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We report a novel singularity in the hysteresis of spin glasses, the reversal-field memory effect, which
creates a nonanalyticity in the magnetization curves at a particular point related to the history of the
sample. The origin of the effect is due to the existence of a macroscopic number of ‘‘symmetric
clusters’’ of spins associated with a local spin-reversal symmetry of the Hamiltonian. We use first order
reversal curve (FORC) diagrams to characterize the effect and compare to experimental results on thin
magnetic films. We contrast our results on spin glasses to random magnets and show that the FORC
technique is an effective ‘‘magnetic fingerprinting’’ tool.

DOI: 10.1103/PhysRevLett.89.257202 PACS numbers: 75.60.Ej, 75.10.Nr, 75.50.Lk, 75.50.Ss
in the magnetization of the reversal curve. By calculating
a suitable overlap function, we demonstrate that the mi-

conditions. The exchange couplings Jij are random
nearest-neighbor interactions chosen according to a
The nonequilibrium behavior of random magnets and
spin glasses is an intensely studied field, posing formi-
dable theoretical and experimental challenges directly for
magnetic systems, and also serving as paradigms for
other fields. Concepts developed for random magnets
such as glassy phases, droplet and replica theories, as
well as aging have subsequently been applied to fields
as diverse as structural biology, geology, and even finan-
cial analysis.

The slow and complex time dependence of various
correlators is a hallmark of such systems. Several aspects
of this nonequilibrium dynamics have already been de-
scribed in great detail for spin glasses [1]. Hysteresis is
one of the most central of these phenomena [2], yet while
many basic features are qualitatively understood [3–5],
theoretical descriptions of hysteresis even in the simplest
spin-glass models are in their early stages [6]. Hysteresis
in magnetic systems has a host of practical applications
including magnetic recording and sensors, but a less than
complete understanding at a fundamental level [2].

In this paper, we present a detailed study of several new
aspects of hysteresis in two of the most commonly
studied models of disordered magnets. One is the random-
field Ising model (RFIM), which has been shown to
describe successfully many of the relevant aspects of
hysteresis [3]. The second is the Edwards-Anderson Ising
spin glass (EASG), which, unlike the RFIM, contains
frustration, a phenomenon known to introduce a whole
new level of complexity in disordered systems. Accord-
ingly, we show that the hysteretic properties of the EASG
can be significantly different from those of the RFIM.

Our first important observation is of a novel memory
effect in the hysteresis of the EASG that emerges when
the magnetic field is first decreased from its saturation
value and then increased again from some reversal-field
HR. We find that the EASG exhibits a singularity at the
negative of the reversal field, �HR, in the form of a kink
0031-9007=02=89(25)=257202(4)$20.00
croscopic origin of the effect is due to a macroscopic
number of symmetric clusters. In these clusters the central
spins flip after all spins on the cluster surface have
flipped. Therefore, the central spins experience an effec-
tive local field which is symmetric with respect to the
change of direction of the external field.

This reversal-field memory effect can be even more
precisely characterized with the recently introduced first
order reversal curve (FORC) method [7]. As we shall
demonstrate, the FORC technique provides a uniquely
sensitive characterization of hysteretic systems and spe-
cifically of the difference between the hysteretic behavior
of the RFIM and the EASG. The sharp kink of the minor
loops of the EASG is captured as a profound horizontal
ridge in FORC diagrams, indicative of a broad range of
effective coercivities in the system, but a rather narrow
range of biases. In contrast, despite exhibiting a major
hysteresis loop rather similar to that of the EASG, the
RFIM shows a strikingly different FORC diagram, char-
acterized by a well-developed vertical feature reflecting a
rather narrow range of effective coercivities and a broad
range of biases.

Finally, we determine experimentally the reversal
curves and FORC diagram of a magnetic thin film.
Experimentally, the reversal curves show only smoothed
kinks around �HR. However, the FORC diagram of the
data reveals a profound horizontal ridge, signaling the
presence of a reversal-field memory in these films. This
experimental result further highlights the usefulness of
the FORC technique as a powerful method which cap-
tures the detailed behavior of hysteretic systems.

The Hamiltonian of the EASG is given by [8]

H �
X

hi;ji

JijSiSj �H
X

i

Si: (1)

Here Si � �1 are Ising spins on a square lattice of size
N � L� L in two dimensions with periodic boundary
 2002 The American Physical Society 257202-1
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Gaussian distribution with zero mean and standard de-
viation unity, and H is the external magnetic field. We
simulate the zero temperature dynamics of the EASG by
changing the external field H in small steps, first down-
ward from positive saturation and then upward from a
reversal-field HR. After each field step, the effective local
field hi of each spin Si is calculated:

hi �
X

j

JijSj �H: (2)

A spin is unstable if hiSi < 0. We then flip a randomly
chosen unstable spin and update the local fields at neigh-
boring sites and repeat this procedure until all spins are
stable.

Figure 1 (solid line) shows the average of 103 reversal
curves, all with the same HR, but different disorder
realizations. The area around �HR is enlarged in the
inset and shows a ‘‘kink.’’ The presence of any such sharp
feature in a disordered system, especially of finite size
and after disorder averaging, is quite remarkable.

The change of slope at the kink can be characterized by
measuring the slope of the magnetization curves to the
left and right of �HR, and comparing the difference
��dM=dH� with the average �dM=dH�ave (see Fig. 2).
The slope changes abruptly by as much as 30% as the
field H � �HR is passed, creating the kink. With our
parameters the kink is present in the range of reversal-
field values �4:0<HR <�1:5.

In an effort to understand the microscopic origin of
reversal-field memory, we first describe this effect within
a phenomenological approach to hysteretic systems, the
Preisach model [9]. In the Preisach model a magnetic
system is described as a collection of independent two-
state ( � 1) switching units, or ‘‘hysterons.’’ Unlike Ising
spins, which always align with their local field, the hys-
teron’s state changes from �1 to 	1 at a field Hb 	Hc,
FIG. 1 (color online). Reversal curve (solid line) and major
hysteresis loop (dotted line) for a two-dimensional (2D) EASG
with 104 spins and HR � �2:28. In the inset a kink is seen
around �HR. In all figures the error bars are smaller than the
symbols.
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different from the field Hb �Hc, required to switch the
hysteron from 	1 to �1. Different systems are distin-
guished by their different distributions ��Hb;Hc� of hys-
terons of a given bias Hb and coercivity Hc. Here
��Hb;Hc� is the so-called ‘‘Preisach function.’’

An intuitive picture can be obtained by first consider-
ing symmetric hysterons, having no bias, i.e., Hb � 0.
Starting from a fully ‘‘up’’ polarized state and decreasing
the field to a negative HR switches down all symmetric
hysterons with Hc < jHRj. Reversing the direction of the
sweep and increasing the field from HR to �HR along a
reversal curve switches back every switched hysteron.
Thus at H � �HR saturation is reached, creating a kink
in the magnetization. Symmetric hysterons therefore give
rise to reversal-field memory. However, this memory ef-
fect will be detectable only if the number of symmetric
hysterons is macroscopic. This happens if ��Hb;Hc� has a
Dirac delta singularity at Hb � 0 and Hc � jHRj. As the
kink is observed in a range of HR values, the singularities
of the Preisach function form a horizontal ridge along
the Hb � 0 axis for the corresponding range of Hc �
jHRj values.

Next we move beyond phenomenological approaches,
but keep the insight gained from the Preisach model. We
carry over the concept of symmetric hysterons as sym-
metric clusters of the strongly interacting spins of the
EASG. A spin Si belongs to a symmetric cluster if Si flips
down only after all its neighbors have flipped down, and
during the reverse sweep Si flips up again only after all its
neighbors have. Therefore, this central spin Si experiences
an effective local field which is symmetric with respect to
the change of direction of the external field, in analogy to
a symmetric hysteron.

Spins possessing local spin-reversal symmetry are can-
didates for symmetric hysterons. By local spin-reversal
symmetry we mean that the local field hi, felt by Si
[Eq. (2)], is perfectly reversed if the external field H is
reversed and all spins coupled to Si are reversed as well.
FIG. 2 (color online). The difference (squares) and average
(circles) of the left and right derivatives at �HR for the EASG.
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Every spin of the EASG has local spin-reversal sym-
metry. However, in a glassy system the spin configura-
tions depend on the history of the sample. Therefore, at
�HR the neighbors of most spins do not necessarily point
in a direction opposite their direction at HR, and thus
most EASG spins do not belong to symmetric clusters.
Hence the model Hamiltonian possessing a local spin-
reversal symmetry is a necessary but not sufficient con-
dition for having symmetric clusters.

To see a macroscopic kink it has to be shown that the
density of symmetric clusters is finite. A lower bound on
their density is obtained by considering the simplest
symmetric cluster: two strongly coupled spins, weakly
coupled to their six neighbors in a 2D lattice. The switch-
ing field of each spin is determined by these couplings.
The outer spins will switch before the inner spins if their
couplings are restricted by appropriate inequalities, con-
fining the couplings to finite intervals. The density of
symmetric clusters is obtained by integrating the product
of the distributions of the couplings over these finite
intervals. With unbounded coupling distributions, e.g.,
Gaussian, the product of the distributions is finite over
the finite integration intervals, thus the resulting density
is finite as well.

As a further evidence for the macroscopic number of
symmetric clusters, we define an overlap function q be-
tween the spins which flip at HR and the spins which flip at
H > HR:

q�H� �
1

4

X

i

�Si�HR 	 �� � Si�HR��

� �Si�H 	 �� � Si�H��: (3)

Here � is the field step. In Fig. 3 we show the overlap q�H�
for HR � �2:28. The large peak at H � 	2:28 indicates
that a macroscopic number of spins which have flipped at
HR, also flip at �HR. This in turn means that there is a
macroscopic number of symmetric clusters. The insets
FIG. 3 (color online). Overlap function q of the spins flipping
at HR and at H > HR, for HR � �2:28. The insets show data
for HR � �0:40 and HR � �5:60. The arrow in the inset
marks H � 0:40.
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show a much smaller number of symmetric clusters at
HR � �0:40 and HR � �5:60, values outside the peak
of Fig. 2.

To characterize reversal-field memory further, we
adapt a new tool developed for analyzing experimental
data of hysteretic systems [7]. A family of FORCs with
different HR is generated, with M�H;HR� denoting the
resulting magnetization as a function of the applied and
reversal fields. Computing the mixed second order deriva-
tive ��H;HR� � ��1=2��@2M=@H@HR� and changing
variables to Hc � �H�HR�=2 and Hb � �H 	HR�=2,
the local coercivity and bias, respectively, yield the
‘‘FORC distribution’’ ��Hb;Hc�. For phenomenological
Preisach models, the FORC distribution is equal to the
Preisach function. However, FORC distributions are more
general, because they are extracted from numerical or
experimental data, and thus are model independent.

Figure 4 shows the FORC diagram of the EASG. The
ridge along the Hc axis in the range 1:5<Hc < 4:0
corresponds to the ridge of Fig. 2, representing the kinks
of Fig. 1. Thus FORC diagrams capture the reversal-field
memory effect in the form of a ridge along the Hc axis.

To demonstrate that local spin-reversal symmetry of
the Hamiltonian is necessary for reversal-field memory
to be present, we study the RFIM [3,8]. In this model
Jij � 1 and the disorder is introduced through random
local fields chosen according to a Gaussian distribution
with zero mean and standard deviation �. Direct inspec-
tion reveals that the RFIM does not possess a local spin-
reversal symmetry. Therefore, the RFIM cannot have
symmetric clusters and should not exhibit a reversal-field
memory. This is confirmed by our simulations: a typical
RFIM reversal curve shown in the right panel of Fig. 5
has no kink at �HR.

Not only do the two models differ in the local spin
symmetry, the EASG possesses frustration which might
give rise to hysteretic phenomena that are qualitatively
rather different than in the RFIM. To explore this possi-
bility, we show in the left panel of Fig. 5 the FORC
diagram for the RFIM for a disorder � � 4:0. While
the major hysteresis loop of the RFIM is very similar to
that of the EASG, the FORC distribution is qualitatively
different: it exhibits a predominantly vertical feature. The
distribution of random fields of the RFIM introduces a
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FIG. 4. FORC Diagram of the EASG. Note the ridge along
the Hc axis.
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FIG. 6. Experimental FORC diagram of a Kodak sample.
Note the similarity to the FORC diagram of the EASG shown
in Fig. 4.
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FIG. 5 (color online). FORC Diagram of the 2D RFIM. Data
for � � 4:0, N � 104 spins and 103 disorder realizations (same
scale as in Fig. 4). Note the clear differences to the FORC
diagram of the EASG (Fig. 4). The right panel shows the major
hysteresis loop (dotted line) and a reversal curve (solid line) for
HR � �1. The inset shows an enlarged view of the region
around �HR.
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large range of biases for the spins, with little variation in
the local coercivity. This expectation is confirmed by
simulations of the RFIM with various disorder distribu-
tions, which show that the vertical cross section of the
vertical feature mirrors the shape of the random field
distribution.

Finally, we demonstrate the existence of reversal-field
memory in experimental systems. We study thin films of
well-dispersed single-domain magnetic Co-�-Fe2O3 par-
ticles provided by Kodak, Inc. We determine both the
individual reversal curves and the FORC diagram of the
system. While the reversal-field memory kinks in �HR
are somewhat smoothed, the FORC diagram clearly ex-
hibits the horizontal ridge associated with the reversal-
field memory effect (Fig. 6). This striking similarity
between the experimentally determined FORC diagram
of the Co-�-Fe2O3 films and the numerically determined
FORC diagram of the EASG indicates not only that
Co-�-Fe2O3 films exhibit reversal-field memory but also
that frustration may be a component of the physics of the
Co-�-Fe2O3 films.

In conclusion, we have reported a novel reversal-field
memory effect in the EASG that manifests itself as a
sharp kink in first order reversal curves and also as a
sharp ridge on the zero bias axis of FORC diagrams. We
suggest the microscopic origin of the effect is the pres-
ence of a macroscopic number of ‘‘symmetric clusters,’’
and prove this by computing a suitable overlap function.
We further show that reversal-field memory is absent
from the RFIM, which does not exhibit symmetric clus-
257202-4
ters. While the hysteresis loops of the EASG and the
RFIM are remarkably similar for corresponding parame-
ters, their FORC diagrams are profoundly different, es-
tablishing that the FORC method is a powerful diagnostic
tool for capturing the sensitive details of hysteretic sys-
tems such as spin glasses and random magnets. The
FORC diagrams of several magnetic thin films exhibit a
profound ridge indicative of the reversal-field memory
effect in experimental systems. Simulations on more
realistic magnetic models which include dipolar interac-
tions have also shown the reversal-field memory effect.
This suggests that the reversal-field memory is not spe-
cific to the EASG, but is a robust result for a large class of
theoretical models and experimental systems.
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