
Lawrence Berkeley National Laboratory
Recent Work

Title
DYNAMIC LOAD BALANCING OF A VORTEX CALCULATION RUNNING ON MULTIPROCESSORS

Permalink
https://escholarship.org/uc/item/76n372hg

Author
Baden, S.B.

Publication Date
1986-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/76n372hg
https://escholarship.org
http://www.cdlib.org/

"

. ,

.oiI;- ••

LBL-22584 t" "\

Preprint 'ex.

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

RECEIVED

BE"KfL~Y lAIf\q-.rORY

MAR 30 1987

LI!~ARY AND
DOCUMENTS SEcr/ON

DYNAMIC LOAD BALANCING OF A VORTEX CALCULATION
RUNNING ON MULTIPROCESSORS

S.B. Baden

December 1986

rs: /~,
\ . . TWO-WEEK LOAN ~9.
! . . .~

\ This is' a Library Circulating Cop,rJY"t
I __ which may be borrowed for,~wo ,.;

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

DYNAMIC LOAD BALANCING
OF A VORTEX CALCULATION

RUNNING ON MULTIPROCESSORS1

Scott B. Baden

Computer Science Division and Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

December 1986

LBL-22584

1 This work was supported in part by a California Fellowship in Microelectronics and in part by the
Applied Mathematical Sciences subprogram of the Office of Energy Research, u.S. Department of Energy,
under contract DE-AC03-76SF00098.

'.

DYNAMIC LOAD BALANCING
OF A VORTEX CALCULATION

RUNNING ON MULTIPROCESSORS

. '

Abstract

1

We discuss' a dynamic load balancing strategy intended for various

mathematical physics calculations that partitions the work fairly across a multi-

plicity of processors. Anderson's Method of Local Corrections serves as a model

problem; it is a type of vortex method for computational fluid dynamics.

Because computational effort follows particles which congregate and disperse

irregularly about the domain, this problem is hard to partition in a way that dis-

tributes the wor~ evenly among the processors. The load balancing strategy was

tested on 32 processors of an Intel Personal Scientific Computer, a message-

passing hypercube multiprocessor. The load balancer may be implemented as a

small subroutine library that requires no special hardware support. The library

should apply to diverse problems, including finite difference methods, and to

diverse machines, for instance shared memory architectures, without entailing

massive reprogramming.

2

1. Introduction

Ideally a multi processer system would satisfy two conditions: (1) programs

that run well on it should not look very different from those that run on a unipro­

cessor; (2) its performance would be linearly proportional to the number of proces­

sors in use without a substantial additional amount of hardware dedicated to over­

head functions. However, uniprocessor programs that are adapted simply for mul­

tiprocessors can spend the majority of their time sitting idle rather than doing

productive work. The major difficulty often lies in splitting up the computational

work evenly across the processors, as work tends to concentrate among a few pro­

cessors, leaving the others relatively unloaded. Attempts at coping with this load

balancing problem have led to novel computer architectures and programming

lan~uages, such as dataflow [2,7], that distribute work automatically among the

processors. However, the automatic work distribution schemes are disappointingly

inefficient despite extensive hardware support. There are two problems with these

schemes: (1) they partition work into parallel tasks with a fine granularity; (2)

they fail to exploit a key locality property inherent in many mathematical physics

problems. Task granularity is an important issue in load balancing. Parallel

tasks must be small enough that they can be divided evenly among the processors

but not so small as to be overwhelmed by the cost of managing them. In data flow

implementations, for instance; the tasks tend to be too small. The locality property

also has important ramifications. It states that physical effects at two arbitrary

points in space and time interact more strongly (and hence convey more informa­

tion to one another per unit of computation) at short distances than at long ones.

This means that there should be a strong incentive to place nearby points on the

'>,

3

same processor. In dataflow implementations, however, no such attempt is made.

This is especially problematic in dataflow since small tasks do a lot of communica-

tion relative to computation.

We propose a dynamic load balancing strategy that, unlike the automatic

schemes, exploits the locality property and that doesn't suffer from the granularity

problem w'hen the processors number in the tens. Nearby points are likely to be

assigned to the same processor, so frequent communication between them will be

inexpensive. Distant points will likely be assigned to different processors between

which communication is expensive. But communication between such points turns

out to be rare for the kinds of problems for which the strategy makes sense. The

strategy parcels work into "chunks" that are somewhat larger and much easier to

manage than the small pieces of work used in the dataflow schemes.

Our scheme assumes a particular programming discipline:

(1) Each processor computes on its assigned part of the
problem at its own rate and out of its own private
memory.

(2) Each processor's local memory is augmented by some­
thing that looks like memory shared with neighbor­
ing processors thereby providing a limited access to
information that would otherwise reside outside its
address space.

(3) The programmer explicitly invokes software utilities
to handle load balancing and to provide for the lim­
ited memory sharing.

We have found that a small subroutine library is sufficient for enforcing this dis-

cipline. The library requires no special purpose hardware support to operate

efficiently and may be installed on existing systems. Though the library applies to

the localized part of a computation only, the scheme may still be effective more

4

generally, so .long as the amount of non-localized work to be done is not too great.

The library hides considerable detail from the programmer - in particular how

processors communicate. The programmer must supply a small amount of code

that the utilities call, but the code depends solely on the application and in no way

on the architecture. Code written in a higher level language that calls on our util­

ities should run without major alteration reasonably well on other machines pro­

vided the utilities have been implemented there.

The library tends to diminish the importance of what distinguishes one

architecture's communication mechanism from another's. Message passing archi­

tectures conveniently come to resemble shared memory architectures, and hence

become easier to program. On architectures that provide it, shared memory gets

used in a restricted way that can reduce memory contention and that also exploits

local memory, if provided.

We have implemented our load balancing utilities on the Intel Personal

Scientific Computer (iPSC), a hypercube-type multiprocessor. To test the strategy

we applied it to an implementation of Anderson's Method of Local Corrections [1],

a two dimensional vortex method for incompressible inviscid flow. This particle

method typifies various problems that are compute bound, and that appear well­

suited to parallel computation, but which are hard to partition. The difficulty

arises because these calculations expend effort that varies non-uniformly over the

.spatial domain of the problem and unpredictabl~ with time.

We obtained speedups of 22 on 32 processor". The overhead of the load

balancing utilities was less than 10%. We expect that the utilities will apply to a

diversity of other mathematical physics calculations besides the Method of Local

.'

5

Corrections - not only to particle methods arising in fluid dynamics, astrophysics,

and plasma physics, but also to finite difference methods.

Section 2 briefly summarizes the important details of the model problem,

gives a simple multiprocessor implementation strategy, and introduces the load

balancing problem. Sections 3 and 4 present the two major load balancing utili-

ties. Section 5 discusses iPSC implementations of both the model calculation and

the utilities, section 6 evaluates computational results. Section 7 concludes the

paper.

2. A Model Calculation and its Parallel Computation

The model calculation solves a time dependent, non-linear partial differential

equation that arises in fluid mechanics- the vorticity-stream function formulation

of Euler's equation for two dimensional, incompressible inviscid flow:

dw
-+u·Vw=O
dt

w = -il~ in 0,

(2.1a)

(2.1b)

where u(x(t),t) is the velocity of the fluid at position x(t) at time t, w is vorticity,

2 2
defined as the curl of u, ~ is the stream function, il = d~2 + a;:X is the two

dimensional Laplacian operator, and 0 is a square box. The flow satisfies the no

flow boundary conditions, i.e., the fluid may not penetrate the solid walls of the

box, which will be satisfied if:

~- = 0 on dO. (2, Ie)

For a thorough discussion of these equations, see Chorin and Marsden's introdue-

tory text on fluid mechanics [6].

6

2.1. The Calculation

A vortex blob method [5] will be used to solve the equations (2.1). It describes

the flow of the fluid by computing the motion, over a series of timesteps, of a set of

particle-like computation elements called "vortices." The particular method we will

use is Anderson's Method of Local Corrections [1], henceforth called "the MLC."

The MLC divides vortex interactions into two components: (1) N -body interactions

computed accurately for vortices close enough to one another; (2) long range

interactions approximated by solving a discrete Poisson equation on a finite

difference grid. When vortices number in the thousands or more, the calculation

spends almost all of its time computing local N -body interactions between nearby

vortices. Vortices that are not close to one another interact indirectly through the

relatively inexpensive global finite difference computation. We will focus pri­

marily on the local interactions.

The local interactions in the MLC are computed in much the same way as

direct interactions involving charged particles. The MLC requires that a "correc­

tion radius" C be chosen by the method's user to distinguish nearby vortices, closer

than C, from distant ones. These nearby vortices, once identified at any time, are

the ones that participate in the local part of the computation. To speed up the

search for nearby vortices, space is customarily subdivided into a few thousand

fairly small bins, and then the vortices are sorted into the bins, as shown in Fig.

2.1. This technique is discussed in the text on particle-based calculations by

Hockney and Eastwood [10]. The local interactions are handled a bin at a time.

Convenience dictates setting the correction radius C to a small multiple of the bin

width, say 1 or 2. Let C now stand for that multiple. Then, all the vortices

7

influencing bin (iJ) are found in the bins whose indices differ from i and j by

integers no bigger than C. These bins form shaded regions in Fig. 2.1 where

C = 1. In practice the bins used in the MLC are much smaller than shown in

Fig. 2.1 and the vortices interact directly over short distances only (Although this

square neighborhood is slightly larger than a circular neighborhood of radius C

that would be good enough, the extra vortices included there can't hurt the accu­

racy of the calculation nor slow it down much).

2.2. Dynamic Load Balancing

A simple way to divide up the work in the MLC is to split the bins into a reg­

ular pattern of box-like subproblems, as shown in Fig. 2.3a, and to assign each

subproblem to a unique processor. This strategy, however, would underutilize the

processors; only 4 of 16 would be given much work to do. The trouble is that the

vortices distribute themselves unevenly - the completion time for a subproblem

may not be proporti«~mal to its area. Fig. 2.3b shows a better way to split up the

problem that compensates for the uneven distribution of vortices over the domain.

This strategy generates somewhat irregularly sized subproblems that all complete

in roughly the same time, and it diminishes the running time of the computation

by a factor of three.

But the partitioning cannot be left fixed for all time; the vortices move and

must be reapportioned as shown in Fig. 2.4. If the work were not redistributed,

then some processors would become overloaded while others would only stand and

wait. Thus, redistribution advances the latest completion time by shifting work

from the more heavily loaded processor(s) to the more lightly loaded onels), i.e. it

balances the workloads; This happens at run time, hence the term "dynamic load

8

balanci ng."

2.3. A Local Memory Computational Model and Programming Discipline

Programs that employ the load balancing utilities must use a simple model of

parallel execution in which each processor executes its own program out of a

private address space and at its own pace. A call to a partitioner utility splits the

computational domain into regions, as shown in Fig 2.2. Subsequent calls keep

loads balanced by adjusting the shape and location of the regions according to how

the vortices have moved since last they were partitioned. As a result of such work

redistribution, a vortex could find itself owned by a different processor than before.

Therefore, redistribution. incurs a side effect of having to shuffle particles between

private memories. , Each processor must decide which particles to shuffle out,

where to send them, and what to do with incoming ones. A mapper utility handles

all the details of how this is accomplished. All the architecture-dependent details

are hidden from the programmer. When mapper finishes, each processor knows

about all the vortices that migrated into its assigned region of space.

What mapper does is to provide local paths of communication between the

subproblems. Because vortices move very slowly, their redistribution in the MLC

is a gradual process. Slender regions of the comp,utational domain, containing

small numbers of vortices, shift between processors. Though mapper does not pro­

vide support for global communication, we have found that a set of utilities dis­

cussed by Moler [13] provide nearly all the functionality needed to cope with the

global computations III the MLC. These routines apply primarily to finite

difference computations: one accumulates arrays stored on different processors into

one array stored on one processor, and another broadcaM;:. an array stored on one

9

processor onto a designated set of processors. These have been used 'for the global

finite difference part of the computation about which we shall have little more to

say.

In summary, our strategy for dynamic load balancing entails adopting a local

memory model of parallel execution, and periodically invoking two utilities called

partitioner and mapper. The next two sections discuss each utility in turn.

3. Partitioning

The partitioner utility splits a problem into a given number of subproblems

that all complete at roughly the same time. For the MLC, subproblems correspond

to subarrays of the bins; for a finite difference calculation, a subproblem would

correspond to a sub array of a finite difference mesh. The particulars of these data

structures are not important so long as the computational domains they represent

subdivide naturally into rectangles.

The internal boundaries that separate the subproblems are distinct from the

physical boundary, ao, of the problem. These internal boundaries partition space

into rectangular blocks of bins. Internal boundaries may not sever bins but must

lie between them as shown in Fig. 2.2. A less restricted scheme that allowed inter­

nal boundaries to pass through the bins would impose additional coding overhead,

and appears to confer no advantage.

The bins, then, represents a small scale subdivision of space that is used by

the numerical method. A larger scale partitioning is imposed on top of this for

the purposes of splitting up the problem among multiple processors. This parti­

tioning strategy imposes some overhead costs, i.e. interprocessor communication,

10

but it does not change any of the arithmetic operations that would be done on a

uniprocessor, other than to reorder them. This means that results from successive

runs using the same initial conditions will agree to within roundoff, no matter how

many processors are used.

3.1. Recursive Bisection

The recursive bisection algorithm is a simple but effective way to partition cal-

culations such as the MLC. It has been used by Dippe and Swensen [8] and Dippe

and Wold [9] for realistic rendition of computer graphics images and by Berger and

Bokhari [3] for 'partitioning hyperbolic differential equations across multiproces-

sors. In two dimensions, the strategy is to cut an area of interest into two rectan-

gles that represent equal amounts of work, or as nearly equal as possible, and then

to apply the procedure recursively to each part; see Fig. 3.1. This simple procedure

generalizes trivially to higher dimensional problems.

The algorithm takes two inputs: P and workGrid. P is the number of proces-

sors and workGrid is a mapping used to estimate the completion time for subprob-
~

lems. The algorithm returns two outputs: the number of subproblems actually ren-

dered - it may not always be able to generate the requested number - and a

table describing the subproblems, Each entry in the table has attributes "origin"

and "shape. "

The workGrid is a rectangular array of integers supplied by the user; each

integer is proportional to the amount of work required to compute on a small

subregion of the computational domain represented by a single bin. To bisect a

region of space the algorithm advances along the columns (or the rows) of the

workGrid until the two sums of all the entries in the left and right hand parts (or

11

upper and lower parts if advancing along the rows) match as closely as possible.

To cut P subproblems the algorithm gets called [Iog2(P)] times. Though we res-

trict P to be an integer power of two, a simple change to the algorithm allows it to

cope with other values of P. If box-like subproblems are desired, the algorithm

alternates the direction of the cuts from one invocation to the next. If strip-like

subproblems are desired, then cuts lie in one direction only.

3.2. Work Estimation

Work estimation entails producing an array giving the estimated completion

times for each bin. The workGrid is set-additive, meaning that the work in any

rectangular region is the sum of the work in two constituent rectangular subre-

gions. It follows, then that a subproblem comprising a collection of bins finishes in

time that is proportional to the sum of its corresponding workGrid entries. Strictly
, .,'

speaking, our partitionings of the MLC are not set-additive since they introduce

extra work in the neighborhoods of the internal boundaries that· divide the sub-

problems. However, the extra work can be ignored since it is negligible compared

with what what gets done regardless of how the calculation has been partitioned.

A reasonable work estimate mapping for the MLC ignores the long-range

interactions computed in the global part of the calculation. When the vortices are

numerous the MLC spends most of its time computing local interactions. The com-

pletion time for a bin then is the number of locai interactions computed involving

its vortices. This value is easy to compute and is the product of two quantities: the

number of vortices in the bin, and the number of vortices in that bin and neighbor-

ing bins found within the correction distance. This can be expressed as:

pop(i,)1 L pop(i + k,) + oj
Ikl,lll ~ C

ii+k,j+l)EO

12

(3.1)

where "pop(i, j)" is the number of vortices in bin (i, j) and i and) range over all

the bins in the computational domain O. The result is an integer array.

3.3. Discussion

The recursive bisection algorithm is a useful abstraction for determining a

fair partitioning of work across a multiplicity of processors. Since the algorithm

carries around no knowledge about either the application or machine architecture,

it is ideally suited to the task at hand. Obviously, the effectiveness of the proposed

partitioning strategy depends on the user's ability to construct an inexpensive and

accurate work-estimate mapping, a process that entails writing some application-

dependent code. However, the work estimation procedure for the MLC was neither

long-winded nor difficult to write; it parallelizes, runs in negligible time, and is

reasonably accurate.

4. Mapping

The mapper utility implements the limited form of memory sharing assumed

by our dynamic load balancing strategy. It hides the semantics of the communica-

tion model supported by the target computer architecture; a message-passing archi-

tecture, for instance, would appear no different from a shared-memory architec-

ture, during the local part of the computation. But mapper's action is neither

completely transparent nor automatic: the programmer must invoke it explicitly;

he must use it correctly; and, he must provide it with a small amount of

application-dependent code. However, we believe that these requirements will be

as acceptable in other applications of our strategy as they were for the MLC. We

13

present a mapper for two dimensional calculations, though the strategy readily

generalizes to pro.~lems of any dimension.

Mapper allows the interdependent subproblems that partitioner assigns to

private address spaces to interact as if executed in a single address space. Vortices

in the MLC, for instance, that interact across internal boundaries must somehow

become visible to processors that don't own them, as shown in Fig. 4.1a. Therefore,

each processor must obtain information about vortices just on the other side of the

internal boundaries of its subproblem ..

Mapping must be done synchronously in order to guarantee correct results.

No processor may begin with the next step of the computation until it has received

all data to be mapped to it nor until it has finished supplying similar such infor­

mation needed by others. If mapping were handled asynchronously, then a vortex,

for instance, could simultaneously appear to different processors to be at different

positions and results would be unpredictable .. Explicit calls to mapper specify syn­

chronization points at which times data' get set up in a consistent state across all

processors before the computation may continue.

In order to see how mapper works, consider a computation involving four pro­

cessors. Assume that partitioner had previously split the computational domain n

into 4 sub-problems 0 0, 01> 02> 0:1, and that each 0i had been assigned a unique

processor Pi' as shown in Fig. 4.1. Each processor owns its assigned subproblem

and knows only about the computational elements assigned to it hy partitioner, as

shown in Fig. 4.2a. But interdependent subproblems interact through logically

overlapping regions of space that straddle the internal boundaries as shown in

Fig. 4.1. Each processor must somehow find out about computational elements

14

lying just outside its subproblem, as shown in Fig. 4.2b. For the MLC, the compu­

tational elements are vortices; they lie in the subproblem's dependence region, a

surrounding region of space that logically overlaps other subproblems, as shown in

Fig. 4.3. Conversely the interacting processors view this region of space as part of

their influence regions, as shown in Fig. 4.3. The influence and dependence regions

are shells whose thickness is given by an interaction radius, which for the MLC

equals C, the maximum distance over which vortices may interact directly. What

mapper does is to physically connect the logically overlapping influence and depen­

dence regions. In the MLC, for instance, each processor will, through its depen­

dence region, know about all the vortices that that had at one time lay only in the

influence regions of other processors. The communications paths provided by

mapper appear to implement a memory sharing mechanism. This mechanism,

however, is primitive and provides only a subset of the functionality of a classic

shared memory: it shares information only to the extent specified by the interaction

radius and it buffers memory writes until the next time mapper gets called. Since

writes do not propagate instantaneously calls to mapper must be made at the

correct time or results would be non-deterministic.

Having now discussed the externally visible behavior of mapper we now move

to the internal behavior of the utility· For the purpose of discussion, mapper will

be specified in architecture-independent terms, assuming a message based model of .

communication. Let us characterize that model. perhaps simplistically, by two

primitive operations send and receive (see, for example, the iPSe Users Guide [11]

for the details of how message passing works in practice). Invoking send(bufler,id)

sends the message in buffer to the processor designated by id. Invoking

15

receive(buffer,id) allows an incoming message into buffer and sets id to identifythe

processor, if any, that sent the message. Message buffers are strings of bytes.

Mapping divides into two activities called an influence action and a depen­

dence action, respectively. For the MLC, the influence action collects vortices from

the bins in the influence region and copies them into any processor needing them.

The dependence action copies incoming information into the bins of the dependence

region. Both influence and dependence regions divide into patches. Owing to the

reciprocal nature of interactions, patches that make up the regions come in

matched pairs: "dependence patches" from the dependence region, and "influence

patches" from the influence region, as shown in Fig 4.4. Each patch contains com­

putational elements that interact with just one subproblem. Every processor has

an interactions list describing its matched sets of patches, see Fig. 4.5. Each ele­

ment of the list specifies an interaction with one subproblem and provides three

pieces of information: an identification of the interacting subproblem; two pointers;

and specifiers that tell mapper how to access the access the information referenced

by the pointers. The pointers refer to two dimensional data structures reserved for

storing information in the dependence and influence patches. The specifiers pro­

vide index bounds and a memory stride that tell how to access the data structures.

For now nothing is said about how interactions lists come to exist.

Mapper uses the interactions list to guide its actions; the influence action uses

the influence patch information and the dependence action, the dependence patch

information. Each action calls a different subroutine that the user passes to

mapper via mapper's parameter list. Two subroutines, called pack and unpack are

supplied; they convert between the message buffer representation and the

16

representation of the application's data structures. The influence and dependence

actions execute concurrently and separate parallel processes execute for each

interactions list element. Influence first calls pack to collect computational ele­

ments in each influence patch and to copy them into a memory buffer; then it

sends the packed data to the interacting subproblem. Dependence receives a mes­

sage, examines the id of the processor that sent the message, looks up the id in the

interactions list for the appropriate dependence patch descriptor, and then calls on

unpack to copy the data in the buffer into the region of memory reserved for the

appropriate dependence patch. Each processor exits mapper when it finishes exe­

cuting both the dependence and influence actions. This implements a synchroniza­

tion mechanism that ensures that data always gets mapped in a consistent state

across all the processors. When done mapping, a processor knows about all the

computational elements in its dependence region that interact with its own.

So far little has been said about the pack and unpack routines passed to

mapper. These routines are necessary because mapper knows how to deal with one

dimensional data structures only - message buffers. Since the internal behavior

of these routines is irrelevant to mapper they will not yet be discussed. These rou­

tines were not difficult to write for the MLC and were small in comparison to

mapper.

A mapper utility has been introduced that handles communication in a

private memor.y execution model. Mapper has two attributes that together contri­

bute to the writing of simpler code, in the local part of the computation: (1) it hides

the details of how processors communicate from the programmer; (2) it doesn't need

to know about how the application's data structures are represented. These attri-

17

butes are attractive because application-dependent code and system-dependent code
" .

need never become intertwined; were the code transported to a new machine, the

parts that must change to accommodate a different communication model would be

restricted to code the programmer never sees. Mapper does, however; impose some

restrictions, in order to streamline its operations. However, we found the restric-

tions to be reasonable in our implementation of the MLC, and believe that they

will also be reasonable for other calculations, too.

5. iPSe Implementation

To evaluate our load balancing library we implemented it along with the

MLC on the Intel Personal Scientific Computer (iPSC), a hypercube-type multi pro-

cessor manufactured by Intel Scientific Computers. We describe the iPSC, then

implementations of the MLC and of the dynamic load balancing library.

5.1. The iPSC

The iPSC is scientific multiprocessor inspired by the Caltech cosmic cube [16].

An iPSC system may be configured with 32, 64, or 128 processor nodes, which com-

municate by sending messages over a hypercube interconnection network. The 32

processor model d5 used here is nominally a 1.1 megaflop machine - each proces-

sor runs at about 0.033 megaflops - and delivers about 0.8 megaflops on Gaus-

sian elimination [13]. Each node has 512 kilobytes of local memory of which about

300 kilobytes are accessible to the user. Nodes may communicate with a host pro-

cessor, having 4 megabytes of memory, but may not communicate with the outside

world in any other way. Both host and nodes are designed around the Intel 80286

central processor and 80287 arithmetic co-processor, and run a modified version of

18

the Intel XENIX-286 operating system. The node's operating system provides a 60

Hz timer; timing measurements may be resolved to about 33 milliseconds, but only

on the nodes. Host times must be measured from a processor node.

In the absence of any other message traffic nearest processors in the hyper­

cube interconnection network communicate at a rate that ranges from 160

kilobytes/sec for a 1 kilobyte message to 288 kilobytes/sec for the maximum-sized

message of 16 kilobytes. For short messages no longer than 1 kilobyte, a 5 mil­

lisecond message startup cost dominates the message transmission time.

5.2. iPSe Implementation of the Method of Local Corrections

All software was written in FORTRAN 77, compiled using the Intel ftn286

compiler, and run under version 2.0 of the node operating system. Two programs

were written, one for the host and the other for the nodes. The host did all the 110

on behalf of the nodes, such as reading in simulation parameters. It ran the parti­

tioner but all numerical computations ran on the nodes only. All nodes executed

the same program.

The MLC is a subroutine that evaluates the velocity field at the centers of a

collection of vortices. Like most particle methods vortex calculations involve

integrating the positions of the vortices with respect to time, i.e. "pushing" them

over a discrete series of timesteps, doing one or more velocity field evaluations per

timestep. Time integrations were accurate to second order and done with a

Runge-Kutta time integration scheme (Heun's method) that does two velocity field

evaluations per timestep. In addition to computing local interactions, the MLC

also does some finite difference computations, that include a global calculation to

solve Poisson's equation. However, most of the finite difference computations, that

19

will not be discussed in detail, are localized. All finite difference calculations were

accurate to fourth order and all arithmetic was done with 8 byte double precision

numbers. The program used three major data structures that were duplicated on

all the processors. These were: three 42 X42 finite difference meshes; three

84 X 84 2-byte integer arrays used for the bins and to do work estimation; and vor­

tex records, each describing a single vortex. A vortex record consists of 154 bytes

of information: 2 real-valued position vectors; 2 real-valued velocity vectors; real­

valued vortex strength, that is similar to an electrostatic charge; 5 complex-valued

interpolation coefficients; and a 2 byte pointer used to link vortices into the bins.

To economize the iPSe's scarce memory, a short form of the vortex record was also

used; it consisted of only 26 bytes of information: 1 position vector, strength and a

link. The major data structures accounted for total of 162 kilobytes of storage.

The remaining 140 kilobytes of node memory contained mostly code.

5.3. Partitioner

The partitioner implementation was straightforward since it invoked no com­

munication system calls. Use of partitioner involves inserting the following call

immediately preceding the first velocity field evaluation of a timestep:

partitioneri P, m, n, workEst,ldw ,actualP ,parts)

where all arguments are integers. Since the vortices don't move very quickly there

is little to be gained by partitioning more often than every other velocity field

evaluation. P is the number of subproblems requested and actualP returns the

actual number of subproblems rendered; actualP S P with the inequality holding

only if partitioner is unable to render all P subproblems. WorkEst is a 2-D integer

20

array that holds the work estimate for each bin of vortices; ldw is the leading

dimension of the array, of which an m X n subarray gets used by partitioner. Parts

is the table of the actualP subproblems; each entry consists of 4 integers giving

the origin and shape of a single subproblem in the index space of workEst. Parti­

tioner has some freedom in making cuts in either of two directions. Normally it

tries a cut in a single direction only, but alternates the direction of the cut from

one level of recursion to the next. However, it rejects any cut that would leave one

region with no work to do and in this case may be unable to alternate the direction

of the cut, if it can cut at all. A strategy that chose the better of the two possible

cuts, regardless of whether one had to be rejected, has not yet been tried.

5.4. Mapper Implementation

On the iPSe mapping involves two major steps: (1) pack vortices lying in

influence patch bins into message-buffers and send to the appropriate processor; (2)

receive incoming vortices and unpack them into dependence patch bins. The steps

are interleaved to roughly balance incoming and outgoing data traffic; this helps

avoid transient deadlocks that won't lock up the code permanently but which could

slow it down. Since iPSe allows the nodes to be multiprogrammed, the two steps

could have been executed as concurrent processes, but this wasn't tried.

Mapper packs and unpacks vortices en masse to amortize the startup cost of

sending messages over the several vortices contained in a message buffer. In gen­

eral, the optimal buffer-size is a function of the startup cost, which is an

architecture-dependent parameter. The message buffers used on the iPSe were

6720 bytes long.

21

In addition to processing external influence of vortices, mapper also found use

in the sort routine used to sort vortices into bins. During sort it becomes necessary

to migrate vortices between processors that find themselves under the aegis of a

different processor than before as the result of their own motion, repartitioning, or

both, see Fig. 5.1.

Use of mapper involves calling the following subroutine from the user-code:

mapper(interactionsList,pack,unpack,inBu{fer,outBu{fer,bufLen)

where interactions List has been previously computed by an interactions list gen­

erator, pack and pack are external subroutines, and inBuffer and outBuffer are

message buffers bufLen bytes long. Pack takes outBuffer, bufLen and an

interactionsList element as arguments and puts the information it collects into

outBuffer. Unpack takes inBuffer, bufLen, and an interactionsList element as

arguments and doesn't write into any of the parameters.

Pack copies vortices from the bins selected by the influence patch description

passed to it into a contiguous array. Pack expects the patch description to be an

ordered pair of the form (origin,shape) where "origin" gives the row and column

address of the patch's origin in the bin index space and "shape" the number of rows

and columns comprising the patch. Thus, the ordered pairs ((2,1),(3,1),

((2,2),(1,1)), and «2,1),(1,3» define the range of bin-indices covered by the influence

patches shown in Fig. 4.4, going clockwise around the subproblem. Each non­

empty bin in a patch points to a list of vortices lying in the region of space covered

by the bin, see Fig. 5.2. Each element of the list contains two fields: a data field,

containing such information as the vortex's position, and a link field, a pointer to

22

the next vortex in the list. A distinguished pointer, the null pointer, terminates

the list. Pack traverses the linked list pointed to by each bin in the patch and

copies data found in the list into an array, see Fig. 5.2. Unpack reverses the pack­

ing process. It copies information from a message buffer into freshly allocated vor­

tex list cells, threading each new list cell onto the head of the appropriate bin's

linked list. The correct bin address for a vortex is determined by examining the

position vector that is a part of the vortex record's data field.

An interactions list generator produces the interactions list that mapper uses

to guide the actions of pack and unpack. The load balancing library supplies some

default generators, though the user is free to write his own. A generator is

parameterized by the interaction radius and by the table of subproblems returned

by partitioner. It works by doing simple geometric operations on the table of sub­

problems. Influence patches, for instance, lie inside the subproblem, at the inter­

section of the subproblem with the subproblems of other processors extended by the

interaction radius, as shown in Fig. 5.3. For the MLC, interaction radius equals

the correction radius C. For finite difference calculations, the interaction radius

would be the radius of the finite difference stencil.

6. Evaluation

6.1. Experimentation and Evaluation Methodology

All results were obtained from runs involving the "two entraining patch prob­

lem" of Fig 2.4: the vortices were positioned on a lattice of points confined to two

circular patches placed symmetrically about the origin. The patches had a radius

of 0.12 units and their centers were 0.25 units apart. N, the number of vortices

23

used in the runs were made to vary linearly with P, the number of processors; this

is consistent with the philosophy that ever larger problems may be handled as

computational resources increase. Each processor was initially assigned about 100

vortices independent of the size of the problem, though as a result of the motion of

the particles .and of the dynamically changing partitionings of the problem, the

exact number fluctuated with time. Experiments were run on 4, 8, 16, and 32 pro­

cessors only; the problems that 1 or 2 processors could accommodate - about 100

or 200 vortices - are too small to overcome the fixed overhead costs of the finite

difference part of the calculation. Problems should have at least several hundred

vortices and preferably several thousand.

A calculation involving 3180 vortices ran for about S.4 hours on an iPSe with

32 processors. All runs lasted 64 timesteps and dt, the timestep, was O.OS. A

36 X 36 finite difference grid was used in the finite difference computations with

spacing h = 1/30. The correction ra,dius C was 2h. The bin spacing was O.Sh and

vortices, therefore, were sorted into a 72 X 72 array of bins.

Each processor recorded its own timing information and at the end of the cal­

culation sent its measurements to the host, which then wrote the data to a file.

The file contained the times spent in the various phases that made up each velo­

city field evaluation of each time step of the calculation. A separate program

reduced the raw data to determine the times spent communicating, doing localized

computation, solving Poisson's equation, doing task partitioning and so on. The

data reduction program also computed parallel efficiency, a familiar performance

metric for evaluating multiprocessor implementations. Kuck [12, p. 33] defines 1Jp

as the efficiency with p processors:

1/p =
T 11P

Tp

24

(6.1)

where T p is the time to complete on P processors. T 1 is the time taken on a

uniprocessor; in this special case P = 1, various overheads, such as communica-

tion, that would be incurred on a multiprocessor, are non-existent. By definition

1/1 = 1. Because the size of the problem scales with the number of processors, T 1

cannot be measured directly. But since partitioner conserves the total amount of

work that would be done in a uniprocessor computation, T 1 can be reasonably

approximated by summing up the completion times for all P processors.

1/p simultaneously measures three factors that degrade efficiency: (1) com-

munication overhead; (2) non-parallelizable computation that must run on only one

processor; (3) load imbalances. Another important measure is ijp, the maximum

theoretical efficiency. It measures the effect of the second factor only. This meas-

ure is important because it tells us the best that our load balancing utilities could

do were communication instantaneous and loads perfectly balanced. It therefore

provides a figure of merit for evaluating our strategy. Unlike 1/p, ijp considers

task partitioning to be work that gets done on a uniprocessor; T 1 includes the time

spent partitioning. Thus

-
1/p (6.2)

where

T 1 = T 1 + Tpartition '
. -

Tpartition is the time spent partitioning, and T p is defined as:

T p = T tf P + Tpartttion, (6.4)

i.e. T 1 ideally divides into P equal parts. Thus T p places a lower bound on the

25

time taken to run the calculation using our load balancer.

6.2. Computational Results

Consider the top and bottom curves of Fig. 6.1 that plot TIp and ijp vs. P. The

maximum theoretical efficiency is never less than 98%; our implementation of the

MLC parallelizes well and includes only a small amount of computation that must

be done on a single processor - partitioner. Furthermore, this non-parallelizable

work grows slowly with the number of processors. The observed efficiency, in con­

trast, decreases more sharply than the maximum theoretical efficiency, as the

number of processors increase. It ranges from 89% for 4 processors to 69% for 32

processors. This means that the calculations would run at worst only about 40%

(l/Tlp) slower than they would under ideal conditions. Load imbalances are the

major difficulty here; communication and other overhead are comparatively benign.

This can be seen by looking the idealized efficiency successively degraded by the

various sources of overhead, plotted in Fig. 6.1. The two new curves divide the gap

between the idealized and observed efficiency curves into three parts: the upper

part represents efficiency losses due to communication overhead, except what was

incurred in the solver, the middle part represents efficiency losses incurred by the

Poisson solver; the lower part represents the losses due load imbalances. It can be

seen that the cost of load imbalances· increases much more rapidly with the

number of processors than do the costs of the other factors. This happens because

the total communication overhead increases gently with the number of processors

and the solver overhead decreases gently, while load imbalances increase sharply.

Exclusive of the Poisson solver, communication overhead ranged from 3.1% on

4 processors to 5.5% on 32. Communication serves two purposes: (1) to manipulate

26

the finite difference grids used by the solver and (2) to do mapping. The second

activity was much less expensive than the first; mapper incurred communication

overhead that ranged from 0.2% to 1.9% of the total execution time. This overhead

was low because the partitions have simple shapes and because mapper amortizes

the iPSC's high message startup cost over the sending of several vortices in one

message. Partitioner overhead was never more than 1.6%; the recursive bisection

algorithm is fast, doing only integer arithmetic and running in time that is propor­

tional to the logarithm of the number of processors. So the total time spent in the

load balancing utilities is never greater than 3.5%.

6.2.1. Discussion

Processor idleness has been shown to be the major performance bottleneck for

the Method of Local Corrections running on the iPSC. The load balancing utilities

incur negligible overhead. The high message latency time of the iPSC appears to

have very little impact on the running time of the calculation; on 32 processors

communication accounts for no more than about 10% of total running time of the

computation. This is because communication phases are brief and occur relatively

infrequently between the much longer computation phases.

The simple work estimate mapping that partitioner uses appears to be a good

metric for dividing up work fairly; the efficiency predicted by partitioner agreed to

within 10% of what was observed. The partitioner is surprisingly effective, consid­

ering all the constraints on the way it may partition the work. Since it is recur­

sive it can render only a subset of all possible partitionings into rectangles; the

partitioning of Fig. 6.2, for instance, cannot be achieved by the recursive bisection

strategy. So far, the simple partitionings appear adequate. Although the

27

rectangular geometry of the partitions further restricts the way that the parti­

tioner can split up work, the benefits of using more complicated shapes such as

general tetrahedra would probably not be worth the trouble as the data structures

used to represent the partitions would be difficult to manipulate.

U sing a larger number of bins to keep track of the particles appears to be a

far simpler way of improving the workload balance than changing the geometry of

the partitions. Making the bins more numerous decreases the granularity of the

work represented by a bin. In the case of the e.MMP multiprocessor [14] reducing

task granularity was shown to improve efficiency, as long as the extra time spent

processing the increased number of pieces of work was reasonable. So far, an

optimum tradeoff between efficiency and the number of bins has not yet been

determined, although simulations have shown that for best results the number of

the bins should be increased when the number of processors increases. A scheme

that took advantage of the sparsity of the bins would substantially increase the

number of non-empty bins that could be accommodated with a given amount of

memory. So far sucha scheme hasn't yet been tried; the storage overhead was not

a major issue on the model d5 iPSe with 32 processors. But it would be an issue

for the model d7 with 128 processors, as well as for any machine with several hun­

dred or a few thousand processors.

7. Conclusions

A versatile low-overhead load balancing strategy has been presented. It has

been implemented on Intel's iPSe, a message passing multiprocessor, and parallel

speedups of 22 have been achieved on 32 processors running a particle-type calcu­

lation. The strategy uses a small set of utilities that may be implemented in the

28

form of a subroutine library. The library makes sense for calculations meeting the

following three criteria such that:

(1) Local interactions predominate.

(2) The computational domain partitions naturally into a
fine lattice of box-like subproblems.

(3) The time to complete each subproblem can be com­
puted in a simple way.

Thus it should apply not only to particle methods but also to finite difference

methods such as adaptive mesh refinement for treating hyperbolic partial

differential equations. Our load balancing utilities generalize to computational

domains of arbitrary dimensionality. They apply to the localized part of the com-

putation only; system-dependent calls that handle interprocessor communication

should not appear in that part of the application code. The user must provide some

application-dependent code but the code should not be difficult to write. Such code

would be similar to what is provided, for instance, in library packages that solve

elliptic partial differential equations or that do zero-finding.

Because the load balancing library supports a local memory model, it may

arrange data to exploit local memory on shared-memory architectures. Its use can

therefore avoid costly memory access conflicts by causing a high percentage of

accesses to go to local memory. The use of the local memory model comes at the

cost of redundantly storing some information but the storage overhead will be be

reasonable for localized computations. This redundant storage scheme can also

help reduce memory contention on shared-memory architectures that do not pro-

vide local memory. Memory accesses that would go to the same location in shared

memory instead go different copies of the same piece of information.

29

The proposed load balancing library may fail if workloads cannot be estimated

accurately, or if the estimate is expensive to compute. The loads may then be

poorly balanced, or the estimation phase may be too expensive to justify balancing

the workloads. Clearly the success of such a strategy is problem-dependent.

Because of the need to store information redundantly, the storage overhead of our

load balancer would be unacceptable for some calculations with strong long-range

coupling. However, if some numerical scheme could be found to weaken the long­

range coupling, then the need to store large amounts of information redundantly

could be a voided. The Method of Local Corrections, for instance, provides the

means of approximating N body interactions without entailing massive global

computation. This is possible because a logarithmic potential governs the motion

of the vortices; distant interactions can be computed by means of fast Poisson

solver and only a small fraction of all interactions need to be computed directly.

Because our load balancer can schedule tasks statically it can avoid the high

overhead associated with dynamic scheduling. Dynamic scheduling can become

necessary on multiprogrammed systems, which aren't considered here. It also

becomes necessary if the tasks don't have known completion times or if the tasks

are indivisible (See Saltz's dissertation [15] for· a discussion of how to schedule

indivisible tasks on multiprogrammed multiprocessors). Under our strategy tasks

have known completion times and are assumed to be divisible. This allows the

halancer to split them up with reasonable fairness and then to fix the assignments

of work to processors. Since the balance of work drifts slowly over time work can

be reshuffled at a convenient stopping place in the program, such as between

timesteps, rather than while the computation runs. The pack and unpack routines

30

that the programmer passes to mapper handle all the details of task subdivision.

Static scheduling is generally preferable to dynamic scheduling because processors

can access a static, local data structure to get new work assignments or to obtain

information about interdependent subproblems. This is extremely attractive on

private memory architectures that have high message startup costs but can also

reduce memory contention on shared memory architectures by reducing memory

accesses to shared information. Finally, use of a static scheduler on private

memory architectures avoids the costly reshuffling of tasks among the processors

that would occur were dynamic scheduling employed.

Our strategy also makes no attempt to assign the more heavily communicat-

ing tasks in a way that best utilizes the communication links with the greatest

bandwidth. The need to place heavily communicating tasks preferentially would

arise in calculations that do considerable amounts of communication relative to

computation, which are beyond the scope of this paper. See Bokhari's paper [4] on

the processor mapping problem for the details.

Although our load balancing strategy isn't automatic, we believe that it

achieves a better balance than the automatic schemes, such as dataflow, between

efficiency and ease-of-use:

(1) It may be implemented as a subroutine library using
existing programming languages and existing mul­
tiprocessor architectures, including those with
vector-mode capabilities.

(2) It doesn't impose on the programmer. It requires
only a few routines that depend solely on the applica­
tion.

(3) It incurs modest overhead.

31

The library can go a long way to making multiprocessors an attractive means of

solving some very difficult scientific problems.

8. Acknowledgments

I gratefully acknowledge the persistent encouragement of my advisor, W.
Kahan, and of Phil Colella, Chris Anderson, and Cleve Moler. Chris provided an
initial version of the local corrections code and Cleve a parallel Poisson solver. I
also wish to extend my thanks to Professors Paul Concus and Alexandre Chorin for
their support of this work. Professor Alberto Sangiovanni-Vincentelli generously
provided access to the iPSC at Berkeley. Many thanks go to Mark Dippe for sug­
gesting a subdivisive strategy at an opportune moment.

Additional support for this work was sponsored by: the National Science
Foundation, grant # DMF84-03223; the State of California, California Microelec­
tronics grant # 532429-19900; Intel Scientific Computers, a division of the Intel
Corporation; and the Defense Advance Research Projects Agency (DoD), Arpa
Order No. 4871, Monitored by Naval Electronic Systems Command under Contract
No. N00039-84-C-0089. AFOSR helped with travel expenses.

9. References

1. C. R. Anderson, "A Method of Local Corrections for Computing the Velocity
Field Due to a Distribution of Vortex Blobs, in press, 1985.

2. Arvind and R. E. Bryant, "Design Considerations for a Partial Differential
Equation Machine," Scientific Computer Information Exchange Meeting,
Livermore, California, 12-13 September 1979, pp. 94-102.

3. M. J. Berger and S. Bokhari, "A Partitioning Strategy for PDES Across
Multiprocessors, Submitted for publication to IEEE Trans. Comput., 1985.

4. S. Bokhari, "On the Mapping Problem," IEEE Trans. Comput. C-30,3 (1981).

5. A. J. Chorin, "Numerical Study of Slightly Viscous Flow," J. Fluid Mech.
57(1973), pp. 785-796.

6. A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid
Mechanics, Springer-Verlag, New York, 1979.

7. J. B. Dennis, G. Gao and K. W. Todd, "Modelling the Weather with a Data
Flow Supercomputer," IEEE Trans. Comput. C-33,7 (July 1984), pp. 592.

8. M. E. Dippe and J. A. Swensen, "An Adaptive Subdivision Algorithm and
Parallel Architecture for Realistic Image Synthesis," in SIGGRAPH '84
Conference Proceedings, ACM, Minneapolis, July 1984, pp. 149-158.

9. M. A. Z. Dippe and E. H. Wold, "Antialiasing Through Stochastic Sampling,"
Computer Graphics 19,3 (July 1985), pp. 69-78, ACM. Also appeared in the
SIGGRAPH '85 Conference Proceedings.

10. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles,
McGraw-Hill, 1981.

32

11. iPSC User's Guide, Intel Corporation, Beaverton Oregon, October 1985.
Order Number: 175455-003.

12. D. J. Kuck, The Structure of Computers and Computations, Vol. 1, John Wiley
& Sons, New York, 1978.

13. C. B. Moler, "Matrix Computation on Distributed Memory Multiprocessors,"
Proc. 2nd Conf. on Hypercube Multiprocessors, Knoxville, TN, September
1986. To be also published by SIAM.

14. P. N. Oleinick, "The Implementation and Evaluation of Parallel Algorithms
on C.MMP," CMU-CS-78-151, Dept. of Computer Science, Carnegie Mellon
University, November 1978. Ph. D. Dissertation.

15. J. H. Saltz, Parallel and Adaptive Algorithms for Problems in Scientific and
Medical Computing, Dept. of Computer Science, Duke University, 1985. Ph.
D. Dissertation.

16. C. L. Seitz, "The Cosmic Cube," Comm. ACM 28,1 (January 1985), pp. 22-33.

33

FIGURES

. "

. . . . ,
··········r········T·········t···········r·········rx··T·········r·······:T·········r········
........... ~ ~ + ~ ~ + ~ ~ +

I I I I I I I I I ···········!···········]"·········T·········r·········r·········[··········r····j'··········r··········
; [. l 1 ; l . ;

............. ! -.- .. ~ ~ ': -..... ~-- "Of _._ ! ~ ~ 0--'·

~ ~ 1 ~ 1 ~ ~ ~ 1

, , ' '-++1-,--
.. -........ ~- -... --!.-- ~ ..•. -....... ~

j I I I
:1'1":

~=~==~= ··········l···········I···········r·········l·

Fig. 2.1.
Vortices, shown as x's, get sorted into bins, demarcated here by hy­
phenated lines. Associated with each bin is a pointer to a list of
votices that lie within the bin's region of space. In practice, the bins
are much smaller and more numerous than shown here. Each shaded
region designates the domain of dependence for the bin at the region's
center, with C = 1. The region contains all the vortices that
influence those in the bin, and includes the bin itself .

35

I
I
I

I x I I
I

Xl X
I I

Xl
I

xl

I
I X I I

xX Xj Xx :

I Xi ? ~X X I
XI i XX;
xxi Xi

i
I :

X Xx I . X I "x!
-HXi I X Xx X XXl X X I

I I I I

Fig. 2.2.

Partitioning the computational domain among four processors. Each
processor computes on its assigned region of space only.

.: or .~I· U . r.

36

..
~----~~~~.~~:~~~l~~~::~~>-··~~~.----~

. . .; :'" .. :..: ..
"1:..:. L·.:·'"

T= 10.000 10.000

Fig. 2.3.
Partitions with (a) equal areas and (b) amounts of equal work Each
dot represents a vortex and also a unit of work The calculation began
with 2 patches of vorticity of radius 0.120 with centers separated by
0.25. Each patch had 732 vortices, placed evenly on lattice points
spaced 7.5XIO- 3 units apart.

•

37

... ..

.., :a.

4' •• ,t :. ,'f:

~
}: ~-'-

~ .. ' .
'\ ~ .. '"', • .'II! I=:-,.:.a.. ___ --I

:i~ ~;

I. .:..

, • 0.000

.:'!'.

~.'.'-"
;~ ..

"01 d I...., ,..

T • 5.500

. ' . V ...
L!..~ ••

~r:-' _,.

" l
'-1-", ;" :

T 1= 10.000

Fig. 2.4.

fl';.

T .- 2.000

t' ••

.... ~
" • I •

-.,;4

Tea 7.500

"~' '(. . . "~ .
•. ~ . ~ ~l

I----,~ .. : ::~

T = 12.000

TI 4.100

:,'
~ ... " .. ~

, .: .
...• ,'~- . .,:,

'':i)
.' .
"

T I 8.500

~ •..
", .', ,: ."

'- .-
t----:t~~. ~ l~,

I

'1 : _~'
':

,.~. :

T = 13.500

The distribution of 1464 vortices changes with time, so the work must be
periodically repartitioned. This series of snapshots was taken from the
same calculation used to produce Fig. 2.3 .. The calculation consumed 11
minutes of CPU time on just one processor of a Cray X-MP /22.

Fig. 3.1.
Recursive bisection.

x

x

X r-
X_---4

x x x
x

x
@ x

x

Fig. 4.1
Some of the interactions computed on vortices in the shaded regions
involve vortices assigned to different processors.

38

'.

x
[0] Ii [1]

X XX
Xx " x -- ---------------

X xl ,
[0]

j

[1] xl x x x
i

x i
X X X

x x x --i---------------
Xi :

[2] [3] [2] [3]

Fig. 4.2
Only processor O's private bins are shown. (a) Initially vortices lie
only in bins owned by the processor. However, some interactions in­
volve vortices owned by other processors so (b) mapper fills in the
processor's dependence region with those vortices.

ID

®

Fig. 4.3
Processor O's (I) influence region and (D) dependence region. The oth­
er processors view these regions as parts Of their dependence and
influence regions, respectively.

39

r---_-='I D_._----..,

@

@ @
D

@

I
D

@

@

Fig. 4.4
Procesors O's (I) influence patches and (D) dependence patches.

Influence Dependence In teracting
Region Region Processor #

Origin Shape Origin Shape

(1,2) 3 x 1 (1,3) 3 x 1 1
(2,2) 1 x 1 (3,3) 1 x 1 3
(2,1) 1 x 3 (3,1) 1 x 3 2

Fig. 4.5
Processor O's interactions list describes the interactions of Fig. 4.4,
giving both the shape and location of the interacting regions of space
and the external processor involved in each interaction.

40

.. '

..

x x x
, , ,

x ,
:x , , ,

x , ,
,---+ , , , x , ,

Fig. 5.1
Vortices must be migrated when (a) boundaries slide past vortices, (b)
vortices slide past boundaries, or both.

x y wi x Y wi

x y w

Fig. 5.2
Vortices in the unpacked form, linked into bins, and in the packed
form, stored contiguously in an array.

41

x

Interaction Radius
Fig. 5.3

Determining influence patches for partition O. Each patch lies in the
intersection of the partition with all interacting partitions extended by
the interaction radius.

42

~

..
•

, ..

1.00
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
·0.91
0.90
0.89
0.88
0.87

EO.86
0.85

fO.84
fO.83
i 0.82
c 0.81
.0.80
10.79
eO.78
nO.77
c O.76

0.75
YO.74

0.73
0.72
0.71
0.70
0.69
0.68
0.67
0.66
0.65
0.64
0.63
0.62
0.61
0.60

Fig. 6.1

Efficiency over 64 time steps
······_-_·························--·r················ _-

: : : : ; ···············-:-····································i:'::::::Max::iheoJ-:::;
· . . . · . , _0• ___ ... _._.0' •...................... _ _ .. _ _ _. ____ __ _ ~ · . . . · . . . · . . ,

..•••••••••••• _- •••••••••••••••••••• ; ••••••••••••••••••••••••• -_. __ ••••••• :. _--- ••••••••••••••••••••• .j._-_ •• _- •••••••••••••••••••• _-- •••••• ,

:~~:JJ~:~~1:~:;~~:;~;:;¥:~;~:L1nJ~~L!
••••••• _ •• _._. __ •••••••••• ":=o. ••••••• __ ~ •••••••••• _._. __ ._ ••• _ •••• _ •••• _ •••• ~ •••••••••••••••••••••••••••••••••••• ..: ••••••••••••••••••••••••• __ •••••••••• :

..... : : : :

i~~~~~~~~+~~~~;~~$~~L~L:
ILr:i

...... -......... -... -.. --...... -.. -...... ··l···· -" --.... ~ -. ~
: : : :

f]T~~E~~~~~j
:::::::::::::::::::::::::::::::::::::;::::::::::::::::::::::::: .. ::::":::+::::::::::::::::::::::::::::::::::::1:::::::::::::::::::::::::::::::::::::1
" ••• - - - •• - ••••• - •••• -. - •••• .o ••• - •••• f············ _. _ ... --........ --.... -: -... -1' -...... ~

::::::':::::::::::::::::::::::::::J:::::::::'::::::::::::::::::::::::::F::::::::::::::::::::::::::::::::::F::::::::::::::::::::::::::::::::::l

:'r'?~~e,:~~~J
....... -........................ -.... ~ -. --- -r'" .--.. -.... _- ____ po •••• - •• ,:. - ••••••••••• --- •••••• _ ••••••••• ··-'·1
...... -.. --.... -- .. -................ -! -.- [..... -.- .. -......................... ·1···· -..................... -.-.- ~

.............. -...................... ~. --. _ --- .---................... -r -........ -..... ·1···· -... '." .. ' i

.......... -.......................... ~ -.. ----.-.................... + ... -... -.. --..... -......... -...... ··1··-··················-···············1
·····································r·····--········· ! --.---........ ----...... -····1········-·······-·-·······-··········1

:::::::::::::::::::::::::::::::::::::;::::::::::::::::::::::::::::::::::::+::::::::::::::::::::::::::::::::::::r::::::::::::::::::::::::::::::::::::;

4 8 16
Processors

32

Efficiency vs. the number of Processors. The top curve gives the max­
imum theoretical efficiency that would be attained under idealized
conditions. The bottom curve gives the observed efficiency. The two
curves in the middle divide the efficiency losses represented by the gap
between the upper and lower curves into 3 regions that correspond to
losses due to communication, the Poisson Solver, and and to load im­
balances, respectively.

43

44

.. . _,

Fig. 6.2
The recursive bisection strategy cannot render this partitioning

~'
)

..

•

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable .

,)

~," "" ...

LA WRENCE BERKELEY LABORA TOR Y
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

t.,

-

