature Importance, Pairwise - Digital Circuits - Wire

Average Merit Average Rank Attribute Name

.301 +- .005 1 +- 0 Part of Same Closed Path

.189 +- .015 2.8 +- 1.08 Closeness Small

.189 +- .012 3 +- .77 Minimum Endpoint to Any point Distance

.182 +- .004 3.3 +- .64 Minimum Distance

.156 +- .015 4.9 +- .3 Closeness Large

.108 +- .001 6 +- 0 Minimum Endpoint to Endpoint Distance
.07 +- .006 7.4 +- .49 X-Overlap
.065 +- 002 7.6 +- .49 Y-Overlap
.038 +- .001 9.1 +- .3 Centroid Distance
.034 +- .002 9.9 +- .3 Maximum Distance
.029 +- .002 11 +- 0 Time Gap
.012 +- .002 12 +- 0 Ratio LL
.006 +- 0 13 +- 0 Ratio XL

Table D.6: Ranked list of features for pairwise classification of wires in digital circuits.
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Feature Importance, Pairwise - Digital Circuits - Label

Average Merit Average Rank Attribute Name

.882 +- .004 1 +- 0 Minimum Distance

.647 +- .015 2.3 +- .46 Closeness Small

.612 +- .037 3.1 +- .7 Minimum Endpoint to Any point Distance

.594 +- .027 3.6 +- .66 Centroid Distance

.551 +- .009 5.1 +- .3 Y-Overlap
.528 +- .01 5.9 +- .3 Minimum Endpoint to Endpoint Distance
.511 +- .005 7 +- 0 Part of Same Closed Path
.428 +- .022 8 +- 0 Maximum Distance
.307 +- .03 9.4 +- .49 Time Gap
.28 +- .003 9.4 +- .49 Closeness Large
.077 +- .002 11 +- 0 X-Overlap
.026 +- .002 12 +- 0 Ratio LL
.022 +- .002 13 +- 0 Ratio XL

Table D.7: Ranked list of features for pairwise classification of labels in digital circuits.

Feature Importance, Pairwise - Family Trees - People

Average Merit Average Rank Attribute Name

.809 +- .007 1 +- 0 Part of Same Closed Path
.64 +- .087 2.3 +- .46 Minimum Endpoint to Endpoint Distance
.582 +- .091 2.7 +- .46 Minimum Distance
.428 +- .015 4 +- 0 Closeness Small
.363 +- .006 5 +- 0 Minimum Endpoint to Any point Distance
.338 +- .005 6 +- 0 Centroid Distance
.252 +- .003 7 +- 0 Closeness Large
.201 +- .011 8 +- 0 Time Gap
.141 +- .008 9.1 +- .3 Maximum Distance
.131 +- .003 9.9 +- .3 X-Overlap
.082 +- .003 11+- 0 Y-Overlap
.067 +- .007 12 +- 0 Ratio LL
.015 +- .003 13 +- 0 Ratio XL

Table D.8: Ranked list of features for pairwise classification of people in family trees.

178



Feature Importance, Pairwise - Family Trees - Text

Average Merit Average Rank Attribute Name

.469 +- .004 1 +- 0 Part of Same Closed Path

.322 +- .004 2.3 +- .46 Time Gap
.305 +- .01 3.2 +- .4 Closeness Small
.301 +- .002 3.8 +- .4 Closeness Large
.286 +- .003 5.2 +- .4 Minimum Distance
.28 +- .005 5.8 +- .4 Minimum Endpoint to Any point Distance
.269 +- .007 7.1 +- .3 Minimum Endpoint to Endpoint Distance
.256 +- .003 7.9 +- .3 Centroid Distance
.244 +- .002 9 +- 0 Maximum Distance
.144 +- .006 10 +- 0 Y-Overlap
.106 +- .002 11 +- 0 X-Overlap
.012 +- .001 12 +- 0 Ratio XL
.009 +- .001 13 +- 0 Ratio LL

Table D.9: Ranked list of features for pairwise classification of text in family trees.

Feature Importance, Pairwise - Family Trees - Label

Average Merit Average Rank Attribute Name

.548 +- .003 1 +- 0 Part of Same Closed Path

.306 +- .004 2 +- 0 Time Gap

.275 +- .004 3.1 +- .3 Closeness Small

.271 +- .004 3.9 +- .3 Closeness Large

.247 +- .005 5.2 +- 0 .4 Minimum Distance

.242 +- .003 6.5 +- 1.02 Minimum Endpoint to Endpoint Distance

.241 +- .004 6.7 +- .64 Minimum Endpoint to Any point Distance

.229 +- .007 8 +- .63 Centroid Distance

.214 +- .016 8.6 +- .92 Maximum Distance

.093 +- .002 10 +- 0 Y-Overlap

.075 +- .002 11 +- 0 X-Overlap
.009 +- 0 12 +- 0 Ratio XL
.006 +- 0 13 +- 0 Ratio LL

Table D.10: Ranked list of features for pairwise classification of labels in family trees.
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Feature Importance, Pairwise - Statics - Body

Average Merit Average Rank Attribute Name

.395 +- .021 1.1 +- .3 Closeness Large

.367 +- .021 2.3 +- .64 Minimum Distance

.355 +- .004 2.6 +- .49 Closeness Small

.298 +- .016 4.5 +- .5 Minimum Endpoint to Endpoint Distance

.297 +- .007 4.5 +- .5 Minimum Endpoint to Any point Distance

.214 +- .014 6 +- 0 X-Overlap

.151 +- .015 7.5 +- 1.02 Y-Overlap

.141 +- .008 8.2 +- .75 Centroid Distance

.136 +- .005 8.4 +- .49 Time Gap

.124 +- .003 9.9 +- .3 Maximum Distance

.103 +- .002 11 +- 0 Part of Same Closed Path

.086 +- .004 12 +- 0 Ratio LL

.047 +- .002 13 +- 0 Ratio XL

Table D.11: Ranked list of features for pairwise classification of bodies in complete
statics solutions.

Feature Importance, Pairwise - Statics - Arrow

Average Merit Average Rank Attribute Name

.327 +- .003 1 +- 0 Part of Same Closed Path

.254 +- .016 2.3 +- .46 Time Gap

.233 +- .011 2.8 +- .6 Minimum Distance

.217 +- .012 4.4 +- .49 Minimum Endpoint to Any point Distance

.215 +- .002 4.5 +- .67 Minimum Endpoint to Endpoint Distance

.185 +- .004 6 +- 0 Closeness Small

.173 +- .003 7.3 +- .46 Closeness Large

.161 +- .019 7.7 +- .46 Centroid Distance

.101 +- .003 9.5 +- .5 X-Overlap

.101 +- .005 9.6 +- .66 Maximum Distance

.091 +- .003 10.9 +- .3 Y-Overlap

.025 +- .001 12 +- 0 Ratio LL

.013 +- .001 13 +- 0 Ratio XL

Table D.12: Ranked list of features for pairwise classification of arrows in complete
statics solutions.
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Feature Importance, Pairwise - Statics - Text

Average Merit Average Rank Attribute Name

.479 +- .004 1 +- 0 Part of Same Closed Path

.049 +- .004 2.4 +- .66 Closeness Large

.048 +- .003 3 +- .45 Closeness Small
.041 +- 0 4.6 +- .49 Minimum Distance

.044 +- .006 4.9 +- 2.07 Time Gap
.04 +- 0 5.6 +- .49 Centroid Distance

.038 +- .001 6.6 +- .49 Minimum Endpoint to Any point Distance
.036 +- 0 7.9 +- .3 Minimum Endpoint to Endpoint Distance

.034 +- .001 9 +- 0 Maximum Distance

.027 +- .003 10 +- 0 Y-Overlap

.015 +- .001 11 +- 0 X-Overlap
.002 +- 0 12 +- 0 Ratio LL
.001 +- 0 13 +- 0 Ratio XL

Table D.13: Ranked list of features for pairwise classification of text in complete statics
solutions.

Feature Importance, Pairwise - Statics - Other

Average Merit Average Rank Attribute Name

.249 +- .018 1 +- 0 Part of Same Closed Path

.179 +- .014 2 +- 0 Time Gap

.146 +- .012 3 +- 0 Ratio LL

.117 +- .003 4.4 +- .66 Closeness Large

.116 +- .007 5.1 +- .94 Closeness Small

.107 +- .005 6.5 +- 1.02 Minimum Endpoint to Endpoint Distance

.107 +- .005 6.8 +- 1.25 Centroid Distance

.104 +- .006 7.5 +- 1.12 Minimum Endpoint to Any point Distance
.1 +- .003 9 +- .45 Minimum Distance

.095 +- .005 9.7 +- .64 Maximum Distance
.08 +- .002 11 +- 0 Y-Overlap
.73 +- .001 12 +- 0 Ratio XL
.061 +- .003 13 +- 0 X-Overlap

Table D.14: Ranked list of features for pairwise classification of other in complete statics
solutions.
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Feature Importance, Pairwise - Statics (NoEqn) - Body

Average Merit Average Rank Attribute Name

.412 +- .012 1.4 +- .49 Minimum Distance

.404 +- .033 1.6 +- .49 Closeness Large

.356 +- .004 3 +- 0 Closeness Small

.305 +- .007 4.4 +- .49 Minimum Endpoint to Endpoint Distance
.3 +- .016 4.6 +- .49 Minimum Endpoint to Any point Distance
.24 +- .004 6 +- 0 X-Overlap
.179 +- .005 7 +- 0 Centroid Distance
.144 +- .007 8.4 +- .49 Maximum Distance
.144 +- .011 9.1 +- .83 Y-Overlap
.138 +- .002 9.5 +- .67 Time Gap
.1 +- .003 11 +- 0 Part of Same Closed Path

.087 +- .002 12 +- 0 Ratio LL
.05 +- .002 13 +- 0 Ratio XL

Table D.15: Ranked list of features for pairwise classification of bodies in statics solutions
without equations.

Feature Importance, Pairwise - Statics (NoEqn) - Arrow

Average Merit Average Rank Attribute Name

.291 +- .006 1 +- 0 Part of Same Closed Path

.224 +- .017 2.1 +- .3 Time Gap

.181 +- .004 3.7 +- 1 Minimum Distance

.176 +- .001 4.3 +- .64 Closeness Small

.172 +- .006 4.9 +- 1.04 Closeness Large

.169 +- .014 5.8 +- 1.33 Minimum Endpoint to Any point Distance

.168 +- .016 6.2 +- 1.4 Minimum Endpoint to Endpoint Distance
.12 +- .009 8 +- 0 Centroid Distance
.094 +- .005 9.1 +- .3 X-Overlap
0.085 +- .005 10.2 +- .6 Y-Overlap
.079 +- .004 10.7 +- .46 Maximum Distance
.03 +- .003 12 +- 0 Ratio LL
.015 +- .001 13 +- 0 Ratio XL

Table D.16: Ranked list of features for pairwise classification of arrows in statics solu-
tions without equations.

182



Feature Importance, Pairwise - Statics (NoEqn) - Label

Average Merit Average Rank Attribute Name

.417 +- .002 1 +- 0 Part of Same Closed Path

.302 +- .013 2.3 +- .46 Closeness Small

.285 +- .017 2.8 +- .6 Minimum Distance

.266 +- .009 4.3 +- .64 Minimum Endpoint to Any point Distance

.259 +- .006 5.7 +- 1 Closeness Large

.256 +- .006 6 +- 1.1 Minimum Endpoint to Endpoint Distance

.256 +- .009 6.3 +- 1.42 Centroid Distance
.25 +- .003 7.9 +- .7 X-Overlap
.246 +- .004 8.7 +- .64 Time Gap
.218 +- .002 10 +- 0 Maximum Distance
.126 +- .005 11 +- 0 Y-Overlap
.016 +- .001 12 +- 0 Ratio LL
.004 +- .001 13 +- 0 Ratio XL

Table D.17: Ranked list of features for pairwise classification of labels in statics solutions
without equations.

Feature Importance, Pairwise - Statics (NoEqn) - Other

Average Merit Average Rank Attribute Name

.271 +- .015 1 +- 0 Part of Same Closed Path

.179 +- .014 2 +- 0 Time Gap

.153 +- .006 3 +- 0 Ratio LL

.121 +- .003 4,2 +- .4 Closeness Large

.111 +- .008 4.9 +- .54 Closeness Small

.096 +- .004 6.3 +- 1 Minimum Endpoint to Endpoint Distance

.094 +- .002 7.6 +- .66 Minimum Endpoint to Any point Distance

.093 +- .003 8.1 +- 1.14 Minimum Distance

.091 +- .004 8.5 +- 1.28 Centroid Distance

.087 +- .004 9.4 +- .92 Maximum Distance

.082 +- .002 11 +- 0 Y-Overlap

.069 +- .001 12 +- 0 Ratio XL

.058 +- .007 13 +- 0 X-Overlap

Table D.18: Ranked list of features for pairwise classification of other in statics solutions
without equations.
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