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Stability of Compact Leaves of Foliations'

MORRIS W. HIRSCH

Department of Mathematics
University of California

. Berkeley, California

Introduction

The classical case

Let 2 be a foliation of a manifold M. Suppose & has a compact leaf L;
under what conditions is it certain that nearby foliations have nearby
compact leaves ?

Consider the classical case where &% is the orbit foliation of a smooth
flow p,: M — M(t € &2 ). The answer is phrased in terms of the Poincaré
map h of the closed orbit L. Let E < M be a local section of the flow at a
- point x, € L. For each x € E sufficiently close to x,, let k(x) = @,(x),
where ¢ is the smallest positive number such that ¢,(x) € E. Then k is a
diffeomorphism between neighborhoods of x, in E with a fixed point at x,.
The classical result states that if the fixed point x, is stable, then any
sufficiently small perturbation of the flow has a nearby closed orbit L’
whose period is near that of L. Moreover, if 1 is not an eigenvalue of the
derivatives of % at x,, then L’ is unique. There may be other nearby
closed orbits, but they will wrap around L’ several times and have much
 larger periods.

tAMS (MOS) 1970 SubJEcT CLASSIFICATION: 57-36.
1 Research supported in part by NSF GP-29073.
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136 MORRIS W. HIRSCH

The theorems below generalize the classical result, In place of the
Poincaré map of a closed orbit we use the holonomy homomorphism of
a compact leaf.

Outline of the chapter

In Section 1, Theorem 1.1 is stated and an intuitive proof given;
then variations and applications are presented. In Section 2, the theory
of holonomy is developed and topologies for spaces of foliations are de-
fined. The proofs of the theorems appear in Section 3. The last section
contains various remarks and problems.

1 Statement of results

Notation

The following notation will be used consistently:

M is a C* manifold of dimension n + k, without boundary, endowed
with a metric d(x, ¥) induced by a C* Riemannian metric on M.

Fol,"(M) is the space of Cr foliations of M of codimension k; the
topology is described in Section 2.

P denotes an element of Fol, (M).

L is a compact leaf of & and x, € L is a base point for the fundamental
group 7,(L, x,).

a denotes an element of x,(L, x,). The holonomy of « for & is a Cr
local diffeomorphism H(a) of (R¥, 0). It is well defined up to C* con-
jugacy. If r > 1, the derivative of H(a) at 0 is the linear holonomy
LH(a) € GL(k).

THEOREM 1.1 Assume:

(a) r>1;

(b) « is in the center of z,(L, x,);
(c) 1is not an eigenvalue of LH(a).

Then there exists ¢, > 0 with the following properties: If 0 < & < &0,
there exists a neighborhood N < Fol,/(M) of & such that for every
Z ' € N there is a compact leaf L' of & ' and a map h: L — L’ satisfying
d(x, h(x)) < e. Moreover, L' is unique, and the map & is a homotopy
equivalence.

This can be proved as follows: Let {D(x)},; be a family of open
k-disks transverse to L, x € D(x), giving a smooth fibering of a tubular
neighborhood of L.
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Given 4 > 0 there exists 6 > 0 and a neighborhood N of & with the
following properties: If & " € N, x, € L, y, € D(x), d(x,, yo) < 8, and
u: [0, 1] — L is a smooth path of length <4 with u(0) = x,, then there
exists a unique path «': [0, 1] — M such that:

(1) o lies in the &7’ leaf of y,;

) 4 (0) = yo;
(3) #(t) € D@u(t)), 0 <t <1.

Moreover, u’(1) is unchanged if u is replaced by a path v of length
<4, homotopic to u rel{0, 1}.

We call the map A(u, & '): y,+>#'(1) the & ' holonomy of the path
u. It is a C7 diffeomorphism from a neighborhood of x, in D(x,) to a
neighborhood of %, in D(x,), which depends continuously on & '.

Let w be a loop in L based at x, representing, a of Theorem 1.1. Then
h(w, ') depends only on «, except for changes of domain. Hypothesis
(c) of Theorem 1.1 guarantees that if & ' is close enough to &, then
hw, & ') will have a unique fixed point close to x,. Denote this fixed
point by g(,).

For every x € L, let u, be a smooth path in L from x to x,; let u,,
be the constant path. We may assume a uniform bound b = diameter L
for the length of u,. Let w, be the loop u;'wu, based at x, in L. Then
h(w,, & ') will have a unique fixed point g(x) € D(x) near x.

If &' is sufficiently close to &, the fixed point g(x) is independent of the
choice of u,,. To see this, let v be another path in L from x to x,, of length
<b. Put 2, = v~'ww. Then %, is homotopic to

(0t Yooy (o),

Since o € center n,(L, x,), it follows that w, represents a central element
- of @ (L, x). Therefore, z, is homotopic to w,. Hence h(z,, & ')
= h(w,, Z ') on the intersection of their domains. Uniqueness of fixed
points shows that they have the same fixed point.

It follows easily that if x and y are sufficiently close points of L, then
g(x) and g(y) are in same leaf L’ of &” ', and are close in the induced Rie-
mannian metric on L’. Therefore, the map g: L — L’ is continuous. This
suffices to make L’ compact. Uniqueness of L’ follows from uniqueness
. of fixed points.

The argument just given can be made precise. The most serious
difficulty is the necessity of finding an a priori bound on the lengths of all
paths involved. In addition, it relies too much on uniqueness of fixed
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points, making generalization difficult. A more rigorous proof is given
in Section 3.

Further results

Just as with flows, there are stability theorems without uniqueness if
no assumption is made on the linear holonomy. The theorems below
require drastic restrictions on the foliation, which may turn out to be
unnecessary.

An isolated fixed point of a local homeomorphism of (R¥, 0) is essential
if it has nonzero index.

TueoreM 1.2 Suppose:

(a) k<2 andr=0;

(b) « € center 7,(L, x,);

(c) H(e) has an essential isolated fixed point at x,.

Let U < M be a neighborhood of L. Then there exists a neighborhood
N < Fol,°(M) of & with the following properties:

(d) every & ' €N has a compact leaf in U if k=1;

(e) every & ' &N which is transversely real analytic has a compact
leaf in U if k= 2.

For arbitrary codimension and C° perturbations, there is a much weaker
conclusion:

TueoreM 1.3  Suppose:

(a) 7= 0 and k arbitrary;
(b) « € center 7,(L, %);
(c) H(a) has an essential isolated fixed point at x,.

Let U = M be a neighborhood of L. Then there exists a neighborhood
N < Fol,%(M) such that every & ' € N has a leaf entirely contained
in U.

Assumptions about the Fundameéntal Group of L

The hypothesis that a is central can be weakened. An element « of a
group G is accessible if there are subgroups

Gyc - cG, G,

such that o generates G,, G;_, is normal in G; i =1, ..., q), and G,
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has finite index in G. If G, = G, a is directly accessible. If G is nilpotent,
every element is directly accessible.

Turorem 1.4 Theorems 1.1 and 1.2(d) are valid if (b) is replaced by:
e is accessible. In particular, they are valid if (b) is replaced by : & belongs
to a nilpotent subgroup of finite index.

For Theorems 1.2(e) and 1.3, there is a weaker improvement.

Tueorem 1.5 Theorems 1.2(e) and 1.3 are valid if (b) is replaced by:
a belongs to the center of a subgroup of finite index.

Proof Apply Theorem 1.2(e) or 1.3 to the covering space of a tubular
neighborhood of L corresponding to the subgroup of finite index.

By passing to covering spaces and replacing « by a power we obtain:

TueoremM 1.6 The conclusions of Theorem 1.1 are valid under the
following assumptions :

(@ r=1;

(b) 7,(L, x,) has a nilpotent subgroup of finite index p;

(c) the spectrum of LH(a) does not contain any mth root of unity,
1<m<p.

TueoreM 1.7 The conclusion of Theorem 1.2(d) is valid under the
following assumptions :

(a) k=1and r =0;

(b) =,(L, x,) has a nilpotent subgroup of finite index p;

(c) H(a™) has an essential isolated fixed point at x,, 1 <m < p.

Similar variations of Theorems 1.2(e) and 1.3 are true. They are left
to the reader, as are the proofs of Theorems 1.6 and 1.7.

The stability theorem of Reeb

The following result, a part of Reeb’s theorem [8, B, II, 21], can be
proved by the same techniques used for the preceding results.

. TheoreM 1.9 Let r and % be arbitrary and =,(L) finite. Given a
neighborhood U < M of L, there exist neighborhoods V < M of L,
- and N < Fol,”(M) of &, such that if &' € N, then every leaf of &
| meeting V' is compact and simply connected and is contained in U.
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The foliations of Reeb and Lawson

Theorem 1.2 can be applied to the celebrated Reeb foliation of the
3-sphere S3 (see [8, p. 122]). This foliation & € Fol,*(5?) has a unique
compact leaf 7 < 83, diffeomorphic to the 2-torus embedded in the
usual way. There are generators a;, a, € 7,(T?) represented by loops
bounding disks, one in each of the components of S* — T2 The hol-
onomy H(e;) is represented by a C* local diffeomorphism f; of (R?, 0)
such that

=ux, for x<<0,
fl(x){<x for x>0,

and

=x for x>0,
fz(x){ >x for x <O.

Let a = a; + a, € 7 (T?). Then H(a) is represented by f=f, of,
and | f(x)| <]/, for x # 0. Thus H(e) has an essential isolated fixed
point at 0,

Tueorem 1.10 Let N < S® be an open neighborhood of 7% and let
2y denote the foliation of N induced by the Reeb foliation Z2. There is
a neighborhood N < Fol,%(N) of &2y such that every foliation in N
has a compact leaf.

Proof Apply Theorem 1.2 with M = U = N.

Similar reasoning applies to the Lawson foliation # € Fol;*(S®)
(see Lawson [6]). The fundamental group of the unique compact leaf
lies in an exact sequence

0+>ZXZXZ—>m(LYy—>2Z;—0,

and there exists a € 7z;(L) such that H(«) has a contracting fixed point
at 0. We may choose such an element in Z X Z X Z, replacing « by
o3, if necessary. Therefore a is accessible and we obtain:

TueoreMm 1.11 The conclusion of Theorem 1.10 is valid if S3, 77
and &2 are replaced by S%, L, and 7.

Lawson has also constructed a C* codimension 1 foliation <(n) of
St forn=274 3, p=2,3,.... Each of these has a unique compact
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leaf L diffeomorphic to
St + SO((n + 1)/2)/SO((n — 1)/2),

which has fundamental group Z. The holonomy of the generator « € 7,(L)
has a contracting fixed point at 0. Therefore Theorem 1.10 applies to
L (n).

Commuting diffeomorphisms
The following result comes out of the proof of Theorem 1.2.

TreoreM 1.12 A family of real analytic diffeomorphisms of an open
or closed 2-disk has a common periodic point, provided one of them,
fo» has a nonempty compact fixed point set and is not the identity. In
fact, there is a common periodic point which is a fixed point of f;.

2 Holonomy

The topology of Fol, (M)

Let V, W be Cr p-manifolds. A C” local diffeomorphism f:V — W
means a C* diffeomorphism

F:D(f) =~ R(f),

where D(f) < V and R(f) < W are open sets. D(f) and R(f) are
called the domain and range of f, respectively. Any two local diffeomor-
phisms can be composed: the composition f' f of f with f': V' — W' is
defined to be the map

DN =FR() n D) —f'(R(f) 0 D(f")) = R(ff),
x> f'(f())-

The empty map ¢, D(@) = R(D) = &, is allowed. The set of all Cr
local diffeomorphisms from ¥ to W is denoted by Loc”(V, W), or Loc”(¥V)
fW="V.

LetI*(t) = {x e R¥| —t <x; <t, i=1,...,k}and put I*(1) = I*
= open unit cube in RF.

Given a C7 local diffeomorphism f € Loc’(I%), let || f |, denote the usual
C" norm of f, i.e., the supremum of all the numbers | g(x)}|, where x
ranges over D(f) and g ranges over the coordipate functions of f and
their partial derivatives of order <7. If f= ¢, put | @ | = L.
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Define a pseudometric on Locr(I*) as follows: d(f, g) is the maximum
of the four numbers

Haus(D(f), D(g)), ~ Haus(R(f), R(g)),
min{] (f — )| D(f) 0 D@ l» 13
min{] (f* — g™ | R(/) 0 R(@ |- 1)

Here Haus(X, Y) denotes the Hausdorff distance between sets X,
Y < I*:

max{sup,ex (%, Y), supyer d(y, X)}

if X Y,
Haus(X, Y) = 1 ¢ i Xi %’ f @,
1 otherwise.

Observe that d( f, g) = 0 means that D(f) n D(g) is dense in D(f)
and in D(g), R(f) O R(g) is dense in R(f) and in R(g), and f=¢
on D(f) n D(g)- If D(f) is the interior of its closure, and also D(g)
is the interior of its closure, then d( f, g) = 0 implies f=g.

A chart (@, f ) onthe C* manifold M is a C7 diffeomorphism f:Q =Ir+,
where @ < M is an open set. The distance between charts is defined as

(@, 1), (@5, 1)) = L A7)

where I denotes the identity map of I*. The d on the right is the pseudo-
metric in Loc"(I¥). With this distance function, the set of charts on M
is a complete pseudometric space.

A C foliation of codimension k on M is decomposition & of M into
disjoint connected sets called leaves, having the following property:
There is a covering of M by charts @,f) f:R=I"X I¥, such that
frIrxy)isa connected component of the intersection of £ with a
leaf, for all y € I*. The set f~1(I* X y) is an £ plaque of F, 2 is an 4
domain, and (@,f) is an & chart.

An & chart (2, f ) is regular if there exists an & chart (4, g) such that
3 < A and Q = g {(I™*(3))- This implies 2 = int Q.

A plaque of a regular & chart is a regular plaque. The closure of a
regular plaque is a compact subset of the leaf containing it and is contained
in another plaque.

A covering of M by & charts can be shrunk to a covering by regular
& charts.

Let &, & ' € Fol,/(M). Let S be a finite set of & charts, and sup-
pose ¢ > 0. -We say &' is an (S, ¢) perturbation of & if there exists a
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set S of & ' charts and a bijection S — ', denoted by (2, ) = (&', f '),
such that

d(@,7), (,f)) <e forall (2,f)¢€S.

This is indicated by
dZ,S8;Z',5) <e.

If the charts in S’ are regular, & ' is a regular (S, &) perturbation.
The topology on Fol;7(M) is generated by sets of the form N(#7, S, ¢)
= the set of all regular (S, ¢) perturbations of &7, where S is a finite
set of regular & charts. If > 0, this topology can also be defined
by uniform C*-! convergence on compact subsets of M of tangent planes
of leaves.
The topology on Fol,7(M) is HausdorfE. In fact, it is not hard to prove:

Tueorem 2.1 The space Fol,7(M) has a complete metric.

Coherent sets of charts

A set S of & domains is coherent if whenever 2,,2,,2; € S and
Q, U 2, U £ is connected, there exists an & domain 2, not necessarily
in S, such that 2, U2, U2, =« 2 and P N 2, is an £; plaque for
every £2 plaque P (1 =1, 2, 3).

A set of & charts is coherent if the corresponding set of & domains is
coherent.

LemMa 2.2 (a) Let K « M be a compact set and S, a set of &
domains whose union contains K. Then there is a finite coherent set of
& domains which refines S, and whose union contains K.

(b) Let S be a finite coherent set of ¥ charts. There exists ¢ > 0
such that if d(97, S; @', S') < & then §” is a coherent set of &' charts.

Proof Compare Reeb [8: B,II,20].

Let S be a set of &7 charts. A chain in S means a sequence of charts
0= ((2¢fo) -+ (2, fm)) such that each (2;,f;) € Sand 2; N Q;,
#@, i=1,...,m. A point x € 2, admits o if there are 2, plaques P;,
i=0,...,m, such that x ePormdP_1 NP,£@,i=1,...,m We
also say P, admits w. We call (P, ..., P,) a plaque chain contained in w.

Lemma 2.3 Let S be a coherent set of & charts and w an S chain. If
P, admits w, then P, is unique.
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Proof By induction on m; the inductive step reduces to the case m = 1.
Since P, N P, 7 (&, there is a plaque P of some £ domain such that
P N Q, = P;. Any other 2, plaque P;’ meeting P, is contained in the
same leaf as P,; hence P n 2, = P, = P,.

LevMa 2.4 Let x admit w. There exists ¢ > 0 such that if d(¥, w;
F ', w') <e& and d(x, x') <e¢ then x’ admits o'

Holonomy
Let (2, f) be an & chart. The set 2/ of 2 plaques is identified with
I* by the map

fo: Q)7 — IF, P zf(P),

where r: I* X I* — I* is the projection. We give 2/ the C* differential
structure that makes f, a C" diffeomorphism. .

For every coherent chain @ = ((2, /o), - - - » (2> fw)) of & we define
a Cr local diffeomorphism

G(w)Qo/?—)Qm/?,

called the geometric holonomy of w. Let DG(w) be, the set of £, plaques
P, admitting o ; define G(w)P, = P,,, where (P,, ..., P,) is the unique
plaque chain contained in  beginning with P,. Note that G(w) depends
only on 2,, ...,2,, noton fo, ...., fu-

The algebraic holonomy of w is the C7 local diffeomorphism

H(w) = (fu)G(@)(fo) '+ It —IF.

Note that H(w) is independent of fi, ..., fp--
Equivalently, H(w) is the composition %,, - - - u, of the C* local dif-
feomorphism

-1
ul*=I*x 0 cI*Xx J RS TN  JIN )
This is well defined because w is coherent.

LemMa 2.5 Let S be a finite coherent set of regular & charts and T
a finite set of chains in S. Given & > 0 there exists é > 0 such that if
dZ,S8;Z ', S") <6, then

d(H(w), H(w')) <,

for every w € T (where o’ is the chain in S corresponding to w).
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Homotopy

Let S be a coherent set of & charts. An elementary expansion (o, ©")
in S is a pair of .S chains such that ' is obtained from w = ((£2,, fo), - - -,
(2, fn)) by inserting a chart (2,f) € S between (2,_,,f;—,) and
(Q;,f;), for some j € {1, ...,m}, such that 2, , N 2 N Q; # . We
call w and o’ contiguous if either (w, ') or (o', w) is an elementary
expansion.

A homotopy in S is a sequence of S chains w,, ..., w, such that w;
and w;_, are contiguous, i =1, ...,¢q. We call w, and w, homotopic
in S. Note that w, and w, are coterminous.

From the coherence of S it follows that if w and w’ are contiguous
then

G(w) = G(ow’) on DG(w) N DG(w'),

and similarly for H(w) and H(w'). More generally,

Lemma 2.6 Let S be a finite coherent set of regular & charts and
®g, ..., w, a homotopy in S. Let B be a compact set contained in

DH(wy) N +++ N DH(w,).

There exists 6 > 0 such that if d(Z%, S; 2" ', §") < J then:
(a) @y, ..., w, is a homotopy in S’;

(b) B = DH(wy') N --+ N DH(w,');

(¢) H(wy)= H(w,) on B.

The compactness criterion

Let S be a set of & charts and (£2,, f,) € S a particular chart considered
as a base point. A loop in S (at (2,, f,)) is an S chain w that starts and
ends at (£2,, fo).

Let J S denote the union of the domains of charts in S. Suppose S
is coherent. A set of plaques I' = 2,/ is invariant under v if I' = DG(w)
and G(w)(I") = I'. The notion of a set I" = I* being invariant under
H(w) is similarly defined.

Lemma 2.7 Let S be a coherent set of regular & charts having finite
cardinality m. Let (£2,,f,) € S be the base point, and I = Q,/Z" a set
of plaques. Suppose:

(2) I'is invariant under every 2m loop in S;

(b) If Pis a plaque of a chart in S then P = U S.
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Then every plaque P in I" admits every .S chain and the leaf L containing
P lies entirely in J S. If I'is finite, L is closed in M. If I' is finite and
U S has compact closure in M, L is compact.

Proof By (a), every plaque in I' admits every m-chain in S.

Let P, € I" and L be the leaf containing P. By (b), for every x € L
there is a chain of plaques P,, ..., P, contained in an S chain, with
x € Pjand Py N Py £ Oyi=1,...,¢ Let g(x) be the minimal such ¢.
To prove L < ) S it suffices to prove that g(x) < m for all x. It is enough
to prove that if g(x) < m + 1, then g(x) < m: for then the first m + 1
elements of any S chain of length > can be replaced by a shorter chain,
and this process can be repeated until a chain of length m is obtained.

Suppose then that Py, ..., Ppyy is 2 plaque chain contained in an
S chain (2, ..., 2p41), and x € Py, (We suppress the f;, since they
play no role.) Since S has only m elements there must exist 0 <7 <j
<m+ 1 with Q; = ;.

Consider the S loop 2o, ..., 2, Qi) .-+ 2, of length i 4 j << 2m.
By (a) it contains a plaque chain

’
PO’-"’Pjv P':?—ly"':PO’

and Py € I'. This shows that P; is connected to Py by the i — 1 chain

Py, ..., Pi_;. Therefore, Py € I' is connected to P,,, by the plaque
chain

Poly ccry ‘,i—-l: Pj --',Pm-Hr
which is contained in the S chain 2, ..., iy, 25, .-+ s 2py1 Whose

length ism+i—j+1<m

This shows L < {J S. It also shows that if I" is finite then L is con-
tained in a finite union of plaques of S. Since a leaf contains the closure
of every regular plaque in it, this shows that L is closed in M. If also
U S has compact closure, L is compact.

Charts for a compact leaf

Levma 2.8 Let Lbeacompact leaf of & and U = Ma neighborhood of
L. Then there exists a finite coherent set .S of regular & charts such that:
@ LcUScU;

(b) ifQ,,2,,02; € SandQ, N 2, N2 F D, then2, N2, N 2;NL
# D5

(c) 2 n Lisa plaque of 2 for all 2 € S.

Compare Reeb [8: B,I,1].
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Lemma 2.9 Let S be as in Lemma 2.8. There exists > 0 such that
if d(F,S;F ", S’) <6 then Lemma 2.8(a) and (b) are valid with S’
replacing S.

Paths and chains

A path u: [0, 1] — M is contained in a chain (£, ..., £2;) if there is
a subdivision
O=t0 < "'<tp+1= 1,

such that u([t;, tin]) < 2, i =0, ..., p.

Lemma 2.10 Let S be a coherent set of % domains.

() If w= (2, ...,0,) is a chain in S then o contains a path.
If x € 2, admits w, then o contains a path in the leaf of «, starting from x;
(b) Let w,, w, be coterminous S chains. Let uy, %, be coterminous
paths contained in w,, w,, respectively. Then u, and u; are homotopic
in {J S (rel end points) if and only if w, and w, are homotopic in S;
(c) Let S, L be as in Lemma 2.8. If in (b), %, and u, lie in L and w,
and w, are homotopic in .S, then %, and u, are homotopic in L.

Outline of proof (a) is apparent. If u, and u, of (b) are homotopic in
U S, the homotopy can be replaced by a succession of small homotopies,
each taking place inside a single domain of S. The succession of domains
leads to a homotopy from w, to ;. If w,and w, are contiguous, coherence
of S is used to prove u, and u, homotopic, from which (b) follows.
Likewise for (c).

The set 7,(S, (2o, f,)) of all S loops based at (2,, f,) is a group under

the obvious composition.

Lemma 2.11 Let L, S be as in Lemma 2.8. Let x, € L and (2,,f,) € S
be base points. The function assigning to every loop in L a loop in S
containing it induces an isomorphism from the fundamental group
m(L, %) to the group 7;(:S, (2, fo)) of homotopy classes of .S loops.

Proof Follows from Lemma 2.10.

3 Proofs of theorems

Let L be a compact leaf of &7 Let S be a finite coherent set of regular
& charts of cardinality m as in Lemma 2.8, such that f(2 N L) =0 € I*
forall (2, f) € S. Let (fo, £2,) be the base point. Let (%7 ', S") denote a
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regular (S, 8) perturbation of (&, S) for some § > 0. The proofs are
based on the following principle:

LemMA 3.1 There exists d, >0 with the following properties: If
0 < 6 < &, and there is a point y, € I* fixed under H(w) for every S’
loop @ of length 2m, then the Q4 plaque I' = (f5,)7(y,) is contained in
a compact & ' leaf. If there is a subset Z < I* invariant under every S’
loop w of length 2m, then the & ' leaves containing (f5,)*(Z) are
contained in {J S’.

Proof Follows from Lemma 2.7, since (b) of Lemma 2.7 is preserved
by small (S, 8) perturbations of 7.

Proof of Theorem 1.1 as amended in Theorem 1.4

By passing to a suitable finite covering space of a neighborhood of
L we may assume a € my(L, x,) is directly accessible. Let

Gy < -+ =G, =m(L, %)

be subgroups, each normal in the next, with G, generated by a.

Let ¢: m;(L, %) — 71,(S, (£2,,f,)) be the isomorphism described in
Lemma 2.11.

Let A; be the set of all loops in S that represent elements of ¢(G;),
j=0,...,%

Let Gy be the set of S’ chains corresponding to G;.

Let A be an S loop representing ¢(«). Since 1 is not an eigenvalue of
LH(A), there is a compact neighborhood B of 0 in I* such that B < DH(4)
N RH(2) and 0 is the only fixed point of H(4)in B. Given any neighbor-
hood B, = B of 0 we can make § so small that:

(1) B < DH(X') n RH(X');
(2) H(2') has a unique fixed point y, € B;
(3) . € B,.

The following statement will be proved by recursion onj =0, ..., »:
(#);: Let T; < A; be a finite subset. If § is small enough then y, is
fixed under o for all w € T}. T} is the set of S’ loops corresponding
to T; under the bijective map S — S".

Once (#), is proved, the existence of a compact & " leaf follows from
Lemma 3.1, taking 7, to be the set of all 2m-loops in S.

For the case j = 0, let T, < A, be a finite set of .S loops. We may
assume 7T, closed under inversion of loops. For each 7 € T, choose a
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homotopy %(7) in S from A to v7'7:
h(t) = wo(7), - . ., 0y(7) g = q(7);

each wy(7) is an S loop; w,(r) = 4 and w,(7) = v7'47.

Put E = {w;(z)| 7 € Ty, 0 <7 <g(x)}. Then E is a finite set of S
loops. If x € L and w is any S loop, then x admits w, by Lemma 2.8.
Hence by Lemma 2.4, if 4 is small enough there is a compact neighborhood
B, of 0 in I* such that if x € £, and nfy(x) € B,, then x admits every
loop in E. Moreover, since H(w) = 0 for every S loop w, we may take
8 so small and B, so small that for all S’ loops w € E" and 7 € Ty':
(4) B, <« DH(w) n DH(z'A'7) N DH(Y);

(5) H(z'A'1)b, U H(A)B, < B.

Moreover by Lemma 2.6 we can assume, for all 7 € T}':

(6) H(z'A't)| B, = H(X')| B,.

Therefore by (3), H(x~'A't)y, = ¥,, and so, using (1),
H(O)H(z)y, = H(z)y, forall zeT,.

By (2) H(z)y, = y,. We have proved (),.
Now suppose j > 0 and (#);_, is true. Given a finite set of S loops
T; ¢ A;, define
Tioy= {7 | v € T}}.

Since G;_, is normal in G;, we have T;_; < 4;_ ;. Choose 4 so small
that, for all = € T,

) y, € B n DH();

(8) H(z)yo € B;

and so small that by (%);_y: H(z=A't)y, = y,. Since y, € DH(7), this
implies H(A')H(7)y, = H(z)y,. By (8) and (2),

H()yo = o

Therefore (x); is true for j =0, ..., » and Theorem 1.1 is proved.
To prove the uniqueness statement of Theorem 1.1., we show that if
h: L — L' maps L onto a leaf of & ' and £ is close enough to the inclu-
sion, then I' < 2, N L', where I' is the plaque of Lemma 3.1.
We may assume that for each & domain 2 of S, A(£2 N L) intersects
a single Q' plaque P(2) = L. The map of plaques Q N L+ P(Q)
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takes plaque chains of S into plaque chains of S". Let A = (£,, ..., 8,
= ;). Then the S’ loop A = (2, ..., 2, = Q) contains the S’
loop of plaques

(P(£0), - -+ s P(2;) = P($20))-

This means that the plaque P(2,) <« L' n 2, is fixed under G(1').
Since G(1') has a unique fixed point, P(Q,) = I.

It remains to prove the existence of an e-map k: L — L’ which is
also a homotopy equivalence. This is easy in the C” case, » > 1, using
the fibers {D,},.; of a smooth tubular neighborhood of L: define A(x)
= D, n L'. In this case, 4 is actually a C" diffeomorphism.

When 7 = 0, let N (respectively, N') be the simplicial complex which
is the nerve of the family of domains of S (respectively, S’). The cor-
respondence S — S’ induces a simplicial isomorphism g: N — N" if ¢
is small enough. There are maps u: L — N and #': L' — N’ such that

u(x) belongs to the simplex (2,, ..., 2,) whenever x € 2, N -+ N £,
and similarly for #'. There are also maps v: N — L, v': N'— L’ such
that vu: L — L takes each simplex (£2,, ..., £2,) into £y U -+ U £,

and similarly for o'’ (see Milnor [7], p. 279). The maps vu and v's’
are homotopic to identity maps.
The composite map

L NN L

will be an e-map if the domains of S are sufficiently small.
The map

u’ v

LN LN L

will be a homotopy inverse to h. To see this we must prove hk' and
h'h homotopic to identity maps. We do this for A'h, the other case being
analogous. It suffices to prove uk’h: L — N homotopic to %, since vu=~1;.
But

uh'h = uvg=u'v'gu ~ uvg~'gu = uvu ~ u.

This completes the proof of Theorem 1.1 as amended in Theorem 1.4.

Proof of Theorem 1.2 as amended in Theorem 1.4

First suppose & = 1. Passing to a double covering if necessary, we
assume & and & ' transversely oriented.
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Let F < I' be the nonempty compact set of fixed points of H (ﬂ.").
Since 0 is an isolated and essential fixed point of H(1), by taking & small
enough we may assume F < B,, where (1) above is satisfied.

Put inf F = y, € F, sup F = y, € F. We may assume [y,, y,] < B,.

We prove inductively that («); above is valid. The proof for j =0
is similar to the previous one; the point is that since H(1') = H(zA'7)
on By, it must be true that H(v)y, € F < [y,,y,], for all v € T,. But
H(z)y, > v, is impossible, for since &’ is transversely oriented, H(z™?!)
preserves order, so we would have y, > H(z')y,. But H(z"1)y, € F,
since we assumed 7, closed under inversion. Hence H(7)y, = y,. The
inductive step is similar. The rest of the proof of Theorem 1.2, k =1,
is similar to the proof of Theorem 1.1.

Theorem 1.2, & = 2 is a consequence of Lemma 3.1 and the following
result.

Lemma 3.2 Let D < R® be an open disk. Let {#;} be a family of real
analytic diffeomorphisms of D onto open sets U; « R2. Suppose there is
an hy in the family such that, for all 4, ;:

{a) The fixed point set F of k, is compact and nonempty;
(b) h(F) = D;
(©) hihix) = hhy(x) if xeh*D N BD.

Then there is a common periodic point for all the A;.

Proof Since F is a compact real analytic variety, it is a finite simplicial
complex [4, 5] without interior. By (b) and (c), Ay, ..., A, leave F
invariant. Since the %; leave invariant the finite set of vertices that belong
to more than two simplices, the lemma must be true if F is not a finite
disjoint union of circles. .

Suppose F is a finite disjoint union of circles; let C be an innermost
one. Replacing each 4; by an iterate if necessary, we may assume they
leave invariant the closed disk B bounded by C.

By Brouwer’s fixed point theorem, each %; has a fixed point in B.
Let F; < B denote the fixed point set of #;| B. Unless k; = identity,
F; has empty interior. If C U F; is not a finite disjoint union of circles
it contains a common periodic point. But if C U F; is such a union, we
shall show F; = C. For otherwise, the union K of the components of
F;in B — C'is a compact set invariant under /,, and therefore the non-
wandering set of &, | K'is not empty. The “plane translation’’ theorem of
Brouwer [1, 3] implies that a homeomorphism of an open disk which
preserves orientation and has a nonwandering point, has a fixed point.
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Since 4, has no fixed points in B — C, F; < G and so F; = G. Therefore
all h; leave C pointwise fixed. This proves Lemma 3.1.

Proof of Theorem 1.3

If 6 is small enough, this is similar to the proof of Theorem 1.2,
k= 1. H(2') will have a nonempty fixed point set Z < I* as near 0
as desired and invariant under every 2m loop of S’. Now apply Lem-
ma 3.1

Proof of Theorem 1.9

By passing to a finite covering space of a neighborhood of L, we may
assume 7,(L, x,) = 0. Then every S loop is null homotopic, i.e., homo-
topic to the loop wy = ((2o, fo), (&0, fo)). Observe that H(w,) is the
identity map of I*. If § is small enough, it follows from Lemma 2.6
that there is a neighborhood B, < I* of 0 such that B, « DH(w)NRH(w)
and H(w) | B, = identity, for every 2m loop o in §’. By Lemma 3.1
every leaf of &’ corresponding under f,’ to a point of B, is compact.
This is sufficient to prove Theorem 1.9.

4 Remarks and questions

4.1 'Theorem 1.2 can be proved for C* foliations under the apparently
weaker hypothesis of a “C” essential” isolated fixed point. The reader may
formulate this precisely, the idea being that any C7 small perturbation
has a nearby fixed point. But maybe C” essential implies essential.

4.2 Is Lemma 3.1 true without assuming real analytic ? It can be proved
for a finite set Ay, ..., h, satisfying:

(a) the fixed point set of A, is a finite simplicial complex;
) hy, ..., h~,, are C* diffeomorphisms, if ¢ > 1.

If ¢ = 1, this can be improved; the existence of a common periodic
point follows from the Cartwright-Littlewood fixed point theorem and
the assumption that the fixed point set of %, has finitely many components
(all compact).

Can Lemma 3.1 be improved to obtain a common fixed point? Do
two commuting homeomorphisms of a compact 2-disk have a common
fixed point? This is true in the complex analytic case (see Shields

[10}).
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4.3 Can some analogue of Theorem 1.2 be proved for higher codimen-
sion? There are counter examples to Lemma 3.1 for R? but perhaps a
generalization to R® can be proved using the added hypothesis that the
index of the fixed point set of 4, is nonzero.

44 Simple examples show that Theorems 1.1 and 2.2 are no longer
true if condition (b) is dropped entirely, that is, if no assumption is
made on the position of the holonomy element « in the fundamental

group.
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