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Abstract

This paper presents a method for training PDP
networks that, unlike backpropagation, does not
require excessive amounts of training data or
massive amounts of training time to generate
appropriate generalizations. The method that
we present uses general conceptual knowledge
about cause-and-effect relationships within a sin-
gle training instance to constrain the number of
possible generalizations. We describe how this ap-
proach has been previously implemented in rule-
based systems and we present a method for imple-
menting the rules within the framework of Paral-
lel Distributed Semantic (PDS) Networks, which
use multiple PDP networks structured in the form
of a semantic network. Integrating rules about
causality with backprop in PDS Networks retains
the advantages of PDP, while avoiding the prob-
lems of enormous numbers of training instances
and excessive amounts of training time.

Introduction

Parallel Distributed Processing (PDP) models
[Rumelhart and McClelland, 1986] have demon-
strated many desirable characteristics for learn-
ing and generalization. Specifically, PDP mod-
els: (1) use a simple learning mechanism such as
backpropagation that merely modifies link weight
values for each training pattern, (2) automatically
generalize as a result of the learning process by av-
eraging the training patterns so that the network
can correctly respond to new inputs, (3) use the
generalizations that are created to perform pat-
tern completion from partial or noisy inputs, (4)
naturally account for interference effects since sim-
ilar concepts share similar representations and (5)
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are robust against noise and damage to the net-
work.

Backpropagation performs extremely well and
provides the advantages listed above when the size
of the training set and the number of input fea-
tures is relatively small. However, there are se-
rious problems with applying backprop to store
the large amounts of knowledge needed for higher-
level cognitive tasks, such as natural language.
Since backprop learns by similarity-based gener-
alization, it must be shown enough training in-
stances so that all relevant features are correlated
while all other features are not. As the number of
input features increases with the complexity of the
problem domain, the number of training examples
needed becomes enormous. For example, suppose
that we would like to teach the network about the
concept of strength, given a number of instances
of people successfully and unsuccessfully lifting a
heavy object!, Two such instances are presented
below:

John, a tall man with short brown hair
and a dark complexion successfully lifts
a heavy object in the dining room.

Mary, a small child with long blond hair
and a light complexion is unsuccessful at
lifting the same heavy object in the living
room.

Every feature that is present when John lifts the
object and every feature that is absent when Mary
fails to lift it are possible causes for the different
result. Thus, from the data given above, it is possi-
ble to conclude that age, height, hair length, hair
color, complexion, location or even the person’s
name are responsible for John’s success at lifting

IThis example is based on one provided in [Pazzani,
1988].


mailto:sumida@cs.ucla.edu

the object and Mary’s failure. In order for the
network to correctly learn that strength is corre-
lated with age and not with any of the other fea-
tures, examples of people with all different types of
heights, hair lengths, hair colors and complexions
in all types of environments must be presented to
the network. Assuming that there are 3 values for
height (short, medium and tall), 2 for hair length
(short and long), 4 for hair color (blond, brown,
black, red), 2 for complexion (light and dark), 10
different names, and 10 different locations, 4800
(= 3x2x4x2x10x10) different training instances are
needed for the network to only correlate age with
strength. If we were to scale the system up further
and add more features such as eye color or more
values to the features listed above (e.g. adding
grey to the hair color list), the number of necessary
training instances could easily exceed 100,000. As
the number of training instances grows to such un-
reasonable numbers, the training time becomes so
enormous that it is practically impossible to train
the network.

One possible solution is to train the network
on only a subset of the patterns. The problem
with this approach is that the network will find
illusory correlations and form improper or very
complicated generalizations. For example, if the
network is not shown that a specific conjunction
of features is not relevant, it may conclude that
short brown hair and a dark complexion are cor-
related with strength.

This paper presents a method for training PDP
networks that does not require excessive amounts
of training data to generate appropriate gener-
alizations. The method that we present uses
information about cause-and-effect relationships
within a single training instance to constrain the
number of possible generalizations. The follow-
ing section shows how this method has previously
been implemented in rule-based systems. This is
followed by a discussion that indicates how the
rules are implemented within the PDS Network
[Sumida and Dyer, 1989] framework.

Symbolic Approaches to Learning
and Generalization

Considerable work has been done on symbolic,
rule-based approaches to learning and general-
ization, examples of which include [Mitchell et
al., 1988, Lebowitz, 1990, Pazzani, 1988]. Previ-
ous learning systems vary in the amount of prior
knowledge that they apply during the learning
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process. They range from similarity-based learn-
ing (SBL) systems, which operate in much the
same way (and share the same problems) as back-
prop and which assume no prior knowledge, to
explanation-based generalization (EBL) systems
which assume enough prior knowledge so that the
system can construct an entire explanation for
why an event occured. Our focus here is on the
intermediate position between the two extremes,
where the only prior knowledge that we assume
are rules about causality. [Pazzani, 1988] refers to
this form of generalization as theory-driven learn-
ing (TDL) and discusses TDL (along with SBL
and EBL) in the program OCCAM. In OCCAM,
three types of causal generalization rules are used:
(1) ezceptionless, which apply when similar ac-
tions yield the same result, (2) dispositional, which
apply when similar actions yield differing results
and focus on the differing features of the actor or
object of the action to explain the differing result,
and (3) historical, which (like the dispositional
rules) apply when similar actions yield differing
results, but assume that the events that precede
the action explain the differing result. In this pa-
per, our focus will be devoted to discussing how
dispositional generalization rules are employed.

The first step in employing a dispositional gen-
eralization rule is to create a generalized event
that represents all the shared features of the set
of events with the same result. The generalized
event is then matched with the dispositional gen-
eralization rule to determine what role of the cause
is responsible for the differing effect. If the same
feature of that role occurs in two events that have
different results, then it could not be responsible
for the differing result so it is no longer consid-
ered. Of the remaining features, the one that has
been most successful at accounting for different re-
sults in previous similar situations (i.e., previous
situations involving the same act and role) is se-
lected. If there is no reason to prefer one feature
over another, then one is selected randomly. The
feature that is hypothesized to be responsible is
then added to the generalized event. As new in-
puts are presented, the hypothesis will either be
confirmed, in which case a confidence measure as-
sociated with the hypothesis will be increased, or
it will be refuted, in which case a new feature will
need to hypothesized as responsible for the differ-
ent result.

As an example of the procedure described
above, consider the example from the first sec-
tion. When the events of John successfully lift-
ing the heavy object and Mary failing to lift it are



presented, the system applies the following dispo-
sitional generalization rule: If similar actions per-
formed on an object have different results, and they
are performed by different actors, the differing fea-
tures of the actor are responsible for the different
results. The rule indicates that one of the features
of the actor is responsible for the difference in their
ability to lift the weight. At this point, there is
no reason to prefer one attribute over another so
a feature is selected at random, for example, hair
color (in this case brown). An example of a blond-
haired person lifting the weight is then presented,
and the system notices that the prediction that
brown hair is responsible has been contradicted.
The confidence measure associated with the hair
color hypothesis is very low, so the system rejects
the hypothesis and selects another feature at ran-
dom as being responsible for the difference. As
other features are selected and refuted, the sys-
tem will quickly select age as being responsible.
As further events are encountered that substanti-
ate this hypothesis, its confidence measure grows
and the strength dispoesition is created. The dis-
position is associated with the action (PROPEL)
and the role (ACTOR). Thus, when a similar set
of events is encountered in the future, such John
being able to remove a tightly attached lid from
a jar and Mary not being able to, the system will
prefer the strength dispositional attribute to fea-
tures such as hair color and eye color.

Integrating Backpropagation with
Causal Learning Rules

In order to implement the above rules with PDP,
we first need to represent the information provided
in the training instances. In previous papers,
[Sumida and Dyer, 1989, Sumida and Dyer, 1991,
Sumida, 1991] we showed how Parallel Distibuted
Semantic (PDS) Networks store high-level knowl-
edge. The following section describes how PDS
Networks store information using only backprop.
This is followed by a description of how causal
learning rules are integrated with backprop to
avoid the problems with traditional PDP ap-
proaches.

PDS Networks

The PDS Network approach is to store all knowl-
edge over multiple PDP networks using backprop,
with each network representing a class of concepts
and with related networks connected in the gen-
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eral manner of a semantic net. For example, the
network shown in Figure 1 encodes acts that in-
volve an application of force (PROPEL) and has
roles for the actor, object and result. The net-
work is connected to other PDP networks, such as
HUMAN, PHYS-OBJ and OUTCOME, that store
information about humans, physical objects, and
outcomes of events. Each network functions as a
type of encoder net, where: (1) the input and out-
put layers have the same number of units and are
presented with exactly the same pattern, (2) the
weights of the network are modified so that the
input pattern will recreate itself as output, and
(3) the resulting hidden unit pattern represents a
reduced description of the input. In the networks
that we use, a single set of units is used for both
the input and output layers. The net can thus be
viewed as an encoder with the output layer folded
back onto the input layer and with two sets of con-
nections: one from the single input/output layer
to the hidden layer, and one from the hidden layer
back to the i/o layer. In Figure 1 for example, the
actor, object, and result role-groups collectively
constitute the input/output layer, and the PRO-
PEL ensemble constitutes the hidden layer.

PROPEL

Figure 1: The network that stores information
about acts involving an application of force, in
this case John-lift-heavy-object. The black arrows
represent links from the input layer to the hidden
layer and the grey arrows indicate links from the
hidden layer to the output layer. The thick lines
represent links between networks that propagate
a pattern without changing it.

Knowledge is stored in a network by teaching it
to encode the items in its training set. For each
item, the patterns that represent the features of
the item are presented to the input role groups,
and the weights are modified using backpropaga-
tion so that the patterns recreate themselves as



output. For example, in Figure 1, the pattern
for John successfully lifting the heavy object is
presented to the PROPEL network by propagat-
ing the John pattern? from the HUMAN network
to the actor role, the pattern for the heavy ob-
ject from the PHYS-OBJ network to the object
role, and the success pattern from the OUTCOME
network to the result role. The PROPEL net-
work is then trained on this pattern by modifying
the weights between the input/output role groups
and the PROPEL hidden units so that the John-
lift-heavy-object pattern recreates itself as output.
The network automatically generalizes since the
hidden units: (1) become sensitive to common fea-
tures of the training patterns and (2) classify a new
concept that was not seen during training based
on its similarity to familiar concepts.

Implementing Causal Learning Rules in
PDS Networks

In order to implement causal learning rules within
the PDS Network framework, we need to: (1)
accomplish the same result as backprop, that
is, modifying link weights so that a hidden unit
becomes responsible for recognizing significant
correlations in the input as in [Hinton, 1986],
but (2) use a a theory-driven learning algorithm
rather than one based upon SBL. We therefore
need to implement the equivalent of the struc-
ture/hypothesis building and rule matching oper-
ations by using weight modifications within the
network. The idea is to modify the weights so
that a particular hidden unit represents the cur-
rent hypothesis and correlates the pattern for the
significant feature (i.e., the feature that is hypoth-
esized to be responsible for the different result)
with the pattern for the result. For example, the
hypothesis that age is responsible for John’s abil-
ity to lift the object and for Mary’s inability to do
so is represented by a hidden unit that is assigned
to correlate the pattern for age with the pattern
for success (Figure 2).

The following steps are used to apply a dis-
positional generalization rule and to generate an
appropriate hypothesis in PDS Networks. Recall
that the first step in symbolic systems is to create
a generalized event that contains the shared fea-
tures of those events with the same result. The

2The John pattern represents a reduced description of
John's features, such as age, height, hair-color, etc. The
procedure for obtaining the John pattern is the same as
that described here for the John-lift-heavy-object pattern.
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Figure 2: The connections between the hidden
unit (that represents the hypothesis that the age
feature is responsible for the difference in ability
to lift a heavy object) and the actor and result role
groups. The dark arrows indicate the connection
to the hidden unit and the grey arrows indicate
the connection from the hidden unit. The num-
bers to the left of each arrow indicate the weight
(sc = small constant). All connections other than
the ones to the age and result units have a weight
value of 0.

equivalent step is accomplished in PDS Networks
by clamping the pattern for success or failure (de-
pending on the result of the new event) over the
result units and letting the network settle into a
stable configuration. Since the network’s knowl-
edge of previous events is stored using backprop,
the resultant pattern represents the shared fea-
tures of events with the same result. The next
step in symbolic systems is to match the gener-
alized event with the dispositional generalization
rule to determine what role is responsible for the
different result. This step is accomplished using a
mechanism similar to a Propagation Filter [Sum-
ida and Dyer, 1991, Sumida, 1991].

Propagation Filters use the pattern over a selec-
tor group of units to determine which of a number
of filter groups to enable. Each filter group: (1)
gates the connection from a group of source units
to a group of destination units, (2) is sensitive to
a particular pattern over the selector, and (3) al-
lows the pattern over the source to be propagated
to the destination when the particular pattern oc-
curs over the selector. We apply a mechanism sim-
ilar to Propagation Filters since the pattern for
the generalized event acts as a selector. However,
rather than have the selector open up a particu-
lar group of units, it merely indicates which role
group is potentially responsible for the different



result. For example, in the PROPEL network, a
Propagation Filter with the PROPEL units as its
selector indicates that the actor role may be re-
sponsible for the different outcome.

The third step in TDL is to build a hypoth-
esis that selects a specific feature from the role
group that is responsible for the different result.
The equivalent PDS Network operation is to al-
locate a hidden unit to correlate the feature with
the result. The hidden unit is allocated by the
following procedure: First, the system finds a free
hidden unit. Concepts are stored in PDS networks
by training an individual network so that patterns
recreate themselves as output. The network only
uses as many hidden units as is necessary for learn-
ing the training data (i.e., if there are additional
hidden units, then backprop leaves them unused).
A free hidden unit is chosen from among the un-
used units. Note the resemblance between the al-
gorithm we are using and a destructive learning al-
gorithm. In a destructive learning algorithm, the
system starts with a large number of hidden units
and progressively deletes the ones that aren’t used.
Instead of deleting the unused hidden units, we are
using them to represent a hypothesis for which fea-
ture is responsible for the different result.

If the connection to the selected hidden unit is
from a unit that represents an irrelevant feature,
its weight is set to 0. Thus, the hidden unit will
be unaffected by the values of the irrelevant fea-
tures. If a unit represents a relevant feature, then
we would like to have that unit send the hidden
unit a value of 13. Thus, we set the weight from
the feature to the hidden unit to be 1/(component
of the pattern that represents the feature). If the
component of the pattern includes a 0, then the
weight is set to 1/(a very small constant) since
1/0 is undefined. For example, if age is a relevant
feature for success in lifting the heavy object and
adult is represented by the pattern “1 07, then
the weight from the first unit of age to the hid-
den unit is set to 1/1 or 1, and the weight from
the second unit of age is set to 1/(a very small
constant) (see the weights on the links in Figure 2
for an example). The thresold for the hidden unit
is set equal to the number of units that represent
relevant features. For example, since the pattern
for adult is represented over 2 units, the threshold
is set to 2. The hidden unit only responds when
its activation value is near threshold, not when it
is too far above or below. This assures that the

3For the sake of simplicity, we choose the value 1. In
reality we can choose a different constant and merely adjust
the threshold appropriately.
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unit will only be active when the proper pattern
for the relevant feature occurs. Thus, when the
“1 0” pattern is encountered over the age units,
the hidden unit will be turned on. We now need
to have the hidden unit correlate the relevant fea-
tures with the result. Thus, when the hidden unit
is active, we need it to cause the pattern for the
correct result to occur. We set the weight from
the hidden unit to each result unit to be the value
that is expected for that unit. For example, if we
expect the result to be success, and success is rep-
resented by the pattern “0 1”7, then the weight to
the first success unit is 0 and the weight to the
second result unit is 1 (again see Figure 2).

To illustrate the above procedure, consider
again the example from the first section. When
we show the system the patterns for John suc-
cessfully lifting the object and Mary failing to lift
it, the system notices that the dispositional gen-
eralization rule from the second section (in our
discussion of symbolic approaches) is appropriate
since the pattern for the object role is the same in
both events, while the patterns for the actor and
the result are different. The mechanism similar to
a Propagation Filter suggests that the actor role
is responsible for the different result. Since there
is no reason to prefer one feature over another,
hair color is selected at random. The system now
selects one of the free hidden units to represent
the hypothesis that hair color is responsible for
the different result. Since all other features be-
sides hair color are hypothesized to be irrelevant,
the weights from the units representing all features
besides hair color are set to 0 (Figure 3). The pat-
tern for brown hair is “1 1 0”, so the weight from
the first hair color unit to the hidden unit is set to
1/1, the weight from the second hair color unit is
set to 1/1, and the weight from the third unit is
set to 1/(a very small constant). The threshold for
the hidden unit is set to 3, since there are three
units for the relevant feature of hair color. The
pattern for success is “0 1”, so to correlate brown
hair with success at lifting the weight, the weight
from the hidden unit to the first result unit is set
to 0, and the weight to the second hidden unit is
set to 1.

An example of a blond-haired person lifting the
weight is then presented, which contradicts our hy-
pothesis so another feature is hypothesized to be
responsible for the different result and the weights
to the hidden unit are changed so that the new
feature is correlated with success. As with the
symbolic approach, after a small number of exam-
ples, the system refutes the hypotheses involving
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Figure 3: The connections between the hidden
unit (that represents the hypothesis that hair color
is responsible for the difference in the ability to lift
the heavy object) and the age and result units.

irrelevant features and realizes that age is the im-
portant feature. The network configuration shown
in Figure 2 is therefore the hypothesis that the sys-
tem builds.

Related Work

Recent work has been done in combining
explanation-based learning with neural network
approaches, for instance [Shavlik and Towell, 1989,
Katz, 1989]. Some of this recent work is similar
to the work presented in this paper. For exam-
ple, some of the rules discussed in [Shavlik and
Towell, 1989] bear a resemblance to the rules that
we have presented here. However, these systems
have not yet provided a neural network framework
for representing the type of high-level knowledge
that is needed for generating complex explanation
chains. We believe that PDS Networks will pro-
vide the framework that is necessary for represent-
ing complicated knowledge structures. Thus, we
have chosen to integrate rules about causality with
backpropagation in the PDS Network framework.

Conclusions

In this paper, we have presented a method for
training PDP networks that integrates knowledge
about cause-and-effect relationships with back-
propagation. This approach has a number of im-
portant advantages over PDP systems that only
use backpropagation: (1) It does not require enor-
mous amounts of training data since rules about
causality within a single training instance are used
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to constrain the number of possible generaliza-
tions. In contrast, similarity-based generalization
methods such as backpropagation need to com-
pare enormous numbers of instances to determine
which features are relevant in forming a gener-
alization. (2) Training time is dramatically de-
creased because far fewer training instances are
examined. (3) The integration of causal learning
rules with backprop is implemented in the frame-
work of PDS Networks, so the high-level knowl-
edge necessary for natural language processing can
be represented, the advantages of PDP are re-
tained, and the problems encountered in training
PDP networks are avoided.
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