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Summary

Progression of chronic disease is often manifested by repeated occurrences of disease-related 

events over time. Delineating the heterogeneity in the risk of such recurrent events can provide 

valuable scientific insight for guiding customized disease management. In this paper, we propose a 

new sensible measure of individual risk of recurrent events and present a dynamic modeling 

framework thereof, which accounts for both observed covariates and unobservable frailty. The 

proposed modeling requires no distributional specification of the unobservable frailty, while 

permitting the exploration of dynamic effects of the observed covariates. We develop estimation 

and inference procedures for the proposed model through a novel adaptation of the principle of 

conditional score. The asymptotic properties of the proposed estimator, including the uniform 

consistency and weak convergence, are established. Extensive simulation studies demonstrate 

satisfactory finite-sample performance of the proposed method. We illustrate the practical utility of 

the new method via an application to a diabetes clinical trial that explores the risk patterns of 

hypoglycemia in Type 2 diabetes patients.

Keywords

Conditional score; Frailty; Quantile regression; Recurrent event

1. INTRODUCTION

In chronic disease follow-up studies, clinically important outcomes, such as opportunistic 

infections in HiV patients, repeated exacerbations in chronic obstructive pulmonary disease 

hjma@fem.ecnu.edu.cn. 
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patients, and episodes of hypoglycemia in diabetic individuals, are often captured over time 

to track disease progression. understanding how the risk of such recurrent events varies 

across individuals pertaining to baseline characteristics can provide useful information for 

guiding customized disease management.

To characterize the individual risk of recurrent events, a popular approach is to model the 

counting process of recurrent events, Ni* t , which depicts the trajectory of event occurrences 

in subject i. A well-known example is the classic proportional intensity model (Prentice et 

al., 1981; Andersen & Gill, 1982), where Ni* t ’s share a common baseline intensity function 

and baseline covariates Xi are assumed to have multiplicative effects on the intensity. To 

capture the within-subject dependency of recurrent events not explained by the observed 

covariates, an unobservable frailty ξi (Nielsen et al., 1992; Oakes, 1992) is often 

incorporated into the modeling of Ni* t . For instance, given the subject-level traits including 

the observed covariates Xi and an unobservable frailty ξi, Ni* t , may be specified as a 

nonstationary Poisson process with the intensity function ξiexp Xi
τb0 λ0 t , where λ0(t) is an 

unspecified baseline intensity function (Wang et al., 2001). Such a model sensibly accounts 

for both the observed covariates and the unobservable frailty for explicating the individual 

differences in recurrent event occurrences. However, as elaborated later, it is subject to a 

subtle but important limitation, which is, all covariates are assumed to have homogeneous 

effects across the whole study population. In practice, this assumption can be unreasonable, 

for example, when the efficacy of a testing drug varies across different risk groups. Such a 

limitation is commonly present in most existing models of recurrent event counting process 

(Pepe & Cai, 1993; Lawless & Nadeau, 1995; Lin et al., 2000; Wang et al., 2001; Schaubel 

et al., 2006, for example), posing an obstacle for probing some important heterogeneity in 

individual risk of recurrent events.

In this work, we develop a new modeling framework that is flexible and robust for 

delineating the heterogeneity in recurrent event risk. Taking a novel view of the 

multiplicative intensity model, we assume that Ni* t , given a nonnegative random variable 

γi, is a nonstationary Poisson process with the intensity function,

λ t γi = γi · λ0 t , (1)

where the baseline intensity λ0(t) is an unknown, nonnegative, and continuous function. 

Here γi captures the scale shift of subject i’s intensity process from the baseline intensity, 

and thus can serve as a sensible measure of subject-specific risk of recurrent events. Unlike 

in typical recurrent event frailty models, which usually address the influences of the 

observed covariates Xi and the unobservable frailty ξi separately, we shall utilize γi to 

simultaneously account for the individual variations in recurrent event occurrences explained 

by either Xi or ξi. The proportional intensity model (Andersen & Gill, 1982) is a special 

case of model (1) with γi = exp Xi
τb0 . When γi = ξiexp Xi

τb0 , model (1) reduces to Wang et 

al. (2001)’s semiparametric multiplicative intensity model. An important observation for 

these special cases is that a linear model is essentially exerted for log(γi); consequently, all 
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covariate effects are confined to be location-shifts. For example, Wang et al. (2001)’s model 

is equivalent to specifying log γi = logξi + Xi
τb0. In a two-sample case comparing a new 

treatment versus placebo, the treatment effect is assumed to be a constant shift in log(γi) 

throughout its whole range, meaning a homogeneous treatment effect across different risk 

groups. This assumption may not be scientifically plausible, and automatically precludes 

inferences leading to more customized intervention strategies.

To enable exploring a potentially heterogeneous relationship between Xi and the latent 

individual risk measure γi, we propose to link log(γi) with Xi through a linear quantile 

regression model (Koenker & Bassett, 1978). The modeling strategy of quantile regression 

inherently permits dynamic effects of covariates that change across the range of γi. This 

effort leads to a broader class of multiplicative intensity models because existing ones 

usually assume a linear model for log(γi) over Xi, which is a special case of a linear quantile 

regression model. Given this connection, inferential tools developed for the new general 

model can be used to test the goodness-of-fit of the existing multiplicative intensity models. 

Furthermore, as explained in Section 2, a linear quantile regression model can naturally 

account for sources of heterogeneity in γi that are not captured by the location-shift effects 

of the observed covariates; thus it is a more flexible venue to accommodate the unobservable 

frailty without explicitly specifying its distribution as well as the form of its interaction with 

Xi.

To tackle the proposed quantile regression of γi, a main technical difficulty relates to the 

latent unobservable nature of γi. We address this challenge by novelly adapting the principle 

of conditional score (Stefanski & Carroll, 1987) in the settings of quantile regression and 

multiplicative intensity regression of recurrent events. Revising the conditional likelihood 

arguments in Wang et al. (2001), we can circumvent any parametric specification of the 

baseline intensity function λ0(t) in model (1). In addition, adopting the quantile regression 

modeling of γi allows us to avoid imposing distributional assumptions for any unobservable 

frailty. These nice properties indicate the flexibility and robustness of the proposed method 

for exploring the heterogeneity in individual recurrent event risk.

2. THE PROPOSED MODEL

We begin with an introduction of the data and notation. Let Ti
j  denote the time to the jth 

recurrent event of subject i. The underlying counting process for the recurrent events is 

defined as Ni* t = ∑j = 1
∞ I Ti

j ≤ t . Suppose the observation of recurrent events is 

terminated by a censoring time Ci. The observed counting process is given by 

Ni t = Ni* t ∧ Ci = ∑j = 1
∞ I Ti

j ≤ t ∧ Ci , where a Λ b denotes the minimum of a and b. Let 

mi be the total number of observed recurrent events of subject i, i.e. mi = N(Ci) = N*(Ci). 

Define Xi = 1, Xi
τ τ

, where Xi is a (p − 1) × 1 vector capturing baseline covariates. The 

observed data include Ni t , Ci, Xi i = 1
n . Hereafter the same notation without subscript i 

represent the corresponding population analogues.
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We assume a general multiplicative intensity model, model (1): given γi, which measures 

the individual risk of recurrent events for subject i, Ni* t  is a nonstationary Poisson process 

with the intensity function, λ(t|γi) = γi · λ0(t). We do not specify any parametric form for 

λ0(t); nonetheless, we impose a constraint,

∫
0

ν*
λ0 t dt = 1, (2)

for the purpose of model identifiability, where ν* is a predetermined constant which can be 

chosen as the upper bound of Ci’s support. It is clear that, without constraint (2), model (1) 

is not identifiable from an alternative specification of the intensity function, (γi/c) · {cλ0(t)}, 

where c is a positive constant. Thus, constraint (2) is an integral part of the assumed 

multiplicative intensity model (1). of note, model (1) implies

E Ni* t γi = γi · μ0 t ,

where μ0 t = ∫0
tλ0 s ds, and μ0(ν*) = 1. This suggests an alternative interpretation of γi, 

which is the subject-specific scale shift in the mean function.

The core component of the proposed modeling is to use quantile regression to explore the 

heterogeneity in subject-specific risk of recurrent events, quantified by γi. Let γ denote the 

population analogue of γi and let Qγ(τ|Xi) denote the τ th conditional quantile of γ given X 
= Xi, namely, Qγ(τ|Xi) = inf{u ≥ 0 : Pr(γ ≤ u|X = Xi) ≥ τ}. We assume that

Qγ τ Xi = exp Xi
τβ0 τ ≐ exp a0 τ + Xi

τb0 τ , (3)

where β0(·) ≐ (a0(τ), b0(τ)τ)τ is a p × 1 vector of unknown regression coefficient functions.

Our modeling strategy shares a similar spirit with the multilevel (or hierarchy) modeling in 

linear regression settings (Raudenbush & Bryk, 2002). That is, we first utilize γi to quantify 

the risk of recurrent events for subject i based on the individual multiplicative intensity 

model (1), and then probe the population-level heterogeneity in γi. The non-intercept 

coefficients in b0(τ) are population quantities of key interest, representing the change in the 

τ-th quantile of log(γ) given one unit change in the corresponding covariate. For example, in 

a two-sample case where Xi indicates a new treatment versus placebo, b0(τ) represents the 

treatment effect on the τ-th quantile of γ. Examining b0(τ) across different τ’s can provide a 

detailed picture of how γi’s are distributed differently between subjects in the treatment 

group and those in the placebo group.

Under traditional multiplicative intensity modeling (Nielsen et al., 1992; Oakes, 1992; Wang 

et al., 2001, e.g.), γi is essentially specified by a log-linear model, log γi = Xi
τb0 + logξi, 

where the exponentiated error term, ξi, corresponds to the so-called frailty. If a0(τ) is a 

constant a0, then log(γi) degenerates to a0 + Xi
τb0 and the proposed model reduces to the 

proportional intensity model (Andersen & Gill, 1982). Such connections with the existing 

Ma et al. Page 4

Biometrika. Author manuscript; available in PMC 2021 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models suggest that the non-constancy of b0(τ), as permitted by model (3), accounts for 

sources of heterogeneity in γi not captured by the location-shift effects of the observed 

covariates (Koenker, 2005).

Based on the proposed models (1)–(3), we adopt the following censoring assumptions:

i. Ci is independent of Ni* ·  given γi;

ii. Ci is independent of γi given Xi.

These assumptions allow Ci to depend Xi. In the special case of log γi = Xi
τb0 + logξi, the 

assumption (ii) is equivalent to assuming Ci is independent of the frailty ξi given Xi.

3. ESTIMATION AND INFERENCE

3.1. Estimating equation

It is easy to see that model (3) is equivalent to Qlog γ τ Xi = Xi
τβ0 τ , where Qlog(γ)(τ|Xi) 

denotes the τ th conditional quantile of log(γ) given X = Xi. If γi’s were observed, we can 

easily estimate β0(τ) through the score equation of the classic quantile loss function 

(Koenker & Bassett, 1978):

∑
i = 1

n
Xi · ψτ log γi − Xi

τb = 0, (4)

where ψτ (v) = τ − I(v < 0), I(·) denotes the indicator function, and b ∈ ℝp is a p-

dimensional unknown coefficients.

A key challenge for estimating β0(τ) is that γi’s are not observable. A naive approach to 

address this difficulty is to replace the γi in (4) by its observable proxy. Since model (1) 

implies E Ni* t γi = γiμ0 t , an intuitive proxy of γi is given by γ i = mi/μ Ci , where μ ·  is 

an estimator of μ0(·). An example of μ ·  is discussed at the end of this subsection. However, 

this naive approach, as evidenced by our simulation studies, can produce considerably 

biased estimation by ignoring the non-negligible deviation of γ i from γi, on the subject-

level, despite that n−1∑i = 1
n γ i consistently estimate E(γ).

Our strategy to deal with unobservable γi’s is to apply the principle of conditional score 

(Stefanski & Carroll, 1987) to transform the score equation (4) that involves unobservable 

γi’s to a valid estimating equation that only uses observable quantities. We utilize the fact 

that

0 = E X · ψτ log γ − Xτβ0 τ = E E X · ψτ log γ − Xτβ0 τ m, C, X
= E ∫

r
X · ψτ log r − Xτβ0 τ · f r m, C, X; β0 · , μ0 · dr , (5)

where f{γ|m, C, X; β0(·), μ0(·)} denotes the conditional density of γ given m, C and X, 

which depends on β0(·) and μ0(·). Equation (5) reflects a critical idea that we choose (m, C) 
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as the surrogate data to recover the information on γ. As elaborated later, such a choice 

brings analytical convenience as well as computational feasibility.

By equation (5), we consider constructing an estimating equation based on

Sn β, μ, τ ≐ 1
n ∑

i = 1

n ∫r
Xi · ψτ log r − Xiτβ τ f r mi, Ci, Xi; β · , μ · dr .

It is clearly seen from (5) that E[Sn(β0, μ0, τ)] = 0.

To utilize Sn(β, μ, τ) to estimate β0(τ), a crucial step is to derive the analytic form of f{r|m, 

C, X; β0(·), μ0(·)}. To this end, we note that

f r m, C, X; β0 · , μ0 · = ρ m r, C, X; μ0 · g r C, X; β0 ·
∫rρ m r, C, X; μ0 · g r C, X; β0 · dr

= ρ m r, C; μ0 · g r X; β0 ·
∫rρ m r, C; μ0 · g r X; β0 · dr .

(6)

where ρ{m|r, C, X; μ0(·)} denotes the conditional probability mass function of m given (γ = 

r, C, X) and g{r|C, X; β0(·)} denotes the conditional density of γ at γ = r given (C, X). The 

censoring assumption (ii) implies that g{r|C, X; β0(·)} is free of C and so we can simplify 

the notation g{r|C, X; β0(·)} to g{r|X; β0(·)}. We can also omit X from ρ{m|r, C, X; μ0(·)} 

because m = N*(C) and thus its distribution is fully determined when γ and C are given. 

These justify the second equality in (6).

First, we examine ρ{m|r, C; μ0(·)} using the fact that under model (1), N*(t), given γ, is a 

nonhomogeneous Poisson process with mean function γμ0(t) (Lin et al., 2000). This implies 

that {μ0(T(1)), μ0(T(2)), …} can be viewed as random variates generated from a 

homogeneous Poisson process with mean function γt. Using standard probabilistic 

arguments, we show in Section 1 of the Supplementary Materials that, for both m = 0 and m 
> 0,

ρ m r, C; μ0 · = rμ0 C m

m! exp −rμ0 C . (7)

Next, we assess g{r|X; β0(·)} using the relationship between the conditional density function 

and the conditional quantile function of γ (Wei & Carroll, 2009). Under model (3), we can 

write

g r X; β0 · = lim
δ 0

δ
exp Xτβ0 τr + δ − exp Xτβ0 τr

, (8)

where τr = {τ ∈ (0, 1) : exp{Xτβ0(τ)} = r}. Using the results in (6), (7), and (8), we can 

express the f{r|mi, Ci, Xi; β0(·), μ0(·)} explicitly in terms of r, mi, Ci, Xi, μ0(·), and β0(·). We 

assume the conditional density of γ given X, g{r|X; β0(·)}, is bounded away from 0 and ∞, 

and belong to a compact interval [Mg,l, Mg,u].
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To construct an estimating equation based on Sn(β, μ, τ), there remains a major obstacle, 

which is the unknown infinitely-dimensional μ(·). To address this difficulty, one may follow 

the conditional likelihood arguments in Wang et al. (2001) to obtain a nonparametric 

estimator of μ0(t), which has a simple product-limit representation. Alternatively, we 

propose an asymptotic equivalent estimator of μ0(·), which takes the Nelson-Aalen form. 

Define the functions SC t γ ≐ Pr C ≥ t γ  and H0 t ≐ log μ0 t /μ0 ν* . Given the constraint 

(2), μ0(ν*) = 1, it is easy to see that H0(ν*) = 0 and μ0 t = exp H0 t . Under the censoring 

assumption (i) that Ci is independent of Ni* ·  given γi, the multiplicative intensity structure 

imposed by model (1) implies that

E dNi t γi = SC t γi E dNi* t γi = SC t γi γiλ0 t dt,

and

E I Ci ≥ t Ni t dH0 t γi = SC t γi γiμ0 t
λ0 t
μ0 t dt = SC t γi γiλ0 t dt .

It then follows that E{dMi(t)} = 0, where dMi t ≐ dNi t − I Ci ≥ t Ni t dH0 t . Solving 

∑i = 1
n dMi t = 0 yields an estimator of μ0(t), which is given by μ t = exp{H t } with

H t = − ∫t
v* ∑i = 1

n dNi s

∑i = 1
n I Ci ≥ s Ni s

.

Plug μ t  into the explicit expression of f r mi, Ci, Xi; β · , μ ·  and denote the resulting 

f r mi, Ci, Xi; β · , μ ·  and Sn β, μ, τ  by f γ mi, Ci, Xi; β · , μ ·  and Sn β, μ, τ
respectively. Then the proposed estimating equation takes the form

n1/2Sn β, μ, τ = 0 . (9)

We shall derive the proposed estimator of β0(τ), denoted by μ τ , from this estimating 

equation.

3.2. Estimation algorithm

Solving estimating equation (9) is not straightforward because g γ X; β ·  is expressed as a 

limit and Sn β, μ, τ  involves integrals with respect to γ. To assess g γ X; β · , we adapt the 

strategy proposed by Wei & Carroll (2009) for quantile regression with covariate 

measurement errors, and approximate β(τ) by a cadlag piecewise-constant function that 

jumps only on an equally spaced grid on (0, 1), denoted by 

SKn = 0 = τ0 < τ1 < τ2 < … < τKn < τKn + 1 = 1  with τk = k/ Kn + 1 . In the sequel, we may 

use notation K instead of Kn for notation simplicity.

Given (8), we propose to approximate g γ X; β ·  by
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gn r X; β · = min Mg, u, max Mg, l, ∑
k = 1

K τk − τk − 1
exp Xτβ τk − exp Xτβ τk − 1

· I exp Xτβ τk − 1 < r ≤ exp Xτβ τk ,

with exp{Xτβ(0)} fixed as 0, and [Mg,l, Mg,u] assumed to bound g γ X; β · .

Let f n r mi, Ci, Xi; β · , μ ·  denote f r mi, Ci, Xi; β · , μ ·  with gn r X; β ·  in place of 

g r X; β · . Note that gn r X; β ·  only involves a (K · p)-dimensional parameter, 

θn β = β τ1
τ, β τ2

τ, …, β τK
τ τ

, and so does f n r mi, Ci, Xi; β · , μ · . Write 

gn r X; β ·  as gn r X; θ . Expressing f n r mi, Ci, Xi; β · , μ ·  as f n r mi, Ci, Xi; θ  and 

using it in place of the f r mi, Ci, Xi; β · , μ ·  in Sn β, μ, τ , we transform equation (9) into 

an estimating equation, which can be written as

Sn θ ≐ 1
n ∑

i = 1

n ∫
r

Ψ log r − Xi
τθ ⊗ Xi · f n r mi, Ci, Xi; θ dr = 0, (10)

where Ψ log r − Xi
τθ = ψτ1 log r − Xi

τβ τ1 , …, ψτK log r − Xi
τβ τK

τ
, and ⊗ denotes 

Kronecker product. Based on equation (10), we develop the following algorithm for 

estimating β0(·):

Step 1. Set the initial value θ 0 = (β 0 τ1
τ, …, β 0 τK

τ)
τ
 as the naive estimates obtained 

from solving a standard quantile regression problem in equation (4) with γ i replacing γi. Set 

l = 1.

Step 2. Based on θ[l–1], evaluate

f l r mi, Ci, Xi; θ l − 1 =
ρ mi r, Ci; μ · g r Xi; θ l − 1

∫rρ mi r, Ci; μ · g r Xi; θ l − 1 dr
,

where

ρ mi r, Ci; μ · =
rμ Ci

mi
mi!

exp −rμ Ci .

Step 3. Update θ l = (β l τ1
τ, …, β l τK

τ)
τ
 by the solution to (10) with f r mi, Ci, Xi; θ

evaluated at f l r mi, Ci, Xi; θ l − 1  Increase l by 1.

Step 4. Repeat Steps 2 and 3 until the algorithm converges.

Step 5. The proposed estimator is given by
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β τ = ∑
k = 1

K + 1
β τk − 1 I τk − 1 ≤ τ < τk .

To implement the presented algorithm, we adopt numerical integration to assess the integrals 

with respect to r. In Step 3, finding the solution to (10) can be transformed to a weighted 

quantile regression problem. Let γ i
l = (r i, 1

l , r i, 2
l , …, r i, J

l )
τ
 be a fine grid of possible ri values 

in the lth step. The estimating equations (10) can be approximated by

∑
i = 1

n
∑
j = 1

J − 1
Xi · ψτk log(r i, j

l ) − Xi
τβ τk f l (r i, j

l mi, Ci, Xi)(r i, j + 1
l − r i, j

l ) = 0, (11)

for k = 1, … , K. Equation (11) can be viewed as a weighted quantile regression problem 

with responses, log(r i, j
l ), and covariates, Xi, along with weights 

f l (r i, j
l mi, Ci, Xi)(r i, j + 1

l − r i, j
l ). Then estimating equation (11) can be solved by standard 

statistical software, such as the rq() function in R package quantreg.

The presented estimation algorithm involves the choice of the τ-grid SK and the γ-grid γ i
l . 

By our asymptotic studies, we require the grid size of SK, defined as 

SK ≐ max τk + 1 − τk, k = 1, …, K − 1 , which equals (Kn + 1)−1, is of asymptotic order o(n

−1/2). We also suggest choosing J = K and setting γ i
l  as 

(exp{Xi
τβ l − 1 τ1 }, …, exp{Xi

τβ l − 1 τK })
τ
 for computational simplicity.

3.3. Large sample studies

We first introduce the regularity conditions and necessary notation. For a vector u, let ‖u‖ 
denote its Euclidean form, u(j) denote the jth component of u, and u(s:t) denote the subvector 

consisting of the s-th to t-th component of u. Let R = R ∪ − ∞ . For y ≐ y1, …yp
τ ∈ Rp, 

define

D y =

1 0 ⋯ 0

−1 e−y2 0
⋮ ⋮ ⋱ ⋮

−1 0 ⋯ e−yp

.

Let χ denotes the support of X, ß S = f: 0, 1 Rp; f ·  is cadlag; for any τ ∈ [0, 1), 

f τ 1 ≤ S, and f τ 2: p ≤ S , and U = f: 0, ∞ R; f ·  is cadlag, nonnegative, and 

non-decreasing with f(0) = 0}. Let Cp[0, 1) denote the set of p-dimensional differentiable 

functions on [0, 1). Define ℎx τ = d exp xτβ0 τ /dτ −1 and ℎ̇x(τ) = dℎx(τ)/dτ. The 

following are the regularity conditions:

C1. (a) χ is compact; (b) β0 ∈ ß S  for some S <; ∞;; (c) N*(ν*) is bounded, a.s..
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C2. (a) Pr(C > ν*) = 0 and Pr(C = ν*) > 0; (b) Pr(C < ν*) = 0 for some ν* ∈ (0, ν*).

C3. inft ∈ v*, v* E SC t γ γ μ0 t > 0.

C4. (a) β0(τ) is continuously differentiable in τ ∈ (0, 1); (b) 0 < Mg,l < supx∈χhx(τ) < 

Mg,u < ∞; (c) there exist constants Mh and v1, v2 > −1 such that supx ∈ χℎ̇x(τ) is 

bounded above by Mhτν1 (1 − τ)ν2.

C5. For β ∈ ß S  and μ ∈ U in a neighborhood of μ0,

eigminηj ∈ ℛ S , 1 ≤ j ≤ pwn η1, …, ηp; β, μ −1 > 0

for n > some N0, where eigmin(·) denotes the minimum eigenvalue of a matrix and

wn η1, …, ηp; β, μ = E{XXτdiag(f n Xτηj m, C, X; β · , μ( · ) eXτη 2: p D η , 1 ≤ j ≤ p)} .

C6. β0(·) is the unique solution to s(β, μ0, τ) = 0 for β ∈ Cp[0, 1) and τ ∈ (0, 1), 

where s(β, μ, τ) = E{Sn(β, μ, τ)}.

Condition C1 implies realistic boundedness assumptions for X, γ and m. Condition C2 (a) is 

always satisfied when a truncated censoring time C* = min(C, ν*) is adopted in place of C, 

given ν* is a constant less than the upper bound of C’s support. Under Condition C2, we 

essentially only utilize recurrent events occurred up to time ν*, and thus we need to set ν* 

as large as possible to minimize information loss. Conditions C3 and C2(b) play an 

important role to achieve desirable asymptotic behaviors of μ C . Condition C4(a) assumes 

the smoothness of the true coefficient function β0(τ), which has been commonly adopted in 

quantile regression literature. The assumptions in conditions C4(b) and C4(c) were similarly 

adopted by Wei & Carroll (2009) and can help justify the approximation of g γ X; β ·  by 

gn γ X; θ . Conditions C5 and C6 are the key assumptions to ensure the identifiability of 

β0(τ), and consequently the uniform consistency of β τ .

We establish the uniform consistency and weak convergence of the proposed estimator β τ
in the following theorems:

THEOREM 1. Under regularity conditions C1–C6, if Kn → ∞ and Kn/na0 → 0 for some a0 > 

0, then limn ∞supτ ∈ ζ1, ζc β τ − β0 τ p 0, where ζ1 and ζ2 are constants satisfying 

0 < ζ1 < ζ2 < 1.

THEOREM 2. Under regularity conditions C1–C6, if n−1/2Kn ∞ and Kn/na0 0 for some a0 

> 1/2, then n1/2 β τ − β0 τ  converges weakly to a Gaussian process for τ ∈ ζ1, ζ2 , where 

ζ1 and ζ2 are constants satisfying 0 < ζ1 < ζ2 < 1.

Note that Theorems 1-2 are focused on the asymptotic properties of β τ  with τ ∈ ζ1, ζ2 , a 

closed subset of (0, 1) away from 0. This is necessary because model (3) implies that 

exp{Xτβ0(0)} = 0 and hence ‖β0(0)}‖ = ∞. Following the strategy in Peng & Huang (2007), 
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we circumvent this difficulty by considering reparameterizing β0(τ) by α0 τ = κ−1 β0 τ , 

where κ−1 y = ey1, ey1 + y2, …, ey1 + yp τ
 for y = y1, …, yp

τ ∈ Rp. A key advantage of 

working on α0(τ) is that the derivative matrix of the estimating function with respect to 

α0(τ) can have eigenvalues bounded away zero uniformly across τ ∈ (0, 1) (see condition 

C5). Thus, we are able to establish the uniform consistency of α τ ≐ κ β τ  over τ ∈ (0, 1). 

Through sophisticated derivations, we also uncover the link between n1/2 αn τ − α0 τ  and 

a tight Gaussian process via a Fredholm integral equation of the second kind, which entails 

the weak convergence of n1/2 αn τ − α0 τ . Given the one-to-one and smooth 

transformation between α and β  and that between α0 and β0, it follows the uniform 

consistency of β τ  and weak convergence of n1/2 β τ − β0 τ  for τ ∈ ζ1, ζ2  where the 

derivative of κ(·) around β0(τ) is uniformly bounded. Detailed proofs of Theorem 1 and 

Theorem 2 are provided in Sections 1–4 of Supplementary Materials.

As suggested by Theorems 1 and 2, Kn needs to be chosen properly. The requirement of Kn 

→ ∞ is well expected to make gn r X; β ·  closely approximate g r X; β · . The 

assumption, limn ∞Kn/na0 = 0 for some a0 > 0, is to ensure Sn θ  is uniformly close to its 

smooth counterpart s n θ  despite the diverging dimension of θ. By this assumption, Kn 

should be at most the polynomial order of n, and is not allowed to increase with n too fast, 

say at the exponential rate. The assumption, limn ∞n−1/2Kn = ∞, is to control the 

estimation errors from the grid approximation of β0(·) by o(n−1/2). Note that a larger Kn 

requires more computation efforts. In practice, we recommend setting Kn = O(nr) with 1/2 < 

r ≤ 1 for a good balance between estimation performance and computational intensity.

3.4. Bootstrapping-based inference

To make inference about β0(τ), a bootstrapping procedure may be preferred provided the 

complexity of the asymptotic covariance matrix derived in the proof of Theorem 2. 

Specifically, we may resample the observed data with replacement and obtain an estimator 

of β0(τ) based on the resampled sample, denoted by β*(τ). Repeating this procedure many 

times can generate a large number of realizations of β*(τ). For a fixed τ* ∈ [τ1, τK], the 

variance of β τ ∗  can be estimated by the empirical variance of β*(τ*). The confidence 

intervals for β0(τ*) can be constructed using a normal approximation or by referring to the 

empirical percentiles of β*(τ*).

In addition, one may be interested in testing whether some components of b0(τ) are constant 

over τ or not. Rejecting the constancy hypothesis would indicate the lack-of-fit of an 

existing model that imposes location-shift effects for all covariates, such as the proportional 

intensity model and Wang et al. (2001)’s semiparametric multiplicative intensity model. The 

practical implication is that the influence of the corresponding covariate on γ may not be 

homogeneous across all subjects. Such a finding, coupled with an examination of the 

heterogeneous pattern of the coefficient estimates over τ, can often lead to useful scientific 

insight. The second-stage inference procedures can follow similar lines of other work on 

quantile regression (Peng & Huang, 2008; Peng & Fine, 2009, e.g.); details are omitted here.
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4. NUMERICAL STUDIES

4.1. Monte-Carlo simulations

In this subsection, we conduct simulation studies to evaluate the finite sample performance 

of the proposed methods. Specifically, for subject i, we generate recurrent event times 

Ti
j , j = 1, 2, …  from a Poisson process with rate γi. In this case, model (1) is met with 

μ0(t) = t.

We first consider the situation where γi satisfies a log-linear model with homogeneous 

errors:

log γi = Xi
τb + 0.5ϵi, (12)

where b = (b0, b1, b2)τ and Xi = (1, Xi,1, Xi,2)τ. We let Xi,1 ~ Unif(0, 1), and Xi,2 ~ 

Bernoulli(0.5). We let ϵi follow the standard normal distribution, N(0, 1), or the Student’s t-

distribution, t3. In this set up, model (3) holds with β(1)(τ) = b0 + 0.5Q∈(τ), β(2)(τ) = b1,, 

β(3)(τ) = b2, where the superscript (k) indicates the kth component of a vector, and Qϵ(τ) 

represents the τth quantile of ϵ. We generate the censoring time Ci from Unif(2/3, 1), 

independent of τi
j  and Xi. We set b0 = log(3) + 1, b1 = b2 = 1, yielding the average number 

of observed recurrent events per subject is about 24 or 25.8 corresponding to N(0, 1) or t3 

error respectively. Under each configuration, we generate 500 simulated datasets with 

sample size n = 500. For each simulated dataset, 100 bootstrapping samples are drawn to 

calculate the estimated standard error and coverage probability. To implement the proposed 

method, SK is set as an equally spaced grid between 0.02 and 0.98 with the step size 0.01. 

The naive estimate for β0(τ) is calculated as the solution to a standard quantile regression 

problem, n−1/2∑i = 1
n Xi · ψτ log γ i − Xi

τb = 0 where γ i = max 1, mi /μ Ci . For the iterative 

algorithm, the maximum iteration number is set to be 100, and the stop criterion is 

∑k = 1
K β l − 1 τk − β l τk

2 < 0.01..

The simulation results when ϵ follows N(0, 1) distribution are provided in Table 1. It is 

shown that the naive estimator can produce large biases, especially for large τ’s. In contrast, 

the empirical biases of the proposed estimator are quite small. Table 1 compares the 

empirical standard deviations with the estimated standard errors of the proposed estimator. 

We observe that they match with each other very well. For 95% confidence intervals 

constructed by normal approximations that use bootstrapping standard errors, the empirical 

coverage probabilities are reasonably close to the nominal level 95%. It is seen from Table 1 

that the square-root mean square error of the proposed estimator is generally smaller than 

that of the naive estimators. We have similar observations when ϵ follows t3 distribution, and 

the detailed results are relegated to Section 5 of the Supplementary Materials.

We also consider the situation where the non-intercept coefficients in β0(τ) are not constant. 

To simulate such data, we let γi follow a log-linear model with heteroscedastic errors:
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log γi = Xi
τb + Xi

τd ϵi . (13)

We generate Xi and Ci in the same way as in the first set-up. We set b = (b0, b1, b2)τ as 

before, and set d = (d0, d1, d2)τ = (0.1, 0.1, 0.1)τ. We only consider ϵi that follows the 

standard normal distribution N(0, 1) in this heteroscedastic case. The average number of 

observed recurrent events per subject is about 22.8. Under model (13), β(i)(τ) = bi−1 + 

di−1Qϵ(τ), i = 1, 2, 3, which are changing with τ. In Table 2, the simulation results are 

displayed in the same manner as those in Table 1. It is shown that the proposed estimator 

β (1)(τ) has small biases for τ’s ranging from 0.1 to 0.9. Meanwhile, the biases of β (2)(τ) and 

β (3)(τ) are negligible except for that corresponding to extremely small and large τ’s. The 

estimated standard errors agree well with the empirical standard deviations, and the 

confidence intervals yield quite accurate empirical coverages probabilities. Overall, our 

simulation results suggest satisfactory finite-sample performance of the proposed methods.

4.2. The DURABLE Data Example

The DURABLE study (Buse et al., 2009) is an open-label randomized clinical trial in Type 2 

diabetes patients. It was designed to compare the efficacy and safety of two starter insulin 

regimens, twice-daily lispro mix 75/25, which is 75% lispro protamine suspension plus 25% 

lispro, or once-daily glargine, in addition to oral antihyperglycemic drugs. This study 

enrolled 2,187 insulin-naive patients with type 2 diabetes from 11 countries, aged 30 to 80 

years, with HbA1c > 7.0%, and on at least two oral antihyperglycemic agents.

Hypoglycemia, as an important safety endpoint, was closely monitored during this study. 

The number of hypoglycemia episodes observed for each subject ranges from 0 to 137, with 

mean 10.8 and median 5. These descriptive statistics suggest a high degree of heterogeneity 

in the individual risk of hypoglycemia presented in the DURABLE trial. Exploring the risk 

factors for hypoglycemia and, moreover, potentially different risk mechanisms between high 

risk versus low risk patients are of great clinical interest. The proposed quantile regression 

framework for recurrent event data is tailored to address these interests, in particular the 

latter one, which cannot be addressed by routine recurrent event data analyses.

We apply the proposed method to the DURABLE data. The recurrent event time T(j) 

corresponds to the time from study enrollment to the jth episode of hypoglycemia. We 

consider baseline covariates including therapy, which is 1 if the patient had twice-daily 

lispro mix 75/25 and 0 otherwise, basfglu, which represents baseline fasting blood glucose, 

basfins, which represents baseline fasting insulin, bmibase, which represents baseline body 

mass index, durdiab, which represents duration of type 2 diabetes, tzduse, which is 1 if the 

patient used thiazolidinedione and 0 otherwise, and sulfouse, which is 1 if the patient used 

sulfonylurea and 0 otherwise. These covariates are summarized in Table S1 of the 

Supplementary Material. In our analysis, we standardize continuous covariates, and exclude 

subjects with missing covariates or those falling outside the reference range. The final 

sample size is n = 2,003. We choose SK as an equally space grid between 0.02 and 0.98 with 
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step size 0.02. Inferences are carried out based on 200 bootstrapping samples. Other set-ups 

are the same as those in the simulation studies.

The analysis results for τ ∈ [0.1, 0.9] are displayed In Fig. 1. Under the proposed models 

(1)–(3), positive coefficients indicate covariate effects associated with higher risk of 

hypoglycemia, which is measured as subject-specific positive scale shift of the intensity 

function of hypoglycemia recurrence. We can see from Fig. 1 that patients receiving lispro 

mix 75/25 demonstrate higher risk of hypoglycemia than patients in the glargine group. The 

results in Fig. 1 also suggest that lower baseline glucose, lower baseline insulin, lower 

baseline body mass index, longer diabetes duration, or using sulfonylurea, are associated 

with higher risk of hypoglycemia. We note that the naive estimates sometimes show 

significant departures from the proposed estimates. For example, the naive estimates for 

therapy’s coefficients are beyond on the upper bound of the confidence intervals when τ ∈ 
[0.15, 0.25]. This may be a sign of large estimation bias resulted from using the naive 

approach.

We also conduct second-stage inference to summarize the estimated covariate effects by 

average covariate effects, defined as ∫τL
τU β0

j τ dτ/ τU − τL , where τL = 0.1, τU = 0.9 and j = 

2, … , p. The inferences on the average effects are conducted by following the lines of Peng 

& Fine (2009). We also fit the data with the standard proportional intensity model (Andersen 

& Gill, 1982), which is a special case of the proposed models with all coefficients in β0(τ) 

being constant over τ. In Table 1, we present the estimated average effects and the 

corresponding standard errors and Wald-test p-values, along with the coefficient estimates 

and the corresponding standard errors and p-values based on the proportional intensity 

model. It is seen that the proposed method generates quite consistent findings regarding the 

impact of covariates on the risk of hypoglycemia. The standard errors based on the proposed 

method are larger than those based on the proportional intensity model. This reflects a 

tradeoff between greater model flexibility and reduced estimation efficiency.

We next employ second-stage inference to test the constancy of each coefficient function in 

β0(τ). We apply this test to the coefficient for each covariate. The results indicate that 

durdiab and sulfouse have non-constant effects over τ, while constant effects are adequate 

for other covariates. Combined with the observation from Fig. 1, this suggests that the 

elevated risk of hypoglycemia associated with the use of sulfonylurea may be amplified in 

subjects who are susceptible to frequent hypoglycemia (corresponding to large τ’s). A 

clinical implication is that caution may be needed for using sulfonylurea in patients who are 

known or projected to have a high risk of hypoglycemia based on patient history and clinical 

judgement. The non-constancy of the coefficients for durdiab and sulfouse also provide an 

evidence for the lack of fit of the proportional intensity model to the DURABLE data.

5. DISCUSSION

There are other applications or generalizations of quantile regression to recurrent event data. 

For example, Luo et al. (2013) studied the quantile regression modeling of gap times 

between recurrent events. Huang & Peng (2009) and Sun et al. (2016) proposed the 

accelerated recurrence time model, which can reduce to a quantile regression model when 
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the event of interest is not recurrent. The modeling perspective proposed in this work is 

fundamentally different from these existing approaches by its unique focus on a sensible 

latent measure of subject-specific recurrent event risk. This new strategy is expected to yield 

more straightforward interpretations regarding the heterogeneity in individual recurrent 

event risk.

The proposed modeling allows for the prediction of median or other quantiles of the latent 

risk measure γ given the observed covariates based on the estimation results for model (3). 

For example, for subject i with covariates in Xi, Qγ(0.5|Xi) can be predicted by 

exp Xi
Tβ(0.5) , and this prediction may be used as a proxy to reflect the recurrent event risk 

of this subject.

It is easy to show that a different choice of ν* in the assumed models would only induce a 

constant scale shift to λ0(t) and a constant location shift to the intercept coefficient a0(τ), 

while the covariate coefficients, b0(τ), the estimand of key interest, would remain the same. 

The discrepancies in estimates for b0(τ) are thus expected to be asymptotically negligible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The DURABLE data example: the proposed coefficient estimates (solid lines) and the 

corresponding point-wise confidence intervals (dash dotted lines), along with the naive 

estimates (dashed lines).
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Table 1.

Simulation results with the homogeneous error ϵ ~ N(0, 1)

Proposed Naive

τ Bias SD ESE CP sMSE Bias sMSE

0.1 β (1) −0.0246 0.1235 0.1347 95.0 0.1259 −0.3022 0.3307

β (2) 0.0178 0.1702 0.1811 94.2 0.1712 0.1398 0.2304

β (3) 0.0161 0.1061 0.1071 94.6 0.1073 0.1513 0.1871

0.2 β (1) −0.0070 0.0974 0.1062 94.6 0.0977 −0.1621 0.1894

β (2) 0.0041 0.1374 0.1435 94.0 0.1374 0.0774 0.1587

β (3) 0.0082 0.0842 0.0843 95.6 0.0846 0.0834 0.1169

0.3 β (1) −0.0054 0.0880 0.0957 94.8 0.0881 −0.0970 0.1302

β (2) 0.0051 0.1264 0.1289 94.8 0.1265 0.0490 0.1333

β (3) 0.0050 0.0764 0.0754 93.4 0.0765 0.0518 0.0904

0.4 β (1) −0.0004 0.0834 0.0913 94.4 0.0834 −0.0496 0.0940

β (2) −0.0023 0.1242 0.1234 93.8 0.1243 0.0238 0.1224

β (3) 0.0031 0.0698 0.0721 95.2 0.0699 0.0290 0.0734

0.5 β (1) 0.0035 0.0820 0.0891 92.6 0.0821 −0.0118 0.0777

β (2) −0.0048 0.1181 0.1197 94.2 0.1182 0.0072 0.1119

β (3) 0.0016 0.0679 0.0705 96.2 0.0679 0.0103 0.0654

0.6 β (1) 0.0099 0.0809 0.0885 94.2 0.0815 0.0155 0.0763

β (2) −0.0084 0.1162 0.1181 94.6 0.1165 −0.0060 0.1084

β (3) −0.0020 0.0655 0.0700 96.8 0.0655 −0.0024 0.0603

0.7 β (1) 0.0082 0.0804 0.0905 95.4 0.0808 0.0368 0.0812

β (2) −0.0088 0.1150 0.1211 95.0 0.1153 −0.0145 0.1056

β (3) −0.0050 0.0670 0.0717 94.6 0.0672 −0.0155 0.0629

0.8 β (1) 0.0111 0.0865 0.0961 94.2 0.0872 0.0594 0.0970

β (2) −0.0169 0.1203 0.1290 96.2 0.1215 −0.0304 0.1157

β (3) −0.0069 0.0749 0.0756 95.0 0.0752 −0.0268 0.0744

0.9 β (1) 0.0111 0.0936 0.1073 95.8 0.0943 0.0677 0.1091

β (2) −0.0218 0.1336 0.1479 95.4 0.1354 −0.0302 0.1330
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Proposed Naive

τ Bias SD ESE CP sMSE Bias sMSE

β (3) −0.0085 0.0875 0.0876 93.6 0.0879 −0.0301 0.0859

SD, empirical standard deviation; ESE, estimated standard error; CP, empirical coverage probability; sMSE, square-root mean square error.
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Table 2.

Simulation results with the heterogeneous error ϵ ~ N(0, 1)

Proposed Naive

τ Bias SD ESE CP sMSE Bias sMSE

0.1 β (1) −0.0193 0.1259 0.1310 95.4 0.1274 −0.3117 0.3410

β (2) 0.0087 0.1801 0.1835 94.2 0.1803 0.1519 0.2487

β (3) 0.0173 0.1045 0.1089 95.0 0.1059 0.1600 0.1917

0.2 β (1) −0.0013 0.0984 0.1043 95.4 0.0984 −0.1650 0.1927

β (2) −0.0086 0.1451 0.1479 94.8 0.1453 0.0745 0.1641

β (3) 0.0082 0.0847 0.0860 94.2 0.0851 0.0931 0.1247

0.3 β (1) 0.0057 0.0887 0.0943 93.6 0.0889 −0.0979 0.1297

β (2) −0.0147 0.1341 0.1333 93.6 0.1349 0.0463 0.1368

β (3) 0.0049 0.0760 0.0770 95.4 0.0762 0.0581 0.0923

0.4 β (1) 0.0099 0.0821 0.0885 94.4 0.0826 −0.0451 0.0905

β (2) −0.0195 0.1256 0.1254 94.2 0.1271 0.0169 0.1192

β (3) 0.0016 0.0710 0.0722 94.6 0.0711 0.0323 0.0748

0.5 β (1) 0.0135 0.0764 0.0872 95.0 0.0776 −0.0068 0.0719

β (2) −0.0221 0.1187 0.1218 95.0 0.1208 −0.0016 0.1106

β (3) −0.0010 0.0692 0.0710 94.0 0.0692 0.0128 0.0654

0.6 β (1) 0.0209 0.0780 0.0869 93.2 0.0808 0.0242 0.0749

β (2) −0.0260 0.1229 0.1216 93.2 0.1256 −0.0162 0.1123

β (3) −0.0086 0.0678 0.0707 95.0 0.0683 −0.0048 0.0632

0.7 β (1) 0.0194 0.0787 0.0894 96.4 0.0810 0.0521 0.0873

β (2) −0.0262 0.1235 0.1246 94.8 0.1263 −0.0307 0.1161

β (3) −0.0105 0.0724 0.0725 94.2 0.0732 −0.0202 0.0687

0.8 β (1) 0.0282 0.0791 0.0932 94.2 0.0840 0.0752 0.1035

β (2) −0.0393 0.1252 0.1315 94.6 0.1312 −0.0439 0.1236

β (3) −0.0168 0.0770 0.0771 93.6 0.0788 −0.0333 0.0779

0.9 β (1) 0.0344 0.0900 0.1026 94.0 0.0963 0.0965 0.1275

β (2) −0.0581 0.1372 0.1456 93.6 0.1490 −0.0545 0.1451
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Proposed Naive

τ Bias SD ESE CP sMSE Bias sMSE

β (3) −0.0218 0.0871 0.0868 93.6 0.0898 −0.0453 0.0936

SD, empirical standard deviation; ESE, estimated standard error; CP, empirical coverage probability; sMSE, square-root mean square error.
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Table 3.

Comparison of the Proposed Method with the Proportional Intensity Model

Average Effect Proportional Intensity Model

Estimate Standard p-value Estimate Standard p-value

Error Error

therapy 0.315 0.072 < 0.001 0.274 0.015 < 0.001

basfglu −0.182 0.036 < 0.001 −0.173 0.008 < 0.001

basfins −0.349 0.052 < 0.001 −0.384 0.013 < 0.001

bmibase −0.135 0.042 0.001 −0.045 0.008 < 0.001

durdiab 0.201 0.033 < 0.001 0.118 0.007 < 0.001

tzduse 0.142 0.092 0.125 0.113 0.016 < 0.001

sulfouse 0.903 0.152 < 0.001 0.755 0.037 < 0.001
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