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Using Optogenetics to Study the

Effect of Transcription Factor

Dynamics on Gene Activation

Lindsey Osimiri

Abstract

Transcription factors (TFs) are important messengers in the information cascade necessary

for cells to respond to their environment. In both Saccharomyces cerevisiae and

mammalian cells, the limited set of TFs must use a variety of strategies to convey complex

information about the cellular environment to the many genes that they regulate

downstream. These strategies include TF identity, concentration, and combinations of TFs.

A subset of TFs also modulate their subcellular localization with distinct dynamic patterns

in response to environmental stimuli; this dynamic information may also be used to

regulate downstream genes.

Previous studies have attempted to elucidate the effect of spatiotemporal dynamics on

downstream genes by using environmental inputs to induce localization changes. Using

these stimuli, these studies have shown that TF spatiotemporal dynamics likely transmit

information which is then decoded by downstream genes. An important limitation of these
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works is that the inputs used modulate not only TF spatiotemporal dynamics, but also

other factors, like TF concentration and activation of other TFs and transcriptional

regulators. In this study, we develop an optogenetic tool, termed CLASP, which sidesteps

these limitations to precisely quantify the effect of TF spatiotemporal dynamics on

downstream genes.

Specifically, we used CLASP in S. cerevisiae to control the localization of multiple TFs,

and find that canonical downstream genes activate more efficiently in response to constant

TF nuclear localization than to short pulses of TF localization. In contrast to these data,

we focus on Crz1, a pulsatile TF, and find that many of its downstream genes activate

more efficiently in response to short, pulsed TF inputs. We then use computational

modeling to interrogate the promoter architecture which could yield either outcome, and

find that simple promoters respond similarly to many of the downstream genes of Crz1,

with a higher output in response to pulsed TF inputs. Surprisingly, a more complex model

is needed to explain the phenotype seen for one Crz1 gene and the genes profiled for other

TFs, where the gene is more efficiently induced by constant inputs.

In the second study, we extend CLASP to mammalian cells, and show that it is also

capable of regulating localization of multiple TFs across multiple cell lines. We focus on a

single TF, RelA, in mouse fibroblasts, and perform RNA-seq to measure the effect of its

spatiotemporal dynamics on all genes. Additionally, we measure the effect of TNFα, a

common environmental stimulus used to modulate RelA spatiotemporal dynamics. First,

we find that TNFα regulates many genes, even when RelA is not expressed in cells, and

that this regulation is extremely different from that caused by RelA-CLASP. Secondly, we

find that RelA-CLASP activates many downstream genes, and that these genes can

respond differently to pulsed and constant inputs. Critically, this is a novel demonstration

of the ability of RelA to regulate downstream genes using only translocation, without

post-translational modifications or activation of other transcriptional regulators. Using a

viii



simple model of gene expression to simulate a subset of genes in response to constant

inputs, we qualitatively predict the response to pulsed inputs for some genes. However,

more complex models are needed to explain others.

Together, these studies provide direct demonstration across eukaryotes of the importance of

spatiotemporal TF dynamics in regulating gene expression. Additionally, these studies

demonstrate an integrated approach of engineering novel tools, measuring dynamic gene

expression, and modeling of promoter activation to elucidate how genes respond to

complex inputs.
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Chapter 1

Introduction

Cells receive a nearly infinite number of inputs from their environment, and must use a

limited set of proteins to interpret and respond to these signals. Transcription factors

(TFs) are one important class of proteins utilized in this process. Given the limited

number of TFs available to encode the identity of an unlimited number of inputs, the cell

must use many layers of complexity in order to correctly respond to the environmental

signal at hand. These layers of complexity include TF identity, concentration,

post-translational modifications, and even combinations of TFs1–5.

An emerging area of interest is the dynamic signals that cells might also use to encode

information about environmental stimuli. Critically, dynamic signals offer even more

complexity than static signals such as TF identity or combinations of TFs. In response to

environmental inputs, a subset of TFs in both Saccharomyces Cerevisiae and in

mammalian cells translocate from the cytoplasm to the nucleus with distinct dynamic

patterns6,7. Many studies have used environmental stimuli to determine the effect of the

dynamic patterns of TFs on downstream gene expression in both S. Cerevisiae and

mammalian cells8–21. In yeast, researchers used an analog-sensitive protein kinase A (PKA)
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allele to modulate Msn2 nuclear translocation using a chemical input. Using this approach,

these researchers were able to demonstrate the ability of genes downstream of Msn2 to

decode parameters such as amplitude and frequency of Msn2 nuclear translocation16–18,20,21.

Similarly, in mammalian cells, a recent study used a chemical input to control the feedback

loop which determines p53 concentration in the nucleus. With this method, researchers

were able to show that genes could decode p53 dynamic patterns, and also that p53

dynamics affected phenotypes like cell cycle arrest14. Though these studies have expanded

our understanding of how TF dynamics regulate downstream gene expression, they have all

been subject to the same limitation. Environmental stimuli and drug inputs regulate many

proteins within the cell, and these pleiotropic effects are difficult to detangle from the effect

of the dynamics of a single TF. As such, a more precise method is needed to study the

effects of TF spatiotemporal dynamics on downstream gene expression.

In this work, optogenetics is used to control the spatiotemporal dynamics of a subset of

transcription factors in both S. cerevisiae and mammalian cells. By engineering a novel

tool called CLASP (Controllable Light Activated Shuttling and Plasma membrane

sequestration), we precisely and reversibly control the translocation of any cargo from the

plasma membrane to the nucleus with blue light. Using this tool, we can mimic the

dynamic patterns of TF localization that are observed in response to stimulus, and then

measure downstream gene expression to quantify the effect of these spatiotemporal

dynamics.

In yeast, we focus our study on Crz1, a TF which translocates to the nucleus in a pulsatile

manner following its cognate stimulus, CaCl2
12. We induce Crz1-CLASP with both pulsed

and constant light inputs and find that, unlike other TFs controlled via CLASP, many

genes downstream of Crz1 induce more efficiently in response to pulsed inputs than to

constant inputs. Using these data, we build computational models to elucidate how

promoters would generate either response.
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In mammalian cells, we study RelA, a TF which regulates a variety of pathways in the cell,

including inflammation, survival, and apoptosis22. Using a mouse fibroblast cell line with

endogenous IkB, the upstream regulators of RelA, and RelA knocked out, we demonstrate

that RelA-CLASP can induce downstream genes in response to pulsed and constant light

inputs. This novel observation confirms that RelA translocation alone, without

post-translational modifications or activation of other transcriptional regulators, can

modulate downstream gene expression. Importantly, we also find that a commonly used

environmental stimulus for regulating RelA spatiotemporal dynamics, TNFα, regulates

many genes, even when RelA is not expressed in cells. Finally, we use transcriptomic data

in conjunction with computational modeling to demonstrate how RelA-CLASP can be used

to reveal qualitative differences in promoter activation across genes.

In summary, both studies in this work use precise measurements of TF inputs and gene

expression outputs, to elucidate the parameters that allow genes to decode spatiotemporal

TF dynamics. These models are important for understanding cell biology, but also could

be used in future studies to build novel promoters or genes which respond in defined ways

to a user input. As a result, these studies represent a stepping stone to further engineering

of biological systems.

3



Chapter 2

Optogenetic control reveals

differential promoter interpretation of

transcription factor nuclear

translocation dynamics

2.1 Summary

This study demonstrates the utility of a novel optogenetic tool, CLASP, for control of the

subcellular localization of protein cargos. Furthermore, it also directly demonstrates the

importance of the dynamics of subcellular localization and nuclear translocation for

downstream gene expression.
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2.2 Introduction

Transcription factors (TFs) are key mediators in the transmission of information from the

internal and external environment of the cell to its genome. Understanding how TFs

encode information about the environment in order to coordinate transcriptional programs

remains one of the most pressing problems in molecular and systems biology. Many studies

have explored how modulation of TF concentration, TF post-translational modifications,

and combinatorial TF control can yield differential gene regulation1–3, therefore explaining

many important aspects of TF function and their information encoding capacity. These

mechanisms, however, may not fully account for the complexity of signal multiplexing that

is carried out by TFs. As a result, it has been proposed that TFs might also encode

information in their spatio-temporal dynamics.

A number of studies have attempted to elucidate this TF dynamic encoding hypothesis by

eliciting different TF dynamic patterns using various environmental inputs and assessing

the consequences7,9,23–32. For example, it was shown that p53 exhibits fixed concentration

pulses in response to gamma radiation, but implements only one amplitude- and

duration-dependent continuous pulse in response to UV23. These two pulsing regimes have

different physiological outcomes, with the former leading to cell cycle arrest and the latter

leading to cell death29. Other studies programmed different TF nuclear translocation

patterns by gaining control of a signaling node upstream of the TF. A prominent example

of this approach is the modulation of Msn2 dynamics using an analog-sensitive protein

kinase A (PKA) allele16–18,20,21. With this method, it was shown that genes in the Msn2

regulon can be differentially modulated by the amplitude, duration, and frequency of Msn2

nuclear translocation pulses. In the budding yeast Saccharomyces cerevisiae, there are

approximately 200 known TFs, two-thirds of which are constitutively localized to the

nucleus; the remaining one-third are located in the cytoplasm during exponential growth in

complete media33. At least nine of these basally cytoplasmic TFs transiently localize into
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the nucleus in response to various stress conditions6. Furthermore, different environmental

conditions elicit a range of pulsing characteristics for these TFs that differ in their

duration, amplitude, and frequency6 (Figure 2.7), suggesting that reversible TF nuclear

localization may encode regulatory information. This information may then be decoded by

downstream target genes in order to produce an appropriate response34. Control of TF

localization through modulation of upstream regulators with small molecules or chemicals

has been an essential method to put forward such a hypothesis of TF dynamic

encoding12,16–18,20,29,35–37. However, this method produces pleiotropic effects that can be

hard to untangle. For example, PKA controls many transcriptional regulators in addition

to Msn2. As a result, modulating its activity with a small molecule may yield gene

expression changes that are not solely caused by Msn2 translocation dynamics, but are

instead the result of combinatorial gene regulation by other PKA-responsive TFs such as

Msn435,38 and Dot639. Therefore, to causally and quantitatively probe the relationship

between TF nuclear localization dynamics and transcriptional activity, a method by which

TFs can be specifically, quickly, and reversibly localized to the nucleus is needed.

Specificity is necessary to allow direct regulation of TF nuclear localization without

pleiotropic effects, while speed and reversibility are necessary to recapitulate the

minutes-level resolution with which TFs translocate into and out of the nucleus in response

to environmental inputs. Ideally, this method would also work modularly with many TF

cargos, including TFs that are basally nuclear. Optogenetic strategies are ideally suited for

this purpose. There are many general optogenetic tools to control activity of

molecules40–43, as well as published optogenetic strategies to translocate protein cargos to

the nucleus44–47. A number of these tools utilized LOV2, a light-responsive protein often

isolated from A.sativa, to uncage a nuclear localization sequence (NLS) in response to blue

light and translocate the optogenetic molecule to the nucleus along with any appended

protein cargo. Light Activated Nuclear Shuttle (LANS) is an example of this strategy46

(Figure 2.1A). The architecture of this class of optogenetic tools may cause leaky nuclear
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localization based on the protein cargo. An example is the TF Msn2, which when fused to

LANS, in many cells exhibited constitutive nuclear localization in the absence of light

stimulation (Figure 2.8A). Moreover, tools such as LANS cannot be used to regulate

localization of basally nuclear TFs. A different optogenetic tool, LOVTRAP, a LOV2-based

tool for protein sequestration, could be used for rapid translocation of cargo with less leaky

basal localization. LOVTRAP is composed of a LOV2 fused to the mitochondria and Zdk1,

a small peptide that is fused to the protein cargo. The interaction of LOV2 and Zdk1 in

the dark sequesters the cargo to the surface of the mitochondria48(Figure 2.1A). However,

LOVTRAP alone does not contain targeting information, and hence cannot direct the

cargo to the nucleus on demand. Therefore, to enable both robust and targeted optogenetic

control of many different cargos, we sought to use LOVTRAP in concert with LANS. The

idea of combining optogenetic sequestration and nuclear localization was previously

investigated45,49. However, the resulting tools either required complex dual color

stimulation45, thereby limiting the number of fluorescent proteins that could be used in a

cell, or did not demonstrate modularity for different cargos49. These tools also lacked

optimization for use in yeast. Here, we present CLASP, an optimized optogenetic tool that

can exert precise, modular, and reversible control of transcription factor localization.

CLASP uses two LOV2 light-responsive domains derived from Avena sativa to sequester a

cargo at the plasma membrane in the dark and target it to the nucleus in response to blue

light. We demonstrate how CLASP can be used as a general strategy to control many TF

cargos without any further optimization. With CLASP and the use of computational

modeling, we investigate the consequences of transcription factor translocation dynamics

and delineate the quantitative principles by which these dynamics are interpreted by

different promoters. This paper therefore contributes an integrated approach through which

optogenetic technology development and refinement is coupled tightly to computational

modeling in order to answer fundamental questions about promoter principles that allow

decoding of dynamic TF inputs. Due to the modularity of CLASP, our integrated approach
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provides a general strategy for investigating these principles in many systems.

2.3 Results

2.3.1 Construction and optimization of CLASP, a dual-LOV2

optogenetic strategy for control of nuclear shuttling

To construct a modular and specific tool for yeast protein nuclear translocation, we first

tackled optimization of the published LANS and LOVTRAP constructs.

Fluorescently-tagged (mCherry) LANS46 displayed only a moderate increase (3.4%) in

nuclear/cytoplasmic enrichment in response to blue light (Figure 2.1B, upper left panel).

This increase was much weaker than that seen for transcription factors in response to stress

inputs (Figure 2.7B, 20-50% increase). Additionally, the published LOVTRAP tool used a

TOM20 mitochondrial targeting tag that caused a strong growth defect in yeast at high

expression levels (Figure 2.1B, lower panel). LOVTRAP sequestration had previously been

shown to perform best when the mitochondria-bound LOV2 trap was expressed in excess of

the Zdk1; as a result, these high expression levels were necessary for trapping many protein

cargos and made the growth defect a concrete concern48. To improve LANS localization

properties, we replaced the published LANS NLS with a small library of yeast NLS

peptides50 (Table S1). We then screened blue light induced nuclear localization of

mCherry-LANS constructs that had any one of these different NLS sequences. We

identified a number of NLS sequences that showed an improvement in nuclear/cytoplasmic

enrichment in response to blue light (Figure 2.8B), including an NLS that increased the

fold change by eight-fold. We chose this NLS sequence to move forward as a yeast

enhanced LANS (yeLANS) (Figure 2.1B). Next, to rectify the growth defect associated

with LOVTRAP sequestration to the mitochondria, we swapped the mitochondrial TOM20
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tag with a plasma membrane Hs-RGS2 tag51 to create pm-LOVTRAP. This modification

rescued the growth defect of LOVTRAP even at high expression levels (Figure 2.8C).

Finally, we combined yeLANS and pm-LOVTRAP to form CLASP (Controllable Light

Activated Shuttling and Plasma membrane sequestration), a construct composed of two

AsLOV2 domains. The first AsLOV2 domain is fused to the plasma membrane and

sequesters a Zdk1 fused to the N-terminus of the cargo (for example, a TF). The second

AsLOV2 domain is fused to the C-terminus of the cargo. This AsLOV2 domain is preceded

by a nuclear export sequence (NES) and has a nuclear localization sequence (NLS)

embedded in the Jα helix. Blue light causes a conformational change in both AsLOV2

domains, yielding the simultaneous unlocking of cargo and its targeting to the nucleus

(Figure 2.1A). Strains harboring CLASP did not experience any measurable growth defect

(Figure 2.8D). We first tested CLASP with a red fluorescent protein (mScarlet) as a cargo.

Confocal microscopy showed that mScarlet-CLASP was successfully sequestered at the

membrane in the dark and translocates to the nucleus in response to blue light.

Furthermore, widefield microscopy showed that nuclear localization could be maintained

stably for at least 80 minutes (Figure 2.1C). Varying the duration of the light input

demonstrated that CLASP could also track shorter light inputs (Figure 2.8E-G). On

average, mScarlet-CLASP nuclear localization extended four minutes longer than the

duration of the input light pulse, illustrating its rapid shut-off time (Figure 2.1D, Figure

2.8E). The maximum nuclear/cytoplasmic enrichment achieved by mScarlet-CLASP was

also graded as a function of light amplitude; when subjected to one minute pulses of

increasing amplitude (64-1024 a.u.), enrichment increased commensurately for a wide range

and saturated after 256 a.u. of light (Figure 2.1D, Table 2.2). Finally, to test the ability of

CLASP to respond to repeated light pulses and probe its dependence on their period, we

subjected the cells to one minute pulses of blue light repeated every 2-9 minutes (Figure

2.1E, left 3 panels show one minute pulses every 9, 5, or 2 minutes). These experiments

revealed that mScarlet-CLASP followed these pulses faithfully until the pulses became too
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rapid, that is, when the next light pulse occurred during the time required for nuclear exit

(≈4 minutes). This effect occurred when pulses were repeated every 2 minutes, at which

point nuclear localization became almost continuous at a high level. The mean

peak-to-trough difference in the amplitude of nuclear localization of single cell traces for

different periodic light inputs showed a clear dependence on the period of the light pulse

(Figure 2.1E). Overall, our data indicate that mScarlet-CLASP could be rapidly, reversibly,

and repeatedly localized to the nucleus as frequently as every five minutes and that the

duration and the magnitude of this translocation could be robustly controlled.

2.3.2 CLASP achieves precise, modular control of TF nuclear

translocation and activation of target genes

The usefulness of CLASP depends on its ability to successfully control translocation of TF

cargos while maintaining their function. Our next step was therefore to test the ability of

CLASP to quickly and reversibly control the translocation of three basally cytoplasmic

transcription factors to the nucleus. We chose a synthetic transcription factor, SynTF,

constructed from Cys2-His2 zinc finger domains and a VP16 activation domain52, as well

as Msn2, the principal transcription factor in the environmental stress response53, and

Pho4, the principal transcription factor in the phosphate starvation response54. Both Msn2

and Pho4 have been known to translocate to the nucleus in response to stress6,54. The

three TF cargos were also tagged with a C-terminal RFP (mScarlet) for visualization. For

all three TFs, TF-CLASP achieved its maximal nuclear localization in response to light

within one minute of blue light exposure. Like the mScarlet cargo, the TF cargos reversibly

translocated to the nucleus as frequently as every five minutes when induced with a one

minute pulse of light. Furthermore, a sustained light input produced continuous nuclear

localization of the TFs, indicating that CLASP was capable of maintaining robust nuclear

localization of associated TF cargos for an extended period of time (Figure 2.2A). The
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maximum nuclear/cytoplasmic enrichment fold change achieved with CLASP for Msn2 as a

cargo was similar to that of Msn2 with a strong osmotic shock using 0.95M Sorbitol26

(Figure 2.7B). To test whether nuclear localization of the TFs led to concomitant gene

expression, we built yeast strains in which YFP was expressed from promoters that were

responsive to SynTF (pSYNTF-YFP), Msn2 (pHSP12-YFP), and Pho4 (pPHO84-YFP).

We exposed these strains to fixed-amplitude light inputs (Figure 2.9A) of increasing

duration (0.5-2 hours) and measured YFP fluorescence via flow cytometry. For all three

TFs, increasing the duration of the light input led to increased downstream reporter gene

expression, illustrating that the TF was still functional despite its fusion to CLASP.

Notably, SynTF-CLASP yielded more than 20-fold activation of pSYNTF-YFP with only 2

hours of light activation (Figure 2.2B). Gene expression in the dark downstream of the

three TF-CLASP constructs was similar to basal expression, and was also commensurate

after light induction to gene expression generated by a constitutively nuclear TF (Figure

2.9B-D, 2.7.1 “Measuring the basal and constitutively nuclear gene expression of TFs”).

Next, we explored whether CLASP could control localization of transcription factors such

as Gal4, which was basally nuclear. Gal4-CLASP was successfully sequestered to the

plasma membrane in the dark and reversibly translocated to the nucleus in response to

light. Nuclear translocation of Gal4-CLASP also activated expression from pGAL1, a

Gal4-responsive promoter (Figure 2.9E-G), indicating that CLASP was able to control TFs

irrespective of their endogenous nuclear localization. Finally, we sought to demonstrate

that different TF dynamic translocation patterns generated with CLASP could yield

different gene expression outputs. Several transcription factors, such as Pho4 following

phosphate starvation, translocate into the nucleus in response to a stress input and reside

there continuously until the response is completed54. Others, including Msn2 following a

0.4% glucose input, have been known to translocate into the nucleus with episodic and

repeated pulses in response to an activating input6. Moreover, Msn2 has also been known

to translocate with sustained pulses in response to osmotic shock (Figure 2.7B). As a
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result, we sought to explore the gene expression consequences of pulsing relative to

continuous localization of the three CLASP-fused TFs (SynTF, Msn2 and Pho4). We

delivered two light inputs that had different dynamic patterns but the same cumulative

light duration of 40 minutes. In the first case, light was switched ON for 40 minutes, and in

the second, light was given in 20 episodic pulses (2 minutes ON/10 minutes OFF) (Figure

2.2C). Delivery of the same cumulative light input and measurement at the end of the time

course were necessary controls to compare the response efficiency of the promoters for

pulsed input relative to continuous inputs. YFP fluorescence was measured for both inputs

after 5 hours using flow cytometry. These data showed unambiguously that continuous

nuclear input of SynTF-CLASP, Msn2-CLASP, and Pho4-CLASP produced higher gene

expression than pulsed inputs. This directly demonstrates that TF nuclear translocation

dynamics could affect downstream reporter gene expression, an idea that we wanted to

explore in more depth.

2.3.3 CLASP control of the Crz1 TF reveals that its target

genes differ in their response efficiency to short pulses

To further explore the modes of decoding of TF dynamics by promoters in a biologically

meaningful setting, we chose to focus on Crz1, the main TF in the calcineurin-Crz1

signaling pathway that responds to calcium stress. Crz1 has been shown to exhibit two

modes of pulsatile nuclear translocation in response to calcium chloride (CaCl2) stress – a

single long initial pulse (40-60 min) and subsequent episodic repeated pulsing (1-4 min)

(Figure 2.10A). We reasoned that continuous nuclear localization and pulsing of Crz1 could

be interpreted differently by different target genes, a behavior that could be revealed and

studied by controlling its localization using CLASP. Crz1 has been shown to undergo

phosphorylation on multiple residues to activate gene expression in calcium stress55 (Figure

2.10B). Therefore, to survey the response of Crz1 target genes to dynamic inputs using
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CLASP, we needed to adopt a variant of Crz1 that bypassed this regulation, an endeavor

that could be necessary for studying the effects of many TFs with CLASP. We therefore

built a strain expressing Crz1*, an alanine mutant with 19 S/T to A substitutions of Crz1,

that was basally nuclear (data not shown) and circumvented the post-translational

modification requirements for nuclear localization55 (Figure 2.10B). To verify that Crz1*

preserved the transcriptional profile of wild type Crz1, we carried out mRNA sequencing of

cell populations in which the wild type allele of Crz1 was knocked out and Crz1* was

expressed from a constitutive pADH1 promoter. We compared the up-regulated genes of

the Crz1* strain (where Crz1* is basally nuclear) with genes upregulated by Crz1-yeLANS

under CaCl2 stress. We found similar gene expression patterns between these two gene sets

as shown in the heatmap of genes that cluster together (Figure 2.10C). By probing

individual Crz1 target genes with fluorescent reporters, we also found that light-induced

Crz1*-CLASP, but not light-induced Crz1-CLASP, was able to elicit appreciable gene

expression (Figure 2.10D). For example, Crz1*-CLASP driving pPUN1-YFP, a canonical

Crz1-responsive promoter, achieved similar gene expression fold change as pPUN1-YFP in

calcium stress (fold change of 1.8 versus 1.7) (Figure 2.10E). Importantly, Crz1*-CLASP

did not cause increased gene expression in the absence of light, indicating that CLASP was

able to successfully sequester the nuclearly localized Crz1* outside of the nucleus in the

dark (Figure 2.10F). We next identified six Crz1 gene targets (Yps1, Ena1, Mep1, Put1,

Cmk2, Gyp7) for follow up studies. We used the promoters of these genes, which have also

been used in previous studies56,57, to build YFP-expressing promoter fusions, each in a

strain with Crz1*-CLASP tagged with mCherry for visualization (Figure 2.3A). We

subjected these cells to two distinct types of inputs that mimic natural Crz1 translocation:

2 minute short repeated pulses with different periods or one continuous pulse of varying

duration (Figure 2.3A). We confirmed that extended light exposure did not cause a growth

defect in the Crz1 overexpression strain (Figure 2.10G). We then measured the nuclear

fluorescence of mCherry-tagged Crz1*-CLASP continuously at 30 second intervals. We also

13



measured gene expression from all six YFP promoter fusions at 5 hours for all inputs given

(Figure 2.3A). Every input (pulsatile or continuous) has a given nuclear fluorescence AUC,

which we calculated as the integral of the measured mCherry-tagged Crz1*-CLASP nuclear

fluorescence time traces and is a proxy for nuclear concentration. A given nuclear

fluorescence AUC was associated with a commensurate gene expression value (measured at

five hours), and these values were plotted against each other for the two input regimes for

each of the six promoters. The resulting plot for all nuclear fluorescence AUC values are

referred to as the Gene Output - Nuclear Fluorescence plot (Output-Fluorescence plot for

short). Exploration of gene expression as a function of nuclear fluorescence AUC allowed a

comparison on equal footing of the overall integrated responses to pulsed and continuous

inputs. The Crz1-responsive promoters showed a spectrum of qualitative and quantitative

behaviors in the Output-Fluorescence plots (Figures 2.3A-C, 2.10H-J). For pGYP7-YFP,

like the promoters shown in Figure 2.2, a pulsed input generated lower gene expression

output than a continuous input of the same nuclear fluorescence AUC for all values tested

(Figure 2.3B). For pCMK2-YFP, pulsed and continuous inputs generated almost identical

gene expression output. However, for pYPS1-YFP, pulsed inputs produced higher gene

expression output at all Crz1*-CLASP nuclear fluorescence AUC values tested. These

phenotypes were qualitatively reproducible despite slight quantitative day to day variability

in gene expression between experiments (Figure 2.10H-J). The difference in output between

pulsed and continuous inputs as a function of nuclear fluorescence AUC was quantified as

the ratio of the slopes of the two lines in the Output-Fluorescence plot (termed the slope

ratio) (Figure 2.3A). This metric showed that the six Crz1-responsive promoters spanned a

range that is bracketed by pYPS1-YFP (slope ratio >1) and pGYP7-YFP (slope ratio <1),

going from higher gene expression for pulsed than continuous inputs to the opposite

phenotype (Figure 2.3C). Since all promoter fusions generated the same YFP as the

protein output, these phenotypes must reflect different promoter properties as well as any

differential influences of the promoters on mRNA stability. We next turned to data-backed

14



computational modeling to systematically explore and interpret these behaviors.

2.3.4 A simple two-state computational model of the promoter

explains pYPS1-YFP and pCMK2-YFP slope ratio data

To better understand the difference in slope ratios for pYPS1-YFP and pCMK2-YFP, we

represented each gene with a simple two-state promoter computational model. The

promoter model (Figure 2.4A) has an ON state pon and an OFF state poff, with pon + poff

= 1. The time-dependent nuclear concentration of the transcription factor Crz1 is given by

the function TF(t). The time-dependent equation for the promoter activity pon in response

to nuclear localization of Crz1 can be written as

dpon
dt

= konpoffTF (t)− koffpon

= kon(1− pon)TF (t)− koffpon (2.1)

The rate constants kon and koff are used to describe the transition between the two

promoter states. Here, kon(1− pon)TF (t) is the ON rate and is nonlinear due to the input

TF (t), while the OFF rate, koffpon, is linear. The time-dependent equations for mRNA

and Protein are then given by

dmRNA

dt
= β0 + β1pon − γ1mRNA (2.2)

dProtein

dt
= β2mRNA− γ2Protein (2.3)

From a wide parameter search across kon and koff, we were able to find parameter regimes

that qualitatively captured the phenotypes (slope ratio >1 and slope ratio close to one)
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observed in the Output-Fluorescence plots for pYPS1-YFP and pCMK2-YFP in Figure 2.3

(Figure 2.11A; example solutions plotted in Figures 2.4E, 2.11D). We also found that the

quantitative value of the slope ratio obtained from the Output-Fluorescence plot is

dependent on three model parameters – mRNA and protein half-lives, the ratio kd

(kd = koff/kon), and the absolute values of kon and koff. We explore these relationships

below.

2.3.5 For a two-state computational model of the promoter,

slope ratio increases with decreasing mRNA half-lives but

differences in half-lives cannot fully explain the measured

slope ratio

Our numerical results indicate that both mRNA and protein degradation values affect

slope ratio. Protein degradation of YFP in yeast has been shown to be slow with a value

around γ2 = 0.0083 min-1 58. This value cannot be different among different promoters since

they all produce the same protein (YFP). Therefore, the degradation parameter for YFP

cannot explain the effects of slope ratio we are studying, and we will not explore its effects

any further.

The mRNA degradation rate, on the other hand, can depend on the identity of the

promoter59,60. The physiological range of mRNA degradation rates in yeast has been

experimentally determined to vary between γ1 = 0.025 - 10 min-1 61. For values of kon, koff,

and kd that span a wide range (kon from 0.005 to 9.2 min-1a.u.-1, koff from 0.23 to 4.6 min-1,

kd from 0.5 - 46 a.u.), changing γ1 alone cannot span the range of slope ratios we observe

for pCMK2-YFP and pYPS1-YFP (Figure 2.11B). We therefore conclude that while the

mRNA degradation rate affects the slope ratio, with increasing slope ratio as the mRNA

degradation rate increases, it alone cannot explain the difference between the slope ratios
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of pCMK2-YFP and pYPS1-YFP without additional differences in the promoter

characteristics. We therefore turn to investigating the role of promoter dynamics in the

slope ratio phenotype.

2.3.6 For a two-state computational model of the promoter,

slope ratio increases with decreasing kd

Model simulations for different values of kd between 0.5 and 46 a.u. revealed that

decreasing kd increases slope ratio (Figure 2.4B). To build intuition about this relationship,

we first consider an asymptotic regime of extremely fast promoter dynamics, relative to

transcription factor dynamics, in which kon and koff are large. This results in fast pon and

poff that equilibrate to a quasi-steady state on the timescale of the TF dynamics. In this

regime, pon ≈ TF (t)
(TF (t)+kd)

, where kd =
koff
kon

. This expression for pon can then be used in the

equation that describes the dynamics of mRNA to determine the number of transcripts

made. If kd is very large compared to the maximum TF concentration (e.g. kd = 46 a.u. in

our system where TFmax = 2.6 a.u.), then pon is approximately linear as a function of TF

and pon changes proportionally to the TF input (Figure 2.4C). For a smaller kd (e.g. kd =

2.3 a.u.), pon rises more rapidly as a function of TF because the smaller kd dictates that

this Michaelis-Menten function should saturate faster to 1 as a function of TF.

The fact that pon grows non-linearly with TF concentration means that there is excess

promoter activity derived from the repeated turn-on and shut-off of the pulsed TF input

(Figure 2.4D, excess activity denoted by light red shading). This allows the promoter to

activate more over time than for the continuous input where there is only one activation

and shut off. Therefore, for the continuous input, pon cannot fully benefit non-linearly from

the TF concentration. As a result, for a small kd, the integral of pon (its accumulated area

as a function of time) is larger for the pulsed input than for the continuous input (Figure
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2.4D, equivalent area of pon is denoted by gray shading), therefore resulting in production

of more mRNA. On the other hand, for large kd (kd= 46 a.u.), pon follows TF in a linear

way, and hence the difference between its integral for the pulsed and continuous inputs is

minimal (Figure 2.11C). We provide an analytical exposition of the relationship between

slope ratio and kd for a kon and koff of any value in 2.7.1 (sections “Derivation of

expressions of total transcripts from Eq.(1) in the main text”, ”Derivation of Np
Nc

> 1 in the

regime of a fast promoter relative to TF(t)”, and “Derivation of Np
Nc

> 1 for general values

of kon and koff” with specific examples presented in Figures 2.14-2.15). We also explore

these relationships for smaller kon and koff numerically below.

2.3.7 For a two-state computational model of the promoter,

slope ratio increases with slow kon and koff

The results in Figure 2.4C-D represent a promoter that is fast relative to TF (t) (e.g. large

kon and koff). We next explored the slope ratio for small values of kon and koff that span

different kd values (Figures 2.4B, 2.11B). For a small kd (kd = 2.3 a.u.), as kon and koff

decreased simultaneously (e.g. kon = 2, koff = 4.6 versus kon = .2, koff = .46), the slope

ratio increased (Figure 2.4E). This is because for a pulsed input, a slower koff implies that

the promoter stays ON for a period of time beyond the duration of the input. When

repeated for every pulse, this residual activity could counteract the amplitude deficiency

caused by the decrease in kon and koff (Figure 2.4F). On the other hand, as kon and koff

increase, pon follows the input TF (t) pulses more faithfully, minimizing the gains from a

pulsed input compared to a continuous one even in the regime of small kd (Figure 2.4G).

Finally, and as discussed above, for a large value of kd (e.g. kd= 46 a.u.), the slope ratio is

necessarily close to 1 and is therefore relatively insensitive to the promoter dynamics (see

2.7.1, “Derivation of Np
Nc

> 1 in the regime of a fast promoter relative to TF(t)” and Figure

2.14). As a result, in this regime, slowing kon and koff will have minimal effects on slope
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ratio for a value of kd that is large relative to TFmax (Figure 2.11D).

Taken together, these analyses indicate that both kd and the absolute values of kon and koff

modulate slope ratio. A small kd is necessary for higher gene expression in response to

short pulses, and a slow kon and koff further increase the slope ratio. These conclusions

therefore point to the necessity of measuring the kd of these promoters. To do so, we

constructed strains that expressed Crz1*-CLASP from constitutive promoters of varying

strengths. In each of these strains, we localized Crz1*-CLASP to the nucleus with a

continuous light input for 4 hours and measured pYPS1-YFP and pCMK2-YFP (Figure

2.4H), therefore compiling a dose response. Fitting this data to a Michaelis-Menten

function, we found that the experimental dose response of pYPS1-YFP had a kd of 2.3 a.u.

(Figure 2.4I) while the dose response of pCMK2-YFP had a kd of 12.8 a.u. (Figure 2.4J).

The small kd value for pYPS1-YFP and its large slope ratio is in agreement with our

analysis showing that small kd can allow the promoter to differentiate between short pulses

and continuous inputs. It also positions the promoter in a regime where the individual

values of kon and koff might have an important influence on its slope ratio. Moreover, the

relatively large kd for pCMK2-YFP and its slope ratio near 1 is in agreement with our

analysis showing that larger kd restricts the ability of the promoter to differentiate between

short pulses and continuous input. Additionally, this relatively large kd positions the

promoter in a regime where the individual values of kon and koff have little bearing on its

slope ratio. To explore these hypotheses further, we turned to measurement of protein

dynamics in order to further constrain the values of kon and koff.
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2.3.8 pYPS1 promoter dynamics are constrained to be faster

than its mRNA decay

To constrain individual parameter values of kon, koff, and relate them to the mRNA

degradation rate γ1, we measured protein dynamics for pYPS1-YFP and pCMK2-YFP in

response to 2 hours of continuous light illumination (Figure 2.5A). We then used the model

to fit these dynamic data by sampling within a wide range of kon, koff, and γ1 values (kon

from 0.001-10 (min*a.u.)-1, koff from 0.000007-100 min-1, and γ1 from 0.01-10 min-1; Figure

2.5A, left and right panels, fits sought to maximize fit through the data points within the

error bars; model fitting discussed in detail in 2.7.1 “Model equations and sampling details

of the pYPS1-YFP and pCMK2-YFP phenotypes”). The protein dynamic data revealed a

relationship that must exist between konTF + koff and γ1 for the data to be explained by

the model (Figure 2.5B). An analysis of mRNA dynamics in the two-state promoter model

revealed that this relationship captures an important timescale Ts of the system, which we

term the “settling time”. Assuming a very small degradation rate of the protein, Ts is the

approximate time at which the mRNA level reaches steady state and the protein

production rate becomes constant (see 2.7.1, “Asymptotic analysis of mRNA dynamics for

the simple promoter to a step function input” for analytical derivations of Ts). The Ts

relationship captures two characteristic timescales of the system, that of the promoter

given by 1
konTF+koff

and that of the mRNA, given by 1
γ1

. Their sum determines the

timescale of the system (assuming that protein degradation is slow and hence has negligible

contribution). Two asymptotic regimes occur if either the promoter or mRNA dynamics

dominate the timescale of the system. These asymptotes serve to put a lower bound on the

values of konTF + koff and γ1. At one extreme where kon and koff are large and γ1 is small,

Ts ≈ 1
γ1

(the asymptote as konTF + koff goes to infinity in Figure 2.5B lower right data

points in each panel). Therefore, the protein dynamics data would strongly constrain the

values of γ1 but not kon and koff. In the other extreme, for small kon and koff and large γ1,
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Ts ≈ 1
konTF+koff

(the asymptote as γ1 goes to infinity in Figure 2.5B, upper left data points

in each panel) . In this regime, konTF + koff is well constrained by the protein dynamics

data but γ1 is not constrained. These asymptotes are useful for putting bounds on the

parameters.

Ts can be determined from the protein dynamics data using the mean of the parameter

fits. Since Ts has a given value for each gene that can be computed from the protein

timecourse, the relationships between kon, koff, and γ1 are correspondingly constrained for

each gene. We found that Ts = 23.8 min (with a range of 18 to 32.8 min) for pYPS1-YFP

and Ts = 7.7 min for pCMK2-YFP (with a range of 6.9 to 9 min) (Figure 2.5B), indicating

that the pYPS1 mRNA reaches steady state approximately 3 times slower than the

pCMK2 mRNA. These Ts values and their corresponding asymptotes put a lower bound

for kon to be 0.001 min-1a.u.-1, for koff to be 0.006 a.u.-1 and for γ1 to be 0.03 min-1 for

pYPS1-YFP. These lower bound values for pCMK2-YFP are 0.001 min-1a.u.-1 (kon), 0.05

a.u.-1 (koff) and 0.11 min-1(γ1). Therefore, these constraints predict that all three

parameter values might differ between the two promoters, including the mRNA decay rate.

However, as we have shown above (Figure 2.11B), the potential difference in γ1 values

between pYPS1-YFP and pCMK2-YFP contributes to but cannot fully explain the

difference in slope ratio between the two genes.

To further constrain the parameter values for pYPS1-YFP and pCMK2-YFP, we subjected

the parameter sets constrained by the protein time course in response to a continuous

input to the additional constraint of fitting the Output-Fluorescence data (Figure 2.5C-D).

For pYPS1-YFP, these data constrained konTF + koff to be larger than 1 and less than 56,

and constrained kon and koff values to be greater than 0.16 min-1a.u.-1 and 0.6 a.u.-1,

respectively. As a result, the γ1 values were constrained to be between 0.03 and 0.05 min-1,

which is approximately an order of magnitude smaller than kon and koff (Figure 2.5D, left

panel). For pCMK2-YFP, however, the Output-Fluorescence data did not further constrain
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the range of parameters beyond the protein time course data (continuous input) (Figure

2.5D, right panel). Importantly, the parameters fit to the protein time course (continuous

input) and Output-Fluorescence data for each gene had kd values comparable to those

measured experimentally, which provides a measure of validation for these fits. For

pYPS1-YFP, the median kd for the parameter fits was 1.6 a.u., and for pCMK2-YFP the

median kd value was 14 a.u.

Therefore, for pYPS1-YFP, promoter kinetics (kon and koff) are fast relative to mRNA

decay (γ1), indicating that mRNA decay dominates protein dynamics. Taken together with

the analyses of the effect of kd, kon, and koff on slope ratio, the small kd value for this

promoter indicates that its slope ratio metric can be strongly affected by its kon and koff

values, and that the large slope ratio is likely the result of the small kd and large kon and

koff relative to γ1. On the other hand, the dynamics and small slope ratio (close to 1) of

pCMK2-YFP could be generated by many combinations of parameters γ1, kon and koff that

satisfy the Ts relationship (Figure 2.5D). This finding agrees with the fact that slope ratio

of pCMK2-YFP is minimally affected by the values of kon and koff because of its measured

large kd.

Finally, to further cross-validate these insights, we asked whether the parameters identified

above and the accompanying model could predict the outcome of an additional time course

experiment on which the model was not trained. In this experiment, protein time course

data is collected for cells induced with a pulsed (2 min ON/4 min OFF) light input for 100

minutes (Figure 2.5E, data plotted in red as circles and error bars, model predictions

plotted in red as lines). As a comparison, the data for the continuous input, which these

parameters were fit to previously, are also plotted (data plotted in blue as circles and error

bars, model predictions plotted in blue as lines). The Output-Fluorescence plots show that

pYPS1-YFP displays higher gene expression in response to pulsed TF inputs than

pCMK2-YFP, given that both inputs have the same area. In this time course, the
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continuous input has a much greater area than the pulsed input. It is expected that the

difference between the protein outputs for the continuous and pulsed inputs would be

smaller for pYPS1-YFP than for pCMK2-YFP. Furthermore, it is expected that the

parameters identified will be able to predict the gene expression dynamics for the pulsed

input as a result of being fit to the continuous input protein time course data. For both

pYPS1-YFP and pCMK2-YFP, the parameter fits produced computational predictions

that qualitatively recapitulated the protein outputs in response to pulsed TF inputs for

both pYPS1-YFP and pCMK2-YFP (Figure 2.5E).

2.3.9 Higher gene expression in response to continuous inputs by

promoters can be explained by a model with a thresholded

transition between non-transcribing promoter states

The simple model from the previous analysis could not produce the pGYP7-YFP

phenotype (Figure 2.12A). In the simple model, even as the output difference between the

pulsed and continuous inputs decreased (which occurred when kon � koff), the output of

the pulsed input was always higher than the continuous input. This is because while

decreasing kon reduced the output of the pulsed input, it also reduced the dynamic range of

the output in response to a continuous input. This continued until to a point where kon

was so small that the promoter was barely activated and the much faster koff quickly shut

off promoter activity, resulting in a promoter that was essentially unresponsive to both

continuous and pulsed inputs (Figure 2.11E).

In order to identify a minimal model that explains the pGYP7-YFP phenotype, we

explored eight elaborations of the simple promoter switching model from Figure 2.4 using a

sequence of fitting and cross-validation (Detailed descriptions of all models and their

exploration can be found in 2.7.1 “Model exploration and sampling details for the
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pGYP7-YFP phenotype: List of models” and Figure 2.12). In this process, each model was

first fit to the Output-Fluorescence data in Figure 2.3; one of the eight models failed to fit.

Models that fit the Output-Fluorescence data were further fit to the dose response of

pGYP7-YFP, which was collected in the same way as for pCMK2-YFP and pYPS1-YFP.

The pGYP7-YFP dose response was remarkably linear, and four models failed to fit it

(Figure 2.12B-E). For the 3 remaining models, the dose response data served to further

constrain parameter sets. For those refined parameters, we cross-validated the models on

the data from an additional experiment in which we expressed Crz1*-CLASP from a

stronger promoter (pTEF1 versus pADH1), and measured gene expression following a

cumulative light induction of 40 minutes administered either as pulsed or continuous input.

Following these rounds of fitting and cross-validation (Figure 2.12A-I), only two of the

models surveyed were able to explain all the data we collected (Figures 2.6A-E, 2.12H-I).

The two models were structurally similar– they both extended the simple two-state model

to contain another promoter state, thereby requiring transition through an unproductive

promoter state (poff) before the promoter can be fully activated. Therefore, in these

models, the first transition occurred reversibly between promoter state p0 and a

non-transcribing state poff with rate constants ron and roff, while a second transition stage

occurred between poff and pon with rate constants kon and koff. Both models also involved a

linear dependence on TF in the second transition stage, whose effect was to prevent the

dose response from exhibiting a thresholded behavior. Finally, the two models necessitated

a thresholded interaction in the first promoter transition stage, but differed in where it was

applied – in one model, ron was a thresholded function of TF, while in the other model, it

was roff that was thresholded by TF (Figure 2.6A, 2.12H-I). The threshold on either ron or

roff acted as a “reset” for short pulses such that the system quickly returns to the starting

p0 state. Since these two models were able to recapitulate the data gathered for

pGYP7-YFP in slightly different parameter regimes, we analyzed the features common to

both models rather than focusing on individual values of the model parameters (kon, koff,
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ron, roff, γ1) for pGYP7-YFP.

First, we examined one of these two models, the 3-state roff-threshold model, in more depth

(Figure 2.6A). To do so, we fixed ron and kon to values that fit the data from Figure 2.6B-D

and varied roff and koff within a range of four logs. We then generated Output-Fluorescence

plots for every parameter set and computed its corresponding slope ratio metric, which we

plotted in the log10( kon
koff

)− log10( ron
roff

)) plane (Figure 2.6E). Overall, we found that this

model can generate both higher expression with a continuous input (slope ratio <1, black

region in Figure 2.6E, left panel) and higher expression with short pulses (slope ratio >1,

colored region on Figure 2.6E, left and right panels).

Quantitatively, there seemed to be three parameter constraints for this promoter model to

elicit higher gene expression in response to a continuous input than a pulsed one. First, the

rate of transition from p0 to poff should be slow; second, roff should be fast relative to ron;

third, koff should be fast relative to kon. An analysis of the 3-state ron threshold model

demonstrated similar requirements (Figure 2.13A-B). When ron and roff were increased

tenfold, there were no parameter combinations that generated higher expression for

continuous inputs than short pulses (Figures 2.6E, right panel, 2.6F-G, top panel). The

difference in the protein outputs between the pulsed and continuous inputs was determined

by the amplitude differences of promoter activity pon (Figure 2.6F-G, bottom panel), which

was in turn dictated by the amplitudes of depletion from p0 for the short pulsed and

continuous inputs (Figure 2.6F-G, middle panel). A slow transition from p0 prevented the

quick and full depletion of this state before a short pulse ended, while p0 was fully depleted

for the continuous input (Figure 2.6F, middle panel). By contrast, when ron and roff were

fast, this difference disappeared as the transition from p0 was now able to reach the same

maximal amplitude in the duration of the short input (Figure 2.6G,middle panel). Hence,

the incomplete depletion of the p0 state in the duration of the short pulsed input accounted

for the difference in protein outputs between the short pulsed and continuous inputs.
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The requirement that the value of roff be large relative to ron was motivated by the fact

that roff dictated how quickly the promoter state transitioned back to the initial OFF state

p0 after the end of a short pulse. When the value of roff decreased relative to ron (Figure

2.13C), the depletion of p0 could proceed to completion during a short pulse (Figure 2.13C,

middle panel), and the resulting maximum amplitudes of the active promoter state pon

were more comparable for a pulsed or continuous input (Figure 2.13C, bottom panel).

Lastly, as koff was decreased while keeping all other parameters constant, the pon to poff

switching also slowed, and promoter activity continued unabated between two pulses, hence

maximizing the gain of promoter activity from every input pulse and causing stronger gene

expression from pulses than from a continuous input (Figure 2.13D). This was in essence

the same mechanism as described in Figure 2.4E-G. In summary, slow transition from the

initial OFF state (p0) to the intermediate OFF state (poff) prevented the short pulsed

input from achieving a quick depletion of the initial OFF state (p0), essentially creating a

filter for short inputs.

Finally, in addition to the constraints above, we found that a threshold of

log10( kon
koff

)→ −1.5 seemed to demarcate the transition between a linear and nonlinear

promoter dose response in the parameter regime probed (light gray points, Figure 2.6E, left

panel), therefore imposing quantitative bounds on this promoter model to exhibit a graded

dose response as seen in the data.

Mechanistically, we hypothesized that the additional promoter state (p0) and the transition

through a non-transcribing promoter state (poff) of the multi-state models could represent

transitions induced by chromatin remodeling at the promoter. This hypothesis was further

supported by analysis of previously published nucleosome occupancy data for Crz1 target

genes, which showed a negative correlation between nucleosome occupancy and slope ratio

(Figure 2.13E-F). To test this hypothesis more specifically, we measured H3 nucleosome

occupancy of the pGYP7 and pYPS1 promoter fusions (Figure 2.6H). H3 occupancy was
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much greater in pGYP7-YFP than pYPS1-YFP, which recapitulates the nucleosome

occupancy profile at the native promoter/ORF junctions previously cited in literature.

This result lends credence to the proposed multi-state model of pGYP7 activation by Crz1.

2.4 Discussion

In this work, we devised an integrated approach that combines engineering CLASP, a

precise and modular optogenetic tool, with computational modeling and experimentation

to investigate the transcriptional consequences of dynamic TF nuclear shuttling. Through

precise perturbations afforded by CLASP, we were able to collect data of sufficient

resolution to formulate quantitative hypotheses that can explain promoter behaviors. This

productive dialogue between the technology, the modeling, and the biological findings

allowed us to constrain both underlying mechanisms and quantitative parameter

relationships in decoding of dynamic TF signals. Specifically, we showed that some target

promoters of Crz1, a naturally pulsatile TF, had higher gene expression in response to

short pulsed inputs compared to a continuous input of the same area. We demonstrated

that this behavior could be explained by a two-state promoter model, and delineated its

quantitative requirements of an easily saturable dose response, fast activation, and slow

inactivation. By contrast, pGYP7, which had higher gene expression in response to

continuous inputs than pulsed inputs of the same area and also had a linear dose response,

required a more elaborate multi-state model with thresholded activation steps and a

dependence on the TF at each step. These insights constitute general principles that

wouldn’t have been possible without the combined development of CLASP and

organization of the resulting data into computational models.

The quantitative principles delineated by our experiments have clear biological

implications. Recent studies have used a 3-state promoter model similar to that used for
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pGYP7 to recapitulate decoding of NFkB dynamics37.The multi-state promoter model we

built therefore generated a robust hypothesis that the chromatin structure of pGYP7 was

different from the other Crz1 target genes we profiled. To test this hypothesis, we

measured nucleosome occupancy for pYPS1-YFP and pGYP7-YFP, and analyzed available

occupancy data for Crz1 target genes. We found that genes that respond with higher

expression to short pulses exhibited lower nucleosome occupancy (Figures 2.6H, 2.13E-F).

This correlative data suggests the presence of additional promoter regulation, such as a

TF-gated promoter transition between non-transcribing promoter states, for promoters

that have lower gene expression for short inputs. Phenomenologically, the TF-thresholded

transitions between non-transcribing states can represent transcription factor interactions

with chromatin remodelers or nucleosomes62–68. However, mechanistic studies, such as

direct observation of promoter dynamics, are needed to pinpoint the exact biochemical

mechanisms69. Additionally, eukaryotic endogenous gene regulation can be controlled by

multiple TFs, phosphorylation, and other factors. Therefore, study of multiple

TF-promoter relationships is needed to reflect the full complexity of gene regulation.

What biological function may differential interpretation of TF dynamic inputs carry for the

Crz1 stress response? Under stress, Crz1 undergoes an initial 40-60 minute nuclear

localization, followed by pulsing in the “maintenance” phase of the calcium response.

Cohorts of genes could activate strongly only in the first long pulse, while other genes

maintain high expression even in the short pulsing phase of Crz1 response to calcium,

therefore programming a staggered response. Moreover, since Crz1 pulses exhibit different

amplitudes in the “maintenance” phase (Figure 2.10A), a 2-state promoter with a dose

response that saturates quickly as a function of TF, like pYPS1, would turn on strongly for

all pulse amplitudes. By contrast, promoters with a linear dose response like pCMK2

would activate in a graded fashion, presenting yet another mechanism by which dynamic

inputs could be differentially interpreted.
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Finally, while our studies focused on decoding of TF inputs at the promoter level, other

modes of differential decoding can be implemented. For example, modulation of translation

and degradation of mRNA and protein are alternative strategies for differential decoding.

As we discovered for pYPS1-YFP and pCMK2-YFP, different mRNA degradation rates

additionally contribute to differential decoding. It will be fascinating to study the bounds

of dynamic decoding explored by endogenous genes.

2.5 Figures
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Figure 2.1: Design, Optimization, and Characterization of CLASP. A) Schematic
illustrating CLASP mechanism. B) Optimization of LANS NLS (top panels) and LOVTRAP
localization (bottom panel). Top panels show mean value of nuclear/cytoplasmic enrichment
fold change for original NLS and optimized NLS (yeLANS) as a function of time when given
a pulse of blue light. Nuclear/Cytoplasmic enrichment fold change is calculated relative
to the nuclear/cytoplasmic enrichment at t=0. Bottom panel shows mean of OD600 in
3 independent growth experiments for original LOVTRAP targeted to mitochondria and
the optimized plasma membrane targeted LOVTRAP. C) (top panel) Confocal microscopy
image showing mScarlet-CLASP localization at the plasma membrane in the dark (left)
and in the nucleus (right) after 3 minutes of light exposure. Images are an overlay of the
mCherry and Cy7 channels. (bottom panel) Quantification of mean nuclear/cytoplasmic
enrichment fold change of mScarlet-CLASP as a function of time in response to a prolonged
light input (80 minutes, 1024 a.u. light input amplitude). Black line represents the mean
of 74 cells. D) Quantification of the response of mScarlet-CLASP to light inputs with
different dynamic characteristics. Left plot shows median time to return within 25% of basal
nuclear/cytoplasmic enrichment for light pulses of different durations and constant 1024 a.u.
amplitude. Median is used to minimize the effect of outliers. The dotted line is Y=X line.
Right plot shows the mean response to one minute light pulses of different amplitudes. Points
in both plots represent at least 21 cells. E) Nuclear/cytoplasmic enrichment fold change of
mScarlet-CLASP in response to light pulsing with different periods. Left three graphs show
mean enrichment fold change as a function of time in response to pulsed light inputs (1
minute light given in a 9, 5, or 2 minute period, respectively) with 1024 a.u. amplitude.
Right plot quantifies median peak-to-trough difference (normalized to the median peak-to-
trough difference generated by the longest period). Median is used to minimize the effect of
outliers. Each point in right plot represents at least 32 cells. Error bars and shaded area,
except where noted, represent standard deviation to show the spread of the data. For all
panels, n represents the number of cells tracked and light input regimes are depicted on
top of panels. Cartoon (left of D) represents mScarlet-CLASP. yeLANS – yeast enhanced
LANS, PM-LOVTRAP – Plasma Membrane LOVTRAP, Mito-LOVTRAP – Mitochondrial
LOVTRAP. See also Figures S1-2.
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Figure 2.2: CLASP can be used to control localization of many transcription
factor cargos. A) Nuclear/cytoplasmic enrichment fold change in response to pulsed (left
panels) and continuous light (right panels) for several TF-CLASP cargos. Graph shows mean
of single-cell traces for transcription factors tagged with CLASP. Light is delivered for one
minute at the start of each five-minute period or continuously. Shaded gray area represents
95% confidence interval and light inputs are represented in blue above graphs. n represents
number of cells tracked. B) Fluorescent reporter expression due to TF-CLASP localization.
Left panel shows a schematic of the experiment – the TF is localized to the nucleus for 0.5, 1,
1.5 or 2hrs. A fluorescent reporter is measured via flow cytometry one hour after light shut-
off. Center panel shows the population response of pSYNTF-YFP (promoter downstream of
SynTF-CLASP) for inputs shown on the left. Darker blue shades correspond to longer light
duration. Black histogram corresponds to no light. Right panel shows quantification of the
YFP fold change as a function of light duration for promoters responsive to other TF-CLASP
constructs following the same experimental protocol. Fluorescence readings are normalized
by side scatter and then normalized to the 0min dose for each strain to show fold change.
Error bars represent standard error of the mean for 9 biologically independent replicates.
C) Fluorescent reporter response to pulsatile versus continuous localization of different TF-
CLASP constructs. TF-CLASP constructs are given either 20 two-minute pulses of light or
1 forty-minute pulse of light, as depicted in the schematic on the left. Reporter expression is
measured via flow cytometry one hour after light shut-off. Right panels show quantification
of YFP fold change in response to pulsed light input, continuous light input, or no input.
Error bars represent standard error of the mean for 9 biologically independent replicates. In
all panels, strains are induced with a given amplitude of light (SynTF-CLASP – 1024 a.u.;
Msn2-CLASP – 2048 a.u., Pho4-CLASP – 4095 a.u.). See also Figure 2.9.
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Figure 2.3: Crz1 target genes show differing interpretation to Crz1*-CLASP
short nucleo-cytoplasmic pulses.A) Schematic of experimental setup used. Two types
of light inputs are given to cells expressing Crz1*-CLASP: 2 minute pulses with decreasing
period (20, 15, 12, and 6 minute periods) and single pulses with increasing duration (20, 40,
80, 120 minutes). Light-induced Crz1*-CLASP nuclear localization is measured with fluores-
cence microscopy. The mean of single cell fluorescence values is plotted (solid red for pulsed
input or blue line for continuous inputs), with the shaded area representing 95% confidence
interval (red or blue shading). Cells tracked for the pulsed and continuous inputs are 187 and
91 cells, respectively. Crz1*-CLASP nuclear fluorescence AUC (x-axis in rightmost panel) is
quantified as the area under the nuclear fluorescence traces (gray shading in middle panel).
Gene expression (mean FITC/SSC) is measured for 6 promoter fusions of target gene driving
a fluorescent protein (YFP) at 5 hours after light input. A schematic shows gene expression
values for different light input regimes are plotted as a function of nuclear fluorescence AUC,
generating the Output-Fluorescence plot referred to in the text. Each point in the plot is an
endpoint measurement of gene expression, as highlighted by the YFP time course schematic
above. Red circles represent output fluorescence for short 2 minute pulses with increasing
period, and blue circles represent that for continuous single pulse with increasing durations.
A best fit line (red for pulsed inputs and blue for continuous inputs) is fit through the data
points for the pulsed and continuous inputs. For each Output-Fluorescence plot we define
the slope ratio as the ratio of the slope of the pulsed to continuous best fit lines. B) Output-
Fluorescence plot for three representative Crz1 target promoters pYPS1-YFP, pCMK2-YFP,
and pGYP7-YFP. The error bars are standard deviation of at least 3 biological replicates.
C) Slope ratios for 6 Crz1 target genes plotted in order of highest to lowest slope ratio. Data
for 3 biological replicates is plotted. In all panels, Crz1*-CLASP is induced with a 512 a.u.
light input. See also Figure 2.10.
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Figure 2.4: Higher gene expression in response to short pulses by promoters
occurs when the dose response is saturated at low TF concentration. A) Schematic
of a two-state promoter model, where the input is Crz1*-CLASP nuclear localization (TF)
and the output is fluorescent protein level (Protein). The promoter turns ON with rate
constant kon and turns OFF with rate constant koff. B) Heatmap of slope ratio for increasing
kd and different values of kon and koff. Each column has a given value of kd and each row has
different values for kon and koff that produce the same kd. The nominal kon and koff values
used in the first row are noted at the top of each column, and every subsequent row uses a
fraction of these values (1/5, 1/10, and 1/20). The values of β1, β2, and β0 are 2.01, 4.92,
and 0.0032, respectively. C) Plot of pon as a function of TF for kd = 2.3 and 46, assuming
a fast promoter. This quantity is denoted as pon, QSSA and calculated as pon, QSSA =
TF

TF+kd
. The dotted line represents max TF input, TFmax, which is 2.6. D) Plot of pon, QSSA

as a function of time assuming quasi-steady state of promoter dynamics as in panel (C). In
these panels, kd = 2.3. (Top panels) Red and blue lines represent pulsed and continuous
TF inputs, respectively. Gray lines and text denote equivalent area of TF input. The area
labeled “a” represents the rise for both pulsed and continuous inputs. The area labeled “b”
represents the fall of the pulsed input, and the equivalent area for the continuous input.
The area labeled “c” represents a single pulse of the pulsed input, and the equivalent area
of the continuous input. The area labeled “c” is equivalent to the sum of the areas labeled
“a” and “b”. The areas labeled “a” and “b” are equivalent to each other. (Bottom panels)
Red and blue lines represent pon, QSSA in response to pulsed and continuous TF inputs,
respectively. Gray shading denotes equivalent area of pon, QSSA for continuous and pulsed
inputs. Light red shading denotes excess pon, QSSA area resulting from the rise and fall of
the pulsed input. E) Output-Fluorescence plots generated by the model for two parameter
sets that qualitatively represent pYPS1-YFP. The solid lines represent kon = 0.2 and koff

= 0.46. The dashed lines represent kon = 2 and koff = 4.6, and kd =
koff
kon

= 2.3 for both
parameter sets. The red lines represent the output of the pulsed input. The blue lines
represent the output of the continuous input; for both parameter sets, this output is the
same. F) Plot of pon as a function of time for continuous and pulsed inputs for kd = 2.3 with
kon = 0.2, koff = 0.46. Red and blue solid lines represent the pon resulting from pulsed and
continuous inputs, respectively. The red and blue shading represent pulsed and continuous
TF inputs, respectively. G) Same as F for kon = 2, koff = 4.6. H) Schematic of dose response
experiment. Cells with different expression levels of Crz1*-CLASP are induced with light for
4 hours and YFP expression is measured after 5 hours. I) The experimental dose response
for pYPS1-YFP was fit to the equation: normalized protein output = C·TF

TF+kd
where TF =

maximum Crz1*-CLASP nuclear fluorescence, C = scaling factor, and kd =
koff
kon

. kd and
squared error of prediction (SSE) of the fit for each gene is noted in the bottom right corner
of the plot. J) Same as (I) for pCMK2-YFP. For I-J, error bars represent standard deviation
of 3 biologically independent replicates. See also Figures S5, S8-9.
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Figure 2.5: Time course measurements of protein output constrain parameter re-
lationships. A) (left panel) Schematic of the input used for protein time course experiment.
Cells are induced with constant blue light and pYPS1-YFP or pCMK2-YFP expression is
measured continuously (every 8 minutes) throughout induction for two hours. (middle panel)
Plot of normalized protein expression (FITC/SSC) as a function of time for pYPS1-YFP.
The magenta lines represent fits through the data (plotted as black dots with error bars) for
model in Figure 2.4A. The model was simulated using 33,000 parameter sets varying kon,
koff, and γ1, and fit to the dynamic gene expression data was assessed. kon was varied from
0.001-10, koff from 0.000007-100, and γ1 from 0.01-10. (right panel) Same as middle panel for
pCMK2-YFP. For both panels, β1 was set to 0.1, β2 set to 0.06, γ2 set to 0.0083, and β0 set to
0.001. For middle and right panels, error bars represent standard deviation of 3 biologically
independent replicates. B) (left panel) Plot of log10(γ1) as a function of log10(konTF + koff )
for pYPS1-YFP. Magenta dots represent 2355 parameter fits to the dynamic protein time
course data (continuous input) as discussed in Figure 2.5A middle panel. Gray dots rep-
resent parameters that were tested but did not fit to the data. (right panel) Same as left
panel for pCMK2-YFP. Blue dots represent 807 parameter fits to the dynamic protein time
course data (continuous input) as discussed in Figure 2.5A right panel. Gray dots represent
parameters that were tested but did not fit to the data. C) (left panel) Schematic of input for
Output-Fluorescence experiment. Experiment is as described in Figure 2.3A. (middle panel)
Output-Fluorescence plot of simulated outputs and data for pYPS1-YFP. Parameters deter-
mined to fit the dynamic protein time course with a continuous input are used to predict the
Output-Fluorescence data. Red and blue lines represent the model outputs for all parameters
that fit the Output-Fluorescence and protein time course data from panel A. Red and blue
circles and error bars represent experimentally measured means and standard deviations for
pulsed and continuous inputs, respectively, for 3 biologically independent replicates. (right
panel) Same as middle panel for pCMK2-YFP. D) (left panel) Plot of log10(γ1) as a function
of log10(konTF + koff ) for pYPS1-YFP, where the magenta dots represent 300 parameters
that fit both the Output-Fluorescence and dynamic protein time course (continuous input).
Gray dots represent parameters that were tested but did not fit to the data. (right panel)
Same as left panel for pCMK2-YFP. The blue dots represent 321 parameters that fit both
the Output-Fluorescence and dynamic protein time course data (continuous input). E) (left
panel) Schematic of input for protein time course experiment for pulsed and continuous in-
puts. Cells were induced with either constant light or pulsed light (2m ON/4m OFF) and
gene expression was measured every 8 minutes. (middle panel) Plot of normalized protein
expression (FITC/SSC) as a function of time for pYPS1-YFP for the experiment denoted in
the left panel. Red and blue circles and error bars denote experimentally measured means
and standard deviations for pulsed and continuous inputs, respectively, for 3 biologically
independent replicates.
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Figure 2.5: Red and blue lines represent the model outputs for the experiment denoted in
the left panel, using parameters that fit the dynamic protein time course (continuous input)
and Output-Fluorescence data. (right panel) Same as left panel for pCMK2-YFP. See also
Figure 2.14.
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Figure 2.6: Higher gene expression in response to continuous inputs by promot-
ers can be explained by a model with two transition states and with a thresh-
olded transition between non-transcribing promoter states. A) Schematic of the
three-state model where roff, the inactivation rate constant from p0 to poff, is thresholded
by TF concentration and where the activation from poff to pon is linearly dependent on TF.
B) (left panel) Schematic of experimental setup. (right panel) Output-Fluorescence plot for
pGYP7-YFP. Circles are experimentally measured values while lines denote the mean model
output for 96 parameter sets that fit the data points within the error bars, the same metric
as used in Figure 2.5. The solid line denotes the mean and shaded areas denote the standard
deviation of the model outputs for these parameter sets. Parameters were sampled (ron from
0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0 from
0.000001-0.01, threshold from 0-0.5) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). Red circles,
error bars, and lines relate to the pulsed input, while blue circles, error bars, and lines relate
to the continuous input. Error bars show standard deviation from 3 biologically independent
replicates. C) (left panel) Schematic of experimental setup. (right panel) Dose response plot
for pGYP7-YFP. The parameters that fit the Output-Fluorescence data were used to fur-
ther fit the dose response of pGYP7-YFP using a least squared error criterion (25 parameter
sets). Solid black line is the mean generated by the model. The black circles are the mean
of the experimentally measured dose response and error bars are the standard deviation of 3
biologically independent replicates. D) (left panel) Schematic of experimental setup. (right
panel) The parameters that fit the Output-Fluorescence are subjected to cross-validation
using an experiment where Crz1*-CLASP expression is increased (construct expressed from
a pTEF1 promoter), and cells are exposed to either short pulsed (2 minutes ON/10 min-
utes OFF) or continuous input (40 minutes of light). The model generated outputs (solid
gray, red, and blue bars) are plotted with the experimental data (hashed gray, red, and blue
bars). The gray bars correspond to no light input. E) (left panel) Heatmap shown in the
log10( kon

koff
) − log10( ron

roff
) plane of slope ratio of Output-Fluorescence relationship resulting

from the model in (A). Parameters are sampled (roff from 0.0025-25, koff from 0.0025-25) or
set (ron =0.25, kon = 0.25, β1 = 0.0001, β2 =0.06, γ1 =0.05, γ2 =0.0083, threshold= 0.5,
β0 =0.000001). Point 1 highlights a parameter set that fits the output-fluorescence, dose
response, and cross-validation datasets for pGYP7-YFP. Black region is where slope ratio
<1. Gray dotted line indicates when log10( kon

koff
) ≈ -1.5, at which point the dose response

changes from linear to nonlinear with increase in the log10( kon
koff

) value. All parameters that

show a qualitative fit to Output-Fluorescence data are displayed as light and dark gray dots.
The light gray dots represent parameter sets where all pGYP7-YFP data are quantitatively
fit. (right panel) Heatmap of slope ratio as in (E, left panel) with a ron = 2.5, 10 times
larger than that in (E, left panel). kon is also set to 0.25. Parameters are sampled (roff

from 0.025-250, koff from 0.0025-25) or set (β2 = 0.0001, β2 = 0.06, γ1 = 0.05, γ2 = 0.0083,
threshold = 0.5, β0 = 0.000001). Point 2 highlights the effect of increasing both ron and roff

while maintaining the ratio log10( ron
roff

).
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Figure 2.6: F-G) (upper panels) Output-Fluorescence plots generated by the model for
different parameter sets that correspond to points 1 and 2 in the heatmaps of panel E. The
slope ratio for point 1 is 0.51 with log10( kon

koff
) = -1.58 and log10( ron

roff
) = -0.89. The slope

ratio for point 2 is 1.04 with log10( kon
koff

) = -1.58 and log10( ron
roff

) = -0.89. (middle panels)

Example of a time course of promoter state p0 for a light input that produces the equivalent
of 40 minutes (dotted line in upper panel) in nuclear localization either continuously or in
short pulses. Solid lines are the p0 pulses while shading denotes TF nuclear localization.
The black double arrows denote the maximum depletion of the p0 state for the pulsed input.
(lower panels) Example of a time course of promoter activity pon for a light input that pro-
duces the equivalent of 40 minutes (dotted line in upper panel) in nuclear localization either
continuously or in short pulses, similar to middle panels. The red and blue hashes repre-
sent residual promoter activity beyond the TF nuclear localization input. The red residual
promoter activity is repeated 15 times while the blue residual activity is repeated one time.
The ∆ bar denotes the difference between the amplitudes generated by the 2 minute pulsed
and 40 minute continuous input. H) (left panel) Schematic of chromatin immunoprecipita-
tion experiment. (right panel) H3 histone occupancy is plotted for regions of the promoter
fusions pYPS1-YFP and pGYP7-YFP. H3 histone occupancy is calculated as the ratio of
% immunoprecipitation (% IP) of the promoter fusion target to % immunoprecipitation of
an actin control. % Immunoprecipitation is calculated relative to the input DNA. Black
lines show the mean measured value and gray shading shows the standard deviation of 3
biologically independent replicates. See also Figures S6-7.

2.6 Materials and Methods

2.6.1 Resource Availability

Lead Contact Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, Hana El-Samad

(hana.el-samad@ucsf.edu).

Materials Availability

To request reagents, please submit a form to UCSF at

https://ita.ucsf.edu/researchers/mta. Key plasmids have been deposited on Addgene and

can be requested from there. For other plasmids, please contact the Lead Contact.
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Data and code availability

All microscopy, flow cytometry, RNA-seq, ChIP-qPCR data, and modeling results (except

for those for Fig S6A-I) can be accessed on Mendeley Data at

http://dx.doi.org/10.17632/jxjnjmmj83.1. Raw microscopy images supporting the current

study and modeling results for Fig S6A-I have not been deposited in a public repository

due to file size constraints, but are available from the Lead Contact on request. All code

necessary to generate the figures is available via Github at

https://github.com/lindseyo/CLASP-Crz1.

2.6.2 Experimental model and subject details

Saccharomyces Cerevisiae

Plasmid and strain construction

Hierarchical golden gate assembly was used to assemble plasmids for yeast strain

construction using the method in Lee et al70. BsaI, BsmBI, and NotI cut sites were

removed from individual parts to facilitate downstream assembly and linearization. Parts

were either generated via PCR or purchased as gBlocks from IDT. For promoters, these

parts incorporate the 1000 bp upstream of the open reading frame. These parts were then

assembled into transcriptional units (promoter-gene-terminator) on cassette plasmids.

These cassettes were assembled together to form multi-gene plasmids for insertion into the

yeast genome at the TRP, URA, or LEU locus. Cassette plasmids were grown and

prepared from either DH5alpha or Mach1 competent cells (Macrolab, Berkeley, CA).

Cassettes were digested with NotI and then transformed into yeast as described in Lee S et

al., 201371 or Lee ME et al., 201570.
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Yeast strains, media, and growth conditions

The base S. cerevisiae strain used for experimentation was W303α or BY4741. Base strain

for each engineered strain is noted in the strain list. From these base strains, knockout of

endogenous transcription factors was done with a one-step replacement using a plasmid

that contains 40 base pair overlaps in the 5’ and 3’ UTR of the transcription factor

(Gardner and Jaspersen, 2014)72. The 40 base pair overhangs flank the Candida Albicans

HIS selectable marker.

Single colonies were picked from auxotrophic SD (6.7 g/L Bacto-yeast nitrogen base

without amino acids, BD Difco, Franklin Lakes, NJ; 2 g/L supplement amino acid mix

minus necessary amino acids, MP Biomedical, Irvine, CA; 20 g/L dextrose, Sigma-Aldrich,

St Louis, MO) agar plates. For microscopy and growth measurement studies, colonies were

picked into 1 ml SDC media. For flow cytometry studies, colonies were picked into 1 ml

YPD (yeast extract, Alfa Aesar, Haverhill, MA; peptone, BD Biosciences, Franklin Lakes,

NJ; 2% glucose, Sigma-Aldrich, St Louis, MO) or SDC (6.7 g/L Bacto-yeast nitrogen base

without amino acids, BD Difco, Franklin Lakes, NJ; 2 g/L complete supplement amino

acid mix, MP Biomedical, Irvine, CA; 20 g/L dextrose, Sigma-Aldrich, St Louis, MO)

media. Colonies were grown overnight from 30◦C to saturation. Prior to the start of an

experiment, cells were diluted into 1-3 ml of SDC and grown for 4 hours to an OD of

0.05-0.1 prior to the start of an experiment. A TECAN Spark 10M plate reader (TECAN,

Mannedorf, Switzerland) was used for growth measurements.

Flow Cytometry

Blue light optogenetic stimulation of samples was done using a custom built “optoPlate” as

described in Bugaj et al73. Analysis of fluorescent protein reporter expression was

performed with a BD LSRII flow cytometer (BD Biosciences, Franklin Lakes, NJ) equipped

44



with a high-throughput sampler. For steady-state measurements, cultures were diluted in

TE before running through the instrument. Cultures were run on the instrument 1 hour

(+/- 20 min) after optical stimulation using the optoPlate, to allow for YFP maturation.

YFP (Venus) fluorescence was measured using the FITC channel and RFP

(mCherry/mScarlet) was measured using the PE-Texas Red channel. For steady-state

measurements, a maximum of 10,000 events were collected per sample.

Growth Assays

Growth was measured using a TECAN Spark 10M plate reader (TECAN, Mannedorf,

Switzerland) using 600nm excitation. Cultures were plated into Corning 3904 96-well assay

plates (Corning, Corning, NY) and grown at 30◦C while shaking until saturation.

Treatment with CaCl2 stress

Cells were grown at 30◦C in YPD medium to saturation overnight. Cells were then diluted

prior to the start of an experiment and grown for 4 hours to an OD of 0.05-0.1. For

microscopy experiments, cells were plated in SDC with concanavalin A (conA;

Sigma-Aldrich, St Louis, MO) for 15 minutes to adhere them to the bottom of the glass

imaging plate. Prior to imaging, the SDC was removed and replaced with a solution of

SDC with 0.2M CaCl2 (Fisher Scientific, Waltham, MA). For flow cytometry experiments,

cells in SDC were diluted to OD 0.1 in a media of SDC with 0.2M CaCl2 and grown in the

media for the duration of the experiment. Prior to measurement, the 0.2M CaCl2 media

was removed by centrifugation with 3 washes in 1X TE (Fisher Scientific, Waltham, MA).
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Automated Flow Cytometry

Cells were grown at 30◦C in YPD medium to saturation overnight. Cells were then diluted

prior to the start of an experiment to 0.15 OD and grown for 4 hours in SDC media. Cells

were then back diluted to 0.2 OD into SDC media with 0.5X Penicillin-Streptomycin to

prevent culture contamination (Thermo Fisher Scientific, Waltham, MA ; 10,000 U/mL).

Cells were then outgrown for 1 hour at 30◦C while shaking on the automated flow

cytometer setup (described in Harrigan et al, 201874). Following the outgrowth, cells were

illuminated with 40 mA pulsed or continuous blue light (455 nm) and sampled every 8

minutes for 6 hours using custom LabView scripts.

Chromatin Immunoprecipitation

Chromatin Immunoprecipitation (ChIP) followed by qPCR was performed as described in

Greenstein et al, 201875 with the following modifications. S.cerevisiae cells were grown at

30◦C in YPD overnight to saturation. Cells were then diluted prior to experiment to 0.2

OD and then grown for 4 hours in SDC media. To fix cells, 1% formaldehyde (Thermo

Fisher Scientific, Waltham, MA) was added directly to the media and cultures were

incubated with shaking for 15 minutes at 30◦C. Fixation was quenched with 0.25M glycine

(Fisher Scientific, Waltham, MA) for 5 minutes at 30◦C. Cell pellets were washed twice

with cold 1xTBS (Teknova, Hollister, CA) and flash frozen prior to lysis. Cells were lysed

using a Mini Bead-Beater (Biospec, Bartlesville, OK) with 7 rounds of 1 minute ON

followed by 2 minute incubations on ice. Sonication was performed using a Diagenode

BioRuptor Standard machine (Diagenode, Liege, Belgium) for 30 rounds of 30s ON/30s

rest at 4◦C. The insoluble fraction was removed by centrifugation and then pre-cleared

with Protein A Dynabeads (Thermo Fisher Scientific, Waltham, MA) for 3 hours with

rotation. Beads were then removed with a magnetic stand (Dynal/Thermo Fisher
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Scientific, Watham, MA). 2.1µg of H3 antibody (Active Motif, Carlsbad, CA; 39064) was

added per ChIP sample after a 25% was set aside as Input/WCE. Following overnight

incubation with antibody, immune complexes were collected with Protein A Dynabeads

(Invitrogen) and washed as described75 with the exception that the wash buffer step was

performed twice. DNA was quantified by RT-qPCR and %IP (ChIP DNA / Input DNA)

was calculated as described75. %IP values for each qPCR target were normalized to the

%IP value for ACT1, an internal positive control.

RNAseq of Crz1 19A and 5A mutant

Single colonies were picked and grown to saturation in YPD at 30◦C overnight. Cells were

then diluted in SDC and grown for 4 hours to an OD of 0.3. Cells were harvested by

centrifugation and frozen with liquid nitrogen. RNA was extracted using phenol chloroform

(Sambrook and Russell, 2006; Thermo Fisher Scientific, Waltham, MA). RNA quality was

assessed using the Agilent RNA Pico kit (Agilent, Santa Clara, CA). The Lexogen

Quantseq 3’ mRNA-Seq Library Prep Kit (Lexogen, Vienna, Austria) was used for RNA

preparation. mRNA libraries were quantified using Qubit dsDNA HS Assay Kit (Thermo

Fisher Scientific, Waltham, MA) and subject to single-end sequencing on an Illumina

HiSeq 4000.

Delivery of stress inputs for microscopy

For each environmental perturbation, cells were grown overnight to saturation in YPD,

diluted in SDC prior to the experiment, and grown to an OD of 0.1. 200ul cells were plated

with conA. Just before imaging, the SDC media was removed from the microscopy well and

the appropriate environmental stress media was applied to the cells.The media for glucose

depletion consisted of 0.67% YNB w/o AA w/ ammonium sulfate, 0.79% CSM, 0.05%
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glucose. The media for osmotic shock was composed of 0.67% YNB w/o AA w/ ammonium

sulfate, 0.79% CSM, 2% glucose, and 0.95M sorbitol53 (Sigma-Aldrich, St Louis, MO).

2.7 Supplemental Text

Measuring basal and constitutively nuclear gene expression of TFs

To further assess how TF-CLASP-induced expression compares to endogenous gene

expression, we measured the level of reporter gene expression when the TFs were

constitutively localized to the nucleus by C-terminally tagging them with the same NLS

used in yeLANS (TF-NLS), or in their basal localization by C-terminally tagging them with

only mScarlet. All TF-NLS, TF-mScarlet, and TF-CLASP constructs were expressed from

pRPL18b. We compared this value to expression achieved when TF-CLASP was induced

with 2 hours of blue light. SynTF-CLASP achieved 52% of pSYNTF-YFP expression

produced through constitutive nuclear localization of SynTF (Figure 2.9B). Furthermore,

the mean SynTF-CLASP-induced gene expression in the dark (.09) was similar to the

mean basal gene expression in a strain in which the SynTF was only tagged with mScarlet

(.07) (Figure 2.9B). Pho4-CLASP activated pPHO84-YFP to 14% of the gene expression

achieved with constitutive nuclear localization (Figure 2.9C) while Msn2-CLASP was more

efficient at inducing pHSP12-YFP gene expression than constitutive Msn2 nuclear

localization (23% greater expression, Figure 2.9D). Since Msn2 is subject to faster

degradation in the nucleus76,77, transient localization with CLASP may be more efficient at

inducing gene expression. For both pHSP12-YFP and pPHO84-YFP, reporter expression in

the dark was lower in a strain that had either Msn2-CLASP or Pho4-CLASP than in their

respective controls with either Msn2 or Pho4 when only tagged with mScarlet (28% and

88% lower, respectively). In fact, pPHO84-YFP showed basal bimodal expression in the

constitutively expressed Pho4 strain, but not in the Pho4-CLASP strain (Figure 2.9C).
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These data suggest that CLASP can potently sequester TFs in the dark.

Effect of protein and mRNA half-lives on slope ratio

Large degradation rates (hence short half-lives) of mRNA and protein result in large slope

ratio, which decreases as these rates decrease (Figure 2.11B). This is not unexpected given

that the continuous input ends before the pulsed input. Since the slope ratio is a

comparison of the continuous and pulsed inputs measured one hour after the experiment

ends, with larger degradation rates, the protein output of the continuous input is reduced

more than the output of the pulsed input.

Computational modeling

Ordinary differential equation (ODE) models of gene expression focusing on promoter

kinetics were constructed. For the simple kinetic model that described higher gene

expression in response to short pulses, a model was constructed with three state variables

and seven parameters. Nine models were constructed and tested for higher gene expression

in response to continuous pulses. These models either contained three or five state

variables with up to ten parameters. Latin hypercube sampling was done to randomly

sample parameters. ODE solvers 45 and 113 in Matlab were used. Least squared error and

fit within the error bars of the data were metrics used to obtain model fits. More details of

the modeling methods are below.
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Model equations and sampling details of the pYPS1-YFP and pCMK2-YFP

phenotypes

Simple Two-State Promoter Model - This model described the higher gene expression in

response to short pulses for pYPS1-YFP. The model described a two-state promoter that

activates mRNA production which then activates protein production and is depicted in

Figure 2.4A. We modeled these interactions using equations (1.4)-(1.6), which are detailed

in the main text as (1.1)-(1.3):

dpon
dt

= konpoffTF (t)− koffpon

= kon(1− pon)TF (t)− koffpon (2.4)

dmRNA

dt
= β0 + β1pon − γ1mRNA (2.5)

dProtein

dt
= β2mRNA− γ2Protein (2.6)

In these equations, pon represented promoter activity due to increased nuclear localization

of Crz1*, while mRNA and Protein represented concentration of mRNA and protein,

respectively. Here we assumed that promoter activity was conserved such that

1 = pon + poff . TF represented the concentration, or nuclear fluorescence, of nuclear

transcription factor. The model was characterized by 7 parameters. Most of the

activation/inactivation and production/degradation terms were modeled by first-order

mass action kinetics. The parameter β0 was zeroth-order, to reflect basal promoter activity.

We chose this simple model form because we were interested in a parsimonious model that

could explain the experimental phenotype of pYPS1-YFP. Note that the rate of promoter

activation was dependent on TF concentration because Crz1 has been shown to activate
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genes through binding of a known promoter element, the calcineurin-dependent response

element (CDRE), through its zinc finger domain55. The input to the model was the

concentration, or nuclear fluorescence, of nuclear transcription factor (TF), while the

output represented protein concentration (Protein).

Dose Response Fitting - The experimental dose response was fit to the equation protein

output = C·TF
(TF+kd)

where TF = amplitude of transcription factor input, C = scaling factor,

and kd = koff/kon. The model fit showed a kd of 2.3 for pYPS1-YFP (with a squared error

of prediction (SSE) of 5.8e-03) and a kd of 12.8 for pCMK2-YFP (with an SSE of 2.9e-09).

Parameter Search for Figure 2.11 - The equations were numerically solved by the ODE

solver ode113 for nonstiff differential equations via MATLAB. Parameters kon, koff, β0,and

β1 were sampled over 4-5 orders of magnitude systematically and randomly using Latin

Hypercube Sampling (LHS). kon and koff varied from 1e-1 to 1e2. β0 was varied from 1e-6

to 1e-2. β1 was varied from 1e-4 to 1e1. Parameters β2 = 0.06, γ1 = 0.06, and γ2 = 0.0083

were fixed to values according to literature16,61. From the parameter sets sampled, the

slope ratio (defined in Figure 2.3), a summary metric for the degree of efficiency in response

to short pulses, was calculated for each parameter set. The parameter search yielded model

outputs that qualitatively recapitulate the pYPS1-YFP and pCMK2-YFP slope ratios.

Model Fitting - The model was used to fit the experimental data. Fits of the experimental

data to the simple two-promoter state model (Figure 2.4) were obtained by the following

procedure: 1. 10000 parameters were randomly sampled using LHS with the

aforementioned parameter ranges (Figure 2.11A) or more comprehensively sampled using

33,000 parameter sets varying kon, koff, and γ1, (kon was varied from 0.001-10, koff from

0.000007-100, and γ1 from 0.01-10, Figure 2.5). 2. Fits were determined to be model

outputs that fit through ten or more data points within error of the dynamic protein time

course data (Figure 2.5B) or seven or more data points within error of the

Output-Fluorescence data (Figure 2.5D). Note that the ability of the model to fit the data
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was the same regardless of the criteria of fit used – whether the criteria was the model

output fit within the error bars of the data or least squared error of the model to the best

fit line to the data. 3. Cross-validation of parameter fits to the dynamic protein time

course for light input of 2 minute ON/4 minutes OFF was done. From this procedure, we

identified parameter sets that recapitulated all of the experimental data for both

pYPS1-YFP and pCMK2-YFP.

2.7.1 Mathematical Analysis

Derivation of expressions of total transcripts from Eq(1.1)

In this section, we derive expressions for the total mRNA produced by the promoter. Using

these expressions, we then study properties of total transcripts produced from pulsed and

continuous inputs. Starting with the mRNA equation

dmRNA

dt
= β1pon − γ1mRNA (2.7)

where there is an instantaneous transcript creation rate β1pon, with β1 being the maximum

transcription rate. The instantaneous mRNA loss rate is γ1mRNA. We will calculate the

total integrated output of the promoter, that is the total number of transcripts produced

over the entire experiment. By comparing this output for pulsed and continuous inputs that

have the same Nuclear Fluorescence AUC, we will be able to link the promoter properties

to the ability of producing more transcripts from either pulsed or continuous inputs.

The expression for the total number of transcripts, N , produced over the entire experiment

for a given finite input function TF (t) is described by the equation

N =

∫ 5

0

β1pondt (2.8)
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In the particular setting of our experiments, light input of constant amplitude is

administered either continuously (with TF input denoted by TFc(t), and maximum TF

input reaching TFmax) or pulsed (with TF input denoted by TFp(t)) for a period of time (a

maximum of 4 hours), after which the light is shut-off and the output is measured at 5

hours. For the pulsed experiment, light is given in pulses, which yields a TF input of

approximately triangular pulses. Each triangular pulse reaches a maximum amplitude of

TFmax after which the light is shut-off. By design, for a given Nuclear Fluorescence AUC

value, the integrals of TFc(t) and TFp(t) are the same, i.e.
∫ 5

0
TFp(t)dt =

∫ 5

0
TFc(t)dt.

Dynamic protein measurements (Figure 2.5B) indicate that the combined timescales of

promoter and mRNA decay are faster than 25 minutes (for pYPS1-YFP and

pCMK2-YFP). Therefore, pon and mRNA levels will have decayed to zero at the time of

measurement. In addition, prior to any inputs at t = 0, we assume that pon is zero. As a

result, pon(5) = 0 and pon(0) = 0.

Eq. (1.1) indicates that:

dpon
dt

= kon(1− pon)TF (t)− koffpon (2.9)

Integrating this equation from t = 0 to t = 5 hours:

∫ 5

0

dpon
dt

dt =

∫ 5

0

kon(1− pon)TF (t)dt−
∫ 5

0

koffpondt (2.10)

Now,
∫ 5

0
dpon
dt
dt = pon(5)− pon(0) = 0. Thus, setting the two terms on the right side equal

to each other and multiplying by β1/koff we get

N =

∫ 5

0

β1pondt =

∫ 5

0

β1

kd
(1− pon)TF (t)dt (2.11)
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where kd = koff/kon. The left two expressions are Eq. (??) while the rightmost expression

describes how pon negatively impacts N , for a given input TF (t), through the term

(1− pon).

To assess the value of N , we use the rightmost expression of Eq. (2.11). We further denote

the total number of transcripts generated by TFp(t) to be Np and that generated by TFc(t)

to be Nc. Before we delve into the thorough mathematical treatment, we make two

arguments. The first is an intuitive illustration of why the ratio Np/Nc is larger than 1 for

the two-state promoter model and the second with respect to how the ratio of total

transcripts can be extrapolated to the analysis of the slope ratio we measure, which is that

of the protein.

Intuitive Explanation of Np/Nc > 1 for two-state promoter model

Irrespective of the input, pon starts at zero and cannot exceed the steady-state solution of

pon from Eq. (2.1) evaluated at TFmax. This steady-state for pon is given by

TFmax/(TFmax + kd). For a non-zero TFc(t), after the initial rise, TFc(t) is primarily equal

to TFmax (Figure 2.4G (blue shading)) and pon is primarily equal to TFmax/(TFmax + kd)

(Figure 2.4G (blue curve)). This is of course assuming that the promoter dynamics allow

for reaching steady-state well before the input shuts off. On the other hand, for the pulsed

input, the transcription factor input will spend more of its time in the state where

TFp(t) < TFmax (Figure 2.4G (red shading)) and therefore, pon will satisfy

pon < TFmax/(TFmax + kd) (Figure 2.4G (red curve)) for more of the time course.

Accordingly, the (1− pon) term on the right hand side of Eq. (2.11) will predominantly be

greater for the pulsed input than the continuous input when TF (t) is non-zero. Taken

together with the fact that
∫
TFp(t)dt =

∫
TFc(t)dt, then, according to Eq. (2.11), one

might postulate that Np is larger than Nc. We also prove this to be mathematically true in

2.7.1 Sections ”Derivation of Np/Nc > 1 in the regime of a fast promoter relative to TF (t)”
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(fast promoter) and ”Derivation of Np/Nc > 1 for general values of kon and koff” (general

case). A limiting scenario occurs when TFmax << kd, where TFmax/(TFmax + kd), the

upper bound of pon, remains much smaller than one (heat map of Np/Nc in Figure 2.14A).

In this case, the right hand side of Eq. (2.11) dictates that Np/Nc will be close to one

independent of the magnitudes of the rate constants kon and koff (see Figure 2.14B,

kd = 46).

Np/Nc can be used to understand slope ratio

We can use the ratio of N for the pulsed input to N for the continuous input, i.e. Np/Nc,

to infer the characteristics of the protein slope ratio, which is the quantity experimentally

measured (compare Figures 2.4B and Figure 2.14A). This is not surprising since transcripts

are causal to proteins. This correlation between Np/Nc and protein slope ratio can also be

gleaned from the plot of N as a function of nuclear fluorescence AUC by comparing Figure

2.14B with the plot of protein as a function of nuclear fluorescence AUC data (Figures 2.4E

(kd = 2.3) and Figure 2.11D (kd = 46)). Furthermore, for all parameters of the model that

fit pYPS1-YFP and pCMK2-YFP experimental data, we computed Np/Nc and the slope

ratio of the protein output to compare their relationships. The results in Figure 2.14A-B

show that much like for proteins, pulsed inputs yield more transcripts per nuclear

fluorescence AUC than continuous inputs. Furthermore Np/Nc linearly correlates with

slope ratio for both pYPS1-YFP and pCMK2-YFP (Figure 2.14C). Fitting both plots to a

line shows that the value of Np/Nc is generally smaller than slope ratio. Thus, protein and

mRNA degradation increase the slope ratio for the protein output.
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Derivation of Np/Nc > 1 in the regime of a fast promoter relative to TF (t)

In the case that the promoter dynamics are much faster than those of the transcription

factor nuclear dynamics, pon reaches pseudo-steady state on the timescale of TF (t) such

that pon ≈ TF (t)
TF (t)+kd

. Using this equation, we can write the middle expression in Eq. (2.11)

as

β1

∫ 5

0

pondt = β1

∫ 5

0

TF (t)

TF (t) + kd
dt (2.12)

And the right side of Eq. (2.11) is

β1

kd

∫ 5

0

(1− pon)TF (t)dt =
β1

kd

∫ 5

0

(
1− TF (t)

TF (t) + kd

)
TF (t)dt

=
β1

kd

∫ 5

0

(
TF (t) + kd
TF (t) + kd

− TF (t)

TF (t) + kd

)
TF (t)dt

=
β1

kd

∫ 5

0

kd
TF (t) + kd

TF (t)dt

= β1

∫ 5

0

TF (t)

TF (t) + kd
dt (2.13)

Accordingly, Eq. (2.12) is identical to Eq. (2.13) as is required by Eq. (2.11).

To begin, for the continuous TF input, the initial rise of TFc(t) ends at t = τr,c (’r’

corresponds to rise, and ’c’ corresponds to continuous). After this rise, TFc(t) = TFmax

until the input starts shutting off at t = τf,c (Figure 2.14D) (where ’f’ corresponds to fall).

We will divide Nc into three parts as follows

Nc = β1

∫ τr,c

0

TFc(t)

TFc(t) + kd
dt+ β1

∫ τf,c

τr,c

TFc(t)

TFc(t) + kd
dt+ β1

∫ 5

τf,c

TFc(t)

TFc(t) + kd
dt

= Nr +Nc,m +Nf (2.14)

where Nr is the transcriptional contribution due to the rise of the TF pulse, Nf is the
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transcriptional contribution during the fall of this pulse, and Nc,m is the contribution in

between where TF assumes its maximum value TFmax (where ’m’ corresponds to middle).

The maximum amplitude for the pulsed input TFp(t) is also TFmax. The initial rise of

TFp(t) is the same as that of TFc(t), and the final decay of the continuous and pulsed

inputs are also the same (Figure 2.14D). If τr,p is the initial rise time of TFp(t) and τf,p is

the time at which the final pulse starts decaying, then
∫ τr,c

0
TFc(t)dt =

∫ τr,p
0

TFp(t)dt and∫ 5

τf,c
TFc(t)dt =

∫ 5

τf,p
TFp(t)dt.

We again divide Np into three parts:

Np = β1

∫ τr,p

0

TFp(t)

TFp(t) + kd
dt+ β1

∫ τf,p

τr,p

TFp(t)

TFp(t) + kd
dt+ β1

∫ 5

τf,p

TFp(t)

TFp(t) + kd
dt

= Nr +Np,m +Nf (2.15)

Where Np,m is the contribution of the series of pulses occurring between τr,p and τf,p.

Therefore, in order to show that Np/Nc > 1, we just have to show that Np,m/Nc,m > 1.

To begin, it is important to note that

∫ τf,c

τr,c

TFc(t)dt =

∫ τf,p

τr,p

TFp(t)dt (2.16)

For the continuous input, TFc(t) = TFmax between τr,c ≤ t ≤ τf,c. Accordingly,

Nc,m = β1

∫ τf,c

τr,c

TFc(t)

TFc(t) + kd
dt

= β1

∫ τf,c

τr,c

TFc(t)

TFmax + kd
dt

= β1
TFmax[τf,c − τr,c]
TFmax + kd

(2.17)

In the steps above we left TFc(t) in the numerator of the integrand term without replacing
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it with TFmax in the middle step from Eq. (2.17) in order to use the equality in Eq. (2.16)

such that Nc,m becomes:

Nc,m = β1

∫ τf,c

τr,c

TFc(t)

TFmax + kd
dt

= β1

∫ τf,p

τr,p

TFp(t)

TFmax + kd
dt (2.18)

On the other hand, the expression for Np,m is given by:

Np,m = β1

∫ τf,p

τr,p

TFp(t)

TFp(t) + kd
dt (2.19)

Since TFp(t) + kd ≤ TFmax + kd for every value of t, then TFp(t)

TFp(t)+kd
≥ TFp(t)

TFmax+kd
for every

value of t. In particular, since TFp(t) is pulsing, then TFp(t) + kd < TFmax + kd for most of

τr,p ≤ t ≤ τf,p. We can therefore write down the inequality

Np,m = β1

∫ τf,p

τr,p

TFp(t)

TFp(t) + kd
dt > β1

∫ τf,p

τr,p

TFp(t)

TFmax + kd
dt = Nc,m (2.20)

As a result, Np,m
Nc,m

> 1 and thus Np
Nc

> 1. It should be noted that an important requirement

for Eq. (2.20) and all following expressions is that the pulses in TFp(t) transition from zero

to TFmax at a finite speed (e.g, less than infinitely fast). This allows finite integral

contributions to the left side of Eq. (2.20) during this transition when

0 < TFp(t) < TFmax. This ensures the inequality. However for rectangular pulses with no

transition time, i.e TFp(t) jumps infinitely fast from zero to TFmax, the left side of Eq.

(2.20) will equal the right side and thus Np = Nc, for this special case.
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The ratio Np
Nc

is a monotonically decreasing function of kd and approaches 1 as kd

becomes very large compared to TFmax

One can see on the left side of Eq.(2.20) that the TFp(t)

TFp(t)+kd
term becomes larger in

magnitude as kd decreases for all t when TFp(t) > 0. This implies that Np,m increases for

decreasing kd for a given TFp(t). Likewise, Nc,m increases for decreasing kd. We will next

show however that Np
Nc

itself decreases and approaches the value of 1 as kd increases and

becomes large relative to TFmax. Under this constraint Eq (2.20) becomes

Np,m = β1

∫ τf,p

τr,p

TFp(t)

TFp(t) + kd
dt ≈ β1

∫ τf,p

τr,p

TFp(t)

kd
dt ≈ β1

∫ τf,p

τr,p

TFp(t)

TFmax + kd
dt = Nc,m(2.21)

Therefore Np,m ≈ Nc,m and hence Np ≈ Nc

As mentioned above, the contribution to Nc from the initial rise and final fall of TFc(t)

corresponds to one full pulse of a pulsed input TFp(t). Therefore, since

Np = β1

∫ 5

0

TFp(t)

TFp(t)+kd
dt, then if TFp(t) consists of M pulses, then one pulse would be the

equivalent of 1
M
β1

∫ 5

0

TFp(t)

TFp(t)+kd
dt. Furthermore, as also explained above: Nr,c = Nr,p and

Nf,c = Nf,p and we will refer to both as Nr and Nf , respectively. We will therefore

represent Nc as:

Nc = Nr +Nc,m +Nf

=
1

M
β1

∫ 5

0

TFp(t)

TFp(t) + kd
dt+ β1

∫ τf,c

τr,c

TFc(t)

TFmax + kd
dt (2.22)

where we have used Eq (2.17). Similarly, we represent Np as

Np = Nr +Np,m +Nf

=
1

M
β1

∫ 5

0

TFp(t)

TFp(t) + kd
dt+ β1

∫ τf,p

τr,p

TFp(t)

TFp(t) + kd
dt

=
1

M
β1

∫ 5

0

TFp(t)

TFp(t) + kd
dt+

M − 1

M
β1

∫ 5

0

TFp(t)

TFp(t) + kd
dt (2.23)
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The derivative of Nc with respect to kd would be

dNc

dkd
=

dNr

dkd
+
dNc,m

dkd
+
dNf

dkd

= − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt− β1

∫ τf,c

τr,c

TFc(t)

(TFmax + kd)2
dt (2.24)

Therefore,

dNr

dkd
+
dNf

dkd
= − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt (2.25)

and

dNc,m

dkd
= −β1

∫ τf,c

τr,c

TFc(t)

(TFmax + kd)2
dt

= − Nc,m

(TFmax + kd)
(2.26)

Likewise, the derivative of Np with respect to kd would be

dNp

dkd
=

dNr

dkd
+
dNp,m

dkd
+
dNf

dkd

= − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt− β1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

= − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt− M − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt (2.27)

where

dNp,m

dkd
= −β1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

= −M − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt (2.28)
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We will next compute the derivative of Np/Nc with respect to kd, and use the expressions

above to assess its sign, demonstrating that it is negative. The derivative of Np/Nc with

respect to kd is given by:

dNp
Nc

dkd
=

dNp
dkd

Nc

N2
c

−
dNc
dkd
Np

N2
c

=
1

N2
c

[(
dNp,m

dkd
+
d[Nr +Nf ]

dkd

)(
Nc,m + [Nr +Nf ]

)
−
(
dNc,m

dkd
+
d[Nr +Nf ]

dkd

)(
Np + [Nr +Nf ]

)]
=

1

N2
c

[
dNp,m

dkd
Nc,m +

d[Nr +Nf ]

dkd
Nc,m +

dNp,m

dkd
[Nr +Nf ] +

d[Nr +Nf ]

dkd
[Nr +Nf ]

−dNc,m

dkd
Np,m −

d[Nr +Nf ]

dkd
Np,m −

dNc,m

dkd
[Nr +Nf ]−

d[Nr +Nf ]

dkd
[Nr +Nf ]

]
=

1

N2
c

[
dNp,m

dkd
Nc,m +

d[Nr +Nf ]

dkd
Nc,m +

dNp,m

dkd
[Nr +Nf ]

−dNc,m

dkd
Np,m −

d[Nr +Nf ]

dkd
Np,m −

dNc,m

dkd
[Nr +Nf ]

]
(2.29)

We will now analyze different pairs of terms from the right hand side of Eq. (2.29). We will
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start with

dNp,m

dkd
Nc,m −

dNc,m

dkd
Np,m = −Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+Np,mβ1

∫ τf,c

τr,c

TFc(t)

(TFmax + kd)2
dt

= −Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+
Np,m

TFmax + kd
β1

∫ τf,c

τr,c

TFc(t)

TFmax + kd
dt

= −Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt+

Np,m

TFmax + kd
Nc,m

= −Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt+Nc,m

Np,m

TFmax + kd

= −Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+Nc,mβ1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)(TFmax + kd)
dt (2.30)

where in the third line we have used the relationship Nc,m = β1

∫ τf,c
τr,c

TFc(t)
TFmax+kd

dt from

Eq. (2.17). In the last line we used the relationship Np,m = β1

∫ τf,p
τr,p

TFp(t)

TFp(t)+kd
dt from

Eq. (2.23). When TFp(t) is non-zero, TFp(t)

(TFp(t)+kd)2
> TFp(t)

(TFp(t)+kd)(TFmax+kd)
for all t except

when TFp(t) = TFmax which occurs only at the peak of the pulse. Therefore,

dNp,m
dkd

Nc,m − dNc,m
dkd

Np,m < 0. Next, the second pair of terms is

d[Nr +Nf ]

dkd
Nc,m −

d[Nr +Nf ]

dkd
Np,m = [−Nc,m +Np,m]

1

M
β1 ·∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt (2.31)
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Where we have used the expression for
dNr+dNf

dkd
from above. Finally, the third pair is

dNp,m

dkd
[Nr +Nf ]−

dNc,m

dkd
[Nr +Nf ] = [Nr +Nf ]

[
−β1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+β1

∫ τf,c

τr,c

TFc(t)

(TFmax + kd)2
dt

]
= [Nr +Nf ]

[
−β1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+
Nc,m

(TFmax + kd)

]
=

1

M
Np

[
−β1

∫ τf,p

τr,p

TFp(t)

(TFp(t) + kd)2
dt

+
Nc,m

(TFmax + kd)

]
=

1

M
Np

[
− M − 1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt

+
Nc,m

(TFmax + kd)

]
= −M − 1

M
Np

1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt

+
1

M
Np

Nc,m

(TFmax + kd)

= −Np,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt+

1

M
Np

Nc,m

(TFmax + kd)

= −Np,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt+Nc,m

1

M

Np

(TFmax + kd)

= −Np,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt

+Nc,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)(TFmax + kd)
dt (2.32)

where in the second line we have used the relationship β1

∫ τf,c
τr,c

TFc(t)
(TFmax+kd)2

dt = Nc,m
(TFmax+kd)

from Eq.(2.26). In the fourth line we have used the relationship

−β1

∫ τf,p
τr,p

TFp(t)

(TFp(t)+kd)2
dt = −M−1

M
β1

∫ 5

0

TFp(t)

(TFp(t)+kd)2
dt from Eq. (2.28). In the last line we used
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the relationship Np = β1

∫ 5

0

TFp(t)

TFp(t)+kd
dt. We can now add Eq (2.31) and Eq (2.32) to get

d[Nr +Nf ]

dkd
Nc,m −

d[Nr +Nf ]

dkd
Np,m +

dNp,m

dkd
[Nr +Nf ]−

dNc,m

dkd
[Nr +Nf ]

= [−Nc,m +Np,m]
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt

−Np,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt+Nc,m

1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)(TFmax + kd)
dt

= −Nc,m
1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)2
dt+Nc,m

1

M
β1

∫ 5

0

TFp(t)

(TFp(t) + kd)(TFmax + kd)
dt

< 0 (2.33)

since TFp(t)

(TFp(t)+kd)2
> TFp(t)

(TFp(t)+kd)(TFmax+kd)
for all t and when TFp(t) is non-zero, except when

TFp(t) = TFmax which occurs only at the peak of the pulse. Thus, from the results in

Eq. (2.30) and Eq. (2.33), we can conclude that
d
Np
Nc

dkd
< 0, Therefore, Np/Nc is a

monotonically decreasing function of kd as is demonstrated in Figure 2.4 and Figure 2.10 in

the main text.

Derivation of Np/Nc > 1 for general values of kon and koff

Below we derive the result that Np, the total transcripts for the pulsed input TFp(t), is

always greater than Nc, the total transcripts for the continuous input TFc(t). The first

section below (2.7.1 Section ”Treatment of a class of inputs whose decreasing edge proceeds

through steps”) introduces a class of inputs and subsequent analysis and simulation results

that form the foundation of this proof. This section continues at a high level to describe

the construction of more complex classes of inputs, related analysis, and simulation results.

The extremes of these classes represent the continuous and pulsed inputs. We leave the

detailed mathematical derivations, analysis, and technical formulation of the proof for later

sections, but each derivation is referenced in the appropriate area in 2.7.1 Section

”Treatment of a class of inputs whose decreasing edge proceeds through steps”. This serves
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as a roadmap to understand the complete proof for those interested. Otherwise, 2.7.1

Section ”Treatment of a class of inputs whose decreasing edge proceeds through steps” by

itself serves as a high level intuitive summary of the proof that is aimed to be accessible to

a more general audience.

Treatment of a class of inputs whose decreasing edge proceeds through steps

We first consider an ensemble of inputs TF (t) that will become instrumental in the general

demonstration, and derive properties generated by the two-state promoter model when

stimulated with these inputs. The first class of inputs is shown in the top panel of Figure

2.15A. After an initial rise of the pulse, all the inputs decrease by a step except one which

remains constant (Figure 2.15A, top plot, blue), reminiscent of the continuous input. The

other inputs then remain constant for a duration and then decrease by a step except for

one which remains constant (Figure 2.15A, top plot, red). This behavior repeats itself until

the last remaining input step decreases to zero and remains at zero (Figure 2.15A, top plot,

light blue), representing a single pulse. This produces a series of inputs, where each

plateaus (indefinitely) at a different value. Simulation results of the model with this input

ensemble show that each input’s corresponding pon trajectory maintains the same relative

order to the other inputs’ pon trajectories as the inputs do with each other (Figure 2.15A,

second panel from the top, compare for example light blue and green traces). This is a

general property of the system regardless of the values of kon and koff . We provide a proof

in 2.7.1 Section ”Proof showing that pon(t, α1) > pon(t, α2) for t > t0 and α1 > α2” using

the analytical results derived in 2.7.1 Section ”Derivation of an expression for pon(t) in

response to a step input starting from an initial condition pon(t0)”.

Then we plot pon versus accumulated TF area (defined as
∫ t

0
TF (v)dv) for each input. This

plot (Figure 2.15A, second panel from the bottom) shows that the relative order is the

same as it was for pon versus accumulated time. We derive these results in 2.7.1 Section
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”Proof showing that pon(t0 + σ, α1) > pon(t0 + α1

α2
σ, α2) for σ > 0, where σ is proportional to

accumulated TF area”. These results are then used to prove, as we observe in our

simulations, that for accumulated transcripts versus accumulated TF area, the relative

order is reversed from the first three panels (Figure 2.15A, bottom plot). Intuitively this

makes sense since total transcripts from the right hand side of Eq. (2.11) is a function of

1− pon (multiplied by TF (t)) and not pon. Overall, these results show that the lower

the plateau value is for this class of inputs, the higher the accumulated

transcripts as a function of accumulated area (see 2.7.1 Section ”Deriving

relationships for the number of transcripts, specifically ∆Nα2(σ) > ∆Nα1(σ) for

σ > 0” for derivation).

Towards the construction of multiple pulses, in 2.7.1 Section ”Analysis of a class of inputs

that relate the number of transcripts of the continuous input TFc(t) to that of pulsed input

TFp(t) for the two pulse case” we extend our analysis to a class of inputs that initially

follow the same trajectories as Figure 2.15A (top plot), where each plateaus at a different

value, but then rise again to TFmax before shutting off (Figure 2.15B, top plot). Here the

input with the highest valued plateau represents the continuous input TFc(t) while the

input with the lowest valued plateau represents the pulsed input TFp(t) (two pulses).

Importantly, all inputs share the same total TF area. Through a similar analysis as above,

we show that the lower the plateau value of an input, the more total transcripts that are

produced (Figure 2.15B, inputs (top panel), transcripts (bottom panel)). Finally, in 2.7.1

Section ”Extending the approach to a higher number of pulses” we extend this approach

first to three pulses and then to arbitrary numbers of pulses to demonstrate the generality

of the two pulse result (examples in Figure 2.15C, inputs (top panel), accumulated

transcripts (bottom panel), and Figure 2.15E, inputs (left panel), accumulated transcripts

(right panel)).

Finally, in our examples we used I = 6 inputs to visually demonstrate our approach. As I
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gets larger, each step change is smaller and better represents a smooth input, but the

conclusions of our proof do not change. Thus, we can take the limit of steps becoming

infinitesimally small to represent smooth pulses with large I to prove that for smooth

inputs, Np > Nc.

Derivation of an expression for pon(t) in response to a step input starting from

an initial condition pon(t0)

For the two-state promoter model that experiences a step input TF (t) = α1TFmax, starting

from an initial condition pon(t0), the dynamic equations are given by:

dpon
dt

= konTF (t)(1− pon)− koffpon

= konα1TFmax(1− pon)− koffpon

= −[konα1TFmax + koff ]pon + konα1TFmax (2.34)

We seek the time dependent solution of this equation, which we denote by pon(t, α1). This

is a linear first order ordinary differential equation, whose solution takes the form

pon = a0 + a1 exp (−[konα1TFmax + koff ][t− t0]) for t ≥ t0. Following standard procedure,

we solve for the constants a0 and a1 by evaluating the system at t = t0 and t =∞. At

t =∞, dpon
dt

= 0 therefore dictating that a0 = konα1TFmax
konα1TFmax+koff

. At t = t0 the solution must

equal the initial condition, that is a0 + a1 = pon(t0). Thus, a1 = pon(t0)− konα1TFmax
konα1TFmax+koff
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and the full solution becomes:

pon(t, α1) =
konα1TFmax

konα1TFmax + koff

+

[
pon(t0)− konα1TFmax

konα1TFmax + koff

]
exp (−[konα1TFmax + koff ][t− t0])

=
konα1TFmax

konα1TFmax + koff

+

[
pon(t0)− konα1TFmax

konα1TFmax + koff

]
exp (−[konα1TFmax + koff ][t− t0])

+pon(t0)− pon(t0)

= pon(t0) +

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×(

1− exp (−[konα1TFmax + koff ][t− t0])

)
(2.35)

Proof showing that pon(t, α1) > pon(t, α2) for t > t0 and α1 > α2

Simulation results of the model with the input ensemble in Figure 2.15A (top panel) show

that each input’s corresponding pon time trajectory maintains the same relative order to

the other inputs’ pon trajectories as the inputs do with each other (Figure 2.15A, second

panel from the top, compare for example light blue and green traces). This is a general

property of the system regardless of the values of kon and koff . We now provide a proof of

this observation. First, for any pair of inputs with adjacent plateaus (Figure 2.15A (top

plot), blue/red, red/orange, orange/purple, purple/green, green/light blue), the point in

time where they diverge we’ll denote as t = t0. Likewise, since the pair have identical input

behavior up until t = t0, the value of pon(t) at t = t0 will be the same for both. We’ll denote

this shared value as pon(t0). For t > t0, the first (upper) input has TF (t) = α1TFmax while

the second (step down, lower) input has TF (t) = α2TFmax. Accordingly, α1 > α2. We’ll

apply the analytical solution from 2.7.1 Section ”Derivation of an expression for pon(t) in

response to a step input starting from an initial condition pon(t0)” to compare the solutions
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of pon(t) for the upper and lower inputs, which we’ll refer to as pon(t, α1) and pon(t, α2),

respectively. We’ll then prove that pon(t, α1) > pon(t, α2) for t > t0. We begin by

subtracting the analytical solution of pon(t, α2) from that of pon(t, α1) to get

(2.36)

pon(t, α1)− pon(t, α2) = pon(t0) +

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ][t− t0])

)
− pon(t0)−

(
konα2TFmax

konα2TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ][t− t0])

)
=

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ][t− t0])

)
−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ][t− t0])

)

There are three cases to consider depending on the value of the initial condition pon(t0).

1. konα1TFmax
konα1TFmax+koff

− pon(t0) > konα2TFmax
konα2TFmax+koff

− pon(t0) > 0: In this case,

pon(t, α1)− pon(t, α2) > 0 for t > t0.This is because

1− exp (−[konα1TFmax + koff ][t− t0]) > 1− exp (−[konα2TFmax + koff ][t− t0]), since

by definition α1 > α2.

2. konα1TFmax
konα1TFmax+koff

− pon(t0) > 0 and konα2TFmax
konα2TFmax+koff

− pon(t0) < 0: In this case, all terms

are positive, thus, pon(t, α1)− pon(t, α2) > 0 for t > t0.

3. 0 > konα1TFmax
konα1TFmax+koff

− pon(t0) > konα2TFmax
konα2TFmax+koff

− pon(t0). For this case, we will present

a more detailed analysis.
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To simplify notation, We will rewrite Eq. (2.36) as:

pon(t, α1)− pon(t, α2) = b2

(
1− exp (−c2[t− t0])

)
− b1

(
1− exp (−c1[t− t0])

)
(2.37)

where b1 = pon(t0)− konα1TFmax
konα1TFmax+koff

and b2 = pon(t0)− konα2TFmax
konα2TFmax+koff

, with b2 > b1 > 0.

Also, c1 = [konα1TFmax + koff ] and c2 = [konα2TFmax + koff ], with c1 > c2 > 0.

Since the initial conditions for both inputs is the same, the initial condition of their

difference in Eq. (2.37) is zero at t = t0. We therefore need to show that the slope of

Eq. (2.37) evaluated for t ≥ t0 is positive.

Taking the derivative of Eq. (2.37) we get:

d[pon(t, α1)− pon(t, α2)]

dt
= b2c2 exp (−c2[t− t0])− b1c1 exp (−c1[t− t0]) (2.38)

We evaluate this expression at t = t0 to get:

d[pon(t, α1)− pon(t, α2)]

dt

∣∣∣∣
t=t0

= b2c2 − b1c1 (2.39)

We now use the expressions for b1, c1, b2, c2 in the above equation, to get that:

d[pon(t, α1)− pon(t, α2)]

dt

∣∣∣∣
t=t0

= konTFmax(1− pon(t0))(α1 − α2) (2.40)

Which is positive since α1 > α2. Furthermore, exp (−c2t) decays slower than exp (−c1t),

and thus exp (−c2t) > exp (−c1t) for all t. Therefore, it follows that b2c2 > b1c1, and that

b2c2 exp (−c2t) > b1c1 exp (−c1t). This concludes our proof that pon(t, α1)− pon(t, α2) > 0

for t > t0. As discussed above, in Figure 2.15A (top plot), this result applies to any pair of

inputs with adjacent plateaus (blue/red, red/orange, orange/purple, purple/green,

green/light blue). That is, for a given pair, pon(t) due to the upper input (α1) remains
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higher over time relative to pon(t) due to the lower input (α2). Now for the sequence of

plateaued input pairs, the lower input in one pair is the upper input for the next pair (e.g.,

blue/red then red/orange in Figure 2.15A). Thus, this observation combined with

the analytical results implies that the observed order of inputs (Figure 2.15A,

top plot) must be shared by their corresponding pon trajectories (Figure 2.15A,

second panel from the top). Furthermore, this means that the input with the

highest valued plateau (Figure 2.15A, top plot, blue, continuous-like input)

produces the highest pon(t), and the input with the lowest-valued plateau (zero)

input (Figure 2.15A, top plot, light blue, single pulse input) produces the

lowest.

Furthermore, since all time t0 and values αi are arbitrary in the analytical treatment, these

conclusions hold for input sequences that step down with any resolution, and therefore for

any input that has a decreasing edge. We use I = 6 inputs to visually demonstrate our

approach (Figure 2.15A). As I gets larger, where each step change is smaller and better

represents a smooth input, the conclusions of our proof do not change. Our results are

invariant to I. Thus, we can represent smooth pulses with large I.

Proof showing that pon(t0 + σ, α1) > pon(t0 + α1

α2
σ, α2) for σ > 0, where σ is

proportional to accumulated TF area

In Figure 2.15A (second panel from the bottom), we plot pon versus accumulated TF area

for each input. This plot shows that the relative order is the same as it was for pon versus

accumulated time. To understand this, we will prove that this observed result must hold

for any pair of inputs with adjacent plateaus (Figure 2.15A (top plot), blue/red,

red/orange, orange/purple, purple/green, green/light blue) regardless of the values of kon

and koff . With the same definitions for pon(t0), t0, α1, and α2 as in 2.7.1 Section ”Proof

showing that pon(t, α1) > pon(t, α2) for t > t0 and α1 > α2” we now proceed.
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For the α1TFmax input, over the duration t0 < t < t0 + σ, the accumulated TF (t) area,

denoted as Aα1(σ), can formally be written in integral form as

Aα1(σ) =

∫ t0+σ

t0

α1TFmaxdt

= α1TFmaxσ (2.41)

Similarly, for the α2TFmax input, over the duration t0 < t < t0 + σ′, the accumulated TF (t)

area is α2TFmaxσ
′. If we required that the two inputs have equal accumulated area then

α1TFmaxσ = α2TFmaxσ
′. Accordingly, σ′ = α1

α2
σ, i.e. σ′ must be larger than σ in order to

have the same area since the transcription factor amplitude is lower.

Here one can see that σ is a variable that can be used to transform both inputs (α1 and

α2) from time to equal accumulated TF (t) area. This allows us to analyze quantities such

as pon(t) and accumulated transcripts as a function of σ. Now, we derive a relationship

between the value of pon evaluated at t0 + σ for an input α1TFmax input (which we denote

pon(t0 + σ, α1) ) and its value evaluated at t0 + α1

α2
σ for an input α2TFmax (which we denote

by pon(t0 + α1

α2
σ, α2)). These two pon values are therefore generated by two inputs of

identical area.
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Using the analytical solutions derived above, we can write:

(2.42)

pon(t0 + σ, α1)− pon(t0 +
α1

α2

σ, α2) = pon(t0) +

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ]σ)

)
− pon(t0)−

(
konα2TFmax

konα2TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ]
α1

α2

σ)

)
=

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ]σ)

)
−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ]
α1

α2

σ)

)

There are 3 possibilities for the relationship between pon(t0 + σ, α1) and pon(t0 + α1

α2
σ, α2).

1. konα2TFmax
konα2TFmax+koff

− pon(t0) < konα1TFmax
konα1TFmax+koff

− pon(t0) < 0: Here, the expression in

Eq. (2.42) is greater than zero. This is because

1− exp (−[konα2TFmax + koff ]
α1

α2
σ) > 1− exp (−[konα1TFmax + koff ]σ) for t > t0.

2. konα1TFmax
konα1TFmax+koff

− pon(t0) > 0 and konα2TFmax
konα2TFmax+koff

− pon(t0) < 0: Here, all terms in

Eq. (2.42) are positive and thus greater than zero.

3. konα1TFmax
konα1TFmax+koff

− pon(t0) > konα2TFmax
konα2TFmax+koff

− pon(t0) > 0: For this case, we will present

a more detailed analysis.
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To begin we’ll differentiate Eq. (2.42) with respect to σ. We get

d

[
pon(t0 + σ, α1)− pon(t0 + α1

α2
σ, α2)

]
dσ

=

d

[(
konα1TFmax

konα1TFmax+koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ]σ)

)]
dσ

−
d

[(
konα2TFmax

konα2TFmax+koff
− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ]
α1

α2
σ)

)]
dσ

= [konα1TFmax + koff ]

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
× exp (−[konα1TFmax + koff ]σ)

− [konα2TFmax + koff ]
α1

α2

(
konα2TFmax

konα2TFmax + koff
− pon(t0)

)
× exp (−[konα2TFmax + koff ]

α1

α2

σ)

=

(
konα1TFmax − [konα1TFmax + koff ]pon(t0)

)
× exp (−[konα1TFmax + koff ]σ)

−
(
konα1TFmax − [konα1TFmax +

α1

α2

koff ]pon(t0)

)
× exp (−[konα2TFmax + koff ]

α1

α2

σ)

(2.43)

Because α1

α2
> 1, then

konα1TFmax− [konα1TFmax + koff ]pon(t0) > konα1TFmax− [konα1TFmax + α1

α2
koff ]pon(t0) > 0

and also exp (−[konα2TFmax + koff ]
α1

α2
σ) is smaller than exp (−[konα1TFmax + koff ]σ) for

all σ. Therefore, the expression in Eq. (2.43) is greater than zero. This taken together with

the fact that the initial condition in Eq. (2.42) at σ = 0 is equal to zero dictates that

Eq. (2.42) is greater than zero for σ > 0. Thus, pon(t0 + σ, α1) > pon(t0 + α1

α2
σ, α2) for σ > 0.

Thus, this analytical result implies that the observed order of inputs (Figure

2.15A, top plot) which are shared by their corresponding time-dependent pon

trajectories (Figure 2.15A, second panel from the top) must also be shared by

the corresponding σ-dependent pon trajectories. Indeed, when we plot pon

versus accumulated TF area for each input (Figure 2.15A, second panel from

the bottom) the relative order is the same as it was for pon versus accumulated
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time.

Deriving relationships for the number of transcripts, specifically

∆Nα2(σ) > ∆Nα1(σ) for σ > 0

With the same definitions for σ, pon(t0), t0, α1 and α2, we now calculate the number of

transcripts produced for a given value of σ. We will denote ∆Nα1(σ) as accumulated

transcripts for the α1TFmax input. We will also denote by ∆Nα2(σ) the number of

accumulated transcripts for the α2TFmax input over the same input area as for the

α1TFmax input. Applying the right hand side of Eq. (2.11) to the α1TFmax input we get

∆Nα1(σ) =

∫ t0+σ

t0

β1

kd

(
1− pon(t, α1)

)
α1TFmaxdt

=

∫ t0+σ

t0

β1

kd

(
1− pon(t0)−

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ](t− t0))

))
α1TFmaxdt

=
β1

kd

[
α1TFmaxσ − pon(t0)α1TFmaxσ

−
(

konα1TFmax
konα1TFmax + koff

− pon(t0)

)
×
(
α1TFmaxσ −

1− exp (−[konα1TFmax + koff ]σ)

konα1TFmax + koff
α1TFmax

)]
(2.44)
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Likewise, ∆Nα2(σ) is given by:

∆Nα2(σ) =

∫ t0+
α1
α2
σ

t0

β1

kd

(
1− pon(t, α2)

)
α2TFmaxdt

=

∫ t0+
α1
α2
σ

t0

β1

kd

(
1− pon(t0)

−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ](t− t0))

))
α2TFmaxdt

=
β1

kd

[
α1TFmaxσ − pon(t0)α1TFmaxσ

−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(
α1TFmaxσ −

1− exp (−[konα2TFmax + koff ]
α1

α2
σ)

konα2TFmax + koff
α2TFmax

)]
(2.45)

Next we must show that ∆Nα2 −∆Nα1 > 0. Explicitly this expression (divided by β1
kd

) is

kd
β1

[∆Nα2(σ)−∆Nα1(σ)] =

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(
α1TFmaxσ −

1− exp (−[konα1TFmax + koff ]σ)

konα1TFmax + koff
α1TFmax

)
−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(
α1TFmaxσ −

1− exp (−[konα2TFmax + koff ]
α1

α2
σ)

konα2TFmax + koff
α2TFmax

)
= α1TFmax

[(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(
σ − 1− exp (−[konα1TFmax + koff ]σ)

konα1TFmax + koff

)
−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(
σ −

1− exp (−[konα2TFmax + koff ]
α1

α2
σ)

[konα2TFmax + koff ]
α1

α2

)]
(2.46)
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At σ = 0, Eq. (2.46) is zero as it should be. We just need to show that the slope of

Eq. (2.46) is positive with respect to σ. The expression for the slope is

kd
β1

d[∆Nα2(σ)−∆Nα1(σ)]

dσ
= α1TFmax

[(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ]σ)

)
−
(

konα2TFmax
konα2TFmax + koff

− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ]
α1

α2

σ)

)]
= α1TFmax

[
pon(t0) +

(
konα1TFmax

konα1TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα1TFmax + koff ]σ)

)
−pon(t0)−

(
konα2TFmax

konα2TFmax + koff
− pon(t0)

)
×
(

1− exp (−[konα2TFmax + koff ]
α1

α2

σ)

)]
= α1TFmax

[
pon(t0 + σ, α1)− pon(t0 +

α1

α2

σ, α2)

]
> 0 (2.47)

This is because for σ > 0, pon(t0 + σ, α1)− pon(t0 + α1

α2
σ, α2) > 0 as demonstrated above.

Thus, ∆Nα2(σ)−∆Nα1(σ) > 0 for σ > 0. This inequality verifies that more

transcripts are produced from an input TF whose amplitude is reduced

(α2TFmax input) and which extends more in time relative to a shorter but

higher TF amplitude input (α1TFmax input) when the TF input area is equal

between the two inputs. These results imply that given the relative order of

the inputs (Figure 2.15A, top plot) the associated order of accumulated

transcripts versus accumulated TF area must be reversed (compare the top

plot in Figure 2.15A to the bottom plot). Overall, these results show that the

lower the plateau value is for this class of inputs, the higher the accumulated
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transcripts as a function of accumulated area.

Analysis of a class of inputs that relate the number of transcripts of the

continuous input TFc(t) to that of pulsed input TFp(t) for the two pulse case

Here, we will start using all the properties derived above to establish relationships between

the number of transcripts generated by a continuous input TFc(t) and that of a pulsed

input TFp(t) for M = 2 pulses. Figure 2.15B (top plot) shows the classes of inputs we will

consider here. These are similar to those in Figure 2.15A (top plot), in that the inputs

descend to their respective plateaus in exactly the same manner, but later rise to TFmax

and then shut off. Here the input with the highest valued plateau represents the continuous

input TFc(t) (Figure 2.15B (top plot, dark blue)) while the input with the lowest valued

plateau represents the pulsed input TFp(t) (Figure 2.15B (top plot, light blue, two pulses)).

Importantly, the inputs are constructed such that the total TF area is the same

for all inputs. As we did for the analysis above, we analyze each pair of inputs with

adjacent plateau values (Figure 2.15B (top plot, blue/red, red/orange, orange/purple,

purple/green, green/light blue)) where the input with the higher plateau value will be

called TFα1(t) and the input with the lower plateau value is TFα2(t). Similar to the above

analysis, we’ll denote the corresponding pon for each these inputs as pon(t, α1) and

pon(t, α2), respectively. To begin, we will first consider a continuous input that rises,

plateaus to a value α1TFmax, (α1 = 1 in this case for illustration purposes) and then shuts

off (Figure 2.15B (top middle plot), dark blue, TFα1(t)). The input with a plateau value

adjacent to the continuous input (Figure 2.15B (top middle plot), red, TFα2(t)) rises in the

same fashion, plateaus, and then drops at time t0 to a lower plateau value of α2TFmax,

staying there until time t0 + α1

α2
σ∗. The input then jumps up to TFmax and then shuts off.

The total accumulated TF area for TFα1(t) at t = t0 + σ∗ is identical to that for TFα2(t) at

t = t0 + α1

α2
σ∗. The shut-off for the two TF inputs are identical, albeit shifted in time with
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respect to each other. That is, TFα1(t0 + σ∗ + τ) = TFα2(t0 + α1

α2
σ∗ + τ) = TFoff (τ) for

τ > 0.

We know from our discussion and derivations above that the total transcripts produced

from TFα1(t) at t = t0 + σ∗ is less than that of TFα2(t) at t = t0 + α1

α2
σ∗. To analyze the

transcripts produced from the shut-off of the input for each case, we will begin by first

showing that for the identical shut-off of the TF inputs, pon(t0 + α1

α2
σ∗ + τ, α2) for

TFα2(t0 + α1

α2
σ∗ + τ) is always less than the pon(t0 + σ∗ + τ, α1) for TFα1(t0 + σ∗ + τ) at

every τ for τ > 0. Let us first model TFoff (τ) for τ > 0 as a series of step changes with

arbitrary resolution. This allows us to apply our analytical solutions over the duration of

each step for two different initial conditions where we will show that the lower initial

condition will remain lower over the duration of the step. To derive this result, consider

pon(t, α) which has the initial condition pon(t0) at t = t0, and which has the solution for the

input TF (t) = αTFmax for 0 ≤ α ≤ 1 and for t > t0 is

pon(t, α)

= pon(t0) +

(
konαTFmax

konαTFmax + koff
− pon(t0)

)
×
(

1− exp (−[konαTFmax + koff ][t− t0])

)
(2.48)

Likewise consider p̃on(t, α) which has initial condition p̃on(t0) at t = t0 and where

p̃on(t0) < pon(t0). The solution for p̃on(t, α) would be

p̃on(t, α)

= p̃on(t0) +

(
konαTFmax

konαTFmax + koff
− p̃on(t0)

)
×
(

1− exp (−[konαTFmax + koff ][t− t0])

)
(2.49)
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Now, pon(t, α)− p̃on(t, α) is given by:

pon(t, α)− p̃on(t, α) = pon(t0) +

(
konαTFmax

konαTFmax + koff
− pon(t0)

)
×
(

1− exp (−[konαTFmax + koff ][t− t0])

)
− p̃on(t0)−

(
konαTFmax

konαTFmax + koff
− p̃on(t0)

)
×
(

1− exp (−[konαTFmax + koff ][t− t0])

)
=

[
pon(t0)− p̃on(t0)

][
1−

(
1− exp (−[konαTFmax + koff ][t− t0])

)]
> 0

(2.50)

Now recall that we are modeling TFoff (τ) for τ > 0 as a series of step changes with

arbitrary resolution. This analytical result implies that the function with the lower initial

condition at τ = 0, pon(t0 + α1

α2
σ∗ + τ, α2), will remain lower over the series of steps in

TFoff (τ) for τ > 0. This is simply because at the end of a given step, the lower valued

function at this point in time represents the lower initial condition for the next step and

will remain lower over that step. Thus, the lower valued function must remain lower

through the whole series of steps until the input shuts off. To reiterate, since

pon(t0 + σ∗ + τ, α1) > pon(t0 + α1

α2
σ∗ + τ, α2) at τ = 0, and since both are experiencing

TFoff (τ), our results above imply that pon(t0 + σ∗ + τ, α1) > pon(t0 + α1

α2
σ∗ + τ, α2) for

τ > 0. Importantly, this is independent of the shape of TFoff (τ).

We are now poised to determine which input, TFα1(t) or TFα2(t), produces more total

transcripts. For the TFα1(t) input, applying the right hand side of Eq. (2.11), we have

Nα1 =

∫ 5

0

β1

kd
(1− pon(t, α1))TFα1(t)dt

=

∫ t0+σ∗

0

β1

kd
(1− pon(t, α1))TFα1(t)dt+

∫ 5

t0+σ∗

β1

kd
(1− pon(t, α1))TFα1(t)dt

= Nα1(t0 + σ∗) +

∫ 5−[t0+σ∗]

0

β1

kd
(1− pon(t0 + σ∗ + τ, α1))TFoff (τ)dτ (2.51)
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And for the TFα2(t) input we have

(2.52)

Nα2 =

∫ 5

0

β1

kd
(1− pon(t, α2))TFα2(t)dt

=

∫ t0+
α1
α2
σ∗

0

β1

kd
(1− pon(t, α2))TFα2(t)dt+

∫ 5

t0+
α1
α2
σ∗

β1

kd
(1− pon(t, α2))TFα2(t)dt

= Nα2(t0 +
α1

α2

σ∗) +

∫ 5−[t0+
α1
α2
σ∗]

0

β1

kd
(1− pon(t0 +

α1

α2

σ∗ + τ, α2))TFoff (τ)dτ

We have previously shown that Nα2(t0 + α1

α2
σ∗) > Nα1(t0 + σ∗) (Eq. (2.47)). Since

pon(t0 + σ∗ + τ, α1) > pon(t0 + α1

α2
σ∗ + τ, α2) for τ > 0, this means that

1− pon(t0 + σ∗ + τ, α1) < 1− pon(t0 + α1

α2
σ∗ + τ, α2) for τ > 0. Thus, the integral term on

the last line of the Nα2 equation, Eq. (2.52), will be greater than that of the Nα1 equation,

Eq. (2.51). We can therefore conclude that Nα2 > Nα1 for α1 > α2. Additionally, analysis

of the next pair of inputs with adjacent plateau values (Figure 2.15B (bottom middle plot),

red (TFα1(t)) and orange (TFα2(t))) follows exactly the same logic and will yield the same

result. This remains true for every subsequent pair of inputs with adjacent plateau values

from Figure 2.15B (top plot) where the TFα2(t) input always produces more total

transcripts than the TFα1(t) input. Thus, for this class of inputs, the lower an

input’s plateau value, the more total transcripts that are produced (Figure

2.15B (bottom plot)), with the continuous input TFc(t) producing the least and

the pulsed input TFp(t) producing the most.

Extending the approach to a higher number of pulses

This analysis also applies to inputs with larger numbers of pulses. We’ll first start with the

three pulse input (Figure 2.15C). We extend the analysis from the two pulse input for the

first two adjacent input pairs (Figure 2.15B (middle plots)) to accommodate the three

pulse input (Figure 2.15C (middle plots)). As above with the two pulse input, t = t0
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represents the time at which divergence of the inputs TFα1 and TFα2 occurs, and where

TFα2 drops to its plateau value. Additionally, at t = t0, both TFα1(t) and TFα2(t) have the

same TF area. As above with the two pulse input, at t = t0 + α1

α2
σ∗, TFα2(t) jumps back up

to TFα1(t), and where TFα1(t) at t = t0 + σ∗ has the same corresponding accumulated TF

area as TFα2(t) does at t = t0 + α1

α2
σ∗. For the three pulse input, unlike the two pulse input,

TFα2(t) then drops a second time to its plateau value at t = t1(α2). Correspondingly, the

TF area at t = t1(α1) for TFα1(t) is the same as the TF area at t = t1(α2) for TFα2(t). For

the first adjacent input pair, t0 + α1

α2
σ∗ happens to share the same value as t1(α1) (Figure

2.15C (top middle plot)). This is the result of the particular choice we make– i.e. triangular

pulses, that we are modeling with steps. However, the second adjacent input pair does not

exhibit this equality (Figure 2.15C (bottom middle plot)) nor would any succeeding pair.

Given the analysis above for the two pulse input, we already know that for the three pulse

input, the total transcripts produced from TFα1(t) at t = t0 + σ∗ is less than that of

TFα2(t) at t = t0 + α1

α2
σ∗ (Figure 2.15C (middle plots)). Then, similar to the two pulse

input, the inputs are identical but shifted, i.e. TFα1(t0 + σ∗ + τ) = TFα2(t0 + α1

α2
σ∗ + τ),

but only over the duration 0 < τ ≤ t1(α1)− [t0 + σ∗] = t1(α2)− [t0 + α1

α2
σ∗] (Figure 2.15C

(middle plots)). From the general implications of Eq. (2.50), we know that since

pon(t0 + σ∗, α1 + τ) > pon(t0 + α1

α2
σ∗ + τ, α2) at τ = 0, this relationship must hold over the

duration of τ . TFα2(t) will therefore yield more transcripts through the right-hand side of

Eq (2.11) over this duration. Thus, for the same accumulated TF area, i.e. TFα1(t) up

until t = t1(α1) and TFα2(t) up until t = t1(α2), TFα2(t) produces more transcripts.

Now for the three pulse input, TFα1(t1(α1) + τ) is identical to TFα1(t0 + τ) for the two

pulse input for τ > 0. Additionally, for the three pulse input, TFα2(t1(α2) + τ) is identical

to TFα2(t0 + τ) for the two pulse input for τ > 0. For the two pulse input,

pon(t0, α1) = pon(t0, α2) and TFα2(t) produces more transcripts. However,

pon(t1(α1), α1) > pon(t1(α2), α2) for the three pulse input. Thus, TFα2(t) must produce
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more transcripts for τ > 0. We can therefore conclude that TFα2(t) produces more

transcripts than TFα1(t) for the three pulse input, i.e. Nα2 > Nα1 . This same analysis can

then be applied to each successive pair of inputs with adjacent plateau values to ultimately

show that the pulsed input TFp(t) yields the most transcripts for this class of inputs while

the continuous input TFc(t) yields the least (Figure 2.15C (bottom plot)).

The logic and analysis developed for the three pulse input can be applied to the same class

of inputs with an arbitrary number of pulses to show that TFp(t) yields the most

transcripts for this class of inputs while the continuous input TFc(t) yields the least,

regardless of the number of pulses. To begin, we discuss the first two adjacent input pairs

(Figure 2.15D) where we plot just past the beginning of the third drop to its plateau value

for TFα2(t). As above, t = t0 represents the time where TFα2(t) first drops to its plateau

value, and at which both TFα1(t) and TFα2(t) have the same TF area. In general, all

successive drops to the plateau value of TFα2(t) start at t = ti(α2), where 1 ≤ i ≤M − 2,

where M is the total number of pulses for this class of inputs. Given t = ti(α2) for TFα2(t),

the time that corresponds to the same TF area for TFα1(t) is t = ti(α1).

For the three pulse input, we used the right-hand side of Eq (2.11) to show that the

transcripts produced from t = t0 to t = t1(α1) for TFα1(t) is less than that for TFα2(t) from

t = t0 to t = t1(α2). This comparison is over equivalent TF area. Now for TFα1(t) from

t = t1(α1) to t = t2(α1), the input is the same as it was from t = t0 to t = t1(α1). Similarly,

for TFα2(t) from t = t1(α2) to t = t2(α2), the input is the same as it was from t = t0 to

t = t1(α2). This repeats at every t = ti(α1) for TFα1(t) and every t = ti(α2) for TFα2(t)

until i = M − 2 just prior to shutoff. Importantly, at t = t0, pon(t0, α1) = pon(t0, α2), but at

the beginning of every succeeding repeated sequence pair, pon(ti(α1), α1) > pon(ti(α2), α2)

for all 1 ≤ i ≤M − 2. Hypothetically, if pon(ti(α1), α1) = pon(ti(α2), α2), we know that

TFα2(t) will yield more transcripts through Eq (2.11) from t = ti(α2) to t = ti+1(α2) than

TFα1(t) from t = ti(α1) to t = ti+1(α1). Thus, since pon(ti(α1), α1) > pon(ti(α2), α2), this
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must still hold. We can therefore conclude that over every succeeding repeated sequence

pair, TFα2(t) will always yield more transcripts. Furthermore, we can apply the shutoff

results from the three pulse input above to conclude that TFα2(t) will yield more

transcripts for t > tM−2(α2) (through shutoff) than TFα1(t) for t > tM−2(α1) (through

shutoff). Thus, in general, for any number of pulses M , Nα2 > Nα1 . This same analysis can

then be applied to each successive pair of inputs with adjacent plateau values to ultimately

show that the pulsed input TFp(t) yields the most transcripts for this class of inputs while

the continuous input TFc(t) yields the least (see twenty pulse example in Figure 2.15E).

Finally, this analysis proves that the continuous input TFc(t) will always

produce less total transcripts than the pulsed input TFp(t), given the constraint

of equal total accumulated TF. Thus, the slope ratio of the total transcripts,

Np/Nc, will remain greater than one. Importantly, while we use triangle-like

pulses as a visual example, the analysis is general for any pulse type that has a

single rise (step-ups allowed as in the examples presented) followed by a fall

(step-downs allowed as in the examples).

Asymptotic analysis of mRNA dynamics for the simple promoter to a step

function input

We can evaluate the promoter model (Figure 2.4A and Eq.(1) in the main text) and the

resulting mRNA dynamics for a step input using linear systems analysis. For a four hour

constant input experiment, TF (t) ≈ TFmaxu(t), a step function, since TF (t) equilibrates

to TFmax within two minutes (Figure 2.3A). The solution for pon would be

pon(t) =
TFmax

TFmax +
koff
kon

u(t)[1− exp (−[konTFmax + koff ]t)] (2.53)
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The mRNA equation would then be

dmRNA

dt
= β1pon(t)− γ1mRNA (2.54)

where β1 is the production rate of the promoter and γ1 is the mRNA decay rate. The

solution for the mRNA equation would then be

mRNA(t) = β1
TFmax

TFmax +
koff
kon

[
u(t)− u(t) exp (−[konTFmax + koff ]t)

]
∗ u(t) exp (−γ1t)

= β1
TFmax

TFmax +
koff
kon

u(t)

[
1

γ1

− 1

γ1

exp (−γ1t)

− 1

γ1 − [konTFmax + koff ]
exp (−[konTFmax + koff ]t)

+
1

γ1 − [konTFmax + koff ]
exp (−γ1t)

]
(2.55)

where ’*’ denotes convolution. Here we have used the formula

[u(t) exp (−λ1t)] ∗ [u(t) exp (−λ2t)] =
1

λ2 − λ1

[
u(t) exp (−λ1t)− u(t) exp (−λ2t)

]
(2.56)

for λ1 6= λ2. Now let’s look at two extreme regimes. The first being konTFmax + koff >> γ1

(where konTFmax + koff >> 1 is also true). For this case

mRNA(t) ≈ β1
TFmax

TFmax +
koff
kon

u(t)

[
1

γ1

− 1

γ1

exp (−γ1t)

]
(2.57)

Here is dominant effect in the time signal mRNA(t) is the slow γ1 with exponential

timescale Ts = 1/γ1. The other extreme regime is konTFmax + koff << γ1 (where γ1 >> 1

is also true). For this case

mRNA(t) ≈ β1
TFmax

TFmax +
koff
kon

u(t)

[
1

γ1

− 1

γ1

exp (−[konTFmax + koff ]t)

]
(2.58)
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Here the dominant effect in the time signal mRNA(t) is the slow konTFmax + koff with

exponential timescale Ts = 1/(konTFmax + koff ). We denote Ts as the settling time for the

dynamic data presented in Figure 2.5 in the main text.

2.8 Supplemental Figures
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Figure 2.7: Approximately one-third of TFs are basally cytoplasmic in log phase
and a subset are shown to exhibit transient nuclear localization, related to Figure
2.1. A) LOC scores of available transcription factors from the CYCLoPs database are plotted
(Chong et al 2015). The LOC score33 is the number of cells assigned to a specific location
(nucleus in this instance) over the total number of cells in any subcellular location. Increasing
LOC score denotes increasing nuclear enrichment. B) Fold change of nuclear enrichment for
a panel of stress-responsive transcription factors (Msn2, Msn4, Stb3, Dot6, and Crz1) are
plotted as a function of time in response to environmental inputs (Glucose depletion and
osmotic shock). For glucose depletion, SDC media (2% glucose) is replaced with SD media
with 0.05% glucose. For osmotic shock, SDC media is replaced with SDC media with 0.95M
sorbitol. Imaging begins at t = 0 after addition of environmental perturbation and samples
are imaged every 30 seconds. The solid black lines represent the mean of single cell traces
and the shading represents the standard error of the mean.
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Figure 2.8: Optimization of LANS and LOVTRAP and CLASP characteriza-
tion, related to Figure 2.1. A) Confocal microscopy images of yeast expressing SynTF-
yeLANS and Msn2-yeLANS in the absence of blue light. Red arrows (inset) denote exam-
ples of cells that exhibit nuclear/cytoplasmic localization of Msn2-yeLANS. B) Mean nu-
clear/cytoplasmic enrichment (nuclear intensity divided by cytoplasm intensity) is plotted
as a function of time. Shaded error represents standard deviation and light input regimes are
illustrated above graphs. n refers to number of cells tracked and subplot headings (e.g., NLS
3) correspond to NLS peptides listed in Table 2.1. C) Comparison of Mito-LOVTRAP and
PM-LOVTRAP strains. Mito-LOVTRAP and PM-LOVTRAP are expressed from pTDH3
(highest), pRPL18B (medium), and pREV1 (lowest) promoters. Strains marked with an
asterisk denote those for which growth curves are plotted in Figure 2.1B of main text. Error
bars represent standard error of the linear regression for data from 3 growth experiments.
D) Comparison of Zdk1-mScarlet-yeLANS + Mito-LOVTrap and CLASP. Both components
(e.g. Mito-LOVTRAP and Zdk1-mScarlet-yeLANS) are expressed at the same level, using
either pTDH3, pRPL18B, or pREV1 promoters. Background (control strain) denotes the
WT strain with pSYNTF-YFP integrated in the LEU locus. Zdk1-mScarlet-yeLANS +
Mito-LOVTRAP and mScarlet-CLASP strains also have this integration. Error bars rep-
resent standard error of the linear regression for data from 3 growth experiments. E) A
zoom-in of Figure 2.1D in the main text that shows median duration of nuclear localization
as a function of light input duration; the line X = Y is denoted by the dashed line. The
zoomed graph illustrates that for short pulse durations, the OFF time – time that nuclear
localization extends past the pulse – is not linearly related to light input duration. F) A
scatterplot that shows duration of nuclear localization as a function of light input duration.
Each point represents a single cell. G) Mean nuclear/cytoplasmic enrichment fold change
as a function of time for mScarlet-CLASP induced with blue light. Light input regimes are
illustrated above graphs (indicating 0, 2, 4, 8, 10, 20, 40, or 80 minute light input). In all
plots, except where noted, error (bars or shading) represents standard deviation.
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Figure 2.9: Characterization of TF-CLASP strains, related to Figure 2.2. A)
Mean FITC/SSC is plotted as a function of light intensity (a.u.) for strains that are ex-
posed to different amplitudes of light for two hours (continuous input). Marked in red is the
lowest light dose which yielded near-maximal expression for each strain (¿90%); this dose is
used in all microscopy and flow cytometry experiments for each strain. Error bars represent
standard error of the mean for 9 biological replicates. Light doses are quantified in mW in
Table 2.2. B-D) Each subplot shows the probability density functions of log10(FITC/SSC) of
gene expression of corresponding fluorescent promoter fusion for TF-CLASP, TF-NLS (con-
stitutive nuclear localization), and TF-mScarlet (basal localization) strains. Distributions
display expression from 9 biological replicates (data from replicates are pooled). TF-mScarlet
strains are not exposed to light, for facile comparison to TF-CLASP (No Light) expression.
TF-NLS strains are exposed to two hours of blue light (continuous input) to control for the
effect of blue light on YFP fluorescence when comparing to TF-CLASP (Light) expression.
For all panels, TF cargos are expressed from pRPL18B. E) RFP (top panels) and brightfield
(bottom panels) images of mScarlet-tagged Gal4 (left panels) and mScarlet-tagged Gal4-
CLASP (right panels). F) Gal4 nuclear/cytoplasmic enrichment is plotted as a function of
time. Light input regime is illustrated above graph. Shaded gray area represents 95% con-
fidence interval. n refers to the number of cells tracked. G) Gene expression of pGal1-YFP
resulting from Gal4-CLASP nuclear localization following two hours of blue light input at
25% of the maximal Optoplate intensity. Distributions display expression from 3 biologi-
cal replicates (data from replicates is pooled). Shown is the probability density function of
log10(FITC/SSC) of pGAL1-YFP in the dark (gray) or after light exposure (blue).
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Figure 2.10: Characterization of Crz1, Crz1-CLASP, and Crz1*-CLASP nuclear
translocation and gene expression with CaCl2 or blue light input, related to Fig-
ure 2.3. A) Single cell traces of Crz1 nuclear fluorescence over time for 3 representative
cells following 0.2M CaCl2 . The red lines indicate nuclear localization events. B) Schematic
of the CRZ1 Open Reading Frame (ORF). Labeled are the Nuclear Localization Sequences
(NLS1 and NLS2) and the Nuclear Exit Sequence (NES), as well as the Serine-Rich Region
(SRR), which is calcium responsive. The light pink triangles denote reported S/T phos-
phosites, while the dark pink triangles denote reported and characterized S/T phosphosites.
The 19 dark and light pink phosphosites are mutated from S/T -¿ A to construct Crz1*.
Phosphosites were identified using PhosphoGRID. C) Heatmap of clustered gene expression
for 5657 genes. Samples in each column of the heatmap are pADH1-Crz1 with no input,
pADH1-Crz1-yeLANS with 60 minutes of light, pADH1-Crz1* with no input, and pADH1-
Crz1-yeLANS with 0.2M CaCl2 delivered at the start of the experiment. All samples are
in log phase and all measurements are taken 60 minutes after delivery of input. D) Gene
expression (mean FITC/SSC) of the Crz1 reporter gene pPUN1-YFP driven by either Crz1-
CLASP (blue) or Crz1*-CLASP (pink) when given 30 minutes of blue light. Data plotted is
for 1 biological replicate. E) Probability density functions of gene expression of pPUN1-YFP,
measured by FITC/SSC, in response to 0.2M CaCl2 (which causes an initial Crz1 nuclear lo-
calization pulse of 40-60 minutes) in a pADH1-Crz1 strain, 60 minutes of blue light exposure
in Crz1*-CLASP, and no input in a pADH1-Crz1 strain. Measurements are taken at 4 hours
after delivery of input. Data plotted is for 1 biological replicate. F) Basal gene expression of
pPUN1-YFP for different Crz1 strains: endogenous Crz1, pAdh1-Crz1 in a Crz1 KO back-
ground, pAdh1-Crz1* in a Crz1 KO background, and pAdh1-Crz1*-CLASP (without light
input) in a Crz1 KO background. Error bars show standard deviation of 3 biological repli-
cates. G) OD600, a measurement for growth, plotted as a function of time, for pAdh1-Crz1
with (blue) and without (red) light input (intensity 512 a.u.) over a period of 24 hours, indi-
cating that light exposure does not affect population growth. Measurements are taken every
hour. Data plotted is for 3 technical replicates. H) Characterization of additional Crz1*-
CLASP gene expression in response to blue light, as in Figure 2.3. Output-Fluorescence
plot for pYPS1-YFP. I) Output-Fluorescence plot for pCMK2-YFP. J) Output-Fluorescence
plot for pGYP7-YFP. These data are for 3 biological replicates taken from different days in
addition to the data shown in Figure 2.3. For H-J, error bars are standard deviation of 3
biological replicates.
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Figure 2.11: Higher gene expression of promoters in response to short pulses
occurs when the dose response is saturated at low TF concentration, related
to Figure 2.4. A) Heatmap of slope ratio resulting from the model in (Figure 2.4A) as
a function of kon and koff , which both vary from 0.1-5. The ratio koff/kon decreases in a
counterclockwise direction on the heatmap. β1 varies from 0.0001-10, β0 from 0.000001-0.01
and β2 from 0.0001-10. The parameter γ1 is set to 0.06 and γ2 to 0.0083. B) Heatmap of
slope ratio for increasing kd and different values of kon and koff. Each column has a given
value of kd and each row has different values for kon and koff that produce the same kd. The
nominal kon and koff values used in the first row are noted at the top of each column, and
every subsequent row uses a fraction of these values (1/5, 1/10, and 1/20). Each heatmap is
compiled for a different value of γ1 shown at the top of each panel. The values of β1 , β2, and
β0 are 2.01, 4.92, and 0.0032, respectively. C) (Left panel) Pulsed and continuous TF inputs,
of an equivalent area, used in Figure 2.4D and S5C are superimposed for comparison of their
area. Red and blue lines represent pulsed and continuous inputs, respectively. (Middle and
right panels) Plot of TF and pon as a function of time for kd = 46, assuming a fast promoter,
therefore generating pon, QSSA calculated as pon, QSSA = TF

TF+kd
. (Top panels) Red and

blue lines represent pulsed and continuous TF inputs, respectively. Gray lines and text
denote equivalent area of TF input. The area labeled “a” represents the rise for both pulsed
and continuous inputs. The area labeled “b” represents the fall of the pulsed input, and
the equivalent area for the continuous input. The area labeled “c” represents a single pulse
of the pulsed input, and the equivalent area of the continuous input. The area labeled “c”
is equivalent to the sum of the areas labeled “a” and “b”. The areas labeled “a” and “b”
are equivalent to each other. (Bottom panels) Red and blue lines represent pon, QSSA in
response to pulsed and continuous TF inputs, respectively. Gray shading denotes equivalent
area of pon, QSSA for continuous and pulsed inputs. Light red shading denotes excess pon,
QSSA area resulting from the rise and fall of the pulsed input. Inset shows the second pon

pulse at 200% resolution. D) (left panel) Output-Fluorescence plot as in Figure 2.11D, kon =
0.1 and koff = 4.6. (right panel) Output-Fluorescence plot where kon = 0.01 and koff = 0.46.
E) Output-Fluorescence plot for a parameter set with higher gene expression in response to
short pulses. Parameter values are: kon = 1, koff = 0.8, β1 =0.0001, β2 = 0.1, γ1 = 0.05, γ2

= 0.0083, and β0 = 0.000001. kon is multiplied by 1/2, 1/4, 1/8, 1/16,and 1/32. The red line
represents protein resulting from pulsed inputs and the blue line from continuous inputs.
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Figure 2.12: Exploration of various models for pGYP7-YFP data, related to
Figure 2.6. A) (left panel) Schematic of the kinetic model, where the input is Crz1*-CLASP
nuclear localization (TF) and the output is fluorescent protein level (Protein). (middle
left panel) Output-Fluorescence plot for pGYP7-YFP. Circles are experimentally measured
values for at least 3 biological replicates, error bars are standard deviation of those values,
while lines denote the output of the model for 200 parameter sets out of 10000 that maximize
fits through data points. The solid line denotes the mean and shaded areas the standard
deviation of the model outputs. Parameters are sampled (kon from 0.0001-1, koff from 0.0001-
1, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083).
(middle right panel) Dose response plot for pGYP7-YFP. The parameters that fit the Output-
Fluorescence data are used to further fit the dose response of pGYP7-YFP using a best
fit to least squared error criterion. Parameter sets below the mean of the least squared
error distribution are plotted (solid black line is the mean generated by the model). The
black dots are the experimentally measured dose response, and error bars represent standard
deviation of at least 3 biological replicates. (right panel) The parameters that fit the Output-
Fluorescence are then subject to cross-validation using an experiment where Crz1*-CLASP
expression is increased (expressed from a pTEF1 promoter), and cells are exposed to either
short pulsed (2 minutes ON/10 minutes OFF) or continuous input (40 minutes of light). The
model generated outputs (solid red and blue bar) are plotted with the experimental data
(hashed red and blue bar). The gray bars are samples not exposed to light. The error bars
are the standard deviation of 3 biological replicates. B) (left panel) Schematic of a model
with cooperativity. (middle left panel) Same plots as in (A, middle left panel), with 2481
parameter sets for this model. Parameters are sampled (kd from 0.01-100, n from 0.5-4, β1

from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle
right panel, right panel) Plotted in the same manner as in (A, middle right panel, right panel)
with 35 parameter sets. C) (left panel) Schematic of a 2-state model with thresholding on
the activation constant, kon . (middle left panel) . Same plots as in (A, middle left panel),
with 148 parameter sets for this model. Parameters are sampled (ron from 0.1-100,roff from
0.1-100, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083,
threshold = 0.5). (middle right panel, right panel) Plotted in the same manner as in (A,
middle right panel, right panel) with 16 parameter sets. D) (left panel) Schematic of a
two-state promoter model with a thresholded promoter inactivation constant, koff . (middle
left panel) Same plots as in (A, middle left panel), with 380 parameter sets for this model.
Parameters are sampled (ron from 0.0001-1, roff from 0.0001-1, β1 from 0.0001-10, β0 from
0.000001-0.01, threshold from 0-2.7) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle right
panel, right panel) Plotted in the same manner as in (A, middle right panel, right panel)
with 52 parameter sets.
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Figure 2.12: E) (left panel) Schematic of a 3-state model with thresholding in the inacti-
vation constant, roff , between the promoter off-states, p0 and poff , and no TF dependence
in the step before promoter activation. (middle left panel) Same plots as in (A, middle left
panel), with 423 parameter sets for this model. Parameters are sampled (ron from 0.1-100,
roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-
0.01, threshold from 0-2.7) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle right panel,
right panel) Plotted in the same manner as in (A, middle right panel, right panel) with 84
parameter sets. F) (left panel) Schematic of a 3-state model with constant rate of transition
from p0 to poff . (middle left panel) . Same plots as in (A, middle left panel), with 1288
parameter sets for this model. Parameters are sampled (ron from 0.1-100, roff from 0.1-100,
kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 =
0.06, γ1 = 0.05, γ2 = 0.0083). (middle right panel, right panel) Plotted in the same manner
as in (A, middle right panel, right panel) with 16 parameter sets. G) (left panel) Schematic
of 3-state model with linear dependence on TF in both transitions from p0 to poff and poff to
pon . (middle left panel) Same plots as in (A, middle left panel), with 1638 parameter sets for
this model. Parameters are sampled (ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1,
koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05, γ2

= 0.0083). (middle right panel, right panel) Plotted, in the same manner as in (A, middle
right panel, right panel) with 228 parameter sets. H) (left panel) Schematic of the 3-state
model with thresholding in the activation constant, ron , between promoter off-states, p0 and
poff , and linear dependence on TF in transition from poff to pon . (middle left panel) Same
plots as in (A, middle left panel), with 1649 parameter sets for this model. Parameters are
sampled (ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from
0.0001-10, β0 from 0.000001-0.01, threshold from 0-0.5) or set (β2 = 0.06, γ1 = 0.05, γ2 =
0.0083). (middle right panel, right panel) Plotted in the same manner as in (A, middle right
panel, right panel) with 455 parameter sets. I) (left panel) Schematic of the 3-state model
with thresholding in the inactivation constant, roff , between promoter off-states, p0 and poff

and linear dependence on TF in transition from poff to pon . (middle left panel) Same plots
as in (A, middle left panel), with 96 parameter sets for this model. Parameters are sampled
(ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10,
β0 from 0.000001-0.01, threshold from 0-0.5) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083).
(middle right panel, right panel) Plotted in the same manner as in (A, middle right panel,
right panel) with 25 parameter sets.
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Figure 2.13: Exploration of three-state models for pGYP7-YFP data, related to
Figure 2.6. A) Comparison of the 3-state models with either ron or ron thresholding in the
transition from p0 to poff (upper panel) Schematic of the 3-state model with thresholding in
the activation rate constant, ron , between promoter off-states p0 and poff . (middle panel)
Heatmap of slope ratio in the log10( kon

koff
)− log10( ron

roff
) plane. ron is set to 0.02 and kon = 0.6.

Parameters are sampled (ron from 0.0002-0.02, koff from 0.002-0.2) or set (β1 = 0.0001, β2

=0.06, γ1 =0.05, γ2 =0.0083, threshold= 0.5, β0 =0.000001). (lower panel) Same heatmap
as in (A, middle panel) except with ron set to 2, and ron ranges from 0.02-2. B) (upper
panel) Schematic of the 3-state model with thresholding in the inactivation constant, ron ,
between promoter OFF-states, p0 and poff . (middle panel) Same heatmap as in (A, middle
panel) with ron is set to 0.25 and kon = 0.25, that is previously described in Figure 2.6E.
Parameters are sampled (ron from 0.0025-2.5, koff from 0.0025-0.25) or set (β1 = 0.0001, β2

=0.06, γ1 =0.05, γ2 =0.0083, threshold= 0.5, β0 =0.000001). (lower panel) Same heatmap
as in (B, middle panel) except with ron set to 2.5, and ron ranges from 0.025-25. C-D)
Additional parameter requirements of the 3-state ron threshold model for fitting pGYP7-
YFP. (upper panels) Output-Fluorescence plots are generated by the model for different
parameter sets that correspond to points 3 and 4 in the heatmap in B. The slope ratio for
point 3 is 1.05 with log10( kon

koff
) = −1.58 and log10( ron

roff
) = 0.6. The slope ratio for point

4 is 1.25 with log10( kon
koff

) = 0.1 and log10( ron
roff

) = −0.89. Point 3 is chosen to highlight

the effect of decreasing ron , while Point 4 is chosen to highlight the effect of decreasing
koff . (middle panels) Example of a time course of promoter state p0 for a light input that
produces the equivalent of 40 minutes (dotted line in upper panel) in nuclear localization
either continuously or in short pulses. Solid lines are the p0 activity while shading denotes
TF nuclear localization. The black double arrow denotes the maximum depletion of the p0

state for the pulsed input. (lower panels) Example of a time course of promoter activity pon

for a light input that produces the equivalent of 40 minutes (dotted line in upper panel) in
nuclear localization either continuously or in short pulses, similar to the (middle panels). The
red and blue hashing represents residual promoter activity beyond the nuclear localization
input. The red residual promoter activity is repeated 15 times while the blue residual activity
is repeated one time. The ∆ bar denotes the difference between the amplitudes generated
by the 2 minute pulsed and 40 minute continuous input. E) Correlation of nucleosome
occupancy and sensitivity to pulsing. Heatmap of H3 occupancy for the Crz1 target genes as
specified by Yoshimoto 2002. H3 occupancy is defined as counts of H3 enrichment over the
IgG antibody, which is a control for no pull down of histones. The dataset and determination
of start sites are obtained from Sen et al., 2015 and Malabat et al., 2015, respectively78,79.
The software deepTools 2.0 is used to compute the H3 occupancy values. -1 and +1 kb from
the transcription start site (TSS) is used. The positions of YPS1, CMK2, and GYP7 in the
heatmap are denoted with black triangles. F) Slope ratios of Crz1 target genes as a function
of their mean H3 nucleosome occupancy scores averaged from -1kb to the Transcription Start
Site (TSS). The correlation coefficient is r2 = 0.26.
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Figure 2.14: Slope ratio Np/Nc of number of transcripts N is strongly correlated
with protein slope ratio, related to Figures 4-5 and 2.7.1 Mathematical Analysis.
A) Heatmap of Np/Nc for increasing kd and different values of kon and koff . Each column
has a given value of kd and each row has different values for kon and koff that produce the
same kd . The nominal kon and koff values used in the first row are noted at the top, and
every subsequent row uses a fraction of these values (1/5, 1/10, and 1/20). B) Plot of N,
total transcripts produced, as a function of TF nuclear fluorescence AUC. Left Panel: kon =
2, koff = 4.6, kd = 2.3 and Np

Nc
= 1.25. Right Panel: kon = 0.1, koff = 4.6, kd = 46 and Np

Nc
=

1.02. For both panels, β1 = 2, γ1 = 0.06, β2 = 4.92, γ2 = 0.0083, β0 = 0.0032. C) Plot of
slope ratio Np

Nc
of transcripts versus protein slope ratio. Np are the transcripts produced by

TFp(t) while Nc are those produced by TFc(t). Each dot represents values computed using
the model for a parameter set that fit the protein timecourse and Output-Fluorescence data.
Left Panel: data for pYPS1-YFP (also plotted in Figure 2.5C). Right Panel: Same plot as left
panel for pCMK2-YFP (also plotted in Figure 2.5C). D) Time-dependent transcription factor
concentration TF(t) for the continuous (TFc(t), left plot) and pulsed (TFp(t), right plot)
cases. Here

∫
TF c(t) dt =

∫
TF p(t) dt and both have the same initial rise (shown between 0

and τr,c (left graph) and 0 and τr,p (right graph)) and final shutoff behavior (shown between
τf,c and end of input (left graph) and τf,p and end of input (right graph)).
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Figure 2.15: Simulations of input sequences that accompany theoretical analysis,
related to Figure 2.4 and 2.7.1 Mathematical Analysis. For all simulations I=6 (I is
the number of inputs), kd =3, koff = .33, kon = .11, and β1 = 1. A) Sequence of inputs used
and simulation results for them. (Top panel) Sequence of TF inputs with progressively lower
plateaus at successive times. (Top Middle panel) Plots of pon(t) for the different inputs.
(Bottom Middle panel) Plots of pon versus. cumulative TF area

∫ t
0
TF (v) dv for the different

inputs. (Bottom plot) Cumulative transcripts (β1
kd

∫ t
0
(1−pon(v))TF (v) dv) versus cumulative

TF area. B) Simulation results of cumulative transcripts for a class of inputs that have the
same total accumulated TF area. (Top panel) Sequence of TF inputs with progressively
lower plateaus at successive times that later rise (step up) to the level of TFc(t) shown in
dark blue, and then shut off. Light blue line is TFp(t) with 2 pulses. (Top middle panel)
First adjacent input pairs with dark blue being TFα1(t) and red being TFα2(t). The plot
shows the time of divergence t=t0 for the first two inputs (where TFα2(t) first drops to its
plateau), the time t = t0 + α1

α2
σ∗ when TFα2(t) jumps back up to TFα1(t), and the time

t = t0 + σ∗ where TFα1(t) has the same corresponding accumulated TF area as TFα2(t)
does at t = t0 + α1

α2
σ∗. (Bottom middle panel) Second adjacent input pairs (red is TFα1(t)

and orange is TFα2(t)) with similarly marked time points as in panel above it. (Bottom
panel) Cumulative transcripts versus cumulative TF area for the inputs in the top panel. C)
Extending the class of inputs with equivalent total accumulated TF area from two (panel
B) to 3 pulses. (Top panel): Sequence of TF inputs with progressively lower plateaus at
successive times that later rise (step up) to the level of TFc(t) shown in dark blue. Same
as in panel B but for 3 pulses. (Top Middle Panel) First adjacent input pairs with dark
blue being TFα1(t) and red being TFα2(t). There are two additional time labels relative to
those in (B). For the TFα2(t) input, t = t1(α2) is the time at which TFα2(t) drops a second
time to its plateau. For the TFα1(t) input, t = t1(α1) is the time at which TFα1(t) has the
same TF area as TFα2(t) does at t = t1(α2). (Bottom middle panel) Second adjacent input
pairs (red is TFα1(t) and orange is TFα2(t)) with similarly marked time points as in panel
above it. (Bottom panel): Cumulative transcripts versus cumulative TF(t) area for 3 pulse
sequence of inputs shown in top panel. D) Extending the class of inputs to M pulses. Plots
showing time locations when TFα2(t) drops to its first, second, and third plateaus for the
first adjacent input pair (left plot) and second adjacent input pair (right plot). The times
t = t0 , t = t1(α2) and t = t2(α2) are the ordered locations when TFα2(t) drops to the
corresponding plateau. For the TFα1(t) input, the times t = t1(α1) and t = t2(α1) map to
the same TF area for TFα1(t) as t = t1(α2) and t = t2(α2) does for TFα2(t). E) Simulation
results for the 20 pulse case. Left plot: All inputs. Dark blue corresponds to the continuous
input TFc (t) of equal area to the other inputs. Light blue corresponds to the pulsed input
TFp(t) (20 pulses). Right plot: Cumulative transcripts versus cumulative TF(t) area.
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Table 2.1: NLS Optimization This table contains the amino acid and peptide sequences
used in the screen for NLSs in the optimization of CLASP for maximal nuclear localization
dynamic range.

Number NLS Score (Kosugi 2009) AA Length Class

0 paaKRvKld na 9 original LANS, class2
3 raaKRpRtt 10 9 class2
5 paaKRpRtt 9 9 class2
8 apaKRaRtt 8 9 class2
9 paaKRlCtt 9 9 class2
11 aaaKRswsmaf 10 11 class3
14 aaaKRswvmaf 9 11 class3
15 aaaKRswsaaf 10 11 class3
20 KRpatlandspaaKRR 9 16 bipartite
24 KRKRwendip na 10 class1
27 psRKRKRdhyav na 12 class1
29 tspsRKRKwdqv na 12 class1
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Table 2.2: OptoPlate Transfer Function The transfer function of the OptoPlate. Con-
version from arbitrary units (a.u.) to intensity (milliWatts).

Light Dose milliWattage Std Dev

0 -0.0001499 0.0002004
0 -0.0002513 0.000252
0 -0.001819 0.000978
64 0.1011 0.008522
64 0.07921 0.007053
64 0.1279 0.01123
128 0.1944 0.02126
128 0.1962 0.01824
128 0.2633 0.02653
256 0.3961 0.0393
256 0.4012 0.0362
256 0.5107 0.04832
512 0.7849 0.07396
512 0.7776 0.09084
512 1.041 0.09508
1024 1.53 0.1346
1024 1.477 0.1491
1024 1.986 0.2349
2048 3.088 0.3326
2048 3.026 0.2563
2048 3.45 0.9
3072 4.302 0.4414
3072 4.235 0.4559
4095 5.407 0.5494
4095 5.486 0.4617
4095 6.56 0.587
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Chapter 3

Optogenetic control of RelA

underscores the importance of

transcription factor dynamics in

downstream gene expression

3.1 Summary

This study extends the results of the previous study by using CLASP in mammalian cells.

In this study, optogenetics is used to control the translocation of RelA, as well as other

transcription factors, into the nucleus, and transcriptomics is used to assess the

genome-wide effects of optogenetically-controlled translocation.
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3.2 Introduction

Transcription factors are critical intracellular messengers that receive information from

upstream nodes, like kinases and receptors, and then pass that information to genes by

causing their activation and repression. As discussed in Chapter 2, TFs transmit

information to downstream genes in many ways, including post-translational modifications

and changes in concentration80–82. Much like in S. cerevisiae, a subset of TFs, including

NFAT and NF-κB, additionally regulate their spatiotemporal dynamics in response to

environmental inputs26,83. Additionally, TFs like p53 modulate their nuclear concentration

with different dynamics23.

Previous studies have used a variety of inputs, including chemical and optogenetic inputs,

to regulate temporal dynamics of transcriptional regulators in order to elucidate the effects

of these dynamics on downstream gene expression, which they have measured using

techniques such as RNA-seq and reporter genes9,13–15,19,84–86. For example, a study used

gamma irradiation to induce pulses of p53, and then measured expression changes across

the genome over a period of 12 hours using RNA-seq. By combining these data with

ChIP-seq data, the authors were able to show that using a single dynamic input, p53 can

activate downstream genes with different temporal patterns due to differences in binding

kinetics19. Another study regulated NFAT dynamics through optogenetic control of

calcium concentration. With this method, researchers found that a synthetic reporter did

not differentiate between NFAT nuclear translocation dynamics, but instead activated in

proportion to the integral of the NFAT nuclear localization13. Finally, a recent study used

microfluidics to precisely control the concentration of TNFα delivered to cells, which then

regulated the amplitude of NF-κB pulses of nuclear localization. As a result, the authors

were able to demonstrate that downstream genes had differential responses to pulsed

inputs of different amplitudes84.
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A commonality across these studies, though, is that they all modulate upstream regulators,

which, in turn, modulate many downstream effectors, to study dynamics of a single TF. As

a result, many other transcriptional regulators are activated in addition to the TF of

interest, and these pleiotropic effects confound conclusions about the effect of dynamics of

the TF of interest. As an example, a recent study elucidated the effects of two stimuli, LPS

and TNF, on NF-κB downstream signaling by knocking out Ifnar, an upstream regulator

induced by LPS, and Nfkbia, a protein which regulates Nf-κB activation through a

feedback loop. Using these genetic modifications, researchers were able to create similar

dynamics for the two inputs, thereby allowing them to model stimulus-specific effects. In

this study, researchers found hundreds of genes downstream of NF-κB which were

differentially regulated by these stimuli as opposed to the dynamics of NF-κB itself37. It is

important to note that many genes in mammalian cells are regulated by multiple TFs

which can bind each gene separately or as a complex. As a result, modulation of multiple

transcriptional regulators at the same time may be necessary to induce downstream gene

expression changes. Still, fine-tuned control over a single TF can allow researchers to begin

the untangle the effects of dynamic perturbations on gene activation.

To elucidate the effects of TF spatiotemporal dynamics on downstream gene expression in

mammalian cells, we have modified the yeast CLASP system for use across multiple

cultured cell lines. With mammalian CLASP, we demonstrate optogenetic control of

nuclear translocation for several TFs, including NFAT1 and RelA. We focus on

RelA-CLASP, and modulate its dynamics by inducing cells with pulsed and constant light

inputs, thereby mimicking the effects of different stimuli. Following induction, we measure

expression of downstream genes using RNA-seq. Using a model of promoter activation and

gene expression, we glean high-level information about the complexity of gene activation

downstream of RelA. In summary, this study demonstrates the effect of differential

dynamics of a single TF on downstream genes, and provides a framework for future studies

on the same topic.
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3.3 Results

3.3.1 Designing Mammalian CLASP as a modular optogenetic

tool

In Chapter 2, we showed the utility of CLASP, a blue-light-responsive optogenetic tool, for

regulating nuclear translocation of various transcription factors in yeast. To extend these

results to mammalian cells, we first needed to engineer a CLASP DNA construct that

would express readily in cultured cells, and would work across cell lines. As discussed in

Chapter 2, optimization of LANS was necessary to achieve nuclear translocation to the

scale seen with transcription factors activated by environmental stress inputs46. This

optimization yielded yeLANS, a LANS with a stronger nuclear localization sequence (NLS)

than that which was originally published. Furthermore, the NLS in yeLANS was a

sequence that was predicted to work in mammalian cells in addition to yeast50.

Accordingly, we found that nuclear translocation was robust in HEK293T cells using the

yeLANS sequence (Figure 3.5B). However, the pm-LOVTRAP was poorly targeted to the

plasma membrane in HEK293T cells, despite the plasma membrane targeting sequence

being derived from RGS2, a protein expressed in Homo sapiens 51. Accordingly, we

swapped the Hs RGS2 plasma membrane tag for a tag derived from Lyn kinase, which led

to improved plasma membrane targeting for the LOVTRAP and sequestration for the

Zdk1-cargo-yeLANS construct87 (Figure 3.5A).

We next proceeded to optimize the method of delivery of CLASP DNA constructs. In our

first iteration, we delivered the entire construct on one plasmid, using PiggyBac

transposase to integrate into the genome and selected cells using an antibiotic selectable

marker88. This method had several disadvantages: firstly, changing the cargo of interest

required completely rebuilding the plasmid construct, and secondly, such a large

111



integration was prone to silencing and loss of expression of parts of the circuit. As a result,

many cells would only express part of the construct that was delivered (Figure 3.6A). To

address both issues, we created a three plasmid system to deliver the CLASP system to

mammalian cells. The CLASP system is divided into the three plasmids as follows: a

plasmid expressing a fluorescent nuclear marker, a plasmid expressing the

fluorescently-tagged pm-LOVTRAP system, and a plasmid expressing the

fluorescently-tagged Zdk1-cargo-yeLANS protein (Figure 3.6B). These plasmids are

delivered through lentiviral integration and can be transduced simultaneously or in series,

depending on the goal of the user. Lentiviral transduction was preferred to PiggyBac

transposase for its superior efficiency; multiple plasmids were used because this would

reduce the size of each integration, thereby increasing the likelihood of continued

expression over time, and also assisting with efficient lentiviral packaging.

A critical benefit of separating the plasmids is that it allows us to create a system which

was more amenable to rapid screening of different cargo constructs across multiple cell lines.

Using only the nuclear marker and pm-LOVTRAP plasmids, we were able to transduce

and create ”chassis” cell lines in HEK293T, 3T3, and MCF10A cells which could be used

to theoretically screen any Zdk1-cargo-yeLANS construct of interest (Figure 3.6C). These

chassis cell lines can be used with transient transfection to test whether a given cargo can

be effectively sequestered and translocated by CLASP. With this method, we show that a

variety of cargos, including mScarlet, p53, NFAT1, and RelA could be translocated to and

from the nucleus in various cell lines with CLASP (Figures 3.5B, 3.6D-E, 3.1B). Overall,

these data indicate that CLASP can be used in mammalian cells in a modular fashion to

regulate nuclear translocation of multiple cargo proteins across multiple cell lines.
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3.3.2 Quantification of RelA-CLASP response to light reveals

reversible and dose-responsive dynamics

For the remaining studies in this chapter, we will focus on one specific optogenetic

construct, RelA-CLASP. RelA-CLASP is expressed in 3T34KO cells. These cells are mouse

fibroblasts which do not express RelA and three Inhibitor of nuclear kappa light

polypeptide gene enhancer in B-cells (IkB) proteins: IkBα, IkBβ, and IkBε. In wildtype

cells, the IkB proteins sequester RelA in the cytoplasm in the absence of stimulus. When

an environmental stimulus, such as Tumor Necrosis Factor α (TNFα), is added to the cells,

an upstream regulator of the IkB proteins, IkB kinase (IKK) phosphorylates the IkB

proteins, which leads to their dissociation from RelA and subsequent degradation (Figure

3.1A)26. This cell line creates an ideal chassis for testing the ability of CLASP to regulate

nuclear translocation of RelA, as the primary regulators of RelA translocation are

non-functional. Additionally, several mutations were made to the sequence of RelA used in

CLASP to improve likelihood of inducing downstream gene expression4.

Using confocal microscopy, we show that translocation from the plasma membrane to

nucleus occurs rapidly; within 5 minutes of stimulation with blue light, nuclear

translocation of Zdk1-RelA-mScarlet-yeLANS is evident (Figure 3.1B). Quantification of

the response to blue light stimulation shows that nuclear translocation reaches its

maximum rapidly, in less than 10 minutes. Additionally, nuclear translocation is reversible,

and exit occurs within 10-20 minutes after cessation of blue light (Figure 3.1C).

Furthermore, RelA-CLASP can be pulsed into the nucleus repeatedly, with similar increase

in nuclear/cytoplasmic enrichment in each pulse, when given light inputs separated by at

least 20 minutes (Figure 3.1D).

We undertook additional experiments to more specifically quantify how responsive

RelA-CLASP is to inputs of different lengths and intensities. First, we vary the time of
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blue light induction from 1-10 minutes, to measure exactly how sensitive RelA-CLASP

translocation is to the width of the light pulse. We find that the nuclear/cytoplasmic

enrichment of the cell population increases with as little as 1 minute of blue light.

Furthermore, the population reaches its maximum nuclear/cytoplasmic enrichment within

8 minutes (Figures 3.1E, 3.7A). Next, we vary the intensity of blue light given to the cells

over 15 minutes of induction and measure the maximum nuclear/cytoplasmic enrichment

achieved across the population of cells. Importantly, we find that RelA-CLASP responds

almost linearly to different intensities of light within the range sampled (0-3000 a.u.,

induced with the Optoplate-96) (Figures 3.1F, 3.7B)73,89. Taken together, these data show

that RelA-CLASP can quickly (≤ 8 minutes) and reversibly translocate to the nucleus, and

that the magnitude of translocation can be tuned with light intensity.

3.3.3 RelA-CLASP is not modulated by environmental stress

inputs

We have demonstrated remarkably fine control over RelA-CLASP using blue light inputs.

However, the endogenous regulation of RelA leads to its activation in response to many

environmental inputs. TNFα, Interleukin-1β (Il-1β), and lipopolysaccharide (LPS) are

three environmental stimuli known to activate RelA. Each of these inputs is recognized by

a different extracellular receptor: TNFα is recognized by the Tumor Necrosis Factor

Receptor (TNFR); IL-1β activates the Interleukin-1 Receptor (Il1R); LPS binds the Toll

Like Receptor 4 (TLR4)22 (Figure 3.2A, top panel). RelA regulates many cellular

pathways, such as survival and inflammation, and is canonically studied for its response to

immune system stimuli. TNFα and Il-1β are cytokines produced in the immune response,

and LPS is an endotoxin produced by gram-negative bacteria which causes an immune

response. All three inputs converge on RelA through similar, yet distinct pathways.
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As a control for RelA-CLASP, we used lentiviral transduction to express a TagBFP nuclear

marker and a wildtype Mus musculus RelA fused to mScarlet in NIH3T3 background cells.

Unlike the RelA-CLASP cells, the NIH3T3 cells expressing the RelA-mScarlet construct

had no mutations to their endogenous RelA or IkB sequences, and therefore had full

endogenous control over nuclear translocation of RelA.

Prior work has shown that TNFα binding of the TNFR yields formation of signaling

complexes that activate IKK, as well as other kinases like c-Jun N-terminal Kinase

(JNK)22,24. Given the intact IKK-IkB pathway in RelA-mScarlet cells, RelA is rapidly

activated and translocated to the nucleus upon stimulation with TNFα in this cell line

(Figure 3.2B, green trace, top panel). This stimulation is specific to TNFα; addition of

PBS + .1% BSA vehicle to RelA-mScarlet cells yields no such response (Figure 3.2B, black

trace, top panel). Approximately 10 minutes after induction with 1 ng/mL TNFα, RelA

translocates into the nucleus in all cells. Nuclear/cytoplasmic enrichment across the

population peaks approximately 30 minutes after induction and resolves within 100-120

minutes after induction. Previous studies have shown that TNFα induction leads to a

coordinated first wave of translocation into the nucleus, followed by additional damped

pulses into the nucleus8,30,84,90. Individual cell traces show a similar finding, with some cells

undergoing a short, single pulse within the first hour after induction, while other cells

display two or more pulses of RelA translocation after induction (Figure 3.2B, inset, top

panel). By contrast, no nuclear translocation is seen for RelA-CLASP in response to

induction with 1 ng/mL TNFα (Figure 3.2B, green trace, bottom panel). At a population

level, the nuclear/cytoplasmic enrichment observed is similar to that seen with vehicle

induction (Figure 3.2B, black trace, bottom panel). Individual cell traces confirm that

within the population, RelA-CLASP is not induced by this concentration of TNFα (Figure

3.2B, inset, bottom panel).

Il-1β activates the Il1R, which then signals through MyD88, a pathway that is also
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activated in TLR4 signaling. MyD88 activation leads to activation of IKK, as well as other

regulators like IL-1 receptor-associated kinase 1 (IRAK1) and JNK22. Accordingly,

RelA-mScarlet cells induced with 1 ng/mL of Il-1β respond with a coordinated

translocation to the nucleus (Figure 3.2C, orange trace, top panel). As seen in prior work,

the translocation induced by Il-1β resolves more rapidly than that induced by TNFα;

within 80 minutes after induction, the median change in nuclear/cytoplasmic enrichment

has decreased to 037. Additionally, the RelA translocation response is fully concluded after

this single pulse –for the remaining 100 minutes, no additional change in

nuclear/cytoplasmic enrichment is seen for RelA-mScarlet cells induced with 1 ng/mL

Il-1β. Individual cell traces also confirm that the response to Il-1β is highly uniform across

cells (Figure 3.2C, inset, top panel). Importantly, no such translocation response is seen in

RelA-CLASP cells treated with 1 ng/mL Il-1β (Figure 3.2C, orange trace, bottom panel).

The observed change in nuclear/cytoplasmic enrichment for RelA-CLASP cells induced

with 1 ng/mL is similar to that seen in RelA-CLASP cells induced with a vehicle control

(Figure 3.2C, black trace, bottom panel). This lack of response to Il-1β is also evident in

individual cell traces (Figure 3.2C, inset, bottom panel).

LPS is one of many peptides which bind the TLR4. After binding, TLR4 activates the

MyD88 pathway as well as the TRIF pathway, which leads to activation of interferon

signaling22,24. Unlike the response to TNFα and Il-1β, RelA translocation in RelA-mScarlet

cells in response to LPS is more delayed. Translocation does not begin until approximately

30 minutes after induction with 100 ng/mL LPS, and does not peak until 60 minutes after

induction (Figure 3.2D, pink trace, top panel). The population response to LPS also

extends for nearly two hours, which is similar to the response to TNFα and much longer

than the response to Il-1β. However, individual cell traces demonstrate that this prolonged

translocation is uniform across cells, a key difference between the response to LPS and

TNFα (Figure 3.2D, inset, top panel). Remarkably, despite the strong, coordinated, and

prolonged response seen in RelA-mScarlet cells, translocation of RelA-CLASP in response
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to LPS is not distinct from translocation of RelA-CLASP after addition of vehicle (Figure

3.2D, bottom panel). The lack of RelA-CLASP response is also shown in individual traces

from RelA-CLASP cells induced with 100 ng/mL LPS (Figure 3.2D, inset, bottom panel).

As described in Chapter 2, blue light stimulation activates RelA-CLASP by opening the

LOV2 domain which sequesters the Zdk1-RelA-yeLANS at the plasma membrane, and also

by opening the yeLANS to reveal the NLS. The activation of both LOV2 domains leads to

nuclear translocation of Zdk1-RelA-yeLANS (Figure 3.2E, bottom panel). As shown in

Figure 3.1, RelA-CLASP translocates to the nucleus rapidly upon induction with blue

light. When given a 2 hour light input, RelA-CLASP maintains nuclear localization

throughout the duration of the input, and then exits the nucleus shortly after the light

input is turned off (Figure 3.2F, blue trace, bottom panel). Individual cell traces show that

within the population of RelA-CLASP cells, nuclear translocation and nuclear exit are

closely timed with the blue light input. For RelA-mScarlet cells, blue light does not lead to

appreciable nuclear translocation over the no light control. This is confirmed by the

individual cell traces, which show uniform lack of induction of RelA-mScarlet in response

to blue light input of 1350 a.u.

These data quantify both the canonical RelA response to various environmental stress

inputs and the unique responsiveness of RelA-CLASP to blue light as an input. The lack of

RelA-CLASP response to LPS, TNFα, and Il-1β inputs reflects the robust knockout of the

IkB proteins, as well as the sequestration ability of CLASP.

3.3.4 RelA-CLASP activates canonical downstream genes given

a constant light input

While important, nuclear translocation of RelA does not guarantee activation of

downstream genes in the known RelA regulon. Though nuclear translocation of RelA differs
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in response to different environmental inputs (Figure 3.2), so too do the pathways and

regulators activated by these inputs. Previous studies have shown that post-translational

modifications of RelA, such as phosphorylation, are critical for downstream gene

expression91. Additionally, prior work has shown that activation of co-regulators, like JNK,

CBP:p300, IkBβ, and many others, boosts the ability of RelA to activate genes4,92,93.

Prior to this work, no publication has demonstrated precise, reversible control over RelA

nuclear translocation without environmental stress inputs. As a result, it was previously

impossible to directly demonstrate whether nuclear translocation of RelA alone was

sufficient to induce downstream gene activation, without concurrent phosphorylation of

critical residues, such as S536, or activation of important co-regulators. RelA-CLASP

represents a novel opportunity to interrogate solely the effect of nuclear translocation of

RelA on its downstream genes.

To probe this question, we performed RNA-seq on RelA-CLASP cells induced with

constant blue light at 460 a.u. (Figure 3.3A). This intensity of light was chosen due to its

ability to activate RelA-CLASP nuclear translocation while potentially minimizing the

effect of blue light toxicity. Samples were measured at 0h, 1h, and 2h of blue light

induction. Additionally, as a control, pm-LOVTRAP cells were induced with the same

light input. The gene expression changes seen in pm-LOVTRAP were then used to

benchmark the changes seen in RelA-CLASP cells at the same time points. By subtracting

the log2 fold change seen in pm-LOVTRAP from that seen in RelA-CLASP cells, we were

able to estimate the induction caused by RelA-CLASP alone as opposed to that caused by

blue light. We termed this metric log2FC RelA-CLASP induction.

Using this method, we first found that several canonical genes downstream of RelA were

upregulated in RelA-CLASP cells in response to blue light (Figure 3.3B). Trim30α is

upregulated in response to LPS and other TLR agonists and its activation is

NF-κB-dependent94. Nfkbiz produces IkBζ, another inhibitor of RelA nuclear
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translocation; activation of IkB proteins, including IkBζ, acts as a feedback loop on RelA

activation95. Ccl2 is a chemokine induced in response to many inflammatory inputs, and

Tnfrsf11b is a secreted protein which binds TNF-related apoptosis inducing ligand

(TRAIL) and Receptor Activator of NF-κB Ligand (RANKL)96,97. These data represent

the first direct demonstration that nuclear translocation of RelA alone can induce

downstream genes.

Many previous studies have used environmental inputs to regulate the nuclear translocation

of RelA and quantify the effect of differential translocation on downstream genes8,9,84,85.

However, these inputs can have pleiotropic effects, activating many other pathways and

regulators in addition to modulating RelA translocation. To quantify these pleiotropic

effects, we delivered 1 ng/mL TNFα to pm-LOVTRAP cells, which do not express RelA,

IkBα, IkBβ, and IkBε, and measured gene expression through RNA-seq at 0h, 1h, and 2h

of TNFα induction (Figure 3.3C). Interestingly, we found 1188 genes significantly regulated

(FDR p < .05 as compared to 0h) by 1h or 2h TNFα induction even in the absence of

RelA expression. 650 genes were significantly (FDR p < .05 as compared to no input for

the same cell line) regulated both by constant light induction in RelA-CLASP and TNFα

induction in pm-LOVTRAP. A subset of these genes are plotted in Figure 3.3D, showing

the induction caused by TNFα compared to that caused by RelA-CLASP translocation.

Phlda1, a pro-survival factor, and Atf3, a transcriptional repressor, reach similar maximal

induction whether induced by TNFα alone or RelA-CLASP (given constant light)98,99.

Despite the similar range of induction, the dynamics of their induction are different

depending which induction is delivered to the cells. By contrast, Cmtm6, a regulator of

PD-L1 that is broadly expressed across cell types, and Rnaset2b, a ribonuclease, are both

induced by RelA-CLASP given constant light and repressed by TNFα alone. Furthermore,

many genes which are strongly (FDR p < .05, log2FC RelA-CLASP induction > 85th

percentile) induced by constant light induction in RelA-CLASP and regulated by TNFα

induction in pm-LOVTRAP, are in fact repressed by TNFα alone, but induced by
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RelA-CLASP. These data illustrate the wide ranging effects of TNFα induction and the

potential confounding effect environmental inputs can have when used to study the effect

of nuclear translocation dynamics of a single transcriptional regulator.

To further probe the genes induced by RelA-CLASP induction with constant light, we

calculated log2FC RelA-CLASP induction for all genes significantly (FDR p < .05, 5034

genes) regulated by RelA-CLASP in response to constant light. We focused on those genes

which had the top 15% of log2FC RelA-CLASP induction at either the 1h or 2h time

points, thereby reducing the set of genes of interest to 896 genes. By normalizing the

log2FC RelA-CLASP induction to the maximum for each gene, we can use longitudinal

k-means clustering to reveal 8 clusters of dynamic gene expression trajectories100. Cluster

A, which represents 230 genes, peaks in induction at 1h of constant light, and maintains or

slightly decreases induction at 2h of constant light. Clusters B (167 genes) and C (156

genes) both peak at 2h of constant light induction; the difference between these clusters is

that cluster C has a nearly-maximal induction at 1h of constant light. Similar to cluster A,

cluster D (140 genes) genes peak at 1h of constant light, yet these genes decrease on

average 40% in induction at 2h of constant light. Cluster E, on the other hand, represents

83 genes which induce minimally at 1h of constant light induction, and reach their peak at

2h of constant light induction. Clusters F (80 genes) and G (27 genes), similarly to clusters

A and D, peak at 1h of constant light induction, after which their log2FC RelA-CLASP

induction decreases strongly to near 0 (cluster F) or even below 0 (Cluster G). Finally,

cluster H represents 13 genes which are not activated or even repressed at 1h of constant

light induction, but are then strongly induced at 2h of constant light induction (Figure

3.3E).

These 8 clusters can be qualitatively reduced to 4 clusters: early genes, proportional genes,

late genes, and feedback genes, a gene activation structure that has been seen in previous

studies19,53,54. Early genes, like those in clusters A and C, are those which peak in log2FC
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RelA-CLASP induction at 1h of constant light and stay activated through 2h of constant

light. Proportional genes, like those in cluster B, are those which increase proportionally in

log2FC RelA-CLASP induction at both 1h and 2h. Late genes are not induced or even

repressed at 1h of constant light induction, and are proceedingly induced at 2h of constant

light induction; genes in clusters E and H qualitatively fall into this category. Finally,

feedback genes are those which reach peak RelA-CLASP induction after 1h of constant

light, and then decrease induction by 2h of constant light, which is seen in clusters D, F,

and G. These data show not only the breadth of activation across the genome that is

possible with RelA-CLASP, but also the variety of gene expression dynamics that a

constant pulse of RelA can induce.

3.3.5 A simple model of gene expression predicts fundamental

differences in genes which respond similarly to constant

light inputs

Given the differences in response to constant RelA-CLASP nuclear translocation across the

four qualitative clusters, it is clear that fundamental differences between genes determine

whether they will respond with a given type of trajectory, whether early, proportional, late,

or feedback. These differences can be caused by promoter architecture or activation,

mRNA decay, or opposing effects of other regulators within the gene regulatory network.

Still, though genes within each of the four qualitative clusters have similar responses to a

constant input of RelA-CLASP, it remains possible that genes within these clusters have

very different underlying parameters.

To further interrogate this question, we generated a simple model of gene expression,

capable of recapitulating a subset of the responses to constant light input. This model

consists of a promoter in the off state (poff) which transitions to a promoter in the on state
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(pon) with rate that is dependent on TF nuclear concentration and an on rate, kon. The

promoter also transitions back to an off state using a constant off rate, koff. pon can then

produce mRNA with a rate of β1. mRNA is also constitutively produced with a rate of β0.

Finally, the mRNA decays with a rate of γ1 (Figure 3.4A). This simple model cannot

reproduce gene expression dynamics which respond slowly to induction, such as late genes,

as proved in 2.7.1 and shown in other works37. Additionally, it cannot reproduce dynamics

which display a feedback response because no feedback loop is present in the model. Still,

this simple model is useful to explore the parameters which underlie early and proportional

genes.

In addition to inducing RelA-CLASP with constant light input, we induced the cells with a

pulsed light input of 1h light ON/1h light OFF/1h light ON (Figure 3.4B). We theorized

that the gene expression dynamics in response to pulsed light input could be used to

differentiate the parameters of genes with qualitatively similar responses to constant

RelA-CLASP induction. Accodingly, we used our model to probe whether genes with an

early response to constant TF input would display varied responses to a pulsed TF input.

To do this, we generated 8,000 parameter sets varying kon, koff, and γ1, and then simulated

the mRNA dynamics for each combination of parameters in response to a constant TF

input. Each of these simulations was normalized to the maximum mRNA value simulated

at 1h or 2h of induction. Then, to find those parameter sets which generated gene

expression dynamics similar to those seen in the early genes identified by the RNA-seq

data, we filtered the simulated trajectories to those with 1h and 2h normalized induction

values within the bound of those seen in clusters A and C in the RNA-seq data. These

trajectories are plotted in Figure 3.4C. In general, the parameters which recapitulated the

early gene response seen in our RNA seq dataset had a higher kon and higher γ1 than seen

across all parameter sets tested (Figure 3.8A). Given a higher kon and a higher γ1 value,

the gene expression dynamics will reach steady state expression more quickly (2.7.1, Figure
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3.8C). These parameter differences explain why genes in clusters A and C might achieve

their peak induction, or close to peak induction, after 1h of constant TF input.

Using only this filtered group of parameter sets, we then simulated their response to pulsed

TF dynamics generated by the light input illustrated in Figure 3.4B. Remarkably, despite

the uniform response to constant light inputs, the simulated responses to pulsed light

inputs are varied. They can be grouped into 5 clusters using longitudinal k-means

clustering, which are further condensed into 3 qualitatively different clusters (Figure

3.4D)100. The first cluster, pictured in purple, responds in a similarly early fashion to

pulsed inputs as constant inputs, and can actually turn on more in response to a pulsed TF

input than a constant input. The second cluster (orange) responds proportionally to pulsed

TF inputs, increasing expression at both the 1h and 2h timepoints. Finally, the third

cluster (green) responds in a late fashion, turning on only at the 2h timepoint.

The different dynamic trajectories generated by these clusters are due to their relative

differences in kon, koff, and γ1 with respect to all parameters that can generate early gene

dynamics in response to a constant light input. The early response to pulsed inputs,

pictured in purple, is generated by higher kon and lower koff values relative to those seen

across all early gene parameter sets (Figures 3.4E, 3.8B). Higher kon values help the gene

to reach the pon state more quickly while the light is on during the first pulse, and lower

koff values keep the gene from turning off completely during the 1 hour light OFF period

which follows (Figure 3.8C). Together, these opposing forces generate the quick on response

to pulsed TF inputs. On average, the proportional response to pulsed inputs (orange,

Figure 3.4D) is generated through lower kon, koff, and γ1; however, these parameters can

vary widely across simulations with the same qualitative response (Figures 3.4E, 3.8B).

Lower kon and koff cause the gene to reach steady state gene expression more slowly during

the first hour of TF input, and lower γ1 prevents mRNA decay during the time that the

light is off. This leads to additional mRNA accumulation after the light turns on a second
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time (2.7.1, Figure 3.8C). For the late response to pulsed inputs, a higher koff and γ1 are

needed (Figures 3.4E, 3.8B). With a fast kon and koff, these genes will reach steady state

quickly, within the first hour that the light is on. However, the high γ1 also leads to

complete decay of the mRNA produced during the 1 hour light OFF period. Still, due to

the fast kinetics of these parameter sets, the gene will again reach maximum induction

when the light turns on for a second time (Figure 3.8C).

To determine the utility of these predictions, we ran a similar analysis using the RNA-seq

data to see if the same responses to pulsed TF inputs were seen amongst the genes with a

qualitative early response to constant TF inputs. The genes which make up clusters A and

C represent the qualitative early response (Figures 3.3E, 3.4F). Clustering the response of

these genes to pulsed light inputs yields 7 clusters of gene expression dynamics (Figure

3.4G). Three of these clusters closely resemble the early, proportional, and late responses

predicted by the simple model (27.7% of early genes), which implies that these genes might

be well-modeled by a simple promoter. However, there are still 4 clusters of genes which

are not predicted by the simple model. The first two clusters of genes both peak early in

response to pulsed inputs, and then decrease induction during the the second hour of light

input (fourth, fifth graphs, Figure 3.4G; 8.3% of early genes). This decrease in induction in

response to TF input cannot be predicted by the simple model. The third cluster consists

of genes which have a maximal induction that is much higher for pulsed light inputs than

for constant light inputs, which is also not predicted by any parameter set tested with the

simple model (sixth graph, Figure 3.4G; 19.6% of early genes). The final cluster, which is

not plotted, consists of all those genes which are not significantly induced (FDR p < .05)

by pulsed light inputs (44.3% of early genes). This lack of induction in response to pulsed

inputs additionally cannot be predicted by a simple model.

As discussed previously, the simple model can also be used to recapitulate the proportional

response to constant TF inputs. 8,000 parameter sets varying kon, koff, and γ1 were
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generated, and then used to simulate the mRNA dynamics for each combination of

parameters in response to a constant TF input. Each of these simulations was normalized

to the maximum mRNA value simulated, and then all parameter sets were filtered for

those which generated gene expression dynamics similar to those seen in the proportional

genes (cluster B, Figure 3.3E) identified by the RNA-seq data (Figure 3.4H). Overall, these

parameter sets had lower γ1 and lower koff values than the full set of parameters tested.

Lower koff values cause the gene to reach steady state more slowly. Furthermore, lower γ1

means that mRNA decay occurs slowly, allowing the mRNA to accumulate over the length

of the constant TF input (Figure 3.8A, E).

Next, we used these parameter sets to simulate their response to pulsed TF inputs. This

generated two qualitatively different responses to pulsed TF inputs: a proportional

response and a quick on response (Figure 3.4I). For both trajectories, a wide range of

simulated induction is seen; some parameter sets cause up to 40% more induction in

response to pulsed TF inputs than constant TF inputs, while others cause slightly lower

induction in response to pulsed TF inputs. The parameter sets which generate a

proportional response to pulsed TF inputs have higher kon and koff values than those

parameter sets which generate a proportional response to constant TF inputs (Figures

3.4J, 3.8D). As a result, these genes increase expression more quickly during the first TF

pulse, and also rapidly shut off after the TF exits the nucleus. Due to the low γ1 values

across all proportional gene sets, the mRNA does not completely decay during the time

that the light is off. Finally, during the second pulse of light, the gene reaches its maximal

activation (Figure 3.8E). The parameter sets which respond with a quick on dynamic to

pulsed TF inputs have lower koff values (Figure 3.4J, Figure 3.8C). A low koff value causes

the gene to turn off slowly during the 1h light OFF period, which gives it a slightly higher

mRNA value after 1h light ON/1h light OFF than the other parameter sets (Figure 3.8E).

Finally, we wanted to compare the predictions from the simple model to the data observed
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with RNA-seq. We clustered the response to pulsed light inputs for the genes assigned to

cluster B. This resulted in 5 clusters, two of which qualitatively recapitulated the

proportional and quick on responses predicted by the simple model (Figure 3.4L; 23.3% of

proportional genes). The third cluster of gene trajectories displays a feedback response,

with strong induction at the 1h timepoint and decreased induction at 2h (6.6% of

proportional genes). As discussed previously, the simple model has no feedback, so it

cannot recapitulate a decrease in induction in response to TF input. The fourth cluster

consists of two genes which respond to pulsed light inputs with late gene dynamics, which

is also not predicted by the simple model. The fifth cluster displays genes which activate

much more strongly in response to pulsed light inputs than constant light inputs, which

also cannot be predicted by the simple model (6% of proportional genes). Lastly, many

genes from cluster B (61.1% of proportional genes) are in fact not significantly (FDR p <

.05) regulated by pulsed light inputs.

In summary, the simple model of gene expression is able to predict the response to pulsed

light for approximately one-quarter of the genes with an early or proportional response to

constant light inputs. The genes in this subset which cannot be predicted likely have other

features involved in their activation, such as feedback or more complex gene regulatory

networks. Given that RelA is known to regulate genes in conjunction with other

transcriptional regulators, and activates several feedback loops, it is remarkable that a

meaningful subset of its downstream genes can be modeled as simple promoters.

3.4 Discussion

In this study, we extended our previous efforts to build a modular and reversible

optogenetic tool to an additional model system, mammalian cells, and then used this tool

to generate a novel transcriptomic dataset that measures the effect of RelA nuclear
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translocation on downstream genes. Importantly, we were able to provide the first

demonstration that RelA translocation, without phosphorylation or activation of

co-regulators, is able to induce downstream gene activation. Using a computational model

of gene expression, we were able to further probe this dataset to categorize genes into those

which may resemble a simple promoter, and those with more complex features such as

feedback or multistep activation. In summary, these results present an important step

forward for our understanding of TF dynamics and provide a blueprint for future studies

on the same topic.

In Figure 3.3, we use a knockout cell line to measure the RelA- and IkB-independent gene

activation that occurs downstream of a commonly used stimulus, TNFα. These data show

that it is critical to use direct methods of regulating TF dynamics in order to study its

downstream effects. In future work, it would be useful to measure the RelA-independent

gene activation in response to TNFα across additional cell lines, since cell identity can

affect gene response85. These data, combined with RelA ChIP-seq data, could be useful to

better identify direct targets of RelA.

A limitation of this study is that combinatorial control of gene expression is widespread, if

not ubiquitous, in mammalian cells. Given the prevalence of combinatorial regulation, it

may seem ineffective to study gene activation by activating only one TF at a time. In

future studies, though, CLASP could be composed with chemical inputs to precisely

regulate RelA translocation during stimulus, thereby allowing other pathways to be

activated at the same time. This would be possible because of the robust sequestration of

pm-LOVTRAP and the knockout of IkB proteins, as seen in Figure 3.2. A recent study

used chemical inputs and optogenetic control of Erk to discern the effect of Erk

translocation on cell proliferation; future studies focusing on RelA could also elucidate the

effects of dynamics in a similar fashion15. Additionally, other studies have compared

dynamics across stimuli to understand what features of a dynamic RelA input help the cell
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to differentiate between inputs101,102. RelA-CLASP could be used to further substantiate

the computational analyses that were used to draw conclusions on how genes use

parameters such as amplitude, pulse width, and frequency to differentiate inputs.

Another frontier for improvement in future studies will be to see how single isogenic cells

respond differently to the same input. This study is limited by the use of bulk RNA-seq

data, whereas future studies could use single cell RNA-seq (scRNA-seq), single molecule

RNA FISH (smFISH), or MS2 to further probe heterogeneity in response to the same

dynamic TF signal. Several recent studies have used chemical inputs to modulate

localization of transcriptional regulators like RelA and Erk, and then have measured the

heterogenous response of single cells with these methods9,10,103. Critically, the response of

single cells to some chemical inputs is heterogeneous90; as a result, studying the

heterogenous response of downstream genes may be more complicated given heterogenous

TF dynamics instead of uniform dynamics generated by optogenetic inputs.

Finally, more complex models are clearly necessary to understand the activation of many

genes downstream of RelA-CLASP. A simple model predicts the response to pulsed and

constant inputs of only 16% of all the genes most strongly induced by RelA-CLASP. The

vast majority of genes identified in this study require models with more complexity, such as

feedback, regulation by other genes, or a multi-step promoter activation model37. Future

studies could build new models to explain novel observations, such as genes which respond

with much higher mRNA induction in response to pulsed inputs than to constant inputs.

3.5 Figures
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Figure 3.1: RelA-CLASP reversibly translocates to the nucleus in a dose-
responsive fashion A) Cartoon illustrating wildtype (WT) activation of RelA and op-
togenetic activation of RelA-CLASP. (Top panel) IKK, IkB and RelA proteins are cytoplas-
mic in unactivated cells. IkB sequesters RelA in the cytoplasm, preventing nuclear entry.
After an activating input, such as TNFα, binds an extracellular receptor, IKK phosphory-
lates IkB proteins, causing their degradation. Degradation of IkB proteins allows RelA to
translocate to the nucleus. Through a native feedback loop, RelA activates transcription
of IkB proteins. Translation of these IkB proteins leads to sequestration of RelA after re-
ceptor activation. (Bottom panel) pm-LOVTRAP (green) sequesters Zdk1-RelA-yeLANS
at the plasma membrane in the absence of blue light stimulation. In response to blue
light, pm-LOVTRAP releases Zdk1-RelA-yeLANS and yeLANS opens to reveal an NLS.
Opening of yeLANS allows Zdk1-RelA-yeLANS to be imported into the nucleus. Once the
blue light is shut off, Zdk1-RelA-yeLANS exits the nucleus and returns to the cytoplasm.
B) Images showing RelA-CLASP translocation. (Top panels) RFP channel showing Zdk1-
RelA-mScarlet-yeLANS; image has been false-colored red. (Bottom panels) Merged IRFP
(false colored yellow) and BFP (false colored blue) channels showing pm-LOVTRAP and nu-
clear BFP marker, respectively. Cells are induced with 9 mins of 488nm GFP imaging light
between images. C) Quantification of RelA-CLASP response to a single pulse of light in-
put. RelA-CLASP is induced with 10 minutes, 1350 a.u. light. Median nuclear/cytoplasmic
enrichment is normalized to its value at 0 minutes and plotted as a dark line; 95% CI is
plotted as a gray band. Data is from 3 replicates and 160 cells tracked. D) Quantification
of RelA-CLASP response to two pulses of blue light. RelA-CLASP is induced with 10 min-
utes, 1350 a.u. light, followed by 20 minutes of no light, and then 10 minutes 1350 a.u.
light. Median nuclear/cytoplasmic enrichment is normalized to its value at 0 minutes and
plotted as a dark line; 95% CI is plotted as a gray band. Data is from 3 replicates and
204 cells tracked. E) RelA-CLASP responsiveness to short inputs. RelA-CLASP is induced
with light inputs of lengths varying from 0-10 mins at 1350 a.u. light. 553-665 cells are
tracked for each input across 3 replicates. For each replicate and input, the frame with the
maximum median nuclear/cytoplasmic enrichment is selected, and the nuclear/cytoplasmic
enrichment for each cell present in that frame is normalized to the maximum median nu-
clear/cytoplasmic enrichment for the no light input in that replicate. Median is plotted for
all replicates and 95% CI is plotted as the error bars. F) RelA-CLASP amplitude response.
RelA-CLASP is induced with light inputs of intensities varying from 0-3000 a.u. for 15
mins. 152-209 cells are tracked for each input across 3 replicates. For each replicate and
input, the frame with the maximum median nuclear/cytoplasmic enrichment is selected, and
the nuclear/cytoplasmic enrichment for each cell present in that frame is normalized to the
maximum median nuclear/cytoplasmic enrichment for the no light input in that replicate.
Median is plotted for all replicates and 95% CI is plotted as the error bars.
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Figure 3.2: RelA-CLASP does not translocate to the nucleus in response to
environmental stress inputs A) Cartoon illustrating RelA-mScarlet and RelA-CLASP
responses to stress inputs. (Both panels) TNFR (green), IL1R (orange), and TLR4 (pink) are
shown as extracellular receptors capable of binding their cognate input. (Top panel) Cartoon
illustrating WT system. Binding of TNFα to TNFR, as an example, leads to activation of
IKK, which then leads to degradation of IkB. IkB degradation allows RelA to translocate to
the nucleus. (Bottom panel) Cartoon illustrating RelA-CLASP system. Binding of TNFα
to TNFR, for example, does not affect subcellular localization of RelA-CLASP. B) Response
of RelA-mScarlet and RelA-CLASP to 1 ng/mL TNFα or phosphate buffered saline (PBS)
+ .1% BSA vehicle. (Both panels) Norm change in Nuclear/Cytoplasmic Enrichment is
calculated as the median change in nuclear/cytoplasmic enrichment for each replicate and cell
line divided by the maximum value of the median change in nuclear/cytoplasmic enrichment
across both cell lines. Green and black lines show smoothed (window = 2) median of all
cells tracked across 3 replicates; green and gray confidence bands show 95% CI. (Top panel)
Response of RelA-mScarlet cell line to TNFα input (green) or PBS + .1% BSA vehicle
(black); at least 187 cells tracked across 3 replicates for each input. Inset in upper right shows
traces of 3 randomly selected cells responding to TNFα input. (Bottom panel) Response of
RelA-CLASP cell line to TNFα input (green) or PBS + .1% BSA vehicle (black); at least
103 cells tracked across 3 replicates for each input. Inset in upper right shows traces of 3
randomly selected RelA-CLASP cells responding to TNFα input. C) Response of RelA-
mScarlet and RelA-CLASP to 1 ng/mL IL-1β or H2O + .1% BSA vehicle. (Both panels)
Norm change in Nuclear/Cytoplasmic Enrichment is calculated and plotted as described in B.
(Top panel) Response of RelA-mScarlet cell line to IL-1β input (orange) or H2O + .1% BSA
vehicle (black); at least 128 cells tracked across 3 replicates for each input. Inset in upper
right shows traces of 3 randomly selected cells responding to IL-1β input. (Bottom panel)
Response of RelA-CLASP cell line to IL-1β input (orange) and H2O + .1% BSA vehicle
(black); at least 89 cells tracked across 3 replicates for each input. Inset in upper right shows
traces of 3 randomly selected RelA-CLASP cells responding to IL-1β input. D) Response of
RelA-mScarlet and RelA-CLASP to 100 ng/mL LPS or PBS vehicle. (Both panels) Norm
change in Nuclear/Cytoplasmic Enrichment is calculated and plotted as described in B. (Top
panel) Response of RelA-mScarlet cell line to LPS input (pink) or PBS vehicle (black); at
least 85 cells tracked across 3 replicates for each input. Inset in upper right shows traces of 3
randomly selected cells responding to LPS input. (Bottom panel) Response of RelA-CLASP
cell line to LPS input (pink) and PBS vehicle (black); at least 70 cells tracked across 3
replicates for each input. Inset in upper right shows traces of 3 randomly selected RelA-
CLASP cells responding to LPS input. E) Cartoon illustrating RelA-mScarlet and RelA-
CLASP responses to blue light. (Top panel) Cartoon illustrating WT system. Blue light
input does not cause any changes to IKK, IkB, or RelA, and no nuclear translocation of RelA
occurs. (Bottom panel) Cartoon illustrating RelA-CLASP system. Blue light stimulation
activates both pm-LOVTRAP and yeLANS, causing release of Zdk1-RelA-yeLANS from the
plasma membrane and opening of yeLANS, thereby revealing an NLS. Revealing NLS leads
to nuclear import of RelA-CLASP.
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Figure 3.2: F) Response of RelA-mScarlet and RelA-CLASP to 1350 a.u. light or no light.
(Both panels) Norm change in Nuclear/Cytoplasmic Enrichment is calculated and plotted
as described in B. (Top panel) Response of RelA-mScarlet cell line to blue light (blue) or no
light (black); at least 928 cells tracked across 3 replicates for each input. Inset in upper right
shows traces of 3 randomly selected cells responding to blue light input. (Bottom panel)
Response of RelA-CLASP cell line to blue light input (blue) and no light (black); at least
508 cells tracked across 3 replicates for each input. Inset in upper right shows traces of 3
randomly selected RelA-CLASP cells responding to blue light input.
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Figure 3.3: RelA-CLASP activates downstream genes in response to a constant
light input A) Constant light input of 460 a.u. given to cells preceding RNA-seq. Dashed
lines show when samples were taken for RNA-seq. Samples were taken at T0, with no
light input. Samples were also taken after 1 hour of light input and 2 hours of light input.
B) Induction of canonical genes downstream of RelA. log2FC RelA-CLASP Induction is
calculated as the log2FC for RelA-CLASP at time t compared to RelA-CLASP at time 0
minus log2FC for pm-LOVTRAP at time t compared to pm-LOVTRAP at time 0; this is
calculated only for genes which are significantly (FDR p < .05) induced by RelA-CLASP.
log2FC RelA-CLASP Induction is plotted for Trim30a, Nfkbiz, Ccl2, Tnfrsf11b given a
constant light input. C) TNFα input of 1 ng/mL given to cells preceding RNA-seq. Dashed
lines show when samples were taken for RNA-seq. Samples were taken at T0, with no TNFα
input. Samples were also taken after 1 hour of TNFα input and 2 hours of TNFα input. D)
Induction and repression of canonical genes downstream of RelA. log2FC TNFα Induction is
calculated as pm-LOVTRAP TNFα at time t compared to pm-LOVTRAP TNFα at time 0.
Blue lines show log2FC RelA-CLASP Induction; green lines show log2FC TNFα induction.
log2FC is calculated from 5 replicates for each cell line and input. E) Heatmap showing
clustered, normalized log2FC RelA-CLASP induction for genes most strongly induced by
RelA-CLASP (FDR p < .05, log2FC RelA-CLASP induction > 85th percentile). Normalized
log2FC RelA-CLASP induction is calculated by dividing log2FC RelA-CLASP induction for
a given gene by the maximum log2FC RelA-CLASP induction for that gene. Longitudinal
gene trajectories are grouped into 8 clusters using k-means clustering.
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Figure 3.4: A simple model of gene expression predicts response of some genes
to pulsed RelA-CLASP inputs A) Simple model of gene expression. poff represents an off
promoter, which transitions to an on promoter (pon) dependent on TF nuclear concentration
and the parameter kon. pon transitions back to poff with the parameter koff. pon produces
mRNA with the rate β1, and mRNA is also produced basally with the rate β0. mRNA then
decays with the rate γ1. kon is varied from .002-2, koff is varied from .004-4, and γ1 is varied
from .001-1. B) Light input of 460 a.u. given to cells preceding RNA-seq. Dashed lines show
when samples were taken for RNA-seq. (Both panels) Samples were taken at T0, with no
light input. (Top panel) Samples were also taken after 1 hour of light induction and 2 hours
of light induction. (Bottom panel) Samples were also taken after 1 hour of light ON/1 hour
light OFF and 2 hours of pulsed light induction. C) Graph of simulated log2FC RelA-CLASP
induction for parameter sets that recapitulate early gene response to constant light observed
in RNA-seq. Simulated log2FC RelA-CLASP induction, normalized to constant max is
calculated by dividing the mRNA values at 0, 1, and 2h by the maximum mRNA value
across those timepoints for each parameter set. Dark gray bands show 25th-75th percentile
of normalized simulated mRNA values at 1h and 2h; light gray bands show 0-100th percentile
of the same quantity. D) Graph of simulated log2FC RelA-CLASP induction in response
to pulsed light for parameter sets shown in C. Parameter sets seen in panel C are used to
simulate the response to pulsed light for genes which display an early response to constant
light. Simulated log2FC RelA-CLASP induction, normalized to constant max is calculated
by dividing the mRNA values at 0, 1, and 2h of pulsed light input by the maximum mRNA
value observed for constant light input for each parameter set. Longitudinal gene trajectories
are clustered with k-means clustering and then further condensed to 3 clusters by grouping
visually similar clusters. Gene trajectories in purple represent a quick on response to pulsed
inputs; orange trajectories show a proportional response to pulsed inputs; green trajectories
represent a late response to pulsed inputs. Dark colored bands show 25th-75th percentile of
normalized simulated mRNA values at 1h and 2h; light colored bands show 0-100th percentile
of the same quantity. E) Graphic showing relative differences in kon, koff, and γ1 parameters
across clusters in D. Up arrows indicate higher parameter values, down arrows indicate lower
parameter values, and ≈ indicates similar parameter values to all early gene parameter sets.
Size of arrow denotes size of relative difference. Purple, or quick on, gene dynamics have on
higher kon, lower koff, and a similar γ1 when compared to all early response to constant light
input parameter sets. Orange, or proportional, gene trajectories display a similar kon, higher
koff, and lower γ1 compared to all relevant parameter sets. Green, or late response, gene
dynamics have a similar kon, higher koff, and higher γ1 as compared to all early response to
constant light input parameter sets. F) Clusters A and C, seen in Figure 3.3E, plotted as line
graphs to demonstrate early gene response to constant light inputs. Blue line represents fit
and blue triangles represent mean log2FC RelA-CLASP induction at a given timepoint. G)
Graphs showing pulsed light response for genes in clusters A and C. Dynamic trajectories in
response to pulsed light for genes in clusters A and C are clustered using k-means clustering.
Three clusters are qualitatively similar to those shown in panel D; colored bars above each
graph show which simulated cluster each is most similar to.
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Figure 3.4: Four clusters (three pictured) are not predicted by the model: the first two
clusters display a feedback response; the next has much higher induction in response to
pulsed light inputs than constant light inputs; one (not pictured) is not significantly induced
by pulsed inputs. H) Graph of simulated log2FC RelA-CLASP induction for parameter
sets that recapitulate proportional gene response to constant light observed in RNA-seq.
Simulated log2FC RelA-CLASP induction, normalized to constant max is calculated and
plotted as described for panel C. I) Graph of simulated log2FC RelA-CLASP induction in
response to pulsed light for parameter sets shown in H. Parameter sets seen in panel H are
used to simulate the response to pulsed light for genes which display a proportional response
to constant light. Simulated log2FC RelA-CLASP induction, normalized to constant max is
calculated and plotted as described in panel D. Longitudinal gene trajectories are clustered
with k-means clustering and then further condensed to 2 clusters by grouping qualitatively
similar clusters. J) Graphic showing relative differences in kon, koff, and γ1 parameters across
clusters in I. Arrows indicate relative differences as described in E. Pink, or proportional,
gene dynamics have higher kon, higher koff, and similar γ1 when compared to all proportional
response to constant light input parameter sets. Green, or quick on, gene trajectories have
lower koff and similar kon and koff as all relevant parameter sets. K) Cluster B, seen in Figure
3.3E, plotted as a line graph to demonstrate proportional gene response to constant light
inputs. Blue line and triangles are as described in panel F. L) Graphs showing pulsed light
response for genes in cluster B. Dynamic trajectories in response to pulsed light for genes
in cluster B are clustered using k-means clustering. Two clusters are qualitatively similar to
those shown in panel D; colored bars above each graph show which simulated cluster each
is most similar to. Four clusters (three pictured) are not predicted by the model: the first
cluster displays a feedback response; the second cluster has a late gene response to pulsed
inputs; the third cluster displays much stronger induction in response to pulsed inputs than
to constant inputs; the fourth cluster (not pictured) is not significantly induced by pulsed
inputs.

3.6 Materials and Methods

3.6.1 Experimental details

Mammalian cell culture

HEK293T and LX293T cells were cultured in 1g/L glucose DMEM (Life Technologies

11885076), 1% Antibiotic-Antimycotic (Thermo 15240062), and 10% Fetal Bovine Serum.
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NIH3T3 and 3T34KO cells were maintained in 1g/L glucose DMEM (Life Technologies

11885076), 1% Antibiotic-Antimycotic (Thermo 15240062), and 10% heat-inactivated

Bovine Calf Serum (UCSF Cell Culture Facility, HyClone, lot number AZM197696). Heat

inactivation was accomplished by heating serum at 56◦C for 30 minutes. After heating,

serum was cooled to room temperature before media production. MCF10A cells were

cultured in DMEM/F12 (Thermo 21331020), 5% Horse Serum (UCSF Cell Culture

Facility), .1mg/mL EGF, 4 mg/mL Insulin (Gibco 12585014), 1 mg/mL Hydrocortisone,

.1mg/mL Cholera toxin (Sigma C8052), and 1% Antibiotic-Antimycotic (Thermo

15240062). All cells were cultured at 37◦C and 5% CO2. NIH3T3 and 3T34KO cells were

passaged every three days; HEK293T, LX293T, and MCF10A cells were passaged every

other day. For microscopy, a 96-well glass-bottom plate (Thermo Fisher 164588) or a

24-well microscopy plate (Ibidi 82406) was incubated with .1mg/mL Poly-D-Lysine (Gibco

A3890401) at room temperature for 1 hour, after which the plate was washed three times

with sterile water and left to dry for 2 hours. After drying, cells were seeded at 8000

cells/well (96 well plate) or 35000 cells/well (24 well plate). 48 hours later, cells were

imaged.

Plasmid and cell line construction

Hierarchical golden gate assembly was used to assemble all plasmids70,87. BsaI and BsmBI

sites were removed from parts to enable further assembly. Parts were generated through

PCR or ordered as gBlocks from IDT. Plasmids were grown and prepared from DH5α,

Mach1, or Stbl1 competent cells (Macrolab, Berkeley, CA). For lentiviral transduction,

plasmids were first transfected into LX293T cells at 80% confluency using Lipofectamine

2000 (Thermo 11668019), the plasmid of interest, and two plasmids encoding second

generation lentiviral envelope and packaging vectors (MDG.2 and CMV). Transfection

reagent and media were removed from LX293T cells the next day, approximately 16 hours
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later, and transfected cells were refed with 1g/L glucose DMEM (Life Technologies

11885076), 1% Antibiotic-Antimycotic (Thermo 15240062), and 10% Fetal Bovine Serum.

24 hours later, the media was removed from transfected LX293T cells and filtered through

a .45 micron filter to remove cell debris. For 3T34KO cells, polybrene was added to the

filtered viral supernatant to achieve a final concentration of 4 µg/mL after adding to cells.

Viral supernatant was then added to cells at for transduction slowly on top of media. After

addition of viral supernatant, cells were spun at 800xg for 45 minutes to increase

transduction efficiency. After 16-24 hours of incubation with viral supernatant, cells were

refed with fresh media. After transduction, cells were sorted to select the population of

interest. For Piggybac transfection, cells were transfected with the TF-CLASP plasmid in

addition to PiggyBac Transposase (pCMV-hyPBase) using Lipofectamine 2000 (Thermo

11668019) according to the manufacturer’s instructions.

Cell selection via sorting

To prepare for sorting, cells were lifted using trypsin and resuspended in the corresponding

media to quench trypsin activity. Afterwards, cells were spun down at 400xg for 5 minutes

to form a pellet and placed on ice. This pellet was then resuspended in PBS for sorting.

Sorting was performed on a BD FACSAria II. BFP was assessed using the BV405 channel

(405nm excitation, 450/50nm filter), mScarlet was measured using the mCherry channel

(561nm excitation, 610/20nm filter), and IRFP was assessed using the APC-Cy7 channel

(633nm excitation, 780/60nm filter). Cells were sorted into fresh media and re-plated after

sorting.
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RelA-CLASP cell line generation

As described in Figure 3.2, RelA-CLASP was generated through lentiviral transduction of

the bulk-sorted 3T34KO chassis cell line. After transduction, this cell line was further

selected to generate a clonal cell line which is referred to as RelA-CLASP in this study.

Single cells expressing BFP, low IRFP, and low RFP were sorted into a 96 well plate and

then clonally expanded. After expansion, clonal cell lines were assessed for continued

expression of fluorophores and responsiveness of CLASP construct. A single cell line,

termed F8 lo, was selected for use in this study.

Microscopy

Microscopy for all figures (except for Figures 3.1B and 3.6D-E) was performed on an

inverted Nikon Ti microscope equipped with a CSU-22 spinning disk confocal, EMCCD

camera, and custom 4-line solid state laser launch. Imaging took place inside a cage

incubator which maintained temperature, CO2, and humidity throughout the experiment.

Images were taken using a 40x/0.95 objective, and cells were illuminated with 405, 561,

and 640nm lasers. For any images where cells are induced with light on this microscope,

cells were covered with a BreatheEasy seal and a custom-printed Optoplate holder was

mounted on top of the cells. The Optoplate was then placed on top of the holder to induce

the cells. For Figures 3.1B and 3.6D-E, microscopy was performed on an inverted Nikon Ti

microscope with an Andor iXon Ultra DU888 1k x 1k EMCCD and Andor 4-line laser

launch. An Oko stage was used to maintain temperature and atmosphere control. For

these panels, cells were induced using 488 nm light produced by imaging GFP.
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Drug induction

IL-1β (Peprotech, 211-11B) was diluted to a stock concentration of 100ng/mL in sterile

water with .1% Bovine Serum Albumin (BSA). LPS (Sigma, L2880) was diluted to 10

µg/mL in phosphate-buffered saline (PBS). TNFα (RD Systems, 410-MT) was diluted to a

100ng/mL stock solution in PBS with .1% BSA. All stocks were at 100X concentration.

Prior to induction, stocks were diluted to 2X or 3X in media and then added to cells to a

final 1X concentration (TNFα, IL-1β: 1ng/mL, LPS: 100ng/mL).

Light induction using Optoplate-96

Optoplate-96 was programmed using the OptoConfig-96 program104. Cells were induced

with up to 12 minutes of constant light input, followed by a pulsed light input of 2 seconds

ON/2 seconds OFF to reduce blue light toxicity.

RNA-seq

Cells were seeded with 40,000 cells/well in 24 well plates (Ibidi 82406) 2 days prior to

experiment, so that they would be 80% confluent when induced. Five replicate wells were

seeded for each input and cell line. Immediately prior to experiment, cells were induced

with vehicle (PBS + .1% BSA) or TNFα diluted in media to a 2X concentration. For

induction, .5 mL of media was removed from the well and .5 ml of induction media was

added. After induction, a BreatheEasy seal (Sigma Z380059) was placed on cell plate. For

cells induced with TNFα for 1h, cells were placed into experiment incubator for 2 hours,

removed, induced, and then removed 1h hour later for harvesting. For cells induced with

TNFα for 2h, cells were placed in experiment incubator 1h before induction. For cells

induced with light, cells were induced with vehicle media and placed into incubator with

142



Optoplate-96 directly on top of BreatheEasy seal for 3 hours. All cells were harvested

immediately after induction, and RNA was isolated from cell pellets using the Lexogen

SPLIT RNA extraction kit. After extraction, RNA was quality was assessed using the

Agilent Pico RNA kit, and quantified using a Nanodrop. Following extraction, RNA

samples were diluted using concentrations estimated by Nanodrop. Libraries were prepared

using the Lexogen Quantseq 3’ mRNA-Seq Library Prep Kit on 250 ng RNA from each

sample. Library quality was assessed using the Agilent High Sensitivity DNA Kit, and

quantity was measured using the Qubit dsDNA HS Assay Kit. Libraries were diluted to

equimolar concentrations and pooled. Pools were subject to single-end sequencing on the

Illumina HiSeq 400.

Analysis of RNA-seq data

Reads were aligned to the Mus musculus genome using the cloud service Bluebee designed

for Lexogen Quantseq data. Briefly, the reads were trimmed using Bbduk and then aligned

to the GRCm38 genome using STAR105. After alignment, counts were generated using

HTSeq-count106. Raw counts data was then used with DESeq2 to generate log2FC and

FDR p values107. Genes with an average raw counts ≤ 2 across all samples of interest were

dropped from the analysis. log2FC RelA-CLASP induction was calculated for genes

significantly regulated (FDR p < .05) by RelA-CLASP as such: log2FC (RelA-CLASP time

t vs time 0) - log2FC (pm-LOVTRAP time t vs time 0), where t is either 1 or 2 hours of

light induction. log2FC TNFα induction was simply log2FC (pm-LOVTRAP time T vs

time 0) for 1 or 2 hours of TNFα induction.
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Computational modeling

Modeling is as described in Chapter 2 for the two-state promoter model. Briefly, ordinary

differential equations representing promoter kinetics were constructed with three state

variables and seven parameters. Parameters for kon, koff, and γ1 were sampled across the

log space of .002-2, .004-4, and .001-1, respectively.

Image analysis

Microscopy images are analyzed for nuclear and cytoplasmic intensity using StarDist,

Scikit-image, and OpenCV108,109. First, StarDist is used on nuclear BFP images to create

masks of nuclei. Then, the cytoplasm is approximated by dilating the nuclear mask four

times and subtracting a twice-dilated nuclear mask. Background of each image is estimated

by expanding all nuclear masks in an image by 50 pixels, which approximates the cell

radius, and then taking the mode of the intensity of the pixels which are not labeled by a

mask. Finally, OpenCV is used to track centroids of the nuclear masks throughout the

experiment. Nuclear/cytoplasmic enrichment (background subtracted) is calculated as (avg

nuclear intensity - background intensity)/ (avg cytoplasmic intensity - background

intensity).

Data processing

Data processing was done with custom-written Python, R, and Matlab scripts.
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3.7 Supplemental Figures
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Figure 3.5: Improving plasma membrane localization for mammalian CLASP
A) Plasma membrane targeting improvements for mammalian CLASP. (Top panel) Left
photo shows brightfield image of HEK293T cells expressing Hs˙RGS2-tagged pm-LOVTRAP.
Right image shows IRFP fluorescence for same cells. A zoomed image is shown on the far
right to display lack of plasma membrane targeting. (Bottom panel) Left photo shows
brightfield image of HEK293T cells expressing Lyn kinase-tagged pm-LOVTRAP. Right
image shows IRFP fluorescence for same cells. A zoomed image is shown on the far right to
display plasma membrane targeting. B) Improved plasma membrane targeting and robust
translocation for mScarlet-CLASP. (Left panel) Top image shows RFP fluorescence seen
in confocal microscopy of mScarlet-CLASP. RFP fluorescence denotes localization of Zdk1-
mScarlet-yeLANS. Zoomed image on right shows localization in more detail. Bottom photo
shows IRFP fluorescence, denoting localization of pm-LOVTRAP. (Right panel) Top image
shows RFP fluorescence and Zdk1-mScarlet-yeLANS localization after 5 minutes of 488 nm
blue light induction. Zoomed image on right shows localization in more detail. Bottom
photo shows IRFP fluorescence, denoting localization of pm-LOVTRAP.
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Figure 3.6: Improving delivery of mammalian CLASP and measuring dynam-
ics A) Confocal microscopy demonstrating silencing of expression of mScarlet-CLASP in
HEK293T cells. Image is false colored; yellow denotes IRFP fluorescence (pm-LOVTRAP),
red denotes RFP fluorescence (Zdk1-mScarlet-yeLANS), and blue denotes BFP fluorescence
(Nuclear BFP marker). All cells have been selected for uptake of an mScarlet-CLASP plas-
mid which should yield expression of IRFP, RFP, and BFP. B) Schematic of three-plasmid
CLASP system. Parental cell lines can be lentivirally transduced with two plasmids at once,
expressing pm-LOVTRAP and a nuclear marker, thereby creating a chassis cell line. This
chassis cell line can then be transduced with a variety of Zdk1-cargo-yeLANS plasmids to
test CLASP regulation of TF translocation. C) Images of chassis cell lines. Chassis cell
lines created in HEK293T, MCF10A, and 3T34KO are shown. IRFP and BFP channels are
merged; IRFP, representing pm-LOVTRAP localization, is false-colored yellow, and BFP,
which is used as the nuclear marker, is false-colored blue. D) Images showing NFAT1-CLASP
translocation. (Top panels) RFP channel showing Zdk1-NFAT1-mScarlet-yeLANS; image
has been false-colored red. (Bottom panels) Merged IRFP (false colored yellow) and BFP
(false colored blue) channels showing pm-LOVTRAP and nuclear BFP marker, respectively.
Cells are induced with 15 mins of 488nm GFP imaging light between images. E) Images
showing p53 K305N-CLASP translocation. (Top panels) RFP channel showing Zdk1-p53
K305N-mScarlet-yeLANS; image has been false-colored red. (Bottom panels) Merged IRFP
(false colored yellow) and BFP (false colored blue) channels showing pm-LOVTRAP and
nuclear BFP marker, respectively. Cells are induced with 9 mins of 488nm GFP imaging
light between images.
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Figure 3.7: Amplitude and time response of RelA-CLASP A) Timecourse graph
showing RelA-CLASP translocation in response to short inputs of blue light. Light input
turns on at 0 minutes as shown on x-axis. Darker shades of blue correspond to longer inputs
of light. Data is from 3 replicates with 553-665 cells tracked per input. Nuclear/Cytoplasmic
Enrichment for each input is normalized to the value measured just before the light turns
on. B) Timecourse graph showing RelA-CLASP translocation in response to different am-
plitudes of blue light. Light input turns on at 5 minutes. Darker shades of blue correspond
to higher light intensity. Data is from 3 replicates with 152-209 cells tracked per input.
Asterisk denotes 9-minute timepoint for 2400 a.u., which has data only from 1 replicate.
Nuclear/Cytoplasmic Enrichment for each input is normalized to the value measured at 0
minutes.
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Figure 3.8: Parameter values determine response to constant and pulsed inputs
A) Plots of parameter values that yield early and proportional responses to constant inputs.
Violin plots for kon, koff, γ1 are shown. All parameter sets are plotted in black, parameter sets
with an early gene response are plotted in dark gray, and parameter sets with a proportional
response are plotted in light gray. B) Plots of early gene parameter values that lead to
differential responses to pulsed light inputs. All early gene parameter sets are shown in each
graph for reference. Parameter sets which yield a late gene response to pulsed TF inputs
are shown in green. Parameters which lead to a proportional response after pulsed inputs
are shown in orange, and those which yield a quick on response are shown in purple. C)
Plots of normalized simulated mRNA vs time for all early gene parameter sets. (All panels)
Simulated mRNA is normalized by dividing the simulated mRNA for each parameter set
across all timepoints by the maximum simulated mRNA value measured at 0, 120, or 180
min. Dark colored bands show 25th-75th percentile of normalized simulated mRNA values;
light colored bands show 0-100th percentile of the same quantity. (Left panel) A subset
of early gene parameter sets in response to constant light input (n=100). (Right panel) A
subset of late, proportional, and quick on parameter sets in response to pulsed light input
(n=100 for each). D) Plots of proportional gene parameter values that lead to differential
responses to pulsed light inputs. All proportional gene parameter sets are shown in each
graph for reference. Parameter sets that yield a proportional response after pulsed TF
inputs are shown in pink, and those which yield a quick on response are shown in green.
E) Plots of normalized simulated mRNA vs time for all proportional gene parameter sets.
(All panels) Simulated mRNA is normalized and plotted as described in C. (Left panel)
A subset of proportional gene parameter sets in response to constant light input (n=100).
(Right panel) A subset of proportional and quick on parameter sets in response to pulsed
light input (n=100 for each).
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