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ABSTRACT OF THE THESIS

Modeling and Control of Ibuprofen Crystal Growth and SizestDbution

by

Anh Tuan Tran

Master of Science in Chemical Engineering
University of California, Los Angeles, 2015

Professor Panagiotis D. Christofides, Chair

In this work, we focus on multiscale modeling and control afegeded batch crystallization
process used to produce ibuprofen crystals. For the magefithe crystal growth process, we
consider kinetic Monte Carlo (kMC) simulations comprisimignolecule adsorption, desorption,
and migration type microscopic surface events. To accaurgrowth rate variability, we propose
a model for growth rate dispersion (GRD), based on availakfeerimental data, which will be
applied at the individual crystal growth level in the kMC silations. Finally, a model predictive
controller (MPC) is developed in order to control the cr{siae distribution of ibuprofen in the
batch crystallization process and the MPC closed-loopoperdnce is compared against constant
temperature control (CTC) and constant supersaturatiotrao(CSC) policies. The proposed
MPC is able to deal with the constraints of the control prohlén addition to minimizing the
spread of the crystal size distribution in a superior fasliompared to the other control method-

ologies, which improves the crystal product quality at thd ef the batch.



The thesis of Anh Tuan Tran is approved.

Yoram Cohen

Dante Simonetti

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2015



Contents

1 Introduction 1
2 lbuprofen Crystal Growth 3
2.1 Kinetic Monte Carlo Modeling and Simulation . . . ... .. ... ...... 3
2.2 RateEquations . . . . . . . . . . 4
2.3 GrowthRate Dispersion. . . . . . . . . . . . e e 6
2.4 Fitting the KMC Model Parameters to Experimental Result . . . . . . . .. .. 8
3 Batch Crystallization 10
3.1 Energy and Mass Balance Equations . . . . . . . ... ... ... ...... 10
3.2 Volume Calculation . . . . . . . . .. 11
3.3 Model Predictive Control . . . . . . .. . . ... . e 13
4 Closed Loop Simulations 16
4.1 MPCPerformance . . . .. . . . . . . . e 16
4.2 Comparison of MPC Performance With Other Control Sgjiee . . . . . . . . .. 20
5 Computational Performance and Scaling 24
6 Conclusions 27



Bibliography

28



List of Figures

2.1 Growth rate versus supersaturation for the (001) and)(€ices for the kMC
model. Additionally, the experimental results from Nguyetral. [24] and the
trendline from Rashid et al. [30]are shown. . . . . .. .. ... ...

3.1 Geometry of the ibuprofen crystal. Labels show the (1@®1)1), and (011) faces,
as well as the interfacialangle, . . . . .. .. ... ... .. ... ....... 12

4.1 Concentration, supersaturation, and temperatureyemalized time for MPC
showing results for starting temperatures@520°C, 25C, and 30C. For the
temperature plot, the dotted lines represent the jackgteéeature Tj, for each of
theruns. . . . . . e e 18

4.2 Crystal volume distribution for MPC showing results &iarting temperatures
15°C,20C,25C,and 30C. . . . . . . . . 19

4.3 Crystal shape distribution for MPC showing results farting temperatures 1€,
20°C,25C,and 30C. . . . . .. e e 19

4.4 Concentration, supersaturation, and temperaturesvemalized time for CTC,
CSC, and MPC. For the temperature plot, the dotted linessept the jacket
temperature];, for each of the runs. Additionally, it is noted that both C&zl
MPC follow a very similar path in the concentration plot Uithie veryend. . . . . 22

4.5 Crystal volume distribution for CTC, CSC, and MPC at thd ef the batch. . . . . 23
4.6 Crystal shape distribution for CTC, CSC, and MPC at thieadrihe batch. Please

note that one bar from CSC has been placed in front of MPC dtreettact that it
was completely covered bythe MPCbars. . . . ... .. ... .. ... ... 23

Vi



5.1 The number of cores versus the average amount of time&eeda finish the batch
simulation. Error bars are shown as one standard deviat®nl® simulations for
each batch run. The best fit line has equation: t#n@3.795cores?®938 with an

RZ=10.9982. . . . .\

Vil



List of Tables

2.1

3.1

5.1

Parameters for faces (001) and (OlléL at2. . ...

Parameters for faces (001) and (011)'5&& 2. Please note that the ranges are
given for the slurry density and specific heat capacity stheg are calculated by
composition of the slurry throughout the entire simulatibhe model parameters

adopted from [40,24]. . . . . . . . e 11

The time to finish each simulation for varying number oksaand the correspond-
ing speedup and strong scaling. Please note that the speedafined aél%lt”,
wheret; is the time the process takes on 1 core grid the time the process takes

ONNCOIES. . . . . . . o e e e e e e e e e e e e e e e e e e e e

viii



ACKNOWLEDGEMENTS

| would like to thank my advisor Professor Panagiotis D. €lofides for his guidance and
support throughout the course of the thesis.

| would like to thank Professor Dante Simonetti and Profe¥soam Cohen for participating
in my Master’s thesis committee.

This work was submitted with the same title for publicatiarChemical Engineering Science
and is co-authored by Michael Nayhouse(*), Joseph Sangvbri{(*), Marquis Crose(*), Profes-
sor Gerassimos Orkoulas(***) and Professor Panagiotis Brigibfides(*)(**). | would like to

acknowledge their contributions to this thesis and expgesat thanks for their help.

* (*)Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
USA. (**)Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA. (***)Depart-
ment of Chemical Engineering, Widener University, Chester, PA 19013 USA.

IX



Chapter 1

| ntroduction

Crystallization is a key separation process in the pharotaia industry which is estimated to be
over a $1 trillion per year industry. Itis used for drug puwafiion, separation, and pre-formulation.
A key consideration in crystallization is that in order tchmwve desired crystal product quality,
the process environment must be controlled appropriat@tizerwise, the target drug could lose
purity, stability, and bio-availability.

Simulation techniques are valuable tools that can be usedystal growth modeling which
usually consist of equilibrium Monte Carlo (MC) and kineliftonte Carlo (KMC) simulations, as
well as molecular dynamics (MD) simulations [23]. A wellitten book by [8], in addition to a
review by [36], go into detail about the development of th&iseulation techniques. In regards to
crystallization, MD simulations are quite helpful when kaoy at how molecules move and how
they are incorporated into the crystal, however, the leagthtime scales of MD simulations make
them difficult to use for process modeling [23]. On the othandh kMC simulations allow for
more realistic length and time scales by using rate equatioett describe different microscopic
phenomena. To this end, kMC simulation methods have beeslyvitsed to simulate molecular-
level phenomena like crystal nucleation, growth, and agagien [1, 4, 5, 12, 13, 33, 34, 42,
14, 18, 20, 19, 16]. Furthermore, KMC simulation methodsehlagen successfully applied to

compute the net crystal steady-state growth rate accayfdimhe dependence of the desorption
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and migration rates on the local surface micro-configunatitr that reason, we look to investigate
the batch crystal growth process of ibuprofen, one of thetmadely used non-steroidal anti-
inflammatory drugs (NSAID), via kMC simulations in this wotRue to the lack of availability of
primary nucleation rate data, we will consider a seededhbatygstallization process and keep the
supersaturation at low enough levels that the impact ofeaticdn and crystal fines formation will

be minimal compared to the amount of crystals seeded to gtersy

Ibuprofen works by reducing prostaglandins, which are theriones causing inflammation
and pain in the body. These are usually referred to as locattiwes since they only act close to
the location where they are produced. Although they areftigtptially since swelling will restrict
injured areas and increased blood flow will assist in healomgger term pain is undesirable. Thus,
many different types of painkillers are used, where ibugmofs one of the most common and
widely available choices. In the US, ibuprofen brand Advésathe top over the counter (OTC)

brand by revenue in 2013 with just over $490 million.

More specifically, we first model the ibuprofen crystal grovgrocess. In order to do this,
we investigate the growth rates of the (001) and (011) fae@s\kMC simulation model. To
account for variability in experimental crystal growtheatata, we develop a model for growth
rate dispersion (GRD) since this phenomenon is known tactifeiprofen crystal growth rates
and this model is applied at the individual crystal level.teAfthat, a seeded batch crystallizer
will be considered, requiring the development of mass aretggnbalances for the modeling of
the continuous-phase variables and this macroscopic meda®imbined with the microscopic
crystal growth model. Finally, the crystal size distrilautiwill be controlled by a model predictive

controller (MPC) and compared against classical contrategies used in industry.



Chapter 2

|buprofen Crystal Growth

2.1 Kinetic Monte Carlo Modeling and Simulation

In the present work, we will use kinetic Monte Carlo (kMC) silations in order to model the
growth rates of ibuprofen crystal faces since crystal ghoiwta non-equilibrium process. Un-
like equilibrium Monte Carlo simulations, kMC simulatioadd an element of time by using rate
equations representing different microscopic phenomeénghermore, this allows modeling the
dependency of the crystal growth rates on the surface ntiendiguration, in addition to the ability
to consider individual crystals, thereby allowing for a moealistic model for growth rate disper-
sion. Ibuprofen has unit cell parametersief 14.397A, b= 7.818, c= 10.5064, andB = 99.70°
with four molecules per unit cell [38, 39]. For this work, weallveonsider anN x N lattice with
one molecule per lattice site and periodic boundary comkti The types of microscopic events we
consider in our kMC simulations in order to model the crygtawth are adsorption, desorption
and migration. Nearest neighbor lists will be used to aidecbmputational efficiency when cal-
culating the total rates for each of the microscopic phem@nf8]. The rate equations considered
in this work are set up similar to that of Durbin and Feher f@ozyme [7], however, they have
been modified to account for available growth rate data gfiibien on the (001) and (011) faces

[24]. Cano et al. [2] reported data for all three faces ({(@01), (011), and (100)), however, they
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conducted their experiments at very low supersaturatios- (0.013) which is much lower than
the supersaturation range of our studys@< o < 1.20), and thus, we were not able to use their
data for comparison purposes in the present study. If mdeel#scomes available in the future for
the (100) face, then the dynamics of the (100) face can elasiiptegrated into the present kKMC

simulation model.

2.2 RateEquations
The per-site adsorption rate is defined as:
ra - Kaa, (21)

whereKj is the adsorption coefficient aralis the relative supersaturation of the system defined

by Eq. 2.2 below:

*

m|

il
o=E

(2.2)

*

m|

wherel is the ibuprofen conteng is the ethanol content, ar@ is the solubility. The solubility
will be taken from [28, 29] and is defined as

I*

£ = 0497+ 0.00102672, (2.3)

with temperaturd defined in degrees Celsius. Since we considéd arN lattice model, the total
rate of adsorption is simply

W, = Nr,. (2.4)

Unlike adsorption, the rates of desorption and migratidnbeidependent on the local environment
at each lattice site (i.e., number of nearest neighborssaite). When a particle has a high number
of nearest neighbors, a lower desorption/migration ratebeiassociated with this site due to the

fact that the particle is more stable in its current locatibikewise, when a particle has very few

4



or no nearest neighbors, that particle will have a higheoge®n/migration rate. Thus, we will

use an Arrhenius type equation for the per-site rate of giswr, ry, which is defined as follows:

ra (i) = Kq exp(—i%), (2.5)

whereKg is the desorption coefficient,js the number of nearest neighbors for the current lattice
site ranging from zero to four (N, S, E, W directiong)y, is the binding energy per bonkk is the
Boltzmann constant, andis the temperature in Kelvin. In order to find the total ratdesorption,

we sum over the entire lattice. This can be done in a simplebyayking advantage of the fact
that there are five different types of local environment$eathan checking each individual lattice

site requiring an CQNZ) calculation. Thus, the total rate of desorption is

4
Wy = .%Wdi; Wdi = Mirg (I) ) (2.6)

whereW, is the total rate of desorption for lattice sites withearest neighbors arld; is the
number of lattice sites witl nearest neighbors. Migration works in an analogous way and i

defined as follows:

rm(i) = Kmexp(—i%), (2.7)
4
W, = .Z)Wm; Wy = Mirm (i), (2.8)

wherery, is the per-site rate of migratioly, is the migration coefficient\, is the total rate of
migration, andMy, is the total rate of migration for lattice sites witmearest neighbors. Lastly,

the amount of time elapsed when an event occurs is definee iiollowing way:

At =—In(1-2) Mo, (2.9)

where( is a uniform random number, i.€,= [0,1), andWgt = Wa + Wy + Win.
A coarse-grained model could be adequate for the purposeropuating the crystal growth
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rate. However, the kMC simulation is employed to computeniecrystal growth rate accounting
for the dependence of surface migration and detachmerst oaténe surface micro-configuration.
Furthermore, the evolution of the crystal shape, which asented by the ratio between the
heights in the direction of the (011) and (001) faces, is remtiéhrough the KMC simulation.

Lastly, the kMC simulation can be used to predict the crygtaivth dynamics at the operating

conditions where experimental data are not available.

2.3 Growth Rate Dispersion

Growth rate dispersion (GRD) is a well-known phenomenonretwystals of the same type,
undergoing seemingly the same conditions, grow at difterates. More specifically, growth rate
dispersion is defined as the variation in growth rates unged thermodynamic and hydrodynamic
conditions. The growth of crystals is mainly caused by thedfer of solute molecules from the
bulk to the kink sites on the crystal surfaces. Therefore gitowth rates of the different crystals
are determined by the interplay between the mechanism &fdite formation and the transport
of solute molecules to the crystal surface, both of whichstoehastic processes. Furthermore,
the densities of kink sites and their evolution are funiohthe temperature and supersaturation
but also functions of the surface micro-configurations. 48, 17, 26, 11, 25]. Previous models
that describe this process include the constant crystaitgr@CCG) model [9, 22], the random
fluctuation (RF) model [26], and the fast growers, slow gnesn&GSG) model [6, 37, 10]. In
the CCG model, a distribution of crystals has a distributbgrowth rates and individual crystals
adhere to a specific growth rate from that distribution dyithre entire period of growth [22]. The
RF model requires individual crystal growth rates to flutéuaround an average value. Lastly, the
FGSG model states that small crystals will grow at lower ghonates compared to the larger ones.
In the present work, we account for GRD in a way that is sintibathe constant crystal growth
(CCG) model by randomly giving each crystal a uniform randammber,{grp, at the start of the

simulation of each crystal growth process, which will bedusecalculate the GRD factor for each
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crystal. More specifically, GROor each crystal will be computed separately in the follaywivay:

: (2.10)

GRDy — 2CGRDZGRD+ (1_ CGGRD) 7
whereCgrp is the GRD constant and will be calculated to fit experimedtth of ibuprofen
crystal growth rate dispersion. It is noted that GRB dependent ow due to the fact that error
bars became too small at lower supersaturation values arartge at higher supersaturation values
when fitting to experimental data without having this deprwe. The results of this fit is presented
in the next subsection. The GRD factor will affect the ratad$orption (i.e., each crystal will have
a slightly different rate of adsorption depending on {agp assigned to that crystal at the start of
the simulation). This will allow for variation in the growtfates in a manner consistent with the

experimentally computed values and it will be explicithyffided in the following way in this work:
OGrb = OGRD;. (2.11)
It is noted that in order for this change to take plaaggrp will replaceo in Eq. 2.1 to give
ra = KaOGRrD. (2.12)

We used the kinetic Monte Carlo model to describe the crgstakith rate process determined
by surface mechanisms such as solute molecule adsorptigrgtian, and desorption processes.
Then, this microscopic model is integrated with the maaspscmodel such as mass and energy
balance equations for the crystallizer to construct thetisudle process model which is used to
simulate the batch crystallization process. Within thistegt, the minor fluctuation in the protein
solute concentration and the temperature in the crystakime to Brownian motion is disregarded.
In the future, by adopting a molecular level approach, wdddirectly model the growth rate
dispersion in the crystallizer at a molecular level. Corhpresive reviews on multiscale modeling

can be found in [44, 43, 3, 35].



2.4 Fitting the kMC Mode Parameters to Experimental Re-

sults

For a given set of simulation conditions comprised of terapee, ibuprofen content, ethanol
content, and water content, the kMC simulation methodolgy GRD model described earlier in
this section result in growth rate values of ibuprofen fa (801) and (011) faces over a range of
supersaturations. In Fig. 2.1, ibuprofen crystal growtegare modeled at 95% ethanél,: 2,
and a relative supersaturation range @d8< o < 1.20. The growth rates at each point in the
kMC are produced by averaging 640 independent crystal rutisthe error bars representing
the standard deviation. Results are compared to experaingrwth rates at 95% ethanol from
[24], as well as a best fit line given by [30] which has the emque® = kgs, wherekg = 15 and
S= IE — lE While [30] gives an overall growth rate for the crystals4][presents the growth rate
data in the direction of the (001) and (011) faces separately

The model parameters used for the KMC simulations are list€dble 2.1. AdditionallyCgrp
was found to be @7 resulting in an average coefficient of variation (CV) foe KkMC simulation
data to be 0.14, compared to 0.12 given in [24]. Also, the kM@&ngh rate data for the (001) and
(011) faces were fit using a least squares linear regressooielmvhich will be used later in the

model predictive controller. The results of this fit are
Goo1 = 24.8430 — 15.564, (2.13)

and

Go11= 244120 — 7.2772 (2.14)

It is noted that size effects of the lattice were consideratirasults fronN = 15 and larger were

consistent and showed no change in results. So, for this Woslas set to 20 in order to ensure
consistency without being too large, thereby causing anmeamptial increase in required simulation
time. In this work, the effect of lattice size used in the kM@glation on the crystal growth rate
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is minimal in comparison to the effect of lattice sized usethe kMC on the surface roughness of
the crystal surface (a variable that is not of interest ingfesent work; the interested readers may
find more information in [15]). Therefore, we can disregdne tinite size effect of the lattice size

on the growth rate

25 T | T | T |
- e--e 001 face (KMC) E 1
011 face (kMC)
. 20 a4 001 face (Nguyen et al.) ]
= v 011 face (Nguyen et al.)
= B —— Rashid et al. 7
€ 15+ /HJ/E .
[ o . -
s } ii B}
s | P )
_ E}‘_Eg--}?’ _
U ) l . l . |-
0.6 0.8 1.2

1
supersaturationo)

Figure 2.1: Growth rate versus supersaturation for the)(@ad (011) faces for the KMC model.
Additionally, the experimental results from Nguyen et &4]and the trendline from Rashid et al.
[30] are shown.

Parameter | Value | Units

Epo/ks (001) | 17.47 | K

Epb/ks (011) | 125.20| K

Ka 380 |sect
Ky 270 | sec!
Km 300 | sect

Table 2.1: Parameters for faces (001) and (OlJ'E) at2.



Chapter 3

Batch Crystallization

3.1 Energy and Mass Balance Equations

The energy and mass balance equations which calculate @ingeln temperaturd,, and ibupro-

fen content], are given by the following ordinary differential equatson

dat ot T-Tj), T(0)=T, 3.1
dt pslurr)Cstlurry dt pslurr}ppvsmrry( J) ( ) 0 ( )
d dv

wherep. is the density of the crystal phasii. is the enthalpy of crystallizatiomsjurry is the
density of the slurry phas€, is the specific heat capaciyry is the volume of the slurry phase,
V. is the total volume of all the crystalsis the timeU; andA; are the overall heat transfer coeffi-

cient and area between the jacket stream and the crystatéspectively, andj is the temperature

of the jacket stream. Additionallyfp andlg are the starting temperature and ibuprofen content of

the batch system, respectively. The values for these paeasrare given in Table 3.1. Adding an
energy balance equation in order to take into account theejaemperature dynamics would not

significantly modify the practical implementation of thentller.
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Parameter Description Value Units
Oc crystal density 1030 | mg/en?
AH. enthalpy of crystallization -112.95| kJ/kg
Pslurry slurry density 485-510| mg/cn?
Cp specific heat capacity 1.85-2.0| J/gK
A surface area of crystallizer wall 0.25 m?
Uj heat transfer coefficient of crystallizer wall 1800 | kJ/n*hK

Table 3.1: Parameters for faces (001) and (OlJ'@ at2. Please note that the ranges are given for
the slurry density and specific heat capacity since theyaoeilated by composition of the slurry
throughout the entire simulation. The model parameterptaddrom [40, 24].

3.2 Volume Calculation

In order to properly calculate the mass and energy balamoestihat require volume change in-
formation, we first need to accurately estimate the voluméhefibuprofen crystals. In order to
do this, we need to know the height for all three faces (i@}, (011), and (100)), along with
the interfacial anglex. Since we explicitly model the growth rates for the (001) &ntil) faces,
we can easily determine the heights of the (001) and (01&sfaOn the other hand, for the (100)
face, we will use visual approximation from [27] to estimésarelative height. The results of this
approximation show that the (100) face is roughly 4 to 8 tisles/er growing than the (001) face.
Thus, we will assume:

h
h100 = %1, (3.3)

wherehigp and hgpy are the heights of the (100) and (001) faces, respectivaedgoi®l, we will
use the images provided in [24] in order to measure the ext&ff angle,a, as a function of

supersaturation. Using these images, we found the folipwefationship:

a = —14.3680 + 10541°. (3.4)
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With the use of Egs. 3.3 and 3.4, the volume of each crysta ésg., Fig. 3.1) can now be

calculated in the following way:

4hoo1 a
Verystal = —— g+ <2h011_ hOOlcOS(_)> h100. (3.5)
sin(%) 2
We used the kMC model to describe the crystal growth ratega®at the microscopic level
accounting for surface mechanisms such as solute moledsi@tion, migration, and desorption
processes, as well as accounting for growth rate dispersityen, this microscopic model was

integrated with the macroscopic model such as mass andyen@i@nce equations to construct the

multiscale process model which is used to simulate the batdtallization process.

(100) (001)

(011)

Figure 3.1: Geometry of the ibuprofen crystal. Labels shiogv(L00), (001), and (011) faces, as
well as the interfacial angley.
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3.3 Model Predictive Control

In the seeded batch crystallization process of ibuprof®C lsimulations are considered for the
crystal growth process via adsorption, desorption, andati@n type microscopic surface events.
The growth rates produced by these simulations are direekfed to the supersaturation of the
system, which can be modified by changing the temperatufgegatket which is in contact with
the batch reactor. In this section, a model predictive adietr (MPC) is presented for seeded
batch ibuprofen crystallization control. MPC is used inartb provide optimality, robustness,
and constraint handling in the batch crystallization psscd40, 41, 20]. In particular, the ob-
jective of the MPC will focus on minimizing the crystal sizesulibution by computing a set of
optimal jacket temperatures over the length of the preahdtiorizon. The main reason shape con-
trol is not directly considered in this work is due to the fdwt the shape of ibuprofen crystals is
more dependent on the solvent choice rather than the batgietature. Additionally, an actuator
constraint on the rate of change of the jacket temperatunggesed, as well as a constraint on the
temperature and supersaturation of the system so thaatiization will take place in an appro-
priate environment to avoid damaging the crystal. Furtleeenthe growth rates will be modeled

via Egs. 2.13 and 2.14 in the MPC. Lastly, the energy and massite equations are considered
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(i.e., Egs. 3.1 and 3.2). The formulation for the MPC devetbm this work is as follows:

p My 2
minimiz Veet— — | /Vk
Tj71,...,Tj_’i,...,%_p i; <( set Mo) / Set)

. M
subject to % =GyoMo, Mo=5x10°

Goo1r=24.8430 — 15564,  Gp11= 244120 —7.2772

~ Goo1
Gio0= 5
1 _ | *
o=EE  — =0497+0001026"
E E
. 4<h001> a
(Verystal) = sin(2) <2<h011> — (hooy) COS(g)) (h100) 6)

(h) = (M (ti—1)) + GkA

dT phHe  dM; UiA;
T e & pamea (T TO=To
dt pslurr)ppvslurry dt pslurrprVsIurry
di dM,
at = Pegr 1(0) =1lo

Tjis1—T
Tmin < T < Tmax, LH_lA = ’ < 2.0°C/min

Omin < 0 < Omax
i=212....,p, ke{001011100}

wherep = 10 is the length of the prediction horizah= 40 is the sampling time in second&etis
the desired average volume set poiWtysta) is the average volume of the crystal distributidp,
is the jacket temperatur@; ; is the jacket temperature at thh prediction stepihy) is the average

height on face&, andMg andM; are the zeroth and first moments of the crystal size distabut

respectivelyMg represents the total number of crystals dhdrepresents the total volume of the

14



crystals. It is noted that since we consider a seeded bagshatlizer without nucleationylp will
be constant for this work. If nucleation data was availathlen it follows thatMy would need to
be a variable in the control problem given by Eq. 3.6 and moresiclerations would be taken to
attempt to minimize the presence of crystal fines. Additilgn&, is the volumetric growth rate
and is calculated by finding the change in average crystainvel Finally, values 0y, = 0.6,
Omax = 1.3, Tmin = 10°C, andThax = 40°C are used for this work. The set of optimal jacket
temperatures along the prediction horizon is obtained tyirsp Eq. 3.6 in a receding horizon
fashion with IPOPT, an open source software package foedacgle nonlinear optimization. The
first value,T; 1, is then applied to the system until the next sampling timeméanew set of optimal
jacket temperatures is calculated.

The interested readers may find more detailed analysis amdlihg of the effect of model

parameter uncertainty on the optimal jacket temperatajedtories in [31, 32, 21].
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Chapter 4

Closed Loop Simulations

For the seeded batch crystallization simulations, we iinyate the crystal size and shape distribu-
tions. The same initial conditions, other than startinggemature, are used in every simulation to
ensure consistency. For this work, the initial conditiohthe seeded batch reactor &g ent=
400mL (95% ethanol)e = 2, Isiarr= 6 x 10°mg, andVlg = 5 x 10°. Each of the simulations is com-
pleted when the average crystal volume reaches the set Ydaint (150;1m)3 =3.375x 10Pum3.
Due to the nature of the batch process and the dependence gfawth rate on the supersatura-
tion and temperature trajectories, the time to finish eactulsition will vary. To deal with this,
we will consider a normalized time to compare the differemtgations, i.e., 0 at the start of the
simulation and 1 when the batch has reactigg Also, it is noted that the kKMC simulations are
run with constant batch parameters (i.e., temperatur@rdfen content, and supersaturation) for
0.333 seconds. At that point, Egs. 3.1 and 3.2 are calculaliesysdem parameters are updated,

and this process is repeated until the end of the simulation.

4.1 MPC Performance

In this subsection, we investigate the closed-loop peréore of the proposed MPC scheme to

regulate the volume and shape distributions of ibuprofestats produced from a seeded batch
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crystallization process. Specifically, we look at the dffetdifferent initial temperatures and
growth rate dispersion on the size and shape distributiérisuprofen crystals. We consider
starting temperatures ranging from°Tsto 30°C with a step size of 8. The crystal volume
distribution for each of the cases is shown in Fig. 4.2. Wlzat be noticed is that the lower
starting temperatures lead to a slightly more narrow sig&ibdution. This is due to the fact that
lower temperatures correspond to higher supersaturagioes, and at these higher supersaturation
values the relative effect of the GRD is less compared toffeeteof GRD on lower supersaturation
values (see e.g., Fig. 2.1). The differences in each of #réirg) conditions becomes much more
noticeable in Fig. 4.3 which shows the crystal shape digion. We define the crystal shape to
be the relative average height of the (011) face to the (G $ince the (100) face is determined
by Eqg. 3.3. The crystal shape distribution not only becomidemas the starting temperature gets
higher, but also it shifts to the right meaning that the algsbecome more elongated. Again, when
looking at Fig. 2.1, it is evident that the ratio between 1) and (001) faces is greater at lower
values of supersaturation (i.e., higher values of tempegatvhich results in an elongated crystal
shape for the higher starting temperatures in Fig. 4.3. lmgpht Fig. 4.1, we can infer a more
detailed view of the dynamics of the batch crystallizer gbads. What is important to notice is
that MPC is able to successfully deal with the constrainthekystem (e.gTstart= 15°C or 30°C
where the supersaturation starts outside of the supeasiaturconstraint region). Furthermore,
after the MPC has changed the batch temperature from thal isiarting temperature, each of
the different simulations follows a path that resemblestalizer cooling. This is done since
as the crystallization progresses, ibuprofen content gallfrom the slurry phase to the crystal
phase causing a decrease in concentration @.)a.,ln order to balance this effect and keep the
supersaturation from falling to very low values, the tenapere is lowered in order to keep the

crystal growth progressing.
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4.2 Comparison of MPC PerformanceWith Other Control Strate-
gies

In order to compare the performance of the proposed MPC, werpged additional simulations
using constant temperature control (CTC) and constantrsapeation control (CSC) strategies.
For these simulations, we chose the starting temperdtye= 20°C for CTC, CSC, and MPC
which corresponds to a starting supersaturatick 1.2. This starting point was chosen to ensure
both CTC and CSC would be in a valid operating region accagrftr the desired supersaturation
and temperature ranges since these control methods are tmdleal with constraints. The crystal
volume distribution can be seen in Fig. 4.5. It is clear th&iCGeads to the most broad crystal
size distribution and it can be seen that MPC gives a slightlye narrow distribution than CSC.
Similar behavior is seen in Fig. 4.6 for the shape distrinutvhere CSC and CTC shift the crystal
shape distribution to the right compared to the MPC. MPC pced the most narrow crystal size
distribution due to the jacket temperature trajectory dates and due to its ability to work within a
constrained region. Additionally, the way the MPC goes &lba@nimizing the volume distribution
also happens to produce the most narrow crystal shapebditsbm.

The differences in each of these policies are highlightedrmiboking at the dynamics of the
batch reactor in Fig. 4.4. As expected, CTC holds the jackaperature at 2€ throughout the
entire simulation, however, it is noted that the supersaitum drops significantly below 1.2 in the
CSC policy. This is due to the actuator constraintTgrthereby limiting the maximum rate of
change and causing the supersaturation to drop. It is alemesting to note that MPC and CSC
take nearly identical pathways in terms of concentratiorech the desired set-point. Overall,
MPC is able to outperform the other techniques since it is &bl‘plan ahead” and predict what
will happen next which is especially important when thersignificant concentration drop in the
system.

GRD of individual crystal faces, which is modeled as a fumttof supersaturation by using

the coefficient of variation of the corresponding facet gfovate, decreases with an increase in
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supersaturation. Therefore, when the controller primdjediive is to lessen the influence of
GRD on the final CSD (by explicitly penalizing the GRD in thesttunction), the ibuprofen batch
crystallization process is operated constantly by therodiat in high supersaturation regime. The
operating strategy of such an MPC however is identical tbdhidne MPC used in the present work
whose primary objective is to achieve the shortest opeagaime that leads to the desired average
crystal size. Furthermore, in this work, due to the lack ofitofen primary nucleation rate data,
the maximum allowable supersaturation level inside thelbatystallizer is determined to be 1.3
in order to minimize the primary nucleation and its impactlee CSD. It is also worth mentioning
that due to the exponential decay dependence of the GRD (d@i¢ face on the supersaturation,
the GRD of the (001) face can change significantly with a siihattuation in supersaturation.
Due to this fact and the operating constraint of how quickimperature of the crystallizer can
be adjusted, and the fact that larger crystals deplete tligesconcentration in continuous phase
faster than smaller crystals, the MPC penalizing GRD ekplim its cost function becomes more
sensitive to the size of the sampling time interval becauskght change in the supersaturation
level during sampling time can have a significant impact awvalue of the cost function. Sim-
ulation data (not reported here for brevity) confirm thatrafiag the cost function to add penalty
on GRD would only make the controller more sensitive to samgptime and more complicated

without leading to a different operational behavior thatNdoreduce CSD polydispersity further.
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Chapter 5

Computational Performance and Scaling

To close out this section, it is important to note the comjpenal performance and scaling for this
work. In order to make this comparison, we ran the same sdeateti crystallization simulation
and initial conditions with different random seeds on th@akeAdvanced Computing Center’s
Stampede cluster. The code was optimized using Messaga@agerface (MPI) over the crystal
growth stage since it was determined to be the bottleneckisfsimulation. Specifically, at the
start of the simulation, crystals are assigned to one ofthiadle cores. Next, the growth process
runs while the batch system parameters remain constainttusttime to update the crystallizer
conditions. After these parameters are updated, the tsysithgo back into the growth stage on
their assigned core. This process is repeated until the etiek simulation. The results of these
simulations for varying number of cores are shown in Fig. @i the data points are given in
Table 5.1. What can be seen from Fig. 5.1 is that there is afisigmt decrease in time required
to complete the batch simulation as the number of cores arearsed. Looking at Table 5.1, it
is evident that as the number of cores is doubled, the sioaléme goes down by about half.
In order to further analyze the scalability of this parafjebcess, it is useful to analyze the strong

scaling behavior, which is defined as:

t1

b
Ncoredn

Ss,trong = (5.1)
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wheret; is the time the process takes on 1 cangyesis the number of cores, anglis the time the
process takes amcores. Strong scaling is good for analyzing systems like dhie that are CPU
bound, showing how well the process can be parallelizedowitadding too much wasted time
in overhead costs. From Table 5.1, it can be seen that thegssmaling stays above 90% when
using 16 or fewer cores and drops down afterwards. This éhfidue to the fact that simulations
were run on compute nodes which had 16 cores per node (twoe8&@BUs) and when going
over 16 cores, communication must then take place betweéiptaunodes, thus adding overhead
costs. Overall, it is clear from both Fig. 5.1 and Table 54t the batch crystallization process of

ibuprofen is greatly benefiting from the use of MPI for the ki@cess.

cores| time (h) | speedup (%) Strong Scaling (%
1 35.82 0.0 100.0

2 17.95 49.9 99.8

4 8.98 74.9 99.7

8 4.50 87.4 99.4

16 2.34 93.5 95.6

32 1.30 96.4 86.2

64 0.75 97.9 74.8

Table 5.1: The time to finish each simulation for varying nembf cores and the corresponding
speedup and strong scaling. Please note that the speedefﬁrﬂsctlastl%lt”, wheret; is the time
the process takes on 1 core dpdbs the time the process takes ncores.

25



A

w
o1
I T I1
|

W
o

N
ol

— time = 33.795(c:ores)'0'938

N
)

=
o1

o
lllIllllIllllIll

time (hours)

O lllIllllIllllﬁTllillll:llll=
10 20 30 40 50 60

number of cores

o

Figure 5.1. The number of cores versus the average amoumefrequired to finish the batch
simulation. Error bars are shown as one standard deviatenl® simulations for each batch run.
The best fit line has equation: tiree33.795cores? 938 with anR? = 0.9982.

26



Chapter 6

Conclusions

In this work, we studied the seeded batch crystallizatiacess of ibuprofen. First we used kMC
simulations to develop a growth rate model which also actofor GRD. Next, we proposed an
MPC strategy in order to control the crystal size distribati Lastly, we compared the proposed
MPC strategy to CTC and CSC policies. We found that the MP®lis & deal with constraints
and a wide variety of starting conditions for ibuprofen ¢aygrowth. Additionally it was found
that MPC produced more narrow volume and shape distribsit@mpared to the other control
strategies which is important because the product qualidyrectly determined by the final crystal
size and shape distributions. It is important to note thatgirowth rate dispersion is mainly re-
sponsible for the wide distribution ranges seen in this whsstly, we found an extreme benefit

in the use of MPI for this work due to heightened CPU time regpuents.
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