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Abstract 

1 

We discuss' a dynamic load balancing strategy intended for various 

mathematical physics calculations that partitions the work fairly across a multi-

plicity of processors. Anderson's Method of Local Corrections serves as a model 

problem; it is a type of vortex method for computational fluid dynamics. 

Because computational effort follows particles which congregate and disperse 

irregularly about the domain, this problem is hard to partition in a way that dis-

tributes the wor~ evenly among the processors. The load balancing strategy was 

tested on 32 processors of an Intel Personal Scientific Computer, a message-

passing hypercube multiprocessor. The load balancer may be implemented as a 

small subroutine library that requires no special hardware support. The library 

should apply to diverse problems, including finite difference methods, and to 

diverse machines, for instance shared memory architectures, without entailing 

massive reprogramming. 
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1. Introduction 

Ideally a multi processer system would satisfy two conditions: (1) programs 

that run well on it should not look very different from those that run on a unipro­

cessor; (2) its performance would be linearly proportional to the number of proces­

sors in use without a substantial additional amount of hardware dedicated to over­

head functions. However, uniprocessor programs that are adapted simply for mul­

tiprocessors can spend the majority of their time sitting idle rather than doing 

productive work. The major difficulty often lies in splitting up the computational 

work evenly across the processors, as work tends to concentrate among a few pro­

cessors, leaving the others relatively unloaded. Attempts at coping with this load 

balancing problem have led to novel computer architectures and programming 

lan~uages, such as dataflow [2,7], that distribute work automatically among the 

processors. However, the automatic work distribution schemes are disappointingly 

inefficient despite extensive hardware support. There are two problems with these 

schemes: (1) they partition work into parallel tasks with a fine granularity; (2) 

they fail to exploit a key locality property inherent in many mathematical physics 

problems. Task granularity is an important issue in load balancing. Parallel 

tasks must be small enough that they can be divided evenly among the processors 

but not so small as to be overwhelmed by the cost of managing them. In data flow 

implementations, for instance; the tasks tend to be too small. The locality property 

also has important ramifications. It states that physical effects at two arbitrary 

points in space and time interact more strongly (and hence convey more informa­

tion to one another per unit of computation) at short distances than at long ones. 

This means that there should be a strong incentive to place nearby points on the 
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same processor. In dataflow implementations, however, no such attempt is made. 

This is especially problematic in dataflow since small tasks do a lot of communica-

tion relative to computation. 

We propose a dynamic load balancing strategy that, unlike the automatic 

schemes, exploits the locality property and that doesn't suffer from the granularity 

problem w'hen the processors number in the tens. Nearby points are likely to be 

assigned to the same processor, so frequent communication between them will be 

inexpensive. Distant points will likely be assigned to different processors between 

which communication is expensive. But communication between such points turns 

out to be rare for the kinds of problems for which the strategy makes sense. The 

strategy parcels work into "chunks" that are somewhat larger and much easier to 

manage than the small pieces of work used in the dataflow schemes. 

Our scheme assumes a particular programming discipline: 

(1) Each processor computes on its assigned part of the 
problem at its own rate and out of its own private 
memory. 

(2) Each processor's local memory is augmented by some­
thing that looks like memory shared with neighbor­
ing processors thereby providing a limited access to 
information that would otherwise reside outside its 
address space. 

(3) The programmer explicitly invokes software utilities 
to handle load balancing and to provide for the lim­
ited memory sharing. 

We have found that a small subroutine library is sufficient for enforcing this dis-

cipline. The library requires no special purpose hardware support to operate 

efficiently and may be installed on existing systems. Though the library applies to 

the localized part of a computation only, the scheme may still be effective more 
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generally, so .long as the amount of non-localized work to be done is not too great. 

The library hides considerable detail from the programmer - in particular how 

processors communicate. The programmer must supply a small amount of code 

that the utilities call, but the code depends solely on the application and in no way 

on the architecture. Code written in a higher level language that calls on our util­

ities should run without major alteration reasonably well on other machines pro­

vided the utilities have been implemented there. 

The library tends to diminish the importance of what distinguishes one 

architecture's communication mechanism from another's. Message passing archi­

tectures conveniently come to resemble shared memory architectures, and hence 

become easier to program. On architectures that provide it, shared memory gets 

used in a restricted way that can reduce memory contention and that also exploits 

local memory, if provided. 

We have implemented our load balancing utilities on the Intel Personal 

Scientific Computer (iPSC), a hypercube-type multiprocessor. To test the strategy 

we applied it to an implementation of Anderson's Method of Local Corrections [1], 

a two dimensional vortex method for incompressible inviscid flow. This particle 

method typifies various problems that are compute bound, and that appear well­

suited to parallel computation, but which are hard to partition. The difficulty 

arises because these calculations expend effort that varies non-uniformly over the 

.spatial domain of the problem and unpredictabl~ with time. 

We obtained speedups of 22 on 32 processor". The overhead of the load 

balancing utilities was less than 10%. We expect that the utilities will apply to a 

diversity of other mathematical physics calculations besides the Method of Local 
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Corrections - not only to particle methods arising in fluid dynamics, astrophysics, 

and plasma physics, but also to finite difference methods. 

Section 2 briefly summarizes the important details of the model problem, 

gives a simple multiprocessor implementation strategy, and introduces the load 

balancing problem. Sections 3 and 4 present the two major load balancing utili-

ties. Section 5 discusses iPSC implementations of both the model calculation and 

the utilities, section 6 evaluates computational results. Section 7 concludes the 

paper. 

2. A Model Calculation and its Parallel Computation 

The model calculation solves a time dependent, non-linear partial differential 

equation that arises in fluid mechanics- the vorticity-stream function formulation 

of Euler's equation for two dimensional, incompressible inviscid flow: 

dw 
-+u·Vw=O 
dt 

w = -il~ in 0, 

(2.1a) 

(2.1b) 

where u(x(t),t) is the velocity of the fluid at position x(t) at time t, w is vorticity, 

2 2 
defined as the curl of u, ~ is the stream function, il = d~2 + a;:X is the two 

dimensional Laplacian operator, and 0 is a square box. The flow satisfies the no 

flow boundary conditions, i.e., the fluid may not penetrate the solid walls of the 

box, which will be satisfied if: 

~- = 0 on dO. (2, Ie) 

For a thorough discussion of these equations, see Chorin and Marsden's introdue-

tory text on fluid mechanics [6]. 
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2.1. The Calculation 

A vortex blob method [5] will be used to solve the equations (2.1). It describes 

the flow of the fluid by computing the motion, over a series of timesteps, of a set of 

particle-like computation elements called "vortices." The particular method we will 

use is Anderson's Method of Local Corrections [1], henceforth called "the MLC." 

The MLC divides vortex interactions into two components: (1) N -body interactions 

computed accurately for vortices close enough to one another; (2) long range 

interactions approximated by solving a discrete Poisson equation on a finite 

difference grid. When vortices number in the thousands or more, the calculation 

spends almost all of its time computing local N -body interactions between nearby 

vortices. Vortices that are not close to one another interact indirectly through the 

relatively inexpensive global finite difference computation. We will focus pri­

marily on the local interactions. 

The local interactions in the MLC are computed in much the same way as 

direct interactions involving charged particles. The MLC requires that a "correc­

tion radius" C be chosen by the method's user to distinguish nearby vortices, closer 

than C, from distant ones. These nearby vortices, once identified at any time, are 

the ones that participate in the local part of the computation. To speed up the 

search for nearby vortices, space is customarily subdivided into a few thousand 

fairly small bins, and then the vortices are sorted into the bins, as shown in Fig. 

2.1. This technique is discussed in the text on particle-based calculations by 

Hockney and Eastwood [10]. The local interactions are handled a bin at a time. 

Convenience dictates setting the correction radius C to a small multiple of the bin 

width, say 1 or 2. Let C now stand for that multiple. Then, all the vortices 
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influencing bin (iJ) are found in the bins whose indices differ from i and j by 

integers no bigger than C. These bins form shaded regions in Fig. 2.1 where 

C = 1. In practice the bins used in the MLC are much smaller than shown in 

Fig. 2.1 and the vortices interact directly over short distances only (Although this 

square neighborhood is slightly larger than a circular neighborhood of radius C 

that would be good enough, the extra vortices included there can't hurt the accu­

racy of the calculation nor slow it down much). 

2.2. Dynamic Load Balancing 

A simple way to divide up the work in the MLC is to split the bins into a reg­

ular pattern of box-like subproblems, as shown in Fig. 2.3a, and to assign each 

subproblem to a unique processor. This strategy, however, would underutilize the 

processors; only 4 of 16 would be given much work to do. The trouble is that the 

vortices distribute themselves unevenly - the completion time for a subproblem 

may not be proporti«~mal to its area. Fig. 2.3b shows a better way to split up the 

problem that compensates for the uneven distribution of vortices over the domain. 

This strategy generates somewhat irregularly sized subproblems that all complete 

in roughly the same time, and it diminishes the running time of the computation 

by a factor of three. 

But the partitioning cannot be left fixed for all time; the vortices move and 

must be reapportioned as shown in Fig. 2.4. If the work were not redistributed, 

then some processors would become overloaded while others would only stand and 

wait. Thus, redistribution advances the latest completion time by shifting work 

from the more heavily loaded processor(s) to the more lightly loaded onels), i.e. it 

balances the workloads; This happens at run time, hence the term "dynamic load 
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balanci ng." 

2.3. A Local Memory Computational Model and Programming Discipline 

Programs that employ the load balancing utilities must use a simple model of 

parallel execution in which each processor executes its own program out of a 

private address space and at its own pace. A call to a partitioner utility splits the 

computational domain into regions, as shown in Fig 2.2. Subsequent calls keep 

loads balanced by adjusting the shape and location of the regions according to how 

the vortices have moved since last they were partitioned. As a result of such work 

redistribution, a vortex could find itself owned by a different processor than before. 

Therefore, redistribution. incurs a side effect of having to shuffle particles between 

private memories. , Each processor must decide which particles to shuffle out, 

where to send them, and what to do with incoming ones. A mapper utility handles 

all the details of how this is accomplished. All the architecture-dependent details 

are hidden from the programmer. When mapper finishes, each processor knows 

about all the vortices that migrated into its assigned region of space. 

What mapper does is to provide local paths of communication between the 

subproblems. Because vortices move very slowly, their redistribution in the MLC 

is a gradual process. Slender regions of the comp,utational domain, containing 

small numbers of vortices, shift between processors. Though mapper does not pro­

vide support for global communication, we have found that a set of utilities dis­

cussed by Moler [13] provide nearly all the functionality needed to cope with the 

global computations III the MLC. These routines apply primarily to finite 

difference computations: one accumulates arrays stored on different processors into 

one array stored on one processor, and another broadcaM;:. an array stored on one 
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processor onto a designated set of processors. These have been used 'for the global 

finite difference part of the computation about which we shall have little more to 

say. 

In summary, our strategy for dynamic load balancing entails adopting a local 

memory model of parallel execution, and periodically invoking two utilities called 

partitioner and mapper. The next two sections discuss each utility in turn. 

3. Partitioning 

The partitioner utility splits a problem into a given number of subproblems 

that all complete at roughly the same time. For the MLC, subproblems correspond 

to subarrays of the bins; for a finite difference calculation, a subproblem would 

correspond to a sub array of a finite difference mesh. The particulars of these data 

structures are not important so long as the computational domains they represent 

subdivide naturally into rectangles. 

The internal boundaries that separate the subproblems are distinct from the 

physical boundary, ao, of the problem. These internal boundaries partition space 

into rectangular blocks of bins. Internal boundaries may not sever bins but must 

lie between them as shown in Fig. 2.2. A less restricted scheme that allowed inter­

nal boundaries to pass through the bins would impose additional coding overhead, 

and appears to confer no advantage. 

The bins, then, represents a small scale subdivision of space that is used by 

the numerical method. A larger scale partitioning is imposed on top of this for 

the purposes of splitting up the problem among multiple processors. This parti­

tioning strategy imposes some overhead costs, i.e. interprocessor communication, 
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but it does not change any of the arithmetic operations that would be done on a 

uniprocessor, other than to reorder them. This means that results from successive 

runs using the same initial conditions will agree to within roundoff, no matter how 

many processors are used. 

3.1. Recursive Bisection 

The recursive bisection algorithm is a simple but effective way to partition cal-

culations such as the MLC. It has been used by Dippe and Swensen [8] and Dippe 

and Wold [9] for realistic rendition of computer graphics images and by Berger and 

Bokhari [3] for 'partitioning hyperbolic differential equations across multiproces-

sors. In two dimensions, the strategy is to cut an area of interest into two rectan-

gles that represent equal amounts of work, or as nearly equal as possible, and then 

to apply the procedure recursively to each part; see Fig. 3.1. This simple procedure 

generalizes trivially to higher dimensional problems. 

The algorithm takes two inputs: P and workGrid. P is the number of proces-

sors and workGrid is a mapping used to estimate the completion time for subprob-
~ 

lems. The algorithm returns two outputs: the number of subproblems actually ren-

dered - it may not always be able to generate the requested number - and a 

table describing the subproblems, Each entry in the table has attributes "origin" 

and "shape. " 

The workGrid is a rectangular array of integers supplied by the user; each 

integer is proportional to the amount of work required to compute on a small 

subregion of the computational domain represented by a single bin. To bisect a 

region of space the algorithm advances along the columns (or the rows) of the 

workGrid until the two sums of all the entries in the left and right hand parts (or 
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upper and lower parts if advancing along the rows) match as closely as possible. 

To cut P subproblems the algorithm gets called [Iog2(P)] times. Though we res-

trict P to be an integer power of two, a simple change to the algorithm allows it to 

cope with other values of P. If box-like subproblems are desired, the algorithm 

alternates the direction of the cuts from one invocation to the next. If strip-like 

subproblems are desired, then cuts lie in one direction only. 

3.2. Work Estimation 

Work estimation entails producing an array giving the estimated completion 

times for each bin. The workGrid is set-additive, meaning that the work in any 

rectangular region is the sum of the work in two constituent rectangular subre-

gions. It follows, then that a subproblem comprising a collection of bins finishes in 

time that is proportional to the sum of its corresponding workGrid entries. Strictly 
, .,' 

speaking, our partitionings of the MLC are not set-additive since they introduce 

extra work in the neighborhoods of the internal boundaries that· divide the sub-

problems. However, the extra work can be ignored since it is negligible compared 

with what what gets done regardless of how the calculation has been partitioned. 

A reasonable work estimate mapping for the MLC ignores the long-range 

interactions computed in the global part of the calculation. When the vortices are 

numerous the MLC spends most of its time computing local interactions. The com-

pletion time for a bin then is the number of locai interactions computed involving 

its vortices. This value is easy to compute and is the product of two quantities: the 

number of vortices in the bin, and the number of vortices in that bin and neighbor-

ing bins found within the correction distance. This can be expressed as: 
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Ikl,lll ~ C 

ii+k,j+l)EO 

12 

(3.1) 

where "pop(i, j)" is the number of vortices in bin (i, j) and i and) range over all 

the bins in the computational domain O. The result is an integer array. 

3.3. Discussion 

The recursive bisection algorithm is a useful abstraction for determining a 

fair partitioning of work across a multiplicity of processors. Since the algorithm 

carries around no knowledge about either the application or machine architecture, 

it is ideally suited to the task at hand. Obviously, the effectiveness of the proposed 

partitioning strategy depends on the user's ability to construct an inexpensive and 

accurate work-estimate mapping, a process that entails writing some application-

dependent code. However, the work estimation procedure for the MLC was neither 

long-winded nor difficult to write; it parallelizes, runs in negligible time, and is 

reasonably accurate. 

4. Mapping 

The mapper utility implements the limited form of memory sharing assumed 

by our dynamic load balancing strategy. It hides the semantics of the communica-

tion model supported by the target computer architecture; a message-passing archi-

tecture, for instance, would appear no different from a shared-memory architec-

ture, during the local part of the computation. But mapper's action is neither 

completely transparent nor automatic: the programmer must invoke it explicitly; 

he must use it correctly; and, he must provide it with a small amount of 

application-dependent code. However, we believe that these requirements will be 

as acceptable in other applications of our strategy as they were for the MLC. We 



13 

present a mapper for two dimensional calculations, though the strategy readily 

generalizes to pro.~lems of any dimension. 

Mapper allows the interdependent subproblems that partitioner assigns to 

private address spaces to interact as if executed in a single address space. Vortices 

in the MLC, for instance, that interact across internal boundaries must somehow 

become visible to processors that don't own them, as shown in Fig. 4.1a. Therefore, 

each processor must obtain information about vortices just on the other side of the 

internal boundaries of its subproblem .. 

Mapping must be done synchronously in order to guarantee correct results. 

No processor may begin with the next step of the computation until it has received 

all data to be mapped to it nor until it has finished supplying similar such infor­

mation needed by others. If mapping were handled asynchronously, then a vortex, 

for instance, could simultaneously appear to different processors to be at different 

positions and results would be unpredictable .. Explicit calls to mapper specify syn­

chronization points at which times data' get set up in a consistent state across all 

processors before the computation may continue. 

In order to see how mapper works, consider a computation involving four pro­

cessors. Assume that partitioner had previously split the computational domain n 

into 4 sub-problems 0 0, 01> 02> 0:1, and that each 0i had been assigned a unique 

processor Pi' as shown in Fig. 4.1. Each processor owns its assigned subproblem 

and knows only about the computational elements assigned to it hy partitioner, as 

shown in Fig. 4.2a. But interdependent subproblems interact through logically 

overlapping regions of space that straddle the internal boundaries as shown in 

Fig. 4.1. Each processor must somehow find out about computational elements 
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lying just outside its subproblem, as shown in Fig. 4.2b. For the MLC, the compu­

tational elements are vortices; they lie in the subproblem's dependence region, a 

surrounding region of space that logically overlaps other subproblems, as shown in 

Fig. 4.3. Conversely the interacting processors view this region of space as part of 

their influence regions, as shown in Fig. 4.3. The influence and dependence regions 

are shells whose thickness is given by an interaction radius, which for the MLC 

equals C, the maximum distance over which vortices may interact directly. What 

mapper does is to physically connect the logically overlapping influence and depen­

dence regions. In the MLC, for instance, each processor will, through its depen­

dence region, know about all the vortices that that had at one time lay only in the 

influence regions of other processors. The communications paths provided by 

mapper appear to implement a memory sharing mechanism. This mechanism, 

however, is primitive and provides only a subset of the functionality of a classic 

shared memory: it shares information only to the extent specified by the interaction 

radius and it buffers memory writes until the next time mapper gets called. Since 

writes do not propagate instantaneously calls to mapper must be made at the 

correct time or results would be non-deterministic. 

Having now discussed the externally visible behavior of mapper we now move 

to the internal behavior of the utility· For the purpose of discussion, mapper will 

be specified in architecture-independent terms, assuming a message based model of . 

communication. Let us characterize that model. perhaps simplistically, by two 

primitive operations send and receive (see, for example, the iPSe Users Guide [11] 

for the details of how message passing works in practice). Invoking send( bufler,id) 

sends the message in buffer to the processor designated by id. Invoking 
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receive(buffer,id) allows an incoming message into buffer and sets id to identifythe 

processor, if any, that sent the message. Message buffers are strings of bytes. 

Mapping divides into two activities called an influence action and a depen­

dence action, respectively. For the MLC, the influence action collects vortices from 

the bins in the influence region and copies them into any processor needing them. 

The dependence action copies incoming information into the bins of the dependence 

region. Both influence and dependence regions divide into patches. Owing to the 

reciprocal nature of interactions, patches that make up the regions come in 

matched pairs: "dependence patches" from the dependence region, and "influence 

patches" from the influence region, as shown in Fig 4.4. Each patch contains com­

putational elements that interact with just one subproblem. Every processor has 

an interactions list describing its matched sets of patches, see Fig. 4.5. Each ele­

ment of the list specifies an interaction with one subproblem and provides three 

pieces of information: an identification of the interacting subproblem; two pointers; 

and specifiers that tell mapper how to access the access the information referenced 

by the pointers. The pointers refer to two dimensional data structures reserved for 

storing information in the dependence and influence patches. The specifiers pro­

vide index bounds and a memory stride that tell how to access the data structures. 

For now nothing is said about how interactions lists come to exist. 

Mapper uses the interactions list to guide its actions; the influence action uses 

the influence patch information and the dependence action, the dependence patch 

information. Each action calls a different subroutine that the user passes to 

mapper via mapper's parameter list. Two subroutines, called pack and unpack are 

supplied; they convert between the message buffer representation and the 
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representation of the application's data structures. The influence and dependence 

actions execute concurrently and separate parallel processes execute for each 

interactions list element. Influence first calls pack to collect computational ele­

ments in each influence patch and to copy them into a memory buffer; then it 

sends the packed data to the interacting subproblem. Dependence receives a mes­

sage, examines the id of the processor that sent the message, looks up the id in the 

interactions list for the appropriate dependence patch descriptor, and then calls on 

unpack to copy the data in the buffer into the region of memory reserved for the 

appropriate dependence patch. Each processor exits mapper when it finishes exe­

cuting both the dependence and influence actions. This implements a synchroniza­

tion mechanism that ensures that data always gets mapped in a consistent state 

across all the processors. When done mapping, a processor knows about all the 

computational elements in its dependence region that interact with its own. 

So far little has been said about the pack and unpack routines passed to 

mapper. These routines are necessary because mapper knows how to deal with one 

dimensional data structures only - message buffers. Since the internal behavior 

of these routines is irrelevant to mapper they will not yet be discussed. These rou­

tines were not difficult to write for the MLC and were small in comparison to 

mapper. 

A mapper utility has been introduced that handles communication in a 

private memor.y execution model. Mapper has two attributes that together contri­

bute to the writing of simpler code, in the local part of the computation: (1) it hides 

the details of how processors communicate from the programmer; (2) it doesn't need 

to know about how the application's data structures are represented. These attri-
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butes are attractive because application-dependent code and system-dependent code 
" . 

need never become intertwined; were the code transported to a new machine, the 

parts that must change to accommodate a different communication model would be 

restricted to code the programmer never sees. Mapper does, however; impose some 

restrictions, in order to streamline its operations. However, we found the restric-

tions to be reasonable in our implementation of the MLC, and believe that they 

will also be reasonable for other calculations, too. 

5. iPSe Implementation 

To evaluate our load balancing library we implemented it along with the 

MLC on the Intel Personal Scientific Computer (iPSC), a hypercube-type multi pro-

cessor manufactured by Intel Scientific Computers. We describe the iPSC, then 

implementations of the MLC and of the dynamic load balancing library. 

5.1. The iPSC 

The iPSC is scientific multiprocessor inspired by the Caltech cosmic cube [16]. 

An iPSC system may be configured with 32, 64, or 128 processor nodes, which com-

municate by sending messages over a hypercube interconnection network. The 32 

processor model d5 used here is nominally a 1.1 megaflop machine - each proces-

sor runs at about 0.033 megaflops - and delivers about 0.8 megaflops on Gaus-

sian elimination [13]. Each node has 512 kilobytes of local memory of which about 

300 kilobytes are accessible to the user. Nodes may communicate with a host pro-

cessor, having 4 megabytes of memory, but may not communicate with the outside 

world in any other way. Both host and nodes are designed around the Intel 80286 

central processor and 80287 arithmetic co-processor, and run a modified version of 
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the Intel XENIX-286 operating system. The node's operating system provides a 60 

Hz timer; timing measurements may be resolved to about 33 milliseconds, but only 

on the nodes. Host times must be measured from a processor node. 

In the absence of any other message traffic nearest processors in the hyper­

cube interconnection network communicate at a rate that ranges from 160 

kilobytes/sec for a 1 kilobyte message to 288 kilobytes/sec for the maximum-sized 

message of 16 kilobytes. For short messages no longer than 1 kilobyte, a 5 mil­

lisecond message startup cost dominates the message transmission time. 

5.2. iPSe Implementation of the Method of Local Corrections 

All software was written in FORTRAN 77, compiled using the Intel ftn286 

compiler, and run under version 2.0 of the node operating system. Two programs 

were written, one for the host and the other for the nodes. The host did all the 110 

on behalf of the nodes, such as reading in simulation parameters. It ran the parti­

tioner but all numerical computations ran on the nodes only. All nodes executed 

the same program. 

The MLC is a subroutine that evaluates the velocity field at the centers of a 

collection of vortices. Like most particle methods vortex calculations involve 

integrating the positions of the vortices with respect to time, i.e. "pushing" them 

over a discrete series of timesteps, doing one or more velocity field evaluations per 

timestep. Time integrations were accurate to second order and done with a 

Runge-Kutta time integration scheme (Heun's method) that does two velocity field 

evaluations per timestep. In addition to computing local interactions, the MLC 

also does some finite difference computations, that include a global calculation to 

solve Poisson's equation. However, most of the finite difference computations, that 
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will not be discussed in detail, are localized. All finite difference calculations were 

accurate to fourth order and all arithmetic was done with 8 byte double precision 

numbers. The program used three major data structures that were duplicated on 

all the processors. These were: three 42 X42 finite difference meshes; three 

84 X 84 2-byte integer arrays used for the bins and to do work estimation; and vor­

tex records, each describing a single vortex. A vortex record consists of 154 bytes 

of information: 2 real-valued position vectors; 2 real-valued velocity vectors; real­

valued vortex strength, that is similar to an electrostatic charge; 5 complex-valued 

interpolation coefficients; and a 2 byte pointer used to link vortices into the bins. 

To economize the iPSe's scarce memory, a short form of the vortex record was also 

used; it consisted of only 26 bytes of information: 1 position vector, strength and a 

link. The major data structures accounted for total of 162 kilobytes of storage. 

The remaining 140 kilobytes of node memory contained mostly code. 

5.3. Partitioner 

The partitioner implementation was straightforward since it invoked no com­

munication system calls. Use of partitioner involves inserting the following call 

immediately preceding the first velocity field evaluation of a timestep: 

partitioneri P, m, n, workEst,ldw ,actualP ,parts) 

where all arguments are integers. Since the vortices don't move very quickly there 

is little to be gained by partitioning more often than every other velocity field 

evaluation. P is the number of subproblems requested and actualP returns the 

actual number of subproblems rendered; actualP S P with the inequality holding 

only if partitioner is unable to render all P subproblems. WorkEst is a 2-D integer 
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array that holds the work estimate for each bin of vortices; ldw is the leading 

dimension of the array, of which an m X n subarray gets used by partitioner. Parts 

is the table of the actualP subproblems; each entry consists of 4 integers giving 

the origin and shape of a single subproblem in the index space of workEst. Parti­

tioner has some freedom in making cuts in either of two directions. Normally it 

tries a cut in a single direction only, but alternates the direction of the cut from 

one level of recursion to the next. However, it rejects any cut that would leave one 

region with no work to do and in this case may be unable to alternate the direction 

of the cut, if it can cut at all. A strategy that chose the better of the two possible 

cuts, regardless of whether one had to be rejected, has not yet been tried. 

5.4. Mapper Implementation 

On the iPSe mapping involves two major steps: (1) pack vortices lying in 

influence patch bins into message-buffers and send to the appropriate processor; (2) 

receive incoming vortices and unpack them into dependence patch bins. The steps 

are interleaved to roughly balance incoming and outgoing data traffic; this helps 

avoid transient deadlocks that won't lock up the code permanently but which could 

slow it down. Since iPSe allows the nodes to be multiprogrammed, the two steps 

could have been executed as concurrent processes, but this wasn't tried. 

Mapper packs and unpacks vortices en masse to amortize the startup cost of 

sending messages over the several vortices contained in a message buffer. In gen­

eral, the optimal buffer-size is a function of the startup cost, which is an 

architecture-dependent parameter. The message buffers used on the iPSe were 

6720 bytes long. 
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In addition to processing external influence of vortices, mapper also found use 

in the sort routine used to sort vortices into bins. During sort it becomes necessary 

to migrate vortices between processors that find themselves under the aegis of a 

different processor than before as the result of their own motion, repartitioning, or 

both, see Fig. 5.1. 

Use of mapper involves calling the following subroutine from the user-code: 

mapper(interactionsList,pack,unpack,inBu{fer,outBu{fer,bufLen) 

where interactions List has been previously computed by an interactions list gen­

erator, pack and pack are external subroutines, and inBuffer and outBuffer are 

message buffers bufLen bytes long. Pack takes outBuffer, bufLen and an 

interactionsList element as arguments and puts the information it collects into 

outBuffer. Unpack takes inBuffer, bufLen, and an interactionsList element as 

arguments and doesn't write into any of the parameters. 

Pack copies vortices from the bins selected by the influence patch description 

passed to it into a contiguous array. Pack expects the patch description to be an 

ordered pair of the form (origin,shape) where "origin" gives the row and column 

address of the patch's origin in the bin index space and "shape" the number of rows 

and columns comprising the patch. Thus, the ordered pairs ((2,1),(3,1), 

((2,2),(1,1)), and «2,1),(1,3» define the range of bin-indices covered by the influence 

patches shown in Fig. 4.4, going clockwise around the subproblem. Each non­

empty bin in a patch points to a list of vortices lying in the region of space covered 

by the bin, see Fig. 5.2. Each element of the list contains two fields: a data field, 

containing such information as the vortex's position, and a link field, a pointer to 
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the next vortex in the list. A distinguished pointer, the null pointer, terminates 

the list. Pack traverses the linked list pointed to by each bin in the patch and 

copies data found in the list into an array, see Fig. 5.2. Unpack reverses the pack­

ing process. It copies information from a message buffer into freshly allocated vor­

tex list cells, threading each new list cell onto the head of the appropriate bin's 

linked list. The correct bin address for a vortex is determined by examining the 

position vector that is a part of the vortex record's data field. 

An interactions list generator produces the interactions list that mapper uses 

to guide the actions of pack and unpack. The load balancing library supplies some 

default generators, though the user is free to write his own. A generator is 

parameterized by the interaction radius and by the table of subproblems returned 

by partitioner. It works by doing simple geometric operations on the table of sub­

problems. Influence patches, for instance, lie inside the subproblem, at the inter­

section of the subproblem with the subproblems of other processors extended by the 

interaction radius, as shown in Fig. 5.3. For the MLC, interaction radius equals 

the correction radius C. For finite difference calculations, the interaction radius 

would be the radius of the finite difference stencil. 

6. Evaluation 

6.1. Experimentation and Evaluation Methodology 

All results were obtained from runs involving the "two entraining patch prob­

lem" of Fig 2.4: the vortices were positioned on a lattice of points confined to two 

circular patches placed symmetrically about the origin. The patches had a radius 

of 0.12 units and their centers were 0.25 units apart. N, the number of vortices 
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used in the runs were made to vary linearly with P, the number of processors; this 

is consistent with the philosophy that ever larger problems may be handled as 

computational resources increase. Each processor was initially assigned about 100 

vortices independent of the size of the problem, though as a result of the motion of 

the particles .and of the dynamically changing partitionings of the problem, the 

exact number fluctuated with time. Experiments were run on 4, 8, 16, and 32 pro­

cessors only; the problems that 1 or 2 processors could accommodate - about 100 

or 200 vortices - are too small to overcome the fixed overhead costs of the finite 

difference part of the calculation. Problems should have at least several hundred 

vortices and preferably several thousand. 

A calculation involving 3180 vortices ran for about S.4 hours on an iPSe with 

32 processors. All runs lasted 64 timesteps and dt, the timestep, was O.OS. A 

36 X 36 finite difference grid was used in the finite difference computations with 

spacing h = 1/30. The correction ra,dius C was 2h. The bin spacing was O.Sh and 

vortices, therefore, were sorted into a 72 X 72 array of bins. 

Each processor recorded its own timing information and at the end of the cal­

culation sent its measurements to the host, which then wrote the data to a file. 

The file contained the times spent in the various phases that made up each velo­

city field evaluation of each time step of the calculation. A separate program 

reduced the raw data to determine the times spent communicating, doing localized 

computation, solving Poisson's equation, doing task partitioning and so on. The 

data reduction program also computed parallel efficiency, a familiar performance 

metric for evaluating multiprocessor implementations. Kuck [12, p. 33] defines 1Jp 

as the efficiency with p processors: 



1/p = 
T 11P 

Tp 
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(6.1) 

where T p is the time to complete on P processors. T 1 is the time taken on a 

uniprocessor; in this special case P = 1, various overheads, such as communica-

tion, that would be incurred on a multiprocessor, are non-existent. By definition 

1/1 = 1. Because the size of the problem scales with the number of processors, T 1 

cannot be measured directly. But since partitioner conserves the total amount of 

work that would be done in a uniprocessor computation, T 1 can be reasonably 

approximated by summing up the completion times for all P processors. 

1/p simultaneously measures three factors that degrade efficiency: (1) com-

munication overhead; (2) non-parallelizable computation that must run on only one 

processor; (3) load imbalances. Another important measure is ijp, the maximum 

theoretical efficiency. It measures the effect of the second factor only. This meas-

ure is important because it tells us the best that our load balancing utilities could 

do were communication instantaneous and loads perfectly balanced. It therefore 

provides a figure of merit for evaluating our strategy. Unlike 1/p, ijp considers 

task partitioning to be work that gets done on a uniprocessor; T 1 includes the time 

spent partitioning. Thus 

-
1/p (6.2) 

where 

T 1 = T 1 + Tpartition ' 
. -

Tpartition is the time spent partitioning, and T p is defined as: 

T p = T tf P + Tpartttion, (6.4) 

i.e. T 1 ideally divides into P equal parts. Thus T p places a lower bound on the 



25 

time taken to run the calculation using our load balancer. 

6.2. Computational Results 

Consider the top and bottom curves of Fig. 6.1 that plot TIp and ijp vs. P. The 

maximum theoretical efficiency is never less than 98%; our implementation of the 

MLC parallelizes well and includes only a small amount of computation that must 

be done on a single processor - partitioner. Furthermore, this non-parallelizable 

work grows slowly with the number of processors. The observed efficiency, in con­

trast, decreases more sharply than the maximum theoretical efficiency, as the 

number of processors increase. It ranges from 89% for 4 processors to 69% for 32 

processors. This means that the calculations would run at worst only about 40% 

(l/Tlp) slower than they would under ideal conditions. Load imbalances are the 

major difficulty here; communication and other overhead are comparatively benign. 

This can be seen by looking the idealized efficiency successively degraded by the 

various sources of overhead, plotted in Fig. 6.1. The two new curves divide the gap 

between the idealized and observed efficiency curves into three parts: the upper 

part represents efficiency losses due to communication overhead, except what was 

incurred in the solver, the middle part represents efficiency losses incurred by the 

Poisson solver; the lower part represents the losses due load imbalances. It can be 

seen that the cost of load imbalances· increases much more rapidly with the 

number of processors than do the costs of the other factors. This happens because 

the total communication overhead increases gently with the number of processors 

and the solver overhead decreases gently, while load imbalances increase sharply. 

Exclusive of the Poisson solver, communication overhead ranged from 3.1% on 

4 processors to 5.5% on 32. Communication serves two purposes: (1) to manipulate 
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the finite difference grids used by the solver and (2) to do mapping. The second 

activity was much less expensive than the first; mapper incurred communication 

overhead that ranged from 0.2% to 1.9% of the total execution time. This overhead 

was low because the partitions have simple shapes and because mapper amortizes 

the iPSC's high message startup cost over the sending of several vortices in one 

message. Partitioner overhead was never more than 1.6%; the recursive bisection 

algorithm is fast, doing only integer arithmetic and running in time that is propor­

tional to the logarithm of the number of processors. So the total time spent in the 

load balancing utilities is never greater than 3.5%. 

6.2.1. Discussion 

Processor idleness has been shown to be the major performance bottleneck for 

the Method of Local Corrections running on the iPSC. The load balancing utilities 

incur negligible overhead. The high message latency time of the iPSC appears to 

have very little impact on the running time of the calculation; on 32 processors 

communication accounts for no more than about 10% of total running time of the 

computation. This is because communication phases are brief and occur relatively 

infrequently between the much longer computation phases. 

The simple work estimate mapping that partitioner uses appears to be a good 

metric for dividing up work fairly; the efficiency predicted by partitioner agreed to 

within 10% of what was observed. The partitioner is surprisingly effective, consid­

ering all the constraints on the way it may partition the work. Since it is recur­

sive it can render only a subset of all possible partitionings into rectangles; the 

partitioning of Fig. 6.2, for instance, cannot be achieved by the recursive bisection 

strategy. So far, the simple partitionings appear adequate. Although the 
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rectangular geometry of the partitions further restricts the way that the parti­

tioner can split up work, the benefits of using more complicated shapes such as 

general tetrahedra would probably not be worth the trouble as the data structures 

used to represent the partitions would be difficult to manipulate. 

U sing a larger number of bins to keep track of the particles appears to be a 

far simpler way of improving the workload balance than changing the geometry of 

the partitions. Making the bins more numerous decreases the granularity of the 

work represented by a bin. In the case of the e.MMP multiprocessor [14] reducing 

task granularity was shown to improve efficiency, as long as the extra time spent 

processing the increased number of pieces of work was reasonable. So far, an 

optimum tradeoff between efficiency and the number of bins has not yet been 

determined, although simulations have shown that for best results the number of 

the bins should be increased when the number of processors increases. A scheme 

that took advantage of the sparsity of the bins would substantially increase the 

number of non-empty bins that could be accommodated with a given amount of 

memory. So far sucha scheme hasn't yet been tried; the storage overhead was not 

a major issue on the model d5 iPSe with 32 processors. But it would be an issue 

for the model d7 with 128 processors, as well as for any machine with several hun­

dred or a few thousand processors. 

7. Conclusions 

A versatile low-overhead load balancing strategy has been presented. It has 

been implemented on Intel's iPSe, a message passing multiprocessor, and parallel 

speedups of 22 have been achieved on 32 processors running a particle-type calcu­

lation. The strategy uses a small set of utilities that may be implemented in the 
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form of a subroutine library. The library makes sense for calculations meeting the 

following three criteria such that: 

(1) Local interactions predominate. 

(2) The computational domain partitions naturally into a 
fine lattice of box-like subproblems. 

(3) The time to complete each subproblem can be com­
puted in a simple way. 

Thus it should apply not only to particle methods but also to finite difference 

methods such as adaptive mesh refinement for treating hyperbolic partial 

differential equations. Our load balancing utilities generalize to computational 

domains of arbitrary dimensionality. They apply to the localized part of the com-

putation only; system-dependent calls that handle interprocessor communication 

should not appear in that part of the application code. The user must provide some 

application-dependent code but the code should not be difficult to write. Such code 

would be similar to what is provided, for instance, in library packages that solve 

elliptic partial differential equations or that do zero-finding. 

Because the load balancing library supports a local memory model, it may 

arrange data to exploit local memory on shared-memory architectures. Its use can 

therefore avoid costly memory access conflicts by causing a high percentage of 

accesses to go to local memory. The use of the local memory model comes at the 

cost of redundantly storing some information but the storage overhead will be be 

reasonable for localized computations. This redundant storage scheme can also 

help reduce memory contention on shared-memory architectures that do not pro-

vide local memory. Memory accesses that would go to the same location in shared 

memory instead go different copies of the same piece of information. 
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The proposed load balancing library may fail if workloads cannot be estimated 

accurately, or if the estimate is expensive to compute. The loads may then be 

poorly balanced, or the estimation phase may be too expensive to justify balancing 

the workloads. Clearly the success of such a strategy is problem-dependent. 

Because of the need to store information redundantly, the storage overhead of our 

load balancer would be unacceptable for some calculations with strong long-range 

coupling. However, if some numerical scheme could be found to weaken the long­

range coupling, then the need to store large amounts of information redundantly 

could be a voided. The Method of Local Corrections, for instance, provides the 

means of approximating N body interactions without entailing massive global 

computation. This is possible because a logarithmic potential governs the motion 

of the vortices; distant interactions can be computed by means of fast Poisson 

solver and only a small fraction of all interactions need to be computed directly. 

Because our load balancer can schedule tasks statically it can avoid the high 

overhead associated with dynamic scheduling. Dynamic scheduling can become 

necessary on multiprogrammed systems, which aren't considered here. It also 

becomes necessary if the tasks don't have known completion times or if the tasks 

are indivisible (See Saltz's dissertation [15] for· a discussion of how to schedule 

indivisible tasks on multiprogrammed multiprocessors). Under our strategy tasks 

have known completion times and are assumed to be divisible. This allows the 

halancer to split them up with reasonable fairness and then to fix the assignments 

of work to processors. Since the balance of work drifts slowly over time work can 

be reshuffled at a convenient stopping place in the program, such as between 

timesteps, rather than while the computation runs. The pack and unpack routines 
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that the programmer passes to mapper handle all the details of task subdivision. 

Static scheduling is generally preferable to dynamic scheduling because processors 

can access a static, local data structure to get new work assignments or to obtain 

information about interdependent subproblems. This is extremely attractive on 

private memory architectures that have high message startup costs but can also 

reduce memory contention on shared memory architectures by reducing memory 

accesses to shared information. Finally, use of a static scheduler on private 

memory architectures avoids the costly reshuffling of tasks among the processors 

that would occur were dynamic scheduling employed. 

Our strategy also makes no attempt to assign the more heavily communicat-

ing tasks in a way that best utilizes the communication links with the greatest 

bandwidth. The need to place heavily communicating tasks preferentially would 

arise in calculations that do considerable amounts of communication relative to 

computation, which are beyond the scope of this paper. See Bokhari's paper [4] on 

the processor mapping problem for the details. 

Although our load balancing strategy isn't automatic, we believe that it 

achieves a better balance than the automatic schemes, such as dataflow, between 

efficiency and ease-of-use: 

(1) It may be implemented as a subroutine library using 
existing programming languages and existing mul­
tiprocessor architectures, including those with 
vector-mode capabilities. 

(2) It doesn't impose on the programmer. It requires 
only a few routines that depend solely on the applica­
tion. 

(3) It incurs modest overhead. 
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The library can go a long way to making multiprocessors an attractive means of 

solving some very difficult scientific problems. 
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Fig. 2.1. 
Vortices, shown as x's, get sorted into bins, demarcated here by hy­
phenated lines. Associated with each bin is a pointer to a list of 
votices that lie within the bin's region of space. In practice, the bins 
are much smaller and more numerous than shown here. Each shaded 
region designates the domain of dependence for the bin at the region's 
center, with C = 1. The region contains all the vortices that 
influence those in the bin, and includes the bin itself . 
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Fig. 2.2. 

Partitioning the computational domain among four processors. Each 
processor computes on its assigned region of space only. 
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Fig. 2.3. 
Partitions with (a) equal areas and (b) amounts of equal work Each 
dot represents a vortex and also a unit of work The calculation began 
with 2 patches of vorticity of radius 0.120 with centers separated by 
0.25. Each patch had 732 vortices, placed evenly on lattice points 
spaced 7.5XIO- 3 units apart. 
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The distribution of 1464 vortices changes with time, so the work must be 
periodically repartitioned. This series of snapshots was taken from the 
same calculation used to produce Fig. 2.3 .. The calculation consumed 11 
minutes of CPU time on just one processor of a Cray X-MP /22. 



Fig. 3.1. 
Recursive bisection. 
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Fig. 4.1 
Some of the interactions computed on vortices in the shaded regions 
involve vortices assigned to different processors. 
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Fig. 4.2 
Only processor O's private bins are shown. (a) Initially vortices lie 
only in bins owned by the processor. However, some interactions in­
volve vortices owned by other processors so (b) mapper fills in the 
processor's dependence region with those vortices. 
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Fig. 4.3 
Processor O's (I) influence region and (D) dependence region. The oth­
er processors view these regions as parts Of their dependence and 
influence regions, respectively. 
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Fig. 4.4 
Procesors O's (I) influence patches and (D) dependence patches. 

Influence Dependence In teracting 
Region Region Processor # 

Origin Shape Origin Shape 

(1,2) 3 x 1 (1,3) 3 x 1 1 
(2,2) 1 x 1 (3,3) 1 x 1 3 
(2,1) 1 x 3 (3,1) 1 x 3 2 

Fig. 4.5 
Processor O's interactions list describes the interactions of Fig. 4.4, 
giving both the shape and location of the interacting regions of space 
and the external processor involved in each interaction. 
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Fig. 5.1 
Vortices must be migrated when (a) boundaries slide past vortices, (b) 
vortices slide past boundaries, or both. 
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Fig. 5.2 
Vortices in the unpacked form, linked into bins, and in the packed 
form, stored contiguously in an array. 
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Interaction Radius 
Fig. 5.3 

Determining influence patches for partition O. Each patch lies in the 
intersection of the partition with all interacting partitions extended by 
the interaction radius. 
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Fig. 6.1 

Efficiency over 64 time steps 
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Efficiency vs. the number of Processors. The top curve gives the max­
imum theoretical efficiency that would be attained under idealized 
conditions. The bottom curve gives the observed efficiency. The two 
curves in the middle divide the efficiency losses represented by the gap 
between the upper and lower curves into 3 regions that correspond to 
losses due to communication, the Poisson Solver, and and to load im­
balances, respectively. 
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Fig. 6.2 
The recursive bisection strategy cannot render this partitioning 
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