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and Neil K. Garg*

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 
90095, United States

Abstract

We report the generation of the first 3,4-piperidyne and its use as a building block for the 

synthesis of annulated piperidines. Experimental and computational studies of this intermediate 

are disclosed, along with comparisons to the well-known 3,4-pyridyne. The distortion/interaction 

model is used to explain the observed regioselectivities.

Heterocycles containing one or more nitrogen atoms constitute nearly 60% of all small-

molecule drugs that have been approved by the U.S. Food and Drug Administration.1 The 

most prevalent N-containing heterocycle is the piperidine ring, which is found in 72 

currently marketed small-molecule drugs. Notable examples include the blockbuster drugs 

clopidogrel (Plavix), tadalafil (Cialis), and solifenacin (VES-Icare) (Figure 1). In view of the 

importance of this medicinally privileged scaffold, new methods to rapidly access annulated 

piperidines from simple precursors are highly sought after.

With the aim of developing a new method for the synthesis of decorated piperidines, we 

questioned whether the unusual 3,4-piperidyne intermediate 1 (Figure 1) could be generated 

and used as a new synthetic building block. Notably, 3,4-piperidynes have never been 

accessed previously. The most closely related studies have involved the isomeric 2,3-

piperidyne 2, which has been the subject of two seminal investigations. In 1988, Wentrup 

and co-workers generated 2 (R = H) using flash vacuum pyrolysis.2 Although 2 was deemed 

unstable above −150 °C and was never utilized in any synthetic application, Wentrup’s 

studies validated the notion that 2 could be generated. Additionally, during the preparation 

of this communication, Danheiser disclosed an efficient means to access 2 (R = Ts) and 

performed a series of synthetically useful trapping reactions.3 Interestingly, whereas 

piperidynes have been rarely studied,4 the corresponding aromatic pyridynes 35 and 4,6 
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along with many other arynes and hetarynes, have been widely pursued for more than half a 

century.7–9

Herein we report: (a) the first generation of a 3,4-piperidyne 1; (b) the strategic use of 1 to 

construct a range of functionalized piperidines, many of which possess significant aliphatic 

character10 and represent new heterocyclic scaffolds; (c) regioselectivity predictions, 

observations, and explanations involving the 3,4-piperidyne, which are in accord with the 

distortion/interaction model;7a,e,8g and (d) an explanation for the lack of selectivity observed 

in trapping experiments of the 3,4-pyridyne (3), which has been unresolved for many 

decades.

We initiated our studies by applying the distortion/interaction model to our targeted 

piperidyne, Cbz-derivative 1a,11 in order to assess the likelihood that it would undergo 

regioselective trapping in reactions with nucleophiles and cycloaddition partners (Figure 2). 

In previous studies, we showed that the degree of distortion present in the ground state of 

arynes and strained alkynes is correlated with the observed regioselectivity because the 

intermediate is predistorted toward one of two competing transition states.7a,e,8g,9 Geometry 

optimization using DFT calculations (B3LYP/6-31G(d)) revealed that 1a is significantly 

distorted (ca. 10° difference in internal angles at C4 and C3), such that nucleophilic addition 

should occur preferentially at the more linear terminus (C4). As a key point of comparison, 

we also studied 3,4-pyridyne 3, which is well-known to react with poor 

regioselectivity,7a,e,8g,12 as mentioned earlier. In contrast to 1a, the geometry-optimized 

structure of 3 shows little unsymmetrical distortion. Given this interesting dichotomy, we 

envisioned that experimental studies of 3,4-piperidyne 1a would not only test our 

regioselectivity predictions but also could ultimately shed light on why 3,4-pyridyne 3 is not 

significantly distorted and, accordingly, reacts with poor regioselectivity.

The success of our study would rely on the development of an efficient synthesis of a 

suitable 3,4-piperidyne precursor. After identifying silyl triflate 8 as our target,11,13 we 

developed the robust and scalable three-step route shown in Scheme 1. Beginning from 

commercially available 4-methoxypyridine (5), a known procedure was employed to effect 

ortho silylation to yield silylpyridine 6.14 Next, a one-pot procedure involving reductive 

carbamoylation and hydrolysis15 provided vinylogous amide 7 in excellent yield. Finally, 

conjugate reduction followed by trapping of the resultant enolate with Tf2O16 provided silyl 

triflate 8. The sequence was performed on a gram scale and provided 8 in 51% overall yield 

from 5.17

To validate that the 3,4-piperidyne could be generated, we performed a series of Diels–Alder 

trapping experiments to produce a variety of annulated products (Table 1). Specifically, silyl 

triflate 8 was treated with CsF in the presence of several trapping agents (3 equiv) in 

acetonitrile at 60 °C. The use of tetracyclone as the trapping agent delivered a 

tetrahydroisoquinoline product in 76% yield via cycloaddition followed by loss of CO (entry 

1). An alternate tetrahydroisoquinoline was accessed upon trapping of the intermediate 3,4-

piperidyne with 2-pyrone by way of a Diels–Alder/retro-Diels–Alder sequence with 

concomitant loss of CO2 (entry 2). Additionally, cycloadditions with 2,5-dimethylfuran and 
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N-Boc-pyrrole provided the corresponding piperidine-fused [2.2.1]-bridged bicyclic 

products (entries 3 and 4).

Encouraged by our initial success, we carried out trapping experiments of 3,4-piperidyne 1a 
with a variety of nucleophiles and unsymmetrical cycloaddition partners (Table 2). In 

addition to acting as a probe for our regioselectivity predictions, some of the transformations 

provide access to interesting heterocyclic products. Nucleophilic addition experiments were 

performed with imidazole and morpholine (entries 1 and 2). In both cases, addition occurred 

exclusively at C4, consistent with our earlier prediction and differing from the known trends 

of 3,4-pyridyne reactions. An analogous regiochemical preference was observed in a series 

of cycloaddition reactions. For example, trapping with a nitrone afforded isoxazoline 

products in good yield with a significant regiochemical preference of 12.7 to 1 (entry 3). In 

(3 + 2) cycloadditions using azide and diazo coupling partners, triazole and pyrazole 

products, respectively, were obtained (entries 4 and 5). Pyridine- and N-phenylpyrazole-

containing annulated products could be obtained as well, albeit with lower selectivities 

(entries 6 and 7).18

Several salient features regarding this methodology and the products shown in Tables 1 and 

2 should be noted. (a) Analogous to known reactions of arynes using silyl triflate precursors, 

3,4-piperidyne trapping experiments are operationally trivial to perform and generally do not 

require the rigorous exclusion of oxygen or moisture. (b) Silyl triflate 8, which is now being 

commercialized to enable its widespread use in drug discovery,17 can be used as a single 

precursor in order to access a variety of annulated piperidines. This stands in contrast to 

more conventional strategies, which would involve the development of an independent 

synthesis of each annulated piperidine desired. (c) Several of the products accessed by our 

methodology represent new scaffolds, including the unique compounds shown in entries 3 

and 4 in Table 1 and entries 3 and 6 in Table 2.19 (d) Many of the cycloaddition adducts 

shown in Table 2 are new analogues of known medicinally important scaffolds. For 

example, compounds related to those in entries 4, 5, and 7 show promise for the treatment of 

inflammation,20 diabetes,21 cancer,22 hepatitis C,23 and other illnesses. (e) Finally, with 

regard to regioselectivity, it should be emphasized that 3,4-piperidyne 1a uniformly reacts 

with a preference for initial attack at C4, which is the same trend as seen in reactions of the 

well-studied 3,4-pyridyne 3. However, the observed selectivities in the case of 1a are 

generally greater than those seen in the trapping of 3,4-pyridynes.24

To understand the disparity in the regioselectivities of the reactions of 3 and 1a, we used 

DFT calculations to analyze the competing transition states for the nucleophilic addition of 

morpholine to 3 and compared the results to the corresponding transition states involving 1a 
(Figure 3). In the reactions of 3 with morpholine, the difference in the energies for attack at 

C4 versus C3 (TS1 and TS2, respectively) is negligible. This is consistent with the low 

regioselectivity seen experimentally.24,25 As these are very early transition states, the 

distortion energy (ΔEdist), i.e., the energy required to alter the alkyne geometry toward the 

transition state, is expected to be small; in fact, we do calculate a slightly greater ΔEdist of 

the alkyne for TS2 than TS1 (ca. 0.2 kcal/mol). In contrast, the addition of morpholine to C4 

of 3,4-piperidyne 1a (TS3) is predicted to be favored over attack at C3 (TS4) by roughly 1.7 

kcal/mol. Notably, the disparity in ΔEdist accounts for most of the energetic difference and 
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the resulting high regioselectivity observed experimentally (see Table 2, entry 2). These 

results validate that the distortion/interaction model correctly predicts and explains the 

regioselectivities in reactions of both 3 and 1a.

As noted earlier, the lack of regioselectivity seen in reactions of 3,4-pyridynes has been a 

long-standing problem. Thus, we sought to probe one remaining critical question: why is the 

3,4-piperidyne significantly distorted while the 3,4-pyridyne is not? The explanation is 

summarized in Figure 4. The distortion of 3,4-piperidyne 1a is caused by the 

electronegativity of the N heteroatom, which deforms the triple bond as a result of Bent’s 

rule.26 The internal bond angle at C3 is decreased, mixing in p character at C3 and releasing 

electron density toward the electronegative N atom. Although the analogous effect is also 

present in 3,4-pyridyne 3, it is offset by the in-plane overlap of the nitrogen lone pair with 

the π and π* orbitals at C3, which causes C3 to move toward the N atom (for further 

discussion of these competing effects, see the Supporting Information). Such an effect is not 

seen in 1a, as the nitrogen lone pair is orthogonal to the π and π* orbitals of the alkyne.

In summary, we have synthesized the first 3,4-piperidyne, 1a, and demonstrated that this 

reactive intermediate can be utilized in a variety of cycloadditions to form annulated 

piperidine scaffolds. The regioselectivity trends observed in reactions of 1a with 

nucleophiles and unsymmetrical cycloaddition partners are predicted and rationalized by the 

distortion/interaction model. Moreover, we have explained the inductive effect that causes 

the distortion seen in 1a in addition to the competing inductive effects and orbital 

interactions that result in the lack of regioselectivity observed in reactions of the well-

studied 3,4-pyridyne (3). Our findings not only provide a new platform to access 

medicinally privileged piperidine scaffolds, but also lay the foundation for further studies 

geared toward strategically harnessing strained heterocyclic alkynes as useful synthetic 

building blocks.
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Figure 1. 
Piperidine-containing blockbuster drugs, piperidynes 1 and 2, and pyridynes 3 and 4.

McMahon et al. Page 7

J Am Chem Soc. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Optimized structures of 1a and 3 obtained at the B3LYP/6-31G(d) level.
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Figure 3. 
Optimized transition states for nucleophilic addition of morpholine to 3 and 1a at the 

B3LYP/6-31G(d) level. Single-point energies were calculated at the B3LYP-

D3/6-311+G(d,p) level with the CPCM solvent model for MeCN. Energies are provided in 

kcal mol−1.
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Figure 4. 
Explanation of the differing distortion seen in 1a and 3.
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Scheme 1. 
Synthesis of Silyl Triflate 8
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Table 1

Diels–Alder Cycloadditions of 3,4-Piperidyne 1a

a
Reported yields are averages of two experiments and are based on the amounts of isolated products.
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Table 2

Reactions of Silyl Triflate 8 with Nucleophiles and Cycloaddition Partners

a
Reported yields are averages of two experiments and are based on the amounts of isolated products.

b
The yield was determined using 1,3,5-trimethoxybenzene as an external standard.
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