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Abstract

Optimization Frameworks for Fair Data-Driven Decision Making

by

Mahbod Olfat

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Anil Aswani, Chair

This thesis investigates the problem of fair statistical learning. We argue that critical notions
of fairness can be represented by independence constraints on certain random variables, and
take the approach of approximating independence by bounding moments. We propose a
hierarchical Fair Optimization (FO) framework for generalized fair decision-making, prove
desirable statistical properties, and extend the framework to a number of settings, ranging
from supervised learning to unsupervised learning and hypothesis testing.

Algorithmic decision-making has steadily gained in prominence as more data is produced
and computing resources become more abundant. However, it has been observed that these
can often reflect, and perpetuate, biases apparent in the training data. To that end, we
construct the FO framework as a general approach to statistical decision-making under fair-
ness constraints. The framework revolves around bounding the moments between a “score”
function underlying the decision-making process and predefined “protected” attributes. We
prove that this framework is consistent and will thus asymptotically provide fair decision
rules, and provide non-asymptotic bounds on how quickly the framework approaches truly
fair decision-making rules. We also provide experimental results that show the efficacy of
the FO hierarchy on a variety of datasets, and use it to construct fair, automated one-time
and sequential dosage mechanisms for morphine and heparin.

Novel, adversarial notions of fairness are then defined for the problem of dimensionality
reduction of data, and a Semidefinite Programming (SDP) relaxation of the FO hierarchy is
defined that controls these notions. we provide experimental analysis, including a case study
on insurance rate-setting that allows for mechanisms that are fair with respect to legally-
motivated age restrictions. Similarly, we extend fairness to the problem of hypothesis testing,
and make the connection between fairness and robustness in this realm. This is actuated
in the form of a distributionally-robust dynamic watermarking scheme to detect attacks
on dynamical systems. Finally, we extend the intuitions of data-dependent regularization
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underlying the FO hierarchy to design a data-dependent regularizer that promotes robustness
in classifiers in the low-data regime when data lies in a low-dimensional manifold.
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Chapter 1

Introduction & Preliminaries

1.1 Introduction

The explosion of computational capacity in recent decades has opened the door for ma-
chine learning and other automated decision-making techniques to play an outsize role in
day-to-day activities. Set up to learn relationships and fashion decision-rules from data,
these algorithms have become ubiquitous in the most mundane and every-day uses, such as
fraud detection [39], credit scoring [186] and ad targeting [201], to the most groundbreak-
ing, such as autonomous driving and determining the entanglement of qubits in a quantum
computer [117]. Their proliferation has extended even to sensitive applications with large
human or societal impacts, whether immediate or delayed. Examples of these include health-
care [128,157], hiring [55,230], and criminal justice [11,253]. The requirements on algorithms
to be used in such spaces differ from those meant for more aspirational or innocuous uses, as
these contexts are viewed as having higher risk, and so their adoption has been significantly
slower. Interestingly, decisions made by machine learning algorithms still tend to be more ef-
ficacious than those made by humans in many of these high-risk instances [242]; however, the
difference lies in a human’s ability to moderate, justify, and consider the ramifications of de-
cisions. In effect, we require a retooling of machine learning and automated decision-making
frameworks in order to be able to handle societal considerations of robustness, interpretability
and fairness.

Statistical decision-making techniques rely on data produced by a true, underlying system
in order to learn some optimal or nearly-optimal action, which can then yield tangible effects
on the original true system. A key feature of many high-risk applications of automation
from this perspective is that the true, underlying system generating data is not relatively
contained, like that of a quantum computer or even an advertisement, but rather reflects
the whole of society. This connection of an application with broad, societal phenomena is
important from two angles: It can define the validity of the data input to algorithms, and it
can define the scope of the impact of their actions. First, consider that the data produced
by members of a group will likely reflect the biases of that group itself, skewing the data
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produced with undesirable or misleading correlations that statistical learning techniques
can mistake for true signal. For example, common predictors for creditworthiness include
aspects such as the ZIP code in which a candidate lives and that candidate’s income, but both
can be highly correlated to a number of sensitive attributes like race, ethnicity and gender.
Second, systematically-biased decisions made by automated decision-makers in economically-
or societally-determinative areas can serve to perpetuate the biases that originally infected
the data itself. Specifically, decisions like those involved in hiring and criminal justice have
sweeping implications on the lives of those affected, both in positive and negative ways.
Systematic biases in these arenas, intentional or not, can serve to exacerbate existing social
inequities.

Concerns of systematic biases in machine learning algorithms have become prominent
since receiving notable, though anecdotal, coverage over the last few years [11, 20, 79, 84].
A particularly impactful piece was an analysis of the COMPAS algorithm for predicting
criminal recidivism, conducted by a team of investigative journalists at ProPublica, which
found that it was overly-cavalier in determining black convicts to be at risk of recidivism [11].
In response, the academic community has developed a number of approaches to encourage
fairness in various machine learning problems [45, 57, 77, 109, 191, 270, 276]. The problem
of classification has received particular attention due to the ease of mapping class labels to
positive and negative outcomes with which to understand bias, but recent work has also
begun to explore bias reduction methods in the context of unsupervised learning [56, 192]
and in a more general decision-analytic framework [83,158].

In this thesis, we provide a general, hierarchical optimization framework for statistical
decision-making in the presence of fairness constraints. In the most simple interpretation, we
seek to find decision rules that do not contain any information about one or more “protected
attributes”, while continuing to perform well on accuracy metrics. The core problem is thus
one of statistical estimation subject to approximate independence constraints. Aside from
exogenous, yet still pertinent, societal concerns of fairness, this has a clear use in improving
generalization of models: a priori knowledge of the dependence structure between relevant
covariates should intuitively be able to be leveraged to increase the power of statistical tests.
In this sense, our work can be seen as a step towards combining the data- and model-based
frameworks for statistical decisions, and is thus similar in spirit to work on robust machine
learning.

The framework introduced herein is termed the Fair Optimization (FO) hierarchy, and
draws intuition from the notion of bounding moments. After defining the FO hierarchy, this
thesis will prove its consistency, showing that it does guarantee fair decisions asymptotically.
The hierarchy will be examined from the perspective of supervised learning first, with spe-
cific results and intuitions presented for the sub-case of classification. The framework is also
extended to the context of unsupervised learning, in particular to the problem of dimension-
ality reduction; as this is a novel and heretofore unstudied field, it requires extensions of the
notion of fairness to this domain as well. Extensive experimental results are shown in both
cases, with a focus on case studies in healthcare. The notion of fairness is also extended
to hypothesis testing, and this is used to construct a new, covariance-robust dynamic wa-
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termarking mechanism for Linear Time-Invariant (LTI) dynamical systems. Finally, similar
intuitions are employed to design a system for robust classification in the low-data regime
where data lives in low-dimensional manifolds.

Background

First, we elaborate on the specific background of how systematic bias can arise, how it can
be quantified, and what algorithms exist for handling this problem.

Causes of Bias Bias can arise even without malicious intent. As mentioned earlier, human
biases due to previous decisions made by humans will likely be reflected in data generated,
causing algorithms using that data to exhibit the same bias. In some cases, critical predictors
may be unextricably correlated with sensitive attributes, and in this case trade-offs must
often be made between accuracy loss and the degree of bias that is to be tolerated, as well as
which predictors will be allowed to cause bias and which will not. For example, educational
attainment can be a biased indicator for hiring decisions, but it may be too critical to making
effective decisions to ignore. However, bias can also arise due to more avoidable phenomenon;
two of the most prominent of these are measurement error and sample bias [61]. The former
refers to cases where the process of data collection itself is biased. For example, it has
been observed that there are gender and racial gaps in representation in clinical trials and
prescriptions of pain medication [81, 107], and that crimes committed by black and whites
are investigated, recorded and prosecuted at different rates. In the presence of this form
of bias, the trade-off between fairness and accuracy need not exist: In fact, the imposition
of exogenously-known requirements of independence can improve accuracy while mitigating
bias. Subgroup validity refers to predictors that have varying levels of predictive power across
different subgroups [17]. For example, a predictor that may have a strong correlation with a
desired outcome for men may be almost meaningless for women; especially if combined with
a lack of data availability for women, this could lead to a case where the predictor is relied
upon almost entirely, and would thus lead to vastly different error rates among women and
men. Even if the predictor is meaningful for all subgroups, it could occur that the proper
thresholding differs between groups.

Fairness Notions The first step in dealing with issues of automated bias is to be able
to quantify bias. Of existing quantitative notions of bias, a handful have gained promi-
nence in the literature. For this quantification, it is helpful to focus on the context of a
classification problem, where the output is simply a binary variable Y ∈ {±1} and the
decision is a binary function d of a set of covariates X and a protected attribute Z, as
these outcomes can then be easily mapped to desirable and undesirable social outcomes.
A number of measures have been proposed to deal with this issue, but the most straight-
forward of these is the notion of disparate impact, which simply measures the difference in
the likelihood of attaining a positive classification across protected classes [86]. So, zero



CHAPTER 1. INTRODUCTION & PRELIMINARIES 4

disparate impact would imply perfect independence between d(X,Z) and Z, since it re-
quires that P (d(X,Z) = +1|Z) = P (d(X,Z) = +1). However, as mentioned above, this
can be overly detrimental to accuracy when Z is highly correlated with Y . In some cases,
it may be more helpful to ensure that error rates are similar across protected classes, i.e.
P (d(X,Z) = +1|Y = y, Z) = P (d(X,Z) = +1|Y = y) for y = ±1. This is referred to as
equalized odds [109] and requires that d not be more or less aggressive in over-classifying any
one protected class in any direction. Notably, the perfect classifier d(X,Z) = Y satisfies
this perfectly, but it has been shown that any imperfect classifier cannot satisfy equalized
odds while remaining calibrated (i.e. there exists some “score” function h such that d arises
from a simple thresholding of h and that P (d(X,Z) = Y ) = h(X,Z)), except for certain
degenerate cases [131]. If the majority of costs are concentrated on only one type of error (i.e.
false positives or false negatives), then one may restrict the requirement to the appropriate
value of y, yielding what is termed equal opportunity. These are all notions of group fair-
ness, meaning that they rely on population statistics for each protected class. In contrast,
there is the notion of individual fairness, which essentially requires that similar individuals
be treated similarly [77]. Using the notation above, this means that d(X,Z) and d(X,Z ′)
should be similar, where Z ′ 6= Z.

Fairness Algorithms To date, much of the work in the fair classification literature has
centered around pre- or post-processing steps. The former generally requires a transfor-
mation of the feature space [48, 192, 271], while the latter involves intentional alteration of
biased predictions [109,124]. While both benefit from high levels of flexibility (in particular
the pre-processing approach for the potential to extend to the unsupervised-learning regime),
they are necessarily greedy in nature and thus profligate in sacrificing accuracy [261]. The
alternative to these methods is to enforce fairness at the time of training. For many classi-
fication and decision problems, most notably those that rely on some underlying margin or
score function, training requires the minimization of an empirical loss, so enforcing fairness
involves designing new loss functions, regularizers or constraints that fundamentally alter the
optimization problem at hand. [47, 125, 191, 270] begin down this path. In particular, [270]
propose bounding the correlation between a “score function” and protected attributes as a
linear proxy to bounding fairness.

Still, independence constraints are not trivial to manage: Most recent work focusing on
the decision problem of whether two distributions are independent relies on estimating the
Kolmogorov-Smirnov (KS) distance or Mutual Information (MI) between the two distribu-
tions via either binning or kernel-density estimation (KDE) techniques, but both of these
yield highly discontinuous or nonconvex problems that are not tractable in an optimization
setting [48, 182]. There have been attempts in the fairness literature to address this diffi-
culty and to design MI-oriented constraints for statistical estimation, but these suffer from
limitations in the classes of distributions that they can represent, as well as from numerical
instability due to logarithmic terms [125].



CHAPTER 1. INTRODUCTION & PRELIMINARIES 5

Philosophical and Legal Foundations of Fairness

The concepts of fairness and justice have long been studied by members of the academic
community from any number of angles and perspectives. While this thesis is a technical
contribution to the literature, the base problem that it seeks to address is, at heart, a
philosophical question. Furthermore, the question of how to quantify fairness, which precedes
the contributions of this thesis, is itself preceded by how to define justice. As such, even
though the work presented herein focuses more on computational and statistical properties of
designing fair decision-making algorithms, we find it valuable to provide a brief background
of the philosophical and legal foundations of fairness.

Philosophical Foundations Debate has raged about the true definition of justice for as
long as philosophical debates have been recorded. For the ancient Greeks, whose metaphysics
revolved around a foundational belief in a cosmic sense of order and cyclical, harmonious
fluctuations between conflicting universal forces, justice necessarily required adherence to
this cosmic order, most clearly stated by pre-Socratics such as Parmenides and Heraclitus
[63, 130, 216]. Famously, Plato’s Socrates reflects this view when he states that ”justice is
doing one’s own work and not meddling with what isn’t one’s own” in The Republic [36];
Aristotle goes further, setting justice and equity as actively conflicting notions (though he
does admit that existing social distributions may not be just) [216]. In this way, both failed
to provide any positive argument for a baseline platform, however scant, for universal human
rights and value.

The Modern era redefined justice to be more responsive to actual human needs and in-
terests. Thomas Hobbes defines justice as wholly artificial, a social construct in the most
literal sense that it is defined solely by whatever social contract is constructed between a
people and their government [112]. David Hume, a Scottish Enlightenment thinker succeed-
ing Hobbes, does not endorse notions of a “social contract”, but still claims public utility
to be the main goal of justice and takes the lead of John Locke (whose work underpins
much of the U.S. Constitution) in tying the application of justice to the protection of private
property [118, 161]. The consequentialist view of justice is then taken to its Utilitarian ex-
treme by Jeremy Bentham and John Stuart Mill, who claim that what is fair is solely what
increases overall utility [175]. In response to the moral relativism of the empirical school of
thought, Immanuel Kant proposes the “categorical imperative” as the single fundamental
principle of duty, claiming that moral law “must carry with it absolute necessity” and treat
all persons as “ends in themselves” [127]. Importantly, Kant creates the most extensive basis
for an universal set of human rights and makes very clear that he views justice as objective,
non-arbitrary and independent of intention or consequence, meaning that the pursuit of fair-
ness can warrant marked deviations from normative observations. This principle of absolute
equality is extended to the realm of socio-economic outcomes by Karl Marx [169]. Finally,
John Rawls provides a modern interpretation of social contract theory, arguing that justice
should be determined as if from behind a “veil of ignorance”: He concludes that basic rights
and civil freedoms are a primary concern and should be absolutely equally distributed, with
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absolute equality of economic opportunity the second requirement of justice [208].
More recently, the morality of decision-making by agents without human consciousness

has become a prominent topic of research among the philosophy and political science com-
munities in its own right. A first observation from this field is that paradigmatic notions of
discrimination lack efficaciousness when decisions are not made with a human state of inten-
tionality [34]. Contemporary notions of discrimination largely reflect the belief that the locus
of discrimination lies in the belief-structure and ’mental state’ of an individual [12,152,224].
While similar arguments may be made when the ignorance or active negligence of decision-
makers (algorithm designers) to possible disparities holds a similar moral weight to the case
of a human making an intentionally biased decision, this paradigm of moral justice is largely
exhausted by the plethora of cases where the bias resulting from automated decision-making
techniques is not easily foreseen [82]. In fact, it has been argued that the true proprietors of
culpability (under this framework) are those that made the distributed and biased decisions
that originally yielded biased data. This argument does not help define a route of action for
practitioners however.

More tangible concepts of fairness for our scenario have thus been investigated [34].
In one notion, the ’wrongness’ of discrimination of an algorithm is explicitly associated
with the degree to which the algorithm denies individuals their individuality; in effect, this
metric states that group-based generalizations unfairly punish or reward individuals for the
actions of others with whom they happen to share certain characteristics [155, 204]. To
that end, it reflects the notion of individual fairness introduced above [77]. The application
of this principle must be tempered since, in the extreme, it would effectively rule out any
approach that relies on statistical learning as unjust. Critiques have instead argued that the
critical factor to ’wrongness’ is not necessarily all generalizations, but rather generalization
mechanisms that are insufficiently precise, penalizing individuals for characteristics such as
race and gender while giving credit for attributes such as job performance or educational
attainment [155, 225]. This suggests, somewhat counter-intuitively, that larger models with
more precise variables are inherently more fair, a notion that has developed further support
in the algorithmic community [133].

Another major framework that can be more applicable to algorithmic decision-making is
that of egalitarianism. In general, this is a teleological principle focused on the appropriate
distribution of welfare, regardless of intentionality (and thus more amenable to notions of
group fairness). The precise definitions of ’distribution’ and ’welfare’ have differed across
interpretations of egalitarianism, with some famous examples being the ’maximin’ resource
distribution of John Rawls [78,208], a focus on preference-satisfaction [59], and the capability
to achieve certain life goals [229]. Within this branch of moral philosophy, there still remain
interesting questions. One question is that of defining “spheres of justice”. Specifically,
this pertains to deciding the contexts in which the goal of resource distributions should be
absolute equality as opposed to harm reduction. While this debate is by no means settled, it
has been argued that more blunt notions of absolute equality are more appropriate in cases
of civil justice (such as the ability to vote or security check in airports) [110], while equal
opportunity and related metrics, which are more responsive to differences in base rates, can
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find more relevant applications in matters of ’economic justice’ like job interviews [34].
Finally, questions remain in the egalitarianism literature about the role of choice and

the responsibility that decision-makers have for inter-generational impacts of their decisions.
The former relates to how to best design fairness metrics that do not punish individuals for
the effects of luck or for choices that reflect necessity (i.e. foregoing a higher income or new
house in order to take care of a loved one) [9, 12, 119], and would seem to suggest methods
that limit the set of predictors that any algorithm can use. The latter reflects what is called
a deontic sense of egalitarianism; that is, a stated concern with how an unequal state of
affairs comes to be originally, as opposed to the inequality in its present form [197]. In this
paradigm, any notion of fairness that relies on statistical facts is inherently incomplete, as
these facts are themselves imbued with injustice and thus flawed benchmarks [155]. This
spirit correlates with more aggressive use of assertive notions such as disparate impact which
do not rely on existing statistical ratios and are thus not inherently flawed themselves. To
that end, it would suggest that trade-offs between fairness and accuracy be handled by
allowing ’wiggle-room’ in fairness constraints as opposed to adopting wholly different, and
purportedly flawed, fairness metrics such as equalized odds.

Legal Foundations Similar to the dominant philosophical paradigms of fairness prior to
the proliferation of automation techniques, the primary legal doctrine in the constitutional
law of the United States is dependent on a decision-maker’s motivations. In Washington v.
Davis (1976), the Supreme Court ruled that a written personnel test required for recruitment
to the District of Columbia Police Department did not violate the Equal Protection Clause
of the Fourteenth Amendment to the U.S. Constitution; it judged that the test did not
have discriminatory intent, and thus did not automatically become a constitutional violation
despite its racially-disproportionate impact. This original stance has adapted somewhat over
the last few decades for certain types of discrimination and in certain areas. For example,
it was ruled in Fisher v. University of Texas (2016) that race-conscious affirmative action
programs for college admissions promote a governmental interest in promoting diversity and
are thus permissible.

The majority of legal doctrine pertaining to statistical notions of disparate impact instead
originate from federal statutes meant for specific areas of legal interest. While the legal usage
of the term “disparate impact” originated in the Supreme Court case Griggs v. Duke Power
Co. (1971), Title VII of the 1964 Civil Rights Act prohibits employers from discriminating
against employees on the basis of sex, race, color, national origin and religion, while the Fair
Housing Act of 1968 limits discriminatory practices related to housing [30]. In 1971, the
Fair Employment Practice Commission (FEPC) of the State of California adopted the 80%
rule for determining what comprised “disparate impact”, and this was later adopted into the
protocol for Title VII enforcement by the U.S. Equal Employment Opportunity Commission
(EEOC) in 1978. This rule provides a strict technical cutoff for the level of discrimination
that is permissible, and builds off of the base rates at which members of various protected
groups receive beneficial treatment, similarly to the statistical concept of disparate impact.
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1.2 Contributions

This thesis will propose the FO hierarchy, a hierarchical, training-time framework for fairness
via bounding moments. Each level of the FO hierarchy consists of controlling a certain
number of moments of data and outputs, with higher levels guaranteeing lower bias but at
the cost of computational burden and possibly accuracy. This expands on some preliminary
work on fair classification problems which is limited in scope and lacks rigorous analysis.
These prior works make initial gestures towards, but fall far short of, suggesting how to
encode full and verifiable independence of random variables into optimization structures.
Thus, there is a need to extend and formalize moment-based techniques into a systematic
mode of fair optimization. We take these to their logical conclusion, extending them to
provably handle larger classes of protected variables, provide theoretical results and novel
interpretations, and extend results to unsupervised learning and hypothesis testing regimes.
The main contributions of this thesis are:

• Introduces and argues for the FO hierarchy as an approach to approximating indepen-
dence in optimization and ensuring fairness in data-driven decision-making.

• Provides results on consistency and non-asymptotic rates of convergence for FO.

• Examines empirical behavior and theoretical intuitions of FO in multiple supervised
learning problems, including dynamical systems and case studies on automated and
fair morphine and heparin dosage.

• Defines a novel notion of fairness for unsupervised learning, and in particular dimen-
sionality reduction problems, and extends the FO hierarchy to this setting.

• Provides the first analysis of fair hypothesis testing, and exploits these principles to de-
sign a distributionally-robust watermarking scheme for detecting attacks on dynamical
systems.

• Extends the notion of data-dependent regularization to propose an average-margin
regularizer for robust classification in low-data regimes for data that lives in low-
dimensional manifolds.

1.3 Preliminaries

Here we define general notation for the manuscript. Further notation necessary to a single
chapter will be further expounded in that specific chapter.

In this thesis, we use capital letters X, Y, Z to denote a set of data triples where X
refers to a set of exogenous covariates, Y represents “target” variables that can be either
directly learned or indirectly used to aid learning, and Z represents “protected” attributes
with respect to which it is our goal to reduce or eliminate bias. The explicit dimensions of
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these are outlined within each individual chapter, as they can alter depending on the context
of their usage. We use En(·) to denote expectation with respect to the empirical distribution.
Recall this is the sample average of the random variable inside parenthesis. As examples,
En(Z) = 1

n

∑n
i=1 Zi and En(ZX) = 1

n

∑n
i=1 ZiXi. With a few exceptions (in particular in

cases concerning sequences of sets), sets are denoted using calligraphic type.
Let M : Rdp → Rd×p to be the function that reshapes a vector into a matrix by placing

elements into the matrix columnwise from the vector. Similarly, we define W := M−1 :
Rd×p → Rdp to be its inverse. Consider a tensor ϕ ∈ Rr1×···×rq , and let [r] = {1, . . . , r}.
The norm ‖ϕ‖ is the `∞ vector norm for the tensor considered as a vector. For two tensors
ϕ, ν ∈ Rr1×···×rq , we define their inner product 〈ϕ, ν〉 to be the usual dot product for the
tensors interpreted as vectors. We also use the symbol ⊗ to represent the tensor product.

For a tensor interpreted as a multilinear operator ϕ(u1, . . . , uq), we define the two sub-
ordinate norms

‖ϕ‖◦ = max
{
‖ϕ(u , . . . , u )‖

∣∣ ‖ u ‖2 = 1
}

‖ϕ‖∗ = max
{
‖ϕ(u1, . . . , uq)‖

∣∣ ‖uk‖2 = 1 for k ∈ [q]
} (1.1)

where ‖·‖2 is the Euclidean norm for vectors. These are subordinate norms since ‖ϕ(u, . . . , u)‖ ≤
‖ϕ‖◦

(
‖u‖2

)q
and ‖ϕ(u1, . . . , uq)‖ ≤ ‖ϕ‖∗

∏q
k=1 ‖uk‖2. When ϕ(·, . . . , ·) is symmetric in its

arguments, then ‖ϕ‖◦ = ‖ϕ‖∗ [18, 37].

1.4 Outline

The FO hierarchy is outlined, and its statistical properties explored in Chapter 2. Chap-
ter 3 then explores the use of FO specifically in supervised learning problems. This involves
providing a series of visual interpretations of fairness and a number of interpretations of
the constraints relevant to FO from the perspective of optimization, information theory and
standard statistical learning techniques. Chapter 3 then rigorously tests the FO hierarchy
applied to a number of supervised learning problems on a number of datasets, including two
case studies on automated dosing algorithms. The notions of fairness, as well as some levels
of the FO-hierarchy, are extended to the realm of unsupervised learning, and in particu-
lar dimensionality reduction, in Chapter 4, for which a number of empirical studies and a
case study on insurance rate-setting are provided. Chapter 5 considers a slightly different
problem, exploring the relationship between fairness and robustness in hypothesis testing
problems, and using these intuitions to design a novel covariance-robust dynamic water-
marking test for detecting attacks on Cyber-Physical Systems (CPS) and other dynamical
systems. Finally, Chapter 6 extends the intuitions of data-dependent regularizers that are
used throughout the previous chapters to design an Average-Margin (AM) regularization
method for encouraging robustness of classifiers when dealing in low-data regimes and where
data are high-dimensional in nature but are known to lie in low-dimensional manifolds. We
endeavor to make each chapter self-contained to the degree possible; as a result of this, there



CHAPTER 1. INTRODUCTION & PRELIMINARIES 10

is inevitably some degree of repetition among chapters. Within these constraints, efforts
were made to reduce repetition.
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Chapter 2

Fair Optimization Framework

2.1 Introduction

There is growing concern that improperly designed data-driven approaches to decision-
making may display biased or discriminatory behavior. In fact, such concerns are justified
by numerous examples of unfair algorithms that have been deployed in the real world [11,20,
79, 84]. In response, researchers have started to develop a number of approaches to encour-
age fairness in various statistical or machine learning problems [45,57,77,109,191,270,276].
The problem of classification has received particular attention due to the ease of mapping
class labels to positive and negative outcomes with which to characterize fairness, but re-
cent work has also begun to explore fair statistical methods in the context of unsupervised
learning [56,192] and in more general decision-analytic frameworks [83,158].

Existing Approaches to Fairness

The literature on fair statistics and learning can be classified into three categories: pre-
processing steps, post-processing steps, and training regularization. The general setup of
these approaches is that they seek to estimate a model that predicts a dependent variable
using a vector of independent variables, while trying to ensure that the model predictions
are fair (we discuss quantitative measures of fairness in the next subsection) with respect
to some variable that indicates a protected attribute (e.g., gender or race). Here we briefly
review some of the existing approaches that have been developed for fairness.

Pre-processing approaches transform the data before estimation, to remove any pro-
tected information that could cause unfairness. For instance, [48,271] take a nonparametric
approach: They optimize over distributions to variationally transform the feature space.
The nonparametric nature of their approach means that the optimization problem they
design quickly becomes intractable. Alternatively, [192] take an adversarial outlook on pre-
processing for fairness, and propose a semidefinite programming (SDP) formulation. Several
groups have attempted to design autoencoders with a similar inspiration, although these
are oriented around deep classifiers [27, 80, 163, 272]. However, pre-processing methods lead
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to high generalization error when used before performing estimation, due to the theoretical
difficulties associated with estimating high-dimensional densities [238].

In comparison, there is a smaller literature on post-processing for fairness. These meth-
ods take the output of a statistical technique, and process the output in order to improve
fairness. A canonical example of this approach is [109], which designs a method for post-
processing an arbitrary classifier in order to ensure fairness. While this method is flexible
with regards to the type of classifier used, it achieves fairness by requiring different score
function thresholds for different groups of protected classes. This violates a general principle
called individual fairness [77], which says that similar individuals should be treated simi-
larly. More significantly, [261] show that this method achieves suboptimal tradeoffs between
accuracy and fairness.

Notably, both pre-processing and post-processing approaches are necessarily greedy since
they unlink the process of estimation from ensuring fairness. This has motivated work
on regularization approaches to fairness, which generally achieve lower generalization error
while improving fairness. The regularization approaches most related to this chapter include
[25, 191, 261, 270]. In particular, [270] control the correlation of a classifier score function
and the protected attribute, which can be formulated as a linear constraint in the estimation
problem. The method in [191] implements non-convex optimization techniques to further
consider second-order deviations. However, a limitation of both is that they are applicable
only when protected attributes are binary. The approach of [125,271] works for more general
types of protected attributes, but it uses a heuristic approach to approximate an intractable
optimization problem that includes a mutual information (MI) measure of fairness as a
constraint. Alternatively, [100] design an iterative cutting-plane algorithm for fair support
vector machine (SVM) that requires solving an SVM instance in each iteration. Moving away
from classification, [46, 121] develop key concepts of fairness in the case of regression, and
the work in [24] extends this to regularization techniques for ensuring different qualitative
types of fairness in regression. Finally, a recent line of work has sought to generalize these
ideas towards fair decision-making [83,158].

Quantitative Measures of Fairness

We have so far casually used the terms fairness and bias without formally defining them. Part
of the difficulty is a considerable lack of clarity in the existing literature as to their meaning,
with different works defining different quantitative measures of fairness. We believe the
underlying (and unifying) idea behind all these measures is they approximate in some way a
measure of independence between the output of the statistical procedure and the variable of
protected attributes. In fact, this way of thinking about fairness was first noticed by [125].

To make our discussion more concrete, we start by first discussing notions of fairness for
binary classification with a binary protected attribute. Let (X, Y, Z) ∈ Rp × {±1} × {±1}
be a jointly distributed random variable consisting of a vector of predictors, a binary class
label, and a binary protected attribute. Let δ(x) be a score for a classifier, and suppose the
classifier makes binary predictions d(x, t) = sign(t−δ(x)) for a given threshold t of the score.
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Since binary classifiers output a ±1 that can be mapped to desirable/undesirable decisions,
one measure of fairness is

KS = max
t∈R

∣∣P [d(X, t) = +1|Z = +1]− P [d(X, t) = +1|Z = −1]
∣∣. (2.1)

For any fixed value of t, this is the correlation of the binary classifier and the protected
attribute of interest. This quantitative measure of fairness is often called disparate impact
[109, 191]. Effectively, disparate impact measures the total disparity in outcomes between
protected classes.

This above measure of fairness can be too strict in some applications, as there may be
unavoidable correlation between the classifier output and the protected label. For such cases,
[109] proposes equalized odds as an alternative measure of fairness that instead constrains
disparity in outcomes conditional on some informative variable. In the setting of binary
classification, one possible informative variable is Y ∈ {±1} itself. This choice leads to the
following quantitative measure of equalized odds fairness:

EO = max
y∈{±1}

max
t∈R

∣∣P [d(X, t) = +1|Z = +1, Y = y] − P [d(X, t) = +1|Z = −1, Y = y]
∣∣.

(2.2)

Restated, the quantity (2.2) measures the disparity in error rates between the protected
classes. An additional benefit is that a classifier with zero training error will also be fair
with respect to this measure of fairness [109].

At an initial glance, the above measures of fairness do not look like manifestations of
independence. Yet note the event {d(X, t) = +1} is equivalent to the event {δ(X) ≤ t} since
d(x, t) = sign(t − δ(x)). This means that (2.1) is the Kolmogorov-Smirnov (KS) distance
between the distributions of δ(X)|Z = +1 and δ(X)|Z = −1. Since (2.2) has a very similar
interpretation, we will focus our discussion on (2.1). Thus when KS = 0 in (2.1), we have
that

G(t) := P [δ(X) ≤ t|Z = +1] = P [δ(X) ≤ t|Z = −1] . (2.3)

This means that the joint distribution factorizes as

P (δ(X) ≤ t, Z = z) = P [δ(X) ≤ t|Z = z] · P(Z = z) = G(t) · P(Z = z), (2.4)

which means the two random variables are independent. Summarizing, we have KS = 0
in (2.1) if and only if δ(X) is independent of Z. The importance of such independence in
relation to fairness was first noticed by [125]. Further interpretations of these are considered
in Chapter 3.

Technical Challenges with Independence

The above discussion suggests that a promising direction for generalizing fairness to a broader
class of problems is to ensure independence (or rather some approximate notion of indepen-
dence) between the output of a statistical technique and a random variable that measures
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attributes in respect to which fairness is desired. In fact, the broader idea of quantifying
independence using an empirical estimate has a long history in statistics [43,53,90,195,241].
One approach is to compute some generalized notion of correlation such as Renyi correlation
or distance correlation. Another approach is to use some distance like the KS distance, total
variation distance, or mutual information between the empirical probability measures of the
joint and product distributions.

However, incorporating empirical independence measures into statistical procedures is
not straightforward. Many statistical procedures are computed by solving an optimization
problem, and so such measures must be added as constraints. However, measures like Renyi
correlation, distance correlation, KS distance, total variation distance, and mutual informa-
tion are all themselves the solutions of an optimization problem. (Mutual information is
traditionally defined using a hard-to-compute integral, but a well-known variational char-
acterization [41] shows that it should more properly be thought of as the solution to an
optimization problem for our discussion.) This means the resulting optimization problem
for a fair statistical procedure defined in this way would have another optimization problem
as a constraint; these types of problems are known as bilevel programs and are very difficult
to numerically solve [71,194]. The numerical difficulties are compounded for those measures
defined using an empirical c.d.f., which is always discontinuous.

Contributions and Outline

This chapter develops an optimization hierarchy for fair statistical decision problems. We
first generalize in Section 2.3 the framework of statistical decision problems [151] to include
fairness. This provides a systematic approach for developing and studying fair versions of
hypothesis testing, decision-making, estimation, regression, and classification. We use the
above discussed insight relating fairness to statistical independence in order to propose in
Section 2.4 an optimization hierarchy that lends itself to numerical computation. Tools from
variational analysis and random set theory are used to prove in Section 2.5 that higher levels
of this hierarchy lead to consistency in the sense that it asymptotically imposes indepen-
dence as a constraint in corresponding statistical decision problems. Section 2.6 generalizes
our framework to measure fairness using a notion of approximate independence. Specific
instances of our framework, ranging from fair supervised learning to fair unsupervised learn-
ing and fair hypothesis testing, are outlined in more detail in subsequent chapters, and their
efficacy proven on a number of datasets, including case studies on fair morphine dosage,
heparin scheduling, and insurance rate-setting.

The distinguishing feature of our approach to ensuring independence is to use a moment-
based characterization of independence that generalizes Kac’s theorem [35,122] to multivari-
ate random variables. This has the key practical benefit over other approaches to measuring
independence (such as [125,271]) that all the resulting constraints in the corresponding op-
timization problems are smooth polynomials. This means we avoid the bilevel programming
structure that arises from the use of other independence measures [125,271], and which makes
numerical optimization very difficult. Because the moment constraints are smooth polyno-
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mials, this further allows us to leverage advances in convex optimization [147] and related
heuristics such as the constrained convex-concave procedure [235, 249, 268] for the purpose
of numerically solving the resulting optimization problem. The tradeoff is that we have to
include multiple (but a finite number of) constraints, one for each possible combination of
moments between joint and product distributions.

Our framework also builds on preliminary work on the use of moment-based constraints
for fair statistical methods [191, 192, 270]. These approaches were restricted to binary clas-
sification with binary protected classes, made use of only first- or second-order moments of
only the classifier, were based on ad-hoc arguments and justifications, and lacked theoretical
analysis of the resulting statistical methods. The past papers [191, 192, 270] leave open the
larger question of how moment-based approaches to fairness can be generalized to continuous
protected classes, multivariate protected classes, multivariate statistical decisions, and other
classes of statistical problems beyond classification. This thesis unifies these past approaches
into a broader theoretical framework, provides a rigorous theoretical analysis of the resulting
optimization hierarchy, and successfully achieves a generalization of moment-based methods
in order to handle continuous protected classes, multivariate protected classes, multivari-
ate statistical decisions, and multiple classes of statistical decision problems, including fair
versions of hypothesis testing, decision-making, estimation, regression, and classification.

Because we have to include multiple constraints, this significantly complicates the theoret-
ical analysis of our optimization hierarchy. The limiting behavior of our framework requires
a statistical analysis on the solution to an optimization problem in the limit of a countably-
infinite number of random constraints involving empirical moments. Traditional results in
statistics do not apply to set-valued functions [14], which are one way to interpret constraints
in an optimization problem [212]. In fact, most attention in statistics on sets has been fo-
cused on estimating a single set under different measurement models [75, 106, 135, 198, 226].
The traditional theoretical argument is to use the Pompeiu-Hausdorff distance to metricize
the set of sets, but this approach is intractable in our setting which has random sets defined
using (in the limit) an infinite number of non-convex constraints. Instead, we build on our
past work on statistics with set-valued functions [14]: We develop new theoretical arguments
for statistics with random sets and set-valued functions, using variational analysis [212,213]
and random sets [173,183].

2.2 Preliminaries

This section presents notation specific to this chapter, in addition to that provided Sec-
tion 1.3. We also describe some useful (and needed) notation and definitions from variational
analysis and random sets. Most of the variational analysis definitions are from [212], and
the stochastic set convergence notation is originally from [14].
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Variational Analysis

Let R = [−∞,∞] denote the extended real line. We define Γ(·,S) : E → R to be the
indicator function

Γ(u,S) =

{
0, if u ∈ S
+∞, otherwise

(2.5)

where E is some Euclidean space that will be clear from the context.
The outer limit of the sequence of sets Cn is defined as

lim supnCn = {x : ∃nk s.t. xnk → x with xnk ∈ Cnk}, (2.6)

and the inner limit of the sequence of sets Cn is defined as

lim infnCn = {x : ∃xn → x with xn ∈ Cn}. (2.7)

The outer limit consists of all the cluster points of Cn, whereas the inner limit consists of all
limit points of Cn. The limit of the sequence of sets Cn exists if the outer and inner limits
are equal, and when it exists we use the notation that limnCn := lim supnCn = lim infnCn.

A sequence of extended-real-valued functions fn : X → R is said to epi-converge to f if
at each x ∈ X we have{

lim infn fn(xn) ≥ f(x) for every sequence xn → x

lim supn fn(xn) ≤ f(x) for some sequence xn → x
(2.8)

Epi-convergence is so-named because it is equivalent to set convergence of the epigraphs
of fn, meaning that epi-convergence is equivalent to the condition limn{(x, α) ∈ X × R :
fn(x) ≤ α} = {(x, α) ∈ X × R : f(x) ≤ α}. We use the notation e-limn fn = f to denote
epi-convergence relative to X .

A sequence of extended-real-valued functions fn : X → R is said to converge pointwise
to f if at each x ∈ X we have that limn fn(x) = f(x). We abbreviate pointwise convergence
relative to X using the notation limn fn = f .

Random Sets

Let (Ω,F,P) be a complete probability space, where Ω is the sample space, F is the set of
events, and P is the probability measure. A map S : Ω→ F is a random set if {ω : S(ω) ∈
X} ∈ F for each X in the Borel σ-algebra on F [183]. Like the usual convention for random
variables, we notationally drop the argument for a random set.

When discussing stochastic convergence of random sets, we denote that a type of limit
occurs almost surely by appending “as-” to the limit notation. For instance, notation
as-lim supnCn ⊆ C denotes P(lim supnCn ⊆ C) = 1, and notation as-lim infnCn ⊇ C
denotes P(lim infnCn ⊇ C) = 1.
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2.3 Fair Statistical Decision Problems

We use the setting of statistical decision problems: Consider the random variables (X, Y, Z)
that have a joint distribution D. The interpretation is that X gives descriptive information,
Y has information about some target, and Z encodes protected information which we would
like to be fair with respect to. We will not explicitly use Y in this chapter, but we note that
it is implicitly included within other terms that we discuss. The role (or lack of a role) of Y
will be more specifically handled in subsequent chapters that separately handle supervised
and unsupervised learning.

The goal is to construct a function δ(·, ·) called a decision rule, which provides a de-
cision d = δ(x, z). To evaluate the quality of a decision rule δ, we define a risk function
R(δ). (Though it is conventional to define the risk as R(D, δ), we assume without loss of
generality that the risk is of the form R(δ) because when the risk is R(D, δ) then the proper
choice of R(δ) recovers the Bayes R(δ) = EDR(D, δ) and minimax R(δ) = maxD∈ΩR(D, δ)
procedures.) In this setup, an optimal decision rule is taken to be any function from
arg minδ(·,·)R(δ). However, we can define a related optimization problem that chooses an
optimal fair decision rule by solving

δ∗(x, z) ∈ arg minδ(·,·)
{
R(δ)

∣∣ δ(X,Z) ⊥⊥ Z
}
, (2.9)

where the notation δ(X,Z) ⊥⊥ Z indicates independence of δ(X,Z) and Z.
The above abstract setup is useful because it allows us to reason about fairness for a

wide class of problems using a single theoretical framework. A question that may arise is
why the decision function δ may be allowed to be a function of the protected attribute Z as
well as the covariates X; indeed, this seems counterintuitive to the central goal that δ(X,Z)
be independent of Z. However, there is a growing literature that posits the necessity of
“disparate treatment to offset disparate impact” [62, 95, 129, 132, 134, 156]. To see why this
may be the case,

Example 1. Consider the simple problem with binary X, Y, Z displayed in table 2.1. Suppose
a simple classification task on these variables where we want to recover the target Y . X is
slightly predictive of Y , so one possible choice of the decision function δ that does not rely
on Z is the following

δ1(X,Z) = X −→


P (Y = δ1(X,Z)) = 11

18

P (δ1(X,Z) = 1|Z = A) = 2
3

P (δ1(X,Z) = 1|Z = B) = 1
3
.

Note that the base rates of Y for each of the protected class are P (Y = 1|Z = A) = 5
9

and
P (Y = 1|Z = B) = 5

9
, while those of X are P (X = 1|Z = A) = 5

9
and P (X = 1|Z = B) = 1

3
.

While δ1 is informative, it relies on a covariate that is a more powerful predictor for protected
class A than for protected class B, and thus δ1 perpetuates more bias than is truly warranted
in the final decision. Now, consider a new decision function that does use information about
the protected class.
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Table 2.1: A simple example of one-dimensional, binary X, Y, Z, with the associated measure
D.

X Y Z D(X, Y, Z)

1 1 A 5/18
1 1 B 1/18
1 0 A 1/18
1 0 B 2/18
0 1 A 0/18
0 1 B 4/18
0 0 A 3/18
0 0 B 2/18

δ2(X,Z) = max {X, V · 1B{Z}} −→


P (Y = δ2(X,Z)) = 2

3

P (δ2(X,Z) = 1|Z = A) = 2
3

P (δ2(X,Z) = 1|Z = B) = 2
3
,

where V is a Bernoulli random variable with parameter 0.5, and 1B is the set-indicator
function that takes value 1 when Z is B and 0 otherwise. In other words, there is deliberate
difference in treatment between the protected classes, which members of class B are given
a “second chance” to obtain classification 1. Interestingly, δ2 here is an even more powerful
predictor of the true target Y than δ1. Furthermore, it is able to perfectly balance the
per-class “opportunity” and get much closer to the true base rate of Y among each of the
protected classes. The reason for this is that the covariate X is a good predictor of Y among
the members of group A, but is not effective among members of group B; this exhibits one
key source of bias, intentional or unintentional, in many real-world scenarios as well.

One may ask if there are any costs to including protected attribute Z in the decision func-
tion. In scenarios with discrete protected attributes such as this one, this can be described as
designing distinct classification rules for each protected class. In this sense, it is possible to
violate the principal of individual fairness, meaning that individuals from different protected
classes that are nevertheless similar in all other ways will be treated differently [77]. This
type of fairness may be an end in and of itself, particularly in cases dealing with humans,
where setting different standards for different people may also meet with opposition.

This generality of our method and the effect of including the protected attribute in the
decision rule are further demonstrated by the following (which is the first to our knowledge)
example of a procedure for performing fair hypothesis testing:
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Example 2. Consider a hypothesis testing setup where the null hypothesis is H0 : E(Ξ) = 0
for the underlying distribution [

Ξ
Ψ

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
. (2.10)

Suppose X = (Ξ1, . . . ,Ξn) and Z = (Ψ1, . . . ,Ψn) consist of i.i.d. samples. Let d0 be the
decision to accept the null, and let d1 be the decision to reject the null. The traditional
hypothesis test with a significance level of α corresponds to a decision rule δ that minimizes
the risk function

R(δ) = PH1(δ = d0) + Γ(PH0(δ = d1)− α,R≤0), (2.11)

where H1 = {D ∈ Ω : D 6= H0} [151]. An optimal decision rule for this risk is

δ∗ =

{
d0, if p ≥ α

d1, if p < α
(2.12)

where p is a p-value [151]. An optimal decision rule that depends only upon X corresponds
to the use of a traditional p-value

p = 2Φ
(
−
√
n
∣∣ 1
n

∑n
i=1 Ξi

∣∣), (2.13)

with Φ(·) being the standard normal cdf. Using the above framework, we can also compute
an optimal fair decision rule for this risk by removing the component of Ξ that correlates
with Ψ. This corresponds to

p = 2Φ
(
−
√

n
1−ρ2

∣∣ 1
n

∑n
i=1

(
Ξi − ρΨi

)∣∣), (2.14)

which we can interpret as a fair p-value (note that Ξ−ρΨ is independent of Ψ). An interesting
observation about this setup is that using (2.14) results in a test with greater power than
using (2.13). This is interesting because it shows that imposing fairness constraints can lead
to better statistical procedures in certain contexts.

In many statistical contexts, Ω is singleton but unknown. We then instead choose the
decision rule using a sample (Xi, Yi, Zi) for i = 1, . . . , n, which is i.i.d. from the distribution
D. Towards this aim, we approximate the risk function R(δ) using an (random) approximate
risk function Rn(δ) that depends upon the sample. However, computing a sample-based fair
decision rule is not obvious because a statistically well-behaved, sample-based analog of the
constraint δ(X,Z) ⊥⊥ Z from (2.9) has not been studied previously.

2.4 Fair Optimization Hierarchy

We next propose a framework for computing a fair decision rule by solving a sample-based
analog of (2.9). We first describe our assumptions about the statistical and numerical proper-
ties of the problem. Next we present our framework and provide some intuition to justify the
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structure of our formulation. We conclude by discussing some of the favorable computational
properties of our framework.

Assumptions

We first make some assumptions about restrictions on our decision rule and about the random
variables in question:

Assumption 1. The decision rule belongs to a parametric polynomial family and can be
written as

δ(x, z) = B · ω(x, z), (2.15)

where B ∈ B is a matrix, B ⊂ Rd×p is a compact set, and ω(x, z) ∈ Rp is a vector of
monomials of the entries of the vectors x, z. More precisely, B parametrizes the decision rule
δ(x, z), and the function ω(x, z) is assumed to be known and fixed by our design such as
through feature engineering. We define the random variable Ω = ω(X,Z), so that δ(X,Z) =
BΩ.

Remark 1. In some settings, it may be desirable to have the fair decision rule depend upon
only X and not Z. The above includes this case by noting ω(x, z) is free to be chosen to
include only monomials of the entries of x.

Assumption 2. The entries of the random variables X,Z are almost surely bounded by
α ≥ 1. Moreover, the maximal monomial degree of entries in ω(x, z) is ρ ≥ 0, and the
random variable Z has dimensions Z ∈ Rr.

Assumption 3. Recall B ∈ B is a matrix that parametrizes the decision rule, for compact
B ⊂ Rd×p. We assume B ⊆ {B ∈ Rd×p : ‖W (B)‖2 ≤

√
λ}.

Our next assumption is about statistical properties of the approximate risk function.
Since our primary interest in this thesis is studying independence constraints, we directly
make assumptions about the convergence of the approximate risk function. Showing that
such convergence holds typically involves a separate statistical analysis specific to the prob-
lem at hand.

Assumption 4. Note the function Rn(B ·ω(x, z)) is the approximate risk function composed
with the parametric decision rule in Assumption 1. We assume that this function can be
written in the form

hn(B) := Rn(B · ω(x, z)) = fn(B) + Γ(gn(B), {R≤0}η), (2.16)

where fn : Rd×p → R and gn : Rd×p → Rη. Moreover, define the notation h(B) = R(B ·
ω(x, z)). We assume as-e-limhn = as-limhn = h relative to B.

Remark 2. We should interpret the notation of (2.16) as simultaneously specifying an ob-
jective function fn(B) and a set of constraints gn(B) ≤ 0.
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Remark 3. This convergence assumption may look unfamiliar, but we note that it is weaker
than the convergence results that are usually shown when proving consistency of estimators.
In particular, almost sure uniform convergence of hn to h implies the above assumption.

The first four assumptions are primarily related to statistical properties, though the
polynomial structure of the decision rule is also related to numerical computation. Our last
assumption is about the mathematical structure of the approximate risk function, and it is
related to numerical computation.

Assumption 5. In the notation of Assumption 4, we assume that the functions fn : Rd×p → R
and gn : Rd×p → Rη are polynomials on the set B. We also assume that h is a lower
semicontinuous function on the set B.

Remark 4. The polynomial assumption is not restrictive because the celebrated Stone-
Weierstrass theorem shows that if fn and gn are continuous then they can be approximated
to arbitrary accuracy by polynomials, since the domain of the optimization problem is within
a compact set B.

Remark 5. We note that of these, only Assumption 2 is truly outside of the control of the
practitioner of our methodology, and would thus be understood as an “assumption” in the
most typical sense. The rest of these assumptions can largely be interpreted as restrictions
on the decision rules and risk functions used, although they still must be assumed for the
purposes of the statistical analysis that we conduct.

Formulation

We are now ready to present our framework. Given the above assumptions, we study use of
the following sample-based optimal fair decision rule: The level-(g, h) fair optimization (FO)
is

min
B∈B

Rn(B · ω(x, z))

s.t.
∥∥En(Z⊗m ⊗ (BΩ)⊗q

)
− En

(
Z⊗m

)
⊗ En

(
(BΩ)⊗q

)∥∥ ≤ ∆m,q,

for (m, q) ∈ [g]× [h].

(2.17)

The hyperparameters g and h here reflect the moments that are to be controlled (with higher
values implying more moments being controlled), and the ∆m,q terms are maximal permitted
deviations for the appropriate moment bounds. We will study the constraints of the above
problem and show that they are statistically well-behaved analogs of the independence con-
straint in (2.9).

Our first result provides intuition about the constraints in the FO optimization problem
(2.17). This result generalizes Kac’s theorem [35, 122], which characterizes independence of
random variables using moment conditions, to the setting of random vectors. This general-
ization is novel to the best of our knowledge, and so we include its proof below for the sake
of completeness.
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Theorem 1. Suppose the multivariate random variables U ∈ Rp and V ∈ Rd are bounded.
Then U and V are independent if and only if

E
(
U⊗mV ⊗q

)
= E

(
U⊗m

)
⊗ E

(
V ⊗q

)
for m, q ≥ 1. (2.18)

Proof. Let the functions MU(s) = E exp(〈s, U〉), MV (t) = E exp(〈t, V 〉), and M(U,V )(s, t) =
E(exp(〈s, U〉+〈t, V 〉) be the moment generating functions for U , V , and (U, V ), respectively.
Observe these are defined for all s, t since U, V are bounded. Our proof begins with the well-
known characterization of independence using moment generating functions, that is U and
V are independent if and only if M(U,V )(s, t) = MU(s)MV (t). In particular, if (2.18) holds
then we have

M(U,V )(s, t) =
∑∞

m=1

∑∞
q=1

1
m!·q! · E

(
〈s, U〉m〈t, V 〉q

)
=
∑∞

m=1

∑∞
q=1

1
m!·q! · 〈E

(
U⊗mV ⊗q

)
, s⊗mt⊗q〉

=
∑∞

m=1

∑∞
q=1

1
m!·q! · 〈E

(
U⊗m

)
⊗ E

(
V ⊗q

)
, s⊗mt⊗q〉

=
∑∞

m=1

∑∞
q=1

1
m!·q! · 〈E

(
U⊗m

)
, s⊗m〉 · 〈E

(
V ⊗q

)
, t⊗q〉

=
∑∞

m=1

∑∞
q=1

1
m!·q! · E

(
〈s, U〉m

)
· E
(
〈t, V 〉q

)
=
∑∞

m=1
1
m!
· E
(
〈s, U〉m

)
·
∑∞

q=1
1
q!
·
(
E〈t, V 〉q

)
= MU(s)MV (t)

(2.19)

This proves the reverse direction. To prove the forward direction, we note it follows immedi-
ately by applying componentwise the standard result that if U and V are independent and
bounded, then E(g(U)h(V )) = E(g(U)) · E(h(V )) for any continuous functions g : Rp → R
and h : Rd → R.

The above multivariate generalization of Kac’s theorem allows us to interpret the con-
straints of the FO problem (2.17). We can interpret the constraints as a finite number (g · h
many, for a level-(g, h) FO problem) of sample-based analogs of the corresponding moment
conditions for independence (2.18).

Computational Properties

We next discuss some favorable computational properties of the FO problem (2.17). A key
advantage of our framework is that the constraints are polynomials, and so we can leverage
significant numerical and theoretical advances in order to solve such problems.

Theorem 2 (Theorem 5.6 and 5.7 of [147]). If Assumptions 1–5 hold, then the level-(g, h)
FO problem (2.17) can be solved to any desired accuracy by solving a convex optimization
problem that can be explicitly constructed.

Remark 6. Though the convex optimization problems resulting from the explicit construction
of [147] are often large, these resulting optimization problems can be numerically solved for
many interesting instances [165,274].
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We can say more about the FO problem for specific levels of the hierarchy, and we omit
the proofs since they follow from the definition of the constraint:

Proposition 1. The constraints in the FO problem (2.17) for q = 1 can be written as the
following linear inequality constraints:

B
(

1
n

∑n
i=1 Ωi ⊗ (Zi)

⊗m − 1
n

∑n
i=1 Ωi ⊗ 1

n

∑n
i=1(Zi)

⊗m
)
≤∆m,1

−B
(

1
n

∑n
i=1 Ωi ⊗ (Zi)

⊗m − 1
n

∑n
i=1 Ωi ⊗ 1

n

∑n
i=1(Zi)

⊗m
)
≤∆m,1

(2.20)

where the inequality should be interpreted as being elementwise of the left (which is a tensor)
with respect to the scalar ∆m,1 on the right.

This results says constraints with q = 1 are always convex. This means that the FO
problem (2.17) with h = 1 is a convex optimization problem whenever Rn is convex in B.
Such convexity of Rn occurs in many interesting problems, including linear regression and
support vector machines.

Proposition 2. The constraints in the FO problem (2.17) for q = 2 are inequalities that
each involve a difference of two convex quadratic functions.

This results says constraints with q = 2 are always a difference of convex functions. This
means that stationary points of the FO problem (2.17) with h = 2 can be found using the
effective constrained convex-concave procedure [235, 249, 268] whenever Rn is convex in B.
Recall that Rn is convex in many interesting problems like linear regression and support
vector machines.

Proposition 3. If Z is a binary random variable, which is coded as either Z ∈ {0, 1} or
Z ∈ {±1}, then the constraints in the FO problem (2.17) for m ≥ 2 are redundant with the
corresponding constraint for m = 1.

This result says that when Z is binary, then the hierarchy simplifies and we only need
to consider applying the level-(1, h) FO problems. We will use this simplification when
conducting numerical experiments in Chapters 3 and 4.

2.5 Statistical Consistency of FO Hierarchy

We prove in this section that the sample-based constraints of the FO problem (2.17) are in
fact statistically well-behaved analogs of the independence constraint in (2.9).
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Concentration of Tensor Moment Estimates

We begin by defining several multilinear operators. We define the empirical operators

ϕ̂m,q(B1, . . . , Bq) = En
(
Z⊗m

⊗q
k=1(BkΩ)

)
ν̂m,q(B1, . . . , Bq) = En

(
Z⊗m

)
⊗ En

(⊗q
k=1(BkΩ)

) (2.21)

and the expected operators

ϕm,q(B1, . . . , Bq) = E
(
Z⊗m

⊗q
k=1(BkΩ)

)
νm,q(B1, . . . , Bq) = E

(
Z⊗m

)
⊗ E

(⊗q
k=1(BkΩ)

) (2.22)

As a slight simplification of notation, when the argument of these multilinear operators is
(B) we take that to mean the argument is (B, . . . , B). We can thus identify these operators
with terms in the FO problem (2.17): The ϕ̂m,q(B) and ν̂m,q(B) are precisely the terms
appearing in the constraints.

Proposition 4. If Assumptions 1 and 2 hold, then we have

P
(
‖ϕ̂m,q − ϕm,q‖◦ > Rm,q[n] + γ

)
≤ 2 exp

(
− nγ2

64pqα2m+2ρq

)
(2.23)

for Rm,q[n] = 8αm+ρqpq/2
√

dp log(1+4q)+m log r+q log d
n

.

Proof. We use a chaining argument. Suppose {ti}Ni=1 is a 1
2q

covering of Sdp−1, and note

N ≤ (1 + 4q)dp by the volume ratio bound [254]. Define Ti = M(ti) ∈ Rd×p. Let Pq be the
set of all permutations of [q], and let

Φ(B1, . . . , Bq) = 1
q!

∑
π∈Pq

(
ϕ̂m,q(Bπ1 , . . . , Bπq)− ϕm,q(Bπ1 , . . . , Bπq)

)
. (2.24)

Observe that by construction: Φ(·, . . . , ·) is symmetric, and it satisfies the identity Φ(B) =
ϕ̂m,q(B)− ϕm,q(B). Now consider the telescoping sum

Φ(B) = Φ(Ti) +
∑q

k=1 Φ(

q−k︷ ︸︸ ︷
B, . . . , B,B − Ti,

k−1︷ ︸︸ ︷
Ti, . . . , Ti). (2.25)

Recall ‖W (Ti)‖2 = 1 and ‖W (B−Ti)‖2 ≤ 1
2q

for W (B) ∈ Sdp−1. Since ‖ · ‖∗ is a subordinate

norm, we have ‖Φ‖◦ ≤ ‖Φ(Ti)‖+
∑q

k=1
1
2q
‖Φ‖∗. But note that Φ(·, . . . , ·) is symmetric, and

so ‖Φ‖◦ = ‖Φ‖∗ [18, 37]. Thus we have ‖Φ‖◦ ≤ 2‖Φ(Ti)‖. But by definition of the tensor
norm ‖ · ‖ we have

‖Φ(Ti)‖ = max
uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣ (2.26)

for uk ∈ Er, vk ∈ Ed; where Ed = {x ∈ {0, 1}d : ‖x‖1 = 1}. So it holds that

‖Φ‖◦ ≤ 2 max
i,uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣ (2.27)
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for i ∈ [N ], uk ∈ Er, vk ∈ Ed. Next consider any s ∈ R, and observe that

E exp
(
s‖Φ‖◦

)
≤ E exp

(
2s max

i,uk,vk

∣∣〈Φ(Ti),
⊗m

k=1 uk
⊗q

k=1 vk
〉∣∣)

≤ 2Nrmdq max
i,uk,vk

E exp
(
2s
〈
Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk

〉) (2.28)

We seek to bound the term on the right-hand side. Towards this end, note ‖BΩi‖ ≤√
p‖W (B)‖2‖Ωi‖ ≤

√
pαρ by the Cauchy-Schwarz inequality and Assumption 2. This means

that for Si =
〈
Z⊗m(TiΩ)⊗q,

⊗m
k=1 uk

⊗q
k=1 vk

〉
we have

∣∣Si∣∣ ≤ αm+ρqpq/2. Next observe that

E exp
(
2s
〈
Φ(Ti),

⊗m
k=1 uk

⊗q
k=1 vk

〉)
≤
(
E exp

(
4εsSi
n

))n
=
(
E
∑∞

k=0
1
k!

(
4εsSi
n

)k)n
=
(
E
∑∞

k=0
1

(2k)!

(
4sSi
n

)2k)n
≤
(∑∞

k=0
1
k!

(
16s2pqα2m+2ρq

n2

)k)n
= exp

(
16s2pqα2m+2ρq

n

)
(2.29)

where the first line follows by a stochastic symmetrization step (i.e., Jensen’s inequality,
followed by multiplication with i.i.d. Rademacher random variables ε having distribution
P(ε = ±1) = 1

2
, and concluded by using the triangle inequality), the third line follows since

ε is a symmetric random variable, and the fourth line follows by replacing (2k!) with k! and
substituting the absolute bound on |Si|. Combining the above with (2.28) gives

E exp
(
s‖Φ‖◦

)
≤ 2(1 + 4q)dprmdq exp

(
16s2pqα2m+2ρq

n

)
. (2.30)

Using the Chernoff bound gives

P
(
‖Φ‖◦ > t

)
≤ 2(1 + 4q)dprmdq inf

s∈R
exp

(
16s2pqα2m+2ρq

n
− st

)
= 2(1 + 4q)dprmdq exp

(
− nt2

64pqα2m+2ρq

) (2.31)

The result now follows by choosing

t =
√

64pqα2m+2ρq

n

(
dp log(1 + 4q) +m log r + q log d

)
+ γ2 (2.32)

and accordingly simplifying the resulting expression.

Remark 7. Though a similar proof was used in [254] for random matrices and in [244]
for random tensors, we use a stronger argument that is adapted to our setup and results
in a faster convergence rate where some terms are logarithmic that would otherwise be
polynomial with a weaker argument. We use a stronger chaining argument than [244, 254]
by using a telescoping sum (2.25) that reduces cross terms. We use a tensor symmetrization
construction (2.24) that allows us to exploit Banach’s theorem [18, 37]. We achieve better
constants than [254] by more carefully bounding our moment series expansion.
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Proposition 5. If Assumptions 1 and 2 hold, then we have

P
(
‖ν̂m,q − νm,q‖◦ > 2Rm,q[n] + 2γ

)
≤ 4 exp

(
− nγ2

64pqα2m+2ρq

)
. (2.33)

for Rm,q[n] = 8αm+ρqpq/2
√

dp log(1+4q)+m log r+q log d
n

.

Proof. We cannot prove the result directly as in Proposition 4 because Eν̂m,q(B) 6= νm,q(B),
whereas the proof of Proposition 4 used the fact that Eϕ̂m,q(B) = ϕm,q(B) in the sym-
metrization step of (2.29). We instead have to use an indirect approach to prove this result.
We begin by noting ϕ̂m,0(B) = En(Z⊗m), ϕm,0(B) = E(Z⊗m), ϕ̂0,q(B) = En((BΩ)⊗q), and
ϕ0,q(B) = E((BΩ)⊗q). For any W (B) ∈ Sdp−1 we have that ‖BΩi‖ ≤

√
p‖W (B)‖2‖Ωi‖ ≤√

pαρ by the Cauchy-Schwarz inequality and Assumption 2. This means that ‖ϕ̂m,0‖◦ ≤ αm

and ‖ϕ0,q‖◦ ≤ αρqpq/2. Now consider

‖ν̂m,q − νm,q‖◦ = ‖ϕ̂m,0 ⊗ ϕ̂0,q − ϕm,0 ⊗ ϕ0,q‖◦
≤ ‖ϕ̂m,0‖◦ · ‖ϕ̂0,q − ϕ0,q‖◦ + ‖ϕ0,q‖◦ · ‖ϕ̂m,0 − ϕm,0‖◦
≤ αm‖ϕ̂0,q − ϕ0,q‖◦ + αρqpq/2‖ϕ̂m,0 − ϕm,0‖◦

(2.34)

Then the union bound implies

P
(
‖ν̂m,q − νm,q‖◦ ≤ 2Rm,q[n] + 2γ

)
≤

1− P
(
αm‖ϕ̂0,q − ϕ0,q‖◦ > Rm,q[n] + γ

)
+

− P
(
αρqpq/2‖ϕ̂m,0 − ϕm,0‖◦ > Rm,q[n] + γ

)
(2.35)

for Rm,q[n] = 8αm+ρqpq/2
√

dp log(1+4q)+m log r+q log d
n

, which upon using (2.23) from Proposi-

tion 4 gives (2.33), which is the desired result.

Feasible Set Consistency

We are now in a position to study the constraints of the FO problem (2.17). Towards this
goal, we first define

S =
{
B ∈ B : BΩ ⊥⊥ Z

}
. (2.36)

This is the feasible set of (2.9), which chooses an optimal fair decision rule when the under-
lying distributions are exactly known, for a decision rule that satisfies Assumption 1. We
next define the family of random sets

Ŝg,h =
{
B ∈ B :

∥∥ϕ̂m,q(B) − ν̂m,q(B)
∥∥ ≤ ∆m,q, for (m, q) ∈ [g] × [h]

}
. (2.37)

This is simply the feasible set of the level-(g, h) FO problem (2.17).

Proposition 6. The sets S and Ŝg,h are closed, under Assumption 1.
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Proof. We first prove the result for S. Consider any convergent sequence Bk ∈ Rd×p with
Bk ∈ S and limk Bk = B0. Theorem 1 says for all k we have

ϕm,q(Bk) = νm,q(Bk), for m, q ≥ 1. (2.38)

But the ϕ and ν are continuous since they are multlinear operators on Euclidean space. This
means limk ϕm,q(Bk) = ϕm,q(B0) and limk νm,q(Bk) = νm,q(B0) for m, q ≥ 1. As a result we
have

ϕm,q(B0) = νm,q(B0), for m, q ≥ 1, (2.39)

which by Theorem 1 implies B0 ∈ S. This proves that S is closed.
The proof for Ŝg,h is a simple modification of the above argument. Consider any conver-

gent sequence Bk ∈ Rd×p with Bk ∈ Ŝg,h and limk Bk = B0. By definition of Ŝg,h we have for
all k that ∥∥ϕ̂m,q(Bk)− ν̂m,q(Bk)

∥∥ ≤ ∆m,q, for (m, q) ∈ [g]× [h]. (2.40)

But the ϕ̂ and ν̂ are continuous since they are multlinear operators on Euclidean space, and
so the normed function

∥∥ϕ̂m,q(B)− ν̂m,q(B)
∥∥ is also continuous. As a result we have∥∥ϕ̂m,q(B0)− ν̂m,q(B0)

∥∥ = limk

∥∥ϕ̂m,q(Bk)− ν̂m,q(Bk)
∥∥ ≤ ∆m,q,

for m, q ≥ 1. (2.41)

This means B0 ∈ Ŝg,h by definition. This proves that Ŝg,h is closed.

The sequence of random sets Ŝg,h is technically difficult to study because each random
set is defined by the intersection of many random constraint inequalities, with the number
of these random constraints increasing towards infinity. There is a more subtle technical
difficulty that needs to be addressed. The issue is that when intersecting a sequence of sets,
the intersection of the sequence terms generally does not converge to the intersection of the
limiting sets [14, 173]. The next example demonstrates this phenomenon in a deterministic
setting, and it provides some insight into how the situation can be addressed through a
carefully designed regularization approach.

Example 3. Fig. 2.1 provides a visualization of this example. Let us first define Cn =
[−1,− 1

n
] and Dn = [ 1

n
, 1], which each specify a deterministic sequence of compact sets. Then

we have that limnCn = [−1, 0] =: C0 and that limnDn = [0, 1] =: D0. However, note
that Cn

⋂
Dn = ∅. This means limnCn

⋂
Dn = ∅ 6= C0

⋂
D0 = {0}. Now suppose we

carefully regularize these sequences of sets. Specifically consider the regularized sequence of
deterministic, compact sets C ′n = [−1,− 1

n
+ ∆n] and D′n = [ 1

n
− ∆n, 1] for ∆n = 2

n
, where

we think of the ∆n as regularizing by inflating the sets. Clearly this choice of regularization
goes to zero since limn ∆n = 0. More importantly, we now have C ′n

⋂
D′n = [− 1

n
, 1
n
]. This

means we have limnC
′
n = C0 and limnD

′
n = D0 with limnC

′
n

⋂
D′n = {0} = C0

⋂
D0.

The above example was deterministic, and it may not initially be clear whether such
behavior is an issue for our random setting. The next example demonstrates a situation
where this non-convergence occurs for Ŝg,h.
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(a) Unregularized Set Intersections (b) Regularized Set Intersections

Figure 2.1: The left shows how the intersection of a sequence of sets may not converge to the
intersection of the limiting sets. The right shows how regularization of the sequence of sets
can help to ensure that the intersection of the regularized sets converges to the intersection
of the limiting sets.

Example 4. Consider a setting where B ∈ R and the distributions are X ∼ Ber(x) and
Z ∼ Ber(z) with X ⊥⊥ Z. We assume that x ∈ (0, 1) and z ∈ (0, 1) to prevent degeneracies
in this example. In this setup S = B. Now observe that (Zi)

m = Zi and (Xi)
q = Xi for

(m, q) ≥ 1 since Xi, Zi ∈ {0, 1}. This means the (m, q) ≥ 1 constraints in Ŝg,h for ∆m,q = 0
are∣∣( 1

n

∑n
i=1(Zi)

m(Xi)
q − 1

n

∑n
i=1(Zi)

q · 1
n

∑n
i=1(Xi)

q
)
Bq
∣∣ =∣∣( 1

n

∑n
i=1 ZiXi − 1

n

∑n
i=1 Zi ·

1
n

∑n
i=1Xi

)
Bq
∣∣ = 0. (2.42)

This means Ŝg,h = B whenever En = { 1
n

∑n
i=1 ZiXi = 1

n

∑n
i=1 Zi ·

1
n

∑n
i=1Xi} occurs, and that

Ŝg,h = ∅ otherwise. And so trivially by the definition of Ŝg,h we have as-lim supn Ŝg,h ⊆ B.
If we recall the classical setting of a 2 × 2 contingency table, this event En is equivalent to
having exact equality between a marginal and cross-term in the contingency table. As a
result, we consider a test statistic inspired by the Pearson test for independence

Tn = n ·
(
En(ZX)− En(Z)En(X)

)2
. (2.43)

Clearly by its definition, we have that Tn = 0 if and only if En holds. Also, a straightforward
calculation gives

E(Tn) = (n−1
n

)(zx)(1− z − x− zx). (2.44)

Note that E(Tn) > 0 since we assumed x, z ∈ (0, 1), and note that E(Tn) is monotonically
increasing towards limn E(Tn) = (zx)(1−z−x−zx) > 0. Now using McDiarmid’s inequality
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we get for any t > 0 that

P(En) ≤ P(Tn ≤ E(Tn)− t) ≤ exp(−nt2/8). (2.45)

Choosing t = (zx)(1 − z − x − zx)/2, the Borel-Cantelli lemma implies En cannot occur

infinitely often. Hence we must have as-lim infn Ŝg,h = ∅ + S.

Example 3 provides the key intuition for how potential non-convergence of Ŝg,h, as demon-

strated in Example 4, can be resolved. If we can regularize the sets Ŝg,h by sufficiently in-
flating them in such a way that the amount of inflation decreases with n, then we may be
able to ensure the almost sure stochastic convergence of Ŝg,h to S. In fact, the notation of
Example 3 was chosen to be suggestive of how we will perform this regularization: We will
purposefully keep the ∆m,q > 0 while allowing them to shrink towards zero.

More broadly, the FO problem (2.17) has two types of tuning parameters, namely the
(g, h) that controls the number of moment constraints and the ∆m,q that controls the strict-
ness of the moment constraint. This gives us considerable flexibility when studying asymp-
totic properties. A choice of faster rates requires knowledge of an appropriate value of α
from Assumption 2. An alternative approach is to choose slower rates that have the benefit
of working for any value of α. Here, we will take the latter approach.

Theorem 3. Suppose that ∆m,q = O(n−1/4) and g = h = O(log log n). If Assumptions 1, 2,

and 3 hold, then as-limn Ŝg,h = S.

Proof. For the first part of the proof we will show as-lim infn Ŝg,h ⊇ S. Indeed, suppose this
is not true. Then there exists B0 ∈ S and an open neighborhood N ⊆ B of B0 such that
N
⋂
Sg,h = ∅ infinitely often (Theorem 4.5 of [212]). We can rewrite one of these events as{

N
⋂
Sg,h = ∅

}
=
⋃
m∈[g]

⋃
q∈[h]

{
inf
B∈N
‖Ξ̂m,q(B)‖ > ∆m,q

}
, (2.46)

where for convenience we define the multilinear operators Ξm,q = ϕm,q − νm,q, Ξ̂m,q = ϕ̂m,q −
ν̂m,q, Φm,q = ϕ̂m,q−ϕm,q, and Ψm,q = ν̂m,q−νm,q. Because Theorem 1 can be rewritten under
the assumptions of this theorem as

sup
B∈S
‖ϕm,q(B)− νm,q(B)‖ = 0 for m, q ≥ 1, (2.47)

application of the triangle inequality yields

‖Ξ̂m,q(B0)‖ ≤ ‖Ξm,q(B0)‖+ ‖Φm,q(B0)‖+ ‖Ψm,q(B0)‖
≤ λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦

(2.48)

Let Gm,q[n] = (1 + log n)λq/2Rm,q[n], and note that Gm,q[n] = o(n−1/4) for (m, q) ∈ [g] × [h]
under the hypothesis of this theorem. This means that for all n sufficiently large, the union
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bound gives us that

P
(
N
⋂
Sg,h = ∅

)
≤
∑

m∈[g]

∑
q∈[h] P

(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+∑

m∈[g]

∑
q∈[h] P

(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤ O((log log n/n)2)

(2.49)

where the last line used Propositions 4 and 5, along with the relation that exp(− nγ2

64pqα2m+2ρq ) =

O(1/n2) for γ = log n·Rm,q[n]. Thus the Borel-Cantelli lemma saysN
⋂
Sg,h = ∅ only finitely

many times, which is a contradiction. This proves as-lim infn Ŝg,h ⊇ S.

For the second part of the proof we will show as-lim supn Ŝg,h ⊆ S. Indeed, suppose this

is not true. Then there exists B0 ∈ lim supn Ŝg,h and a closed neighborhood N ⊆ B of B0

such that N
⋂
S = ∅ and N

⋂
Sg,h 6= ∅ infinitely often (Theorem 4.5 of [212]). But Theorem

1 implies there exists some m, q ≥ 1 such that we have

ζ := inf
B∈N
‖ϕm,q(B)− νm,q(B)‖ > 0. (2.50)

We will keep m, q fixed at these values for the remainder of the proof. Now note that for
one of the events N

⋂
Sg,h 6= ∅ we have{
N
⋂
Sg,h 6= ∅

}
⊆
{

inf
B∈N
‖Ξ̂m,q(B)‖ ≤ ∆m,q

}
. (2.51)

Application of the triangle inequality yields

ζ = inf
B∈N
‖Ξm,q(B)‖ ≤

inf
B∈N
‖Ξ̂m,q(B)‖+ sup

B∈N
‖Φm,q(B)‖+ sup

B∈N
‖Ψm,q(B)‖ ≤

inf
B∈N
‖Ξ̂m,q(B)‖+ λq/2‖Φm,q‖◦ + λq/2‖Ψm,q‖◦. (2.52)

Let Gm,q[n] = (1 + log n)λq/2Rm,q[n], and note that Gm,q[n] = o(n−1/4) and that ∆m,q = o(1)
under the hypothesis of this theorem. For all n sufficiently large, we have ζ −∆m,q ≥ ζ/2 ≥
3Gm,q[n]. Hence the union bound gives

P
(
N
⋂
Sg,h 6= ∅

)
≤ P

(
λq/2‖Φm,q‖◦ > Gm,q[n]

)
+

P
(
λq/2‖Ψm,q‖◦ > 2Gm,q[n]

)
≤ O(1/n2)

(2.53)

where the last line used Propositions 4 and 5, along with the relation that exp(− nγ2

64pqα2m+2ρq ) =

O(1/n2) for γ = log n·Rm,q[n]. Thus the Borel-Cantelli lemma saysN
⋂
Sg,h 6= ∅ only finitely

many times, which is a contradiction. This proves as-lim supn Ŝg,h ⊆ S.
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Solution Set Consistency

Next consider the solution set

Ôg,h = arg min
B

{
Rn(B · ω(x, z))

∣∣ B ∈ Ŝg,h} (2.54)

for the level-(g, h) FO problem (2.17). Similarly, consider the solution set

O = arg min
B

{
R(B · ω(x, z))

∣∣ B ∈ S} (2.55)

for the optimization problem (2.9), which chooses an optimal fair decision rule when the
underlying distributions are exactly known.

Our next result shows that solving the FO problem (2.17) provides a statistically consis-
tent approximation to solving the optimization problem (2.9), and we state the result using

the solutions sets Ôg,h and O defined above.

Theorem 4. Suppose that ∆m,q = O(n−1/4) and g = h = O(log log n). If Assumptions 1–4

hold, then as-lim supn Ôg,h ⊆ O.

Proof. First consider the indicator function Γ(B, Ŝg,h). Combining our Theorem 3 with

Proposition 7.4 of [212] gives as-e-lim Γ(·, Ŝg,h) = Γ(·,S) relative to Rd×p. Next we claim

as-lim Γ(·, Ŝg,h) = Γ(·,S) relative to Rd×p. Since Proposition 6 says the Ŝg,h are closed, the
remark after Theorem 7.10 of [212] implies it is sufficient to show that for every B0 ∈ S we

have B0 /∈ Ŝg,h only a finite number of times. A similar argument to the first part of the
proof for Theorem 3 can be used to show this, and so we omit the details.

Next we note that the level-(g, h) FO problem (2.17) can be written as minB hn(B) +

Γ(B, Ŝg,h), and the optimization problem (2.9) can be written as minB h(B) + Γ(B,S). Now
using Theorem 7.46 of [212] gives us that

as-e-lim
(
hn(·) + Γ(·, Ŝg,h)

)
= h(·) + Γ(·,S). (2.56)

The result now follows by direct application of Proposition 7.30 of [212].

Remark 8. If the optimization problem (2.9) is infeasible, then we will have O = ∅ and

as-lim supn Ôg,h = ∅, with Ôg,h 6= ∅ only finitely many times.

Remark 9. We can guarantee under the case of additional assumptions that as-lim supn Ôg,h 6=
∅, with Ôg,h = ∅ only finitely many times. In particular, it can be shown that this occurs
when Assumption 5 holds and O 6= ∅. If O consists of a single point, then it can also be
shown that as-limn Ôg,h = O.

The conclusion “as-lim supn Ôg,h ⊆ O” of the above theorem says all cluster points (i.e.,
convergent subsequences) as n increases of optimal solutions to the sample-based FO problem
(2.17) belong to the set of optimal solutions to the problem (2.9) that we initially set out to
solve using a sample-based approach. A stronger result is generally not true [212]; however,

as mentioned above it can be shown that if O is singleton then we have as-limn Ôg,h = O.
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2.6 Approximate Independence

Let U ∈ Rp and V ∈ Rd be random vectors, and consider the quantity

M(U ;V ) = sup
m,q≥1

∥∥E(U⊗mV ⊗q)− E
(
U⊗m

)
⊗ E

(
V ⊗q

)∥∥
(m+ q)!

. (2.57)

We call the quantity M(U ;V ) the mutual majorization of U and V , and the choice of this
name is meant to draw a direct analogy to mutual information.

Proposition 7. The mutual majorization is nonnegative M(U ;V ) ≥ 0, symmetric M(U ;V ) =
M(V ;U), and satisfies M(U ;V ) ≤ ε if and only if∥∥E(U⊗mV ⊗q)− E

(
U⊗m

)
⊗ E

(
V ⊗q

)∥∥ ≤ ε · (m+ q)! for m, q ≥ 1. (2.58)

The mutual majorization also characterizes independence in the sense that for bounded mul-
tivariate random variables U and V , we have M(U ;V ) = 0 if and only if U and V are
independent.

Proof. The first three claims are obvious from the definition of mutual majorization, and so
we focus on the fourth claim. If U and V are independent, then M(U ;V ) = 0 by Theorem
1. To show the converse, we prove its contrapositive: If U and V are dependent, then
M(U ;V ) > 0 since Theorem 1 implies ‖E

(
U⊗mV ⊗q

)
− E

(
U⊗m

)
⊗ E

(
V ⊗q

)∥∥ > 0 for some
m, q ≥ 1.

The implication of this result is that we can use mutual majorization to quantify ap-
proximate independence. We thus define an optimization problem that chooses an optimal
ε-approximately-fair decision rule by solving

δ∗(x, z) ∈ arg minδ(·,·)
{
R(δ)

∣∣ M(δ(X,Z);Z) ≤ ε
}
. (2.59)

The level-(g, h) FO problem (2.17) with appropriate choice of ∆m,q is a statistically well-
behaved, sample-based approximation of the above problem. In order to be able to discuss
this, we first define the set

S(ε) =
{
B ∈ B : M(BΩ;Z) ≤ ε

}
(2.60)

and the solution set

O(ε) = arg min
B

{
R(B · ω(x, z))

∣∣ B ∈ S(ε)
}
. (2.61)

These are respectively the feasible set and solution set of the optimization problem (2.59),
which chooses an optimal ε-approximately-fair decision rule when the underlying distribu-
tions are exactly known.
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Theorem 5. Let ∆m,q = ε · (m + q)! + O(n−1/4) and g = h = O(log log n). If Assumption

1 holds, then S(ε) is closed. If Assumptions 2 and 3 also hold, as-limn Ŝg,h = S(ε). If

Assumption 4 also holds, as-lim supn Ôg,h ⊆ O(ε).

Remark 10. The proof is omitted because it is a straightforward modification of the proofs
for Proposition 6 and Theorems 3 and 4. The main difference in the modified proofs is the
use of (2.58) from Proposition 7.

Remark 11. Recall we already proved Ŝg,h is closed in Proposition 6.

2.7 Conclusion

We proposed an optimization hierarchy for fair statistical decision problems, which provides
a systematic approach to fair versions of hypothesis testing, decision-making, estimation,
regression, and classification. We showed that the FO hierarchy is general to many differ-
ent notions of fairness as well as many different forms of decisions, and has a high level of
flexibility in terms of the number of constraints that need to be added. We proved that
higher levels of this hierarchy asymptotically impose independence between the output of
the decision rule and the protected variable as a constraint in corresponding statistical de-
cision problems. A version of this hierarchy was also proposed that involved tuning fewer
hyperparameters. An important question that remains to be answered is how to tune the
hyperparameters in our hierarchy. Our theoretical results provide some guidance on how to
choose the level of the hierarchy and how to reduce the number of tuning parameters to just
one. However, further theoretical and empirical study is needed to better understand the
tuning process.
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Chapter 3

Fairness in Supervised Learning

3.1 Introduction

Supervised learning describes the process of learning a mapping between input-output pairs.
The development of this field reaches back to the pioneering works of Legendre in 1805
[150] and Gauss in 1809 [10] in developing the method of least squares for tracking the
motion of cosmic bodies, and subsequent progression and formalizations by Galton [97],
Yule [269], Pearson [199] and Fisher [91]. When the output is no longer continuous but
rather takes values in a countable set, this problem is referred to as classification, and
has been a key problem in statistical learning theory since Fisher’s original use of linear
discriminant functions [92]. Today, convex margin-based classification techniques such as
logistic regression and support vector machines (SVMs), which depend on thresholding a
linear “score” function, are workhorse algorithms that can quickly and easily be applied to
wide variety of use-cases. Indeed, such models benefit from small generalization error due to
the structural simplicity of the set of decision functions [22,250,251], and from computational
efficiency due to the existence of statistically-innocuous, convex surrogate loss functions that
can be easily optimized over [21].

The last decade has seen a resurgence of the use of Artificial Neural Networks (ANN),
also referred to as “deep-learning”, for various classification and prediction tasks, such as
image processing [140, 215], natural language processing [101, 200], automatic featurization
[137, 168], and reinforcement learning [153, 177]. Due to this, deep-learning models have
even begun gaining traction in more sensitive, societal contexts such as healthcare [128,157],
hiring [55, 230], and criminal justice [11, 253]. While these do not share in the beneficial
properties that arise from convex classifiers, they have been shown to outperform on many
key tasks, and so have inspired a contemporary push towards better understanding the
behavior of deep-learning models.

Problems of bias and unfairness are easy to conceptualize in the setting of supervised
learning (and particularly that of binary classification), as the “output” in each input-output
pair can map to a more or less socially-desirable outcome, thus imbuing the predictions of
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the model with significance beyond the limited scope of its statistical task. Accordingly,
the earliest studies that exposed bias in automated decision-making frameworks focused on
biased classifiers [11, 20]. Similarly, the first work in this fair machine learning also focused
on designing fair classifiers [45,48,109,270,271].

This chapter focuses on applications of the Fair Optimization (FO) hierarchy introduced
in Chapter 2 for supervised learning. In this, it makes three main contributions. First,
we reinterpret two fairness notions using receiver operating characteristic (ROC) curves,
which leads to a new visualization for classifier fairness. Second, we provide a number of
interpretations of the FO hierarchy for supervised learners. Third, we conduct numerical
experiments on real data to evaluate the efficacy of FO in a variety of supervised learning
settings, including fair SVM, fair linear regression and fair quantile regression applied to a
morphine-dosage case study.

Fairness Notions for Classifiers

Ensuring classifiers are fair requires quantifying their fairness. However, [94] and [134] showed
that no single metric can capture all intuitive aspects of fairness, and so any metric must
choose a specific aspect of fairness to quantify. Here, we consider arguably the two most
popular notions: disparate impact [45, 270, 276] and equal opportunity [77, 109]. Precise
definitions of these are given in Section 3.3. Interpretations are given that build on the
original definitions in Section 2.1. In most cases, the notions that we consider are defined for
only the output value of a margin classifier, meaning that the metrics are only considered
at one value of the threshold implicit in the process. On the other hand, we argue that it is
necessary to bound these metrics at all possible thresholding levels. We believe this is more
in-line with malicious usage of classifiers in which strategic choice of thresholds can be used
to practice discrimination, and will increase the robustness of fairness measures.

Algorithms to Compute Fair Classifiers

Several approaches have been developed to construct fair classifiers. Some [2,48,162,221,271]
compute transformations of the data to make it independent of the protected class. However,
these kinds of preprocessing approaches are necessarily blind to the ultimate usage of the
transformed data, and so share in the disadvantages of greedy approaches: They can be
too conservative and reduce predictive accuracy more than desired. Alternatively, post-
processing methods [109] modify classifiers post-hoc to reduce its accuracy with respect to
protected classes until fairness is achieved. Note that these methods are explicitly focused on
the output of the classifier at one thresholding level by design. Several techniques compute
a fair classifier via regularization methods [45, 66]; however, these also only apply at single
thresholding levels. The only method for convex classifiers we are aware of that tries to
compute a fair classifier for all thresholds is that of [270], which is a specific instance of the
FO hierarchy.
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Similar to the case for convex classifiers, fairness in deep-learning models has recently at-
tracted much attention. In some cases, regularization methods originally designed for convex
classification techniques may be extended to the deep-learning setting [125]. However, there
have been several techniques designed specifically for deep-learning applications. While some
of these take pre-processing approaches similar in spirit to those for convex classifiers [40], a
large number take an adversarial approach [27,80,163,272]. In general, these approaches use
a generative adversarial structure where a primary ANN is designed for the desired predic-
tion task, an ‘adversarial’ ANN is used to predict the protected class using the predictor’s
output, and a loss function is used to train these models simultaneously, such that the pre-
dictor obtains accurate predictions that cannot be used to reconstruct the protected data
using the adversary. The most similar work to ours is that of [44], which use an alternative
form of regularization for image labeling tasks. However, their method is tailored to their
considered task, while our method is much more general.

Outline

After describing the data and our notation in Section 3.2, we next define two fairness notions
and provide a new ROC visualization of fairness, along with further intuition, in Section 3.3.
Section 3.4 presents specific instances of the FO hierarchy developed in Chapter 2 to spe-
cific supervised learning problems of interest in this chapter, namely SVM, regression and
deep-learning classification. Section 3.5 then develops intuitions and interpretations largely
specific to these models, and Section 3.6 presents kernel versions of the models. Computa-
tional properties are discussed in Section 3.7. Penultimately, Section 3.8 conducts numerical
experiments using both synthetic and real datasets to demonstrate the efficacy of our ap-
proach in promoting fairness while preserving accuracy. These involve SVM, regression and
deep classification problems. This section is finished with two case studies in automated
dosage: one for one-time Morphine injections, and one for schedule of Heparin dosage using
a “fair LSTM”. Finally, Section 3.9 concludes.

3.2 Preliminaries

Our data consists of 3-tuples (X, Y, Z) where X ∈ Rp are predictors, Y ∈ Y ∈ R are
labels, and Z ∈ Z label a protected class. In many cases in this chapter, we will have
either Y = {±1} or Z = {±1}, to denote the simplified context of binary classification or
a situation with only two protected classes. Let (x)+ = max{x, 0}. When it is necessary
to denote several observations of Y or X concatenated into a vector or matrix, we use
the notation ~Y or ~X; this means that ~Y ∈ Rn is a vector such that the i’th element is
the realization Yi, and ~X ∈ Rn×p is a matrix such that the i’th row is the realization Xi.
Furthermore, the i’th element of vector ~Y is denoted ~Yi, and the i’th row of matrix ~X is
denoted ~Xi.
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Next let K(x, x′) : Rp × Rp → R be a kernel function, and consider the notation

K( ~X, ~X ′) =

K(X1, X
′
1) K(X1, X

′
2) · · ·

K(X2, X
′
1) K(X2, X

′
2) · · ·

...
...

. . .

 (3.1)

Recall that the essence of the kernel trick is to replace XT
i Xj with K(Xi, Xj), and so the

benefit of the matrix notation given in (3.1) is that it allows us to replace ~X ( ~X ′)T with

K( ~X, ~X ′) as part of the kernel trick.
Last, we define some additional notation. Let [n] = {1, . . . , n}, and note 1(u) is the

indicator function. A positive semidefinite matrix U is denoted U � 0. If U, V are vectors
of equal dimension, then the notation U ◦V refers to their element-wise product: (U ◦V )i =
Ui · Vi. Also, e is the vector whose entries are all 1.

3.3 Visualization of Fairness

In this section, we discuss popular quantifications of fairness. For expository reasons, we
focus initially on a binary classifier.

Disparate Impact

One popular notion of fairness is that predictions of the label Y are independent of the pro-
tected class Z. This definition is typically stated [45,270,276] in terms of a single threshold,
though it can be generalized to multiple thresholds. We say that a classifier d(x, t), which
arises from thresholding a score function δ(x) at value t, has disparate impact (also referred
to as demographic parity) ∆ if∣∣P [d(X, t) = +1

∣∣Z = +1
]
− P

[
d(X, t) = +1

∣∣Z = −1
]∣∣ ≤ ∆, ∀t ∈ R. (3.2)

To understand this, note P
[
d(X, t) = +1

∣∣Z = +1
]

is the true positive rate when predict-
ing the protected class at threshold t, while P

[
d(X, t) = +1

∣∣Z = −1
]

is the false positive
rate when predicting the protected class at threshold t. So the intuition is that a classifier
has disparate impact level ∆ if its true positive and false positive rates with respect to its
ability to predict the protected class are approximately (up to ∆ deviation) equal at all
threshold levels.

Reinterpreted, reducing disparate impact, or imposing demographic parity, requires that
predictions of the classifier cannot reveal information about the protected class any better
(up to ∆ deviation) than random guessing. In this sense, it is equivalent to independence
between the output of d(X, t) and the protected variable Z at any value of t, and can be
interpreted as the Kolmogorov-Smirnov (KS) distance between the conditional distributions
of the score function underlying d, conditional on Z. Equivalently, having a disparate impact
level of ∆ is in fact equivalent to requiring that the ROC curve for the classifier d(X, t) in
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(a) Disparate impact at level ∆.
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(b) 80% Rule.

Figure 3.1: A visual representation of our notion of fairness. Here, the solid blue line is
the ROC curve for the Y label and the dotted red line the ROC curve for the protected Z
label. ∆ refers to the maximum distance of the latter from the diagonal, which represents a
perfect lack of predictability.

predicting Z is within ∆ of the line of no-discrimination, which is the line that is achievable
by biased random guessing. Figure 3.1a visualizes how disparate impact can be understood
using an ROC curve.

Relation to the 80% Rule

The Fair Employment Practice Commission (FEPC) of the State of California announced a
new regulation in 1971 termed the “80% rule”, which was designed to provide determination
guidelines for whether corporate selection systems led to disparate impact. This rule was
later instituted as a Title VII enforcement mechanism by the Department of Labor and
Department of Justice in 1978 [30]. The rule states that, if members of any group are less
than 80% as likely as those of any other group to be hired or otherwise achieve some desirable
outcome, then that outcome is sufficiently different from a random allocation to be labeled
as “disparate impact” [51].

Clearly, this amounts to requiring that

0.8·P
[
d(X, t) = +1

∣∣∣Z = +1
]
≤ P

[
d(X, t) = +1

∣∣∣Z = −1
]
≤ 1.25·P

[
d(X, t) = +1

∣∣∣Z = +1
]
,

(3.3)
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which cannot be easily stated through the lens of disparate impact as defined above, but
is closely related. It is further visualized in ROC form in fig. 3.1b. However, this can be
overly restrictive, particularly when dealing with lower-probability events. In fact, it could

be routinely violated due to simple statistical error. If we consider P
[
d(X, t) = +1

∣∣∣Z = z
]

as a function of z and t, we can consider the case where it has exponentially-shrinking tails
in t for both z = +1 and z = −1. In this case, minor empirical errors can cause the 80%
rule to be violated for small or large values of t.

Equalized Odds

Since disparate impact measures have been criticized as too strict [77,109], another notion of
fairness has been proposed in which predictions of the label Y are required to be independent
of the protected class Z conditional on the protected class (i.e. this holds for cases where
Y = +1 and for cases where Y = −1, separately). In this definition, we must interpret
Y = +1 as a better label than Y = −1; for instance, Y = −1 may be a loan default, while
Y = +1 is full repayment of a loan. This definition is typically stated [109] in terms of a
single threshold, though it can be generalized to multiple thresholds. We say that a classifier
d(X, t) has equalized odds (EO) with level ∆ if

∣∣P [d(X, t) = +1
∣∣Z = +1, Y = y

]
− P

[
d(X, t) = +1

∣∣Z = −1, Y = y
]∣∣ ≤ ∆,

∀t ∈ R, y ∈ {±1}. (3.4)

The definition of equalized odds takes a different approach to fairness by requiring that
the error rates of any classifier be similar among protected classes. To see this, note that

P
[
d(X, t) = +1

∣∣∣Z = z, Y = +1
]

is the true-positive rate among members of protected class

z, and P
[
d(X, t) = +1

∣∣∣Z = z, Y = −1
]

is the false-positive rate among members of protected

class z. This could make more sense in a case where the protected label Z is inextricably
linked to the target label, Y , or in cases where distorted base rates of one or more protected
class amplify statistical issues with disparate impact.

Reinterpreted, a form of intuition similar to that provided for disparate impact is that
equalized odds requires the false positive rates and true positive rates for a classifier to
be approximately (up to ∆ deviation) equal at all threshold levels for the protected class,
when conditioned on Y . Thus, equal opportunity requires that predictions of the classifier
cannot reveal information about the protected class any better (up to ∆ deviation) than
random guessing, conditioned on the true label. In cases where one specific true label is
more desirable than others, or where the costs to one type of error outweigh other types,
a relaxation of equalized odds is applicable. This is referred to as equal opportunity, and
consists of imposing only one of the constraints necessary for equalized odds (i.e. only for
the case when Y = +1).
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A substantial difference between the notions of equalized odds/equal opportunity and
disparate impact is the directional impact that they have on a classifier’s accuracy. The
classifier is largely limited in its accuracy by the relationship between Z and Y in the case of
disparate impact; if these two are highly correlated, then the restriction visualized in fig. 3.1a
will keep the accuracy of δ in predicting Y low as well. In the extreme case where they are
perfectly correlated, the only feasible classifier will essentially be a completely uninforma-
tive one. However, equalized odds only requires that the ROC curves of d in predicting
Y conditional on Z be approximately similar (this is apparent from the interpretation of
eq. (3.4) above). Notably, they could both be perfect classifiers without violating equalized
odds (or equal opportunity). In contrast to the notion of disparate impact, a randomized
classifier will not necessarily satisfy the notion of equalized odds [131]. Consider an example
where P [Y = +1|Z = +1] = 0.4 and P [Y = +1|Z = −1] = 0.6. Here, a random classifier
would have a true-positive rate of 0.4 for protected class Z = +1, but only 0.6 for protected
class Z = −1 (and the opposite for false-negatives). Thus, a highly-restrictive constraint on
disparate impact can push a classifier towards being uninformative, while a constraint on
equalized odds instead could be attained by randomizing to reduce informativeness for all
protected classes down to that of the protected class with the least informative classifier (in
a point-wise manner across all thresholds).

Extention to General Supervised Learning

In the above, we have used the simplistic case wherein Y and Z are both binary and univari-
ate. This may be easily generalized by extending the definitions give for disparate impact,
equalized odds, and equal opportunity to account for the expanded sets of possible values.
For example, this would mean extending disparate impact to requiring that

∣∣P [d(X, t) = y
∣∣Z = z1

]
− P

[
d(X, t) = y

∣∣Z = z2

]∣∣ ≤ ∆, ∀t ∈ R; y ∈ Y ; z1, z2 ∈ Z. (3.5)

In the case of continuous Y or Z, this can be computed by a simple discretization. This
is particularly helpful for situations like fair regression. Note that all of the main intuitions
developed throughout the previous subsections of this section still apply.

In important note should be made about the granularity of the set Z. If there are multiple
dimensions along which protected classes may be defined (i.e. race, gender, ethnicity, age,
etc.), it is important that any fairness metric be measured with respect to all combinations
of protected classes [129]. For example, ensuring a certain level of disparate impact with
regards to women vs. men and minorities vs. non-minorities does not enforce that same
level of fairness for minority women with respect to other sub-classes. In the FO formulation,
this is why we must consider the tensor product Z⊗m instead of simply using an entry-wise
product. This is exemplified in the following example.

Example 5. Consider a situation where there are two dimensions of protections: protections
based on ethnicity (A or B) and protections based on sex (M or F). Assume that the pop-
ulation breakdown is half of sex M and half of sex F, and 70% of ethnicity A and 30% of
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Ethnicity
A B Total

Gender
M 0.2 0.3 0.5
F 0.5 0.0 0.5

Total 0.7 0.3 1.0

Table 3.1: A simple example showcasing the possibility of “fairness gerrymandering”

ethnicity B, with no correlation between between ethnicity and sex. Now, consider a clas-
sifier that decides some desirable outcome (i.e. receiving a loan, being hired, etc.), with
the proportions of those receiving the positive outcome that come from each protected class
outlined in table 3.1. In this case, the classification satisfies a disparate impact level of zero
for both ethnicity and sex, but does clearly not do so when considering the interaction of
these two.

3.4 Models Considered

Throughout this chapter, we consider the FO-formulation of the standard soft-margin SVM,
with a single protected attribute with respect to which we want to be fair. Considering the
formulation introduced in Chapter 2, this amounts to a problem of the following form

min
λ

2
‖β‖2

2 + En

((
Y · βTX

)
+

)
s.t.

∣∣En (Zm · (βTX )q
)
− En (Zm) · En

(
(βTX )q

)∣∣ ≤ ∆m,q,

for (m, q) ∈ [g]× [h].

(3.6)

Here, β ∈ Rp defines the score function βTX (we assume for simplicity that one element
of X is a contant value of 1, associated with a shift term in the score function), and λ is
a standard regularization parameter. Note that this follows simply from the formulation
in Chapter 2 by setting B = β, w to the identity for inputs X and to the zero function
for inputs Z, and R(δ) =

(
Y · βTX

)
+

, in addition to the structural risk minimization term

λ‖β‖2
2. A straightforward generalization of theorem 4 implies that the consistency properties

of FO are not altered by the addition of a smooth, convex regularizer like this.
Alternatively, extending this to regression yields the form

min En

((
Y − βTX

)2
)

s.t.
∣∣En (Zm · (βTX )q

)
− En (Zm) · En

(
(βTX )q

)∣∣ ≤ ∆m,q,

for (m, q) ∈ [g]× [h].

(3.7)



CHAPTER 3. FAIRNESS IN SUPERVISED LEARNING 42

This formulation is convenient because it removes concerns about multi-dimensionality
of Z and outputs δ(X). Intuitions and interpretations provided in following sections will
use the FO SVM formulation (3.6) as an example, but are largely generalizable to other FO
formulations as well.

Finally, we also consider extensions of the FO hierarchy to deep-learning classifiers. In
this case, our R the a simple logistic loss function commonly used in deep-learning classifiers.
Since these lack the convenient convex formulation of the previous techniques, many of the
interpretations and intuitions given do not easily extend to this setting. Indeed, this reflects
the fact that there is currently little theory for the operation and learning process of deep-
learning models, as well as why stochastic gradient descent seems to work well on these
models. We are also required to include our fairness constraints as penalizations in the
objective when extending this to the deep-learning setting, as handling constraints is not
trivial. This is expanded on further in Section 3.8. While we are not able to provide
the same theoretical intuitions for the deep-learning formulation as we are with the SVM
or regression formulations, we provide experimental results to show that the same general
ability to improve fairness hold in practice.

3.5 Interpretations

In this section, we provide a series of interpretations for our fairness constraints. Specifically,
we view them as approximations to a bi-level programming problem, as implementations of
a Maximum A Posteriori (MAP) formulation, and as strategic modifications made in a dual
space. Finally, we briefly discuss comparisons between the FO hierarchy and the Lasserre
hierarchy, which is another optimization hierarchy that can be thought of as optimizing over
distributions.

Polynomial Approximations to Bi-level Programming

Note that the order-(1,1) FO for eq. (3.6) is

min
λ

2
‖β‖2

2 + En

((
Y · βTX

)
+

)
s.t.

∣∣βT (En(ZX)− En(Z) · En(X))
∣∣ ≤ ∆1,1.

(3.8)

This is equivalent to bounding the correlation between Z and the score function (element-
wise in Z), and reflects a popular approach in the in-training fairness literature [25, 191,
261, 270]. [191] also show that it has an interesting interpretation in the context of bi-level
optimization. Specifically, if βTX is assumed to be bounded over some range [−M,M ],
then the order-(1,1) FO constraint is the convex relaxation that arises from upper- and
lower-bounding the indicator functions implicit in eq. (3.2) with linear functions of the form
ubound(x) = 1

M
x+ 1 and lbound(x) = 1

M
x, respectively. Similarly, second-order constraints

can be thought of as bounds of the form
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max

{
1

8
− 1

2M

(
x− M

2

)2

, −1

8
+

1

2M

(
x+

M

2

)2
}
≤ 1{x ≥ 0}

≤min

{
9

8
− 1

2M

(
x− M

2

)2

,
7

8
+

1

2M

(
x+

M

2

)2
}

Higher-order constraints can similarly be translated to consecutively tighter higher-order
polynomial bounds on the disparate-impact constraint 3.2. While these bounds, beyond
the linear bounds, are no longer convex, they are more easily handled through existing
optimization techniques than the original infinite-dimensional fairness constraint requiring
independence.

Information Projections

In the case where a single predictions is made with binary protected attribute, we present
a result that bounds the bias of a predictor. This result provides a guarantee of fairness in
terms of the distance of the resulting conditional distributions of the activation function to
the exponential family of distributions. Here, KL refers to the Kullback-Liebler divergence.

Theorem 6. Let Z be a binary protected attribute, and let P+ and P− be the distributions
of δ(X)|Z = +1 and δ(X)|Z = −1 for some univariate function δ such that EP+ (δ(X)q) =
EP− (δ(X)q) for 1 ≤ q ≤ h. Furthermore, let Q be the member of the exponential family of

distributions with sufficient statistics T (w) = [wq]hq=1 and such that the first h moments of
Q are the equal to those of P+ and P−. Then, the disparate impact of δ, KS(δ), is bounded
by:

KS(δ) ≤
√

1

2
(KL(P+||Q) +KL(Q||P−)). (3.9)

Remark 12. This result implies that we can obtain better guarantees on fairness the closer
our distributions P+ and P− end up being to the exponential family of distributions. Fur-
thermore, increasing the number of parameters used to define a subset of the exponential
family of distributions leads to a larger subset; SinceQ is also a minimizer of KL(P+||Q), this
intuitively implies that Theorem 6 will become tighter as the number of fairness constraints
is increased.

Proof. First, note that the left-hand-side of eq. (3.9) can be upper-bounded by:

max
t∈R
|P(δ(X) > t|Z = +1)− P(δ(X) > t|Z = +1)|. (3.10)

This follows from the fact that any classification decision is simply a thresholding of an
activation function. Note, then, that eq. (3.10) merely describes the Total Variation distance
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between P+ and P−. By Pinsker’s inequality, this can be upper-bounded by
√

1
2
KL(P+||P−).

Finally, it remains to show that KL(P+||P−) ≤ KL(P+||Q)+KL(Q||P−). This follows from
the fact that Q is the information projection of P− onto the linear space of distributions
whose first h moments match those of P− (in fact, it holds with equality) [189,255].

Maximum A Posteriori Estimation

Just as a many standard statistical learning methods can be interpreted through the lens of
MAP estimation, FO can be understood as a Bayesian estimation method that takes advan-
tage of exogenously-known relationships amongst variables. Consider a model Y = δ(X)+ε,
where (X, Y ) has some joint distribution fX,Y and conditional distribution fY |X(y|x), and
ε is a noise term for which we know the distribution. Furthermore, suppose the existence
of a protected attribute Z with distribution fZ such that it is exogenously known that
fY,Z|X(y, z|x) = fY |X(y|x)fZ(z)∀x, y, z. By the tower property and Bayes’ Theorem,

P (δ|Y,X) = EZ

[
P (Y |δ,X, Z)P (δ|X,Z)

P (Y |X,Z)

]
. (3.11)

The relationship between Z and X, Y would motivate the choice of P (δ|X,Z) such that
δ(X) ⊥ Z to maximize the overall likelihood term P (δ|Y,X). This is precisely the fairness
constraint 3.2. This means that P (Y |δ,X, Z) = P (Y |δ,X), and so we re-obtain the standard
MAP, P (δ|Y,X) ∝ P (Y |δ,X)P (δ|X).

SVM Duality

MAP interpretations of SVM are not trivial [103,236], so we also provide intuition for fairness
constraints in terms of the dual formulation of SVM. Consider the order-(1,1) FO SVM,
parametrized by hyperparameter λ controlling the `2 regularization term and with ∆1,1 = 0.
For simplicity, let φ = En(ZX) − En(Z) · En(X). Then, the fairness constraint may be
dualized with associated dual variable γ, and as such may be written as

min
λ

2
‖β‖2

2 + En

((
Y · βTX

)
+

)
+ γ · βTφφTβ.

Standard applications of Lagrangian duality for SVM show that, in the case of uncon-
strained SVM, the optimal separator β can be written as a weighted combination

∑n
i=1 siYiXi

for some variables 0 ≤ si ≤ 1
λn

[250]. As γ
λ
→ ∞, the matrix I − γ/λ

1+γ/λ
φφT approaches the

projection matrix I − φφT. Then, by Lagrangian duality, we have that the optimality con-
dition

(
λI + γφφT

)
β =

∑n
i=1 siYiXi implies

β =
(
λI + γφφT

)−1∑n
i=1 siYiXi

= 1
λ

(
I − γ/λ

1+γ/λ
φφT

)∑n
i=1 siYiXi.
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Effectively, as γ grows with respect to λ, the φ-component of the support vectors that
comprise β are increasingly disregarded. Note that, by its design, φ represents the corre-
lations between Z and each of the covariates in X. So, the component that would most
increase the first-order interaction term, or correlation, is steadily minimized by increasing
γ. Similar intuition can be extended to higher-order interaction terms.

Lasserre Hierarchy

Sum of Squares (SoS) optimization, also known as the Lasserre hierarchy [7,146], is another
hierarchy of convex optimization problems aimed at solving polynomial optimization prob-
lems. In effect, the hierarchy attempts to obtain reconstructions of potentially non-convex
polynomials as sums of squares of other polynomials (referred to as sum-of-squares proofs),
thereby proving non-negativity (this result is referred to as the Positivstellensatz [139]).
Higher orders of the hierarchy include higher-order polynomials through which to construct
these SoS proofs. Interestingly, the dual problem to this is to obtain distribution-like con-
structs called pseudodistributions, which act like distributions over the feasible region and
effectively certify the non-inclusion of a polynomial in the set of sum-of-squares polynomi-
als. Notably, this is done by explicitly treating the moments of the variables under such
a pseudodistribution as optimization variables, and it can be shown that these pseudodis-
tributions are real distributions when enough moments are considered in the optimization
problem. While the Lasserre hierarchy describes a critically different paradigm from FO, it
has ideological connections which warrant mention. While FO optimizes over distributions
(in particular, that of δ(X,Z)) to satisfy some moment bounds, SoS can be understood to
optimize over moments to (ultimately) obtain a conforming distribution. As such, critical
results in SoS may have analogs in, and can lend inspiration for, further work in FO. For
example, much work has been done to prove the effectiveness of the Lasserre hierarchy in
providing approximate solutions which can then be rounded to exact solutions [19,113,203],
and the tools arising from this analysis can prove helpful in analyzing similar issues in the
framework of FO.

3.6 Kernel Transformations

We note that FO generalizes easily to kernel methods. In this section, we consider the
particular context of SVM, although equivalent extensions also exist for other margin-based
learning methods. Furthermore, while the results of this section are also presented for scalar-
valued Z to simplify notation, note that they easily generalize to p > 1. Recall that the
kernel trick for SVM comprises of solving the dual optimization:
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min λ
2
(~Y ◦ α)TK( ~X, ~X)(~Y ◦ α)−

∑n
i=1 αi

s.t.
n∑
i=1

αiYi = 0

0 ≤ αi ≤
1

n
, for i ∈ [n],

(3.12)

where ~Y ◦ α denotes the element-wise multiplication of Y and dual variables α. When
K(x, x′) = xTx′, this is equivalent to linear SVM. The advantage of the kernel trick is
that complicated transformations of the data matrix X can be represented easily in terms
of the kernel K without increasing computational complexity. In this case, the margin
function δ(x) =

∑n
i=1 α

∗
iYiK(Xi, x) − b∗, where α∗ is the optimal solution to problem 3.12

and b∗ = δ(Xi)− Yi for any i such that 0 < α∗i <
1
n
. With these transformations in mind, it

is clear that the fairness constraints in problem 2.17 can be rewritten as:

∣∣∣∣∣
〈

1

n

n∑
i=1

(Zi − E(Z))mK( ~X,Xi)
⊗q;Y ◦ α

〉∣∣∣∣∣ ≤ ∆kernel
m,q , for (m, q) ∈ [g]× [h]. (3.13)

These would then be added to the above problem. Note that the same intuitions hold
regarding the convexity of the problem when g = 1.

3.7 Computational Properties

This section will elaborate on some results formalized in Section 2.4, with an emphasis on
simple examples in the realm of the FO SVM formulation. In particular, it will consider the
computational properties of lower levels of the FO hierarchy. The FO(1,1) problem shown
in Equation (3.8) is clearly still a convex problem, and can be easily solved using off-the-
shelf solvers. Furthermore, we note that constraints on higher-order interactions of the form
E
[
Zm · βTX

]
are also linear, and so easy to incorporate (as formalized in proposition 1). The

difficulty arises in higher orders of h, which introduce further nonlinearity into the problem
of selecting β. Here, we will first explore some efficient approaches for solving FO(2,2), and
then proceed to a brief exposition of possible methods for solving higher-order FO problems.

Consider the FO(2,2) problem with selectively-dualized constraints:

min
λ

2
‖β‖2

2 + En

((
Y · βTX

)
+

)
+ µ1t1 + µ2t2

s.t.
∣∣βT (En(ZX)− En(Z) · En(X))

∣∣ ≤ ∆1,1∣∣βT
(
En
(
Z ·XXT

)
− En(Z) · En

(
XXT

))
β
∣∣ ≤ t1∣∣βT

(
En
(
Z2X

)
− En

(
Z2
)
· En(X)

)∣∣ ≤ ∆2,1∣∣βT
(
En
(
Z2 ·XXT

)
− En

(
Z2
)
· E − n

(
XXT

))
β
∣∣ ≤ t2.

(3.14)
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As mentioned above, penalizing the interactions terms in the objective is functionally
equivalent to explicit constraints. Especially with higher-order interaction terms, it may
be beneficial in a practical setting to utilize the penalized representation, both in terms of
interpretability and to avoid being too harshly restricting the feasible region. We also employ
this rendition for purposes of later notational convenience. In Proposition 8, we describe a
condition under which problem 3.14 can be solved through convex techniques.

Proposition 8. Consider the FO(2,2) with `2 regularization. If λ
µ1+µ2

≥ 2
∥∥En (Z ·XXT

)∥∥
2
,

then there exists a polynomial-time algorithm to solve this to global optimality.

Proof. We first consider the case where Z ∈ {±1}, which allows us to simplify the problem
to

min
λ

2
‖β‖2

2 + En

((
Y · βTX

)
+

)
+ µt

s.t.
∣∣βTφ

∣∣ ≤ ∆1,1

βTEn
(
Z ·XXT

)
β ≤ t,

(3.15)

where φ = En(ZX) − En(Z) · En(X). Note that the final inequality is two-sided in the
original formulation; however, at most one of these two inequalities will ever be tight, so
the problem (3.15) can simply be run twice, once with each constraint, to achieve the same
result. Thus, we may proceed with the problem (3.15) without loss of generality.

Now, consider the eigenvalue decomposition En
(
Z ·XXT

)
= V DV T, where V is unitary

and D is diagonal. We may make the transformation w = V β and, since ‖V β‖2 = ‖β‖2, we
may instead solve the following

min
λ

2
‖w‖2

2 + En

((
Y · wTV X

)
+

)
+ µt

s.t.
∣∣βTV φ

∣∣ ≤ ∆1,1

d∑
i=1

Diiw
2
i ≤ t

(3.16)

A standard lifting argument yields a convex relaxation of this.

min
λ

2
eTu + En

((
Y · wTV X

)
+

)
+ µt

s.t.
∣∣βTV φ

∣∣ ≤ ∆1,1

d∑
i=1

Diiui ≤ t

w2
i ≤ ui, i = 1, . . . , d.

(3.17)

When λ
µ
≥ 2

∥∥En (Z ·XXT
)∥∥

2
, it is clear that, for any value of w, the objective value

can always be improved by decreasing any element of u such that w2
i < ui. Thus, we will
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have ui = w2
i , and the result follows for the case of binary Z. For non-binary Z, we can

simply restate the same argument to account for the second quadratic constraint that arises.

The intuition behind Proposition 8 is that the convexity of the regularization term can
counteract the non-convexity of the interaction term, if it is weighted highly enough. In our
empirical studies, we find that smaller values of µ tend to yield the best trade-off between
fairness and accuracy, which suggests that this condition may be of use in a practical setting.
Similar relaxations based on Semidefinite Programming (SDP) can be applied even when the
assumption of Proposition 8 is not satisfied, but these necessarily become weak relaxations
in these cases, and so often do not produce good solutions.

Alternative techniques exist for solving FO(2,2) problem (3.14) in these cases, albeit
only to local optimality. The non-convexity of FO(1,2) or FO(2,2) arises wholly from the
constraints that involve order-2 moments of the feature vectors, X, and each of these can
be decomposed into a difference of convex functions. For example, consider the following
decomposition of the higher-order interaction term in the FO(1,2) problem:

En
(
Z ·XXT

)
− En(Z) · En

(
XXT

)
= V DV T. (3.18)

Let U+ = V max{D, 0}V T and U− = V max{−D, 0}V T. Then, it is clear that

βT
(
En
(
Z ·XXT

)
− En(Z) · En

(
XXT

))
β = βTU+β − βTU−β, (3.19)

where both βTU+β and βTU−β are convex in β. Then, the iterative Convex-Concave Pro-
cedure [235, 249, 268] may be applied to FO(1,2) (or equivalently, to FO(2,2)) in order to
derive locally optimal solutions. This proceeds by turning the non-convex constraint into two
convex constraints by linearizing each term in one of the resulting constraints. For example,
consider the following rendition of FO(1,2)

min λ
2
‖β‖2

2 + En

((
Y · βTX

)
+

)
+ µ · t

s.t. −∆1,1 ≤ βT (En(ZX)− En(Z) · En(X)) ≤ ∆1,1

βTU+β − βT
k U−βk − 2βT

k U
T
−(β − βk) ≤ t

βTU−β − βT
k U+βk − 2βT

k U
T
+(β − βk) ≤ t

(3.20)

Here, it is clear that −βT
k U−βk − 2βT

k U
T
−(β − βk) and −βT

k U+βk − 2βT
k U

T
+(β − βk) are the

linearizations of βTU−β and βTU+β , respectively, at some βk, thus making the above a
convex problem. This subproblem is then solved efficiently in iteration k, to obtain an
optimal solution β∗k+1, which is used as βk+1 in iteration k + 1. Note that this procedure
may be extended to any number of convex-concave constraints, and we have only included
one for notational simplicity. The following result formalizes this method’s convergence to
locally optimal solutions.
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Table 3.2: List of Datasets Used in Numerical Experiments

Dataset p n Z Type Task Source

Adult Income 58 32561 Binary Classification [154]
Biodeg 40 1055 Categorical Classification [167]
Communities 96 1994 Continuous Regression [72–74,210]
EEG 12 4000 Binary Regression [88]
Energy 8 768 Categorical Classification [246]
German Credit 49 1000 Continuous Classification [154]
Letter 15 20000 Continuous Classification [93]
Music 68 1034 Continuous Regression [275]
Parkinson’s 18 5875 Binary Classification [154]
Pima 7 768 Continuous Classification [234]
Recidivism 6 5278 Binary Classification [11]
SkillCraft 17 3338 Continuous Both [243]
Statlog 35 3486 Binary Classification [154]
Steel 25 1941 Categorical Classification [154]
Taiwan Credit 22 29623 Binary Classification [266]
Wine Quality 11 6497 Binary Both [65]

Theorem 7 ( [235]). The CCP problem (3.20) gives iterates βk that converge to a local
minimum.

Such a method does not easily extend to higher-order constraints, however. The difficulty
arises due to vagueness and complexity of calculating the analog of eigenvalue decompositions
for tensors of order greater than 2. While it has been shown that any polynomial can be de-
composed into the sum of convex and concave components [8,256], even determining whether
two given polynomials g and f − g are a convex-concave decomposition of a polynomial f
is strongly NP-Hard [8]. For higher-order problems, we are restricted to existing relaxation
methods for optimization over higher-order polynomials. Of these, the two most popular
methods are Sum of Squares optimization (introduced earlier and also referred to as the
Lasserre hierarchy) [7, 146], as well as the Relaxation-Linearization Technique (RLT) [231].
Both operate by lifting arguments; SoS relaxes the problem of polynomial optimization to
one of optimization over structures approximating probability distribution and formulates
this as an SDP, while RLT relaxes this further by removing some semi-definiteness con-
straints. Full exposition of these methods is beyond the scope of this thesis, but we refer the
reader to the sources cited for tutorials of both methods.

3.8 Numerical Experiments

In this section, we implement various levels of the FO problem (2.17) for: classification,
regression, and decision-making (recall Proposition 3 says that for binary Z, we only need to
try the level-(1, h) FO since level-(g, h) is equivalent to level-(1, h) in this case). Classification
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tasks are defined both for convex-margin classifiers (in particular SVM, unless mentioned
otherwise) as well as deep-learning classifiers. Unless mentioned otherwise, classifier accuracy
is measured by area-under-the-curve (AUC), which represents the area under the receiver
operator characteristic (ROC) curve for a given binary classifier. Regression accuracy is
measured by mean-squared-error (MSE), unless indicated otherwise. In all cases, fairness is
measured using disparate impact (3.2). All results are averaged over 50 iterations, where
70% of the data is used for training and the 30% is used for measuring the aforementioned
metrics (reshuffled every iteration). Unless mentioned explicitly, all hyperparameters are
chosen using 10-fold cross-validation. Unless otherwise noted, all experiments were carried
out using the Mosek 8 optimization package [184]. We first present convex classification
and regression implementations of FO on a series of datasets from the UC Irvine Machine
Learning Repository [154], the full list of which is in Table 3.2. Next, we investigate the
sensitivity of FO to various choices of hyperparameters. We then present similar results on
a few datasets when extending the fairness constraints in FO to a deep-learning context.
Finally, we present a case study on the use of FO to perform fair morphine and heparin
dosing.

Comparison Methods

In the following subsections, we compare FO to three other methods. The methods of [24]
and [125] are designed for fair classification and fair regression, respectively, and are similar
to our method in that they enforce fairness at training time. We also compare FO to the
method of [48], although this takes a pre-processing approach.

Berk et al. [24] The method of [24] is one of the few comparable methods for fair regres-
sion. They also take an in-training approach, defining two regularization terms that enforce
fairness. Let Pz = {i ∈ [n] : Zi = z}, and note #Pz refers to the cardinality of these sets.
Given a binary protected attribute Z, they define a regularizer for group fairness(

(#P−1 ·#P+1)−1
∑

i∈P−1

∑
j∈P+1

d(Yi, Yj) · (XT
i β −XT

j β)
)2
, (3.21)

for some distance measure d(·, ·). Note that this is similar to the term constrained in FO for
(m, q) = (1, 1). They also define the following regularizer for individual fairness:

(#P−1 ·#P1)−1
∑

i∈P−1

∑
j∈P+1

d(Yi, Yj) · (XT
i β −XT

j β)2. (3.22)

This term is similar to a term in FO for (m, q) = (1, 2), although not equivalent. It has the
benefit of being convex, although the double-summation term can be computationally pro-
hibitive for large datasets. In our implementation, we estimate this term from a sub-sample
(10%) of the data when this issue arises. Since the first term is similar to a term arising
in FO, we implement it as a constraint instead and require that it is equal to zero, as we
do with the analogous term in FO. Finally, we note that this method can only accommo-
date binary-valued protected attributes, so we cannot provide comparisons to many of the
datasets we use for fair regression.
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Calmon et al. [48] This work is comparable to that of [271]. Both of these works formu-
late nonparametric optimization problems whose solution yields a conditional distribution
fX̂,Ŷ |X,Y,Z that then probabilistically transforms the data. We only compare our method to

the approach introduced in [48], since their formulation directly builds on that of [271].
Given a predefined notion of deviation amongst distributions, this method minimizes

the overall deviation of fX̂,Ŷ from fX,Y . In the original work, the authors chose to mini-

mize 1
2

∑
x,y |fX̂,Ŷ (x, y) − fX,Y (x, y)|. They also include constraints on pointwise distortion

EX̂,Ŷ |X,Y [θ((X, Y ), (X̂, Ŷ )] for some user-defined function θ : {Rp × {±1}}2 → R≥0. There

are also bounds on the dependency of the new main label Ŷ on the original protected label
J(fŶ |Z [y|z], fY (y)), where J(a, b) = |a

b
− 1| is defined to be the probability ratio measure.

Thus, the final formulation is

min 1
2

∑
x,y |fX̂,Ŷ (x, y)− fX,Y (x, y)|

s.t. EX̂,Ŷ |X,Y [θ((X, Y ), (X̂, Ŷ )|x, y] ≤ c, for all x, y

|fY (y)−1fŶ |Z [y|z]− 1| ≤ d, for all y, z

fX̂,Ŷ |X,Y,Z are all distributions.

(3.23)

Following the procedure used by the authors, we approximate fX,Y,Z with the empirical
distribution of the original data, separated into a pre-selected number of bins. Note that the
resulting optimization problem will have 8(#bins)2p parameters, which can quickly become
computationally infeasible when the dataset is high-dimensional. To account for this, we
again follow the original work and choose the 3 features most correlated with the main label
Y . Each dimension is split into 8 bins. We choose θ((x′, y′), (x, y)) to be 0 if y = y′ and
x = x′, 0.5 if y = y′ and x, x vary by at most one in any dimension, and 1 otherwise: This is
similar to the θ chosen in the original paper itself. Finally, c and d were set at 0.1 and 0.3,
respectively.

Kamishima et al. [125] Another comparable method is that of [125], which also aims
to enforce fairness at training time. As opposed to our approach of bounding interaction
moments, they instead regularize with a mutual information term. Also, this method differs
from our framework notably in that it imposes different treatments for different protected
classes, violating the principle of individual fairness; as a result, it is also unable to handle
continuous protected attributes. The authors implement their regularizer in the context of
logistic regression. Let σ be a sigmoid function and gβ[y|x, z] = yσ(xTβ)+(1−y)(1−σ(xTβ)),
and note that the notation βz indicates that this approach has a different set of coefficients
for each possible value of Z. the authors approximate the mutual information as

n−1
∑n

i=1

∑
y∈{±1} gβZi [y|Xi, Zi] log P̂ [y|Zi]

P̂ (y)
, (3.24)

with P̂ [y|z] = (#Pz)
−1
∑

i∈Pz gβz [y|Xi, z] and P̂ (y) = 1
n

∑n
i=1 gβzi [y|Xi, Zi]. This is then

weighted and added to the objective as a regularizer. We include this method as a comparison
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to our fair SVM, while noting the core differences mentioned above. We also note that the
logarithmic terms cause some numerical instability and make it difficult to implement this
method in standard solvers [184]. All convex-margin classifier experiments for this method
were done using the sequential least squares programming approach [136], with up to 500
iterations. A weight of 0.1 was used for the fairness regularization term.

Note that this does not generalize to a stochastic gradient descent setting: To account
for this, we calculate P̂ [y|Z] and P̂ (z) per batch for deep learning experiments. In these
cases, we consider several hyperparameter choices. During training, the logarithmic terms
caused notable numerical instability and somewhat divergent results for some hyperparam-
eter choices, so we ran each experiment five times and present the best result.

Penalization Formulation of FO Hierarchy

It can be advantageous from a numerical computation standpoint to solve the FO problem
(2.17) where some of the constraints are included as a penalty function in the objective.
Specifically, consider the level-(g, h) FO penalty formulation (presented in the more general
notation introduced in Chapter 2)

min
B∈B;tm,q∈R≥0

Rn(B · ω(x, z)) +
∑

(m,q)∈I µm,qtm,q

s.t.
∥∥En(Z⊗m(BΩ)⊗q

)
− En

(
Z⊗m

)
⊗ En

(
(BΩ)⊗q

)∥∥ ≤ tm,q,

for (m, q) ∈ [g]× [h].

(3.25)

where I ⊆ [g]×[h] is a subset of the indices. The numerical benefit of the penalty formulation
is it makes finding an initial feasible point easier since there is no maximum bound on ∆m,q

for (m, q) ∈ I, whereas the original formulation of FO (2.17) involves constraints that must
be satisfied for a fixed value of ∆m,q for all (m, q) ∈ [g]× [h] in order to ensure feasibility. For
the convex-margin methods that we consider in this section, the level-(g, 1) formulations are
convex optimization problems and are solved with I = ∅. For the level-(1, 2) formulations, we
use I = {(1, 2)} and use the constrained convex-concave procedure [235,249,268] to solve the
optimization problem. For deep-learning applications, all fairness constraints are included
as penalty functions with a standard logistic loss, and the resulting problem is solved using
standard stochastic gradient descent techniques.

Fair SVM

We first consider classification problems using a series of datasets, and formulate various
hierarchies of fair SVM using the penalization formulation of FO (3.25) with ∆i,1 = 0 for
i = 1, 2, 3 and µ1,2 = 1000. The results are in Table 3.3. Since the mutual-information-based
method of [125] cannot accommodate continuous protected classes, results are not reported
for this method for the associated datasets. We note our method often improves fairness with
less cost (in terms of accuracy) than the method of [48]. This is to be expected, as such pre-
processing approaches do not take into account the downstream task that the transformed
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Table 3.3: Classifier Comparison of Various Levels of FO to [48] and [125]

SVM FO(1,1) FO(1,2) FO(2,1)
AUC KS AUC KS AUC KS AUC KS

Adult Income 0.894 0.333 0.875 0.232 0.628 0.106 – –
Biodeg 0.917 0.294 0.914 0.236 0.788 0.142 0.911 0.228
Energy 0.528 0.114 0.525 0.113 0.529 0.120 0.525 0.110
German Credit 0.767 0.148 0.761 0.127 0.743 0.119 0.760 0.125
Letter 0.739 0.154 0.738 0.149 0.728 0.141 0.738 0.152
Parkinson’s 0.643 0.157 0.642 0.157 0.617 0.079 – –
Pima 0.821 0.161 0.807 0.136 0.729 0.131 0.807 0.136
Recidivism 0.727 0.286 0.559 0.060 0.577 0.049 – –
SkillCraft 0.878 0.100 0.826 0.060 0.776 0.060 0.827 0.060
Statlog 0.998 0.331 0.992 0.331 0.937 0.216 – –
Steel 0.764 0.127 0.763 0.124 0.757 0.107 0.763 0.118
Taiwan Credit 0.727 0.061 0.729 0.056 0.728 0.056 – –
Wine Quality 0.798 0.273 0.788 0.103 0.778 0.069 – –

FO(3,1) Calmon Kamishima
AUC KS AUC KS AUC KS

Adult Income – – 0.515 0.231 0.862 0.212
Biodeg 0.912 0.238 0.604 0.144 0.884 0.190
Energy 0.525 0.117 0.518 0.114 0.525 0.123
German Credit 0.760 0.125 0.630 0.113 – –
Letter 0.738 0.151 0.648 0.185 – –
Parkinson’s – – 0.530 0.104 0.660 0.217
Pima 0.807 0.136 0.544 0.149 – –
Recidivism – – 0.554 0.080 0.716 0.107
SkillCraft 0.826 0.060 0.625 0.069 0.871 0.083
Statlog – – 0.675 0.163 0.980 0.539
Steel 0.763 0.124 0.553 0.118 0.632 0.154
Taiwan Credit – – 0.745 0.068 0.741 0.072
Wine Quality – – 0.665 0.093 0.794 0.071

data is to be used for. Our method is also able to match or improve the fairness results
of the mutual information approach. Recall that this method maintains explicitly different
treatments for different protected classes, while ours adheres to the principle of individual
fairness. Given this, it is unsurprising that the method of [125] can often achieve fairness
at a lower cost to accuracy, although our method even outperforms on this metric for a
number of datasets. Further, this feature of disparate treatments can yield fairness values
notably worse than even a standard SVM. Finally, we note that our level-three interaction
constraints provide only a marginal benefit.

Fair Regression

We next consider regression problems using another series of datasets, and implement various
levels of the FO hierarchy for regression using the penalization formulation of FO (3.25) with
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Table 3.4: Regression Comparison of Various Levels of FO to [24]

OLS FO(1,1) FO(1,2) FO(2,1) FO(3,1)
MSE KS MSE KS MSE KS MSE KS MSE KS

Commun. 0.355 0.414 0.836 0.128 0.897 0.049 0.843 0.107 0.851 0.116
EEG 0.062 0.085 0.069 0.086 0.201 0.080 – – – –
Music 0.876 0.122 0.925 0.062 0.912 0.058 0.932 0.047 0.934 0.061
SkillCraft 0.930 0.025 0.960 0.008 0.960 0.007 0.964 0.007 0.967 0.007
Wine 0.712 0.285 0.734 0.080 0.737 0.065 – – – –

*Note [24] yielded MSE of 0.069 and 0.734, and KS of 0.087 and 0.080 for the EEG and Wine
datasets, respectively. Its formulation does not allow it to be used on the other datasets.

∆i,1 = 0 for i = 1, 2, 3 and µ1,2 = 0.1. The results are displayed in Table 3.4. For the method
of [24], the group fairness term is implemented as a constraint and required to be equal to
0, while the individual fairness term is left as a penalty in the objective, also with a weight
of 0.1. As the method of [24] is unable to accommodate non-binary protected attributes, we
only provide results for the appropriate datasets. Again, we note that our method is able to
reduce the bias of a typical regression, often without considerable loss in accuracy. It again
seems that lower levels of the hierarchy are largely sufficient.

Hyperparameter Sensitivity

We next explore the sensitivity of FO to the hyperparameters. Fig. 3.2 shows results for
a selection of the datasets. Red lines are results of the level-(1,1) FO, green lines with the
level-(2,1) FO, and blue lines with the level-(1,2) FO. Each line plots the average accuracy
and fairness over 50 runs of the associated FO for ∆1,1 ∈ {0.0, 0.05, 0.1, 0.2}, and ∆2,1 and
µ1,2 indicated, as appropriate, in the legend. There is generally a negative tradeoff between
fairness and accuracy as a function of ∆1,1, but higher levels of the FO hierarchy can flout this
tradeoff: In all of the examples shown, it is possible to uniformly outperform the level-(1,1)
FO in terms of both accuracy and fairness with higher levels of the hierarchy. This suggests
fairness is not purely a detriment to predictive strength, and implies that loosely-enforced
higher-order moment constraints can act as regularizers that protect against overfitting. The
Pima Diabetes dataset in Fig. 3.2b is relatively small, which may explain the large benefit
of fairness constraints as regularizers for that dataset; it is easier to overfit with a small
dataset, and the enforcement of exogenously-available information (like independence of Y
from Z) through regularization can provide a big benefit.
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Figure 3.2: The sensitivity of FO to changes in its hyperparameters. Red lines indicate
the level-(1,1) FO, green lines the level-(2,1) FO, and blue lines the level-(1,2) FO. Each
line represents the evolution of accuracy and fairness for ∆1,1 ∈ {0, 0.05, 0.1, 0.2}. Note that
Figure 3.2c reflects an instance of fair regression, and so accuracy is measure via mean-
squared error.

Single Parameter Tuning

One of the obvious questions with using the FO hierarchy is how to choose the tuning
parameters. The theory associated with Theorems 3, 4, and 5 from Chapter 2 implies that
in practice an FO problem with a small level-(g, h) should be used since g and h are required
to grow very slowly at a double-logarithmic rate. Even if we derived faster bounds for these
theorems that are based on α, these terms could grow no faster than a sub-logarithmic rate.
Thus from a practical standpoint, the more relevant question is how to tune the ∆m,q, and
potentially µm,q for (m, q) ∈ I, hyperparameters. Towards this end, Theorem 5 suggests one
possible approach. For a level-(g, h) FO, consider the penalty formulation variant given by

min
B∈B

Rn(B · ω(x, z)) + µ · ε

s.t.
∥∥En(Z⊗m(BΩ)⊗q

)
− En

(
Z⊗m

)
⊗ En

(
(BΩ)⊗q

)∥∥ ≤ ε · (m+ q)!,

for (m, q) ∈ [g]× [h].

(3.26)
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Figure 3.3: The sensitivity of FO with single parameter tuning. Red lines indicate the level-
(1,1) FO, green lines the level-(2,1) FO, and blue lines the level-(1,2) FO. Each line represents
the evolution of accuracy and fairness as the value of µ changes. Note that Figure 3.3c reflects
an instance of fair regression, and so accuracy is measure via mean-squared error.

This formulation has just one tuning parameter µ. A sensitivity analysis with respect to this
parameter is shown in Fig. 3.3.

Classification with a single-layer perceptron

We also consider the penalized FO formulation applied to a fully-connected one-layer network
with 20 nodes. We use adaptive gradient descent as the learning algorithm. Learning rates
are selected to optimize performance of the unmodified learner, and then kept uniform for
each dataset. The datasets were randomly split into training and testing sets, with 80% of
the data used in training. All reported results are calculated on the test set. Training sets
were randomly sub-sampled to improve predictions of the unmodified learner, which is a
common technique for unbalanced data. All experiments for deep-learning applications are
run using Tensorflow 1.10 [1] on an Intel Core i7 processor.

We first consider the Wine Quality and Adult Income datasets, on which we measure
the ability of our method to temper disparate impact. For this section, we use a single-layer
network with 20 nodes. Tables 3.5a and 3.5b provide full results and comparisons for both
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datasets. Here, the parameters for models that are not parameterized (i.e. the unmodified
learner and the pre-processing approach) are inputed as 0. For the in-training comparison,
there is only one parameter, as there is only one regularization term. For our FO approach,
the parameters shown represent µ1 and µ2. As the appropriate penalty terms for our fairness
constraints may be positive or negative, we run our method with the positive and negative of
each value in a pre-specified set of considered hyper-parameters, and only report the direction
(positive or negative) that serves to improve fairness. In practical settings, we note that the
positivity or negativity of hyper-parameters can be forecast via empirical estimations of the
higher-order moment terms from the training data.

We note that our method is able to notably reduce disparate impact with respect to the
unmodified model in both datasets. Furthermore, for the proper choice of hyper-parameters,
this modification does not come at a significant cost in terms of accuracy and AUC. In fact,
we observe that the addition of fairness constraints can even improve accuracy, an interesting
fact that may reflect on over-fitting in the unmodified model. Each of the moment constraints
can be observed to have different levels of utility for different datasets, reflecting underlying
structural relationships between the variables themselves. For example, the addition of
second-order constraints notably impacts accuracy for the Wine Quality dataset, but not for
the Adult Income dataset. Finally, we note that our method can yield better fairness, at
less of a cost, than pre-processing. Even though the in-training benchmark maintains high
accuracy, we remind the reader that this is because these methods allow differing treatments
across protected classes; on the other hand, our method provides similar results while also
satisfying individual fairness by maintaining one treatment for all.

On the other hand, the Recidivism dataset was originally brought to the attention of the
fairness community not due to a preponderance of disparate impact; in fact, a main topic of
the original article of [11] regarded the error rates among different protected classes. Thus,
we report results of specific experiments in Table 3.6 that investigate the Equal Opportunity
(EO) level of the results, with respect to convicts that were determined to be likely to
recommit a crime. We note similar patterns to the previous results, our method decreasing
discrepancy in error rates with more controlled loss in accuracy. It is particularly interesting
that the increasing of the magnitude of penalty on the second-order constraint seems to be
the main driver of fairness in this case, while modifications of the penalty on the first-order
constraint seem relatively inconsequential.

Case Study: Dosing

In this section, we investigate the practicality of our FO hierarchy in the setting of auto-
mated medication dosage. Automated dosage has steadily gained attention as a key area
where machine learning can improve efficiency in healthcare [105,116,265]. Any application
of automation techniques which require statistical learning are susceptible to over-learning
biases and undesirable correlations in the data, and so can perpetuate unfair decisions. To
that end, we show that our mechanism for fair learning can address this critical issue. Since
there are medical justifications for the consideration of gender and ethnicity in dosing, we
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Table 3.5: Results for the first two datasets with a single-layer perceptron.

(a) Adult Income

metric Accuracy AUC KS
version params

Unmod. 0, 0 0.7883 0.6238 0.0489

Calmon 0, 0 0.7149 0.6186 0.3173

Kamishima
0.01 0.7939 0.5817 0.0380
0.001 0.7872 0.5917 0.0414
0.0001 0.7952 0.6252 0.0999

FO(1,1)
-100, 0 0.7470 0.6226 0.0498
-1000, 0 0.7799 0.6189 0.0459

FO(1,2)

-100, 1 0.7894 0.5893 0.0337
-100, 10 0.7824 0.5818 0.0283
-1000, 1 0.7942 0.5925 0.0336
-1000, 10 0.7819 0.5814 0.0292

(b) Wine Quality

metric Accuracy AUC KS
version params

Unmod. 0, 0 0.7246 0.7268 0.2009

Calmon 0, 0 0.6333 0.6231 0.1925

Kamishima
0.01 0.5059 0.5756 0.0286
0.001 0.7261 0.7213 0.1483
0.0001 0.7323 0.7319 0.1215

FO(1,1)
100, 0 0.7372 0.7362 0.1925
1000, 0 0.7259 0.7272 0.1979

FO(1,2)

100, -1 0.7307 0.7313 0.1870
100, -10 0.7108 0.7192 0.1154
1000, -1 0.7296 0.7298 0.1617
1000, -10 0.6880 0.6780 0.0173

Table 3.6: Results for the Recidivism dataset on a single-layer network architecture

metric Accuracy AUC EO
version params

Unmod. 0, 0 0.6761 0.6758 0.3073

Calmon 0, 0 0.5476 0.5486 0.0471

Kamishima
0.01 0.5980 0.5996 0.1342
0.001 0.6725 0.6737 0.2792
0.0001 0.6731 0.6743 0.2938

FO(1,1)
100, 0 0.6705 0.6706 0.2994
1000, 0 0.6761 0.6756 0.3056

FO(1,2)

100, -1 0.6676 0.6678 0.2798
100, -10 0.6098 0.6126 0.1747
1000, -1 0.6723 0.6722 0.3001
1000, -10 0.6089 0.6122 0.1071
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decide to instead consider insurance type (government or private) as our protected variable
in this analysis.

Loss function Standard loss functions heretofore considered, such as the squared loss
function of regression, logistic loss function of logistic regression and hinge-loss of SVM, are
not necessarily applicable in the case of medication dosage. This is because they may not ac-
curately represent the risks of over- and under-dosing. One possible risk function for dosing
builds on the classic newsvendor problem from the operations research community, where
supply must be chosen beforehand to meet random demand and undersupply/oversupply are
penalized differently. Recent work has formulated and justified a data-driven newsvendor
model for dosing, where demand is predicted via a quantile regression problem [217]. Simi-
larly, we treat dosage as a matter of supply, with demand being the amount of medication
that a specific patient needs.

MIMIC III Date for patients in the following studies were drawn from the publicly-
available Multiparameter Intelligent Monitoring in Intensive Care (MIMIC III) database
[218]. This is a large, deidentified database of health data drawn from over 40,000 patients
that stayed in the critical care units of the Beth Israel Deaconess Medical Center between
2001 and 2012. It comprises highly-granular including dosage levels, vital sign measurements
taken bedside approximately hourly, caregiver notes and mortality, among other things. For
our purposes, we were able to find patients in the Intensive Care Units (ICU) that were given
morphine or heparin, and to track the vital signs of these patients (as well as their mortality
status) at the time of prescription (and throughout their stay, for the heparin case).

One-time morphine dosage via quantile regression Opioid overdoses, including from
illicit heroine and synthetic fentanyl, have become the leading cause of death in Americans
under 50 [219]. Today, Americans comprise 4.6% of the global population, but 51.2% of
global morphine usage. This has largely arisen due to misguided views in the 1990’s on
the danger of opioids [145, 174]. So there has been much recent interest in regulated and
disciplined methods for dosing [166]. At the same time, recent reports have indicated that
women and low-income patients are more likely to be under-diagnosed for pain or made
to wait longer for a diagnosis [33, 76]. Thus, we seek to employ FO in order to train an
individualized dosing policy that adapts to each patient’s measurements and status, but can
be made certifiably fair with regards to protected labels.

For this case, we extracted data for 7156 morphine prescriptions made to 4612 unique
patients extracted from the MIMIC III database. For each patient, we collected age (at the
time of prescription), heart rate, breath rate, blood pressure (both systolic and diastolic),
weight and temperature. In all cases, measurements are the latest possible within 48 hours
of prescription. We also collect, as categorical variables, admission type (ER, urgent care or
other), service type (surgery or medical), ethnicity (black, white or other), gender (male or
female) and insurance type (private or governmental). We also note the presence of embolism
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Figure 3.4: The distributions of morphine dosage, conditional on insurance type, for varying
levels of FO. Figure 3.4a reflects a standard quantile regression with no fairness constraints.
Figure 3.4b reflects the level-(1,1) FO with ∆1,1 = 0, and Figure 3.4c with ∆1,1 = 0 and
µ1,2 = 10. Histograms are generated by running each method five times over random training-
testing splits of the data, and compiling results. We can see that increasing orders of FO
can yield more similar distributions. Note that all negative dosage recommendations from
the respective models are replaced with zero.

or obesity amongst the diagnoses of the patients at admission. We exclude all patients who
are not prescribed Morphine Sulfate to be taken intravenously, and all patients for whom
the appropriate measurements were not available. To begin, we conduct a standard linear
regression to determine if insurance type does currently play a role in, or is at least highly
correlated with, morphine dosage, conditional on all other variables considered. The results
found that insurance type had a large magnitude coefficient with p < 0.001, which provides
some statistical evidence that insurance type is correlated to dosing even after adjusting for
the other predictor variables.

As mentioned above, we model the problem of dosing as one of quantile regression,
motivated by data-driven formulations of the newsvendor problem. In our case, we impose
a linearly increasing cost to both under-prescription and over-prescription, with the cost to
over-prescription increasing half as quickly as that of under-prescription. This reflects the
short-term nature of the risks of under-prescription, and the long-term nature of the risks of
over-prescription. Given the features described above (excluding insurance payer), we then
formulate varying levels of our FO to solve the quantile regression problem that specifies
dosing.

The results of our analysis are displayed in Fig. 3.5 and Fig 3.4. In Fig. 3.5, the
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(a) AUC vs. Disparate impact for morphine
dosage.
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(b) Pareto optimal curve for morphine dosage.

Figure 3.5: The accuracy vs. disparate impact of the learned dosage rule under varying
orders of FO and for different hyper-parameters. In Figure 3.5a, the red curve reflects
the level-(1,1) FO, while the blue curves reflect the level-(1,2) FO for the µ1,2 parameters
indicated. All curves represent ∆1,1 ∈ {0, 0.05, 0.1, 0.2}. The curve in Figure 3.5b reflects the
Pareto optimal curve, showing the lowest loss achievable for all levels of disparate impact.

Figure 3.6: Heparin case study
results.

metric loss KS
version params

Unmod. 0, 0 243 0.0585

First
-0.1, 0 259 0.0429
-1.0, 0 711 0.0587

Second

-0.1, 1E-6 234 0.0555
-1.0, 1E-6 390 0.0617
-0.1, 1E-5 244 0.0331
-1.0, 1E-5 412 0.0036

(a) (0, 0) (b) (−0.1, 0) (c) (−0.1, 1E − 5)

tradeoff between risk and fairness is displayed, as well as the range of best possible dosage
rules. In Fig. 3.5a, the solid red curve represents results from the level-(1,1) FO with
∆1,1 ∈ {0, 0.05, 0.1, 0.2}, and each broken blue curve represents results from the level-(1,2)
FO with ∆1,1 ∈ {0, 0.05, 0.1, 0.2} and µ1,2 as indicated in the legend. As also visible from
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Fig. 3.5b, we note that decreased disparate impact comes at the cost of increasing risk,
and that this marginal cost increases as more fairness is demanded. We also note that the
level-(1,2) FO can achieve better fairness results than the level-(1,1) FO, for proper choice of
hyperparameters. Furthermore, the level-(1,2) FO can even achieve better accuracy results
than the level-(1,1) FO, albeit only slightly. We attribute this to a possible regularization
affect that the fairness constraints can have, preventing overfitting to uninformative elements
in the data that have a dependence on the protected attribute. Visual evidence of the
reduction in disparate impact is shown in Fig. 3.4, which presents the difference in the
distribution of dosage levels across insurance types for standard Quantile Regression (QR),
the level-(1,1) FO and the level-(1,2) FO. There is a clear disparity between the distributions
in Fig. 3.4a, but this difference is significantly reduced in Fig. 3.4b and even more so in Fig.
3.4c.

Sequential heparin dosing via LSTM Heparin is one of the most common drugs ad-
ministered in Intensive Care Units [69]. However, setting the correct dose of Heparin for each
patient is challenging since the way in which the drug is metabolized varies greatly between
patients and its not possible to directly measure the concentration of Heparin in a patient’s
bloodstream [58]. As such, several machine learning based approaches have been proposed
to assist in setting Heparin doses by predicting what dose of Heparin individuals would react
to best [99, 188]. In this section we use a similar model to showcase how our approach can
be applied in this setting.

We extracted daily measurements for patients that were prescribed heparin from from
the publicly-available Multiparameter Intelligent Monitoring in Intensive Care (MIMIC III)
database [218]. For each patient and for each day that the patient spent in the hospital, we
collected age, heart rate, breath rate, blood pressure (both systolic and diastolic), weight
and temperature. We also collect measurements of albumin, arterial CO2, arterial pH,
bilirubin, Blood Urea Nitrogen (BUN), creatinine, Glasgow Coma Score (GCS), hematocrit,
hemoglobin, platelet count, aPTT, troponin-t and white blood cell count. Measurements
are the latest possible within 48 hours with the exception of GCS, which is the latest within
the last month. We collect, as categorical variables, admission type (ER, urgent care or
other), ethnicity (black, white or other), gender (male or female), insurance type (private or
governmental) and service type (surgery or medical). We also note whether the patient has
been diagnosed with embolism or obesity. We exclude all patients only administered heparin
flush, and all patients for whom the appropriate measurements were not available. In all, we
have measurements for 549 patients over a combined 12196 days, with a maximum of 395
days of measurements for any one patient. We use insurance type as the protected variable
in this analysis, as there may be medical justification for taking gender and ethnicity into
account for dosage. Our goal is to develop an automated procedure for heparin dosage, so
this problem is continuous.

We trained an LSTM to predict the level of Heparin to dose a patient for every day
that the patient spends in the hospital. Specifically, we use a one-layer LSTM followed by
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a 64-node dense layer. Inputs to the model include the latest medical measurements taken
from the patient on a daily basis. Procedures for the training-set sizes and hyper-parameter
selection are the same as in Section 3.8. As noted above, the problem of dosage is similar
to the newsvendor problem, as a level of supply must be acquired to meet random demand
and undersupply and oversupply can incur different costs. In this case, supply is the level
of Heparin dosed and demand is the level of Heparin that the patient requires. We assume
linearly increasing costs to over- and under-dosage, with under-dosage 1.5 times as costly as
over-dosage. These design assumptions are flexible and can be altered; our goal here is to
provide a proof-of-concept, not a definitive and fully-autonomous end-product. Results are
presented in fig. 3.6. Note that, with the proper hyper-parameter choice, our method is able
to generate dosage rules that decrease bias without precipitously increasing loss. To further
visualize this, the empirical cdf’s of the levels of Heparin dosed (conditional on the insurance
type) are presented in figs. 3.6a to 3.6c. In each case, the captions are of the form (µ1, µ2),
indicating the hyper-parameters used to learn those dosage rules. We note that, by adding
fairness constraints, it is possible to decrease the distance between the cdf’s, which implies
greater fairness in the sense of eq. (3.2).

3.9 Conclusion

In this chapter, we discussed various notions of fairness in supervised learning and consider
a series of hierarchical relaxations of these notions oriented around matching conditional
moments of data. We generate regularizers to emulate these relaxations and show how they
may be applied to deep learning techniques to enforce fairness at training time. We also
discuss the benefits of enforcing fairness at the time of training, as opposed to in pre- or
post-processing stages. Finally we present experimental results showing the benefits and
flexibility of our method with respect to different network architectures and fairness notions.
In this work, we only consider the first two moment constraints, but would be interested in
future work evaluating the benefits of including additional higher-order moment constraints.
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Chapter 4

Fairness in Unsupervised Learning

4.1 Introduction

Despite the success of machine learning in informing policies and automating decision-
making, there is growing concern about the fairness (with respect to protected classes like
race or gender) of the resulting policies and decisions [11, 176, 185, 214]. Hence, several
groups have studied how to define fairness for supervised learning [45, 77, 109, 276] and de-
veloped supervised learners that maintain high prediction accuracy while reducing unfair-
ness [25, 57,109,191,270].

However, fairness in the context of unsupervised learning has only recently received more
attention in some early works [56,108,192,221]. One reason is that fairness is easier to define
in the supervised setting, where positive predictions can often be mapped to positive decisions
(e.g., an individual who is predicted to not default on a loan maps to the individual being
offered a loan). Such notions of fairness cannot be used for unsupervised learning, which
does not involve making predictions. A second reason is that it is not obvious why fairness
is an issue of relevance to unsupervised learning, since predictions are not made.

Relevance of fairness to unsupervised learning

Fairness is important to unsupervised learning: First, unsupervised learning is often used to
generate qualitative insights from data. Examples include visualizing high-dimensional data
through dimensionality-reduction and clustering data to identify common trends or behav-
iors. If such qualitative insights are used to generate policies, then there is an opportunity
to introduce unfairness in the resulting policies if the results of the unsupervised learning are
unequal for different protected classes (e.g., race or gender). We present such an example in
Section 4.6 using individual health data.

Second, unsupervised learning is often used as a preprocessing step for other learning
methods. For instance, dimensionality reduction is sometimes performed prior to clustering,
and hence fair dimensionality reduction could indirectly provide methods for fair clustering.
Similarly, there are no fairness-enhancing versions of most supervised learners. Consequently,
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techniques for fair unsupervised learning could be combined with state-of-the-art supervised
learners to develop new fair supervised learners. In fact, the past work most related to this
chapter concerns techniques that have been developed to generate fair data transformations
that maintaining high prediction accuracy for classifiers that make predictions using the
transformed data [77, 86, 271]; however, these past works are most accurately classified as
supervised learning because the data transformations are computed with respect to a label
used for predictions.

We briefly review this work. [77] propose a linear program that maps individuals to prob-
ability distributions over possible classifications such that similar individuals are classified
similarly. [271] [48] generate an intermediate representation for fair clustering using a non-
convex formulation that is difficult to solve. [86] propose an algorithm that scales data points
such that the distributions of features, conditioned on the protected attribute, are matched;
however, this approach makes the restrictive assumption that predictions are monotonic
with respect to each dimension. [56] directly perform fair clustering by approximating an
NP-hard preprocessing step; however, this approach only applies to specific clustering tech-
niques whereas the approach we develop can be used with arbitrary clustering techniques.
Finally, a series of work has emerged using auto-encoders in the the context of deep clas-
sification. This area is promising, but suffers from a lack of theoretical guarantees and is
further oriented almost entirely around an explicit classification task [27, 272]. In contrast,
our method has applications in both supervised and unsupervised learning tasks, and well-
defined convergence and optimality guarantees.

Outline and novel contributions

This chapter studies fairness for principal component analysis (PCA), and we make three
main contributions: First, in Section 4.3 we propose and motivate a novel quantitative
definition of fairness for dimensionality reduction. Second, in Section 4.5 we develop con-
vex optimization formulations for fair PCA and fair kernel PCA. Third, in Section 4.6 we
demonstrate the efficacy of our semidefinite programming (SDP) formulations using several
datasets, including using fair PCA as preprocessing to perform fair (with respect to age)
clustering of health data that can impact health insurance rates.

4.2 Preliminaries

Let [n] = {1, . . . , n}, 1(u) be the Heaviside function, and let e be the vector whose entries
are all 1. A positive semidefinite matrix U with dimensions q × q is denoted U ∈ Sq+ (or
U � 0 when dimensions are clear). We use the notation 〈·, ·〉 to denote the inner product
and I the identity matrix.

Our data consists of 2-tuples (X, Y ), the realizations of which are denoted as Xi and
Yi for i = 1, . . . , n. Here the Xi ∈ Rp are a set of features, and the Zi ∈ {−1, 1} label a

protected class. For a matrix W , the i-th row of W is denoted Wi. Let ~X ∈ Rn×p and



CHAPTER 4. FAIRNESS IN UNSUPERVISED LEARNING 66

~Z ∈ Rn be the matrices so that ~Xi = (Xi − E − n(x))T and Zi = zi. Also, we use the
notation Π : Rp → Rd to refer to a function that performs dimensionality reduction on the
covariates X, where d is the dimension of the dimensionality-reduced data.

Let P = {i : Zi = +1} be the set of indices where the protected class is positive, and
similarly let N = {i : Zi = −1} be the set of indices where the protected class is negative.

We use #P and #N for the cardinality of these sets. Furthermore, we define ~X+ to be the
matrix whose rows are XT

i for i ∈ P , and we similarly define ~X− to be the matrix whose

rows are ~XT
i for i ∈ N . Next, let Σ̂+ and Σ̂− be the sample covariances matrices of ~X+ and

~X−, respectively.
For a kernel function k : Rp×Rp → R+, let K( ~X, ~X ′) = [k(Xi, X

′
j)]ij be the transformed

Gram matrix. Since the kernel trick involves replacing XT
i Xj with K(Xi, Xj), the benefit

of the above notation is it allows us to replace ~X( ~X ′)T with K( ~X, ~X ′) as part of applying
the kernel trick.

4.3 Fairness for dimensionality reduction

Definitions of fairness for supervised learning [25, 45, 57, 77, 86, 109, 276] specify that pre-
dictions conditioned on the protected class are roughly equivalent. However, these fairness
notions cannot be used for dimensionality reduction because predictions are not made in
unsupervised learning. This section discusses fairness for dimensionality reduction. We first
provide and motivate a general quantitative definition of fairness, and then present several
important cases of this definition.

General definition

Consider a fixed classifier h(u, t) : Rd × R → {−1,+1} that inputs features u ∈ Rd and a
threshold t, and predicts the protected class Z ∈ {−1,+1}. We say that a dimensionality
reduction Π : Rp → Rd is ∆(h)-fair if∣∣∣P [h(Π(X), t) = +1

∣∣Z = +1
]
− P

[
h(Π(X), t) = +1

∣∣Z = −1
] ∣∣∣ ≤ ∆(h), ∀t ∈ R. (4.1)

Moreover, let F be a family of classifiers. Then we say that a dimensionality reduction
Π : Rp → Rd is ∆(F)-fair if it is ∆(h)-fair for all classifiers h ∈ F .

Our fairness definition can be interpreted via classification: Observe that the first term in
the left-hand-side of (4.1) is the true positive rate of the classifier h in predicting the protected
class using the dimensionality-reduced variable Π(x) at threshold t, and the second term is
the corresponding false positive rate. Thus, ∆(h) in our definition (4.1) can be interpreted
as bounding the accuracy of the classifier h in predicting the protected class using the
dimensionality-reduced variable Π(x).

Note that eq. (4.1) is analogous to disparate impact for classifiers [45,86], where we require
that treatment not vary at all between protected classes. This has often been criticized as too
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strict of a notion in classification, and so alternate notions of fairness have been developed,
such as equalized odds and equalized opportunity [109]. Instead of equalizing all treatment
across protected classes, these notions instead focus on equalizing error rates; for example,
in the case of lending, equalized odds would require nondiscrimination among all applicants
of similar FICO scores, whereas disparate impact would require nondiscrimination among
all applicants. This may be preferred in cases where the target variable that is ultimately
to be predicted is strongly correlated to the protected attribute, Z. In any case, it can
easily be incorporated into our model by simply further conditioning the two terms on the
left-hand-side of eq. (4.1) on a target label, Y . These notions are explored in more detail in
Chapter 3.

Motivation

The above is a meaningful definition of fairness for dimensionality reduction because it
implies that a supervised learner using fair dimensionality-reduced data will itself be fair.
This is formalized below:

Proposition 9. Suppose we have a family of classifiers F and a dimensionality reduction Π
that is ∆(F)-fair. Then any classifier that is selected from F to predict a label Y ∈ {−1,+1}
using Π(X) as features will have disparate impact less than ∆(F).

Proposition 9 follows directly from our definition of fairness. We anticipate that in most
situations the goal of the dimensionality reduction would not be to explicitly predict the
protected class. Thus, our approach of bounding intentional discrimination on Z represents
a conservative bound on any discrimination that may incidentally arise when performing
classification using the family F or when deriving qualitative insights form the results of
unsupervised learning.

Special cases

An important special case of our definition occurs for the family Fc = {h(u, t) = 1(u ≤
w + t) : w ∈ Rd}, where the inequality in this expression should be interpreted element-
wise. In this case, our definition can be rewritten as supu

∣∣FΠ(X)|Z=+1(u)−FΠ(X)|Z=−1(u)
∣∣ ≤

∆(Fc), where F is the cumulative distribution function (c.d.f.) of the random variable in the
subscript. Restated, for this family our definition is equivalent to saying ∆(F) is a bound
on the Kolmogorov distance between Π(X) conditioned on Z = ±1 (i.e., the left-hand side
of the above equation).

Other important cases are the family of linear support vector machines (SVM’s) Fv =
{h(u, t) = 1(wTu − t ≤ 0) : w ∈ Rd} and the family of kernel SVM’s Fk for a fixed kernel
k. These important cases are used in Section 4.5 to propose formulations for fair PCA and
fair kernel PCA. These cases are important because they are used in Section 4.5 to propose
formulations for fair PCA and fair kernel PCA.
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Next, we briefly discuss empirical estimation of ∆(F). An empirical estimate of ∆(h)

is given by ∆̂(h) = supt | 1
#P

∑
i∈P 1(h(Π(Xi), t) = +1) − 1

#N

∑
i∈N 1(h(Π(Xi), t) = +1)|.

Similarly, we define ∆̂(F) = sup{∆̂(h) | h ∈ F}. Last, note that we can provide high
probability bounds of the actual fairness level in terms of these empirical estimates:

Proposition 10. Consider a fixed family of classifiers F . If the samples (Xi, Zi) are i.i.d.,

then for any δ > 0 we have with probability at least 1 − exp(−nδ2/2) that ∆(F) ≤ ∆̂(F) +
8
√
V(F)/n+ δ, where V(F) is the VC dimension of the family F .

This result follows from the triangle inequality, bounding ∆(F) with ∆̂(F) plus a gener-
alization error, for which there are standard bounds via Dudley’s entropy integral [254].

Remark 13. Recall that V(Fc) = d + 1 [233], and that V(Fv) = d + 1 [254]. This means

∆̂(Fc) and ∆̂(Fv) will be accurate when n is large relative to d.

4.4 Projection defined by PCA

Our approach to designing an algorithm for fair PCA will begin by first studying the convex
relaxation of a non-convex optimization problem whose solution provides the projection de-
fined by PCA. First, note that computation of the first d PCA components vi for i = 1, . . . , d
can be written as the following non-convex optimization problem: max{

∑d
i=1 v

T
i
~XT ~Xvi | ‖vi‖2 ≤

1, vTi vj = 0, for i 6= j}. Now suppose we define the matrix P =
∑d

i=1 viv
T
i , and note∑d

i=1 v
T
i
~XT ~Xvi =

∑d
i=1〈 ~XT ~X, viv

T
i 〉 = 〈 ~XT ~X, P 〉. Thus, we can rewrite the above opti-

mization problem as

max
{
〈 ~XT ~X, P 〉

∣∣ rank(P ) ≤ d, I � P � 0
}
. (4.2)

In the above problem, we should interpret the optimal P ∗ to be the projection matrix
that projects X ∈ Rp onto the d PCA components (still in the original p-dimensional space).
Next, we consider a convex relaxation of (4.2). Since I − P � 0, the usual nuclear norm
relaxation is equivalent to the trace [209]. So our convex relaxation is

max
{
〈 ~XT ~X, P 〉

∣∣ trace(P ) ≤ d, I � P � 0
}
. (4.3)

Note that this base model is the same as that used by [13]. The following result shows that
we can recover the first d PCA components from any P ∗ that solves (4.3).

Theorem 8. Let P ∗ be an optimal solution of (4.3), and consider its diagonalization: P ∗ =∑p
i=1 λ

∗
i viv

T
i , where vi is an orthonormal basis, and (without loss of generality) the λ∗i are in

non-increasing order. Then the positive semidefinite P ∗∗ ,
∑d

i=1 viv
T
i is an optimal solution

to (4.2).
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Proof. We consider two cases. First, if rank(P ∗) ≤ d then λ∗i ∈ {0, 1} or vTi ~X
T ~Xvi = 0

for all i, since otherwise we could increase λ∗i if vTi ~X
T ~Xvi > 0 (or vice versa) to improve

the objective while maintaining feasibility. It follows that 〈 ~XT ~X, P ∗〉 = 〈 ~XT ~X, P ∗∗〉. This
means that P ∗∗ is optimal for (4.3); since it is also feasible for (4.2), we are done. Second, if
rank(P ∗) > d then 0 < λ∗d < 1 since the λ∗i are ordered. Consider P̃ , (P ∗−cP ∗∗)/(1−c), c =
min{λ∗d, 1−λ∗d}. Note that P̃ is feasible for (4.3), and that P ∗ is a strict convex combination
of P ∗∗ and P̃ . All points between P̃ and P ∗∗ are feasible by convexity, and so the optimality
of P ∗ implies that P ∗∗ and P̃ must also be optimal for (4.3) by linearity of the objective
(i.e., at least one must have objective value no less than that of P ∗, but if one had a strictly
better objective value than the other, then no strict convex combination of the two could
be optimal). The result then follows from the optimality of P ∗∗ for (4.3) and feasibility for
(4.2).

We conclude this section with two useful results on the spectral norm ‖·‖2 of a symmetric
matrix.

Theorem 9. Let Q be a symmetric matrix, and suppose ϕ ≥ ‖Q‖2. Then ‖Q‖2 = max{‖Q+
ϕI‖2, ‖ −Q+ ϕI‖2} − ϕ.

Proof. First diagonalize Q =
∑p

i=1 λiviv
T
i , with orthonormal basis vi and (without loss of

generality) λi in non-increasing order. Then +Q + ϕI =
∑p

i=1(+λi + ϕ)viv
T
i , −Q + ϕI =∑p

i=1(−λi + ϕ)viv
T
i . But by construction λi + ϕ ≥ 0 and −λi + ϕ ≥ 0 for all i = 1, . . . , p.

Thus ‖Q + ϕI‖2 = λ1 + ϕ and ‖ − Q + ϕI‖2 = −λp + ϕ. The result follows since ‖Q‖2 =
max{λ1,−λp}.

Corollary 1. Let Q be a symmetric matrix, and suppose ϕ ≥ ‖Q‖2. If V is such that
V TV = I, then ‖V TQV ‖2 = max{‖V T(Q+ ϕI)V ‖2, ‖V T(−Q+ ϕI)V ‖2} − ϕ.

Proof. First note that V T(Q+ϕI)V = V TQV +ϕI and that V T(−Q+ϕI)V = −V TQV +ϕI.
Since the spectral norm is submultiplicative, this means ‖V TQV ‖2 ≤ ‖V T‖2‖Q‖2‖V ‖2 ≤
‖Q‖2. So ϕ ≥ ‖V TQV ‖2, and the result follows by applying Theorem 9 to V TQV .

Recall that using the Schur complement allows representation of ‖V RV T‖2 as a positive
semidefinite matrix constraint when R is positive semidefinite [42]. So the above corollary
is useful because it means we can represent ‖V QV T‖2 using positive semidefinite matrix
constraints since (Q+ ϕI) and (−Q+ ϕI) are positive semidefinite by construction.

4.5 Designing formulations for fair PCA

Consider the linear dimensionality reduction Π(X) = V TX for V ∈ Rp×d such that V TV = I.
Then for linear classifier h(u, t) = 1(wTu − t ≤ 0), definition (4.1) simplifies to ∆(h) =
supt

∣∣P[wTV TX ≤ t|Z = +1]− P[wTV TX ≤ t|Z = −1]
∣∣. But the right-hand side is the Kol-

mogorov distance between wTV TX conditioned on Z = ±1, which is upper bounded (as can
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(a) Original data (b) PCA (c) FPCA - Mean con. (d) FPCA - Both con.

Figure 4.1: Comparison of PCA and FPCA on synthetic data. In each plot, the thick
red line is the optimal linear SVM separating by color, and the dotted line is the optimal
Gaussian kernel SVM.

be seen trivially from its definition) by the total variation distance. Consequently, apply-

ing Pinsker’s inequality [171] gives ∆(h) ≤
√

1
2
KL

(
wTV TX−

∣∣∣∣wTV TX+

)
, where KL(·||·)

is the Kullback-Leibler divergence, X+ is the random variable X|Z = +1, and X− is the
random variable X|Z = −1. For the special case X+ ∼ N (µ+,Σ+) and X− ∼ N (µ−,Σ−),
we have [141]:

∆(h) ≤

√
1

4

(
s−
s+

+
(m+ −m−)2

s+

+ log
s+

s−
− 1

)
. (4.4)

where s+ = wTV TΣ+V w, s− = wTV TΣ−V w, m+ = wTV Tµ+, and m− = wTV Tµ−. The key
observation here is that (4.4) is minimized when s+ = s− and m+ = m−, and we will use
this insight to propose constraints for FPCA.

We first design constraints for the non-convex formulation (4.2) so that m̂+ − m̂− =
wTV Tψ has small magnitude, where ψ = µ̂+ − µ̂− = 1

#P

∑
i∈P Xi − 1

#N

∑
i∈N Xi. Note we

make the identification P = V V T because of the properties of P in (4.2) and since V TV = I.
Observe that wTV Tψ is small if V Tψ is small, which can be formulated as

‖V Tψ‖2 = 〈V V T, ψψT〉 = 〈P, ψψT〉 ≤ δ2, (4.5)

where ‖ · ‖ is the `2-norm, and δ is a bound on the norm. This (4.5) is a linear constraint on
P .

We next design constraints for the non-convex formulation (4.2) so that ŝ+ − ŝ− =

wTV T(Σ̂+ − Σ̂−)V w has small magnitude. Recall the identification P = V V T because of

the properties of P in (4.2) and since V TV = I. Next observe that wTV T(Σ̂+ − Σ̂−)V w is
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small if V T(Σ̂+ − Σ̂−)V is small. Let Q = Σ̂+ − Σ̂−, then using Corollary 1 gives

µ+ ϕ ≥ ‖V TQV ‖2 + ϕ = max{‖V T(Q+ ϕI)V ‖2, ‖V T(−Q+ ϕI)V ‖2}
= max{‖V V T(Q+ ϕI)V V T‖2, ‖V V T(−Q+ ϕI)V V T‖2}

= max{‖P (Q+ ϕI)P‖2, ‖P (−Q+ ϕI)P‖2}, (4.6)

where ϕ ≥ ‖Σ̂+− Σ̂−‖2, and µ is a bound on the norm. Note (4.6) can be rewritten as SDP
constraints using a standard reformulation for the spectral norm [42].

We design an SDP formulation for FPCA by combining the above elements. Though (4.2)
with constraint (4.5) and (4.6) is a non-convex problem for FPCA, we showed in Theorem 8
that (4.3) was an exact relaxation of (4.2) after extracting the d largest eigenvectors of the
solution of (4.3). Thus, we propose the following SDP formulation for FPCA:

max 〈 ~XT ~X, P 〉 − µt (4.7a)

s.t. trace(P ) ≤ d, I � P � 0 (4.7b)

〈P, ψψT〉 ≤ δ2 (4.7c)[
tI PM+

MT
+P I

]
� 0, (4.7d)[

tI PM−
MT
−P I

]
� 0 (4.7e)

where MiM
T
i is the Cholesky decomposition of iQ + ϕI (i ∈ {−,+}), ϕ ≥ ‖Σ̂+ − Σ̂−‖2,

(4.7c) is called the mean constraint and denotes the use (4.5), and (4.7d) and (4.7e) are
called the covariance constraints and are the SDP reformulation of (4.6). Note that these
are analogous to the fairness constraints in the FO(1,2) formulation introduced in Chapter 2,
and that they could easily be extended to a FO(g,2) formulation for any g. Our convex
formulation for FPCA consists of solving (4.7) and then extracting the d largest eigenvectors
from the optimal P ∗.

Furthermore, this method may be extended to multiple protected attributes by replicating
constraints (4.7c), (4.7d) & (4.7e) appropriately. That is, for secondary protected attribute
Z ′, we may define the appropriate ψ, M+ and M− values and add the analogous constraints.
Note that this will only abet “pairwise fairness”, or fairness with respect to each of the
protected attributes individually. To attain “joint fairness”, or fairness with respect to both
terms simultaneously, we would need to recreate constraints (4.7c), (4.7d) & (4.7e) for Z ′ as
well as the interaction between Z and Z ′. This notion is covered in more detail in Chapter 3,
so we forego further discussion here.
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SDP Formulation for Fair Kernel PCA (F-KPCA)

We can apply the kernel trick to (4.7) to develop an SDP for F-KPCA. This is useful for
extracting nonlinear patterns [227]. Here, we only present the resulting SDP:

max 〈K( ~X, ~X), P 〉+ µt (4.8a)

s.t. trace(P ) ≤ d (4.8b)

I � P � 0 (4.8c)

〈P, φkφT
k 〉 ≤ δ2 (4.8d)[

tI NT
+P

PN+ I

]
� 0 (4.8e)[

tI NT
−P

PN− I

]
� 0 (4.8f)

whereNiN
T
i is the Cholesky decomposition of iQk+ϕI, φk = 1

#P
K( ~X,X+)e− 1

#N
K( ~X,X−)e,

Qk = K( ~X,X+)K(X+, ~X)−K( ~X,X−)K(X−, ~X), and ϕ ≥ ‖Qk‖2. Our convex formulation
for K-FPCA consists of solving the convex SDP (4.8) and then extracting the d largest
eigenvectors from the optimal P ∗.

4.6 Experimental results

We use synthetic and real datasets from the UC Irvine Machine Learning Repository [154]
to demonstrate the efficacy of our SDP formulations. We also show how FPCA can be used
to minimize discrimination in health insurance rates (with respect to age). For any SVM
run, tuning parameters were chosen using 5-fold cross-validation, and data was normalized
to have unit variance in each field. All results presented in this section are after averaged
over 5 rounds of 70-30 training-testing splits, where an approach was trained on a random
70% of the data and evaluated based on the specified metrics using the remaining 30%
of the data. In each case, the data was dimensionality-reduced using the top 5 principal
components, fair or otherwise. All results follow after normalizing data columns, a practice
that is common for datasets in which different features are of incomparable units. All results
here use δ = 0, µ = 0.01.

Benchmarks

To the best of our knowledge, there are very few methods that are directly comparable to
ours. Most existing work is married to an explicit classification task, while ours is a gen-
eral pre-processing step that makes it amenable to any type of analysis. Among the few
comparable approaches are those of [271] and [48]. Both design non-parametric optimiza-
tion problems that yield a conditional distribution, fX̂,Ŷ |X,Y,Z , which can then be used to
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transform data in a probabilistic way. We compare our method to that of [48], as their
formulation is an extension of that of [271].

This method minimizes some pre-defined notion of overall deviation of fX̂,Ŷ from fX,Y .

In the original work, the authors choose to minimize 1
2

∑
x,y

∣∣∣fX̂,Ŷ (x, y)− fX,Y (x, y)
∣∣∣. They

subjects this to constraints on point-wise distortion EX̂,Ŷ |X,Y [δ((X, Y ), (X̂, Ŷ )] for some func-

tion δ : {Rp × {±1}}2 → R+. It also bounds the dependency of the new main label Ŷ on

the original protected label, J
(
fŶ |Z(y|z), fY (y)

)
, where they define J to be the probability

ratio measure:

J(a, b) =
∣∣∣a
b
− 1
∣∣∣ .

Thus, the final formulation is as follows:

min
1

2

∑
x,y

∣∣∣fX̂,Ŷ (x, y)− fX,Y (x, y)
∣∣∣

s.t. EX̂,Ŷ |X,Y [δ((X, Y ), (X̂, Ŷ )|x, y] ≤ c, ∀x, y∣∣∣∣ 1

fY (y)
fŶ |Z(y|z)− 1

∣∣∣∣ ≤ d,∀y, z

fX̂,Ŷ |X,Y,Z are all distributions.

Following the authors, we approximate fX,Y,Z with the empirical distribution of the orig-
inal data, separated into a pre-selected number of bins. Note that the resulting optimization
problem will have 8(#bins)2p parameters, and so can become computationally infeasible for
high-dimensional datasets. To account for this, we follow the example of the original work
and choose the 3 features most correlated with the main label, y. Each dimension is split
into 8 bins. We choose δ((x′, y′), (x, y)) to be 0 if y = y′ and x = x′, 0.5 if y = y′ and x, x
vary by at most one in any dimension, and 1 otherwise, which is similar to the δ chosen by
the authors themselves. Finally, c and d were set at 0.1 and 0.3, respectively.

Synthetic Data

We sampled 1000 points each from ~X+ and ~X− distributed as different 3-dimensional mul-
tivariate Gaussians, and these points are shown in Figure 4.1a. Figure 4.1b displays the
results of dimensionality reduction using the top two unconstrained principal components
of X: the resulting separators for linear and Gaussian kernel SVM’s are also shown. It is
clear that the two sub-populations are readily distinguishable in the lower-dimensional space.
Figure 4.1c displays the analogous information after FPCA with only the mean constraint,
and Figure 4.1d after FPCA with both constraints. Figures 4.1c and 4.1d clearly display
better mixing of the data, and the SVM’s conducted afterwards are unable to separate the
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Figure 4.2: The sensitivity of FPCA to the δ and µ for the wine quality dataset. The full
red line represents FPCA with only the mean constraint, and the dotted blue lines denote
FPCA with both constraints. For each curve, δ ∈ {0, 0.1, 0.3, 0.5} was considered.

sub-groups as cleanly as they can in Figure 4.1b; furthermore, the addition of the covari-
ance constraints (4.7d) incentivizes the choosing of a dimensionality reduction that better
matches the skew of the entire data set.

Real data

We next consider a selection of datasets from UC Irvine’s online Machine Learning Repository
[154]. For each of the datasets, one attribute was selected as a protected class, and the
remaining attributes were considered part of the feature space. After splitting each dataset
into separate training (70%) and testing (30%) sets, the top five principal components were
then found for the training sets of each of these datasets three times: once unconstrained,
once with (4.7) with only the mean constraints (and excluding the covariance constraints)
with δ = 0, and once with (4.7) with both the mean and covariance constraints with δ = 0
and µ = 0.01; the test data was then projected onto these vectors. All data was normalized
to have unit variance in each feature, which is common practice for datasets with features
of incomparable units. For each instance, we estimated ∆(F) using the test set and for the
families of linear SVM’s Fv and Gaussian kernel SVM’s Fk. Finally, for each set of principal
components V , the proportion of variance explained by the components was calculated as



CHAPTER 4. FAIRNESS IN UNSUPERVISED LEARNING 75

Table 4.1: ∆-fairness for both linear and Gaussian kernel SVM for PCA and FPCA. Best
results for each fairness metric are bolded.

Unconstrained FPCA - Mean Con. FPCA - Both Con.
Data Set %var Lin. Gaus. %var Lin. Gaus. %var Lin. Gaus.

Adult Income 11.41 0.54 0.54 9.27 0.14 0.35 5.33 0.07 0.15
Biodeg [167] 31.16 0.2 0.35 30.46 0.14 0.29 21.45 0.10 0.28
E. Coli [115] 65.01 0.65 0.80 54.31 0.46 0.59 53.75 0.24 0.54
Energy [246] 84.08 0.10 0.20 66.48 0.07 0.20 62.11 0.07 0.16
German Credit 11.19 0.21 0.31 10.91 0.14 0.33 8.84 0.11 0.29
Image 62.68 0.18 0.32 52.78 0.14 0.33 48.55 0.15 0.28
Letter 42.33 0.58 0.58 29.29 0.07 0.22 23.76 0.07 0.19
Magic [38] 61.91 0.32 0.33 29.57 0.11 0.21 25.36 0.12 0.30
Pima [234] 49.00 0.30 0.37 43.98 0.17 0.26 43.26 0.18 0.25
Recidivism [11] 56.28 0.24 0.26 46.58 0.08 0.16 39.34 0.08 0.21
Skillcraft [243] 40.62 0.15 0.19 29.95 0.07 0.14 25.48 0.07 0.17
Statlog 87.80 0.79 0.79 21.77 0.23 0.69 7.76 0.13 0.44
Steel 46.05 0.64 0.71 40.79 0.19 0.51 11.86 0.09 0.22
Taiw. Credit [266] 45.52 0.11 0.17 30.07 0.08 0.16 20.08 0.06 0.14
Wine Quality [65] 50.21 0.97 0.96 37.34 0.21 0.51 10.12 0.06 0.13

trace(V Σ̂V T))/ trace(Σ̂), where Σ̂ is the centered sample covariance matrix of training set
X. Table 4.1 displays all of these results averaged over 5 different training-testing splits.

We may observe that our additional constraints are largely helpful in ensuring fairness
by all definitions. Furthermore, in many cases, this increase in fairness comes at minimal
loss in the explanatory power of the principal components. There are a few datasets for
which (4.7d) appear superfluous. In general, gains in fairness are stronger with respect to
Fv; this is to be expected, as Fk is a highly sophisticated set, and thus more robust to linear
projections. Kernel FPCA may be a better approach to tackling this issue, but we leave this
for future work.

In table 4.2, we present additional fairness results using the family Fc of multivariate
CDF’s described in Section 4.3 (analogous to Kolmogorov-Smirnov distance) as a metric.
We run this for unconstrained PCA, FPCA with only the mean constraint, FPCA with both
constraints, and the method of [48]. We observe that our methods greatly improve fairness
by this metric as well.

FPCA as a Preprocessing Step

Recall that a major use-case of PCA is as a pre-processing step in problems that suffer
from the curse-of-dimensionality, or as a flexible way of ensuring fairness regardless of the
type of task to be carried out (or algorithm used) on data. Thus, we present data showing
that our method is competitive in this realm as well. In table 4.3, we present statistics
for clustering done transformed data. Again, the methods used to transform the data are
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Table 4.2: ∆-fairness levels for the multivariate KS distance, for PCA, FPCA. and the
method of [48]. Best results for each fairness metric are bolded.

Data Set Unconstrained FPCA - Mean FPCA - Both Calmon et al.

Adult Income 0.25 0.16 0.07 0.25
Biodeg 0.16 0.15 0.17 0.15
Ecoli 0.64 0.29 0.32 0.25
Energy 0.16 0.12 0.1 0.18
German Credit 0.17 0.16 0.16 0.13
Image Seg 0.19 0.16 0.17 0.21
Letter Rec 0.57 0.09 0.09 0.24
Magic 0.14 0.09 0.12 0.16
Pima Diabetes 0.33 0.19 0.18 0.18
Recidivism 0.20 0.09 0.07 0.08
SkillCraft 0.12 0.08 0.08 0.08
Statlog 0.45 0.17 0.12 0.18
Steel 0.48 0.10 0.10 0.58
Taiwanese Credit 0.12 0.07 0.08 0.13
Wine Quality 0.58 0.20 0.07 0.44

PCA, FPCA with only the mean constraint, FPCA with both constraints, and the method
of [48]. Reducing dimensionality prior to clustering is a common technique [4,142], so this is
a relevant metric of comparison. For each case, we display the average squared distance from
the closest cluster as a measure of accuracy, and the standard deviation of the proportion of
each cluster that is of a certain protected class (the same metric reported in Section of 6.4 of
the main document). That is, we consider the proportion of each cluster that is of protected
class Z = +1 (in percentage points), and return the standard deviation of these figures (so
the units would also be percentage points for these columns). In a given clustering, it is
intuitive that the most fair outcome would be for every cluster to have the same composition
in terms of protected classes (thus standard deviation of zero as mentioned above), so we
maintain that this is a reasonable proxy for fairness. We observe that our method greatly
reduces the unfairness within clusters, while not significantly decreasing the value of the
clustering compared to a typical clustering. In some cases, we note that our method does
even better in terms of accuracy; this may arise due to the fact that we are evaluating based
on testing error as opposed to training error (i.e. we find cluster centers on training data
and then find the closest cluster center for each point in the testing set). This suggests that
our method may even act to aid in reducing generalization error.

Finally, we present an analysis of our method as a preprocessing step for classification in
table 4.4. Here, we define a classification task on the datasets, and show the performance of
linear SVM after dimensionality reduction via PCA, FPCA with the mean constraint and
FPCA with both constraints. We compare these all with the method of [48], as before, but
we also compare to the FO SVM (labeled “FSVM” for “Fair SVM”) method presented in
Chapter 3 (run with hyperparameters ∆1,1 = 0, µ1,2 = 0.1 on non-dimensionality-reduced
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Table 4.3: Average squared distance from cluster center, as well as standard deviation of
the proportion of each cluster that is of a certain protected class, for PCA, FPCA and the
method of [48]. Best fairness results for each dataset are bolded.

Unconstrained FPCA - Mean FPCA - Both Calmon et al.
Data Set Score Std. Dev Score Std. Dev Score Std. Dev Score Std. Dev

Adult Income 0.19 12.43 0.23 7.57 0.29 2.28 0.05 11.32
Biodeg 0.27 6.87 0.27 6.16 0.27 5.34 0.16 5.49
Ecoli 0.08 19.66 0.05 12.2 0.09 10.69 0.18 11.78
Energy 0.08 3.99 0.13 3.75 0.13 3.57 0.10 5.02
German Credit 0.25 6.4 0.25 4.82 0.28 3.88 0.03 4.16
Image Seg 0.10 8.46 0.09 4.82 0.11 5.95 0.12 10.85
Letter Rec 0.27 16.33 0.25 3.38 0.23 3.28 0.37 8.65
Magic 0.20 9.26 0.31 5.15 0.35 5.42 0.18 8.77
Pima Diabetes 0.24 9.09 0.27 6.36 0.26 5.96 0.28 5.72
Recidivism 0.26 7.6 0.17 3.7 0.19 3.8 0.05 4.69
SkillCraft 0.21 4.57 0.21 2.27 0.24 2.88 0.38 3.21
Statlog 0.09 21.99 0.23 16.06 0.31 10.18 0.13 11.12
Steel 0.16 18.49 0.19 9.85 0.24 4.22 0.22 17.97
Taiwanese Credit 0.17 3.85 0.24 2.99 0.29 2.67 0.03 3.64
Wine Quality 0.22 22.41 0.29 11.77 0.35 2.11 0.34 11.70

data), which was specifically designed for such a task. We compared the datasets based on
fairness, as well as Area Under the Curve (AUC), which is measured as the area under the
ROC curve of a classifier that takes a threshold as an input. We note that our method often
produces more fair results. In some cases, our method matches or even beats the accuracy of
FSVM. It is of importance that our method is a flexible method, while FSVM is specifically
tailored to margin classifiers. Thus, it is to be expected that our method would not be
strictly better in terms of accuracy. However, the comparison with regards to fairness is
often quite favorable for our method.

Hyperparameter sensitivity

Next, we consider the sensitivity of our results to hyperparameters δ, µ, for the Wine Quality
dataset. The data was split into training (70%) and testing (30%) sets, and the top three
fair principle components were found using (4.7) with only the mean constraint for each
candidate δ and using (4.7) with both constraints for all combinations of candidate δ and µ.
All data was normalized to have unit variance in each independent feature. We calculated
the percentage of the variance explained by the resulting principle components, and we
estimated the fairness level ∆(Fv) for the family of linear SVM’s. This process was run 10
times for random data splits, and the averaged results are plotted in Figure 4.2. Here, the
solid red line represents (4.7) with only the mean constraint. On the other hand, the dotted
blue lines represent the (4.7) with both constraints, for the indicated µ.
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Table 4.4: Comparison of accuracy and fairness on classification task using linear SVM.
Results shown for linear SVM after dimensionality-reduction via PCA, FPCA with just the
mean constraint and FPCA with both constraints, and are compared to the FSVM method
of [191] (run with δ = 0, µ = 0.1 on non-dimensionality-reduced data) and the non-parametric
method of [48]. Best fairness results are bolded.

FSVM (no PCA) Unconstrained FPCA - Mean FPCA - Both Calmon et al.
Data Set AUC ∆ AUC ∆ AUC ∆ AUC ∆ AUC ∆

Adult Income 0.86 0.13 0.66 0.17 0.69 0.07 0.57 0.08 0.51 0.23
Biodeg 0.85 0.12 0.82 0.20 0.81 0.13 0.79 0.11 0.60 0.14
Ecoli 0.74 0.17 0.84 0.50 0.69 0.23 0.72 0.29 0.63 0.30
Energy 0.55 0.09 0.51 0.09 0.56 0.08 0.55 0.07 0.54 0.13
German Credit 0.76 0.11 0.62 0.11 0.57 0.10 0.58 0.14 0.63 0.11
Image Seg 0.99 0.19 0.99 0.16 0.99 0.19 0.98 0.15 0.79 0.20
Letter Rec 0.72 0.07 0.58 0.60 0.50 0.09 0.49 0.10 0.65 0.19
Magic 0.83 0.13 0.74 0.14 0.82 0.13 0.72 0.12 0.65 0.13
Pima Diabetes 0.80 0.14 0.75 0.21 0.73 0.11 0.76 0.15 0.54 0.15
Recidivism 0.54 0.08 0.69 0.24 0.54 0.06 0.52 0.07 0.55 0.08
SkillCraft 0.82 0.06 0.85 0.10 0.82 0.05 0.80 0.05 0.62 0.07
Statlog 0.99 0.31 1.00 0.33 0.99 0.33 0.85 0.18 0.67 0.16
Steel 0.73 0.15 0.53 0.37 0.62 0.19 0.61 0.12 0.55 0.15
Taiwanese Credit 0.73 0.07 0.60 0.11 0.60 0.09 0.64 0.07 0.75 0.07
Wine Quality 0.78 0.10 0.69 0.75 0.69 0.19 0.67 0.05 0.66 0.09

Adding the covariance constraints and further tightening µ generally improves fairness
and decreases the proportion of variance explained. However, observe that the relative
sensitivity of fairness to δ is higher than that of the variance explained, at least for this
dataset. Similarly, increasing µ decreases the portion of variance explained while resulting
in a less discriminatory dataset after the dimensionality reduction. We note that increasing
µ past a certain point does not provide much benefit, and so smaller values of µ are to be
preferred. We found that increasing µ past 0.1 did not substantively change results further,
so the largest µ that we consider is 0.1. In general, hyperparameters may be set with cross-
validation, although (4.4) may serve as guidance.

Fair clustering of health data

Health insurance companies are considering the use of patterns of physical activity as mea-
sured by activity trackers in order to adjust health insurance rates of specific individu-
als [196, 220]. In fact, a recent clustering analysis found that different patterns of physical
activity are correlated with different health outcomes [96]. The objective of a health insurer
in clustering activity data would be to find qualitative trends in an individual’s physical ac-
tivity that help categorize the risks that that customer portends. That is, individuals within
these activity clusters are likely to incur similar levels of medical costs, and so it would be
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Figure 4.3: The mean physical activity intensities, plotted throughout a day, of the clusters
generated after dimensionality reduction through PCA, FPCA with the mean constraint,
and FPCA with both constraints. In each plot, each line represents the average activity
level of the members of one cluster.

beneficial to engineer easy-to-spot features that can help insurers bucket customers. However,
health insurance rates must satisfy a number of legal fairness considerations with respect to
gender, race, and age. This means that an insurance company may be found legally liable if
the patterns used to adjust rates result in an unreasonably-negative impact on individuals
of a specific gender, race, or age. Thus, an insurer may be interested in a feature engineering
method to bucket customers while minimizing discrimination on protected attributes. Mo-
tivated by this, we use FPCA to perform a fair clustering of physical activity. Our goal is to
find discernible qualitative trends in activity which are indicative of an individual’s activity
patterns, and thus health risks, but fair with respect to age.

We use minute-level data from the the National Health and Nutrition Examination Survey
(NHANES) from 2005–2006 [52], on the intensity levels of the physical activity of about 6000
women, measured over a week via an accelerometer. In this example, we consider age to
be our protected variable, specifically whether an individual is above or below 40 years of
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Table 4.5: The proportion of each cluster that are over 40 years of age. 36.05% of all
respondents are over 40. The final row displays the standard deviation of the numbers in
the first three. The most fair solution would be the same age composition in all clusters, so
this is a reasonable fairness metric.

Unc. Mean Both

Cluster 1 43.18% 33.54% 35.61%
Cluster 2 32.94% 38.64% 36.11%
Cluster 3 8.71% 33.32% 37.28%

Std. Dev 14.87% 2.46% 1.79%

age. We exclude weekends from our analysis, and average, over weekdays, the activity data
by individual into 20-minute buckets. Thus, for each participant, we have data describing
her average activity throughout an average day. We exclude individuals under 12 years of
age, and those who display more than 16 hours of zero activity after averaging. The top
1% most active participants, and corrupted data, were also excluded. Finally, data points
corrupted or inexact due to accelerometer malfunctioning were excluded. This preprocessing
mirrors that of [96] and reflects practical concerns of insurers as well as the patchiness of
accelerometer data.

PCA is sometimes used as a preprocessing step prior to clustering in order to expedite
runtime. In this spirit, we find the top five principal components through PCA, FPCA with
mean constraint, and FPCA with both constraints, with δ = 0 and µ = 0.1 throughout. Then
we conduct k-means clustering (with k = 3) on the dimensionality-reduced data for each case.
Figure 4.3 displays the averaged physical activity patterns for the each of the clusters in each
of the cases. Furthermore, Table 4.5 documents the proportion of each cluster comprised of
examinees over 40. We note that the clusters found under an unconstrained PCA are most
distinguishable after 3:00 PM, so an insurer interested in profiling an individual’s risk would
largely consider their activity in the evenings. However, we may observe in Table 4.5 that
this approach results in notable age discrimination between buckets, opening the insurer to
the risk of illegal price discrimination. On the hand, the second and third plots in Figure 4.3
and columns in Table 4.5 suggest that clustering customers based on their activity during
the workday, between 8:00 AM and 5:00 PM, would be less prone to discrimination.

4.7 Conclusion

This chapter has proposed a quantitative definition of fairness for dimensionality reduction,
developed convex SDP formulations for fair PCA, and then demonstrated its effectiveness
using several datasets. Many avenues remain for future research on fair unsupervised learn-
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ing, including developing additional approaches for fair PCA. For instance, one algorithm for
PCA involves a sequential calculation [70]. This insight was used to develop a deflation ap-
proach for sparse PCA [68]. Another technique for sparse PCA is based on a reformulation
of PCA as a non-convex regression problem that can be solved by alternating minimiza-
tion [277]. We believe that our formulations in this chapter may have suitable modifications
that can be used to develop analogous deflation and regression approaches for fair PCA.
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Chapter 5

Covariance-Robust Dynamic
Watermarking

5.1 Introduction

Whereas previous chapters have concerned fairly well-developed areas of statistical learning,
this chapter will extend notions of fairness to the realm of hypothesis testing. While this was
touched upon in example 2 in Chapter 2, the notion of fair hypothesis testing is expanded
here in a study of new, distributionally-robust dynamic watermarking schemes. Dynamic
Watermarking is a hypothesis-testing framework for detecting attacks on dynamical systems,
but it relies heavily on knowledge of the underlying system, and thus complete knowledge
of the null hypothesis set. One major implication of the results of this chapter are that we
expose a fundamental connection between fairness and robustness: By making a hypothesis
test “fair”, we can make it robust to errors in the null hypothesis. The material in this
chapter borrows from material by the author in the following paper [193].

5G Applications as Motivation

The development of 5G, the “fifth generation” of wireless technology, brings with it increased
bandwidth, massive-scale device-to-device (D2D) connections, lower latency and high reli-
ability, all of which require more robust cyber-security measures for the relevant control
systems [89]. A key feature of the cyber-security challenges posed by 5G is large numbers
of evolving, parallel systems. For example, as the “point to multi-point” model of com-
munications between base stations and devices is broken down in favor of decentralized,
software-defined digital routing, the number of communication channels active at any time
will increase exponentially [104, 120, 252]. Similarly, “beamforming” and radio transmission
at millimeter wave frequencies, two more technologies core to 5G, will also necessitate con-
stant multi-point transmission and control account for channel impairments and to compen-
sate for severe path fading, respectively [148,172,207]. Furthermore, 5G’s latency reductions
open the door to growth in cyber-physical systems (CPS), which involve the intercommuni-
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cation and real-time management of large numbers of physical sensors and actuators, often
in shifting environments [89]. Opportunities for system vulnerabilities abound in all of these
technologies [3, 49,144].

When system dynamics are fixed and known, existing work in secure CPS and wa-
termarking provides effective watermarking techniques for detecting attacks on LTI sys-
tems [178, 222, 257]. However, the dynamics of systems like those described above are often
subject to certain types of “benign” changes. Existing tests for malicious activity that rely
on fixed, or at least known, system dynamics can thus lose their power when actually in
practice. Consider the case of controlling the transmission power of many mobile devices
(referred to as uplink power control) to meet Signal-to-Noise requirements, while minimizing
co-channel interference among devices on the same frequency band and reducing battery us-
age [6,273]. Such control systems are the essence of mission-critical, yet constantly undergo
shifts in dynamics and the distribution of noise due to something as simple as a mobile user
walking past a building.

This chapter presents a novel, distributionally-robust dynamic watermarking scheme to
test for adversarial attacks on LTI systems. Recent work has established watermarking as
a key active method for detecting sensor attacks [178–181, 222, 223, 257]. Within these, a
key segment has developed dynamic watermarking techniques, which ensure that only zero-
average-power attacks can remain undetected [222, 223]. In this work, we consider a case
where the observer noise in an LTI system does not have a fixed and known covariance, but is
only known to be within a set of “reasonable” distributions. We design robust watermarking
procedures for two sub-cases: First, the case where the covariance is fixed but unknown,
and second, the case where the covariance can vary throughout time. The first sub-case
reflects a scenario with many small systems, where it is not possible to estimate the state
of, and design a new watermarking test for, each system individually; this could be relevant
to millimeter-wave-frequency technology, as its high rate of attenuation will require denser
networks with data streams split at multiple points before reaching transmission nodes, i.e.
radio base stations. The second scenario is more relevant in larger systems that evolve over
time; key examples of this include the uplink power control problem above, where observer
noise comes from interference between devices and can clearly change as users move, or a
self-driving car, whose sensors may experience hugely different noise in the case of a change
of weather, road conditions, or sensor outages. Attack detection is critical in all of these
cases, so we need statistical tests that retain their power in the face of predictable system
changes.

Fairness

Robust data-driven decision-making has gained attention in the literature on algorithmic
fairness. Motivated by machine learning tasks with societal applications, the fairness litera-
ture has sought to design learning methods that refrain from considering certain variables.
To that extent, this body of work defines rigorous, mathematical notions of fairness for
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supervised learning [24, 45, 57, 77, 109, 191, 270, 276], which have recently been extended to
unsupervised learning by [56,192].

The work in [16] outlines a general framework: Consider (X, Y, Z) with a joint distribu-
tion P, where X are exogenous inputs, Y are endogenous “targets”, and Z is a “protected
attribute”. The goal is to choose a decision rule δ(x) that makes a decision d using inputs
X, in order to minimize some risk function RP(δ, Y ). In dynamic watermarking: X are
measurements, Y is a binary variable that denotes if the system is under attack, and Z is
the true system characterization; our decision rule δ for if the system is under attack is made
without Y and Z, which are not observed. We then define a decision rule to be without
disparate impact if

δ∗ ∈ arg min
δ

{
RP(δ, Y )

∣∣ δ(X) ⊥⊥ Z
}
, (5.1)

where δ(X) ⊥⊥ Z means δ(X) is independent of Z. This increases fairness because it
removes any impact of Z on the decision by imposing independence as a constraint. However,
some [77,109] have argued that this above definition of fairness can be too restrictive in some
cases and that equalized odds is a better definition of fairness.

δ∗ ∈ arg min
δ

{
RP(δ, Y )

∣∣ (δ(X) ⊥⊥ Z)
∣∣Y }, (5.2)

That is, equalized odds ask for independence of δ(X) and Z when conditioned on Y . We
can interpret equalized odds as requiring error rates to be similar across protected groups.
Finally, a notion associated equalized odds is that of equal opportunity, which amounts to
enforcing (δ(X) ⊥⊥ Z)|Y = y, for some value y. This is relevant when one particular type of
error is of more interest than another.

Relevance of Fairness to Watermarking

The topic of fair statistical learning has received increasing attention over the last few years
[25,56,57,109,191,192,270]. Here, we argue that the notions presented in this literature are
key to the problem of designing robust tests. Work in this field has sought to design learning
methods that actively guarantee some notion of independence between the output of the
model learned, and an exogenously chosen “protected variable” [16,77,109]. Importantly, the
protected variable may be inherently tied to the desired output; in such situations, different
notions of independence are derived which allow for more nuance and specificity [16].

Fairness is relevant to the design of robust tests for two reasons. First, it provides a
well-established technical language with which to discuss our requirement of robustness.
Past dynamic watermarking techniques require exact system knowledge, and as such the
corresponding watermarking tests will have error rates that are biased over inevitable system
perturbations or uncertainties. Fairness notions such as equalized odds and equal opportunity
allow for more specific framing of the problem and thus give a framework to design more
robust methods for dynamic watermarking.
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Second, robust cyber-security methods will have improved social impacts, which is the
most general way of interpreting “fairness”. For example, complex CPS like smart homes
comprise possibly hundreds of sensors, the integrity of which are critical to the well-being
of the individuals who occupy the home. Changes in the distribution of sensor noise can
correlate with factors such as climate, which correlates with geography and thus attributes
like race, ethnicity or class. A systemic bias in the ability to detect threats thus yields,
and possibly perpetuates, systemic bias in outcomes among these groups. The field of fair
machine learning has largely existed to address such concerns, raised through notable, though
anecdotal, recognition of the impact of biased machine learning [11,20,79,81,84,214].

Outline

In Sect. 5.2, we outline key terminology and results in dynamic watermarking. In Sect. 5.3,
we present our covariance-robust dynamic watermarking (CRDW) scheme for the case of
fixed, but unknown, measurement noise covariance. This is then extended in Sect. 5.3 to
the case where measurement noise covariance is allowed to slowly vary. Sect. 5.4 presents
empirical results that demonstrate efficacy of our approach.

5.2 Preliminaries

We describe the LTI system and attack models, and then review existing results about
dynamic watermarking.

LTI System Model

Consider a partially-observed MIMO LTI system

xn+1 = Axn +Bun + wn

yn = Cxn + zn + vn
(5.3)

for xn, wn ∈ Rp, un ∈ Rq and yn, zn, vn ∈ Rm. Here wn is mean-zero i.i.d. multivariate
Gaussian process noise with covariance matrix ΣW , and this is independent of zn that is i.i.d.
Gaussian measurement noise with mean-zero; but we assume that the covariance matrix for
zn is a linear function ΣZ(θ) of a set of parameters θ ∈ P ⊂ Rd taking values in polyhedron
P . For now, θ is assumed constant but unknown for any fixed system. The vn is an additive
signal chosen by an attacker who seeks to corrupt sensor measurements.

Stabilizability of (A,B) and detectability of (A,C) imply the existence of a controller K
and observer L such that A+BK and A+LC are Schur stable. The closed-loop system can
be stabilized using the control input un = Kx̂n, where x̂n is the observer-estimated state.

Define x̃n =
[
xTn x̂Tn

]T
, D =

[
I 0

]T
, L =

[
0 −LT

]T
, and

A =

[
A BK
−LC A+BK + LC

]
. (5.4)
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We can write the closed-loop evolution of the state and estimated state when vn ≡ 0 as
x̃n+1 = Ax̃n +Dwn + Lzn. Alternatively, we may define the observation error δn = x̂n − xn.

Let x̆n =
[
xTn δTn

]T
, D =

[
I −I

]T
, L = L, and

A =

[
A+BK BK

0 A+ LC

]
. (5.5)

The closed-loop system for this change of variables is x̆n+1 = Ax̆n + Dwn + Lzn. Note that
A is Schur stable since both A+BK and A+ LC are Schur stable.

Attack Model

Following [111], we consider attacks where vn = α(Cxn + zn) + Cηn + ζn for a fixed α ∈ R
and i.i.d. Gaussian ζn with mean-zero and covariance matrix ΣS. Here, the ηn are chosen to
follow the process ηn+1 = (A+BK)ηn+ωn, where ωn are similarly i.i.d. Gaussian with mean-
zero and covariance matrix ΣO. The implication is that the attacker minimizes or mutes the
true output Cxn+zn, and instead replaces it with a simulated output that follows the system
dynamics and is thus not easily distinguishable as false. Furthermore, the attacker has access
to process wn and measurement noise zn. With this attack, the closed-loop systems above
become x̃n+1 = Ax̃n +Dwn + L(zn + vn) and x̆n+1 = Ax̆n +Dwn + L(zn + vn).

(Nonrobust) Dynamic Watermarking

The steady-state distribution of δn in an unattacked system will be Gaussian with mean-zero
and a covariance matrix of

Σ∆ = (A+ LC)Σ∆(A+ LC)T + ΣW + LΣZ(θ)LT. (5.6)

Dynamic watermarking adds a small amount of Gaussian noise en, the values unknown to
the attacker, into the control input un = Kx̂n + en. This private excitation has mean-zero

and covariance matrix ΣE. Defining B =
[
BT BT

]T
and B =

[
BT 0

]T
, the closed-

loop systems with watermarking are given by x̃n+1 = Ax̃n + Ben + Dwn + L(zn + vn) and
x̆n+1 = Ax̆t +Ben +Dwn + L(zn + vn), respectively.

The watermarking noise en leaves a detectable signal in the measurements yn, which can
detect the presence of an attack vn by comparing the observer error Cx̂n − yn to previous
values of the watermark en−k for some integer k > 0. Specifically, the work in [111] proposes
the tests

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T =

CΣ∆C
T + ΣZ (5.7)

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)eTn−k′−1 = 0, (5.8)
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where k′ = mink≥1{C(A + BK)kBT 6= 0}. Any modeled attack passing these tests can be
shown to asymptotically have zero power as-limN→∞

1
N

∑N−1
n=0 v

T
nvn = 0 [111].

Finally, [111] also provides a test statistic for implementing the above test. Define ψn =[
(Cx̂n − yn)T eTn−k′−1

]T
and Sn =

∑n+`
i=n+1 ψnψ

T
n . Then the negative log-likelihood of a

Wishart distribution is

L =(m+ q + 1− `) log detSn

+ trace

{[(
CΣ∆C

T + ΣZ

)−1
0

0 Σ−1
E

]
× Sn

}
.

(DW)

This can be used to perform a statistical hypothesis test to detect attacks when using dynamic
watermarking.

5.3 Covariance-Robust Dynamic Watermarking

We develop covariance-robust dynamic watermarking methods for two different cases. The
first is where θ is fixed but unknown, and the second is where θ is slowly varying.

Fixed But Unknown Noise Covariance

We begin by stating our assumptions for this case. First, we assume that we have knowledge
of a set of positive semidefinite matrices Σz,1, . . . ,Σz,d such that these matrices are affinely
independent and ΣZ(θ) ∈ int(ΩZ) for the set

ΩZ = {θ1Σz,1 + · · ·+ θdΣz,d : 1T θ = 1, θ ≥ 0}. (5.9)

Note that ΩZ is a polyhedron, and that this set is defined to be the convex combination of
Σz,1, . . . ,Σz,d. Our first result characterizes Ω∆, which is the set of possible Σ∆(θ).

Lemma 1. Let Σ̄δ,k satisfy Σ̄δ,k = (A+ LC)Σ̄δ,k(A+ LC)T + ΣW + LΣz,kL
T . For ΣZ(θ) =

θ1Σz,1 + · · ·+ θdΣz,d, the solution to (5.6) is Σ∆(θ) = θ1Σ̄δ,1 + · · ·+ θdΣ̄δ,d.

Proof. This immediately follows by noting that both sides of (5.6) are linear in the matrices
Σ∆ and ΣZ(θ).

Since E[ψnψ
T
n ] = blkdiag{CΣ∆C

T+ΣZ ,ΣE}, we need to characterize the set Ω of feasible
matrices in terms of θ.

Lemma 2. Let Σ̄k = blkdiag{C Σ̄δ,kC
T + Σz,k,ΣE}. Then Ω = {θ1Σ̄k + · · · + θdΣ̄d : 1T θ =

1, θ ≥ 0}.

Proof. This follows by the linearity in Σ∆ and ΣZ .
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The set Ω represents covariance matrices of ψn that are “acceptable”, according to the
original set ΩZ of observation noise covariances that we should not mistake for attacks.

Lemma 3. The set Ω is of dimension d− 1.

Proof. This follows from Lemma 1, the fact that L is of full column-rank, and the observ-
ability of (A+ LC,C), which in turn follows from the observability of (A,C).

Finally, consider a modification of (DW) given by

L(Sn, V ) = (m+ q + 1− `) log detSn+

trace
{
V Sn

}
− ` log detV. (5.10)

Note (5.10) is the negative log-likelihood of an (m+ q)× (m+ q) Wishart distribution with
scale matrix V −1 and ` degrees of freedom. Now, we may present our test statistic. Let
Ω−1 = {V : V −1 ∈ Ω} and define the test statistic

T (Sn) = min
V ∈Ω−1

L(Sn, V ) (5.11)

for the composite null hypothesis H0 : E[ψnψ
T
n ] ∈ int(Ω). For some 0 ≤ ν, consider the test{

reject H0 if T (Sn) > ν

accept H0 if T (Sn) ≤ ν.
(5.12)

Since arg minV ∈Ω−1 L(Sn, V ) = S−1
n , this proposed test is equivalent to the generalized like-

lihood ratio test.

Theorem 10. For large enough `, the decision rule (5.12) using test statistic T (Sn) satisfies
equal opportunity with respect to the null hypothesis and where the protected attribute is the
true measurement noise covariance ΣZ(θ) ∈ int(ΩZ).

Proof. Due to Lemma 3 and our assumption that ΣZ(θ) ∈ int(ΩZ), T (Sn) satisfies the Le
Cam regularity conditions required for the application of Wilk’s Theorem [260]. This means
−2T (Sn) will be asymptotically distributed as a χ2(m+ q− p) random variable plus a fixed
constant regardless of the true value of Σ∆, and thus implies that the event of a Type I error
is independent of Σ∆.

This is a useful result because it implies that, in the proper regime, our test can come
arbitrarily close to satisfying the initial goal of remaining robust to some uncertainty in
the distribution of the measurement noise. However, Ω−1 is a non-convex set, and so the
computation of T (Sn) is difficult. To this end, we propose the approximate test statistic

T̄ (Sn) = min L(Sn, V )
s.t.

∑p
k=1 θkΣ̄

−1
k � V,[

V I
I
∑p

k=1 θkΣ̄k

]
� 0,

1Tθ = 1,
θ ≥ 0.

(CRDW)
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Lemma 4. For any V ∈ Ω−1, there exists a θ ∈ Rp such that (V, θ) is a feasible solution to
the optimization problem defining test (CRDW).

Proof. First observe that any V ∈ Ω−1 can be written as V = (
∑p

k=1 θkΣ̄k)
−1 for some

nonzero θ such that 1Tθ = 1. Thus, it holds trivially that

(
∑p

k=1 θkΣ̄k)
−1 � V � (

∑p
k=1 θkΣ̄k)

−1 (5.13)

The right-most constraint in (5.13) can be restated using the Schur complement, and this
reformulation is exact. Since

∑p
k=1 θkΣ̄k � 0, the Schur complement implies the second

constraint in (CRDW) is equivalent to V − (
∑p

k=1 θkΣ̄k)
−1 � 0.

The first constraint in (CRDW) follows from the convexity of the matrix inverse for
positive semidefinite matrices: Letting X(τ) = (1 − τ)X1 + τX2 for positive definite n × n
matrices X1, X2 and 0 ≤ τ ≤ 1, we have ∇2

∇τ2X(τ)−1 = 2X−1(τ)X ′(τ)X−1(τ)X ′(τ)X−1(τ).
For any a ∈ Rn, the function φa(τ) = aTX−1(τ)a will have second derivative φ′′a(τ) =
2aTX−1(τ)X ′(τ)X−1(τ)X ′(τ)X−1(τ)a ≥ 0 due to the positive-semidefiniteness of X(τ)−1,
so (1− τ)φa(0) + τφa(1) ≥ φa(τ). Since this holds for any a, we have that∑p

k=1 θkΣ̄
−1
k � (

∑p
k=1 θkΣ̄k)

−1. (5.14)

The first constraint in (CRDW) follows from (5.13) and (5.14).

Remark 14. It was shown in [111] that test (5.8) ensures α = 0 in any attack such that it
holds true. In that case, we have

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T

= CΣ∆(θ)CT + ΣZ(θ)+

ΣS + as-limN→∞
1
N

∑N−1
n=0 Cηnη

T
nC

T, (5.15)

since the Schur stability of A+BK implies that any effect of x0 and η0 are reduced to zero
asymptotically. Since ΣS and as-limN→∞

1
N

∑N−1
n=0 Cηnη

T
nC

T are both positive semidefinite,
meaning that

as-lim 1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T �

CΣ∆(θ)CT + ΣZ(θ). (5.16)

Inverting both sides of this implies that, in the case that ΣS+as-limN→∞
1
N

∑N−1
n=0 Cηnη

T
nC

T 6=
0, we can generally expect that S−1

n � (CΣ∆(θ)CT + ΣZ(θ))−1 ∈ Ω−1. The takeaway is that
the looseness of the upper bound (5.14) should not greatly decrease the power of the modi-
fied test in the presence of test (5.8), as the tight lower bound is more germane to situations
where the system is actually being attacked.

Remark 15. If the dimension m+q is large, then the optimization (CRDW) may be expensive
to solve from scratch each time. Furthermore, Sn will likely not change drastically between
runs when ` is large. So, lighter-weight first-order methods such as ADMM can be used
instead [258]. These generally take longer to converge to high levels of accuracy, but have
the advantage of being able to be readily warm-started.
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Slowly Varying Unknown Noise Covariance

A key difference between this setting and that of the static distribution is that a shift in the
observer noise covariance in one period can have impacts on Σ∆ over the next few periods
that do not easily fit into our previous representation of the Ω. This is because it will
take many steps before the covariance of δn approaches its asymptotic limit in Ω. Thus, to
accommodate a dynamically changing distribution of zn, we must use an expansion of the
set Ω.

We modify our setup for this subsection. The true covariance of δn and zn are Σ∆n and

ΣZn , respectively. Let Ψn = ΣZn−ΣZn−1 and Φj
n = (A+LC)jLΨnL

T(A+ LC)j
T
. Note that

all ΣZn are still assumed to be in ΩZ . Finally, we make some additional assumptions. Since
the spectral radius of A+ LC is less than one, there exists some induced norm (denote this
‖ · ‖) such that ‖A + LC‖ < 1 [114]. We assume θ changes every step but ΣZ0 ∈ Ω and
all Ψn satisfy ‖Ψn‖ ≤ ξ for some known value of ξ > 0. We also assume the system starts
at steady state in the sense Σ∆0 = (A + LC)Σ∆0(A + LC)T + ΣW + LΣZ0L

T. Under these
assumptions we have:5

Lemma 5. Let ε ∈ R be defined as

ε =
ξ‖C‖2‖L‖2‖A+ LC‖2

√
m

(1− ‖A+ LC‖2)2 (5.17)

Then CΣ∆n
CT + ΣZn

∈ Ω⊕ {E : −εI � E � εI}, where ⊕ is the Minkowski sum for all n.

Proof. Let Ωm×m be the set of m ×m upper-left submatrices of elements of Ω, associated
with CΣ∆(θ)CT + ΣZ(θ) terms. We start by noting that

Σ∆1 =(A+ LC)Σ∆0(A+ LC)T + ΣW + LΣZ1L
T

=Σ∆0 + Φ0
1.

(5.18)

Similarly, we can see that Σ∆2 = Σ∆0+L (Ψ0 + Ψ1)LT+Φ1
0 = Σ∆0+Φ0

2+Φ0
1+Φ1

1. Continuing
this recursion relation leads to the fact that

Σ∆n = Σ∆0 +
∑n−1

i=0

∑i
j=0 Φj

n−i. (5.19)

Due to the Schur stability of A + LC, the following limit exists, and can be represented as
in Lemma 1.

Σ∆k′
∞

= limk→∞
(
Σ∆0 +

∑k−1
i=k−k′

∑i
j=0 Φj

k−i
)

(5.20)

Note that Σ∆k′
∞

is the steady state that Σ∆n would ultimately reach if θ (and therefore
ΣZn does not shift after step k′; thus, it solves (5.6) for ΣZk′

and exists in Ωm×m. Denote
Υi = Σ∆i

∞
− Σ∆i−1

∞
. Then,

Σ∆n = limk→∞
(
Σ∆0 +

∑k−1
i=k−n

∑i−k+n
j=0 Φj

k−i
)

= Σ∆n
∞ − limk→∞

(∑k−1
i=k−n

(∑i
j=i−k+n+1 Φj

k−i
))

= Σ∆n
∞ −

∑n
i=1(A+ LC)n−i+1Υi(A+ LC)n−i+1T

(5.21)
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Note that the term in the limit in the first equality is a constant in k due to a simple re-
indexing of (5.19). This is convenient because we can now break Σ∆n into an element known
to be in Ωm×m and an error term. Our goal is now to choose ε large enough to bound

min
P∈Ωm×m

∥∥CΣ∆n
CT + ΣZn − P

∥∥
2
, (5.22)

over all paths that ΣZn can take. An easy bound on the minimization is to simply set
P = CΣ∆n

∞
CT + ΣZn . Then, ε only needs to exceed∥∥∑n

i=1 C(A+ LC)n−i+1Υi(A+ LC)n−i+1TCT
∥∥

2
(5.23)

By sub-multiplicativity of induced norms,

‖Υi‖ =
∥∥∑∞

j=0 Φj
i

∥∥ ≤∑∞j=0 ‖(A+ LC)‖2j‖L‖‖Ψn′+ki‖

= ξ‖L‖2
(
1− ‖A+ LC‖2

)−1 (5.24)

Finally, using the fact that ‖ · ‖2 ≤
√
m‖ · ‖ [87] and applying (5.24) to the error term from

(5.22) yields the desired result.

Remark 16. Due to the topological equivalence of induced norms, the dependence of our
choice of norm ‖ · ‖ on A+ LC can only affect the value of ξ required by a constant

√
m.

Corollary 2. If ‖A+LC‖2 < 1, then the statement in Lemma 5 holds for ‖ · ‖ = ‖ · ‖2 and

ε =
ξ‖C‖2

2‖L‖2
2‖A+ LC‖2

2

(1− ‖A+ LC‖2
2)

2 (5.25)

Proof. The proof of this result is almost identical to the proof of the previous lemma with
the only changes that ‖ · ‖ = ‖ · ‖2 and that we stop after applying (5.24) to (5.22).

With this ε, it is straightforward to extend the previous test statistic (CRDW) to this
new expansion of Ω as long as Σ̄k − εI remains positive definite for all k. In this case, we
may define our new test statistic as

T (Sn) = min L(Sn, V )

s.t.
∑p

k=1 θk
(
Σ̄k − εI

)−1 � V,[
V I
I εI +

∑p
k=1 θkΣ̄k

]
� 0,

1Tθ = 1,
θ ≥ 0.

(CRDW*)

Remark 17. If there is some k so Σ̄k − εI is not positive definite, then the first constraint

above is not well-defined. Recalling that V is a surrogate for
(
CΣ∆n

CT + ΣZn

)−1
, we note

V trivially satisfies Σ−1
Zn
� V . Thus in this problematic case, we may replace the

(
Σ̄k − εI

)
in the first constraint with Σz,k, for all k. This issue is unlikely to be of practical concern for
the same reasons discussed in Remark 14 regarding the relaxation of the set Ω. Specifically,
the structure of the attacks makes it unlikely that the first constraint in (CRDW*) would
be binding in any case.
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Figure 5.1: The evolution and histogram of test statistics (DW) and (CRDW) on the at-
tacked and unattacked systems where ΣZ is fixed, but unknown to the tester. In this case,
the nonrobust test statistic (DW) is unable to clearly distinguish the attacked from the
unattacked system, whereas the new test statistic (CRDW) can.

5.4 Empirical Results

In this section, we present simulation results that showcase the strength of our method when
compared with the original test statistic (DW). We present results for both the case where
the noise distribution is fixed but unknown, and for the case where the noise covariance is
unknown and slowly-varying.

We use the standard model for simulation of an autonomous vehicle in [248], where the
error kinematics of lane keeping and speed control is given by xT =

[
ψ y s γ v

]
and

uT =
[
r a

]
. Here, ψ is heading error, y is lateral error, s is trajectory distance, γ is vehicle

angle, v is vehicle velocity, r is steering, and a is acceleration. We linearize and initialize with
a straight trajectory and constant velocity v0 = 10. We then performed exact discretization
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Figure 5.2: The same test as displayed in Fig. 5.1, run over 100 random instantiations of the
true ΣZ . The average difference between the test statistics (DW) and (CRDW) was recorded
for each instantiation, and used to generate this histogram. Larger numbers here indicate
that (CRDW) outperforms (DW).

with sampling period ts = 0.05. This yields the system dynamics

A =


1 0 0 1

10
0

1
2

1 0 1
40

0
0 0 1 0 1

2

0 0 0 1 0
0 0 0 0 1

 , B =


1

400
0

1
2400

0
0 1

800
1
20

0
0 1

20

 (5.26)

with C =
[
I 0

]
∈ R3×5. We use process noise covariance ΣW = 10−8 × I.

All tests use dynamic watermarking with variance ΣE = 1
2
I, and K and L were chosen

to stabilize the system without an attack. We conduct four simulations: attacked and
non-attacked systems where the measurement noise covariance is fixed, and attacked and
non-attacked systems where the measurement noise covariance is allowed to vary. We ran all
four simulations for 1000 iterations, or 50 seconds. In all cases, we compare the test metrics
using the hypothesis test described in (5.12), where the measurement noise covariance is
assumed to be 10−5 × I. When simulating the attacked system, we choose an attacker with
α = −1, η0 = 0, ΣO = 10−8 × I, and ΣS = 10−8 × I.

Fixed Covariance

We first show our test outperforms in the case where the true measurement noise covariance
matrix is fixed but unknown to the tester. In our simulations, the true noise covariance
is ΣZ = 10−5 × diag{0.18, 30, 0.18}. In all tests, ΩZ is described by the p = 4 extreme
points: ΣZ,1 = 10−6 × diag{300, 1.8, 1.8}, ΣZ,2 = 10−6 × diag{1.8, 300, 1.8}, ΣZ,3 = 10−6 ×
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Figure 5.3: The evolution and histogram of test statistics (DW) and (CRDW*) on the
attacked and unattacked systems where ΣZ varies as described, again unknown to the tester.
Note the robust statistic (CRDW*) takes distinctly higher for the attacked values over almost
the entire 1000 iterations than in the unattacked system, while the nonrobust statistic (DW)
is again unable to clearly distinguish the two.

diag{9, 9, 12}, ΣZ,4 = 10−6 × diag{9, 9, 9}. Both the true measurement noise covariance and
that incorrectly assumed in test statistic (DW) are in the resulting set. The simulation is
run for 1000 steps.

Fig. 5.1 shows the efficacy of our method under this new uncertainty. If test detection is
consistent, the negative log likelihood values should be lower under regular conditions, and
higher when the model is attacked. In particular, the nonrobust test statistic (DW) is shown
in Fig. 5.1a to be wholly unable to distinguish an attacked system from an unattacked
system when its assumption on the measurement noise covariation is violated, while Fig.
5.1b shows the robust test statistic (CRDW) to be able to do so. In fact, the distributions
of the respective situations almost never overlap when using our proposed test.
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Fig. 5.2 shows a histogram representing that same setup with a fixed but unknown ΣZ ,
only this time run over 100 different instantiations of ΣZ . For each instantiation, the same
procedure is used as is depicted in Fig. 5.1, and the average difference between the statistics
(DW) and (CRDW) are recorded. The histogram in Fig. 5.2 then depicts the distribution of
these values over all 100 instantiations. Here, more positive numbers mean that our statistic
(CRDW) outperforms the old statistic (DW). Furthermore, the characterization of Ω remains
the same, and the true ΣZ is chosen by taking a convex combination of the extreme points of
ΩZ , where the coefficients are uniform random variables that have been normalized to have
a sum of 1. We can see that our method regularly outperforms, even for randomly chosen
ΣZ .

Varying Covariance

Unattacked and attacked simulations were also conducted with a measurement noise dis-
tribution that was allowed to vary. We set ξ = 0.00002, implying ε = 7.205 × 10−6. The
true measurement noise is initialized at ΣZ0 = 10−5× diag{0.9, 0.9, 1.2}. This shifts linearly
over the course of 250 iterations to a new value of ΣZ250 = 10−5 × diag{15, 15, 0.18}, at
which point it changes direction to shift linearly over 250 iterations to a value of ΣZ500 =
10−5 × diag{30, 0.18, 0.18}. The measurement noise covariance stays at this value for 150
iterations. It then shifts linearly over 200 iterations to a terminal value of ΣZ850 = 10−5 ×
diag{0.18, 30, 0.18}, which it takes for another 150 iterations before the simulation is termi-
nated. The results for both the nonrobust and robust tests are shown in Fig. 5.3. As in the
fixed covariance case, our test is able to distinguish between the attacked and unattacked
systems better and more consistently than the nonrobust test that requires unsatisfied as-
sumptions.

5.5 Conclusion

We developed covariance-robust dynamic watermarking tests for detecting sensor attacks on
LTI systems in the presence of uncertainty about the measurement noise covariance. We
considered cases where the covariance of measurement noise is unknown and either fixed or
slowly-varying, and we required our test to be “fair” with respect to all possible values of the
covariance in that it not be more or less powerful for some covariances over others. These
reflect real-world needs that will increase as 5G is deployed, because there will be an increase
in the deployment of smart CPS systems. In such systems, an “unfair” test can translate
to disparate impact across different users in different environments, which is a problem of
algorithmic bias.

Future research in this vein includes investigations of how standard watermarking tech-
niques can be adapted to further uncertainties in system dynamics. This work represents a
first step in the design of robust and fair watermarking techniques and, in a larger scope,
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fair hypothesis tests. Further research is also necessary in the application of different modes
of fairness to hypothesis testing.
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Chapter 6

Average Margin Regularization for
Classifiers

6.1 Introduction

The previous chapter made the link between fairness and robustness in the context of hy-
pothesis testing. In this chapter, similar ideas of data-dependent regularizers (which are one
interpretation of the constraints employed in the FO hierarchy) are applied to the problem
of robust classification. In a way, the problem of robustness can be seen as an extension
of the problem of fairness: While fairness requires that any decision functions learned from
the data have minimal dependence (or conditional dependence) on some small subset of
features, robustness requires that decision functions have minimal dependence on all but
a small subset of informative features. In effect, if we could enforce independence of our
decision function with respect to all non-informative variables, we could effectively ensure a
decision function that does not overfit to noise and is thus more robust. Fortunately, this
chapter will show that this can also be achieved with data-dependent regularization terms
like those that appear in the FO hierarchy, yet in a much simpler way. The material in this
chapter borrows from material by the author in the following paper [190].

There is renewed interest in robust learning due to the observed fragility of deep clas-
sifiers to imperceptible adversarial corruptions [32, 67, 85, 240]. Such classifiers are often
key elements in a variety of cyber-physical systems (CPS) like self-driving cars, smart
homes, or smart grids. Adversarial perturbations on sensors within CPS can have dis-
astrous consequences, and this has been exhibited by several major attacks on mission-
critical CPS [3, 49, 89, 144]. In response, numerous adversarial training approaches have
been proposed, both in the context of linear margin classifiers [26, 143, 245] and deep clas-
sifiers [85, 102]. These approaches train classifiers so as to minimize loss with respect to
adversarially-perturbed data.

Interestingly, such adversarial methods have been shown to be equivalent to a particular
type of regularization in the context of linear margin classifiers and regression [26, 160, 262,
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263]. While regularization protects against (though does not always eliminate) overfitting
[64], such outcomes critically depend upon having regularization that is congruous to the
underlying data distributions [5, 28,85,143,228,259,263].

Here, we argue that adversarial training ignores notable attributes of the data. For
instance, image data often has manifold structure [98,202,205]. Similar claims may be made
about the dynamics of learned systems in system identification or reinforcment learning
contexts [211, 232]. Yet adversarial training regularizes with respect to full-dimensional
perturbations and not with respect to any underlying manifold structure. This is significant
because the imperceptibility of the most successful adversarial perturbations suggests that
they lie orthogonal to these manifolds [240]. Thus, any robust methodology that does not
exploit this kind of structure will likely remain susceptible to adversarial attacks.

Recently, [247] have claimed that there is a strict trade-off between the accuracy of a
classifier and its robustness to adversarial perturbations. They augment their argument with
demonstrations of this inverse relationship on a specific dataset, and claim that adversarial
training best minimizes the cost of robustness. This chapter shows that this is trade-off
is not general and that, in fact, robustness and accuracy can grow concurrently for broad
classes of datasets.

We make three contributions here: First, we develop a novel generalization bound that
shows classifier accuracy depends on a tradeoff between minimum and average margin. Sec-
ond, we propose a new regularization that we call average margin (AM) regularization. This
regularization consists of a linear term added to the objective, and is hence amenable to effi-
cient numerical computation. We prove that for certain distributions, AM regularization can
improve both accuracy and adversarial robustness of a classifier. Third, we use synthetic and
real data to empirically show that AM regularization can generate support vector machine
(SVM) classifiers that strictly dominate (in terms of accuracy and robustness) classifiers
computed with or without adversarial training. Taken together, these results suggest that
the phenomenon of adversarial fragility is an issue of overfitting rather than a fundamental
issue unique to adversarial attacks.

Robust Linear SVM

Linear SVM relies upon on maximizing training margin by minimizing the hinge-loss, and
several methods have been proposed to improve its robustness. Some approaches truncate
the hinge-loss function [22, 60, 138, 159, 239, 267], but a major issue with this approach is
that it forfeits the convexity of the original problem. Other methods [170, 237] penalize
outliers uniformly while maintaining the convexity of the hinge-loss, and [5] generates sparse
projections to minimize the visibility of outliers. Instead of attempting to devalue outliers,
[264] formulate a mixed-integer problem with the hinge-loss that removes them, and [259]
redesigns the loss function entirely using bounds on the leave-one-out cross-validation error.
Adversarial training has also been considered: [26,143,245] take a minimax approach, solving
bilevel programs to design classifiers robust to worst-case perturbations of either a given
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distribution or a given magnitude. Robustness of classifiers to noise in the label, as opposed
to only the features, has also been considered [26,31,187].

Robust Deep Classifiers

Adversarial fragility is pronounced in deep classifiers. [240] identified the sensitivity of deep
learners to adversarial noise, and [85,102] followed up with empirical and theoretical exam-
inations of this instability. It has been shown that relatively minute and visually unrecog-
nizable perturbations (in the case of images) can significantly impact the accuracy of these
learners, and some work has been done on characterizing these minimal deviations [32, 67].
Notably, [50] showed that many existing methods for adversarially-robust deep classification
are not wholly effective. However, there has been a spate of promising recent results in this
direction, some of which come with theoretical guarantees [126,164,206].

Outline

Section 6.2 describes our notation and presents the problem setup that will be considered.
Next, Section 6.3 introduces a novel generalization bound, proposes the average margin
(AM) regularization, and then theoretically studies properties of this regularization for a
specific distribution. Section 6.3 presents empirical results comparing linear classifiers that
have been computed using different regularization and adversarial training approaches, using
multiple datasets.

6.2 Preliminaries

We use N (µ,Σ) to refer to a multivariate normal distribution with mean µ and covariance
matrix Σ. Also, let 0d and ed refer to vectors of length d with all entries zero and one,
respectively, and Id to the d × d identity matrix. These subscripts will be dropped when
the size is obvious due to context. In contrast, the function notation 1(·) refers to the
indicator function. We use Ui to denote the i-th row of a matrix U . For some kernel
function k : Rd × Rd → R, let the matrix K(U,U ′) be such that K(U,U ′)ij = k(Ui, U

′
j).

Consider data observations (X, Y ) ∼ D where X ∈ Rd and Y ∈ {+1,−1}. In binary
classification, the goal is compute a classifier h : Rd → {+1,−1} to predict a label Y from
from a feature vector X. Actual observations of these random variables are denoted with the
lowercase, (xi, yi) for i = 1, . . . , n (this is used in optimization formulations where the data
are assumed fixed observations of random variables X and Y ). For a margin classifier from
a family H, this is achieved by minimizing minh∈H

1
n

∑n
i=1 `(yih(xi)), which is the sample

average of some given loss function `(·). The expected classification error rate of a classifier
h is defined as L(h) = E(1(Y 6= sign(h(X)))).

Adversarial robustness for a classifier h refers to its ability to maintain accuracy in pre-
dicting a label y when given a corrupted corresponding feature vector x+δ, where corruption
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Figure 6.1: This example shows that maximizing the margin on training data can reduce
classification accuracy since it does not use data far from the margin boundary. The marks
are sampled data, the two supports of the data distributions for the two labels Y ∈ {−1,+1}
are the two shaded rectangles, and the dashed line is the maximum margin linear classifier.

δ is chosen by an adversary and has magnitude bounded by a quantity e. The expected ad-
versarial classification error rate of a classifier h when the adversary can perturb data by e
magnitude is L(h, e) = E(maxδ:‖δ‖≤e 1(y 6= h(x+δ))). The inner maximization is interpreted
as an adversary choosing an attack. Also note that L(h, 0) = L(h).

6.3 Regularization Method

Margin classifiers primarily use only data near the boundaries of different classes for the
purpose of estimating the parameters of the classifier. However, in the low (relative to
dimensionality) data regime this can be problematic. Figure 6.1 shows an example where
the usual margin classifier has issues. Maximizing the minimum margin leads to a classifier
with high expected classification error because only a small amount of the data lies at the
boundaries of the two classes. The manifold-like structure of the two classes leads to a
situation where much of the data lies away from the boundary. A natural question to ask is
how margin classifiers may be modified in order to better use data away from the boundary
to improve predictions in situations similar to the above shown example.

Given the manifold-like example above, one possiblity is to use manifold regulariza-
tion techniques. In fact, manifold regularization can be useful for regression [15, 23, 29, 54].
However, a disadvantage of manifold regularization is it requires the indirect step of first
estimating the manifold, and then using the estimated manifold for regularization. This
indirect step can increase estimation error in a way that often reverses its regularizing effect.
Our goal then is to design a regularizer that provides benefits in the manifold-like setting
but does not require estimation of any manifolds.

In this section, we develop and study a new regularization for margin classifiers. We begin
by proving a new generalization bound that demonstrates how maximizing the minimum
margin does not always lead to minimal expected classification error. This generalization
bound is used to motivate our new regularization for any margin classifier, which we call the
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average margin (AM) regularization. Next, we provide a probabilistic interpretation of this
regularization in the context of deep learning. We conclude the section by discussing AM
regularization in the special context of SVM. It is shown how this regularization can be used
for kernel SVM, and then a result is given showing how AM regularization can simultaneously
improve expected classification error and robustness to adversarial perturbations; this is
significant because it is in direct contrast to results on adversarial training [247] that find a
strict trade-off between classifier accuracy and robustness to adversarial perturbations.

Average Margin Generalization Bound

Classical results on the generalization error of classifiers [22] provide justification for maxi-
mizing the minimum margin of classifiers. Below, we present a new generalization bound in
terms of the average margin of a classifier.

Theorem 11. Let L(h) = E(1(Y 6= sign(h(X)))) be the expected classification error rate of
h, Kγ(h) = #{i : Yih(Xi) ≤ γ}/n be the fraction of data with γ-margin mistakes, J(h) =
En(Y h(X)) be the average classification margin, and suppose that supx |h(x)| ≤ c for all
h ∈ H. Then for any ζ ∈ [0, 1] we have with probability at least 1− 2δ that

L(h) ≤ ζ · (1− J(h)/c) + (1− ζ) ·Kγ(h) + 4
Rn(H)

γ
+

√
log(log2

4c
γ

)

n
+

√
log(1/δ)

2n
. (6.1)

for all γ ∈ (0, c] and all h ∈ H.

Proof. This proof uses a similar argument to the proof of Theorem 2 by [123], with suitable
modifications made to apply to our setting. Define the functions

lγ(u) =


1, u ≤ 0

1− u/γ, 0 < u < γ

0, u ≥ γ

(6.2)

and `γ(u) = ζ · (1 − u/c) + (1 − ζ) · lγ(u). Let Lγ(h) = E(`γ(Y h(X))) and L̂γ(h) =
En (`γ(Y h(X))). We will consider the values γk = c/2k and δk = δ/(k+1)2 for k ∈ {0, 1, . . .}.
Since `γk(u) is Lipschitz with constant ζ/c+(1−ζ)/γk ≤ 1/γk, applying Theorem 7 from [22]
gives that

Lγk(h) ≤ L̂γk(h) +
2

γk
Rn(H) +

√
log(1/δk)

2n
(6.3)

holds with probability at least 1 − δk for all h ∈ H. Next observe that for any ζ ∈ [0, 1],
γ > 0, and any h ∈ H; we have L(h) ≤ Lγ(h) and L̂γ ≤ ζ · (1 − J(h)/c) + (1 − ζ) ·Kγ(h).
Thus with probability at least 1− δk we have

L(h) ≤ ζ · (1− J(h)/c) + (1− ζ) ·Kγk(h) +
2

γk
Rn(H) +

√
log(1/δk)

2n
(6.4)
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for all h ∈ H. Applying the union bound over all k ∈ {0, 1, . . .} gives that (6.4) holds with
probability at least 1−π2δ/6 ≥ 1− 2δ for all k ∈ {0, 1, . . .} and h ∈ H. Now we will assume
that this union event occurs. This implies (6.1) holds for γ = c. Next consider γ ∈ (0, c),
and choose the k such that γk ≤ γ < γk−1. Note k ≤ log2(c/γ) + 1, and so

L(h) ≤ ζ · (1− J(h)/c) + (1− ζ) ·Kγ(h) +
4

γ
Rn(H) +

√
log(1/δ) + 2 log(log2(4c/γ))

2n
(6.5)

since Kγk(h) ≤ Kγ(h), 1/γk ≤ 2/γ, and log(1/δk) ≤ log(1/δ) + 2 log(log2(4c/γ)).

Average Margin Regularization

Given the above intuition, we propose that the average margin 1
n

∑n
i=1 yih(xi) can be used

as a regularization term for any margin classifier. Specifically, an AM-regularized classifier
can be computed by solving

min
h∈H

1
n

∑n
i=1 `(yih(xi))− µ · 1

n

∑n
i=1 yih(x), (6.6)

where µ ≥ 0 is a tuning parameter. Note that we subtract the average margin term because
we are minimizing.

Next, we consider deep learning with activation function exp(h(x))/(1 + exp(h(x)). The
logistic loss is often used to construct classifiers, and the corresponding AM-regularized
network is computed by solving

min
h∈H

1
n

∑n
i=1 log(1 + exp(−yih(xi)))− µ · 1

n

∑n
i=1 yih(xi), (6.7)

where µ ≥ 0 is again a tuning parameter. Now suppose we use the labels t = (1 +
y)/2 ∈ {0, 1}, and we make the identifications that p̂0(x) = 1/(1 + exp(h(x))) and p̂1(x) =
exp(h(x))/(1+exp(h(x))). Then training the AM-regularized network is equivalent to solving

min
h∈H
− 1
n

∑n
i=1

[
ti log(p̂1(x)) + (1− ti) log(p̂0(x))

]
− µ · 1

n

∑n
i=1 ti log p̂1(x)

p̂0(x)

− µ · 1
n

∑n
i=1(1− ti) log p̂0(x)

p̂1(x)
. (6.8)

The first term is cross-entropy, while the last two terms are negative log-likelihood ratios.
Thus, for deep learning our AM regularization encourages larger log-likelihood ratios. Re-
calling hypothesis testing, a larger log-likelihood ratio makes it easier to distinguish between
classes. Note that AM-regularization generalizes in a natural way to multi-class classification
with deep neural networks.
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Special Case of SVM

Here, we consider AM regularization in the special case of SVM. First, consider linear SVM
with h(x) = xTβ + b. Then the AM-regularized linear SVM is given by

min λ‖β‖2 + 1
n

∑n
i=1 si − µ ·

1
n

∑n
i=1 yi(x

T
i β + b)

s.t. yi(x
T
i β + b) ≥ 1− si, for i = 1, . . . , n

si ≥ 0, for i = 1, . . . , n

(6.9)

As seen above, one advantage is that AM regularization is simply a linear term in the ob-
jective function. Thus, AM regularization does not significantly affect the computational
complexity of solving the linear SVM optimization problem. Another benefit of AM regular-
ization is it can be dualized, which allows for its use in kernel SVM. A standard argument
using the KKT conditions shows that the kernel SVM with AM regularization is computed
by solving

min zT
(
yyT ◦K(X,X)

)
z − enz

T

s.t. yzT = 0
µ

1+µ
· 1
λn
≤ z ≤ 1

λn

(6.10)

This kernel SVM formulation provides further intuition about AM regularization: It shows
that increasing µ increases the impact of points away from the margin, thereby mixing the
original support vectors with an average over all data points.

Last, we show that AM regularization can generate classifiers that both improve clas-
sification accuracy and robustness. Let L(h, e) = E(maxδ:‖δ‖≤e 1(Y 6= h(Y + δ))) be the
generalization error of classifier h when the adversary can perturb data by e magnitude. We
specifically prove a result that formalizes the intuition shown in Figure 6.1.

Proposition 11. Let ĥAM and ĥL2 be the linear classifiers computed by SVM with and
without AM regularization, respectively, using n = 4k ≥ 4 points sampled from a data
distribution. Recalling (6.9), we assume λ is chosen so that all sampled points lie beyond the
margin, that µ can be chosen based on the sampled data, and that without loss of generality
the linear classifier has no intercept term (i.e. h(x) = xTβ). There exists a data distribution
such that

L(ĥAM , e) < L(ĥL2, e), for e ∈ [0, 7
√

5/25)

L(ĥAM , e) = L(ĥL2, e), for e ∈ [7
√

5/25, 15
√

5/25)

L(ĥAM , e) > L(ĥL2, e), for e ∈ [15
√

5/25,
√

5)

L(ĥAM , e) = L(ĥL2, e), for e ∈ [
√

5, 2
√

5)

L(ĥAM , e) < L(ĥL2, e), for e ∈ [2
√

5, 110
√

5/25)

L(ĥAM , e) = L(ĥL2, e), for e ∈ [110
√

5/25,∞)
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Proof. We consider a balanced data distribution with y2i−1 = +1 and y2i = −1 for i =
1, . . . , 2k. Suppose x2i−1 = (10, 0) and x2i = (−10, 0) for i = k + 1, . . . , 2k. For i = 1, . . . , k:
let ai = +1 be the event that x2i−1 = (1, 2) and x2i = (−1,−2), and let ai = −1 be the
event that x2i−1 = (1,−2) and x2i = (−1, 2). We assume the ai are independent Rademacher
random variables.

Let I = {1, . . . , k}, and note the margin assumption on λ implies the classifier sat-
isfies YiX

T
i β ≥ 1 for all i = 1, . . . , n. Define the conditional expectation L(h, e,A) =

E[maxδ:‖δ‖≤e 1(Y 6= h(X + δ))|A] for some event A. Clearly, choosing µ = 0 removes the

effect of AM regularization and ensures that L(ĥAM , e,A) ≤ L(ĥL2, e,A).
Now consider the event B where ai = +1 for all i ∈ I. Here, the margin assumption

means the classifier must satisfy 10β1 ≥ 1, β1 + 2β2 ≥ 1. A straightforward calculation
gives that ĥL2 has β̂L2 = (1

5
, 2

5
) and L(ĥL2, e,B) = 1

4
+ 1

4
1(e ≥

√
5) + 1

2
1(e ≥ 2

√
5). The

AM-regularized SVM is

min λ‖β‖2 − 2µk · (β1 + 2β2)− 2µk · (10β1)

s.t. 10β1 ≥ 1

β1 + 2β1 ≥ 1

(6.11)

Now suppose we choose the largest µ such that the optimal solution satisfies 10β1 > 1 and
β1 + 2β1 = 1. Then it can be easily verified that this largest value is µ = λ/(15k), and
so a straightforward calculation gives that ĥAM has β̂AM = (11

15
, 2

15
) and L(ĥAM , e,B) =

1
4
1(e ≥ 7

√
5/25) + 1

4
1(e ≥ 15

√
5/25) + 1

2
1(e ≥ 110

√
5/25). This means that L(ĥAM , e,B) <

L(ĥL2, e,B) for e ∈ [0,
√

5) and L(ĥAM , e,B) = L(ĥL2, e,B) for e ≥
√

5. And as discussed
earlier, choosing µ = 0 for the event ¬B ensures that L(ĥAM , e,¬B) ≤ L(ĥL2, e,¬B). Next
note B,¬B partition the sample space, and that P(B) > 0. Hence the result follows from
the law of total expectation.

This is a more subtle result than that of [247], which considers L(·, e) for adversarially
trained classifiers at only two discrete values of e. Our analysis shows that AM regularization
can both increase classifier accuracy (i.e., at e = 0) and robustness to adversarial perturba-
tions for specific data distributions. This is seen because AM regularization generally has
lower expected classification error over the whole range of e except for a very narrow range.
The AM regularization is less robust when e ∈ [15

√
5/25,

√
5) because it has made a careful

tradeoff between maximizing the margin and maximizing the average margin.
Another point to note is that for the data distribution in the above proposition, the

adversarially trained SVM does not improve upon the standard SVM.

Proposition 12. Let ĥDγ be the linear classifier computed by adversarially trained SVM

where the adversary can perturb data by γ ∈ [0,
√

5) and let ĥL2 be the linear classifier
computed by SVM, using n = 4k ≥ 4 points sampled from a data distribution. Recalling
(6.9), we assume λ is chosen so all sampled (and perturbed) points lie beyond the margin, and
that without loss of generality the linear classifier has no intercept term (i.e. h(x) = xTβ).



CHAPTER 6. AVERAGE MARGIN REGULARIZATION FOR CLASSIFIERS 105

Figure 6.2: Robustness to adversarial corruptions of classifiers trained on synthetic data,
with accuracy measured as the fraction correctly classified.

Then, for the distribution that is considered in the proof of Proposition 11, we have that
L(ĥDγ, e) = L(ĥL2, e) for all e ≥ 0.

Proof. The proof of this proposition follows a similar argument to that for Proposition 11.

6.4 Empirical results

Here, we use synthetic and real data to compare AM regularization to other regularizations,
including adversarial training, for linear SVM. We first present the benchmark regularization
methods that we compare AM regularization to. Next, we present empirical results for linear
SVM using synthetic data, and we conclude this section by presenting numerical results for
linear SVM applied to a real dataset.
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Benchmarks

We compare linear SVM with AM regularization to: SVM with `2 regularization, SVM with
`1 regularization, the robust SVM training method of [237], and the adversarial training
method outlined by [26,245,263].

Song et al. This method relies on minimizing the impact of outliers on the design of
the separator. Specifically, it avoids the over-reliance on such outliers by shifting the loss
according to the distance of a point to its respective centroid:

minλ‖β‖2 + 1
n

∑n
i=1

(
1− yi(βTxi + b)− γ‖xi − µyi‖2

2

)
+
, (6.12)

where µyi is the centroid for class yi, and λ, γ ≥ 0 are tuning parameters.

Adversarial Training Adversarial training formulates SVM training as a bilevel program,
where the loss is minimized not over the original data {Xi}ni=1, but rather over worst-case
perturbations of the data {Xi + δi}ni=1, where the perturbations δi are restricted to be in
some space. If we restrict ‖δi‖q ≤ γ for some norm ‖ · ‖q, this is modeled as

min λ‖β‖2 + 1
n

∑n
i=1 si

s.t. yi(β
Txi + b)− γ‖β‖q∗ ≥ 1− si, for i = 1, . . . , n

si ≥ 0, for i = 1, . . . , n

(6.13)

where ‖ · ‖q∗ is the dual norm of ‖ · ‖q. In this section, we consider the case where q = 2.

Synthetic Data

We next run randomized experiments to demonstrate situations where AM regularization
is beneficial. We generate U+, U− by taking the Q from a QR decomposition done on a
matrix of size d × m with standard normal entries, and µ+, µ− ∈ Rd to have uniformly-
distributed entries between 0 and 2. Then, we set X = ΠU+µ+ + U+v+ + ε+ when Y = +1,
and X = ΠU−µ− + U−v− + ε− when Y = −1, where v+ ∼ N (µ+, Im), ε+ ∼ N (0d, εId),
v− ∼ N (µ−, Im), and ε− ∼ N (0d, εId). A training set of n samples was created. All models
were then tested using 10,000 samples with adversarial corruption of various magnitude.
This procedure was repeated 100 times with ε = 0.01 and d = 200, and the results for
various training-set sizes and values of n are presented in Figure 6.2. Our method improves
both robustness and accuracy in low-data and low-dimensionality regimes.

MNIST Experiments

Next, we use the classic MNIST dataset [149] to evaluate AM regularization. In Table 6.1, we
compare AM-regularization to the benchmark methods on the fraction of test points correctly
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Table 6.1: Fraction Correctly Classified when Classifying 0 vs. 1 in MNIST Dataset

Corruption 0.01 0.2 1.0

`2-regularized 0.940 0.938 0.921
`1-regularized 0.997 0.995 0.714
AM-regularized 0.998 0.997 0.983
Adversarial 0.996 0.995 0.979
Song et al. 0.994 0.992 0.974

classified. For simplicity, we focus on the binary classification problem of separating hand-
drawn 0’s from hand-drawn 1’s, and report results from training on 10% of available training
data. All hyperparameter values were set using 5-fold cross-validation on the training set.
We repeat this process 50 times for each model, and report the accuracy results on a common
testing set corrupted with various degrees of adversarial perturbations. We note that our
method achieves better or almost equivalent accuracy with low corruption, and is best able
to retain that level of accuracy at high levels of corruption.

6.5 Conclusion

Based on a novel generalization bound, we have proposed in this chapter a new form of
regularization for margin classifiers that we call average margin (AM) regularization. Our
theoretical and empirical results support its use by showing that AM regularization can
increase both classifier accuracy and adversarial robustness. Taken together, our results sug-
gest that adversarial fragility is an issue of overfitting, rather than a fundamental uniqueness
of adversarial perturbations.

One future topic is to better understand AM regularization’s theoretical properties. We
believe AM regularization works best in the finite sample regime and that its asymptotic
behavior when µ 6→ 0 may be poor. Another topic is modifications of AM regularization. For
instance, consider a hinged average margin (HAM) regularization that adds −µ × En(γ −
Y h(X))+, where µ, γ ≥ 0 are tuning parameters. HAM regularization may improve AM
regularization by providing saturation, whereby points very far (specifically γ distance away)
from the margin are not considered in the average margin calculation. Promisingly, this is
convex in Y h(X). Furthermore, we would like to investigate the efficacy of AM regularization
for deep classifiers.



108

Chapter 7

Conclusions

This thesis has presented the FO hierarchy, an optimization framework for approximating in-
dependence and ensuring fairness. It has expanded this framework to a number of statistical
learning settings.

7.1 Summary of Contributions

This thesis has made the following specific contributions to the literature:

• Introduces and argues for the FO hierarchy as an approach to approximating inde-
pendence in optimization and ensuring fairness in data-driven decision-making. The
intuition behind this framework is the concept of bounding moments. The framework
is shown to be highly flexible, accommodating a range of statistical decision-making
problems, including problems that involve making multiple decisions and which require
ensuring fairness with respect to multiple protected attributes.

• Provides results on consistency and non-asymptotic rates of convergence for FO. Our
framework will asymptotically guarantee the choice of a decision function that satisfies
independence or fairness constraints as long as the order of the hierarchy grows as a
double-log of the number of data points, n, and the bounds on each moment constraint
shrink according to n−1/4.

• Examines empirical behavior and theoretical intuitions of FO in multiple supervised
learning problems, including dynamical systems and case studies on automated and fair
morphine and heparin dosage. We show that the FO constraints can be interpreted as
approximations to a bi-level programming problem, as information projections and as
deflations in a dual space, when applied to certain supervised learning algorithms. We
then show that its efficacy on a number of datasets and in two automated dosing case
studies.
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• Defines a novel notion of fairness for unsupervised learning, and in particular dimen-
sionality reduction problems, and extends the FO hierarchy to this setting. This relies
on an SDP relaxation of the PCA problem, as well as SDP relaxations of the relevant
FO constraints. We show that this is effective both on standard metrics of dimension-
ality reduction, such as the percentage of data variance captured in a dimensionality
reduction, and as a preprocessing step for further supervised and unsupervised learning
tasks.

• Provides the first analysis of fair hypothesis testing, and exploits these principles to de-
sign a distributionally-robust watermarking scheme for detecting attacks on dynamical
systems. Hypothesis testing is viewed as a fairness problem where the exact specifica-
tions of the null-hypothesis are viewed as the protected attribute; certain notions of
fairness are then equivalent to showing that a certain test is robust to errors in the
null hypothesis, in the sense that it retains its power. We incorporate this concept in
the framework of dynamic watermarking.

• Extends the notion of data-dependent regularization to propose an average-margin regu-
larizer for robust classification in low-data regimes for data that lives in low-dimensional
manifolds. This comes from the intuition that simple, data-dependent regularizers can
implicitly detect manifolds on which data may live, and thus be used to cancel out the
chances of overfitting to errors outside of this manifold more efficiently than adversarial
training techniques.

7.2 Future Work

Plenty of work remains to be done in the space of algorithmic fairness. From the perspective
of the methodologies presented in this thesis, one major area of further work is the proper
choice of hyperparameters. In particular, mechanisms that could determine the number
of fairness constraints that are helpful given preliminary and efficient scans of data could
prove very helpful in attaining the most value possible from the FO hierarchy. Furthermore,
much work remains to be done in the nascent spaces of fair unsupervised learning and fair
hypothesis testing. As shown in this thesis, these are problems that are amenable to fairness,
and in fact are problems that can even benefit from the application of fairness concepts. The
FPCA approach outlined in this thesis can run in to computational bottlenecks due to the
SDP involved: A valuable line of work would involve exploiting the low-rank nature of the
problem to make this more efficient. While FPCA works as a preprocessing technique, an
alternative approach to fair unsupervised learning would be to directly redesign algorithms
for unsupervised learning problems like clustering in order to take fairness into account at
training time, much as is done for many fair supervised learning algorithms. There has been
some initial work in this realm [40,56], but much work remains to be done.

More work also remains to be done in task of defining fairness. This is easy to see in areas
where fair statistical learning has only recently become of interest: unsupervised learning
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and hypothesis testing. In these domains, it remains for the academic community to engage
in the primary work of proposing definitions, considering the attributes of each proposal and
coalescing around the few best notions. Yet even the notions of fairness used in supervised
learning require further study. This is due to several reasons. First, many of these have
been shown to be actively conflicting, and so further study is required to determine exactly
when these conflicts arise and whether there are better or broader definitions that avoid
these problems [131, 134]. Second, they can be extended to include more than just final
decisions, but rather the uncertain societal impacts of these decisions [158]. Finally, these
notions should be specified to become more reflective of issues in the real world [61]. The
whole point of the field of fair machine learning is to redefine classical views of statistical
learning to be more reflective of a complicated and unintuitive world: If the results of the
fair machine learning literature are to ever be adopted widely to actually address the their
motivating causes, they must reflect the needs, desires and restrictions of their users. To
that end, they need to embrace the world in which they are to be deployed and the legal
and philosophical foundations of fairness upon which citizens of that world will base their
decision: Are automated decision-making algorithms worthy of our trust?
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[195] D. Pál, B. Póczos, and C. Szepesvári. Estimation of rényi entropy and mutual informa-
tion based on generalized nearest-neighbor graphs. In Advances in Neural Information
Processing Systems, pages 1849–1857, 2010.

[196] S. Paluch and S. Tuzovic. Leveraging pushed self-tracking in the health insurance
industry: How do individuals perceive smart wearables offered by insurance organiza-
tion? 2017.

[197] D. Parfit. Equality and priority. Ratio, 10(3):202–221, 1997.

[198] T. Patschkowski, A. Rohde, et al. Adaptation to lowest density regions with application
to support recovery. The Annals of Statistics, 44(1):255–287, 2016.



BIBLIOGRAPHY 125

[199] K. Pearson. The law of ancestral heredity. Biometrika, 2(2):211–228, 1903.

[200] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[201] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost. Machine learn-
ing for targeted display advertising: Transfer learning in action. Machine learning,
95(1):103–127, 2014.
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