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Abstract

Quantum Gravity Beyond Equilibrium

by

Christopher Mogni

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Petr Horava, Chair

In this thesis, we explore the intersection between relativistic quantum gravity and non-
equilibrium physics. We demonstrate a scenario where non-equilibrium physics can provide
important insights into quantum gravity by non-perturbatively proving a weak gravity con-
jecture using entropic considerations. We take a different approach to extending string
theory to describe scenarios where the universe is not assumed to be static and eternal by
applying the Schwinger-Keldysh technique to Large-N gauge theories. We use the correspon-
dence between Large-N gauge theories and string theory to derive a universal structure that
worldsheets must follow out of equilibrium.
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Chapter 1

Introduction

Non-equilibrium many-body systems are of central interest in remarkably many areas of
physics, across a vast range of scales: From the micoscopic scales of particle physics, to
mesoscopic phenomena and condensed matter physics, to the cosmological scales of the
cosmic microwave background and the large-scale structure of the Universe. Moreover, the
fluctuations governing the collective behavior in such systems may be either quantum or
classical, thermal in nature.

In the past few decades, the paradigm of string theory has proven to be a powerful gener-
ator of novel theoretical concepts which have found their way into remarkably many areas of
physics and mathematics, not only to quantum gravity and particle phenomenology beyond
the standard model, but also to condensed matter in holographic dualities and AdS/CFT
correspondence [1, 2], or in helping with the topological classification of new topological
states and phases of matter [3]. One naturally wonders, can this useful influence of string
theory be extended to non-equilibrium systems?

A direct attempt to formulate string theory far away from equilibrium faces a strong,
historically rooted obstacle: String theory originated [4] from the theory of the S-matrix,
which is itself strongly based on the assumption of the static, stable, eternal relativistic
vacuum.

Generally, in many-body physics such an assumption is far from necessary. The more
general formulation, which could simply be called “quantum mechanics without simplifying
assumptions” about the vacuum, is known as the Schwinger-Keldysh (SK) formalism [5,
6] (see [7] for a comprehensive list of reviews). The system is evolved forward and then
backward, along a doubled time contour called the Schwinger-Keldysh (SK) time contour.
Equivalently, this doubling can be viewed as a doubling of fields on the single-valued time
t. This formalism has been the leading go-to technique for handling non-equilibrium many-
body systems in condensed matter and a broad range of related areas for many decades. It
also plays an increasingly important role in gravity and cosmology, which goes back to the
early pioneering and insightful work by Háj́ıček [8], and later by Jordan [9]. In this century,
the importance of the SK “in-in” formalism for inflationary cosmology has been particularly
stressed by Weinberg [10, 11, 12] (see also [13]).
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The purpose of this thesis is twofold: to show why non-equilibrium physics can lead to
novel insights about quantum gravity and to explore what a non-equilibrium formulation of
string theory should look like. The structure of this thesis is as follows.

The second chapter of this thesis demonstrates how studying non-equilibrium scenarios
in semi-classical gravity can lead to deep insights about constraints on a UV complete theory
of quantum gravity. This chapter uses entropic considerations to study a non-perturbative
proof of a weak gravity conjecture by studying the evolution of near equilibrium (near-
extremal) black holes. We show that the evolution of a black hole from its near-extremal to
extremal state violates the second law of thermodynamics when a non-gravitational force is
weaker than gravity. The extremal state in the theory we consider is unstable when gravity
is the weakest force, which prevents the violation from occurring.

The third and forth chapters of this thesis focus on understanding how string theory
relates to the SK formalism. Some work on SK formalism and strings already exists in the
literature, primarily from the spacetime point of view [14, 15, 16, 17]. Here we follow a
different strategy: In equilibrium, the structure of the large-N expansion in theories with
interacting matrix degrees of freedom predicts a string coupling expansion, as a sum over
connected worldsheet topologies Σ of increasing genus,

Z =
∞∑
h=0

(
1

N

)2h−2

Fh(λ, . . .). (1.1)

Here gs ≡ 1/N plays the role of the string coupling constant, with the power of N given by
the Euler number χ(Σ) = 2−2h. The ’t Hooft coupling λ is a worldsheet coupling analogous
to α′ of critical strings, with “. . .” suggesting there might be more than one such worldsheet
coupling. The importance of this duality, first developed by ’t Hooft [18, 19], was further
advocated over the years by Polyakov (see, e.g., [20]), and others. It turned out that at
least in special circumstances, when combined with additional spacetime symmetries, this
relationship reveals a lot about the dual string theory, eventually leading to such milestones
as AdS/CFT correspondence [21]. Can this relationship be extended away from equilibrium,
and if so, what does it reveal about the perturbative expansion of the dual string theory?

The advantage of asking this question first on the large-N side is that we understand
conceptually quite well how to take that system out of equilibrium: Simply apply the SK
formalism. On the string dual side, much less is known about non-equilibrium, and we can
hope to learn something new by taking the correspondence seriously.

Finally, the fifth chapter provides some concluding remarks concerning future research
directions.
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Chapter 2

An Entropic Proof of a Weak Gravity
Conjecture

2.1. Introduction

In its simplest incarnation [22], the weak gravity conjecture states that a consistent, quan-
tized theory of gravity coupled to an Abelian gauge theory must contain at least one charged,
massive particle satisfying

m ≤ qMPl, (2.1)

where m is the particle mass and q the particle charge. Because Newton’s constant GN =
1/M2

Pl, the bound implies gravity is the weakest force. All known string compactifications
with Abelian gauge forces satisfy the conjecture. Moreover, it reconciles the absence of
global symmetries in string theory with the q → 0 limit of Abelian gauge theories. Within the
context of perturbative string theory, the authors of [23] demonstrate that modular invariance
of effective worldsheet theories evidently implies a version of the conjecture. Extensions of
the weak gravity conjecture apply to p-form gauge fields of any p ≥ 0 in arbitrary spacetime
dimensions D ≥ 3 [22]. In this chapter, we focus on p = 1, D = 4.

Although string theory automatically satisfies the weak gravity conjecture, the authors
of [22] use black holes to argue that all healthy effective field theories should obey a weak
gravity conjecture. Suppose a black hole has charge Q and mass M . Assuming cosmic
censorship, M ≥ QMPl. The black hole may decay via Hawking radiation or Schwinger
pair production. For black holes far from extremality, Hawking radiation dominates. If the
black hole only emits charged particles with charge q, and mass m, then conservation of
charge implies that Q/q particles are produced. The black hole evolves to a state with mass
mQ/q, which is less than M by conservation of energy. Through this process, the black
hole approaches extremality, Q/M = 1.1 At extremality, the black hole’s temperature is
zero, and Hawking radiation ceases. Such a black hole is stable unless there is a charged
particle with q/m > 1, in which case particle-antiparticle pairs are produced via Schwinger

1We work in Planck units, i.e. MPl = 1.



CHAPTER 2. AN ENTROPIC PROOF OF A WEAK GRAVITY CONJECTURE 4

pair production. Pair production emits charged matter from the black hole; the black hole
is no longer extremal. On the other hand, if the weak gravity conjecture is violated, a large
number of stable extremal black hole states exist in the full quantum theory.2 While a
proliferation of stable quantum states does not itself signal a sickness from the effective field
theory’s perspective, it does appear physically undesirable.

Recent research directions have focused on sharpening and defining the weak gravity
conjecture using effective field theory. The authors of [26] propose a stronger form of the
weak gravity conjecture by studying matter gauged under a U(1)N symmetry group. They
claim that the convex hull of the charge-to-mass vectors zi for each species i of particles
gauged under the U(1)N group must contain the unit ball |zi| ≤ 1. The same authors also
attempt to frame the conjecture in terms of unitarity and causality of infrared scattering
amplitudes [27], but [28] discusses counterexamples to their original argument. A series of
chapters [29, 30, 23] combine intuition from black hole physics with considerations from
effective field theory to sharpen the conjecture and to cast doubt on the consistency of field
theories that violate it, such as large field axion inflationary models.

Nonetheless, an inherent sickness in effective field theories violating the weak gravity
conjecture has eluded discovery. Proving the conjecture from a “bottom-up” perspective
within the realm of flat space effective field theory may prove too difficult, or impossible.
Consequently, effective field theories on large black hole backgrounds provide an ideal set-
ting to test the conjecture without needing to invoke assumptions or intuition from some
unknown UV theory. Presumably, we should be able to treat the near horizon physics of
large black holes semi-classically due to the smallness of the Ricci curvature. One expects
that entanglement of macroscopic fields across the horizon should tell us something about
the underlying gravitational theory, even in a semi-classical setup.

Let us suppose a proliferation of stable black hole states is a property of sick effective field
theories. It is plausible that the sickness would manifest itself by violating known properties
of semi-classical entropy. The past decade has seen immense progress in unravelling entropy
inequalities that encode deep connections between field theory and semi-classical gravity [25,
31, 32, 33, 34]. It is natural to speculate that macroscopic entropy might be powerful enough
to discriminate between effective field theories that live in the landscape or swampland.

Sen et al. laid the foundation to study black hole entropy in effective field theory [35,
36, 37, 38, 39, 40]. They calculate logarithmic corrections to black hole entropy from the
Euclidean path integral over the near horizon black hole geometry. One may work with the
near horizon geometry directly because of the attractor mechanism, which Sen et al. also
show applies to non-BPS black holes in the near-extremal limit. They further justify their
methodology by matching the macroscopic entropy results with microscopic state counting
using the AdS2/CFT1 duality. In low energy effective theories descending from string theory,
the results match on both sides of the duality.

2Previously, it was believed that the presence of a large number of stable, Planck sized extremal black
hole states would violate known entropy bounds [24]. However, Casini [25] casts doubt on this assertion by
carefully examining properties of relative entropy, showing that entropy bounds may not necessarily rule out
remnants.
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These chapters do not address the macroscopic entropy due to fields interacting with
the background field strength. The presence of a background electric flux modifies the
effective masses of the matter fields near the horizon. The flux depends on the radius
of the black hole. If the fields have sufficiently small mass relative to their charge, the
coupling to the flux renders the near-horizon geometry unstable. It decays rapidly due to
Schwinger pair production of particle-antiparticle pairs, which precludes us from calculating
the macroscopic entropy with Sen’s formalism. On the contrary, whenever the weak gravity
conjecture is violated or saturated, the geometry is stable. No symmetry protects the stability
of the extremal black hole in the non-supersymmetric theories we consider. We expect
that perturbations of the extremal geometry may alter the black hole entropy in a way
incompatible with known entropy inequalities after we account for quantum effects.

The purpose of this chapter is to confirm this hypothesis. To our knowledge, this is the
first concrete demonstration that entropy inequalities may discriminate between effective
theories that live in the swampland or landscape in a controlled, semi-classical environ-
ment. We consider D = 4 scalar matter gauged under a U(1)N gauge group in a large,
extremal black hole background. The scalar matter violates the weak gravity conjecture.
The scalar is minimally coupled to the gravitational and gauge fields. We do not include
any non-renormalizable interactions or scalar-scalar interactions. We compute the exact,
non-perturbative macroscopic contribution of the gauged scalar to the entropy of the black
hole.3 We choose a renormalization condition that sets an extremal black hole solution with
large charge | ~Q| to its classical value. We consider a perturbation to the black hole whereby
a neutral particle with energy E crosses the black hole horizon. We demonstrate that any
small perturbation violates the second law for a sufficiently large initial black hole solution.4

Consequently, we prove the weak gravity conjecture for a single scalar.

Related work

Qualitatively similar results to our entropy calculation appear in [41]. However, not all of
their quantitative results match ours exactly. We believe that this results from the formalism
they use to calculate the entropy of the black hole, which is not exactly equivalent to ours.
We also believe that their conclusions and interpretation of results differ significantly enough
from our own. Moreover, they do not attempt to prove the weak gravity conjecture using
entropy inequalities, although they allude to this possibility.

A separate application of the second law towards understanding the weak gravity con-
jecture appears in [42], which appeared during the preparation of this manuscript. However,

3We hold the external gauge and gravitational fields fixed. Determining the full macroscopic entropy
requires the gauge and gravitational sectors as well. Note however that the quantum corrections of fields
neutral under the gauge symmetry are generically subleading. The calculation is exact in the semiclassical
limit because the action is quadratic in the gauged scalar field.

4What we refer to as the second law is typically referred to as the generalized second law in the literature.
We omit the word “generalized” because the generalized second law is the second law once one accounts for
all sources of entropy.
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their calculation is orthogonal to ours. Their chapter argues for the weak gravity conjec-
ture using a bound on relaxation rates of quasinormal modes of near-extremal black holes.
Although related to the second law, the connection is indirect: the second law implies the
relaxation rate bound, which in turn implies the weak gravity conjecture. In this chapter,
we present a a more direct link between the second law and the weak gravity conjecture.

2.2. Setup

Consider a charged, non-rotating black hole. The metric is

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

SD−2 , (2.2)

where

r± = M ±
√
M2 − | ~Q|2 (2.3)

are the outer and inner horizons of the black hole in units where MPl = 1. M is the ADM
mass of the black hole spacetime. The black hole is a solution of Einstein’s equations, where
the stress-energy tensor descends from a U(1)N gauge theory action. The classical action is

S0 =
1

16π

∫
dDx

√
det g

(
M2

PlR−
N∑
n=1

F (n)
µν F

(n)µν

)
. (2.4)

where g is the determinant of the spacetime metric, R is the Ricci scalar, and F (n) is the field
strength for the nth gauge field. The background gauge fields A

(n)
µ are a Coulomb potential

in the appropriate gauge:

A(n)
µ =

(
Q(n)

r
, 0, . . . , 0

)
. (2.5)

In the extremal limit, M → | ~Q|, the coordinates of the horizons degenerate to

r2
E = | ~Q|2. (2.6)

We may compute the macroscopic entropy of the classical geometry and quantum fluctuations
about it using the near-horizon geometry [38].5 After an appropriate choice of coordinates
and Wick rotation to Euclidean signature, the near-horizon geometry in D = 4 spacetime
dimensions is described by6

ds2 = r2
E

(
dη2 + sinh2 η dθ2 + dψ2 + sin2 ψ dϕ2

)
, (2.7)

5This is computationally beneficial because there are no conifold singularities in the near-horizon geom-
etry.

6Roughly, cosh η corresponds to the proper distance from the outer horizon in the near-horizon geometry.
Details on deriving this form of the metric by taking the near-horizon and extremal limits may be found in
[39]. The utility of working with this form of the metric is that there are no conical singularities.
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where θ is 2π-periodic.7 The near-horizon extremal metric factorizes as AdS2 × S2.
The macroscopic entropy of the black hole may be calculated by calculating the effective

action for the quantum fluctuations about the classical background. We work with the
normalization of the Euclidean action in [38]. The effective action splits into a classical (S0)
and quantum (∆Weff) component:

Weff = S0 + ∆Weff. (2.8)

Using
F

(n)
ηθ = Q(n) sinh η (2.9)

and
R = 2/r2

E, (2.10)

we obtain
S0 = −2βrE − 4πr2

E, (2.11)

where β = 4πrE cosh η0 is the inverse temperature of the near-extremal black hole induced
by the AdS2 × S2 boundary cutoff.8 The first term in the classical part of the effective
action is the classical entropy. The second is the classical black hole energy multiplied by
the inverse temperature of the black hole.

Quantum corrections to the effective action may be calculated by splitting each field Φ
into their classical background value Φcl and fluctuations about the background Φq:

Φ(x) = Φc(x) + Φq(x). (2.12)

If we truncate the action for the fluctuations about the background at quadratic order, we
may calculate the one-loop contribution to the effective action. This classical action changes
by ∆Weff [38]:

∆Weff =

∫
d4x

√
det g∆Leff =

1

2
πr4

E (cosh η0 − 1) ∆Leff, (2.13)

where ∆Leff is the effective Lagrangian. The first term corrects the ground state energy,
regularized by an infrared cutoff η0.9 The second term corrects the macroscopic entropy
[38]:

Squant = −1

2
πr4

E∆Leff. (2.14)

From this expression, it is explicitly clear that in the near-extremal limit, where we can take
β →∞, that the difference in entropies between two near-extremal geometries automatically
satisfies the first law of thermodynamics.

7The coordinate θ is related to Euclidean time by a rescaling. The Euclidean time coordinate has infinite
periodicity for extremal black holes. The normalization of Euclidean time such that it has period 2π permits
us to find a finite result for the macroscopic entropy.

8The cutoff is implicitly taken to infinity, indicating that the black hole has a temperature that limits to
zero, as expected for near-extremal black holes.

9This IR cutoff renders the volume of EAdS2 finite.
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Calculating the quantum correction to the macroscopic entropy reduces to calculating
∆Leff.10 The evolution operator along Euclidean worldline time for a particle with worldline
Hamiltonian Ĥ is the heat kernel [43, 44]

K(x, x′; s) = 〈x′| e−sĤ |x〉. (2.15)

To derive Ĥ for fluctuations of a scalar field about a classical background, consider the
minimally gauged scalar field action:

Sφ =

∫
d4x
√

det g
(
−gµνφ (∇µ + qAµ) (∇ν + qAν)φ+m2φφ

)
, (2.16)

where ∇µ is the covariant derivative compatible with the metric gµν . The worldline Hamil-
tonian for the φ field is

Ĥ = −gµν (∇µ + qAµ) (∇ν + qAν) +m2. (2.17)

Inserting Ĥ into the heat kernel, we obtain the quantum correction to the effective action:

∆Leff =
1

2

∞∫
ε

ds

s

∫
d4x
√

det g K(s), (2.18)

where K(s) ≡ K(x, x; s).11 A small distance cutoff ε12 must be imposed due to divergences
at the lower bound of the s integral.

We may calculate the heat kernel in two ways. Perturbatively, we may perform an
expansion of the heat kernel for small s [44, 45]. We express the heat kernel in powers of the
Riemann curvature, field strengths, and their contractions, multiplied by the appropriate
power of s. The geometric expansion yields the perturbative, one-loop contribution to the
effective action. This is the familiar small s expansion of the heat kernel. For an arbitrary
scalar field, this expansion reads

To find an exact solution, we decompose the heat kernel as a sum of the eigenfunctions
fn(x) and eigenvalues κn of Ĥ [44]:

K(x, x′; s) =
∑
n

fn(x)f ∗n(x)e−κns. (2.19)

By performing the sum, we obtain the resummed one-loop contribution to the effective
action. If the action is quadratic in the field Φ, then the resummed one-loop correction is
the exact correction to the effective action for the Φ field in the presence of fixed, external

10Some places in the literature refers to the quantum correction we compute as Sout, and the macroscopic
entropy as Sgen.

11K(s) is independent of x by translational symmetry.
12With dimensions length squared.
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A
(n)
µ and gµν . Although the heat kernel only resums one-loop diagrams, the effects of higher

loop processes from internal gravitons and gauge particles are encoded in effective vertices,
which may be verified in a Feynman diagrammatic expansion.13

Armed with the exact effective action, we extract its logarithmic corrections in the limit
where | ~Q| and |~q · ~Q| are large, but |~q| is small. After choosing a renormalization scheme or
redefining couplings by appropriately absorbing the effective field theory cutoff, we obtain
the macroscopic entropy due to the Φ field. Note that because Aµ and gµν are held fixed, their
contribution to the entropy must be estimated from their separate one-loop contribution to
the effective action. Additionally, one must characterize the backreaction on the gauge and
gravitational fields induced by the scalar fluctuations.14

2.3. Macroscopic Entropy

Contribution to Entanglement Entropy from Neutral Scalars

We want to compute the quantum correction to the macroscopic entropy due to a gauged
scalar. Let us review the calculation for a neutral, massless scalar. For each field, there are
four contributions to the entropy:

S = S0 + Sdiv + SCT + Sfin (2.20)

where S0 is the classical contribution to the entropy, Sdiv is the UV divergent quantum
correction, SCT is the entropy from counterterms that regulate UV divergences, and Sfin is
from finite quantum corrections to the entropy. Because the heat kernels of the individual
fields add at one-loop, the total entropy is the sum of the individual fields’ contributions to
the entropy. Beyond one-loop, we must estimate the magnitude of entropic contributions
from quantum fluctuations of the background geometry backreacting on one-another.

To compute the heat kernel of the scalar field in the AdS2 × S2 geometry, we express Ĥ
as the sum of the scalar Laplacian operator on AdS2 and the scalar Laplacian on S2. The
heat kernel factorizes as

K(s) = KAdS2(s)KS2(s). (2.21)

The eigenfunctions of S2 are the spherical harmonics Y`m(ψ, ϕ)/r2
E. Only the m = 0 eigen-

functions contribute to K(s). At ψ = 0,

Y`0(0) =

√
2`+ 1

4π
, (2.22)

13The same phenomenon occurs in the Euler-Heisenberg Lagrangian, cf. [43].
14We may calculate the semiclassical backreaction by solving Einstein’s equations with the stress-tensor

replaced by its one-loop corrected expectation value. We later show backreaction effects to be negligible for
the perturbations of the renormalized effective action for the specific geometry we study.
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and Y`0 has eigenvalues `(`+ 1)/r2
E. Therefore,

KS2(s) =
1

4πr2
E

∞∑
`=0

(2`+ 1)e−s`(`+1)/r2E . (2.23)

The eigenvalues and eigenfunctions of the S2 Laplacian are unaffected by the gauge covariant
coupling of the φ field to the background gauge field.

The eigenfunctions of the neutral, massless scalar Laplacian on AdS2 are given in [38].
The full expression simplifies significantly at the origin of the AdS2 coordinate system. There,
the eigenfunctions are

f(λ) =

√
λ tanh(λ)

2πr2
E

, (2.24)

where λ is a positive real number. The eigenvalues are

κ(λ) =
λ2 + 1/4

r2
E

. (2.25)

Therefore, the heat kernel is

KAdS2(s) =
1

2πr2
E

∞∫
0

dλ λ tanh(πλ)e−(λ2+1/4)s/r2E . (2.26)

We interpret λ tanh(πλ) as the density of states for the neutral scalar in the AdS2 background
geometry.

Combining these results, we obtain the heat kernel for the neutral, massless scalar on the
near-horizon background geometry

K(s) =
1

16π2r4
Es

2

(
1 +

s2

45

)
. (2.27)

Consequently, the divergent contribution to the entropy in the large | ~Q| limit in Planck units
is

Sdiv = +
r2
E

4ε2
+

1

180
log(ε/r2

E). (2.28)

This is the exact divergent correction to the macroscopic entropy of the black hole due to
the quantum fluctuations of a neutral scalar, previously derived in [38].15 The result is exact
because the action is quadratic in the scalar field, and we formally solved for the heat kernel
using equation (2.19) without a perturbative expansion.

15Up to exponentially suppressed terms and backreaction of the background fields.
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The result matches the familiar small s expansion of the heat kernel in powers and
contractions of curvature invariants. The coefficients of the heat kernel expanded in s are
related to local quantities computed in the background geometry,

K(s) =
∞∑
n=0

a2n(Rµνρσ, Fµν)s
n−2e−sm

2

, (2.29)

where, for a massive scalar field in an arbitrary background geometry the coefficients are

a0 =
1

8π2

∫
d4x

√
det g (2.30)

a2 =
1

8π2

∫
d4x

√
det g

1

6
R (2.31)

a4 =
1

8π2

∫
d4x

√
det g

(
12∇µ∇µ + 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ − 30q2FµνF

µν
)
. (2.32)

For the near-horizon geometry, the constant part ofK(s), which is a4(s) in four-dimensions,
may be reduced to

a4 =
1

720π2
RµνR

µν =
1

720π2r2
E

, (2.33)

as expected. We have set m2 = 0 for the massless field considered in this section. For a
massive field, the logarithmic divergence is damped:

Sdiv,log =
1

180
log
( ε

m2

)
. (2.34)

If the mass is smaller the inverse radius of the extremal black hole, it is appropriate to expand
the exponential for small s. The logarithmic divergence is a modification of the massless
scalar’s logarithmic divergence:

Sdiv,log =

(
1

180
+

1

8
m2r2

E

)
log

(
ε

r2
E

)
. (2.35)

It may be checked [44] that this extra term contributes to the renormalization of the cos-
mological constant. When we study the gauged scalar, it is important to note that the
extra divergence present in that answer takes the form of a divergent cosmological constant
contribution without any expansion of the exponential.

Because the expression for the entropy is UV divergent, we must append counterterms to
the effective action to cancel the divergences. Schematically denote each counterterm by δOO,
where O is the operator which receives a divergent correction, and δO is the counterterm.
The heat kernel in the small effective mass limit has no exponential suppression. Therefore,
the counterterm δO introduces an arbitrary length scale ` satisfying ε < `2 < r2

E to cancel
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the divergence in the logarithmic term that occurs when we take ε→ 0. Schematically, each
counterterm takes the form

δOO = −
d/2∑
n=1

c
(n)
O ε−2n − c(0)

O log(`2/ε) = −
d/2∑
n=1

c
(n)
O ε−2n − c(0)

O
[

log(`2
0/ε) + log(`2/`2

0)
]
. (2.36)

The c
(n)
O coefficients represent the coefficients of the divergent parts of the ε−2n portions

of the effective action in the ε → 0 limit. We introduce two arbitrary length scales ` and
`0. The length scale `0 does not contribute to the entropy of the initial extremal black
hole solution we consider, as it cancels out. However, to simplify calculations, we fix the
last term in the above expression for all black hole solutions. When we renormalize both
black hole solutions, this fixes both ` and `0. Because `0 does not appear in the entropy
for the extremal black hole, choosing a renormalization condition for the initial extremal
black hole fixes `. When we apply a linearized perturbation to the extremal black hole, we
have chosen a convention where all terms in the entropy above change except for the last,
finite counterterm. We then renormalize this black hole solution, which fixes `0. All other
black hole solutions obtained from further perturbations of the renormalized solution run
with changes in the black hole parameters (charge, gauge coupling, radius) as dictated by
our initially chosen renormalization conditions.

We implicitly choose a renormalization condition that exactly cancels any non-logarithmic
divergences. We only discuss the logarithmically divergent counterterms in what follows,
unless otherwise specifed. For the massless scalar, we must add a counterterm for the
RµνR

µν operator. Its contribution to the expression for the entropy is

SCT,log = − 1

180
log(ε/`2), (2.37)

where ` is the arbitrary renormalization scale, in units of length. The renormalized quantum
contribution to the entropy is

Squ =
1

180
log(`2/r2

E), (2.38)

at extremality. If we can trust the extremal approximation near-extremality, we may simply
replace the extremal radius with the outer radius of the black hole, rE → r+. We do this
when we consider small, linear perturbations to the near horizon geometry. Because ` is an
ambiguous scale, we fix it by specifying our renormalization condition. For example, we may
choose a condition that for a black hole of charge ~Q0 at extremality, the quantum corretion
to the black hole entropy vanishes exactly. Because the entropy depends on the radius of
the black hole, the quantum entropy of another extremal black hole of charge ~Q′0 6= ~Q0 or of

a near-extremal black hole of charge ~Q0 is non-zero. In other words, the entropy runs with
the radius of the black hole.

The case of a massive scalar is different. For a massive scalar with m > 1/rE, we may not
expand the exponential term that suppresses the heat kernel. The logarithmic contribution
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to the entropy is, therefore,

Sdiv,log =
1

180
log(ε/m2). (2.39)

Up to a finite term that is independent of the black hole radius, we may choose a logarith-
mically divergent counterterm for RµνR

µν whose contribution to the entropy is

SCT,log =
1

180
log(m2/ε), (2.40)

which cancels the divergence exactly. There is no ambiguous renormalization scale that must
be specified. This is in line with the reasoning that only massless neutral particles contribute
to the entropy of large black holes. The exception is for particles with very small mass, i.e.
m < r−1

E . In that case, the renormalization to the RµνR
µν operator proceeds in the same

way. An extra operator must be renormalized to absorb the extra divergent contributions to
the heat kernel. The structure of the divergent terms exactly matches the contribution to the
cosmological constant. We renormalize the cosmological constant to absorb its divergence
[44]. Its counterterm contributes a logarithmically divergent term to the entropy

SCT,log =
1

360
m4r4

E log(`2/ε). (2.41)

The renormalized correction to the entropy is

Squ =

(
1

180
+

1

360
m4r4

E

)
log(`2/r2

E). (2.42)

Entropy of Gauged Scalars

The coupling of the gauged scalar to the background field modifies the eigenvalues and eigen-
functions of the scalar AdS2 Laplacian [46]. In the near-horizon geometry, the background
field strength for the nth gauge field in the Wick rotated spacetime is

F
(n)
ηθ = iQ(n) sinh η. (2.43)

Suppose instead that the scalar is coupled to a constant background magnetic monopole field
~B = ~q · ~Q sin(ψ)ψ̂ × ϕ̂/r2

E. There is a continuous and discrete delta-function normalizable
spectrum. The continuous eigenvalues are

κ(λ)B =
(λ− ~q · ~Q)2 + (~q · ~Q)2 + 1/4

r2
E

. (2.44)

The density of continuous states becomes

λ tanh(πλ)→ λ
sinh(2πλ)

cosh(2πλ) + cos(2π~q · ~Q)
. (2.45)
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Wick rotating ~q · ~Q→ i~q · ~Q, where ~q is the elementary charge vector of the φ field, we obtain
the density of states for the φ field in the constant background electric field:

λ tanh(πλ)→ λ
sinh(2πλ)

cosh(2πλ) + cosh(2π~q · ~Q)
. (2.46)

The scalar heat kernel for the near-horizon geometry is

K(s) =
1

8π2r4
E

∞∑
`=0

(2`+ 1)

∞∫
0

dλ
λ sinh(2πλ)

cosh(2πλ) + cosh(2π~q · ~Q)
e−s(λ

2+`(`+1)+ 1
4

+r2Em
2−(~q· ~Q)2)/r2E .

(2.47)
Because the coupling ~q appears in the argument of a hyperbolic cosine function in the de-
nominator of the density of states, we conclude that the resummed heat kernel represents the
non-perturbative scalar field contribution to the effective action in a fixed, constant, exter-
nal electric field. The result is not, however, the full quantum correction to the heat kernel.
The gauge fields and gravitational field themselves contribute to the entropy. Furthermore,
allowing the external gauge and gravitational fields to vary induces backreaction effects on
the scalar’s effective action.

Let us compute the divergent contributions to the effective action. Logarithmic diver-
gences are universal and may be found in the region of integration ε� s� r2

E. Therefore,
we expand the resummed heat kernels for small s ≡ s/r2

E. The total heat kernel is the prod-

uct of the AdS2 and S2 heat kernels, weighted by a factor of e−s(r
2
Em

2−(~q· ~Q)2). The expansion
of the S2 heat kernel is [38]:

KS2(s) =
1

4πr2
Es
es/4

(
1 +

1

12
s+

7

480
s2 +O(s3)

)
. (2.48)

We perform the small s expansion of the AdS2 heat kernel in its resummed form. The
denominator of the AdS2 density of states has an asymptotic expansion

1

cosh(2πλ) + cosh(2π~q · ~Q)
= 1+

∞∑
n=1

(
Un(− cosh(2π~q · ~Q))− Un−2(− cosh(2π~q · ~Q))

)
e−2πnλ,

(2.49)
where Un(x) is the nth Chebyshev polynomial of the second kind. The expansion converges

when 0 ≤ λ < |~q · ~Q|, regardless of the size of |~q · ~Q|. This may be checked readily by
using the ratio test. The first term in the series may be evaluated directly. To evaluate the
subsequent terms, we expand e−λ

2s for small s. Denote

Fn(x) = Lin(x+
√
x2 − 1) + Lin(x−

√
x2 − 1), (2.50)
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where Lin is the nth polylogarithm. We integrate over λ to find the AdS2 heat kernel:

KAdS2(s) = − e−s/4

4πr2
Es

[
1 +

s

2π2
F2(− cosh(2π~q · ~Q))

+ s2

(
7

480
+

1

24π2
F2(− cosh(2π~q · ~Q))− 3

4π2
F4(− cosh(2π~q · ~Q))

)]
.

(2.51)

Through the last step, we have not made any assumptions concerning the size of |~q · ~Q|.
All expansions performed have been independent of it. Now, let us take the large |~q · ~Q|
limit. We find that

Li2(− cosh(2π~q · ~Q)) = −π
2

6
− 2π2(~q · ~Q)2 +O

(
sech2(~q · ~Q)

)
(2.52)

Li4(− cosh(2π~q · ~Q)) = −7π4

360
− π4

3
(~q · ~Q)2 − 2π4

3
(~q · ~Q)4 +O

(
sech2(~q · ~Q)

)
. (2.53)

All together, the unrenormalized, large |~q · ~Q| heat kernel is

K(s) =
e−s(r

2
Em

2−(~q· ~Q)2)

16π2r4
Es

2

[
1− s(~q · ~Q)2 + s2

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)
+O(s3)

]
. (2.54)

Note that our result reduces to the heat kernel of a single neutral scalar in the extremal black
hole near-horizon geometry when ~q = 0 [38]. Higher order terms in s contribute to finite
portions of the effective action, which contribute negligibly to differences in the entropy.16

A similar, yet quantitatively different, result appears in [41].
Using the heat kernel, we may determine the logarithmic correction to the effective action,

and thereby the logarithmic correction to the entropy. To connect with the weak gravity
conjecture, we want to know the entropy for the resummed heat kernel, which has the
| ~Q|4 dependence. The resummed, unrenormalized logarithmic correction to the macroscopic

entropy from a single gauged scalar of mass m and charge ~q in the large |~q · ~Q| limit for fixed

A
(n)
µ , gµν is

Sdiv,log =
1

4

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)
log(ε/(r4

Em
2 − r2

E(~q · ~Q)2)). (2.55)

When r2
Em

2 = (~q · ~Q)2, there is no exponential suppression, and the logarithmically divergent
contribution to the entropy is

Sdiv,log =
1

4

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)
log(ε/r2

E). (2.56)

16One may check that the finite contributions to the entropy scale as |~q|2n| ~Q|4 for n > 2. However,

differences between the near-extremal and extremal black hole entropies scale as |~q|2n| ~Q|2. Because we are
interested in the |~q| → 0 limit, the finite contributions to the entropy are suppressed, as expected. Our

logarithmic result, however, does not rely on the smallness of |~q · ~Q|, as shown explicitly in the work outlined
above.
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Suppose that weak gravity conjecture is satisfied but not saturated. The exponent in the
resummed heat kernel before integration over λ

Exponent = e−s(λ
2+r2+m

2−(~q· ~Q)2) (2.57)

grows with increasing s for sufficiently small λ. We interpret this as an IR instability in the
spectrum. The IR instability yields an imaginary contribution to the effective action [46].
The magnitude of the imaginary contribution corresponds to the amount of pair production
that occurs at the near-horizon geometry. We expect that one must resort to a computation
of the macroscopic entropy using the Euclidean action defined on the global black hole
geometry due to the instability. Additionally, we expect that it is no longer justified to work
with the classical black hole background without considering how the instability backreacts
on the geometry. We leave this topic for future work.

Renormalization of Gauged Scalar Entropy

Let us specify renormalization conditions for the initial extremal black hole solution. The
black hole we consider has charge ~Q. We assume that |~q| is small, | ~Q| is large, and |~q · ~Q| is
large. We choose counterterms that cancel ε−n divergences for n ≥ 1. The coefficient of the
logarithmically divergent term is much larger than the classical contribution to the entropy.
However, this does not imply that the correction for this black hole solution is large. We
choose a renormalization condition that allows us to still work in the semi-classical regime.
For the perturbation we consider, we choose a renormalization condition that sets `0 to the
inverse Planck mass. Note that for large perturbations, the quantum corrections to the
perturbed black hole become non-negligible.

The entanglement entropy calculated with all loop orders is given by equation (2.55).
There are two important pieces of this result. First, we have the divergent term of the form

Sdiv,log =
1

4

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)
log(ε/r2

E). (2.58)

Comparing this to equation (2.35), we see that this logarithmically divergent contribution
resembles the contribution to the entropy from a neutral scalar field with a small mass. There
are two important differences. First, the places where the small quantity m/rE appear in the

expansion of the heat kernel are exactly replaced by factors of (~q · ~Q)2. This indicates that
unlike the one-loop approximation to the gauged scalar heat kernel (cf appendix), there is
an extra divergent contribution to the exact heat kernel from a cosmological constant term.
As with the massless neutral scalar, we may cancel the divergence from the other two terms
by inserting counterterms for RµνR

µν and FµνF
µν . As may be confirmed in [44], the (~q · ~Q)4

requires renormalization of the cosmological constant.
The second difference is the argument of the logarithm: it depends on (~q · ~Q)2. It becomes

clear what to do with the logarithmic divergence if we rewrite its contribution to the entropy
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in the following way:

Sdiv,log =
1

4

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)(
log(ε/r2

E)− log(r2
Em

2)− log

(
1− (~q · ~Q)2

r2
Em

2

))
.

(2.59)
Surprisingly, the divergent terms for a massive gauged scalar look like the divergent terms for
a neutral scalar in the small mass limit, with the r2

Em
2 coefficient swapped for (~q · ~Q)2. The

other terms are resummed, finite corrections to the entropy. Their contributions come from
an infinite sum of (FµνF

µν)n-type operators. They do not require counterterms because
of the lack of dependence on ε. Because they depend on the radius of the black hole,
their contribution can only be cancelled for a specific black hole solution. In general, they
contribute a non-zero, finite correction to the entropy at arbitrary black hole mass and
charge.

We renormalize the entropy as we did for the neutral scalar in the small mass limit, with
the only new feature being a FµνF

µν counterterm. The renormalized entropy is

Sdiv,log =
1

4

(
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4

)(
log(`2/r2

E)− log(r2
Em

2)− log

(
1− (~q · ~Q)2

r2
Em

2

))
.

(2.60)
We specify a renormalization condition that sets the finite contributions to the entropy from
resummation as well as the divergent terms equal to zero for a black hole of fixed charge
~Q exactly at extremality. This removes the ambiguity for the renormalization scale ` and
removes all divergences.

2.4. Violating the Second Law

Setup

The second law states that entropy increases under any physical process:

dS ≥ 0. (2.61)

For healthy semi-classically treated effective field theories in curved space, the second law
has been proven within various settings, e.g. [47]. The entropy S has contributions from
the classical and quantum parts of the effective action: the Bekenstein-Hawking area term
as well as quantum corrections from the macroscopic fields:

S = −Weff = −(S0 + Squant), (2.62)

Squant = Sdiv + SCT, (2.63)

where we have neglected subleading finite corrections in Squant. In our physical scenario,
the entropy changes when the black hole consumes a neutral particle because the black
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hole’s radius increases. Let subscript f denote final quantities, subscript i initial quantities,
A ≡ 4πr2

+ the area, and Squant the quantum entropy correction. Then

S0,f − S0,i ≥ Squant,i − Squant,f (2.64)

follows from the second law.
In our thought experiment, we let a single neutral particle crosses the black hole horizon

with energy E. This induces a linearized perturbation of the extremal black hole geometry.
The black hole charge remains fixed. The initial black hole entropy has been set to its classical
entropy S0 and energy E0 values by choosing the appropriate renormalization condition:

∆Weff,i = 0, (2.65)

S0,i = πr2
E = π| ~Q|2, (2.66)

E0,i = rE = M = | ~Q|. (2.67)

By conservation of energy, the black hole mass shifts to

Mf = M + δM. (2.68)

Then
Mf > | ~Q|. (2.69)

The perturbed black hole receives a quantum contribution to its entropy because we
have already specified fixed counterterms for the effective action of the black hole and the
divergent contributions to the entropy depend on the radius of the black hole. The quantum
contribution to the entropy may be mathematically traced to the fact that it runs with the
radius of the horizon of the black hole. Because the quantum contribution to the exact
contribution of the gauged scalar to the black hole entropy modulo backreaction outscales
the classical contribution, we expect large perturbations to the classical geometry may induce
large quantum backreaction. We therefore consider small perturbations to the geometry and
write the near-extremal radius r+ of the perturbed black hole as

r2
+ = r2

E + δr2. (2.70)

Note that in what follows we only consider the gauged scalar matter sector and small per-
turbations to the geometry in our second law analysis. We justify our result in the next
section by demonstrating that effects from all other fields are subleading at one-loop and
suppressed at higher loop orders and that quantum backreaction may be neglected for small
perturbations of the geometry.

The only modification to the entropy at the level of linearized backreaction arises from
the change in the near-horizon electric field, which shifts from 2|~q|2 cos2(ϑ) ≡ (~q · ~Q)2/r2

E to



CHAPTER 2. AN ENTROPIC PROOF OF A WEAK GRAVITY CONJECTURE 19

(~q · ~Q)2/r2
+. The logarithmic correction to the classical entropy of the new black hole is17

Squant =
1

4

[
1

45
+

1

6
(~q · ~Q)2 +

1

2
(~q · ~Q)4 +O

(
sech2[(~q · ~Q)2]

)]
log

(
m2r4

+ − (~q · ~Q)2r2
+

m2r4
E − (~q · ~Q)2r2

E

)
.

(2.71)

Ignoring exponentially suppressed contributions and keeping only the O(| ~Q|2) or higher
terms, the bound equation (2.64) becomes

| ~Q|2 ≤ 32π

|~q|4 cos4(ϑ)

m2 − |~q|2 cos2(ϑ)

2m2 − |~q|2 cos2(ϑ)
− 1

3

1

|~q|2 cos2(ϑ)
., (2.72)

where ϑ is the angle between ~Q and ~q. The bound applies to particles violating or saturating
(m2 = |~q|2 cos2(ϑ)) the conjecture. The dependence on δr2 cancels on both sides of the
bound for small δr2. We may always choose an initially large, extremal black hole such that
we violate the bound. A conservative interpretation of the result is that there is a maximum
charge allowed in the macroscopic theories considered. This would require the appearance
of some instability for large black holes. There is no evidence that this is the case, however,
as we discuss in the next section.

It is natural to wonder if our result is nullified when instanton tunnelling, quantum
backreaction, and effects from other fields are accounted for. The answer is no. Because
the differences in quantum contributions to the entropy dominate differences in classical
contributions to the entropy, large black holes are stable against splitting into multiple black
holes whose charge adds up to the charge of the large black hole. This is more general than
the statement that no Schwinger pair production occurs for extremal black holes formed
in theories violating the weak gravity conjecture. Quantum effects dominate differences
in entropy, but do not dominate the classical expressions for the entropy themselves for a
suitable renormalization condition. One may worry that changes in energy, related to the
backreaction of the quantum fields on the classically perturbed geometry, are important too.
In fact, quantum backreaction on the black hole mass only appears at O((δr2)2). Moreover,
as aforementioned and cited, contributions at one-loop from other massless fields, such as
massless matter, other gauge fields, and the gravitational field, are always subleading with
respect to the classical entropy of the black hole. For large black holes, only the one-loop
answer contributes in the large | ~Q| limit: higher loop contributions are suppressed by factors
of inverse radii of the black hole. We leave these results to the appendix.

We cannot emphasize enough that the answer we have obtained is an exact answer that
extends beyond the one-loop approximation: higher loop factors have in effect been resummed
because we computed the full partition function for the scalar field. The reason we could
do this is because the action is quadratic in the scalar field, so the Euclidean path integral
reduces to a Gaussian integral. Because of the special geometry of the near horizon region, we
were able to compute this result analytically. Any error in our result is of order O(sech(|~q ·

17In Planck units MPl = 1.
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~Q|)), which is suppressed in the large |~q · ~Q| limit. As shown in the appendix, quantum
backreaction does not affect the classical geometry at order δr2 after the neutral particle
crosses the black hole horizon. This is the only effect that is not explicitly captured by our
exact computation.

2.5. Consistency Checks

Subleading Contributions from Neutral Matter, Gauge Fields,
and Gravitational Field at All Loop Orders

Our expression for the exact heat kernel of the scalar field indicates a second law violation.
We have not included effects from the two other fields present: the U(1)N gauge field and the
gravitational field. This is because these contributions are subleading. The reason that the
scalar had such a large contribution to its entropy is because it couples to the background
gauge field. Therefore, the action for the φ field includes contributions from positive powers
of the background black hole charge. This is not the case for the gravitational and gauge
actions.

Let us first consider the one-loop contributions to the heat kernel from the gauge and
gravitational fields. The total heat kernel for the full theory is the sum of the individual
heat kernels, so we can consider each field separately. At one-loop, we only need to consider
the quadratic action for each field. The one-loop expression for N U(1) vector fields and the
gravitational field has already been known for some time, calculated by Sen in [38]:

S =
A

4
− 1

180
(964 + 62N) log(A). (2.73)

Note that the quantum correction is subleading. Moreover, Sen et al. demonstrate in [38]
that higher loop contributions are suppressed in the large black hole mass limit. Therefore,
the one-loop result for the macroscopic answer suffices.

Suppression of Quantum Backreaction for Small Classical
Perturbations

In our analysis, we choose renormalization conditions such that the quantum correction to
the extremal black hole entropy with charge ~Q is absorbed into the tree-level, classical value
for the entropy. The linear perturbation to the black hole induced by a neutral particle
crossing the horizon causes the quantum entropy to run, because the entropy depends on
the radius of the black hole. The quantum correction to the entropy of the perturbed black
hole solution is smaller than the classical entropy of the perturbed black hole. However, the
difference between the classical entropies of the initial and final black holes is smaller than
the difference in quantum corretions to the entropy. It is for this reason that the second law
is violated. We use the exact expression for the scalar field effective action for fixed, external
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classical backgrond fields, accounting only for classical backreaction. Here we provide a back
of the envelope argument that quantum backreaction does not modify our result at O(δr2).

The mass of the black hole may be expressed via the first law as

M = TS + | ~Q|, (2.74)

where T is the temperature, S is the entropy, ~Q is the charge, and we have set the chemical
potential to one. We assume that quantum corrections to all quantities written above are
factored into this formula. For a stationary, charged black hole, these are the only sources
that can contribute to the black hole mass.

Let us consider backreaction on the charge of the black hole. The charge of the perturbed
black hole receives quantum corrections that are of order

~Qqu ∝ −|~q|4| ~Q|0δr2. (2.75)

In the small |~q| limit, we may assume that these are subleading and ignore these corrections
only if the quantum corrections to the mass do not dominate.

The perturbed black hole has a classical correction to its mass proportional to the tem-
perature of the black hole. The classical temperature is

T =
1

2π

(
1

r+

− |
~Q|2

r3
+

)
, (2.76)

which evalutes to

T =
δr2

| ~Q|3
+O((δr2)2). (2.77)

It may be checked that quantum corrections do not modify this order of magnitude esti-
mate. The thermal contribution to the mass of the black hole has a classical and quantum
component. The classical contribution arises from the classical entropy:

Mcl = 4πTr2
+ = 4π

δr2

| ~Q|
+O((δr2)2). (2.78)

The quantum correction to the entropy is proportional to O(δr2)|~q|4| ~Q|4. Therefore, the
quantum correction to M is proportional to (δr2)2:

Mqu ∝ −|~q|4| ~Q|O((δr2)2). (2.79)

In the small δr2 expansion, this is smaller than the classical backreaction near-extremality.
We conclude that we may ignore quantum backreaction effects in our thought experiment.
A full analysis should utilize the semi-classical Einstein equations. We leave this to future
work.
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Stability of the Near Horizon Geometry

A black hole with charge ~Q is not the only classical geometry asymptotic to the AdS2×S2 in
the near-horizon limit. Other geometries that contribute to the path integral are multi-black
hole solutions, where the total charge of the black holes equals ~Q. When the weak gravity
conjecture is satisfied, tunneling processes may occur in which the initial AdS2 × S2 near-
horizon geometry fragments into multiple AdS2 × S2 geometries. The simplest example is
the Brill instanton, wherein one initial AdS2×S2 space tunnels into two disconnected spaces.
Let us review the calculation using the classical piece of the effective action first, following
[48]. For simplicity of presentation, we work with a U(1) gauge group in the remainder of
this section. The background gauge field in the two black hole solution is

At(~x) =
Q1

|~x− ~x1|
+

Q2

|~x− ~x2|
. (2.80)

Further details may be found in [48]. The instanton action is half the negative difference of
the initial and final black hole entropies,18

Sinst = −1

2
∆S. (2.81)

Consider the Bekenstein-Hawking term without quantum corrections. The Brill instanton
action is

Sinst = πQ1Q2. (2.82)

The transition amplitude from the charge Q black hole to the Q1 and Q2 charged black holes
is

AQ→Q1+Q2 ∝ e
1
2

∆S, (2.83)

up to normalization. Consequently, the transition probability is

PQ→Q1+Q2 ∝ e−πQ1Q2 . (2.84)

The probability is less than one for non-zero Q1 and Q2, as expected.19 When Q1 → q, this
answer represents the probability amplitude for brane-antibrane production, i.e. Schwinger
pair production. Now consider quantum corrections to the macroscopic entropy from matter
neutral under the U(1) gauge symmetry. The logarithmic terms are subleading. Therefore,
the instanton action is still positive, because S(Q) ≥ S(Q1) + S(Q2). We interpret this to
mean that large black holes dominate the Euclidean path integral, with an exponentially
suppressed probability that the black holes fragment into multi-black hole solutions. Note
that fragmentation and Schwinger pair production would preclude us from maintaining a
sufficient level of control over the process we consider.

18The factor of 1
2 appears because the transition probability between solutions is proportional to e−∆S .

19It is implicit in what follows that Q1 and Q2 have the same sign.
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Now consider the quantum corrected black hole entropy when the weak gravity conjecture
is violated or saturated for a non-supersymmetric gauged scalar. In the large charge limit,
one may verify that

S(Q) < S(Q1) + S(Q2). (2.85)

Consequently, the physical instanton process is not fragmentation; rather, it is black hole
growth from an initial two black hole state to a single black hole final state. This is consistent
with the Q1 → q limit: there is no pair production. Similarly, there is no black hole
fragmentation. Instead, the correct instanton action corresponds to two initial AdS2 × S2

states transitioning into one final AdS2 × S2 states. In the Q1 → q limit, this is a process
akin to the thought experiment in the previous section. The combined state of the black
hole and a particle eventually transitions to a final state where the black hole consumes the
charged particle. In conclusion, the large-charged black hole in our setup does not fragment
into a multitude of black holes or charged particles. This is in accord with the kinematics
arguments presented in the introduction. The theory contains only subextremal objects in
its spectrum, so the extremal black hole has no decay channels. Moreover, the instanton
analysis implies that the Euclidean path integral is dominated by small black hole classical
saddle points, i.e. remnants. We claim that the absence of a decay channel affords us
sufficient control over the process we consider.

It is clear now that black hole growth is the favored physical process in theories violating
the weak gravity conjecture. We speculate that the reversal of the Brill instanton violates
unitarity. Renormalize the large extremal black hole effective action. One may tune the
effective action such that the entropy is positive, despite the seemingly large quantum cor-
rection. However, no mechanism exists within the IR theory that prevents the black hole
from continuing to grow unbounded. When the black hole grows, the decreasing quantum
correction outcompetes the increasing Bekenstein-Hawking term. Counterintuitively, larger
black holes hide fewer microscopic states behind the horizon than smaller black holes. Be-
cause growth may occur without bound, the entropy eventually becomes negative, indicating
that the black hole contains less than one microscopic state. We expect that this behavior
is forbidden in a unitary theory. Therefore, we speculate that the scalar violating the weak
gravity conjecture is secretly non-unitarity, even at the level of effective field theory.

2.6. Appendix: One-Loop Calculation

The exact heat kernel for the minimally gauged scalar in the presence of fixed external
background fields does not match the expected one-loop result. In the one-loop heat kernel
Suppose that m � qMPl. Then we may expand the s(~q · ~Q)2 part of the argument of the
exponent:

K(s) ≈ 1

16π2r4
Es

2

[
1 + s2

(
1

45
+

1

6
(~q · ~Q)2

)
+O(s4)

]
e−sr

2
Em

2

. (2.86)
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This is exactly what one would obtain in the geometric expansion of the heat kernel in the
large | ~Q| limit:

K(s) ≈ 1

16π2s2

(
1 +

s

6
R +

s2

45
RµνR

µν +
1

6
q2FµνF

µν

)
e−sr

2
Em

2

. (2.87)

The (~q · ~Q)4 term is cancelled by the background gauge field term when we expand the expo-
nential. Therefore, in the large mass limit, one may verify that only a q2FµνF

µν counterterm

is required to cancel the divergence due to powers of ~q · ~Q that appear in the final result,
which can be seen by performing the small s expansion or, likewise, expanding the exponent
in our exact result.20

20It can be verified that it is only in this limit that the approximation of the integrand made in [41] is
justified. Because this is not a focus of our chapter, we refrain from providing further commentary in this
chapter on this detail.
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Chapter 3

Large-N and String Theory Out of
Equilibrium

3.1. Introduction

Our universe is not in equilibrium.1 The framework of string theory has successfully provided
a consistent theoretical picture for describing various aspects of its dynamics, capable of
accommodating both the quantum mechanical nature of its constituents and the evolving
geometry of its large-scale structure. Yet, somewhat paradoxically, the machinery of string
theory as understood today does not appear to be particularly well-suited for describing
systems out of equilibrium, such as early-universe cosmology.

Concepts originating from string theory have been very influential in a remarkable number
of areas of physics (and even mathematics). This interdisciplinary influence of string theory
includes particle phenomenology, with brane-world scenarios, large extra dimensions, the
Randall-Sundrum scenario enriching the scene beyond the Standard Model; AdS/CMT and
holographic methods for describing strongly-correlated condensed matter systems [1, 2]; the
extension of K-theory from a method for classifying D-branes in string theory to classifying
stable Fermi surfaces [3] and phases of topological insulators; and the impact of string theory
on inflationary cosmology [13] and in quantum gravity, notably leading to the statistical
explanation of the Bekenstein-Hawking entropy of various supersymmetric black holes.

In most of these applications, string theory is excellent at describing equilibrium systems,
ideally with as many supersymmetries as possible. However, this effectiveness seems to be
lost for systems or states away from equilibrium. One naturally wonders why: Is this a
fundamental limitation of string theory? Or is it a historical accident, with the proper
formulation of string theory away from equilibrium yet to be discovered? Indeed, a glance
at the history of string theory reveals a strong bias towards equilibrium states. Since its
inception in the 1960’s and certainly for much of its early development [4], string theory has
been deeply rooted in the ideology of the S-matrix, which depends strongly on the axiom of

1See, e.g., [49].
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a static, stable, eternal vacuum.
Can we uncouple string theory from this assumption of the eternal stable vacuum? While

many partial results for string-theory states away from equilibrium have been accumulated –
notably, in areas ranging from tachyon condensation to non-equilibrium AdS/CFT dynamics
– progress has been rather slow and spotty. It is natural to hope that even in its natural area
of quantum gravity, string theory should be able to do better with non-equilibrium systems,
to have a more systematic impact of string theory on concepts in early-universe cosmology,
or to give new insights into dynamical evaporating black holes.

It may not be immediately clear how to wean critical string theory from its dependence
on the S-matrix and equilibrium, or how to formulate non-equilibrium string theory from
first principles. However, we do know how to take a general quantum many-body system or
quantum field theory out of equilibrium: The basic rules of quantum mechanics can certainly
accommodate non-equilibrium states, leading to the formulation known as the Schwinger-
Keldysh formalism. In fact, in recent years the methods of the Schwinger-Keldysh formalism
have found their way into string theory, primarily in the context of AdS/CFT [15, 16, 14].
However, these approaches are mostly based on the spacetime field theory description, with
very little understanding so far of the worldsheet dynamics.

Here we will follow a different strategy: We use the methods of the large-N expansion and
its connection to string theory, and extend them to non-equilibrium systems where we can
directly apply the Schwinger-Keldysh formalism. In that way, we begin to learn something
about the universal rules of non-equilibrium string perturbation theory. Our goal is two-fold:
To stimulate string-theory research in directions away from equilibrium, and to encourage
further study of possible dual descriptions of non-equilibrium systems across diverse areas
of physics in terms of string theory.

This chapter is organized as follows. In the remainder of this introductory Section 1,
we briefly review two important topics: The interpretation of the large-N expansion in a
quantum theory of matrices in terms of string theory, and the non-equilibrium formalism
for quantum systems known as the Schwinger-Keldysh formalism. The reviewed material is
well-known to experts in the corresponding fields, but since we wish to make this chapter
accessible to a broad audience from a wide range of fields – from string theory to non-
equilibrium mesoscopic physics to early-universe cosmology – we include this material to
make our chapter relatively self-contained, and to set a uniform stage for the later sections.
In Section 2, we connect the two topics reviewed in Section 1, and analyze how the large-N
expansion of the non-equilibrium Schwinger-Keldysh formalism leads to a refined expansion
in terms of string theory topologies. It is the hallmark of the Schwinger-Keldysh formalism
that the system is followed forward and then backward in time, and we analyze how string
perturbation theory out of equilibrium reflects this doubling phenomenon. We concentrate
on aspect which are universal, and follow solely from the structure of the large-N expansion;
we make no assumptions about worldsheet dynamics. We perform our analysis for the case
of matrices with SU(N) symmetry, which corresponds to the case of closed oriented strings.
We develop the universal structure of non-equilibrium string perturbation theory in terms
of a refined sum over worldsheet topologies.
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Sections 3 and 4 are then devoted to several generalizations of our main results from
Section 2. In Section 3, we consider an important special case, particularly useful for studies
of equilibrium systems at finite temperature T . Here the relevant time contour – often
referred to as the Kadanoff-Baym contour – contains not only the forward and backward
evolution segments in real time familiar from the Schwinger-Keldysh contour, but also a
“Matsubara segment”along the imaginary time direction by the amount β = 1/T . This
approach naturally contains both the real-time and imaginary-time approaches to systems
at nonzero T . We analyze how large-N theory on the Kadanoff-Baym contour leads to
a further refinement of the expected universal features of string perturbation theory. In
Section 4, we briefly outline the generalizations of our main results from Section 2 to the
case of matrices with O(N) or Sp(N) symmetries, which lead to closed unoriented strings;
and the addition of vector-like degrees of freedom, in the fundamental representation of the
appropriate symmetry group, which leads to open strings and the presence of worldsheet
boundaries. We conclude in Section 5.

Strings from the large-N expansion

The genus expansion into worldsheets of inncreasing topological complexity, weighted by the
powers of the string coupling gs, is a universal hallmark of string theory in its perturbative
regime. It is remarkable that the same topological expansion is obtained, quite universally,
in the large N limit of theories with degrees of freedom described by matrices of rank N ,
with 1/N playing the role of the string coupling constant gs. The large-N expansion has
turned into an efficient strategy for reorganizing theories that would otherwise be difficult to
understand perturbatively. In the context of high-energy physics, the use of this strategy to
illuminate QCD dynamics goes back to 1974 and G. ’t Hooft [18, 19, 50]. Quite universally,
the large-N expansion predicts the existence of a dual description of the same system in
terms of string theory. This association with the large-N description of generic systems
of fluctuating matrix degrees of freedom is one of the most compelling arguments for the
importance of string theory. For readable reviews of the elements of the large-N approach,
see [51] (reprinted in [52]), or the more recent [53].

We begin with a system of fluctuating degrees of freedom, described by M which happens
to be an N ×N matrix, which we take to be Hermitian and traceless, so that it carries the
adjoint representation of our symmetry group SU(N). This matrix may depend on spacetime
coordinates, and its dynamics may be relativistic or not; the details are immaterial, and we
suppress them in what follows. We will study the system in the perturbative expansion in
the powers of 1/N . The limit of large N will correspond to a new classical limit [54], in a
dual theory described by strings. For simplicity, we assume that the system is defined by a
path integral, with a classical action S(M). M can be relativistic Yang-Mills gauge fields2,

2If M are Yang-Mills gauge fields or if there is any other gauge symmetry, we assume that the gauge
symmetry is handled in the BRST formalism, extending the matrix degrees of freedom to include ghosts and
antighosts such that each matrix field has a non-degenerate kinetic term and a well-defined propagator, so
that the ribbon-diagram expansion discussed below makes sense.
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or they can be nonrelativistic matrix fields in some number of spatial dimensions. They can
also just be N ×N matrices in quantum mechanics, dependent only on time. The beauty of
the large-N expansion argument that we are about to review is in its universality.

In order to set the stage for our arguments, we must choose an action for M . We will
mimic the case of Yang-Mills gauge theory, and will take the action to be

S(M) =
1

2g2

∫
dtTr

(
Ṁ2 +M3 +M4 + . . .

)
. (3.1)

In the quadratic term, we indicated explicity only the piece with time derivatives, but gener-
ally there will also be terms involving spatial derivatives, as well as mass/chemical potential
terms; we keep those implicit, focusing on the univesal features only. The propagator is
determined by the full quadratic part in M .

A simple field redefinition to m = M/g would take this action to another, perhaps more
familiar form, traditionally used for perturbation theory in g:

S(m) =

∫
dtTr

(
1

2
ṁ2 +

g

2
m3 +

g2

2
m4 + . . .

)
. (3.2)

Here the quadratic term is normalized to 1/2, and each interaction term is controlled by
the appropriate power of g. It is also not difficult to generalize this and make the M4

coupling constant independent of the coupling that controls the M3 term. Such cosmetic
modifications will not change the line of our reasoning. Importantly, the change from M to
m is just a simple change of coordinates, which will not influence the underlying physics.
We feel that our arguments will be simplest in the original notation using M , and will use
that parametrization in the rest of our analysis.

The propagator defined by the full quadratic part of the action in (3.1) is depicted by a
ribbon, with each of the two indices associated with one edge of the ribbon,

a

b

d

c
= 〈Ma

bM
c
d〉 = g2Gac

bd = g2Gδadδ
b
c. (3.3)

and the arrows at the edges distinguish the upper and lower indices.3 The bare propagator
G can be a function of various suppressed arguments of M , but is independent of g. The

3A standard word of explanation and caution about the distinction between U(N) and SU(N): By our
assumptions, the M degrees of freedom are traceless, and symmetry is SU(N). The correct propagator
would then contain also an additive term −(1/N)δabδ

c
d on the right-hand side of (3.3), in order to maintain

the tracelessness of M . We drop this terms systematically in the large-N expansion. Thus, we aproximate
SU(N) by U(N), which is permissible as long as the U(1) factor is free and decouples (which we assume
throughout this chapter). For further discussion of this standard approach, see [52].
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, (3.5)

... (3.6)

Feynman diagrams built from these propagators are vertices are often called “ribbon dia-
grams”, and this is the terminology we will use in this chapter.4 Let us focus for simplicity
on vacuum ribbon diagrams. For a generic ribbon diagram, we will denote by P its number
of propagators, by V the number of vertices and by L the number of closed loops. We will
also denote the ribbon diagram itself by ∆.

Each ribbon diagram ∆ can be uniquely associated with a compact surface Σ. Loosely
speaking, Σ is the lowest-genus surface on which the ribbon diagram can be drawn. More
precisely, the constructive prescription for obtaining this Σ for a given ribbon diagram is
very simple: Start with the ribbon diagram (as a topological 2-manifold, with boundaries
consisting of the edges of the ribbons), and for each closed loop (i.e., a boundary component
which is topologically an S1) glue in a two-dimensional disk D2, thus closing all holes in the
ribbon diagram and producing a compact surface Σ with ∂Σ = ∅. In turn, the ribbon diagram
gives a cellular decomposition of Σ, with the vertices and propagators of the diagram serving
as the 0-dimensional and 1-dimensional cells, while the glued-in disks – which we will refer
to as “plaquettes” – play the role of the 2-dimensional cells in this cellular decomposition of
Σ. When we wish to indicate explicitly which ribbon diagram ∆ gave rise to a given surface,
we will denote that surface by Σ(∆).

By Feynman rules, the contribution of a given ribbon diagram to the vacuum amplitude
depends on g and N as

g2P−2VNL. (3.7)

Importantly, the factor of NL appears because each plaquette corresponds to a closed loop,
and therefore includes the summation over the N values of the index a running around the
loop.

We are primarily interested in a meaningful 1/N expansion, and therefore have to de-
termine which combination of g and N to hold fixed as N → ∞ in order to Defining the
’t Hooft coupling λ

λ ≡ g2N (3.8)

4Historically, ribbon diagrams appeared independently in the mathematical literature, where they are
often referred to as “fatgraphs” (see, e.g., [55] and references therein).
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Figure 3.1: A typical ribbon diagram, with 6 vertices, 10 propagators, and 4 closed loops.
The Riemann surface associated with this diagram has Euler number χ(Σ) = V −P +L = 0,
i.e., it is the surface of genus one, Σ = T 2.

turns this scaling to
λ2P−2VNV−P+L. (3.9)

We recognize the power of N in this expression as

χ(Σ) ≡ V − P + L, (3.10)

the Euler number χ(Σ) of the surface Σ associated to the ribbon diagram by the construction
summarized above. In (3.10), χ(Σ) is expressed in terms of the combinatorial data about Σ.
It is crucial however that χ(Σ) is a topological invariant of Σ, in particular independent of
the specific cellular decomposition of Σ into a collection of vertices, lines and plaquettes.

Famously, topologically inequivalent compact oriented Riemann surfaces are fully clas-
sified by specifying just one non-negative integer, the genus h of the surface, and we have
χ(Σ) = 2− 2h. Hence, our 1/N expansion is naturally interpreted as organized according to
the increasing complexity of the topology of Σ. All diagrams can now be resummed into a
perturbative expansion in the powers of 1/N , and the partition function can be written as

Z =
∞∑
h=0

(
1

N

)2h−2

Fh(λ, . . .). (3.11)

We define the large-N limit by holding the ’t Hooft coupling fixed, and identify 1/N as the
string coupling constant,

gs =
1

N
. (3.12)

We showed the analysis for simplicity for the partition function, but the same conclusion
extends to the correlation functions of physical observables in the underlying theory of the
matrix degrees of freedom: There is a dual interpretation of this theory as a string theory.

This argument is very convincing in its generality and universality. The catch in this
simple universal argument is that it does not give us a priori clues as to which string
theory is dual to our system. The worldsheet dynamics of the string needs to be found by
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other independent means, which are available only in a few rare cases (such as maximally
supersymmetric Yang-Mills theories whose additional features allow the dual string theory
to be uniquely determined, leading to the celebrated AdS/CFT correspondence [21]).

Quantum theory in real time: Schwinger-Keldysh formalism

The relationship between the large-N expansion and a perturbative string-theory expansion
as reviwed in Section 3.1 is derived under a very important implicit assumption, with his-
torical roots in particle physics: The assumption that the system is in a stable, eternal,
static vacuum, or in a state not too far from it. Our main goal in this chapter is to relax
this assumption, and study the large-N expansion away from equilibrium. Such systems are
naturally described by a natural generalization of standard quantum field theory, known as
the Schwinger-Keldysh formalism.

Here we give a lightning review of Schwinger-Keldysh formalism, which describes quan-
tum theory for general states, in or out of equilibrium [5, 6]. There are many useful reviews
of this formalism, scattered across various fields of physics; see, e.g., [56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. Schwinger-Keldysh formalism is also sometimes referred
to as the “in-in” formalism [67], especially in cosmology [10, 11, 12].5 All these labels for
this formalism are largely historical; it would be sensible to think of this formalism simply
as “quantum mechanics without simplifying assumptions about the vacuum”.

The main highlight of the Schwinger-Keldysh formalism is that it describes the system as
evolving on a doubled closed-time contour C (known as the Schwinger-Keldysh time contour,
see Fig. 3.2), starting in the remote past, evolving to the far future t∧ along the forward part
C+ of the time contour, and then returning along the backward part C− of the contour back
to the remote past. Often the turn-around point is taken t∧ →∞.

Why such a closed time contour? In fact, this contour is encoded automatically in the
rules of quantum mechanics, if one does not make the simplifying assumption of the static
vacuum. To see this, let us focus on simple observables: Time-ordered correlation functions
of operators in the Heisenberg picture,

〈ψin|T(φH(tn) . . . φH(t1))|ψin〉 , (3.13)

in some general initially prepared state |ψin〉. If this state is the static, stable vacuum, the
standard LSZ procedure extracts from these correlators the physically observable S-matrix
elements. Those are also the natural observables in string theory.

If |ψin〉 is not the static, stable vacuum, we can still apply standard rules of quantum
mechanics and develop a perturbative expansion for (3.13). Assume that the Hamiltonian

5Although the in-in formalism is the consequence of the same quantum mechanics as the Schwinger-
Keldysh formalism, it might be appropriate to point out that the physical focus is a bit different: In the
cosmological in-in formalism, one concentrates on the correlation functions of observables located at t∧,
which is interpreted as “the present”. In the Schwinger-Keldysh formalism, t∧ represents “the end of time”
in the future, and the correlators are typically evaluated for observables on the forward time contour before
t∧ is reached.
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Figure 3.2: Schwinger-Keldysh closed time contour C = C+ ∪ C−. The remote past t0 and
the far future t∧ are usually taken to be −∞ and +∞.

can be written as
H = H0 + V (t), (3.14)

where H0 describes a simple system, and define the interaction picture using this split. The
interaction-picture operators φ(t) are related to the Heisenberg-picture operators φH by

φH(t) = S(t0, t)φ(t)S(t, t0). (3.15)

Here S(t′, t) is the evolution operator

S(t′, t) = T exp

(
i

∫ t′

t

V0(t′′) dt′′

)
, (3.16)

and V0(t) is the interaction part V (t) of the Hamiltonian in the interaction picture. We will
denote S(+∞,−∞) simply by S.

The fixed reference time t0 in (3.15) can be taken to be in the remote past. We may also
assume, for illustration, that |ψin〉 was prepared from the vacuum |0in〉 of H0 in the remote
past, by adiabatic turning-on of the iteractions. The correlators are then〈

0in|S−1 T(S φ(ts) . . . φ(t1)|0in

〉
. (3.17)

Note that the factor of S−1 is automatically present, and it serves to evolve the system back
from the infinite future to the remote past where 〈0in| was prepared:

S−1 = [S(+∞,−∞)]−1 = S(−∞,+∞). (3.18)

Clearly, the perturbative expansion of (3.17) will involve not just time-ordered two-point
functions of φ, but also anti-chronologically ordered ones, and unordered ones as well. This
proliferation of propagators is best encoded by defining the closed time contour C , with
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the factor of S under the time ordering symbol T in (3.17) evolving the system forward in
time along C+, and the factor of S outside of T evolving back along C−. We introduce the
time-ordering symbol TC to denote chronological ordering along the entire contour, allowing
(3.17) to be succinctly written as

〈0in|TC (SC φ(ts) . . . φ(t1))|0in〉 , (3.19)

with SC the evolution operator (3.16) along the entire contour C . Only when the final
vacuum |0fin〉 is given by the initial vacuum up to a possible phase,

|0fin〉 = eiθ|0in〉, (3.20)

can we replace 〈0in|S−1 by eiθ〈0fin| and obtain the standard perturbation theory involving
only the Feynman propagators of φ. In more general circumstances, however, we cannot
replace the initial state 〈0in| with a suitable out-state, simply because the final state is not
known. We must then follow the general formula (3.17) and evolve the system back using
S−1, before closing the correlator on the known initial state.

It is often impractical to work directly with the doubled time contour C . Instead, one
can keep the single-valued time t, and double the number of fields, with φ+(t) and φ−(t)
denoting φ(t) on the C+ and C− branch of the Schwinger-Keldysh contour C at the same
value of t. These doubled fields can be used in the path integral representation of the theory.
The action that appears in the path integral of the non-equilibrium system is then formally
given by

SSK =

∫ +∞

−∞
dt {L(φ+)− L(φ−)} , (3.21)

with S =
∫
L(φ) the original action of the equilibrium system. Note, however, that the

compact form (3.21) is somewhat deceiving, and careful arguments involving regulators may
be needed to provide the correct treatment of the non-equilibrium path integral (see [64] for
details).

3.2. Large-N expansion in quantum systems out of

equilibrium

In this section, we put the Schwinger-Keldysh formulation of non-equilibrium systems to-
gether with the large-N expansion, and analyze the consequences of the Schwinger-Keldysh
formalism for string perturbation theory. In particular, we wish to understand how the
Schwinger-Keldysh time contour is perceived by the string worldsheet topologies.

Ribbon diagrams on the Schwinger-Keldysh time contour

First, we formulate Feynman rules out of equilibrium, for our theory of Hermitian traceless
matrices Ma

b, in the adjoint of SU(N). The elements of Feynman graphs again lead to
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ribbon diagrams, but now with all vertices and all ends of propagators labeled with + or −.
The propagators are:

+
a

b

d

c
+ =

〈
TC

(
Ma

+bM
c
+d

)〉
= g2G++

ac
bd, (3.22)

a

b

d

c
−+ =

〈
TC

(
Ma

+bM
c
−d
)〉

= g2G+−
ac
bd, (3.23)

a

b

d

c
− + =

〈
TC

(
Ma
−bM

c
+d

)〉
= g2G−+

ac
bd, (3.24)

a

b

d

c
−− =

〈
TC

(
Ma
−bM

c
−d
)〉

= g2G−−
ac
bd. (3.25)

The operation TC of time-ordering along the contour C again acts on its arguments by
reordering them from the right to the left in the order of increasing contour time, with the
flow of time following the direction of the arrows on the contour in Fig. 3.2.

More explicitly, the TC time ordering can be understood in terms of the more elementary
orderings on the standard time axis parametrized by coordinate time t: The chronological
time ordering T along t, and the anti-chronological ordering T, in the reverse direction of t.
Here we suppress the ab

cd indices for simplicity, but restore the time dependence, while still
suppressing the spatial dependence and all other possible indices and quantum numbers of
M±:

〈TC (M+(t)M+(t′))〉 = 〈T (M(t)M(t′))〉 = g2GF (t, t′), (3.26)

〈TC (M+(t)M−(t′))〉 = 〈M(t′)M(t)〉 = g2G<(t, t′), (3.27)

〈TC (M−(t)M+(t′))〉 = 〈M(t)M(t′)〉 = g2G>(t, t′), (3.28)

〈TC (M−(t)M−(t′))〉 =
〈
T (M(t)M(t′))

〉
= g2GF (t, t′). (3.29)

We thus recognize all four types of propagators in (3.22-3.25) in more elementary terms, as
representing the Feynman iε propagator GF , the “anti-Feynman” propagator GF (sometimes
called the Dyson propagator), and the G-lesser and G-greater propagators G<, G>. For
clarity and simplicity, we will keep our G±± notation of (3.22-3.25) throughout the chapter.

The vertices look the same as in the equilibrium case, except that each vertex is assigned
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...

The vertical dots at the bottom of this list of vertices represent the possibility of having
higher, n-point vertices beyond n = 4. These higher-point vertices can be controlled by
1/g2, or can have their own independent couplings. These additional choices do not change
the universal results of our analysis, and we will often freely assume below, simply for
convenience, that such higher-n vertices do exist. Similarly, we assume for simplicity that
all vertices have at least three ends; the arguments could be easily extended if one added
“2-vertices” and “1-vertices” as well, without altering our conclusions.

Note that because of the Hermiticity of M and the nature of the time ordering along C ,
we have

G+−
ac
bd = G−+

ca
db, (3.34)

and there is therefore only one independent propagator that can connect a + vertex to a
− vertex. This is reflected in our graphical notation: The propagator on the left side of
(3.23), after the ends of the ribbon are exchanged and the indiced swapped, looks identical
to the propagator on the left side of (3.24). This means that we will not have to distinguish
between G+− and G−+ propagators, as long as they are attached to the apprpriate + and −
vertices. As a result, each ribbon diagram in non-equilibrium perturbation theory will look
like a ribbon diagram of the type we encountered in Section 3.1 at equilibrium, but now with
each vertex labeled by a ± sign.6

6In what follows, when we draw ribbon diagrams we will often put the ± sign next to the vertex rather
than inside the ribbon; this will make some of our diagrams easier to read.
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Now we proceed to the analysis of generic ribbon diagrams, and we study how they lead
to an expansion of the partition function and correlation functions in terms of the topology
of surfaces, generalizing the well-known string perturbation theory away from equilibrium.
We will refer to the surfaces representing string worldsheets as “Riemann surfaces” for short,
without implying that any geometric structure on them is a priori assumed, besides their
smooth manifold structure.

First look at string perturbation theory out of equilibrium

In the special case of equilibrium and zero temperature, the Schwinger-Keldysh formalism
should correctly reproduce the standard formulation of equilibrium quantum field theory in
real time t. This limit is usually taken such that as we sent t∧ → ∞, the return part of
the Schwinger-Keldysh contour decouples from the calculations of the correlation functions
of operators located on the forward branch, and therefore it can be ignored, reproducing
standard textbook rules of quantum field theory with the static eternal vacuum. However,
remnants of the Schwinger-Keldysh formalism do appear even in this textbook example of
vacuum correlation functions in equilibrium at zero temperature, in an almost clandestine
way, under a very different name: it reduces to the Cutkosky rules, which are crucial for
analyzing unitarity properties of physical amplitudes [72, 73, 74].7 Indeed, we can take the
t∧ →∞ limit for the vacuum correlators in equilibrium at zero temperature, but still allow
insertions of observables along both branches of C . The − vertices and operator insertions
located on the backward branch C− behave exactly like those on the “shaded side” from the
unitarity cuts. Similarly, the propagators on the “unshaded” or “shaded” sides are simply
the equilibrium limits of G++ and G−−, and the “cut propagators” of the Cutkosky formalism
correspond to the equilibrium limit of G+−, where this propagator reduces to the on-shell
delta function. Thus, we reproduce the standard Cutkosky rules from the Schwinger-Keldysh
formalism: The “shaded” and “unshaded” portions in the Cutkosky rules for Feynman
diagrams correspond to the forward and backward branch of the Schwinger-Keldysh time
contour, and the cut between the shaded and unshaded region is simply the location of the
crossing from the forward branch C+ to the backward branch C−, at t∧ →∞.

We now wish to extend the story of the large-N expansion and string theory away from
equilibrium. The first guess might be that propagating strings will also exhibit cuts, and that
each string worldsheet Σ will consequently be split into two parts – its forward and backward
portions Σ+ and Σ−, joined along a shared one-dimensional boundary ∂Σ+ = ∂Σ−. This
common boundary between Σ+ and Σ− would then represent the cuts in the worldsheet
language. It is one of the central points of this chapter to show that such an expectation
is not quite correct. Instead, we will find that the portion of the worldsheet connecting Σ+

and Σ− is topologically two-dimensional.

7This remarkable connection between the Schwinger-Keldysh formalism and the Cutkosky rules seems
absent in most textbooks on relativistic quantum field theory. One notable exception, where this relationship
is explained in a lucid way, is the recent textbook by Gelis [66].
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+ − Σ Σ
+ −

(a) (b)

Figure 3.3: An example of a ribbon diagram with cuts, and its associated surface. (a): This
ribbon diagram has a unique extension of the propagator cuts into the plaquettes. (b): The
corresponding surface is Σ = S2, and the cut decomposes it into two disks Σ+, Σ−.

Extending the cuts

Intuitively, the propagators that connect a vertex on the forward portion C+ of the time
contour with a vertex on the C− portion of the contour represent worldlines of particles that
have to cross from C+ to C− and therefore pass through the time instant t∧ where the two
branches meet. This crossing can be usefully denoted in Feynman diagrams by placing cuts
across such propagators, indicating the passage through t∧. This suggests that in the string
picture, such cuts should be perhaps extended from cuts of ribbon diagrams to worldsheet
cuts.

Let us first test this guess by considering some simple examples of ribbon diagrams. We
begin by placing a cut line across all G+− and G−+ propagators,

a

b

d

c
−+ .

Intuitively, one can think of the cut as indicating where the worldline of the virtual particle,
represented by the propagator, crosses over from the forward branch C+ to the backward
branch C− of the Schwinger-Keldysh time contour C , where the two ends of the propagator
are located. If our expectation about cuts of surfaces were correct, such cuts on ribbon
propagators should induce uniquely the corresponding cuts on surfaces.

There are indeed many ribbon diagrams for which this works: An example is shown
in Fig. 3.3. In such cases, when the cuts across the G+− propagators can be continuously
extended across the plaquettes in a unique way, the resulting lines of cuts form a collection
of closed circles S1 on Σ. Moreover, this collection of S1’s separates + regions and − regions
in a way which is globally well-defined for the whole surface. Thus, cutting Σ along this
collection of S1’s separates Σ into the forward-branch surface Σ+ and backward-branch Σ−.
The collection of S1’s is then their common boundary, ∂Σ+ = ∂Σ−, along which they are
glued together to form Σ.
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+

−

−

−

Figure 3.4: A simple example of a ribbon diagram with an ambiguity in how to connect
the cuts across the plaquettes. There are two plaquettes: The one on the outside has just
two adjacent G+− propagators (thus the two cuts can be connected without ambiguity),
while the other plaquette has four adjacent G+− edges, giving two inequivalent ways how to
connect the four cuts into two nonintersecting lines.

On the other hand, there are also many ribbon diagrams for which this prescription is
incomplete or ambiguous. An example is shown in Fig. 3.4. Upon closer examination, the
origin of the ambiguity in this example is clear: There is a plaquette which has more than
two G+− propagators adjacent to it (namely four), and there are two inequivalent ways
how the corresponding four cuts can be joined into two nonintersecting lines. This makes
it clear that the original prescription for extending the cuts across plaquettes to obtain a
unique collection of S1’s cuts on Σ works precisely for those ribbon diagrams in which each
plaquette has at most two G+− propagators adjacent to it.8

How do we systematically resolve this ambiguity? Consider a generic plaquette with
at least four G+− propagators adjacent to it. In Fig. 3.5 we have an example with six.
There is no unique way how to pairwise connect the six cuts illustrated there to form three
nonintersecting lines cutting across the plaquette. In fact, there are five different such
pairings, three of which are illustrated in Fig. 3.6. With the increasing number of adjacent
G+− the number of possibilities increases rapidly, and we need a new strategy how to extend
the cuts through such plaquettes.

In order to forumulate a unique prescription for extending the cuts, we mark the center
of each ambiguous plaquette with a dot, and connect all cuts to the dot in the unique way
without forming intersections (see Fig. 3.7). This gives a unique prescription, for any ribbon
diagram, how to extend the cuts from the G+− propagators to the full diagram and its
associated surface Σ. We see that the resulting cut of Σ generally does not correspond to
a smooth one-dimensional manifold (which would have to be the union of S1’s), but it is
described by a graph consisting of a number of dots connected by lines, and drawn on Σ in a
particular way.9 Given a diagram ∆, we will denote the graph so constructed by Γ(∆), and
refer to it as the “graph of cuts” of the diagram ∆.

8Of course, in vacuum diagrams considered here, the number of G+− propagators adjacent to any
plaquette is always even.

9As a general rule, only the centers of those plaquettes which have more than two G+− propagators
adjacent to them will be marked with a dot; any plaquette with just two adjacent G+− propagators has an
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Figure 3.5: An example of a plaquette with six adjacent G+− propagators, indicating their
cuts.
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Figure 3.6: Ambiguities in extending the cuts in Fig. 3.5 across the plaquette. In this
example, there are five inequivalent ways, of which we show three.
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Figure 3.7: The unique extension of the propagator cuts into the plaquette, by marking the
center of the plaquette with a dot and connecting all propagator cuts to the dot.

Topology of worldsheets on the Schwinger-Keldysh time contour

One could work in this language of cuts given by graphs on worldsheets, but this represen-
tation of the cuts is quite cumbersome. Questions such as: Which graphs are allowed? How

unambiguous cut through it, and no dot is needed in that case.
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Figure 3.8: The topologically unique thickening of the graph of cuts Γ into a smooth surface
with boundaries. The collection of all such thickenings (denoted here in yellow) across all
plaquettes forms the smooth wedge region Σ∧.

are they mapped to the worldsheet? are not easy to answer in this language. For example,
not every graph, not even every connected graph, is allowed: It must be bipartite in the
sense that it must separate Σ into regions that can be consistently labeled alternately by +
and −. Moreover, there are way too many allowed graphs, and having to classify them and
sum over them would ruin the anticipated simplicity of the topological expansion in string
theory. A much clearer picture emerges when we move away from graphs, and replace them
with smooth manifolds. Indeed, graphs are complicated, but smooth manifolds are simple
(at least in low-enough dimensions).

How do we associate a graph of cuts Γ with a smooth manifold? Consider again one of
the ambiguous plaquettes, for example again the one in Fig. 3.7. The graph of cuts across
this plaquette is not a smooth manifold, but we can define – in a topologically unique way –
its “thickening” into a smooth two-dimensional surface with smooth one-dimensional bound-
aries, as indicated in the example of Fig. 3.7. Moreover, these two-dimensional thickenings
extend smoothly across all adjacent propagators into neighbouring plaquettes, forming a
globally well-defined smooth manifold with non-empty smooth boundary. We refer to this
manifold as the “wedge region” of Σ, and denote it by Σ∧.10 It is this wedge region Σ∧ that
represents the topology of the cuts, connecting Σ+ and Σ− into the original smooth surface
Σ.

Thus, we have reached one of the main and perhaps most surprising points of this chapter:
The turnaround point t∧ on the Schwinger-Keldysh contour, where the forward branch C+ is
connected to the backward branch C−, is from the worldsheet point of view topologically two-
dimensional! The cuts connecting the forward and backward parts of Σ are not boundaries
between Σ+ and Σ−, but are themselves two-dimensional surfaces Σ∧.

In the remainder of this Section 3.2, we will demonstrate in detail that Σ∧ can have an
arbitrarily complicated topology (i.e., any finite number of connected components, handles,

10For readers viewing this chapter in color, we note note that the wedge regions Σ∧ are systematically
depicted in our Figures in yellow.
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Σ
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Figure 3.9: An example yielding more than one connected components of Σ∧. (a): A ribbon
diagram with Σ = T 2. (b): The corresponding triple decomposition of Σ, with Σ± each a
cylinder, and Σ∧ a union of two cylinders.

and boundaries connecting it to Σ+ and Σ−), and thefore carries its own genus expansion.

The triple decomposition of Σ

We have just found that the natural way how to think about the “cut” between the forward
and backward part of Σ is to represent it by a smooth two-manifold with boundaries, not by
a one-dimensional graph. It is this triple decomposition of worldsheets Σ into the forward
surface Σ+, backward surface Σ−, and the wedge region Σ∧ which emerges universally from
the large-N expansion.

A simple example is the surface associated with the diagram in Fig. 3.3(a), with Σ = S2

and the following triple decomposition,

Σ
Σ+

Σ
−

^

. (3.35)

Our next task is to classify all possible triple decompositions of Σ that can emerge from
actual ribbon diagrams.

First of all, it is easy to find examples where Σ∧ has more than one connected component,
but its graph of cuts is still just a collection of circles. In Fig. 3.9, the graph of cuts Γ(∆)
has two connected components, each isomorphic to S1, and no vertices. Thus, Σ∧ consists
of two disconnected cylinders (see Fig. 3.9(b)).

The simplest graph of cuts with at least one vertex is the figure-eight graph. It can appear
in various ribbon diagrams and also be drawn in various inequivalent ways on surfaces. One
example of a ribbon diagram with the figure-eight Γ is in Fig. 3.4, with the associated
surface and its triple decomposition depicted in Fig. 3.10. Iterating such constructions
shows immediately that connected components of Σ∧ can have an arbitrarily high number
of boundary components.
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Next, one wonders about higher genus: Can Σ∧ with handles also emerge from consistent
ribbon diagrams? To show that the answer is yes, consider the diagram in Fig. 3.11. This
example gives us an opportunity to introduce a useful mathematical notion, known as the
Whitehead reduction of a ribbon diagram: Given a ribbon diagram ∆ with two distinct
vertices of orders 2+k and 2+` connected by a propagator, define the “Whitehead reduction
of ∆” along this propagator by shrinking the propagator to zero length, thus replacing the
two vertices with one composite vertex of order 2 + k+ `. Since we wish to keep track of the
information in the triple decomposition of Σ, we allow only those Whitehead reductions that
do not change this decomposition, i.e., Whitehead reductions along G++ propagators and
G−− propagators are allowed, but Whitehead reductions along the G+− propagators are not.
Two ribbon diagrams that differ by a sequence of allowed Whitehead reductions correspond
to the same triple decomposition into Σ+, Σ− and Σ∧.

Returning now to our example from Fig. 3.11, we see that the diagram can be simplified
by two Whitehead reductions to that depicted in Fig. 3.12. Both of these diagrams should
thus lead to the same triple decomposition of their underlying surface Σ = T 2, which we can
easily determine by direct inspection: Since both Σ+ and Σ− will be disks, Σ∧ has to have
two boundaries and a handle, as shown in Fig. 3.13. We conclude that the wedge region can
indeed carry a handle.

Combinatorial picture of Σ+, Σ− and Σ∧

In order to prepare the ground for showing that arbitrarily high genera in Σ∧ can also occur,
it will be useful to develop a combinatorial approach to the ribbon diagrams, their associated
surfaces Σ and their triple decomposition into Σ+, Σ− and Σ∧.

Consider a surface Σ, obtained from a ribbon diagram ∆. The ribbon diagram provides
a cellular decomposition of Σ: The vertices of the ribbon diagram are the zero-dimensional
cells, the propagators represent the one-dimensional cells (or edges), and the plaquettes the
two-dimensional cells of this cellular decomposition. For cellular decompositions, the Euler

Σ

Σ

Σ
Σ

Σ
− −

+

+

^

(a) (b)

Figure 3.10: The surface Σ that corresponds to the ribbon diagram from Fig. 3.4, and its
triple decomposition. (a): Σ is the torus, Σ+ the disk, and Σ− the cylinder. The cut between
them forms a figure-eight graph with one vertex. (b): The triple decomposition of Σ; the
thickening Σ∧ of the figure-eight graph is the smooth “pair-of-pants” surface.
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Figure 3.11: A simple ribbon diagram illustrating that Σ∧ can be of higher genus.

number χ(Σ) of a given surface Σ is simply calculated as χ(Σ) = V − P + L, with V the
number of vertices, P the number of edges, and L the number of plaquettes. We already
used this formula in Eqn. (3.10), in our review of the large-N expansion in equilibrium.

Now we can use the cellular decomposition of Σ implied by ∆ to define Σ+, Σ− and Σ∧

by assigning the various element of this cellular decomposition to belong to the three parts
of the triple decomposition.

First, recall that all vertices in ∆ are labeled as either + or −, and consequently each
propagator is labeled by the two signs indicating the vertices it connects. We will use the

+ −

Figure 3.12: This diagram is obtained from that in Fig. 3.11 by Whitehead reduction,
therefore it corresponds to the same surface Σ and the same triple decomposition.
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Σ
+

Σ
−

Σ ^

Figure 3.13: Surface Σ = T 2 corresponding to the ribbon diagrams in Fig. 3.11 and Fig. 3.12,
and its triple decomposition. While both Σ+ and Σ− are disks, Σ∧ is a surface with two
boundaries and a handle.

following notation:

V+ = the number of + vertices,

V− = the number of − vertices,

P+ = the number of G++ propagators,

P− = the number of G−− propagators,

P+− = the number of G+− and G−+ propagators,

L+ = the number of plaquettes (or closed loops) with only G++ adjacent propagators,

L− = the number of plaquettes with only G−− adjacent propagators,

L+− = the number of plaquettes with a non-zero number

of G+− (or G−+) adjacent propagators.

We now subdivide the elements of the cellular decomposition of Σ into those belonging to
Σ+, Σ− and Σ∧ as follows:

• All + vertices, all G++ propagators and all plaquettes with only G++ adjacent propa-
gators belong to Σ+;

• All − vertices, all G−− propagators and all plaquettes with only G−− adjacent propa-
gators belong to Σ−;

• All G+− (and G−+) propagators and all plaquettes with a non-zero number of G+− (or
G−+) propagators belong to Σ∧.

This is our combinatorial definition of the triple decomposition of Σ, in terms of the cellular
decomposition defined by the underlying ribbon diagram.

We can now define the “cellular Euler numbers” associated with the ingredients of the
ribbon diagram ∆ that have been assigned to Σ± and Σ∧ as follows:

χ+(∆) = V+ − P+ + L+, χ−(∆) = V− − P− + L−, (3.36)
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and
χ∧(∆) = −P+− + L+−. (3.37)

It is straightforward to show that the cellular Euler numbers so defined are equivalent to the
standard topological definition of the Euler numbers of Σ± and Σ∧ as topological manifolds
with boundaries:

χ+(∆) = χ(Σ+), χ−(∆) = χ(Σ−). (3.38)

Indeed, this follows from the simple observation that the elements of the cellular decompo-
sition of Σ that we assigned to Σ+ and Σ− form a cellular decomposition of those surfaces
with boundaries, and our definition of χ± in (3.36) coincides with the standard expression
for χ(Σ±) in terms of this cellular decomposition.

It is perhaps a little less immediate to see that the cellular Euler number χ∧(∆) defined
in (3.37) is also the topological Euler number of the surface Σ∧ with boundary whose con-
struction we presented in Section 3.2. First of all, the elements of the cellular decomposition
of Σ that we assigned to Σ∧ do not give a cellular decomposition of a surface: There are only
edges and plaquettes, but no vertices, and these ingredients do not give a closed submanifold
in Σ. It is easy, however, to construct an honest cellular decomposition of Σ∧ by refining the
elements that we assigned to Σ∧. First, add vertices at the ends of all the G+− (and G−+)
propagators, and think of them as the points at the boundaries between Σ∧ and Σ+ or Σ−.
Then connect these vertices by new edges, with each edge simply following these boundaries
within each plaquette, as indicated in Fig. 3.8. The addition of these vertices and edges to
the ingredients previously assigned to Σ∧ defines a cellular decomposition of Σ∧, as a closed
manifold with boundary. Essentially, the new ingredients just add the boundary S1 compo-
nents to Σ∧, without changing the alternating sum of the vertices, edges and plaquettes. We
conclude that

χ∧(∆) = χ(Σ∧). (3.39)

Equipped with this combinatorial picture of the triple decomposition, we can now show
that Σ∧ of arbitrarily high genus can indeed emerge from ribbon diagrams.

Consider a ribbon diagram, constructed from ingredients shown in Fig. 3.14: Two ribbon
diagrams with n loose ends. If we glue the end marked 1 with n′, 2 with n′ − 1, . . . and n
with 1′, the surface Σ associated with the resulting diagram is the sphere. Indeed, in this
case we have

V+ = V− = P+ = P− = P+− = n, L+ = L− = 1, (3.40)

and L+− = n, implying that χ(Σ+) = χ(Σ−) = 1, χ(Σ∧) = 0, and χ(Σ) = 2. The triple
decomposition is the one we found in (3.35): Σ+ and Σ− are disks, and Σ∧ is a cylinder.

On the other hand, if we glue the loose ends in the order indicated in Fig. 3.14, we obtain
a surface whose cellular decomposition is characterized by the same numbers as in (3.40),
while the number L+− of +− plaquettes changes from n to just 1 if n is odd, and to 2 if
n is even. Thus, for odd n = 2h + 1 or even n = 2h + 2, we see that χ(Σ∧) = −2h. Since
Σ± are disks, Σ∧ has two boundary components. We conclude that Σ∧ resulting from the
construction in Fig. 3.14 is the surface with two boundaries and h handles (see Fig. 3.15).
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Figure 3.14: Construction of the ribbon diagram whose Σ∧ is a higher-genus surface with
two boundary components, depicted in Figure 3.15. Prepare two ribbon diagrams with n
loose ends each as indicated, and connect pairwise the ends labeled by i and i′: 1 to 1′, 2 to
2′, . . ., n to n′. Note that with this order of gluing the ends, the resulting ribbon diagram
will have only the total of 3 plaquettes if n is odd, or 4 plaquettes if n is even.

This demonstrates that wedge regions Σ∧ obtained from ribbon diagrams can have connected
components with an arbitrarily high number of handles.

Measure once, cut twice

Our analysis of the large-N expansion of non-equilibrium systems revealed one, perhaps
surprising, fact: The time instant t∧ where the forward branch of the Schwinger-Keldysh
time contour meets the backward branch does not cut the worldsheet Σ into its forward
and backward parts Σ+ and Σ∧ connected along a common one-dimensional boundary –
instead, the worldsheet region Σ∧ corresponding to t∧ is topologically two-dimensional, and
even carries its own genus expansion.

Having seen that the wedge region Σ∧ can have components with arbitrary numbers of
boundaries and high genus, there are some natural follow-up questions about Σ∧ and how it
is connected to the forward and backward regions Σ+ and Σ∧.

Σ Σ Σ
+ ^ −

Figure 3.15: The worldsheet topology whose Σ∧ has h handles and two boundary com-
ponents, and Σ+, Σ− are both disks. This surface is obtained from the ribbon diagram
construction depicted in Figure 3.14, with n = 2h+ 1 or n = 2h+ 2.
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Does Σ∧ always have to have non-empty boundaries with both Σ+ and Σ−? The answer
is yes, in the following sense: There are certainly ribbon diagrams, such that their assiciated
surface is Σ = Σ+ or Σ = Σ−, and Σ∧ is empty. But if Σ∧ is non-empty, it has to have a
non-empty boundary both with Σ+ and with Σ−. The proof is simple: In the combinatorial
description, Σ∧ is built from lines representing G+− propagators, and the +− plaquettes.
If Σ∧ is non-empty, it contains at least one G+− propagator. This propagator has to have
a place to end, at both ends. On the + side, the propagator can only end at a non-empty
boundary with Σ+; similarly, on the − side, it must end on a non-empty boundary with Σ−.

We can summarize this structure in a simple slogan: Measure once, cut twice! If you find
that Σ has both Σ+ and Σ− non-empty, you must cut; and if you cut, you must cut twice.
The first “cut” indicates the location within Σ of the boundary between Σ+ and Σ∧ (which
we denote by ∂+Σ), and the second “cut” indicates the location of the boundary between
Σ∧ and Σ− (which we denote by ∂−Σ). Of course, ∂+Σ is just a collection of n circles and
∂−Σ is a collection of n′ circles; note that n does not have to equal n′.

It is intriguing to find that the structure of worldsheet “cuts” is so much richer in com-
parison to the simple propagator cuts known from standard quantum field theory of particle
physics.

Dual picture

Ribbon diagrams exhibit a very useful duality property, closely related to what mathemati-
cians call Poincaré duality in topology of manifolds. Each ribbon diagram ∆ defines uniquely
another, dual ribbon diagram ∆?, as follows: Each plaquette of ∆ is associated with a vertex
in ∆?. Whenever two plaquettes in ∆ share an edge, the corresponding vertices in ∆? are
connected by a ribbon. All ribbons attached to a given vertex in ∆? in the same cyclic
order as the order of their dual edges around the original plaquette in ∆. As a result, each
plaquette in ∆? is associated with a unique vertex in ∆. It is easy to see that with this
construction, Σ(∆?) = Σ(∆) (and consequently χ(Σ(∆?)) = χ(Σ(∆))), and (∆?)? = ∆. In
particular, the cellular decompositions of Σ provided by a diagram ∆ and its dual ∆? are
dual to each other in the sense of cellular decompositions.

We can use this duality to shed more light on the Σ∧ region. In the combinatorial
description of Σ using a ribbon diagram ∆, it was perhaps surprising that we assigned only
propagators and plaquettes to Σ∧, i.e., one-dimensional and two-dimensional cells, but no
vertices. The dual picture using ∆? reveals why that was so: The plaquettes of ∆ correspond
to vertices in the dual picture, and the G+− propagators that traverse across Σ∧ from the ∂+Σ
boundary to the ∂−Σ boundary turn in the dual picture to lines connecting those vertices.
Thus, dualizing the formula (3.37) for the Euler number of Σ∧, we see that contributions
to χ(Σ∧) come only from vertices and propagators of ∆?, so only zero- and one-dimensional
components contribute. These components of ∆? of course form nothing other than the
graph of cuts Γ(∆). In this sense, the topological information about Σ∧ can be encoded in
cellular data not involving cells of dimension two.
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Σ

(b)(a)

Figure 3.16: Surfaces with distinct Σ∧’s but with the same graph of cuts Γ. In this example,
Γ is the trefoil graph. (a): Here Γ is drawn on the sphere, and Σ∧ is the sphere with four
boundaries. (b): Here Σ is the torus, represented as a square with the opposite sides pairwise
identified. The indicated graph of cuts is again the trefoil. The triple decomposition of this
surface reproduces that of Fig. 3.13.

This does not mean that we should abandon our smooth-surface representation of Σ∧

and revert back to the graph description: The classification of Σ∧ as surfaces with smooth
boundaries is much more transparent than the classification of the corresponding graphs and
the ways how they can be drawn on surfaces. In particular, without keeping track of how
the graph of cuts Γ is drawn on Σ, the graph itself does not contain enough information to
reconstruct the topology of Σ∧. Take for example the trefoil graph, depicted in Fig. 3.16(a).
This graph can be drawn on the sphere, in a topologically unique way. This configuration
indeed corresponds to a particular ribbon diagram, whose Σ = S2 and Σ∧ is the sphere with
four boudaries. The trefoil graph can also be drawn on a torus, in several inequivalent ways.
First, if drawn in a local patch of the torus, it again gives the same Σ∧ as on the sphere.
Or it can be drawn such that all three cycles of the trefoil are noncontractible and mutually
homotopically inequivalent, as in Fig 3.16(b). This describes the configuration in Fig. 3.12,
and Σ∧ is the torus with two boundaries. Of course, both of these Σ∧ topologies (as well as
the graph Γ itself) have the same Euler number, χ = −2.

Indeed, this ambiguity is not at all surprising – in order to keep track of how Γ is drawn
on Σ, we have just learned that it is natural to interpret it as a ribbon subdiagram of
the dual ribbon diagram ∆?. As a two-dimensional surface with boundaries, this ribbon
diagram corresponding to Γ is indeed just the thickening of Γ into Σ∧ that we introduced in
Section 3.2.

Grothendieck’s dessins d’enfants make an appearance

Over its lifetime, string theory has demonstrated an extraordinary ability to make meaningful
connections to many diverse areas of modern mathematics. These connections have been
very fruitful both for mathematics and physics. In this subsection, we take a brief detour
to point out one unexpected connection between the structure of the non-equilibrium string
diagrams and objects that have been studied extensively in pure mathematics, under the
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name of Grothendieck’s dessigns d’enfants. Tho readers interested in the physical picture
of non-equilibrium string perturbation theory should feel free to skip this subsection and go
directly to Section 3.2, where our main results are stated.

Since the notion of dessins d’enfants (see, e.g., [75, 76, 77, 78]) was first introduced
by Grotendieck in his 1984 Esquisse d’un Programme, dessins have been found to relate
remarkably many diverse areas in pure mathematics (including such arkane concepts as the
absolute Galois group11 and its faithful action on various categories [78]), and it is only
fitting that they should appear in string theory.12 For our purposes, a dessin d’enfant can
be defined as a connected graph, consisting of a finite number of vertices and lines, and
drawn on a two-dimensional surface Σ′ such that no two vertices coincide on Σ′ and no two
lines intersect on Σ′, and such that two additional conditions are satisfied: (i) the graph is
bipartite in the following sense: each vertex is labeled either black or white, with each line of
the graph connecting a black vertex with a white one; and (ii) the complement of the graph
in Σ′ is topologically a collection of disks.

Now we can show that there is a close relation bewteen dessins d’enfants and the wedge-
region part of our ribbon graphs. Imagine asking the following question: How do we keep
track of only that part of the ribbon diagram that defines the Σ∧ region of its associated
surface? This question is answered as follows. Consider a ribbon diagram ∆, and draw it
on its associated surface Σ with triple decomposition Σ+, Σ− and Σ∧. Erase the Σ+ and Σ∧

parts of Σ, keeping only the wedge region Σ∧. Glue in a disk inside each of the boundary
components of Σ∧, place a new vertex in the center of each such disk, and label it + or −
depending on whether the disk replaces a boundary with Σ+ or Σ−. All ribbon propagators
are now ending on the edges of the glued-in disks; extend them to the vertex at the center
of the disk, without intersections. This defines a new, “reduced” ribbon diagram, whose
associated surface is Σ∧ with the boundary components filled in with the disks. All detailed
information about how the original ribbon diagram extends into the Σ+ and Σ− regions
has now been erased, so the resulting reduced ribbon diagram encodes only the information
about Σ∧.

We now observe that each such reduced ribbon diagram defines a unique dessin d’enfant :
Label each + vertex as black, and each − vertex as white, and note that all the axioms of
dessins are satisfied by our reduced ribbon diagram. In turn, every dessin d’enfant is realized
by at least one ribbon diagram in this way. More precisely, we can define an equivalence
relation on the original ribbon diagrams, by declaring two ribbon diagrams equivalent if they
may differ only in their Σ+ and Σ− regions, but give the same reduced ribbon diagram when
our procedure is followed. Two ribbon diagrams correspond to the same dessin d’enfant if
they belong to the same equivalence class. For example, the ribbon diagrams in Figs. 3.11
and 3.12 are in the same equivalence class, and the dessin d’enfant corresponding to them

11The absolute Galois group Gal(Q/Q) is defined as the group of authomorphisms of the algebraic numbers
Q which fix the rational numbers Q [79].

12In an unrelatex context, dessins d’enfants also appeared previously in string theory in certain brane
engineering constructions [80] and Calabi-Yau compactifications [81, 82].
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can be drawn like this:

.

This dessin is supposed to be visualized as being drawn on a torus, and the Σ∧ that corre-
sponds to this dessin is depicted in Fig. 3.13.

In turn, two ribbon diagrams from distinct equivalence classes correspond to distinct
dessins. We conclude that there is a one-to-one correspondence between dessins d’enfants
and the equivalence classes of all ribbon diagrams defined above, represented by the reduced
ribbon diagrams.

We do not have any immediate use in non-equilibrium physics for this connection to
dessins d’enfants, yet we find it fascinating that they do naturally appear in the structure
of non-equilibrium string perturbation theory, and are related so intimately to the most
interesting portion Σ∧ of the worldsheet, associated with the crossing from the forward to
the backward branch of the Schwinger-Keldysh time contour.

Non-equilibrium string perturbation theory

After this thorough analysis of the surfaces Σ that can emerge from ribbon diagrams in our
large-N theory of matrix degrees of freedom out of equilibrium, we are ready to formulate
the main lessons about the dual string theory expansion. Which surfaces contribute to
the expansion? If we make no additional assumptions about the dynamics of the large-N
system, i.e., assume no “hidden identities” of individual ribbon diagrams (or among groups
of ribbon diagrams) that would make some contributions vanish, then as we have seen above,
all possible ttriple decompositions of worldsheets result from consistent ribbon diagrams.13

In non-equilibrium string perturbation theory, the partition function is expressed as a
refined topological expansion over worldsheet surfaces,

Z =
∞∑
h=0

(
1

N

)2h−2 ∑
triple decompositions
χ++χ−+χ∧=2−2h

FΣ+,Σ−,Σ∧(λ, . . .), (3.41)

This formula is the central result of this chapter: In non-equilibrium string theory, the genus
expansion into a sum over connected surfaces Σ known from equilibrium is further refined
into a sum over triple decomposition of each surface Σ into its forward part Σ+, backward
part Σ− and the wedge part Σ∧ which corresponds to the time instant t∧ where the two
branches C+ and C− of the Schwinger-Keldysh time contour meet. We stated the result here

13For specific systems, there might be additional identities that make some classes of surfaces drop out from
the sum; those can be studied on a case-by-case basis. Here we concentrate on the universal predictions about
non-equilibrium string perturbation theory, following solely from the topology of the large-N expansion,
without any additional dynamical assumptions.
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Figure 3.17: A typical string topology contributing to the non-equilibrium string perturba-
tion theory.

for the partition function Z, but the same expansion is expected of correlation functions of
local observables as well.

In our derivation of this result from the original large-N system, the individual contri-
bution FΣ+,Σ−,Σ∧ of each triple decomposition is weighted by the power of N given by the
total Euler number χ(Σ) = 2− 2h. Thus, the term at a fixed order h in the string coupling
is further refined into a sum over all triple decompositions of Σ with that genus h into Σ+,
Σ− and Σ∧, subject only to the condition that Σ be connected. At this stage, individual
triple decompositions are still weighted just by the overall Euler number χ(Σ), with 1/N the
only parameter of the expansion. This may be the limit of how far the large-N expansion
arguments can take us, in predicting the universal properties of the dual string theory.

However, once we identify 1/N with the string coupling constant gs, one can use our
experience with critical string theory at equilibrium to speculate that a more refined weight-
ing should be possible. For example, one can imagine dialing different values of the string
coupling on the forward and backward branches of the time contour (let’s call them g+ and
g−), or a different value of the string coupling in the asymptotic future at t∧ (which we
naturally call g∧). Indeed, in critical string theory in equilibrium, there are many examples
where the string coupling “constant” – being given by the vacuum expectation value of the
dilaton field Φ as gs = 〈eΦ〉 – is dependent on the spacetime location, no longer necessarily
equal to a fixed value set by 1/N . Assuming that on the Schwinger-Keldysh contour gs can
take such three different values g± and g∧ in its three different regions, each term in the
perturbation theory sum (3.41) would then be weighted by the more refined weight

g
−χ(Σ+)
+ g

−χ(Σ−)
− g

−χ(Σ∧)
∧ , (3.42)

replacing the overall g
−χ(Σ)
s that we obtained from the 1/N expansion. In order to see

whether such a possibility is realized, we would need to know more about the worldsheet
dynamics of strings away from equilibrium.

Having shown that all topologies can appear in the triple decompositions of worldsheet
surfaces, one can reorganize the question and ask, for a given surface Σ, for a full classification
of all its possible triple decompositions. Such decompositions are fully classified in terms of
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Figure 3.18: Illustration of the possible infinite proliferation of triple decompositions for a
given Σ (here illustrated for Σ = S2), if connected components of Σ+ and Σ− with non-
negative Euler number (and no additional insertions of observables inside them) are not
identically zero.

the discrete topological data about Σ+, Σ− and Σ∧: Their numbers of handles, and numbers
of boundary components. However, without making any additional assumptions about the
worldsheet dynamics, the number of distinct triple decompositions of a fixed surface Σ is
infinite. This proliferation of decompositions is illustrated for the sphere in Fig. 3.18. We find
an infinite number of decompositions of the sphere, with connected components of Σ∧ = Σ0,b

given by spheres with b boundaries. Upon closer inspection, we find that the origin of this
proliferation is in the existence of components in Σ+, Σ− and Σ∧ whose Euler number χ
is non-negative: Indeed, since the Euler number of Σ is the sum of the Euler numbers of
its triple decomposition, if only those components that have negative χ were allowed, there
would only be a finite number of possible decompositions.

In vacuum diagrams, the components of Σ+ and Σ∧ with non-negative Euler numbers
are disks and cylinders, while in Σ∧ it is only the cylinder. When we generalize from vac-
uum diagrams to correlation functions of local observables on Σ, each insertion counts as a
“puncture” in Σ, and contributes an additional −1 to the Euler number. In this case, the
additional components of Σ+ and Σ∧ causing proliferations in the triple decompositions of
Σ are also disks with one puncture. How to deal with such proliferations? There are two
main options: (a) allow them to be non-zero and perhaps resum the contributions with non-
negative χ to define “renormalized” triple decompositions of Σ, or (b) make an additional
assumption about the worldsheet dynamics, declaring that contributions of components of
Σ+ and Σ− with χ ≥ 0 vanish identically.

While Option (a) might be necessary in some circumstances far from equilibrium, Op-
tion (b) is something we are familiar with from critical string theory in equilibrium. In critical
string theory, string worldsheets inherit a complex structure from dynamics of worldsheet
gravity and its symmetries. The Fh contributions at fixed genus h are given as integrals over
moduli spaces of such complex structures. When the worldsheet is a sphere with fewer than
three punctures, such contributions vanish identially, since they are suppressed by the infi-
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nite volume of a residual worldsheet gauge symmetry. In the language of mathematics, only
“stable nodal Riemann surfaces” [83] (i.e., surfaces with punctures and with non-negative
Euler numbers) contribute to the amplitudes. This suggests a realization of our Option (b):
In theories where the worldsheet dynamics implies additional worldsheet structure (such as
the complex structure), one could propose that the boundaries ∂+Σ and ∂−Σ in the triple
decomposition should be interpreted geometrically as nodes in the Riemann surface, and
expect that the components of Σ+ and Σ− which carry non-negative Euler numbers vanish
identically, in analogy with critical string theory in equilibrium.

Note that in Option (b), in order to get a finite sum over triple decompositions, it
would not be sufficient to assume that just the components of Σ+ and Σ− with strictly
positive χ (i.e., the disks) vanish identically: There would still be an infinite number of
triple decompositions of vacuum diagrams at each order in gs, starting at genus one.

In fact, the list of topological invariants associated universally with our triple decompo-
sitions of Σ is even richer than just χ(Σ+), χ(Σ−) and χ(Σ∧). We can define b+ to be the
number of boundary components in the boundary ∂+Σ between Σ+ and Σ∧, and similarly
b− as the number of components in the boundary ∂−Σ between Σ− and Σ∧. These b± are of
course topological invariants, and if we introduce “fugacities” f+ and f− for them, we can
weigh each triple decomposition of Σ by an additional factor of

f+
b+f−

b− . (3.43)

Another set of useful invariants are the numbers of connected components in Σ+, Σ− and
Σ∧, which we denote by n+, n− and n∧. Even if Option (a) applies, and the disk and cylinder
components of Σ+ and Σ− turn out not to be zero, there is one way how to reduce the sum
over triple decompositions at each genus h to a finite sum: If we allow only connected Σ+

and Σ− to contribute. This can be arranged by introducing “fugacity” parameters γ+ and
γ− for the numbers of components n+ and n−, to weigh the contribution of a given triple
decomposition by

γ
n+−1
+ γ

n−−1
− . (3.44)

Presumably, we choose γ± to be smaller than one, so that they suppress contributions from
higher numbers of connected components of Σ±. Sending γ± → 0 then keeps only the
contributions from the connected components in Σ±.

The question of whether or not the appropriate refined expansion parameters such as
g± and g∧, γ± or f± do naturally appear in a given string theory is likely to depend on
the specific examples, and their string dynamics. Since in this chapter we are only focusing
on the universal properties independent of any knowledge about the worldsheet dynamics,
such questions are outside of the scope of this chapter. Our universal arguments only reveal
the universal existence of the topological invariants to which such hypothetical dynamical
expansion parameters could be sensitive.
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Figure 3.19: (a): The Kadanoff-Baym time contour Cβ = C+ ∪ C− ∪ CM in the plane of
complexified time, with the dashed line indicating the periodicity of observables by β in the
imaginary time direction. (b): The KMS periodicity properties suggest that the complexified
time can be naturally thought of as a cylinder, on which the KB contour is a closed contour
with winding number one.

3.3. Strings on the Kadanoff-Baym time contour

Our analysis of the Schwinger-Keldysh time contour has several straightforward generaliza-
tions. In this section, we present the large N expansion of theories on another popular
time contour, relevant particularly for systems at finite temperature T at or near equilib-
rium, known as the Kadanoff-Baym contour14 [84, 62, 63, 68, 69, 70, 71]. Since the logic of
this analysis is a straighforward generalization of our discussion in Section 3.2, we will be
relatively brief.

The Kadanoff-Baym contour and finite temperature

The Kadanoff-Baym (KB) contour Cβ consists of three segments (see Fig 3.19(a)): Besides
the forward and backward branches C+ and C− known from the Schwinger-Keldysh contour,
there is a third segment CM representing an excursion into the imaginary direction by the
amount −iβ. This last segment of the KB contour is referred to as the “Matsubara” segment
of the KB contour. Indeed, this Matsubara segment would constitute the entire time contour
in the standard imaginary-time approach to equilibrium systems at finite temperature known
as the Matsubara formalism. Keeping both the imaginary-time segment and the real-time
segments of the KB contour allows us to combine the benefits of the imaginary-time Matsub-
ara formalism with the possibility of studying real-time phenomena at finite temperature.
The condition of thermal equilibrium translates into the so-called Kubo-Martin-Schwinger

14Sometimes this contour is referred to as the Konstantinov-Perel’ contour [65].
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(KMS) conditions on correlation functions of meaningful quantities. As a consequence of the
KMS conditions, the correlation functions are periodic (or antiperiodic) along the imaginary
direction of the complexified time; it is therefore natural to think of the KB contour as a
closed contour on the cylinder (see Fig 3.19(b)).

Now the fields are tripled: M on the Cβ contour can be represented by two fields M±(t)
that depend on real time, and one new field MM(τ) which depends on the coordinate τ
defined as τ = −Im t along the Matsubara segment CM:

MM
a
b(τ) ≡Ma

b(−iτ). (3.45)

With this definition, τ ∈ [0, β).
This triplication of fields means that we have nine a priori distinct propagators, defined

using the time ordering TCβ along the KB contour. They are denoted by ribbons as in (3.22-
3.25), but now labeled with three possible indices +,−,M at each end. The propagators
involving the M± fields are as in (3.26-3.29). Then there are four propagators connecting
one MM with either M+ or M−; these are expressed in terms of the Green’s functions Gd

and Ge known in the non-equilibrium literature as G-left and G-right [65],

〈MM(τ)M±(t)〉 = g2Gd(τ, t), (3.46)

〈M±(t)MM(τ)〉 = g2Ge(t, τ). (3.47)

Finally, we have the GMM propagator, familiar from the Matsubara formalism, and given by
the two-point function of MM along the Matsubara segment. For clarity, we will again use
a uniform two-index notation for all nine propagators in the rest of this section, with the
indices running over +,−,M.

The vertices are the same as in (3.30-3.33), except now they are labeled by one of the
three indices +,−,M.

Seven-fold decomposition of Σ

In understanding the decomposition of Σ for the KB contour, we will use the same combi-
natorial approach that worked for us in Section 4.3.

All ribbon diagrams now have vertices labeled by +,− and M. Consider such a diagram
∆. It defines a cellular decomposition of its associated surface Σ. We wish to construct the
decomposition of Σ on the KB contour, analogous to the triple decomposition of Σ that we
found on the Schwinger-Keldysh contour. We begin by constructing the forward region Σ+:
Combinatorially, we define Σ+ to be the region whose cellular decomposition consists of all +
vertices in ∆, all the G++ propagators, and all the plaquettes whose all adjacent propagators
are G++. This collection of data indeed defines a cellular decomposition of a surface with
boundaries, which will be our Σ+. Repeating the same with − vertices, propagators and
plaquettes defines the backward regionΣ−. Finally, repeating the same with M vertices,
propagators and plaquettes defines ΣM, the “Matsubara region” of Σ.
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In complete analogy with Section 4.3, we introduce the following notation:

V+ = the number of vertices labeled by +,

P+ = the number of G++ propagators,

L+ = the number of plaquettes with all their vertices labeled by +,

(with similar definitions for V−, P−, L−, VM, PM and LM). We define the combinatorial
Euler numbers χ± and χM, and argue that they are equal to the topological Euler numbers
of surfaces with boundaries Σ+, Σ− and ΣM:

χ+(∆) ≡ V+ − P+ + L+ = χ(Σ+),

χ−(∆) ≡ V− − P− + L− = χ(Σ−),

χM(∆) ≡ VM − PM + LM = χ(ΣM).

Next we try to repeat our definition of Σ∧, and define the regions of Σ that correspond to
the parts of the KB contour where two of the regions Σ+, Σ− or ΣM connect. First, we define
region Σ+− by assigning to it all G+− and G−+ propagators in ∆, and all the plaquettes
with at least one adjacent G+− or G−+ propagator but no adjacent M vertices. We denote
by V+−, P+− and L+− the numbers of vertices, propagators and plaquettes so assigned to
Σ+−. Next, we similarly define regions Σ+M and Σ−M by repeating the same steps which
defined Σ+−.

Precisely as in the case of Σ∧ in Section 4.3, these combinatorial data contain no vertices,
and they do not define a cellular decomposition of the three surfaces. We can still define the
cellular Euler numbers

χ+−(∆) ≡ V+− − P+− + L+−,

χ+M(∆) ≡ V+M − P+M + L−M,

χ−M(∆) ≡ V−M − P−M + L−M,

and ask whether they are equal to the topological Euler numbers of the surfaces Σ+−, Σ+M

and Σ−M. In contrast to the Schwinger-Keldysh case, here we find that these three surfaces
are in general not manifolds with smooth boundaries, but instead they are manifolds with
corners. Compared to the Schwinger-Keldysh case studied in Section 4.3, the novelty here
is that the combinatorial ingredients of ∆ assigned to the six distinct region do not yet
generally cover all of Σ. We must add yet another region, Σ+−M, to which we assign all
the plaquettes which have adjacent indices of all three types +, − and M. The number of
such plaquettes will be denoted by L+−M. With the addition of Σ+−M, each combinatorial
element of the cellular decomposition of Σ has been accounted for and assigned to exactly
one region, and we have defined a partition of Σ into seven parts.

Let us take a closer look at the Σ+−M component. Its combinatorial Euler number will
be simply the number of the plaquettes assigned to Σ+−M,

χ+−M(∆) = L+−M. (3.48)



CHAPTER 3. LARGE-N AND STRING THEORY OUT OF EQUILIBRIUM 57

+ −

M

Figure 3.20: A simple ribbon diagram with a seven-fold decomposition of Σ.

In contrast to the other six regions, which can be topologically complicated with arbitrarily
high genus, the topology of Σ+−M is quite simple: Since it contains only plaquettes, and
no propagators or vertices of the original ribbon diagram ∆, it consists topologically of a
collection of disconnected disks, one for each plaquette. The entire topology of Σ+−M is thus
completely fixed in terms of its Euler number χ+−M = L+−M, which simply counts the total
number of the disconnected disks.

A simple example of the seven-fold decomposition of Σ associated with a ribbon diagram
∆, for which all seven parts of this decomposition are non-empty, is given in Fig. 3.20. It also
provides an example where Σ+−, Σ+M and Σ−M are not smooth manifolds, but manifolds
with corners, as one can verify by evaluating their Euler numbers.

The decomposition patterns for Σ can get even more complicated when one considers
time contours with more than three segments. An extension to such contours is not just
a mindless mathematical exercise, as such contours can be physically well-motivated: For
example, the contour relevant for thermofield dynamics has four segments (see Fig. 3.21).
In the case with k > 3 segments of the time contour, we introduce an index i = 1, . . . k
and iterate our combinatorial construction for k = 3 from earlier in this section to construct
regions Σi, Σij, . . . Σi1...ik . It is best to think of them as antisymmetric in the indices. The
one simplifying feature is that starting from Σij`, all higher-order regions consists solely of
isolated plaquettes of ∆, and are therefore topologically simple, just as our Σ+−M above.
Unfortunately, the Σij’s are again manifolds with corners.

Manifolds with corners are rather awkward, and it would be much preferrable to work only
with manifolds with smooth boundaries. One can avoid using the manifolds with corners in
the following way. First, we define a coarser decomposition of Σ into just four parts: Keeping
Σ+, Σ− and ΣM, and assigning all the rest of Σ to be the fourth region Σ̂. In our example
from Fig. 3.20, Σ̂ is a sphere with three boundaries. Σ̂ can be viewed as a manifold with a
smooth boundary, using the same arguments that we used in Section 4.3 for Σ∧.

This four-fold decomposition is rather crude, since it loses track of the regions corre-
sponding to just two segments of the time contour meeting, such as Σ+−. We can restore
this refinement by the following slight modification of our previous rules:

• All + vertices, all G++ propagators and all the plaquettes which have only G++ adja-
cent propagators define region Σ+; analogously for Σ− and ΣM.
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• All G+− (and G−+) propagators and all the plaquettes that have at least one G+− (or

G−+) adjacent propagator define region Σ̃+−; analogously for Σ̃+M and Σ̃−M.

Clearly, all the combinatorial ingredients in ∆ have been assigned. The Σ+, Σ− and ΣM

regions are defined as before, and they do not share any plaquettes with each other or any
other region. The novelty is in the Σ̃ regions: They can be interpreted as surfaces with
smooth boundaries, but they can now overlap over disks. Their union is Σ̂. The seventh
region Σ+−M of the seven-fold decomposition is the collection of all the disks in Σ over which
at least two of the Σ̃ components overlap.15 In our example from Fig. 3.20, Σ̃+−, Σ̃+M and
Σ̃−M are all disks, overlapping over two disks, as indicated in Fig. 3.22.

To conclude this section, we point out that the dual picture of the ribbon diagrams
developed in Section 3.2 gives an interesting perspective also on the seven-fold decomposition
of Σ associated with the Kadanoff-Baym contour. Going from the original ribbon diagram
∆ to its dual diagram ∆? reveals that while Σ+, Σ− and ΣM are effectively two-dimensional
(since they are built from vertices, lines and plaquettes of ∆?), Σ+−, Σ+M and Σ−M are
effectively one-dimensional, built only from vertices and lines of ∆?. This is reminiscent of
what we saw in the triple decomposition on the Schwinger-Keldysh contour in Section 3.2.
In the seven-fold decomposition, this pattern goes one step further, and Σ+−M is found to be
effectively zero-dimensional, since it is built only from vertices in ∆? and therefore represents
just a finite collection of points in this dual picture.

15These new decomposition rules can be extended straightforwardly to the case of time contours with k
components. One defines regions Σi and Σ̃ij for i, j = 1, . . . k and i < j in analogy with the k = 3 case. They
are all manifolds with smooth boundaries. Then Σ̂ =

⋃
Σij , and all the higher Σi1...is with s ≥ 3 correspond

the the collection of disks where the appropriate Σ̃ij ’s overlap.
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Figure 3.21: The time contour relevant for thermofield dynamics, as a physically motivated
example of a contour with four segments [85, 62, 63].
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Figure 3.22: The surface associated with the diagram in Fig. 3.20, and its decomposition into
Σ+, Σ−, ΣM, Σ̃+−, Σ̃+M and Σ̃−M. The three Σ̃’s overlap over two disks. All components
are manifolds with smooth boundaries, and Σ̂ = Σ̃+− ∪ Σ̃+M ∪ Σ̃−M is the sphere with three
boundaries.

3.4. Other generalizations

Our analysis can be naturally extended from the theory of closed oriented strings to theories
containing unoriented and/or open strings. Since this generalization is straightforward, we
will be brief.

Unoriented strings

Until now, we assumed the matrix degrees of freedom to be Hermitian and traceless, in the
adjoint representation of the symmetry group SU(N). We can replace the unitary group
SU(N) with another sequence of simple groups that allows a large-N limit – either orthogonal
SO(N) or symplectic Sp(N). Our story then naturally generalizes and involves unoriented
surfaces.

For SO(N) or Sp(N), Feynman rules and their ingredients are essentially the same as in
the U(N) case, except that the ribbons now do not carry arrows on their edges,

a d

c
+

b
+− − ,

The arrows were needed in the SU(N) case to distinguish between the upper indices and the
lower indices of M , which correspond to inequivalent representations N and N. In contrast,
for SO(N) and Sp(N) the upper and lower indices correspond to the same representation,
and can be freely raised and lowered using the invariant quadratic form of SO(N) or Sp(N).
Hence, in Feynman diagrams we no longer have to keep track of the difference between the
left and right edge of the ribbons, as reflected by the absence of arrows in the notation. The
matrices M are antisymmetric for SO(N) and symmetric traceless for Sp(N); this difference
is immaterial for our arguments, and both cases will lead to the same topological expansion
in non-equilibrium string perturbation theory. (See also Footnote 3 above for a clarification
of the tracelessness condition relevant to the Sp(N) case.)
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+ −

Figure 3.23: A typical ribbon diagram involving a twist in one of the propagators. The
resulting surface is nonorientable, in this case the projective sphere RP2. In its triple de-
composition, Σ+ and Σ− are both disks, and Σ∧ is the sphere with two boundaries and a
crosscap.
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The dots here stand again for the list of higher n-point vertices, which are allowed but kept
implicit.

Since the edges of the ribbons are no longer oriented, the propagators and vertices can
now be connected with an additional twist (see Fig. 3.23). The resulting surfaces are then
unoriented.

Recall how the classification of closed oriented surfaces extends to the case of closed
unoriented surfaces. Besides the number h of handles, such surfaces Σ can also have c
crosscaps.16 With any nonzero c, Σ is nonorientable. In the classification of topologically
inequivalent Σ’s, the two non-negative integers h and c are not independent. Instead, there
is one identity that fully describes their redundancy: Σ with h handles and 3 + c crosscaps
(and b boundary components, should those be present) is topologically equivalent to Σ with
h+ 1 handles and c+ 1 crosscaps (and b boundary components),

Σh,c+3,b = Σh+1,c+1,b, (3.49)

16The crosscap is defined by removing a disk from Σ, which creates an S1 boundary, and then pairwise
identifying the opposite points on this boundary; see, e.g., [86].
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for all h = 0, 1, . . . and c = 0, 1, . . . (and b = 0, 1, . . .). In equilibrium string theory, the
genus expansion is over all inequivalent topologies, classified now by h and c subject to this
one identity. Each surface contributes at order g

−χ(Σ)
s in the string coupling, with the Euler

number now given by
χ(Σ) = 2− 2h− c. (3.50)

Note that in contrast to the case of closed oriented strings, (i) there are generally several
distinct topologies contributing at a given order in gs, and (ii) there are now surfaces that
contribute at odd orders in gs. All this is of course extremely well-undestood in the case of
critical string theory [86].

The results of our analysis for SU(N) in Section 3.2 extend directly to unoriented string
theory. Each surface Σ contributing to the non-equilibrium perturbative expansion again
exhibits a triple decomposition into the forward region Σ+, backward region Σ− and the
wedge region Σ∧, glued together along common boundaries ∂+Σ and ∂−Σ to form Σ, the
only novelty being that each of the three regions of the triple decomposition can now be
orientable or nonorientable. With this one exception, the story parallels that of Section 3.2.

Coupling to vector degrees of freedom: Open string theory

Another natural generalization involves the presence of both matrix and vector degrees of
freedom, in the adjoint and fundamental representation of one of the large-N sequences
SU(N), SO(N) or Sp(N). This generalization leads to surfaces with boundaries, or in other
words, a theory of both closed and open strings. For simplicity we concentrate on the SU(N)
case, which makes the strings oriented; the SO(N) and Sp(N) cases will lead to a description
in terms of unoriented closed and open strings.

Adding the degrees of freedom Ψa in the fundamental representation N (with its conju-
gate Ψ̄b in the anti-fundamental N) adds new terms to the action,

S(M,Ψ) =

∫ (
Ψ̄aΨ̇

a + g′Ψ̄aM
a
bΨ

b + g′′Ψ̄aM
a
bM

b
cΨ

c + . . .
)
. (3.51)

To the Feynman rules for M , this will add a propagator for Ψ and new vertices. In equi-
librium, the new propagator is the two-point function 〈ΨaΨ̄b〉, which is now denoted by an
oriented single line. When we take the system away from equilibrium, the Schwinger-Keldysh
time contour is again that of Fig. 3.2, and it leads to the doubling of fields Ψ±, Ψ̄±. The
non-equilibrium propagators thus have each end again labeled by a choice of a ± sign,17

a b
+−+−
.

17In the quadratic part of (3.51), we again only displayed the term with the time derivative, keeping
all the other terms bilinear in Ψ and Ψ̄ (such as masses, terms with spatial derivatives, or with more time
derivatives) implicit, to keep the notation simple and to reflect the universality of our arguments. The
propagator (3.52) of course contains the full information about all such terms.
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In S(M.Ψ) in (3.51), the “. . .” denote interactions with higher powers of M .18 Besides the
original vertices of the theory with the matrix degrees of freedom M±, there are now new
vertices,
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which describe the interaction between M±, Ψ± and Ψ̄± on the Schwinger-Keldysh contour.
Our conclusions about the topology of the large-N expansion will be unaffected by whether
we choose to think of Ψ as fermions or bosons: Only some signs in individual diagrams
change, but the features of the topological expansion remain the same.

Consider for simplicity vacuum Feynman diagrams; the extension to n-point correlators
is straightforward. With the vector degrees of freedom Ψ present, any Feynman diagram ∆
will now be associated with a surface Σ with boundaries. The prescription for constructing
Σ from ∆ is exactly the same as in Section 3.1. Following this prescription leaves us with
boundaries, each boundary component traced by a closed loop made of the ΨΨ̄ propagators.
Thus, the dual string theory contains closed and open oriented strings.

In equilibrium string theory of oriented closed and open strings, the sum over topolo-
gies extends over the topologically inequivalent oriented surfaces Σh,b with boundaries, fully
classified by the number of handles h and boundaries b which are non-negative integers and
without redundancies. Taking the coupled system of M , Ψ away from equilibrium shows
that our conclusions from Section 3.2 hold again: The sum over topologies Σh,b is refined to
a sum over triple decompositions Σ+, Σ− and Σ∧ of each Σh,b.

At first, it might appear a little awkward that we are supposed to split a surface Σh,b which
itself has boundaries, into three regions: Some of the cuts may cut across the boundaries
of Σh,b. However, this seemingly intricate issue is easy to deal with, by invoking one of the
classic techniques with a proven record in critical string theory in equilibrium [87, 88, 89], in
the context of D-branes and orientifolds: Treat each worldsheet surface Σ with boundaries
(and/or crosscaps) as a Z2 orbifold of a closed oriented surface Σ, i.e., Σ = Σ/Z2, with Z2 an
orientation-reversing involution of Σ. The boundaries of Σ correspond to the lines of Z2 fixed
points of the involution. The triple decomposition of Σ is then simply defined as a triple
decomposition of the closed oriented cover Σ (in the sense of Section 3.2), consistent with the

18In the theory of M alone, our interactions were all single-trace, and here we also assume that all the
interactions between Ψ and M are of the “single-trace” type – only those monomials that do not factorize
into the product of two singlets are admitted. This in particular implies that the vector degrees of freedom
appear quadratically, and all the new vertices have just two single-line ends. This simplification indeed
occurs in various important examples, and in particular mimics the behavior of quarks in QCD.
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Z2 symmetry. With this trick, our conclusions of Section 3.2 extend straightforwardly from
oriented closed theories to theories with closed and open strings, orientable or nonorientable.
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Chapter 4

Non-Equilibrium Strings and the
Keldysh Rotation

4.1. Introduction

In our previous chapter, to which this chapter is a sequel, we studied the structure of the
large-N expansion of non-equilibrium systems with matrix degrees of freedom using the
Schwinger-Keldysh formalism, and its dual description in terms of strings. The goal of [7]
was to use this duality to identify some of the first elements of the universal calculus for
non-equilibrium string perturbation theory.

We limited our attention in [7] to the “forward-backward” (henceforth referred to as “±”)
representation of the Schwinger-Keldysh formalism: The system is evolved along an oriented
closed time contour C , which consists of a forward component C+ evolving from an early
time t0 to a late time t∧, followed by the backward component C− going back from t∧ to t0.
This leads to a doubling of fields as functions of the single coordinate time t: For each field
φ, we denote by φ+(t) the values of φ on C+, and by φ−(t) the values of φ on C−.

It is well known (see for example [67, 58, 64, 90, 91]) that many important physical
features of the Schwinger-Keldysh formalism for non-equilibrium systems are revealed in a
different representation, involving a simple but very useful field redefinition. Instead of the
φ± fields, this representation uses their sum and difference,

φcl =
1

2
(φ+ + φ−), (4.1)

φqu = φ+ − φ−. (4.2)

The variables φcl and φqu are often referred to as “classical” and “quantum” [64, 90, 91],
even though they of course both represent fluctuating fields. This field redefinition is usually
referred to as the “Keldysh rotation,” since its idea goes back to [6]. It leads to remarkable
simplifications. First, in the ± formalism, there are four nonzero propagators G±± satisfying
one sum-rule identity

G++ +G−− = G+− +G−+. (4.3)
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The implications of this identity are often obscure in individual Feynman diagrams. After
the Keldysh rotation, only three propagators are nonzero:

〈φqu(t′)φcl(t)〉0 ≡ GA(t′, t), (4.4)

〈φcl(t
′)φqu(t)〉0 ≡ GR(t′, t), (4.5)

〈φcl(t
′)φcl(t)〉0 ≡ GK(t′, t), (4.6)

〈φqu(t′)φqu(t)〉0 ≡ 0. (4.7)

Thus, in the Keldysh-rotated basis, the sum rule equivalent to (4.3) is automatically satisfied,
reducing the number of diagrams that need to be summed. The second – and physically more
important – simplification is that in the Keldysh basis, the information about the dynamics
and the information about the state have been decoupled from each other: The mixed
propagators GA and GR are state-independent, and the entire information about the state
is carried by GK . In contrast, in the ± formalism all four propagators G±± are sensitive to
both the dynamics and the state. These features of the Keldysh formalism make not only
practical calculations more efficient, but also the physical picture more direct and easier to
interpret.

To illustrate this well-known usefulness of the Keldysh rotation, consider the example of
a relativistic scalar field of mass m in thermal equilibrium at temperature T . In the ± for-
malism, the momentum-space propagators (in the mostly-minus spacetime metric signature)
are

G++(p) =
i

p2 −m2 + iε
+ 2π nB(|p0|) δ(p2 −m2),

G−−(p) =
−i

p2 −m2 − iε
+ 2π nB(|p0|) δ(p2 −m2),

G+−(p) = 2π
[
θ(−p0) + nB(|p0|)

]
δ(p2 −m2),

G−+(p) = 2π
[
θ(p0) + nB(|p0|)

]
δ(p2 −m2),

where

nB(ω) =
1

exp(ω/T )− 1
(4.8)

is the Bose-Einstein distribution function. After the Keldysh rotation, we get just three
nonzero propagators,

〈φqu φcl〉0 =
i

p2 −m2 + i sign(p0)ε
≡ GA(p), (4.9)

〈φcl φqu〉0 =
i

p2 −m2 − i sign(p0)ε
≡ GR(p), (4.10)

〈φcl φcl〉0 = 2π
[

1
2

+ nB(|p0|)
]
δ(p2 −m2) = π coth

(
|p0|
2T

)
δ(p2 −m2) ≡ GK(p).(4.11)
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As promised, the quantum-to-quantum propagator vanishes identically, the mixed propaga-
tors become the advanced and retarded propagators GA and GR which only know about the
dynamics but not about the state, and all the information about the initial density matrix
is stored in the classical-to-classical propagator GK .

The Keldysh rotation also has a number of closely related cousins, which appear across a
multitude of diverse areas of physics, always with similar simplifying results. In the Larkin-
Ovchinnikov representation [92], popular in non-equilibrium condensed matter [58, 64], an-
other unitary transformation is performed on the fields; the same three propagators appear,
but the propagator 2×2 matrix is now upper triangular, withGA andGR on the diagonal, and
GK in the upper-right corner. In the closely related Langreth-Wilkins representation [93] (see
[71] for a review), popularized by the influential lecture [94] and now wide-spread in use in
non-equilibrium physics of mesoscopic systems [65], a non-unitary field transformation is per-
formed such that the propagator matrix stays upper triangular as in the Larkin-Ovchinnikov
representation, but with the GK propagator replaced by G<. The Keldysh rotation (4.1)
and (4.2) also plays a prominent role in the theory of the decoherence functional of Gell-
Mann and Hartle [95],1 which is instrumental in the description of the quantum-to-classical
transition in the sum-over-histories approach to quantum systems, including those involving
the dynamical spacetime geometries of quantum gravity and cosmology. In this chapter, we
will concentrate on the original Keldysh rotation in its original context, but we expect that
our results can be extended straightforwardly to such closely related cases as well.

In [7], we used the ± version of the Schwinger-Keldysh formalism to derive some uni-
versal implications of the large-N expansion for the dual string theory. We found that, in
comparison to strings at equilibrium, the string perturbation expansion is further refined,
with each worldsheet Σ subdivided into a triple decomposition,

Σ = Σ+ ∪ Σ∧ ∪ Σ−. (4.12)

Here the forward part Σ+ is associated with the forward part C+ of the time contour, and
similarly for the backward part Σ− and C−. The “end of time” wedge region Σ∧ is associated
with the meeting point of C+ and C− at t∧, and it provides a bridge between Σ+ and Σ−.
Remarkably, each of the three parts of this triple decomposition of Σ has its own associated
genus expansion.

In view of the importance of the Keldysh-rotated version of the Schwinger-Keldysh for-
malism, in this chapter we extend our analysis of the large-N expansion and string theory
to this Keldysh-rotated case. Our results were briefly announced in [98], which also contains
a brief summary of the results of [7] in the ± formalism. Here we provide our detailed
arguments and proofs justifying the statements announced in [98], and we also present ad-
ditional results not advertised in [98]. Our analysis of the large-N expansion again reveals
an intriguing refinement of string worldsheet diagrams. This time, however, the subdivision
of worldsheets is not into the tree parts as observed in the ± formalism – instead, we will

1In this context, the rotation acts on two alternative histories φ+(t) and φ−(t) of the system that enter the
decoherence functional; see also [96, 97] for the earlier and closely related concept of an influence functional.
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find a subdivision distinct from (4.12):

Σ = Σcl ∪ Σqu, (4.13)

with the worldsheet Σ composed of a “classical” part Σcl, and its “quantum embellishments”
Σqu. Each of the two parts of Σ is again associated with its own genus expansion.

The resulting picture of non-equilibrium string perturbation theory that emerges in the
Keldysh-rotated formalism is by no means a straightforward consequence of the worldsheet
picture established in [7] in the ± formalism based on the triple decomposition (4.12). This is
not entirely unexpected: Whereas in the language of the original matrix degrees of freedom,
the Keldysh rotation is a rather simple change of variables, the worldsheet dual theories
before and after the rotation should not be related in any simple way, for the following
reason. On the side of the matrix degrees of freedom, the Keldysh rotation mixes the
values of M on the forward and backward branches C+ and C− of the time contour for the
same value of t. The simplicity of this mixing relies crucially on the existence of a canonical
identification of the time evolution parameter t along C+ and C−. In contrast, things are not
this simple on the worldsheets: Even in the absence of knowing any details of the worldsheet
dynamics, we anticipate some form of worldsheet diffeomorphism invariance, which makes
any identification of the worldsheet time coordinate τ on Σ+ and Σ− non-canonical at best,
and impossible globally if Σ+ and Σ− are of different topology (which they typically are).
The worldsheet representations before and after the Keldysh rotation will be related by
a complicated resummation of many ribbon diagrams, and for these reasons, we do not
anticipate any simple procedure for deriving one worldsheet picture from the other. This is
indeed the perspective supported by the main results of this chapter.

4.2. Large-N expansion after the Keldysh rotation

As in [7], we start with a theory of N ×N Hermitian matrix degrees of freedom Ma
b(t, . . .),

which may be spacetime fields, or just quantum mechanical degrees of freedom; we only
display the dependence on time, with the dependence on space and possible other quantum
numbers playing only a spectator role in our arguments and therefore kept implicit. In
this way, our results will be universal, in particular independent of whether the theory is
relativistic or not. We further assume that the theory has an SU(N) symmetry, and that
the original action of the theory takes the single-trace form,

S(M) =
1

g2

∫
dtTr

(
Ṁ2 +M3 +M4 + . . .

)
. (4.14)

We studied this theory on the Schwinger-Keldysh time contour C in detail in Section 2 of
[7], and analyzed its large-N expansion with the fixed ’t Hooft coupling λ ≡ g2N , using
the ± formalism.2 In the ± formalism, M(t) becomes doubled to M±(t), and the action is

2As in [7], it would be easy to generalize all our arguments to the case of more than one independent
’t Hooft coupling, controlling different interaction terms in S(M). We concentrate on one λ for simplicity.
Also, as in [7], we keep the dependence on spatial coordinates and spatial derivatives in the action implicit.
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formally of the form
SSK(M±) = S(M+)− S(M−), (4.15)

which needs to be augmented by the appropriate boundary conditions: the correct rules at
the meeting point t∧ between the two branches of C , and the information about the initial
state at t0 if different from the vacuum.

Now we perform the Keldysh rotation of the fields: As in (4.1) and (4.2), we define Mcl

and Mqu. Each of these fields continues to carry the adjoint representation of our symmetry
group. In order to avoid notational clutter and too many subscripts and superscripts, we
will use M to denote the “classical” matrix field Mcl,

M(t) =
1

2
(M+(t) +M−(t)) , (4.16)

and M to denote the “quantum” matrix field Mqu:

M (t) = M+(t)−M−(t). (4.17)

After the Keldysh rotation, the action SSK becomes

SSK =
1

g2

∫
dtTr

(
K(M,M ) + 3M2M +

1

4
M 3 + 4M3M + MM 3 + . . .

)
. (4.18)

The structure of the quadratic kinetic term K(M,M ) is such that it gives the three propaga-
tors that we discussed in Section 4.1, as we will see again when we look at the Feynman rules
below. This form of the action would naturally generalize if we added higher polynomial
interactions to S(M), or allowed independent couplings to control different terms in S(M).
Note, however, that the number of M ’s in each monomial interaction term in (4.18) will
always be odd.

Feynman rules for the ribbon diagrams after Keldysh rotation

Feynman rules for the ribbon diagrams after the Keldysh rotation are as follows. The
quadratic kinetic term K(M,M ) in (4.18) yields three propagators,3

a

b

d

c
= 〈Ma

b M
c
d〉0 , (4.19)

a

b

d

c
= 〈M a

bM
c
d〉0 , (4.20)

a

b

d

c
= 〈Ma

bM
c
d〉0 . (4.21)

We use the notation popular in the non-equilibrium field theory literature (see, e.g., [64]):
The dotted line denotes the “quantum” end of a propagator, and the full line denotes the
“classical” end. Here we have just extended this convention to ribbons.

3In our notation, we use the subscript “0” in 〈. . .〉0 to distinguish the bare propagators from the full
2-point functions 〈. . .〉 which we will be studying below.
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The vertices are

b
1

1

a
b

a
b

3

3

2

2

a =
N

λ
(. . .) , (4.22)

b
1

1

a
b

a
b

3

3

2

2

a =
N

λ
(. . .) (4.23)

at three points, and

2

4

1
a

b
1

a
2

b

b
3a

3

4

b
a

=
N

λ
(. . .) , (4.24)

2

4

1
a

b
1

a
2

b

b
3a

3

4

b
a

=
N

λ
(. . .) , (4.25)

...

at four points. As in [7], the vertical dots at the end of this list stand for higher n-point
vertices, which we allow to be present for full generality, but do not depict explicitly. Note
that they all have to satisfy one restriction: The number of quantum ends at each vertex
always has to be odd, a feature that follows from the general structure of (4.18).

The precise numerical values of the vertices can be easily extracted from (4.18) (or ap-
propriate generalizations thereof). The horizontal dots “(. . .)” on the right-hand sides of
(4.22-4.25) refer to all the group-theory as well as momentum- and frequency-dependent
factors which do not depend on N and λ; their details are unimportant for our arguments.
The only important fact for our analysis is that all the vertices are proportional to N when
λ is held fixed. Similarly, in that regime, all the propagators (4.19)-(4.21) are proportional
to 1/N .

We summarize the rules for building consistent Feynman diagrams:

• Quantum ends of propagators are attached to quantum ends of vertices;

• Classical ends of propagators are attached to classical ends of vertices;

• The following rule is a simple consequence of causality: If there is a closed loop consist-
ing of a sequence of only GA (or only GR) propagators, the diagram is identically zero
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and will be systematically ignored.4 Note that in order for the diagram to be identically
zero, the closed loop in question does not have to surround just one plaquette.

Signpost notation for the Feynman diagrams

Before we proceed to the analysis of the large-N expansion, we find it convenient to introduce
a slightly different graphical notation for the non-equilibrium Feynman diagrams, which will
simplify the look of the diagrams and allow us to develop some useful intupdflateition. This
new notation will also simplify our proofs and other arguments below.

Recall that in the ± formalism, it was very convenient that the ribbon diagrams looked
just like those in equilibrium, with all the additional information carried solely by the vertices:
Each vertex was labeled by a sign choice ±. The type of propagator connecting two given
vertices was then uniquely determined by the signs at the vertices. At first glance, the
Feynman rules after the Keldysh rotation do not share the same simplicity. We will develop
a more useful prescription in several simple steps. First, it is rather awkward to deal with
dotted versus undotted halfs of propagators – we will encode the same information by using
regular undotted lines for all the ribbon edges, but placing a “bulk arrow” in the middle of
the ribbon propagator pointing in the direction from the quantum end to the classical end
of the propagator. The classical-to-classical propagators GK do not get any “bulk arrow”
mark. In the next step, one can pull each arrow from the middle of the propagator to the
quantum end of the propagator, and associate this arrow with the adjacent vertex instead.
In this way, each vertex is uniquely assigned a collection of arrows rooted at the vertex and
pointing in the directions of various attached propagators. This collection of arrows rooted
at the same vertex is reminiscent of a signpost at trail intersections. For the lack of a better
term, from now on we will refer to this collection of arrows at a given vertex as a “signpost”,
and this notation as the “signpost notation”.5

4Strictly speaking, such diagrams are not illegal, but since they identically vanish, leaving them system-
atically out will significantly reduce the number of diagrams that need to be drawn for any process. Also,
we do not expect that such diagrams should be independently reproduced on the string-theory side of the
duality between the large-N theory and string theory.

5A somewhat similar notation, using arrows to indicate the GA and GR propagators, has been used in
the literature (for example see [67]). The novelty of our signpost notation is that we assign the arrows to
the vertices, not the propagators. Note also the different status of the edge arrows reflecting the SU(N)
group structure, and the signpost arrows reflecting the non-equilibrium ingredients in our diagrams: We
often indicate graphically only one edge arrow per each closed edge loop or each open edge segment in a
given diagram, and do not put edge arrows on all individual propagators, to avoid notational clutter in the
figures. On the other hand, the location and direction of each signpost arrow carries important information
and such arrows cannot be conveniently left out.
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In this new signpost notation, our three-point vertices (4.22, 4.23) look as follows,

b
1

1

a
b

a
b

3

3

2

2

a , (4.26)

b
1

1

a
b

a
b

3

3

2

2

a , (4.27)

(4.28)

while the four-point vertices (4.24, 4.25) are

2

4

1
a

b
1

a
2

b

b
3a

3

4

b
a

, (4.29)

2

4

1
a

b
1

a
2

b

b
3a

3

4

b
a

, (4.30)

... .

Note that the propagators do not require any additional notation – each propagator is
uniquely determined by the two signposts at the vertices it connects. The rules for building
consistent diagrams can now be rewritten solely as restrictions on the signposts allowed at
the vertices of the ribbon diagrams:

• At each vertex, the signpost carries an odd number of arrows, each pointing into a
distinct propagator.

• The signposts are such that each propagator can have at most one arrow pointing into
it from the adjacent vertices.

• Starting from any vertex, follow the signpost instructions: Follow any of the adjacent
propagators which has an arrow pointing into it; repeat this process at each vertex
you visit. If after n such steps you return to the vertex you started from, the diagram
is identically zero and will be systematically omitted. (See an example in Fig. 4.1.)
This rule is the rephrasing of the analogous rule we encoutered above in the original
notation.

It will be useful to formalize the prescription for traveling along a ribbon diagram ∆ in
the direction of the arrows, as follows: We define an admissible path on ∆ from a vertex
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0−−
−

Figure 4.1: An example of a signpost ribbon diagram which vanishes identically. Note that
in this example, the closed path made of GA propagators that makes this diagram vanish is
not surrounding just one plaquette.

v1 to another vertex v2 to be a collection of consecutive propagators and vertices, obtained
by starting at v1, choosing an arrow from the signpost at v1, moving in the direction of
this chosen arrow along the attached propagator to the next vertex, and repeating the steps
at each signpost encountered along the way, until we reach v2. As a consequence of this
definition, there is always at least one admissible path going through any given vertex of ∆.
Also, for any pair v1, v2 of vertices, there might be one or more distinct admissible paths
connecting them, or none at all.

All vacuum diagrams vanish identically

To practice the use of our new notation and to show its efficiency, we will now prove that all
vacuum diagrams are zero. Begin at any vertex, and imagine being a traveler who follows
the arrows at all signposts, i.e., travels along an admissible path as defined above. Since the
number of arrows at each vertex is odd, there is at least one arrow at your original location.
Follow that arrow, and repeat the step at each new vertex you visit. Again, since there is
at least one arrow at each vertex, this procedure makes sense at each step. If after a finite
number of steps you return to a vertex you already visited, by our rules the diagram is
declared to be zero identically. Since for a vacuum diagram, there are no external legs at
which you could end up after a finite number of steps, to prevent the diagram from being
zero you would have to travel forever, visiting an infinite number of new vertices. Since
in our analysis we only consider Feynman diagrams with a finite number of vertices, this
concludes the proof.

Thus, we reach our first conclusion about the universal structure of non-equilibrium string
perturbation theory in the Keldysh-rotated form:

Z =
∞∑
h=0

(
1

N

)2h−2

Fh(λ, . . .) = 0; (4.31)

the sum of all the 0-point diagrams vanishes identically.6 This is an example of the effi-
6Note that as in [7] and [98], we continue denoting the sum over all connected ribbon diagrams by Z.
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ciency of the Keldysh-rotated formalism, which must be reproduced by any candidate for
the description of the worldsheet dynamics of the string.

4.3. Large N and string worldsheets: Classical and

quantum surfaces

We are now ready to demonstrate that for each ribbon diagram ∆ in the Keldysh-rotated
formalism, its associated Riemann surface Σ(∆) can be naturally decomposed into a classical
part Σcl plus its quantum “embellishment” part Σqu. This will be done in two steps: First, we
define for each diagram its “classical foundation” Σ̂cl: a surface whose topology is generally
simpler (or at least not more complicated) than that of Σ. The full surface Σ is then obtained

by replacing a collection of non-overlapping disks on Σ̂qu with the quantum “embellishments”.
However, since we have just shown that all vacuum diagrams vanish, we cannot use vacuum
diagrams to illustrate our arguments as we did in the ± representation [7] – we will need
n-point correlation functions.

Adding external sources

In what follows, we mostly concentrate for simplicity on diagrams which contribute to the
two-point correlator of M and M ,

〈M a
bM

c
d〉 = 〈M a

bM
c
d〉0 + . . . , (4.32)

an equation represented graphically as follows,

a

b

c

d =
a

b

c

d + . . . , (4.33)

where the “. . .” denote all the loop corrections. In fact, in order to eliminate the loose indices
at the ends of the propagators, it will be better to couple Ma

b and M a
b to their conjugate

sources, J ba and J b
a, and encode the two-point function (and all higher n-point functions)

in SU(N) singlets such as
J ba 〈M a

bM
c
d〉J d

c. (4.34)

Note that it is the classical source J that couples to the quantum field M , and the quantum
source J to the classical field M . This follows from the fact that in the ± formalism, the
coupling to sources adds the following term to the full action (4.15),∫

dtTr (J+M+ − J−M−) . (4.35)

As usual, the sum Z over all diagrams, connected or not, is related to Z by Z = log Z .
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With the standard definitions

Jcl ≡ J =
1

2
(J+ + J−),

Jqu ≡ J = J+ − J−, (4.36)

the coupling in (4.35) indeed adds to the Keldysh-rotated action (4.18) the following source
term, ∫

dtTr (JM + JM).

In our ribbon diagrams, we will graphically denote the external sources as follows,

J : J ,

J : J .

Using this notation, the expression in (4.34) is graphically represented by

J J . (4.37)

On the string dual side, the insertions of the singlets JM and JM will correspond to
marked points on the surface Σ.

In the full theory, one is more appropriately interested in correlation functions of n local
composite operators Oi(M,M ) (with i = 1, . . . , n) that are singlets of the SU(N) symmetry.
It is such operators that can be expected to be associated with simple local vertex-operator
insertions on the worldsheets in the dual string theory. The sources J and J that we use
to form the singlets JM and JM can be simply seen as placeholders for the insertions of
such more complicated singlet operators Oi, and we use them solely for the convenience of
our presentation.

Reduction of Σ to its classical foundation Σ̂cl

Each ribbon diagram ∆ can be associated with a unique surface Σ, constructed by simply
forgetting the non-equilibrium signposts at the vertices and following the prescription for Σ
that worked in equilibrium. Restoring the signposts will then equip Σ with some additional
structure, and we expect the topological sum over surfaces of genus h to be correspondingly
refined.

How do we identify the refined structure that is naturally induced on Σ by the restoration
of the non-equilibrium data? There is one physically well-motivated decomposition of each
non-equilibrium ribbon diagram ∆, which induces a natural decomposition of Σ. Recall first
that the information about the state is carried by the Keldysh propagators GK , but not the
GA and GR propagators and the vertices. It is then natural to define an operation which acts
on a ribbon diagram ∆ by “forgetting” the GK propagators: Erasing all the GK propagators
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from a ribbon diagram should leave a subdiagram ∆̂, in which the information about the
state of the system has been erased. Note that since every vertex of ∆ has at least one arrow
at its signpost, no vertices are erased in the process of ddforming ∆̂. Some of the vertices of
∆̂ will have fewer attached legs than their counterparts in ∆. In particular, some vertices in
the reduced diagram ∆̂ might become “1-vertices” or “2-vertices,” but each vertex still has
at least one propagator attached to it. Even to such generalized diagrams, one can still apply
the standard process of constructing an associated compact surface without boundaries (by

gluing in a disk to fill each closed loop). We will denote this surface by Σ̂cl and refer to as
the “classical foundation” of Σ. By design, the expectation is that even on the string side,
the classical foundation Σ̂cl should be encoding the information about the dynamics but not
about the state of the original system.

Note that Σ̂cl is either topologically simpler than Σ, or at most topologically equivalent
to Σ. In technical terms, the increasing topological complexity of surfaces is measured by the
decreasing value of their Euler number. It turns out that the Euler number of the classical
foundation Σ̂cl is always greater than or equal to the Euler number of Σ. We postpone the
proof of this statement until Section 4.3, after we define more precisely the decomposition
of Σ into its classical and quantum part.

Topology of the classical foundation Σ̂cl

First, we will show that the classical foundations Σ̂cl that emerge from consistent diagrams
can be arbitrarily topologically complicated, as two-dimensional orientable surfaces without
boundaries. Since such two-dimensional surfaces are topologically classified by their non-
negative integer genus n, we need to show that Σ̂cl for all possible n arise from consistent
ribbon diagrams. We will prove this statement by constructing a sequence of ribbon diagrams
which contain no GK propagators, implying that their associated surface Σ is identical to its
classical foundation, Σ̂cl = Σ, and with Σ of arbitrarily high genus. We will illustrate this
on the two-point functions with the JJ external source insertions.

First, consider the diagram in Fig. 4.2. It is planar, contains only GA and GR propagators,
and Σ = Σ̂cl is a two-sphere. Following the cutting and re-gluing procedure on the two
indicated propagators as described in Fig. 4.2 gives Σ which is a two-torus, again isomorphic
to Σ̂cl.

In the next step, we iterate this procedure to form any higher genus surface Σ, again
isomorphic to its classical foundation Σ̂cl: Starting with the planar ladder diagram with
2n+ 1 rungs as indicated in Fig. 4.3, we cut the 2n indicated rungs, and re-glue them in the
opposite order. Counting the number of plaquettes, propagators and vertices of the resulting
non-planar diagram demonstrates that its associated surface is of genus n. Since there were
no GK propagators involved, the classical foundation Σ̂cl is isomorphic to Σ, and therefore
also of genus n.
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Decomposition of Σ into its classical and quantum parts Σcl and
Σqu

When we restore the GK propagators in a given ribbon diagram ∆, we reconstruct the full
surface Σ from the classical foundation Σ̂cl. This process defines a decomposition of the
original surface Σ into its quantum and classical parts, which we denote by Σcl and Σqu.
Both Σcl and Σqu will be two-dimensional surfaces whose boundaries consist of a collection
of S1, along which Σcl and Σqu are glued together. The classical foundation Σ̂cl is then related
to Σcl simply by gluing in disks into each boundary component of Σcl. For an algorithmic
definition of this decomposition of Σ for any given ribbon diagram ∆, we now refer to a more
precise combinatorial description.

Combinatorial picture of Σ̂cl, Σcl and Σqu

Begin with a ribbon diagram ∆ in the Keldysh-rotated formalism. The collection of vertices,
propagators and closed loops (which we refer to as “plaquettes”) in ∆ provides a simplicial
decomposition of the associated surface Σ. We subdivide this combinatorial data associated
with ∆ as follows:

• All vertices belong to Σcl.

• All GA and GR propagators belong to Σcl.

• All plaquettes that have no adjacent GK propagators belong to Σcl.

• All GK propagators belong to Σqu.

• All plaquettes with at least one adjacent GK propagator belong to Σqu.

This assigns each building block of the cellular decomposition of Σ to either Σcl or Σqu.
(Perhaps the only exception is the treatment of the external source insertions, to which we
return in Section 4.3.) What is less clear is that Σcl and Σqu can be naturally interpreted as
smooth surfaces, connected to each other along a common boundary which is topologically

J J

Figure 4.2: An example of a ribbon diagram without any GK propagators; thus, the as-
sociated surface Σ has no quantum embellishments, and Σ̂cl = Σ, the two-pointed sphere.
Cutting the two propagators inside this diagram across the indicated dashed line, and re-
gluing them in the opposite order, turns Σ = Σcl into a two-pointed torus.
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0 1 2 −1n n2 2
JJ

Figure 4.3: A construction that yields a higher-genus Σ with no quantum embellishments.
Starting from this planar diagram, cut the propagators labeled 1 to 2n across, along the
indicated dashed line, and re-glue them in the opposite order: 1 to 2n, 2 to 2n− 1, . . ., 2n
to 1. This gives a ribbon diagram associated with Σ = Σcl of genus n.

just a collection of S1’s. That it is indeed so can be demonstrated by an equivalent definition
of the decomposition of Σ into Σcl and Σqu, which works plaquette-by-plaquette, and follows
a similar plaquette-by-plaquette definition of the triple decomposition of Σ in terms of the
widened cuts in the ± formalism studied in detail in [7, 98].

Plaquette-by-plaquette construction of a smooth Σqu

Begin by placing a transverse line segment across the middle of each GK propagator, and
widen this cut into a segment of a two-dimensional ribbon. Inside each plaquette, connect
all such line segments entering the plaquette to the marked center inside the plaquette.
Widening the resulting graph gives a unique portion of a smooth surface with boundaries
inside the plauqette, a portion which connects smoothly to other such portions of a smooth
surface with boundaries across each adjacent GK propagator (see Fig. 4.4 for illustrations).
Their union thus defines a smooth surface with a smooth boundary consisting of a number
of S1’s. It is easy to see that this surface is topologically canonically equivalent to our Σqu

as defined combinatorially above.
Another natural perspective on the plaquette-by-plaquette construction is obtained when

we switch from the original ribbon diagram ∆ to its dual ribbon diagram ∆?. (We reviewed
this duality of ribbon diagrams in Section 2.8 of [7], and used it there to study the triple
decomposition of Σ in the ± formalism.) In this dual picture, the widened cut across each
GK propagator in ∆ represents a certain ribbon propagator of ∆?, and their connection to
the marked center inside a plaquette with at least one adjacent GK propagator represents
a vertex in ∆?. The collection of all such propagators and vertices of ∆? that have been
assigned to Σqu thus represents a ribbon subdiagram in ∆?, and therefore has a natural
interpretation as a topologically smooth surface with boundaries. This surface is precisely
the surface Σqu that we obtained from the plaquette-by-plaquette prescription.

Given our combinatorial definition of Σcl and Σqu, it is natural to define the follow-
ing combinatorial Euler numbers associated with the combinatorial ingredients defining the
decomposition,

χcl(∆) = V − Pcl + Lcl, χqu(∆) = −Pqu + Lqu. (4.38)



CHAPTER 4. NON-EQUILIBRIUM STRINGS AND THE KELDYSH ROTATION 78

Figure 4.4: Two examples illustrating the direct plaquette-by-plaquette construction of Σqu

as a surface with smooth boundaries. For those readers viewing this figure in color, the
portions of Σqu so constructed are denoted in green.

Here V is the number of vertices in ∆, Pqu the number of its Keldysh propagators, Pcl =
P − Pqu the number of its non-Keldysh propagators, Pcl the number of plaquettes with
no adjacent GK propagators, and Pqu the number of the plaquettes with at least one GK

propagator. By repeating the steps used in the ± formalism in [7], it is straightforward
to show that these combinatorial Euler numbers reproduce the Euler characteristics of the
smooth surfaces Σcl and Σqu,

χcl(∆) = χ(Σcl), χqu(∆) = χ(Σqu). (4.39)

The sum of the two is of course the Euler number of Σ, simply given in terms of the number
of handles h as χ(Σ) = 2− 2h.

We can now return to the statement we made in Section 4.3, that the topology of the
classical foundation Σ̂cl is simpler than that of the full surface Σ. The notion of “topological
simplicity” of a surface Σ is quantified by the Euler number χ(Σ): The simpler the topology
of the surface, the greater its Euler number. We wish to show that

χ(Σ̂cl) ≥ χ(Σ). (4.40)

The proof is now simple, because we can rely on the features of the decomposition of each Σ
as Σcl ∪Σqu. Consider the connected components of Σqu, one by one. Each such component
has some number b of boundaries, b ≥ 1, along which it connects to Σcl. Its Euler number
is ≤ 2 − b. Replace this connected component with b disks; the Euler number of the
replacement is b. Since b ≥ 1, the Euler number of the replacement is always greater than
or equal to the Euler number of the original connected component of Σqu. By definition, the
classical foundation Σ̂cl is obtained from Σ by performing this replacement procedure with
all connected components of Σqu. Using the additivity property of the Euler number, this
demonstrates that the Euler number of Σ̂cl must be greater than or equal to that of Σ, thus
proving (4.40).
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J J

Figure 4.5: An example of a ribbon diagram with two GK propagators, whose Σ is again
a two-pointed sphere, and Σcl = Σ. In this case, the quantum embellishment Σqu is a
disk. Cutting the two indicated propagators along the dashed line and regluing them in the
opposite order gives Σ which is a two-pointed torus, with Σcl a two-pointed sphere, and Σqu

a torus with one boundary.

0 1 2 −1n n2 2
J J

Figure 4.6: The construction of a surface with a higher-genus quantum embellishment Σqu.
The indicated diagram gives Σ a two-pointed sphere, with Σqu a disk, just like in Fig. 4.5.
Cutting propagators labeled 1 to 2n and regluing them back in the opposite order as in
Fig. 4.3 yields Σ which is a two-pointed surface with n handles, Σ̂cl a two-pointed sphere,
and Σqu with n handles and one boundary.

Note that according to this definition of topological complexity of a surface, we find that
the collection of n disconnected spheres is simpler than a collection of n′ spheres if n > n′.
This is a consequence of our definition of topological complexity that we can live with.

Topology of the quantum embellishments Σqu

In our next step, we show that arbitrarily complicated topologies of the quantum embellish-
ment surfaces Σqu can appear from consistent ribbon diagrams. We will prove this statement
by constructing a sequence of ribbon diagrams whose quantum embellishments Σqu are con-
nected surfaces with one boundary and an arbitrarily high genus.

This constrction is illustrated in Figs. 4.5 and 4.6: First, we construct a surface whose
classical foundation is an S2 with two marked points at which the sources are inserted, and
the quantum part Σqu is a torus with one boundary. Then we iterate this process, and
construct a surface whose Σqu has any number of handles and one boundary.

Next we need to show that Σqu can have connected components with more than one
boundary component. Examples of ribbon diagrams with this feature are easy to find if
we consider higher 2n-point correlation functions. Consider the diagram in Fig. 4.7, which
contributes to the 4-point function with the external sources JJ JJ . This diagram is
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connected and planar, therefore the surface Σ associated with it is the sphere (with four
marked points corresponding to the insertions of the two J ’s and two J ’s.). Its Σqu is a
cylinder, and this diagram thus shows that connected components of Σqu can have more than
one boundary.

One can also use this 4-point function to find diagrams whose Σqu are connected, have two
boundaries, and an arbitrary number h of handles: Simply replace the one GK propagator
in Fig. 4.7 by 2h + 1 propagators, glue them to the bottom horizontal ribbon in the order
from 1 to 2h + 1, and to the top horizontal ribbon in the reverse order, from 2h + 1 to 1.
This resulting ribbon diagram will have 2h+ 1 propagators, and just one plaquette. Its Σqu

is a connected surface with two boundaries and h handles.
This process can be easily extended to construct examples whose Σqu is connected and

has more than two boundaries. One of the simplest ribbon diagrams whose Σqu is connected
and with three boundaries is depicted in Fig. 4.8, and involves a 6-point function. (In fact, an
even simpler ribbon diagram with the same properties would result from removing any one
of the three GK propagators in Fig. 4.8.) Clearly, by iterating this construction to 2b-point
functions, one easily obtains examples whose Σqu has b boundary components.

Is it necessary to go to such higher-point functions in order to find examples with con-
nected components of Σqu having high numbers b of boundaries, or do such Σqu appear
already in the 2-point function? The answer is that they do appear, but in order to find
examples of ribbon diagrams that contribute to the 2-point function and whose Σqu has a
connected component with more than one boundary, one must look a bit harder, to non-
planar diagrams. Consider the diagram in Fig. 4.9. It has been designed such that it only
has one GK propagator. It leads to Σqu which has two boundary components. The process
clearly iterates, and gives examples of Σqu which are connected and have an arbitrary number
b of boundary components, even in the case of the 2-point function.

Locations of the external sources

Besides the internal number of vertices, propagators and closed loops, our Feynman diagrams
inevitably contain a non-zero number of external source insertions. The external sources can
be either classical J , or quantum J . In order to complete the combinatorial rules proposed

J

J J

J

Figure 4.7: This diagram is planar, and Σ is an S2 with four marked points. The classical
foundation Σ̂cl consists of two disconnected S2’s, each with two marked points. The quantum
embellishment Σqu is a cylinder: Combinatorially, it is constructed from one GK propagator
and the one plaquette of this diagram, and has two boundaries.
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J

JJ

J

J J

Figure 4.8: (a): This ribbon diagram is again planar and contributes to a 6-point function.

(b): Its associated surface Σ is an S2 with six marked points. Σ̂cl consists of a collection
of three S2’s with two marked points each, and Σqu is the “pair of pants” surface, with no
handles and three boundary components.

in Section 4.3 to define the decomposition of Σ to Σcl and Σqu, we must decide how to assign
the external sources to the two parts of this decomposition.

Since the classical source J can never be attached to the GK propagator, it would appear
natural to assign the insertion of J always to Σcl. With the quantum source J , the story is
not so clear: We can choose to assign it always to Σqu, or we can choose to assign it to either
Σqu or Σcl, depending on whether it is attached to the GK propagator or the GA propagator.
Which of these two choices, if any, is more natural?

Perhaps the most natural and elegant answer is to simply admit that the external source
insertions are not a part of Σ, and therefore do not have to be assigned to either Σcl or Σqu.
This picture is further supported by the fact that in critical string theory, the insertions of

J J

Figure 4.9: The construction of a surface Σ that contributes to the J〈M M〉J two-point

function, and whose Σqu is a cylinder. Here Σ = T 2, and its classical foundation is Σ̂cl = S2.
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(a) (b)

J

J J

J J

J J

J

Figure 4.10: Illustration of a quantum source J attached to a GK propagator, and its
location on Σ. (a): This diagram is planar and Σ is a four-pointed sphere. One of the
external quantum sources J is connected to a GK propagator. (b): Following our rules
for the plaquette-by-plaquette construction of Σqu, we find the decomposition of Σ depicted
here, with one J isolated inside a disk component of Σcl.

the vertex operators correspond to the “punctures” in the Riemann surface, points which
have been removed from Σ. This agrees with the observation that each such “puncture”
contributes −1 to the Euler number χ(Σ): In the combinatorial picture, creating a puncture
means removing a vertex in the cellular decomposition of Σ, resulting in the subtraction of
1 from the overall Euler number. On surfaces with complex structures (such as those in
critical string theory in Euclidean worldsheet signature), a puncture can be viewed as an
infinitesimally small boundary, and therefore contributes the same amount to χ(Σ). For Σ
with h handles, b boundaries and n punctures, the Euler number is then

χ(Σ) = 2− 2h− b− n. (4.41)

This is indeed the expression relevant for the counting of the powers of N in our large-N
expansion.

Even if we agree not to consider the source insertions a part of Σ, a small ambiguity
remains: How do we treat the plaquettes in the ribbon diagram, immediately surrounding
the source insertions? To see a simple example of the possible ambiguity, consider Fig. 4.10.
If we follow our plaquette-by-plaquette prescription, one of the quantum sources ends up
surrounded by a small disk with no other source insertions, which by our rules is assigned to
Σcl. This punctured disk is surrounded by Σqu. Wouldn’t it be more natural and economical
to assign this small disk (and its puncture, representing the J insertion) to Σqu?

We believe that the answer is no, and that the straightforward plaquette-by-plaquette
definition of the decomposition is both natural and most economical. If the diagram in
Fig. 4.10 were the only one with the J insertion surrounded by a disk assigned to Σcl,
it would make sense to re-assign it to Σqu and end up with a simplified sum over surface
decompositions. However, there is an entire family of diagrams with the same decomposition
into Σcl and Σqu, of which the example in Fig. 4.10 is only the lowest-order representative,
with fewest vertices inside this punctured disk. Another example is given in Fig. 4.11. The
existence of such higher-order diagrams suggests that it is natural to follow the simple rules of
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J

J J

J

Figure 4.11: Another ribbon diagram that leads to the same Σcl and Σqu as the example in
Fig. 4.10.

our plaquette-by-plaquette definition of the decomposition of Σ: According to that definition,
every internal vertex in a given ribbon diagam is always inside Σcl – there is an open disk in
Σ which contains the vertex and is entirely in Σcl. It is then natural to extend this picture
also to the 1-vertices associated with the vertex insertions: Even if the puncture in Σ that
corresponds to the source insertion is technically not a part of Σ, it has a neigborhood in Σ
with the topology of a punctured disk, which intersects only one propagator of the ribbon
diagram. The logic of the plaquette-by-plaquette construction suggests that this punctured
disk should be assigned to Σcl.

Thus, the extension of the plaquette-by-plaquette construction to the ribbon diagrams
with external source insertions suggests that all insertions of both J and J should be
naturally interpreted as punctures in Σcl. This is the definition of the decomposition of
Σ with punctures into its classical and quantum part which we adopt for the rest of this
chapter: All punctures of Σ will always belong to Σcl.

4.4. Non-equilibrium string perturbation theory after

the Keldysh rotation

Thus, we arrive at the form of the topological genus expansion in non-equilibrium string
perturbation theory, in the Keldysh-rotated form. Consider again the sum over all connected
ribbon diagrams in our generic large-N non-equilibrium system with matrix degrees of free-
dom, and with ncl insertions of the classical source J and nqu insertions of the quantum
source J . This amplitude can be written as

Ancl,nqu(N, λ, . . .) JnclJ nqu . (4.42)

The coefficients Ancl,nqu(N, λ, . . .) can then be expanded in the powers of 1/N , leading to the
string dual description as a sum over connected worldsheet topologies, each with ncl + nqu

punctures.
For notational simplicity, we introduce the generating functional Z(J,J ) of the ampli-

tudes (4.42), defined as a formal sum of (4.42) over all ncl and nqu, and refer to Z(J,J )
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Σ

qu

cl

Σ Σ
qu

qu

Σ

Figure 4.12: A typical surface Σ contributing to (4.43), and its decomposition into the

classical foundation Σ̂cl and the quantum embellishment Σqu. In this example, Σ is a surface
with five handles, and with three J sources inserted at three marked points. Its classical

foundation Σ̂cl is a torus with three marked points, and its Σqu consists of three disconnected
components: A torus with one boundary, a surface with two handles and two boundaries,
and a disk.

as the “partition function” for short. In this language, we can now summarize the main
results of this chapter as follows: The large-N expansion of the partition function for the
non-equilibrium system in the Keldysh-rotated version of the Schwinger-Keldysh formalism
takes the form of a sum over surface topologies, refined to

Z(J,J ) =
∞∑
h=0

(
1

N

)2h−2 ∑
double decompositions
χ(Σcl)+χ(Σqu)=2−2h

FΣcl,Σqu(J,J ;λ, . . .). (4.43)

In this non-equilibrium case, the sum over the surface topologies goes over all double decom-
positions of Σ into Σcl and Σqu, such that Σ is the connected surface of genus h, and with
ncl + nqu marked points inside Σcl corresponding to the insertions of ncl classical sources J
and nqu quantum sources J .

We have already demonstrated that Z(0, 0) = 0 identically. In fact, this observation
can be extended from the vacuum diagrams to the more general case of all diagrams with
non-zero J but zero J ,

Z(J, 0) = 0. (4.44)

The proof is simple: Consider a ribbon diagram with at least one vertex. There is at least
one arrow at the signpost at that vertex. Follow any admissible path starting in the direction
of this arrow. In a diagram with a finite number of vertices, this path must end in a finite
number of steps. The only place where an admissible path can end is at a J source insertion.
Thus, for the diagram to be non-zero, there must be at least one J attached. There are
no diagrams that would contribute to a correlation function with n classical sources J , if
there is not at least one J source insertion, thus proving (4.44). Of course, this proof is
perturbative in nature, as are all our arguments based on the perturbative expansion in
terms of the underlying perturbative ribbon diagrams.

These vanishing identities have a clear physical interpretation familiar from the field-
theory side of the non-equilibrium system: Setting the quantum source J to zero is equiv-
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alent in the original ± formalism to setting the sources J+ and J− on the C± parts of the
Schwinger-Keldysh contour equal to each other. When this is done, the probe of the system
by J+ on the forward branch is exactly undone by the compensating probe by J− on the
return path, and all the diagrams contributing to such a process are identically zero. On the
string side, this is reflected by the statement of (4.44): All contributions from the worldsheets
Σ without at least one J insertion vanish identically.

In fact, this statement about non-equilibrium string perturbation expansion can be fur-
ther refined: For the amplitude associated with a given decomposition of Σ into Σcl and Σqu

to be non-zero, each connected component of Σcl must have at least one J insertion. The
proof is a simple generalization of the argument we used to prove (4.44): Each connected
component of Σcl has at least one vertex. There is at least one allowed path that begins at
this vertex. This allowed path stays within the same connected component of Σcl, and it has
to end somewhere after a finite number of steps. Since it can only end at an J insertion,
each connected component of Σcl must have at least one such insertion.

Note that (4.44) can be interpreted as the boundary condition for solving the full gen-
erating functional of the correlation functions (4.43). Finding that (4.44) is valid represents
an important check of self-consistency for any Z(J,J ) in non-equilibrium string theory.

Resummation of the perturbative expansion

The decomposition of the string worldsheet Σ into its classical and quantum parts suggests a
reorganization of the perturbative expansion in string theory: We can first perform the sum
over the topologically inequivalent classical foundations Σ̂cl, and then sum over all quantum
embellishments that can be added to a given Σ̂cl. This resummation leads to the following
expression, equivalent to (4.43):

Z(J,J ) =
∑
Σ̂cl

(
1

N

)−χ(Σ̂cl)


∞∑
b=0

(
1

N

)b ∑
Σqu
b

(
1

N

)−χ(Σqu
b )

FΣ̂cl,b,Σqu
b

(J,J ;λ, . . .)

 .

(4.45)
Here Σqu

b denotes a quantum embellishment surface, not necessarily connected, with b bound-
ary components. The first sum in (4.45) is over the classical foundations, which are closed
surfaces, also not necessarily connected. The second sum in (4.45) is over the number b of

disks excised in the classical foundation Σ̂cl, in order to form Σcl (and over the distributions

of such excisions among the connected components of Σ̂qu). The third sum in (4.45) is over
all possible topologically inequivalent quantum embellishment surfaces Σqu which have b
boundary components, and can therefore be glued to Σcl to form the full surface Σ. These
ingredients are subjected to just one overall constraint: The resulting Σ must be connected.

The resummation of the non-equilibrium string perturbation expansion in the form (4.45)

exhibits one somewhat unpleasant feature: For a given classical foundation Σ̂cl, the sum over
inequivalent Σqu topologies is not finite, even at a fixed order in the string coupling 1/N .
This infinity of inequivalent topologies contributing at the same order in 1/N for a given
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Σ̂cl has a simple origin: Disconnected components of Σqu with the topology of a disk. One
can excise any number m of disks from Σ̂qu and replace them with such disconneted disk
components of Σqu, without changing the Euler number of Σ and thus the order in 1/N at
which this surface contributes to the partition function.

This feature suggests performing yet another resummation: For a given Σ̂cl, we can split
the sum over all quantum embellishments in (4.45) into two steps: First the sum over any
number of connected components of Σqu with the disk topology, followed by the sum over
all components of Σqu whose Euler number is ≤ 0 (and which are therefore not disks). For

a given classical foundation Σ̂cl, the first step defines a “renormalized” surface obtained
by summing over all possible quantum embellishments by disks, and the second sum over
topologically nontrivial quantum embellishments at each order in 1/N is then a finite sum

over finitely many topologically distinct quantum embellishments of the renormalized Σ̂cl.
For specific models, or in specific circumstances, it might happen that the sum over

quantum embellishments of each connected component of Σ̂cl by disks becomes finite. Indeed,
we shall see two such examples in Section 4.5, where we consider classical and stochastic limits
of the general non-equilibrium quantum systems: In Section 4.5, we will find an example
where all quantum embellishments vanish identically; and in Section 4.5, we will encounter
another example, in which each connected component of Σcl can have at most one boundary
component, which implies that the sum over its disk embellishments terminates at order one
in the number of disks.

Worldsheet decompositions before and after the Keldysh rotation

We can now compare and contrast the worldsheet decompositions of Σ in non-equilibrium
string perturbation theory in the original forward-backward formulation and in the formu-
lation after the Keldysh rotation.

In the ± formalism, there is a symmetry between the forward and backward parts of the
Schwinger-Keldysh contour, which implies a symmetry between the forward and backward
parts Σ+ and Σ− of the triple decomposition of the worldsheet. In particular, their combi-
natorial definitions in terms of the ingredients in the underlying ribbon diagram reflect this
symmetry. The remaining part, Σ∧, has a different standing: It represents the part of the
worldsheet associated with the instant of time where the forward and backward branches of
the Schwinger-Keldysh contour meet. Σ∧ does carry its own topological genus expansion,
and in this sense it is topologically two-dimensional. Still, as we discussed in [98], its com-
binatorial definition suggests that Σ∧ may be interpreted as geometrically one-dimensional.

In the Keldysh-rotated formulation, there is no symmetry between the classical and
quantum component Σcl and Σqu of the two-fold decomposition of the worldsheet surface Σ:
As we saw, the primary ingredient in this decomposition is the classical foundation Σ̂cl, which
is topologically simpler or at most equivalent to Σ. Starting with this classical foundation,
Σ is formed by adding the quantum embellishments represented by Σqu. Both Σcl and Σqu

can have topologies of any genus, but there is no similarity or symmetry between them.
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In fact, there appears to be a certain parallel between Σcl of the Keldysh-rotated formal-
ism, and the Σ+ and Σ− components of the ± formalism of [7]. Analogously, the quantum
part Σqu in the Keldysh-rotated formalism is somewhat reminiscent of the wedge region Σ∧ of
the ± formalism. Indeed, note an intriguing similarity between the combinatorial definition
of Σqu in the Keldysh-rotated formalism as given in Section 4.3, and the worldsheet region
Σ∧ at the “end of time” in the ± formalism of [7]: In both instances, these surfaces are
built solely from propagators and plaquettes, and no vertices in the original ribbon diagram.
Thus, in the Poincaré dual ribbon diagram, Σqu and Σ∧ are both built from vertices and
lines only, which can make them appear geometrically one-dimensional. Yet, topologically
they correspond to two-dimensional surfaces and carry their own genus expansion, as we
demonstrated in Section 4.3.

4.5. Classical limits of non-equilibrium systems and

string theory

In non-equilibrium theory in the Keldysh form, there are several popular approximations,
which represent various classical limits of the system. In this section, we study the conse-
quences of taking such limits for the string perturbation expansion. Besides the interst in
studying the string-theory side of such approximations for their own sake, this section serves
one additional purpose: We will see that our results will give further justification to our
terminology, and in particular clarify why it makes sense to refer the two parts Σcl and Σqu

as the “classical” and “quantum” part of the worldsheet Σ.

The classical limit

The first popular approximation is one in which we consider the quantum field φqu (or, in
our matrix case, M ) to be small compared to φcl (in our case M), expand the action up to
linear order in the quantum field M and then integrate M out (see, e.g., [64, 90, 91, 99]).

SSK =
1

g2

∫
dtTr

(
M G−1

R M + M G−1
A M + 3M2M + 4M3M + . . .

)
. (4.46)

Integrating M yields a delta function, which makes the remaining dynamical field M satisfy
its classical equation of motion,

M̈(t) = −V ′(M(t)). (4.47)

(Here V is the potential that contains all the cubic and higher interaction terms of the
original action, and we have kept all the spatial-momentum dependence in the equation
implicit.) Thus, in this limit, all fluctuations (both quantum and thermal) are infinitely
suppressed. This is the reason why this approximation is usually invoked to justify the
terminology “classical” and “quantum” for the fields M and M : The “classical” field M in
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this “classical” approximation satisfies the classical equation of motion, and the “quantum”
field has been integrated out.

What does this approximation look like in the string-theory representation? Consider
the general ribbon diagrams in this approximation. First, linearizing the cubic and higher
interaction terms in the action (4.18) in the quantum field M means that we drop all vertices
with more than one arrow at their signpost. Note a curious consequence: In this classical
approximation, there is no free will left for our hypothetical travelers following admissible
paths on a given ribbon diagram! Indeed, the choice of an admissible direction at each vertex
along the path is uniquely determined by the single arrow at its signpost, and all admissible
paths are completely deterministic.

Linearizing the quadratic term in (4.18) means that we keep only the mixed propagators
GA and GR, dropping all the GK propagators. This step is familiar: This is how we defined
the reduction from the full surface Σ to its classical foundation Σ̂cl in Section 4.3. However,
not all classical foundations of the original theory will appear: Only those diagrams whose
every vertex has just one arrow at its signpost will survive the linearization procedure.

It is now easy to show that all such ribbon diagrams will be collections of trees. Each of
the trees is rooted by one J insertion. The collection of all allowed paths that end at this
J form the branches of the tree. The deterministic feature of the allowed paths discussed
above ensures that there are indeed no closed loops in this tree. Tree diagrams are planar,
and therefore Σ is just a collection of spheres.

Thus, we reach a very pleasing conclusion: In the classical limit of the original non-
equilibrium quantum system, the partition function Z(J,J ) as given by the sum over
worldsheet topologies automatically reduces itself to a sum over string worldsheet surfaces
with only spherical topologies! For each term, the number of S2’s is equal to the number of
J external insertions. Moreover, all these surfaces have no quantum embellishments Σqu,

and therefore are equivalent to their classical foundation Σ̂qu. In equilibrium closed string
theory, summing over only spherical topologies is the hallmark of taking the classical limit.
It is nice to see that taking the classical limit of the non-equilibrium system matches the
process of taking the classical limit on the string side as well. We believe that this result
provides some intuitive justification for the terminology we introduced for the decomposition
of Σ into its “classical” and “quantum” part Σcl and Σqu.

Classical stochastic limit and the Martin-Siggia-Rose method

In this approximation, we take the semiclassical limit ~ → 0 but keep the classical thermal
fluctuations. This is achieved by restoring the dependences on ~ in the Schwinger-Keldysh
action (4.18), exposing the system to an environment by coupling it to a thermal bath of
harmonic oscillators, and taking the classical limit while keeping the temperature T fixed
(see, e.g., [64], Chapters 3.2 and 4, for details). Note that this approximation will not require
the M degrees of freedom to be in equilibrium, only the bath.

It turns out that keeping the dependence on non-zero T is equivalent to keeping not only
the linear terms but also the terms quadratic in M in our expansion of the action(4.18).
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The classical action (4.46) is then modified to

SSK =
1

g2

∫
dtTr

(
M G−1

R M + M G−1
A M + 3M2M + 4M3M + . . .+ iγTM 2

)
. (4.48)

Here γ is a constant that characterizes the spectral density of the Ohmic bath modelling the
environment (see [64]). This constant γ also appears in the additive friction terms in the
GA and GR propagators, terms which were absent in these propagators in the classical limit
of Section 4.5; these additional terms do not influence our treatment of the Feynman rules,
ribbon diagrams and our conclusions.

In order to see in what sense this action (4.48) represents a classical stochastic system,
it is convenient to use the Hubbard-Stratonovich transformation in the path integral,

e−γT
∫
dtTr(M 2) =

∫
Dξ(t) e−

∫
dtTr( 1

γT
ξ2−2iξ(t)M (t)), (4.49)

so that we can trade the term quadratic in M for a linear coupling between M and a new,
typically Gaussian, field ξ. In our case, both M (t) and ξ(t) are SU(N) matrices (with all
additional dependences on the spatial coordinates or other quantum numbers again kept
implicit, as has been the case throughout our analysis).

Since M now appears only linearly, it can be again integrated out to give a delta function
localized on the stochastic classical equation of motion for M ,

M̈(t) = −γṀ − V ′(M(t)) + ξ(t). (4.50)

In this classical equation, ξ(t) serves as a stochastic noise, with a Gaussian distribution
represented by the path integral (4.49). Note the presence of the friction term −γṀ , which
appears due to the dependence of GA and GR on γ mentioned above. The famous Martin-
Siggia-Rose method [100] for dealing with stochastic systems reverses this construction [101,
102]: It starts with a Langevin equation analogous to (4.50), and reintroduces the quantum
field M to represent the system in the path integral language.

Now we will use the action (4.48) of this classical stochastic limit of the original system
of matrix degrees of freedom, to see the implications of this approximation on the dual string
side.

First note that in this limit, all vertices in the surviving ribbon diagrams are again allowed
to have just one arrow at their signpost, just as in the classical limit discussed in Section 4.5.
In particular, the following conclusions about the classical foundation Σ̂cl of the surfaces
associated with the surviving ribbon digrams stay the same:

• All admissible paths on the ribbon diagrams are completely deterministic;

• The reduced ribbon diagram that defines the classical foundation Σ̂cl is a collection of
trees (with one tree per each J source insertion), and its each connected component
is therefore planar;
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Figure 4.13: An example a ribbon diagram that follows the rules of the stochastic classical
approximation with action (4.48). Note the deterministic nature of the amissible paths on
this diagram. Cutting across the indicated 2n rungs and re-gluing them as in Fig. 4.6 yields a
ribbon diagram whose surface Σ has n handles, while its classical foundation is still Σ̂cl = S2.
The non-trivial topology is entirely contained in the quantum part Σqu, which is a surface
with n handles and one boundary.

• The classical foundation Σ̂cl is either a sphere, or a collection of disconnected spheres
(with one S2 for each connected tree component of the associated reduced ribbon
diagram);

• The number of connected components S2 of Σ̂cl is equal to the number of J source
insertions in the diagram.

In contrast to the zero-temperature classical limit studied in Section 4.5, however, there
is now a non-zero remnant of the classical-to-classical GK propagator, due to the presence of
the M 2 term in (4.48) linear in T . Thus, the worldsheets Σ contributing in this stochastic
classical limit will still contain quantum embellishments, but their classical foundations will
be collections of S2’s.

Restoring now all the GK propagators in the reduced diagram, the surface Σ can have an
arbitrarily high number of handles, as we show in Fig. 4.13. However, this nontrivial topology
of Σ is now solely due to the quantum embellishments: Leaving out the GK propagators
reduces any original ribbon diagram of this approximation to a collection of trees, implying
that the classical foundation Σ̂cl is always a collection of two-spheres. In addition, one can
similarly show that each connected component of Σcl is a disk (i.e., it has only one boundary
S1 connecting it to Σqu), or the entire Σ is an S2 with no quantum embellishments.

We see that even in the stochastic classical limit, there continues to be a meaningful sense
in which the “classical” limit in the non-equilibrium system (as defined by (4.48)) means also
a “classical” limit in the sense of the dual string theory, where the “classical” string limit is
conventionally understood as the summation over worldsheets with only spherical topology
[103] and possibly with marked points. This time, however, this classical string limit applies
only to the classical foundation of Σ, while the higher-genus quantum embellishments Σqu

represent the classical thermal or stochastic fluctuations in the original matrix system.
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Chapter 5

Conclusion

There are several possible directions for future research. Here, we organize them based on
the chapter they are most relevant to.

5.1. Future Work on the Weak Gravity Conjecture

This chapter comprises a proof of the weak gravity conjecture, obtained from studying the
macroscopic entropy of gauged scalars on a semiclassical near-extremal black hole back-
ground. Our choice of renormalization conditions allows us to safely neglect non-linear
metric backreaction. The quantum corrected entropy violates the second law if the con-
jecture is not satisfied. When the conjecture is satisfied, the black hole near extremality
decays rapidly due to Schwinger pair production, which allows the theory to evade the trou-
bling thermodynamic violation. Therefore, we establish that it is necessary that a weak
gravity conjecture is obeyed.1. Our calculation demonstrates that entropy inequalities may
discriminate between effective field theories that live in the landscape versus the swampland.
Although effective field theories that violate the weak gravity conjecture do not obviously
violate unitarity, positivity, or causality, the violation of the second law indicates that some
sickness lurks within them. In conclusion, we propose that a violation of the second law
modulo backreaction indicates an IR obstruction to a UV completion in a unified theory
[104].

Our analysis does not truly address weak gravity in effective field theory or on arbitrary
perturbations of the black hole background. We only consider the minimally gauged, mini-
mally coupled quadratic action of the D = 4 gauged scalar. A follow-up chapter [105] bridges
the gap: we address the conjecture in arbitrary dimensions and non-minimal interactions,
including non-renormalizable terms. We limited our analysis here to the minimal quadratic
action for ease of presentation and because we could obtain an exact result. We extend our
result to actions with higher dimension operators and to actions with multiple scalars in

1We leave it to future work to determine if it is sufficient.



CHAPTER 5. CONCLUSION 92

[105]. In particular, we prove the generalized electric weak gravity conjecture of [26] in our
follow-up chapter.

It would be worthwhile to extend our methodology to arbitrary p-form gauge fields. For
example, while it is expected that there is a weak gravity conjecture for p > 1, it is unclear
if p = 0 axions are subject to a weak gravity conjecture. If they are, then there are direct
implications for inflationary model building. In particular, large field axion inflation would
violate the p = 0 weak gravity conjecture [29].

Although our results directly apply to the weak gravity conjecture, they might also apply
to the Ooguri-Vafa conjecture [106].2 Ooguri and Vafa claim that there are no stable non-
supersymmetric AdS vacuua whose cosmological constant is supported by a flux. If true, then
the conjecture has serious implications for non-supersymmetric AdS/CFT. Large-N brane
constructions and Kaluza-Klein compactifications include extremal particles in the bulk spec-
trum. Our result demonstrates a conflict between thermodynamics and non-supersymmetric,
gauged extremal particles, suggesting a route to proving the conjecture.

The extensions aforementioned do not capture the full potential of our methodology. We
propose that the armamentarium of entropy technology at our disposal may define new,
undiscovered constraints on effective field theories compatible with quantum gravity. Our
follow-up chapter provides minor evidence in favor of the proposal [105]. The power of
the methodology lies within the relative ease of calculating macroscopic entropy of IR field
content in semi-classical gravitational backgrounds. One may remain agnostic as to the full
UV completion of the effective theory. Nonetheless, if the effective theory violates known
entropy inequalities in the IR, then there exists some obstruction to a UV completion.

5.2. Future Work on the Large-N Expansion and

Strings Out of Equilibrium

In this chapter, we studied the large-N expansion in non-equilibrium quantum systems with
matrix degrees of freedom on the Schwinger-Keldysh time contour, to derive universal fea-
tures of the perturbative expansion in the dual string theory. In equilibrium, the standard
loop expansion in the powers of the string coupling gs takes the form of a sum over inequiv-
alent worldsheet topologies Σ, fully classified (in the case of closed oriented strings) by the
number of handles on Σ. In non-equilibrium string theory, we found that this topological
expansion is further refined: Each surface Σ undergoes a triple decomposition into region Σ+

on the forward branch of the Schwinger-Keldysh time contour, Σ− on the backward branch
of the time contour, and the wedge region Σ∧ which corresponds to the instant in time where
the two branches meet. Surprisingly, Σ∧ is itself a topologically two-dimensional region, with
arbitrarily complicated topology and its own genus expansion. The perturbative sum over
worldsheet topologies Σ now includes a sum over all triple decompositions.

2See also [107].
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These findings are quite universal, since they follow just from the robust features of
the large-N Feynman diagrams, without any assumptions about the (unknown) worldsheet
dynamics of the dual theory. In this sense, we expect that any candidate string-theory dual
should consistently reproduce this refined structure of string perturbation theory.

The next challenge is to find concrete realizations of the refined string perturbation
theory in examples where the worldsheet dynamics is known or can be worked out. At least
three natural testing grounds suggest themselves: One is noncritical string theory in low
spacetime dimensions, which is nonperturbatively described by the appropriate continuum
limit of matrix models. Another example, where a lot is known about both sides of the large-
N/string-theory duality and our ideas can presumably be tested, is the most-studied example
of AdS/CFT correspondence, given by N = 4 supersymmetric Yang-Mills theory and its
Type IIB superstring AdS5 × S5 dual. Finally, critical superstring theory in asymptotically
flat spacetimes should also provide interesting tests. In fact, the insights of this chapter may
also be relevant for equilibrium superstring perturbation theory, in the context of extending
the beautiful methods of Cutkosky rules and Refs. [73, 72, 74] for proving unitarity of
amplitudes to string theory. These methods have been surprisingly out of reach in the first-
quantized approach to string theory (see [108] for the relevant discussion), and progress on
these issues so far seems to require string field theory [109].

We mainly hope that the results of this chapter will help to pave the way towards the
development of non-equilibrium string theory, enlarging the scope of physical systems that
can be described by a string-theory dual.

5.3. Future Work on the Keldysh Rotation and

Non-equilibrium String Theory

In this chapter we found that, as anticipated, the calculus of non-equilibrium string per-
turbation theory looks quite different in the Keldysh representation, in comparison to its
form in the original ± formalism that we found in [7]. In both cases, the large-N expansion
is organized into a sum over surfaces Σ of increasing topological complexity, just as in the
standard string perturbation theory at equilibrium. In contrast to equilibrium, however, in
both representations of non-equilibrium string perturbation theory the surfaces Σ are found
to carry a more refined structure (besides just the genus of Σ) which is universal for all sys-
tems. It is this additional structure that is quite different between the two non-equilibrium
representations.

In the ± formalism, the worldsheet surfaces Σ exhibit a triple decomposition, into their
forward branch Σ+, a backward branch Σ− and the “wedge” region Σ∧ which corresponds
to the crossing from the forward to the backward portion of the Schwinger-Keldysh time
contour. In contrast, in the Keldysh representation, each surface Σ consists of a classical
foundation Σ̂cl, which is further decorated by the quantum portion Σqu of the surface.

In [7], we also studied the structure of non-equilibrium string perturbation theory, and
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the refinement of the worldsheet decompositions, for closed time contours with more than
two segments, most notably for the Kadanoff-Baym contour relevant for systems at finite
temperature. Besides the forward branch C+ and the backward branch C−, this time contour
has a third segment CM (sometimes called the “Matsubara” segment), which extends along
the imaginary direction by the amount β = 1/T set by the temperature. We have not
generalized the results of the Keldysh rotation to this case, simply because the status of this
third segment is different than that of C±. However, one can certainly imagine a hybrid
formalism, in which the Keldysh rotation has been performed on the fields taking values
on C±, leaving the Matsubara segment intact. Such a hybrid formalism has indeed been
used extensively in the theory of non-equilibrium many-body systems (see [71] for a review).
The fields in this hybrid formalism would consist of the classical and quantum fields M(t)
and M (t) that we studied in this chapter, plus the Matsubara field MM(τ) that we used in
Section 3 of [7]. By combining the results of [7] and those of the present chapter, it should
be possible to derive the form of the worldsheet decomposition in this hybrid formalism for
non-equilibrium systems with a string dual.

Effectively, our analysis in [7] and in the present chapter produced a set of rules which can
be viewed almost as axioms, and which are so universal that we expect any string theory out
of equilibrium to be consistent with them: In the ± description, the instant in time where
the forward and backward contours meet is perceived from the worldsheet perspective as
topologically two-dimensional, and carries its own genus expansion; the sum over surfaces is
refined into a sum over their triple decompositions. In the Keldysh rotated description, each
part of the two-fold decomposition of the worldsheet surface into its classical foundation
and quantum embellishments carries its own independent genus expansion. Due to their
universal nature, these axioms are arguably not very strong, and therefore not very helpful
in determining any specific details of the worldsheet dynamics. We hope, however, that they
may at least provide some guidance in the future search for the worldsheet description, in
particular examples of interest.

It will be interesting to see which of the two representations of the string-theoretic dual
description of large-N non-equilibrium systems will be more useful from the perspective of
the worldsheet theory. Perhaps the answer might even depend on the large-N system in
question, and the kind of string theory which happens to be dual to it. We leave these
fascinating questions open for future investigations.
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