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SPECTRA OF REGULAR QUANTUM GRAPHS
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We consider a class of simple quasi one-dimensional classically nonintegrable systems that capture the essence
of the periodic orbit structure of general hyperbolic nonintegrable dynamical systems. Their behavior is suffi-
ciently simple to allow a detailed investigation of both classical and quantum regimes. Despite their classical
chaoticity, these systems exhibit a «nonintegrable analog» of the Einstein—Brillouin—Keller quantization formula
that provides their spectra explicitly, state by state, by means of convergent periodic orbit expansions.

PACS: 05.45.Mt, 03.65.Sq, 02.30.Lt

1. INTRODUCTION

Very few quantum systems can be solved explicitly.
Among them are the standard textbook examples, such
as the harmonic oscillator or the hydrogen atom [1]. In
all of these cases, the spectrum of the quantum sys-
tem is obtained as an explicit analytical formula of the
form «E, = ...», where n is the quantum number
of the system. This procedure already fails for some
of the simplest quantum systems, which are still con-
sidered elementary textbook problems. An example
is a quantum particle in a box with a step potential
inside, as shown in Fig. 1. Even for the simple prob-
lem in Fig. 1, explicit analytical solutions of the form
«E, = ...» are no longer available because the prob-
lem leads to a transcendental spectral equation. The
recommended method of solution is either numerical or
graphical [1-3]. We recently found a way [4-6] of ob-
taining explicit analytical solutions of a wide class of
problems such as the one shown in Fig. 1, thus obtain-
ing an explicit analytical solution of textbook problems
that until now were relegated to numerical or graphi-
cal solution techniques. Our methods are also a step
forward in the mathematical theory of almost periodic
functions [7], because we obtain explicit formulas for
the zeros of a wide class of almost periodic functions.
Furthermore, the classical dynamics of the quantum
systems discussed in this paper is chaotic. Because it
may well be true in general that the quantized versions
of classically chaotic systems do not admit the existence
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Fig. 1. Sketch of a step potential in a box, a well-known
textbook quantum problem

of quantum numbers (see, e.g., [8, 9] for a detailed dis-
cussion of this important point), our «E,, = ...» spec-
tral formulas, containing an explicit quantum number
n, may come as a surprise. At this point, we feel that
it is important to stress that our results are not conjec-
tures, approximations or merely formal identities. Qur
results are exact, explicit, convergent periodic orbit ex-
pansions that can be cast into the form of mathematical
theorems. We will publish the rigorous mathematical
underpinnings of our results elsewhere [10].

It is well known [11] that the periodic orbit theory
leads to completely different approaches for quantizing
integrable and nonintegrable dynamical systems. For
integrable systems, there is a simple procedure [11, 12]
that allows quantizing the action variables individually
for each degree of freedom. The situation is completely



different for the chaotic case, where the periodic orbit
theory [11] allows evaluating only certain global char-
acteristics of the spectrum, e.g., the density of states

oo

p(E) =Y 5(E - Ej)~ p(E) +

- %Imz To(E) Y Ay(E)exp(ivSy(E)), (1.1)
P v=1

typically with only semiclassical accuracy [13]. Here,
p(E) is the average density of states, Sp(E), Tp(E),
and A,(E) are respectively the action, the period, and
the weight factor of the prime periodic orbit labeled
by p, and v is the repetition index. In this approach,
individual energy levels are obtained indirectly as the
singularities of the sum in Eq. (1.1). As for the idea
of expressing them directly in terms of the periodic or-
bits, M. V. Berry wrote in 1991 [14]: « ... We do not
know how, or even whether, the closed orbit sum gen-
erates the individual ds in the level density for chaotic
systems. This is a serious — perhaps shocking — sit-
uation, because it means that we are ignorant of the
mechanism of quantization.»

In the case of quantum graphs, Berry’s question can
be answered definitively. The periodic orbit sums rep-
resenting the spectral density of quantum graphs do
provide the individual levels in the form of J-spikes
in (1.1) and only those [15, 16, 17, 18]. In addition,
we recently showed [4, 5, 6] that the answer to Berry’s
question can be taken one step forward: not only do
periodic orbit expansions for quantum graphs produce
d-functions for the quantum states in the level den-
sity, but for certain classes of quantum graphs there
also exist explicit convergent periodic orbit expansions
for individual energy levels. Because they provide ex-
plicit formulas for the energy levels of classically chaotic
systems, these periodic orbit expansions may be con-
sidered as «nonintegrable analogues» of the Einstein-
Brillouin—Keller (EBK) quantization formula [11, 12]
that applies to integrable systems.

This paper is organized as follows. In Sec. 2, we
briefly review the theory of quantum graphs and extend
the theory by defining «dressed graphsy, i.e., quantum
graphs with arbitrary potentials on their bonds. In
Sec. 3, we define an important class of dressed quantum
graphs: regular quantum graphs. Based on a detailed
study of their spectral properties in Sec. 3, we derive
explicit analytical spectral formulas for regular quan-
tum graphs in Sec. 4. In Sec. 5, we present a variety of
regular quantum graphs illustrating the use and conver-
gence of the spectral formulas. In Sec. 6, we summarize
our results and conclude the paper.

2. DYNAMICAL NETWORKS

We consider a particle moving on a quasi one-
dimensional network of bonds and vertices. These net-
works are known as graphs in the mathematical liter-
ature. They were and still are the subject of inten-
sive investigations in all areas of science ranging from
mathematics over computer science to chemistry and
physics. An example of a simple graph with five ver-
tices and seven bonds is shown in Fig. 2. The parti-
cle scatters randomly at every vertex V; along different
bonds B;; that meet at that vertex. We assume that
the graph contains a finite number of bonds and ver-
tices (Np and Ny respectively). The key assumption
about the dynamics of the particle is that the turning
points of any trajectory of a particle moving on the
graph coincide with the vertices of the graph, and the
shape of the trajectories is therefore uniquely deter-
mined by the geometry of the graph. The trajectories
of the particle are simply the joint sequences of graph
bonds, which are easily described and enumerated. For
instance, every trajectory can be represented by a se-
quence of Np symbols, each of which corresponds to a
certain bond [19]. Because the trajectories correspond
to various bond sequences, every trajectory is described
by a code word consisting of Ng symbols.

We «dress» the bonds B;; of the graph with poten-
tials U;;(z), which may affect the way a particle moves
along the bonds. However, it is required that these
dressings do not violate the geometry of the particle
trajectories, i.e., do not add turning points other than
the original vertices of the graph. This condition is
required to hold at all energies. To comply with this
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Fig.2. Sample graph with five vertices and seven

bonds



requirement, the bond potentials are allowed to depend
on the energy E of the particle, i.e., Uj; = Uj;(z, E),
such that £ > U;;(z, E) is fulfilled for all E and all
i,7. This in fact leads to many additional simplifica-
tions that have a deep physical meaning in the context

of the semiclassical periodic orbit theory [4-6,19-21].
The shapes of the trajectories, and in particular of
the periodic orbits, become increasingly complicated
as their lengths grow. This makes them similar to the
generic (dynamical) chaotic systems. In fact, the num-
ber of possible periodic orbits increases exponentially
with their lengths, (or, equivalently, the number of ver-
tex scatterings) with a rate which depends only on the
topology of the graph. Every graph I' can be charac-
terized by its topological entropy (the global average
rate of the exponential proliferation of periodic orbits)
= i PO o)

—00 7’

where [ characterizes the lengths of the periodic orbits
in terms of the lengths of their code words and #(1) is
the total number of periodic orbits of the length < [9].
Because the phase space of the system is bounded, the
dynamics of the particle is mixing [16], and hence, the
structure of the periodic orbit set on dynamical net-
works closely imitates the behavior of the closed tra-
jectories of generic chaotic systems [22, 23]. On the
other hand, dynamical networks can be easily quan-
tized [4-6,17-19,24], which makes them very conve-
nient models for studying various aspects of quantum
chaology.

The details of the classical dynamics on graphs are
discussed in numerous publications [16, 25]. Below,
we investigate the quantum-mechanical description of
these systems. In particular, we discuss their spectra
in the context of the periodic orbit theory. We now
briefly outline some details of the graph quantization
procedure that are used in the subsequent discussion.

A quantum graph system is a quantum particle that
moves on a one-dimensional network I' dressed with
the potentials U;;(z, E). Below, we consider the case
of scaling potentials discussed in [6, 26—28],

Ui (E) = )\,’jE7 )\ij = )\j,’, (22)
where \A;; are constants. This choice of the dressing po-
tentials allows us to avoid certain mathematical com-
plications, which are irrelevant for the physical context
of our discussion. For more details on scaling potentials
and their relevance in the semiclassical periodic orbit
analysis, see [4, 6, 19].

The Schrédinger equation for graphs with poten-
tials (2.2) can be written as

woij(x) = B3 Evij (z), (2-3)
where
. . d
Mij = =l = Aij (24)

is the generalized momentum operator and
2 =1- Ay
The coordinate 0 < z < L;; is measured along B;;
from ¢ to j and L;; = Lj; is the length of the bond.
The magnetic field vector potential A;; = —A;; is as-
sumed to be a constant real matrix, and can be used
as a tool for braking the time-reversal symmetry.
Classically, the particle can travel along the bond
B;; if its energy is above the scaled potential height,
E > U;;(E) (Mj < 1). In this case, the solution of
Eq. (2.3) on the bond B;; is a combination of the free
waves,

bij(2) = ai; = ¢ (_B/—ié].ﬁ,;j 2ol
ij
" bij exp (l (ﬂ,]k + Az'j) :L')

v/ Bijk ’

where k = +/E and the factors (8;;k) /2 are intro-
duced to separate the physically meaningful flux am-
plitudes from the coefficients a;; and b;;. In the oppo-
site case where \;; > 1, the bond B;; carries a linear
combination of tunneling solutions. Due to the scaling
assumption, there is no transition between these two
cases as a function of E. From now on, we assume
that the energy E is kept above the maximal scaled
potential height,

(2.5)

)\,‘j <1, ¢j=1,...,Ny. (26)

At every vertex V;, the bond wave functions satisfy the
boundary conditions

Yij(z = 0) = p;Cyj,
X , (2.7)
> Cijfrijthij (@) ]a=o = —idigi

j=1

for all i,j =1,...,Ny. Here, C;; is the connectivity
matrix of the graph, ¢; is the value of the wave func-
tion at the vertex V;, and A; are free parameters of the
problem, scaled as A\; = Ak (see the Appendix). We
note that the double-indexed scaling constants A;; re-
fer to the bonds, whereas the single-indexed constants



A; refer to the scattering strengths at the vertices. We
believe that this notation is natural and does not lead
to confusion.

Conditions (2.7) are consistent only for a discrete
set of energy levels E,, = k2 that define the spectrum
of the dressed quantum graph problem (2.3) and (2.7).
As shown in [6,16-18,24] (see the Appendix), using
the scattering quantization approach [29] allows one to
obtain the spectral equation for any quantum graph
problem in the form

A(k) = det[l — S(k)] = 0, (2.8)

where S(k) is the finite unitary graph scattering ma-
trix [16]. The indices that define the matrix elements
St of the matrix S correspond to the graph bonds. It
is important that the bond B; = B;; is considered to
be different from the (geometrically identical) reversed
bond By = Bj;; the bonds of the graph are there-
fore directed [4-6,16, 18]. Hence, the dimensionality of
the scattering matrix is 2Np x 2Np. It is shown in
the Appendix that S = T'D(k), where T is a constant
2Np x 2Np unitary matrix and D is the diagonal uni-
tary matrix with the matrix elements

Dy =0ryexp (i (Bik + Ar) Ly),

2.9
I=1,...,2Np. (2.9)

Because A(k) is a complex function, it is convenient to
define the spectrum via the zeros of its absolute value,

|A(K)| = exp (=iOo(K)) A(K), (2.10)

where Og(k) is the complex phase of A(k). The loga-
rithmic derivative of |A(k)| produces a delta-peak for
each of its roots,

. 1im%1n|det[1—5(k+ie)]|:

T e—0
= 6k —ky), (2.11)
n=1

which, by definition, is the density of the momentum
states p(k) [6]. On the other hand, using (2.10) and ex-
panding the logarithm of determinant (2.8), the density
of states can be written as

_ 1 .dOy(k)
o dk

p(k) il d i Liswr. 212
™ dk —=n

It can then be easily seen from the structure of the

scattering matrix S [16, 24] that the matrix elements

of its n-th power are defined on connected sequences of

n bonds and the trace of S™ generates terms defined on

closed connected sequences of n bonds [6, 17, 24, 25].

These periodic connected sequences of n bonds B;;
can be viewed as the periodic orbits traced by a classi-
cal point particle moving on the graph. We note that
the phase of the exponent in (2.9) is exactly the ac-
tion of a classical point particle trajectory traversing
the bond By,

31=/(61k+A1)dx= (Bik+Ar) L. (2.13)

By

Therefore, the semiclassical transition amplitudes
exp(iSr) between the vertices connected by the bond
B; determine the scattering matrix S(k). As a
consequence [4-6,16,19], the «closed bond sequence
expansiony (2.12) can be explicitly written as a
periodic orbit expansion in terms of phases (2.13),

_ 1 = ,
p(k) = p(k) + - Re Z s Z AV exp(ivS)k), (2.14)
P

v=1

where Sg is the k-independent «action lengthy of the
orbit p,

Sp=>_ BijLijk = Spk, (2.15)
p

and A, is its weight containing the constant factor

exp(i )-, AijLij). Because of the scaling assumption

(see the Appendix), the weight factor A, is k-indepen-

dent. The first term in this expression corresponds to

the average density of states of the momentum p(k),

) = - 2o

while the periodic orbit sum in (2.14) describes the fluc-
tuations around the average.

The periodic orbit expansion for the staircase func-
tion

, (2.16)

(e}

N(#) = 3 Ok = kn)

n=1

(2.17)

can be obtained by direct integration of (2.11)
and (2.14). We obtain

N(k) = N(k) + N(k), (2.18)
where the first term
k
N(k) = / B(K') I + N(0) (2.19)

0

represents the average behavior of the staircase and

| — Ay w0
N(k) =Im - Z Z — exp(ivS,k)

p v=1

(2.20)



describes zero-mean oscillations around the average.
As discussed in the Introduction (see also
[4-6,16,25]), quantum graphs are chaotic in the
classical limit. The classical scattering probabilities
are obtained in the limit as A — 0 from the quantum
mechanical transition amplitudes [4-6] (see the Ap-
pendix). In the scaling case, they are k-independent,
and therefore, the quantum scattering amplitudes do
not depend on £ at all. They determine simultaneously
the quantum and the classical scattering probabilities.

3. REGULAR GRAPHS AND THEIR SPECTRA

The spectral determinant is a polynomial of degree
2Np of the matrix elements of S. It was shown in [6]
that the total phase of this polynomial is

1
Oo(k) = 3 ImIndet S(k) = kSo — 70, (3.1)
where
So = Z L;;Bi;
(49)
is the total action length of the graph I' and
Ng+Ny 1 20
7
=2V, - Zi 2
Yo 5 +F;arctg<vi>, (3.2)
where
(3.3)

vi=Y_ Ci;Bij.
J

The average density of states is therefore a constant,

__1d _So
pP= = %Go(k) T (34)
and the average staircase in Eq. (2.19) is
_ So. -
N(k) = —k+ N(0). (3.5)
™

The spectral equation |A(k)] = 0 can be written as

Nr
cos (Sok — my0) = Z a; cos(Sik — my;),

i=1

(3.6)

where the frequencies S; < Sy are combinations of the
reduced classical actions Sioj = BijLij, and o, v are
constants. The number N of terms in (3.6) is bounded
by Nr < 3VB [6].

The frequency Sy in ©¢(k) is the largest frequency
in expansion (3.6). While it is the only characteristic

of the graph contained in the left-hand side of (3.6),
the right-hand side

Nr

CI’(k) = Zai COS(Sik — W’yi),

i=1

(3.7)

contains the complete information about the graph sys-
tem. We call ®(k) the characteristic function of the
graph.

A graph T is called regular [4-6] if its characteristic
function ®(k) satisfies

Nr
Z la;| = a < 1.
i=1

For regular graphs, spectral equation (3.6) can be
solved formally [4-6] to yield the implicit equation of
its eigenvalues,

(3.8)

kn = — [n+ p+ 0] + N
n — SO M Yo SO
y arccos[®(k,)], for n+pu even, (3.9)
m — arccos[®(k,)], for n+p odd,

where p is a fixed integer, chosen such that kq is the
first positive solution of (3.6). The index n € N labels
the roots of (3.6) in their natural order.

The implicit form (3.9) immediately implies that
because the second term in (3.9) is bounded by m/So,
the deviations of solutions to this equation from the
points

- T
kn=—=M0m+p+v%+1)

% (3.10)

never exceed 7/Sp in absolute value for any n. The
quantities k, are very important in what follows be-
cause they determine the root structure of (3.6).

The roots k, can be decomposed into an average
part k, and a fluctuating part k,. From (3.9), we ob-
tain

kn = kn + kn, (3.11)
where
Fn= T nt it yo+ 2 (3.12)
n — SO T Yo 2|’ .
and
e "
kn = T {arccos[@(kn)] — 5} . (3.13)



We note that the constant p + o can be related to
the initial value N(0) of the average staircase func-
tion (3.5). We now consider the integral

kn
Ai / N(k")dK'.
ok,

0

The integration in (3.14) can be easily performed be-
cause the function N (k) has the simple form (2.17),

(3.14)

k

1 1 &
— [ N()dK' =n—-—> "k, (3.15)
k” n =1
0
since there are n roots to the left of l::n The fluctua-

tions of both N (k) and k, around their average values
have zero mean, and in the limit of n > 1 one therefore
can use N (k) and k,, instead of N(k) and k, in (3.15),
and write

kn
AL
Fon
0

Using the explicit forms of ky, kn, and N (k), we obtain

| R
E)dk' =n — ];—Zki, n>1. (3.16)

n 4=1

—

NO) +=(n+p+y+1)=

N |

n n
e L— L +1). 3.17
e | CRSTRRT (3.17)
Expanding the right-hand side and keeping terms up
to the order 1/n yields

- 1
F(O) + 500+ p+70+1) =
1
—n- (1 M) ( +u+70+1) (3.18)
n 2
The terms proportional to n cancel out. Comparing
the constants in (3.18) yields
N@O)=—(u+7 +1). (3.19)

It can be verified by direct substitution that

N (kyn) = n,

which implies that the function (3.10) is the inverse
of the average staircase (3.5). The points k, can also
viewed as the intersection points of the staircase (2.17)
and its average (3.5),

(3.20)

N(ky) = N(kp) = n, (3.21)

30 T T T

0 50 100 150 ZkOO

Fig.3. The exact spectral staircase N(k) and its aver-

age N (k) for the scaling step potential shown in Fig. 1

with b = 0.3 and A\ = 1/2. The average N (k) crosses

every «stair» of N (k) (piercing average) at the equally
spaced separating points kn

and hence, the fluctuations N (k) of the spectral stair-
case vanish at the points k.,

(3.22)

~ A 1 = A; . 07
N(k,) =Im - Z Z — exp(ivSykn) = 0.

p v=1

Geometrically, (3.22) means that the average staircase
N (k) intersects every step of the staircase function
N (k). Hence, we call N(k) the piercing average. This
is illustrated in Fig. 3, which shows the spectral stair-
case N (k) for the scaling step potential shown in Fig. 1
and discussed in more detail in Sec. 5, Example 1, be-
low. We used the parameters A = 1/2 and b = 0.3.
Also shown is the average staircase N (k) for this case.
It clearly pierces all the steps of N (k) providing an ex-
ample of a system with a piercing average.

Since ®(k) contains only frequencies smaller than
So, every open interval I, = (lAcn,l, lAcn) contains only
one root of (3.6), namely k,, and therefore, k, play
the role of separating points between adjacent roots
[4-6,10]. Moreover, because of (3.8), the «allowed
zonesy R, C I,, where the roots k, can be found,
narrow to

k, € R, = (1(n+u+70+u),
So

Ry I | —u)) ., (3.23)
So

where u = arccosa/Sp. Correspondingly, there are for-



bidden regions F,,,

F, = (l(n+u+70—u),
So

Sl(n+,u+’}'0+1+u)), (3.24)
0

where roots of (3.6) never appear. In the limit asa — 1
(u — 0), the allowed zones R, tend to occupy the entire
root interval, R,, — I,,.

4. SPECTRAL FORMULAS

Once the existence of separating points I;'n has been
established, it is possible to obtain an exact periodic
orbit expansion separately for every root of (2.8). The
derivation is based on the identity

kn
- / kp(k)dk

Substituting the exact periodic orbit expansion (2.14)
for p(k) into (4.1) yields

(4.1)

fen
1 0 - v - 0
= Re 305} A explir S =
fn-1 =

=T (ntptro+i)+
—SOnN'YO 2

. 1 — AY w0t
+ ky Im - Z Z ~ exp(ivS,kn) —

p v=1

. 1 — A w0t
—kp—1Im - Z Z ~ exp(zyspkn_l) +

p v=1
1 1
Re;ZS—gx
P
o0

X Z ? (exp(wS kn) — exp(iuSglAcn_l)) . (4.2)

v=1

Using (3.22), we simplify (4.2) to
b= (ntutro+z)-
n — S nTpgTY% 2

__ImZSOZ_f

vw
0[5
P y=1

1
X exp [z’va (n +p+ 7 + 5)] ,  (4.3)

where w, = mS)/Sy. The series expansion for k, in
Eq. (4.3) is more than a formal identity. It is rigor-
ously convergent, however it converges only condition-
ally, which means that the result of the summation de-
pends essentially on how the summation is performed.
Indeed, according to the well-known Riemann reorder-
ing theorem, one can obtain any result by rearranging
the terms of a conditionally convergent series [30]. For
the proper convergence of (4.3) to the exact roots of
spectral equation (3.6), we must therefore specify how
the terms in (4.3) are to be summed.

The mathematical details of the convergence prop-
erties of (4.3) are presented in [10]. We here mention
the main result, which states that the terms in (4.3)
must be summed according to the length of the sym-
bolic codes [6, 19] of the periodic orbits, and not ac-
cording to their action lengths. If (4.3) is summed in
this way, it not only converges, but also converges to
the exact roots ky, of spectral equation (3.6).

Hence, the formula (4.3) provides an explicit rep-
resentation of the roots of spectral equation (2.8) in
terms of the geometric characteristics of the graph. In
accordance with (3.12), the first term in (4.3) is the av-
erage value k, and the following periodic orbit sum is
an explicit expression for the fluctuation of the root k.
This method is not limited to obtaining explicit ana-
lytical periodic orbit expansions for k,. In fact, using

the identity
P
= [ s
kn—1

we can obtain periodic orbit expansions for any func-
tion of the eigenvalues f (kj), for instance for the en-
ergy E = k.

(4.4)

In the simplest case where XY = 0, 4;; = 0 and
Im A, =0, we have
m
kn = S—On -
2 1 & A;
- — — — i . (4.5
s 50 ; 2 ( yw,,) sin(vwpn). (4.5)



We note that k_,, = —k, in this case.

Both the EBK theory and formula (4.3) allow us to
compute energy eigenvalues explicitly. In this sense,
formula (4.3) may be regarded as an analog of the
EBK quantization formula [11, 12] for a chaotic sys-
tem. The complexity of this expansion, structurally
similar to (1.1), reflects the geometrical complexity of
the periodic orbit set for graph systems.

Finally, for explicit calculations (see Sec. 5), it re-
mains to determine the explicit form of the expansion
coefficients A,. For some simple graphs, this was done
in [16, 19]. In the Appendix, we solve the problem for
general dressed graphs. We show that every passage of
an orbit p from a bond B;; to B;j» through a vertex
Vi contributes a factor o;; ;5 (a matrix element of the
matrix 7', see the Appendix) to the weight A, of the
orbit,

4 =1L,

where the product is taken over the sequence of the
bonds traced by the orbit p.

(4.6)

5. EXAMPLES

In (3.8), we provided the definition of regular quan-
tum graphs; in (3.9)—(3.24), we then discussed analyti-
cal properties of their spectra. The discussion of regular
quantum graphs culminated in Sec. 4 with the deriva-
tion of explicit spectral formulas for individual quan-
tum states of regular quantum graphs. However, the
above definition of regular quantum graphs does not
imply that regular quantum graphs actually exist. Ex-
amples 1-3, discussed below, provide specific examples
of quantum graphs that are regular for all choices of
their parameters. Examples 4 and 5 present quantum
graphs that exhibit both regular and irregular regimes.
Finally, examples 6 and 7 provide illustrations of a new
class of quantum graphs, marginal quantum graphs, for
which

Nr

Z |az| =1.

=1

Except for special choices of their dressing potentials,
these graphs can still be accommodated within the
mathematical framework set up in Sec. 3 and 4 and
also admit an explicit representation of their spectra in
accordance with the spectral formulas derived in Sec. 4.

Example 1: Scaling step potential inside of a box.
We consider a particle confined to a box 0 < £ < 1 con-
taining the scaling step potential (see Figs. 1 and 4a)

Uz) = { 0, for

0<ax<b,

5.1
b<zx<1. (5-1)

)\23E, for

This is equivalent to a three-vertex linear chain graph
(Fig. 4a’) with A2 = 0, A;; = 0 and the Dirichlet
boundary conditions at V; and V3. This example is
also discussed in [4, 5, 6, 19, 31]. In this case, spectral
equation (3.6) can be written as [4, 5]

sin [k(S9; + S93)] = rsin [k(S5, — S53)] . (5.2)
where
1— fPas
= <1 5.3
! 1+ fBas (5:3)

is the reflection coefficient at the vertex V5. Regular-
ity condition (3.8) is therefore automatically satisfied
and this graph is always regular. In Sec. 4, we already
discussed the convergence properties of (4.3), includ-
ing the fact that a rigorous mathematical proof for the
convergence of (4.3) exists [10]. Here, we present solid
numerical evidence for the convergence of (4.3) in the
context of scaling step potential (5.1). As discussed
in [4, 5, 6, 19], every periodic orbit in potential (5.1)
can be described by a binary code word. Figure 5 shows
the relative error

|8 = ke

(1 —
€, o ,

n = 1,10, 100,

of the result kY’ predicted by (4.3) compared with the
numerically obtained exact result k, as a function of
the binary code length [ of the orbits used in expan-
sion (4.3). We used b = 0.3 and A = 1/2. Figure 5
also demonstrates that using all periodic orbits up to
the binary code length [ ~ 150, we obtain an accuracy
on the order 10~ 4-10"7 for the roots k, of (5.2). Al-
though the convergence of the series is slow (according
to Fig. 5, it is approximately on the order 1/I? on aver-
age), one can obtain a sufficiently good estimate for the
roots using all orbits of the code length 20 and smaller.

Example 2: Scaling d-function in a box. This
potential, shown in Fig. 4b, is again equivalent to a
three-vertex quantum graph. This time, however, the
potentials on the bonds are identically zero, whereas
the vertex V; is dressed with a scaling J-function of
strength

Ao = Ak > 0.
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Fig.4. Collection of potentials and their associated linear quantum graphs that serve as examples to illustrate the concept of

regular quantum graphs. a — Scaling step potential in a box and its associated three-vertex linear graph (a'). b — Scaling

d-function in a box and its corresponding three-vertex linear graph (b'). Combined scaling §-function and step potential in

a box (c) with its linear three-vertex quantum graph (¢’). Two scaling steps (d) and two scaling d-functions (e€) in a box
together with their associated four-vertex dressed linear quantum graphs (d') and (e’), respectively

We apply the Dirichlet boundary conditions at the open
ends. In this case, spectral equation (3.6) becomes

cos [k(sgl +595) — 0]

= —|r|cos [k(S3; — S35)],  (5:4)
where
Y=1- 1 arcsin 2z (5.5)
" T+ 007

and the reflection coefficient r is given by

_ X
5N

(5.6)

Because |r| < 1, the characteristic function of (5.4) also
satisfies regularity condition (3.8). Therefore, the scal-
ing 4 function in a box is another example of a regular
quantum graph.

Example 3: Combined scaling step and scaling
d-potential in a box (Fig. 4¢). This is equivalent to
a three-vertex dressed linear graph (Fig. 4c¢') with
A2 = A9k > 0. Spectral equation (3.6) then becomes

cos [k(531 + S33) — 0] =

= aj cos [k(S9, — S93) — 7], (5.7)
where
Yo=1-— l arcsin ( Bra + g )
Q V(Biz2 + Bas)2 + (X9)2 ) (5.8)
1 . P12 — Bas3
=1-= ,
st - arcsin (\/(ﬁlz e (/\2)2)
and the coefficient a, is
(B2 = B23)? + (A))?
“= \/(521 + B23)? + (A3)? <! (59)
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100

Fig.5. Comparison between the exact eigenvalues k,
and the k,, values computed via (4.3) for the scaling
step potential shown in Fig. 1. Shown is the relative
error €t = |kg) —kn|/kn, n =1,10, 100, of the result
3 predicted by (4.3) compared to the numerically ob-
tained exact result £, as a function of the binary code
length [ of the orbits used in expansion (4.3). We used
b=0.3and A= 1/2

Therefore, the characteristic function of (5.7) once
again satisfies the regularity condition for any lin-
ear three-vertex graph with nontrivial bond potentials
(B31 + B35 # 0) [6].

Quantum graphs that are regular for all of their pa-
rameter values are quite exceptional. In general, quan-
tum graphs may have a regular regime for a certain
range of the parameter values or the regular regime
may not exist at all. The following example illustrates
this point.

Example 4: Two scaling steps in a box (Fig. 4d).
As an example of a graph that has both a regular
and an irregular regime, we consider a quantum par-
ticle in a box with two scaling steps (Fig. 4d), which
is equivalent to the four-vertex linear graph shown in
Fig. 4d’. Because there are no d-functions present, we
have A2 = A3 = 0. We assume the Dirichlet boundary
conditions at the dead ends of this graph. In this case,
spectral equation (3.6) is given by

sin(Sok) = —ra sin(kSy) —

— rorg sin(kS2) + rasin(kSsz), (5.10)
where
So = 89, +8%+83,, Si = 8%+5%,-59,,
S = 84,488 -8%, S =S4 +h-5%, O
and
e T OB
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0.6
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0.2

0
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—0.6

—-0.8

—1 1
-1 -0.8-0.6-0.4-0.2 0

T2

Fig.6. Four-vertex linear chain graph (a) and the cor-
responding space (r2,r3) of reflection coefficients ().
The shaded region in the (r2,r3) space corresponds to
the regular regime of the quantum graph shown in (a).
This demonstrates that the subset of regular quantum
graphs within the set of all four-vertex linear quantum
graphs is non-empty and has a finite measure

are the reflection coefficients at the corresponding ver-
tices V;. For

r3| + |rars] + [r2] < 1, (5.13)

the four-vertex linear graph (Figs. 4d' and 6a) is
regular. Regularity condition (5.13) is fulfilled in a
diamond-shaped region of the (ry,r3) parameter space
shown as the shaded area in Fig. 6b. The difference
between the regular and the irregular regimes is clearly
reflected in the staircase functions. Figure Ta shows
the staircase function N (k) together with the average
staircase N (k) in the regular regime for the parameter
combination r1 = 0.2 and r3 = 0.3. The piercing-
average condition is clearly satisfied. Figure 7b shows
the staircase function N (k) together with the average
staircase N (k) in the irregular regime for the param-
eter combination 1 = 0.98 and r3 = 0.99. In this
case, the piercing-average condition is clearly violated,
consistently with the irregular nature of this regime.
Example 5: Two scaling § functions in a box
(Fig. 4e). This potential is equivalent to the four-vertex
graph shown in Fig. 4e’ with
Ao = Ak >0, A3=2M\k >0,

and the Dirichlet boundary conditions at the dead ends



Fig.7. The exact spectral staircase N (k) and its av-

erage N (k) for the regular 72 = 0.2, r3 = 0.3 (a) and

the irregular 2 = 0.98, r3 = 0.99 (b) regimes of the

four-vertex linear graph shown in Fig. 64. In the regu-

lar regime (a), the average staircase N (k) pierces every

step of N (k). This is not the case in (b), characteristic
of the irregular regime

Vi and V.
given by

In this case, spectral equation (3.6) is

cos(kSo — my) = ay cos(kS; — my1) +

+ az cos(kSy — my2) + ag cos(kSz — my3), (5.14)
where
o N
LAY VA9
(5.15)

o AN
T VR OO+ (097

Vi

%1

Fig.8. Two-vertex circular graph. In the mathemati-

cally positive sense, (312 is the scaling coefficient of the

bond connecting the vertex Vi with the vertex Va2, Ba1

is the scaling coefficient of the bond connecting V2 with

V1. This labelling is possible only in the absence of a

magnetic field (A;; = 0) where the sense of traversal
of a bond is irrelevant

and

= 1 arcsin ( )\g/\g —4 )
* VETODAE+ (097 )

1 .
v1 = — arcsinag, (5.16)

1 .
Y2 = —arcsinag,

N =y

3=

The sum of the amplitudes in (5.15) ranges between
0 and 3, and therefore, this system has regular and
irregular regimes. The regular regime corresponds to
a finite area in the (A3, \}) parameter space. All lin-
ear chain graphs with a finite number of vertices and
the Dirichlet boundary conditions at the two dead-end
vertices at the beginning and at the end of the graph
have a finite-measure regular regime and an irregular
regime. This fact is proved in [10].

Graphs of a new type are marginal quantum graphs.
A marginal quantum graph is defined by

Nr
Z |CL,| =1.
i=1

For marginal quantum graphs, apart from a small set
of «special» graphs, explicit spectral formulas still ex-
ist. Explicit examples are provided by circular graphs
(see Example 6) and star graphs (see Example 7).
Example 6: Scaling step potential in a box with
periodic boundary conditions. This system is identical

(5.17)



with the two-vertex circular graph shown in Fig. 8. In
the case of a circular graph, a minor notational problem
arises because starting from a vertex Vi, e.g., the ver-
tex V5 can be directly reached via two different bonds.
For the purposes of this example, we solve the problem
as follows. We first introduce a positive sense of rota-
tion, i.e., mathematically positive or counterclockwise,
for the circular graph in Fig. 8. We then introduce
the scaling coefficient (315 referring to the bond that
connects the vertex V; with the vertex V5 traversing
the graph in the mathematically positive sense. We
introduce the scaling coefficient (5 that refers to the
bond that connects V5 with V7, again in the mathemat-
ically positive sense. We use the same notation for the
two reduced actions S, and S9; referring to the two
different bonds (in the mathematically positive sense),
respectively. This notation is not confusing here, since
no magnetic field is switched on (A4;; = 0). With this
notation, the spectral equation is given by

cos(kSp) = a; + az cos(kSs), (5.18)

where

So =S80 + 5%, Si1=250+5%,
4312021
=" ere 5.19
“ (Br2 + B21)? ( )
and
B12 — Ba1 ) ?

=== . 5.20
2 (512 + Ba ( )

We note that a; + a2 = 1. Condition (5.17) is satis-
fied and the circular quantum graph with a scaling step
potential is marginal.

Although the strict inequality in Eq. (3.8) is vio-
lated, it is important to note that even in the marginal
case, the separating points k, are still not solutions
to (5.18) in general. This occurs only for special pa-
rameter combinations, and therefore for special quan-
tum graphs for which the equation

(=1)"*#+L = a4 + ay cos(knSa) (5.21)
is exactly satisfied for some n. Since the sequence ky, is
countable, and Eq. (5.21) in general involves irrational
requency ratios and irrational coefficients, this equation
is only accidentially satisfied for some n for a measure
zero set of graph parameters. Hence, in general, even
for marginal quantum graphs, the points lAcn still serve
as separating points and the roots of the spectral equa-
tion can still be obtained via expansion (4.3).

12

Vi

Va Va

Va3

Fig.9. Scaling star graph with three bonds and four
vertices

Example 7: Star graph. Another example of a
marginal quantum graph is provided by the star graph
shown in Fig. 9. We consider the case with three differ-
ent scaling potentials on its three bonds and the Dirich-
let boundary conditions at the three dead ends. The
spectral equation is given by

cos(Sok) = ay cos(S1k) +

+ ag cos(S2k) + as cos(S3k), (5.22)
where
So = S34+59,+534, S1=574—59,+S554, (5.23)
Sy = S04—S534—S5%;, Sz = S{4+S55,—S54, ‘
and
ay = Bra — Pos + B3y
Bia + Boa + B3a’
s = —P1a + P2a + B34 (5.24)

~ Bra+Poa+ Bz’
_ Bia + Boa — P34
s Bia + Boa + Baa

It is straightforward to verify that

3
> ail =1
i=1

independently of the sign of each a; in (5.24). Con-
dition (5.17) is therefore satisfied and the star graph
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Fig.10. Sketch of a piecewise constant potential

(«Manhattan potential») (a) and its associated linear
graph (b)

shown in Fig. 9 is another example of a marginal quan-
tum graph. As discussed in the context of Example 6,
and with the exception of a set of measure zero of the
star-graph parameter space, spectral expansion (4.3) is
still valid and can be used to obtain each of the star-
graph eigenvalues individually, and independently of all
the other eigenvalues.

6. SUMMARY, DISCUSSION, AND
CONCLUSION

Exact periodic orbit expansions for the global den-
sity of states are known for many chaotic systems [15,
32, 33]. However, Eq. (4.3) is the first example of an
explicit expression for the individual quantum mechan-
ical levels obtained as a function of the level index n
for a classically chaotic system. Additional explicit
quantization formulas may be found for other quan-
tum graph systems, or even for quantum systems un-
related to quantum graphs as long as two essential re-
quirements are fulfilled. First, an exact periodic orbit
expansion for the density of states must exist. Second,
it must be determined that one of the system levels,
k., is the only one in an interval k. < k, < k”. Then
one can always obtain the corresponding periodic orbit
expansion for ki,

L
ky

m:/@@%, (6.1)
fcl
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based on the periodic orbit expansion for p(k).

It is reasonable to expect that generically there exist
separating points &’ and k! that separate every k, from
its neighbors, so that k. is the only root of the spec-
tral equation in the interval [l%,’,g7 k" ]. Hence, expansions
similar to (4.3) generally do exist. However, knowing
the positions of the separators k., and k! around a par-
ticular level k, does not help finding the separators for
all the other levels. The most important task for ob-
taining a general expression for all the levels of a quan-
tum chaotic system is therefore to find a global func-
tion for the separating points similar to (3.10), which
naturally enumerates the separators. Therefore, even
though it might be possible to find the separators for a
particular quantum level k, for some systems and then
to obtain a periodic orbit expansion for this level in
accordance with (6.1), the expansion will work only for
level k., and will not represent a formula that can be
used for obtaining other levels.

The problem of finding a global expression for the
separating points as a function of their ordering in-
dex n is directly related to another well-known problem
of spectral theory of differential operators, namely the
problem of approximating staircase function (2.17) by
a smooth average N (k). Indeed, suppose there exists a
separating point lAc;L, i.e., a solution of the equation

N(E') = N(k), (6.2)

between every two roots of the spectral equation (simi-
lar to (3.20) and (3.21)). Because N (k) is a monotonic
function, the separating points can then be found by
inverting Eq. (6.2),

kn = k(IN),

where the value of the staircase function plays the role
of the separator index ky. Equation (6.3) generalizes
Eq. (3.10), which can be used in (6.1) to obtain the
periodic orbit expansions for all the roots.

The smooth curve defined by (6.3) with N consid-
ered to be a continuous variable intersects every stair
of spectral staircase (2.17). Unfortunately, finding a
smooth function that approximates the spectral stair-
case for a general differential operator with generic
boundary conditions is a rather complicated task. It
was proven by Weyl in 1912 that one can approximate
N (k) by the phase-space volume of the system in ques-
tion,

(6.3)

dPxdPp
(2rh)P”’
where D is the dimensionality of the phase space, how-
ever this average is certainly not guaranteed to satisfy

ZWE%/@@—H@@) (6.4)



the «piercing average» condition (6.2). Since Weyl, this
problem has been addressed by numerous researchers
(see, e.g., [34]), who succeeded in giving many im-
proved estimates for N(k) but none of them a priori
satisfy (6.2).

The important feature of the regular quantum
graph systems is that there exists a global piercing aver-
age (3.10), which uniformly enumerates all the points
separating one root from another, and it is therefore
possible to obtain formula (4.3) as a function of the
index n. In other words, the index n in (4.3) is a quan-
tum number, and expression (4.3) for the energy levels
of a chaotic system in terms of classical periodic orbits
can therefore be considered as a nonintegrable analog
of the EBK quantization scheme [11, 12].

It should be mentioned that despite the existence of
a quantum number n in (4.3), the actual dependence of
the energy levels on the value of its quantum number
is quite different from the simple EBK scheme for
integrable systems. The expansion of the fluctuating
part of roots (3.11) involves an intricate, condition-
ally convergent series and is rather «chaoticy. The
difference in complexity of formulas (4.3) and the
EBK formula apparently reflects the complexity of
the geometry of the periodic orbits of the classically
chaotic quantum graphs.

Y. D. and R. B. gratefully acknowledge finan-
cial support by NSF grants PHY-9900730 and
PHY-9984075; Y. D. and R. V. J by NSF grant
PHY-9900746.

APPENDIX

For completeness, we here present a simple deriva-
tion of the spectral determinant in Eq. (2.8), starting
from the boundary conditions at the vertex V;,

Vi ()| =0 = 0iCij (A1)
and
Nv d
> Cy (z% + Aij) Yij(®ij)le=0 = Nigi-  (A.2)
=1 i
We would like to present the wave function
Yij(z) =
1
- Biik (aij exp(—ifBikz) + bij exp(ifijkz))  (A.3)
i
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that satisfies these boundary conditions as a superpo-
sition of the partial waves

exp(i (—Bik + Aij) x;) n
exp(i (/Buk + 4ij) zj)
Bijk

scattering on the vertices of the graph. We thus have
Z iy’ ¢J 3’ x]

i (Bijk — Aij) x5) +

g azJ’J]z i’

with the appropriate weights a;;» corresponding to the
incoming flux on the bond Bj; towards the vertex V;.
Comparing this expression with (A.3) yields

Nv
bij = D Ojiigr digr-

j'=1

i (@5) = by

(A.4)

T Tjisig

Yij(;)

exp(—

V /Bz]
i exp(i (Bijk + Aijj) 5)
/sz

(A.5)

(A.6)

Substituting (A.5) into boundary conditions (A.1)
and (A.2) at the vertex V;, we obtain the respective
relations

a”

Z Bk (6550 + 0jiij) = ¢iCij (A7)
ij
and
Z Cijasjr ﬂm (650 = Tjiijr) = ihipi. (A.8)
3=
Substituting (A.7) into (A.8), we obtain
Cz] Z Czlazj ,le (Jlj’ _01(31) =
Lj'=
NV a -y
=i 4 ((5]']'/ + O'jz',ij') . (A9)

=1 VBigk

In the case of the linear scaling A\; = kA?, this yields
Ny Ny
Z a;j Cyj Z Cau/ Bi (010 — 013,457) =
j'=1 =1

(8550 + ojiijr) - (A.10)



Comparing the coeflicients in front of a;;, we obtain

Ny Ny ;
Cij > Cubiy/Bu — Ci »_ Cuv/ 5il01(3/ -
=1 =1

8 i\?

_l)‘o\/ﬂ— = \/ﬂ_aﬂ ,i3" (A'll)
iJ [
or after performing the summation over [,
CijCij/Bijr — CisTh ;o —
10
_ o i A (A.12)

i = ———=0ji ij'»
VBii By

where

Ny
Ly = E Ca/ Bioii,ijr -
=1

Multiplying both sides by C;;8;; and summing over
7 yields

0iCijiy/Bijr — vil} jy — N Ciji/Bijr =
=i\T};, (A.13)
where
vi=Y_ Ci;Bij-
J
Hence,
v; — MY )
mcwl \/ ,8”/ = F%,j" (A14)
which can be used in (A.12) to obtain
CijCijr v/ Bijr — Cijm i/ Bije MO 5 =
ij
A9
= —B”U-” ,ig! (A15)

or

24/ Bi; Bijr

0; + B\ ) Cj,-C,-,-r. (A.lﬁ)

Tjisijr = <—5jj' +
We see that in the scaling case, the matrix ele-
ments oj; ;v of the vertex scattering matrix o are k-
independent constants.

The matrix element ¢j;;; has the meaning of the
reflection coefficient from the vertex V; along the bond
B;; and the elements ¢j;:5, j # j' are the transmis-
sion coefficients for transitions between different bonds.
Equation (A.6) can be written as

b = Ta, (A.17)
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where

T = Tz],nm = 5incjicnm0'ji,im- (A]-S)

= ¢i;(x), we

In the symmetric basis ¢;; (Li; — x)
have

exp [(i (=Bijk+4;i) (Lij—)] +
Bijk

I _ @),

¥ji (Lij—2) = aji

exp [i (Bijk + Aji) (Lij —
Bijk

and the coefficients a;; and b;; are therefore related as

+bj; (A.19)

aj; = bijexp[i (Bijk + Asj) Lij]

' (A.20)
bji = aijexp[i (—Bijk + Aij) Lij] .

The coefficients a;; and aj; (b;; and b;;) are considered
to be different, and the bonds of the graph are therefore
«directed.»

Equations (A.20) can be written in the matrix form

a = PD(k)b, (A.21)

where a and b are the 2Ng-dimensional vectors of co-
efficients and D is a diagonal matrix in the 2Ng X 2Np
space of directed bonds,

Dijypq (k) = dipdjq exp [i (Bijk + Aiz) Lij] (A.22)
and
p=|( 9 ln , (A.23)
Ing 0

where 1y, is the Np-dimensional unit matrix. The

pairs of indices (ij), (pq) identifying the bonds of the

graph T play the role of the indices of the matrix D(k).
Equations (A.21) and (A.17) together result in

a = S(k)a, (A.24)

with the matrix S(k) (the total graph scattering ma-
trix) given by

S(k) = D(k)T, (A.25)

where D = PDP and T = PT.
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