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K-Bayes Reconstruction for Perfusion MRI II: Modeling and Technical
Development

John Kornak1,2 and Karl Young3,4

Despite the continued spread of magnetic resonance
imaging (MRI) methods in scientific studies and clinical
diagnosis, MRI applications are mostly restricted to high-
resolution modalities such as structural MRI. While
perfusion MRI gives complementary information on
blood flow in the brain, its reduced resolution limits its
power for detecting specific disease effects on perfusion
patterns. This reduced resolution is compounded by
artifacts such as partial volume effects, Gibbs ringing,
and aliasing, which are caused by necessarily limited k-
space sampling and the subsequent use of discrete
Fourier transform (DFT) reconstruction. Here, a Bayesian
modeling procedure (K-Bayes) is developed for the
reconstruction of perfusion MRI. The K-Bayes approach
combines a process model for the MRI signal in k-space
with a Markov random field prior distribution that
incorporates high-resolution segmented structural MRI
information. A simulation study, described in Part I
(Concepts and Applications), was performed to deter-
mine qualitative and quantitative improvements in K-
Bayes reconstructed images compared with those
obtained via DFT. The improvements were validated
using in vivo perfusion MRI data of the human brain. The
K-Bayes reconstructed images were demonstrated to
provide reduced bias, increased precision, greater effect
sizes, and higher resolution than those obtained using
DFT.

KEY WORDS: Bayesian reconstruction, K-Bayes,
Markov random field, perfusion MRI, structural MRI

INTRODUCTION

T he application of discrete Fourier transform
(DFT) reconstruction to limited k-space sam-

pling of perfusion MRI relies on the unwarranted
assumption that a small region of k-space can
provide a complete representation of the perfusion
process. Consequently, DFT reconstructions suffer
from poor resolution, partial volume effects, and
artifacts such as Gibbs ringing and aliasing. In this
report, a new and improved reconstruction proce-

dure for perfusion MRI is developed that over-
comes (or at least reduces) these limitations of the
DFT. Specifically, this new method (K-Bayes)
models the relationship between raw k-space data
obtained with perfusion MRI and physical (image)
space while incorporating high-resolution anatom-
ical information obtained from segmented struc-
tural MRI. The K-Bayes approach thereby
increases the accuracy, precision, and resolution
of perfusion MRI reconstructions.

k-Space and DFT Reconstruction

In all MRI modalities, data are acquired in k-
space (also known as frequency or Fourier space).
In generating an image of a single slice of the
brain, magnetic field gradients are applied in
orthogonal directions so that the frequency and
phase of rotation of the nuclei in the field of view
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are perturbed according to their location in image
space. By recording the intensity at particular
frequencies and phases, the distribution of the
signal over image space can be determined from k-
space through a 2D Fourier transform relationship.
Figure 1 gives an illustration of how MRI signals
are represented in k-space. At each point in k-space,
there is a corresponding spatial pattern in image
space. The point (0,0) corresponds to the overall
mean level of the image to be reconstructed (zero
frequency in x and y directions). The pattern at
coordinates (0,4) describes a pattern with spatial
frequency of 4 in the y-direction (i.e., four cycles
over the field of view of the image) but with no
variation in the x-direction. At (8,0), the pattern has a
frequency of 8 in the x-direction, but no variation in
the y-direction. At (8,4), there are eight cycles in the
x-direction and four in the y-direction, leading to
diagonal bands. The relative magnitude of the signal
at each position in k-space represents the magnitude
of the signal in image space at that frequency.
The signal is fully represented in k-space by a

complex signal consisting of separate real and
imaginary components. The distribution of the
signal between the real and imaginary parts at a
particular point in k-space represents the phase of
the signal; the phase describes the relative posi-
tioning of the bands. This is illustrated in Figure 2,
which displays signal at a frequency corresponding
to k-space point (0,4). The imaginary part shown
in panel (b) has a 90° phase offset (in the vertical
(y)-direction) to the real part shown in panel (a).

While DFT offers a convenient approach to
reconstruct images in image space from data in k-
space, the phenomena we observe in perfusion MRI
are considerably less sensitive than those of struc-
tural MRI. Hence, only a limited (central) region of
k-space (i.e., in the range 32×32 to 64×64 compared
with from 128×128 to 512×512 for structural MRI)
can be sampled at a reasonable signal-to-noise ratio
and in reasonable imaging time (i.e., G15 min). For a
constant field of view and DFT reconstruction, this
implies reduced image resolution for perfusionMRI.
Furthermore, when only a limited central region

of k-space can be sampled, such as is the case for
perfusion MRI, DFT can cause problems because it
relies on the k-space data fully representing the image
to be reconstructed (for optimality). Because there is
considerable information about perfusion MRI at
frequencies higher than those acquired, using DFT in
this setting can cause image artifacts, including Gibbs
ringing (observed as bright rings in the image),
aliasing (seen as ghosting in the image), and partial
volume effects (caused by the averaging of signal
over large pixels composed of multiple tissue types,
shrinking the signal towards a global mean measure-
ment). Furthermore, DFT reconstruction contains no
intrinsic noise reduction mechanism and provides no
means for using external anatomical information
from structural MRI. Anatomical information can
improve perfusion MRI reconstruction by providing
appropriate constraints on the perfusion process. The
limited quality of DFT reconstruction for perfusion
MRI can be seen in the example of Figure 3.
K-Bayes avoids these limitations of DFT by

modeling the reconstruction process of the physio-
logic data at the higher resolution of structural MRI.
Two factors lead to increased resolution and im-
proved image quality of K-Bayes reconstruction:

(8,4)(8,4)

(8,0)(8,0)

(0,0)(0,0)

(0,4)(0,4)

kx

ky

Fig 1. Illustration of k-space representation. Each box displays
an image corresponding to a signal at the associated point in k-
space.

(a)(a) (b)(b)

Fig 2. a Purely real and b purely imaginary (90° phase offset)
components of a signal at k-space point (0,4). Light areas
correspond to high values.
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(1) K-Bayes avoids the assumption that the limited k-
space data fully represent the physiologicMR process
and (2) K-Bayes incorporates a mechanism that
allows integration of anatomical prior information.

METHODS

K-Bayes aims to overcome the inherent limi-
tations of DFT by defining a k-space modeling
procedure that incorporates high-resolution ana-
tomical prior information to provide constraints for
the reconstructed physiological MR process.
A schematic comparing the DFT and K-Bayes

procedures is displayed in Figure 4. K-Bayes utilizes
the general Bayesian modeling formulation composed
of a prior and a likelihood distribution. (See Gelman1

for a description of Bayesian modeling and Winkler2

for a description of Bayesian image analysis with
Markov random field prior distributions.) Anatomical
information from structural MRI drives the prior
model, while the likelihood describes the information
in the k-space perfusion MRI data. The information
from the prior and likelihood are combined though
Bayes’ Theorem to generate a posterior distribution of
the perfusion MRI process at high spatial resolution.
The k-space signal model forms the basis of the

likelihood component of K-Bayes and relates the k-
space data generation process to the parameters to
be estimated. The parameters to be estimated are the
voxel values of the true spatial perfusion map, i.e.,
what would be obtained with perfect measurement.
The other component of the Bayesian model, the

prior distribution, describes prior knowledge about
the true perfusion map. For perfusion MRI, the
prior knowledge utilized by K-Bayes describes the
behavior of perfusion with respect to different
tissue types and the boundaries between them (as
defined by tissue segmented structural MRI). The
product of the prior and the likelihood is propor-
tional to the posterior distribution, which needs to
be summarized in order to provide an estimate for
the high-resolution reconstructed map of perfusion
MRI. For this purpose, the reconstruction is chosen
as the image corresponding to the maximum of the
posterior distribution. This reconstruction is known
as the maximum a posteriori (MAP) estimate.2 Other
possible choices for reconstruction estimates such as
the mean of the posterior distribution are typically
more expensive computationally, requiring stochastic
estimation methods. Because the MAP estimate
cannot be calculated analytically, we formulate an

Inverse
   DFT

Fig 3. Schematic showing the limitations of DFT reconstruction for perfusion MRI. DFT-based reconstruction contains Gibbs ringing,
aliasing, partial voluming, and high noise level.

Fig 4. Differences between standard DFT and the proposed K-
Bayes reconstruction procedure. K-Bayes improves reconstruc-
tion quality by (1) utilizing high-resolution anatomical prior
information from structural MRI and (2) modeling the relation-
ship between the limited perfusion MRI sample of k-space and
the high-resolution image to be reconstructed.
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iterative algorithm based on the Expectation-
Maximization (EM) approach.3–5 More precisely,
we use a Generalized EM approach,3 though in
common with much of the engineering literature, we
continue to refer to it as an EM algorithm.

k-Space Signal Modeling and the Likelihood

A signal model is developed for K-Bayes that
relates k-space perfusion data (the difference signal
between labeled and unlabeled signals) to a voxel
map in image space. The image space voxel map is
defined at higher resolution than DFT permits (other
than assuming, generally with no justification, that a
particular form of interpolation is appropriate). The
k-space model increases resolution by relating the
observed signal from the acquired set of k-space
points to the set of voxel intensities at the higher
resolution of structural MRI. Development of the
model is initially provided in 2D rather than 3D to
aid the visualization of key concepts. The extension
to 3D is straightforward, though the exact 3D model
depends on (a) whether a set of 2D ‘slices’ or a
single 3D volume is acquired and (b) the resolution
between-slice relative to within-slice.
Formally, the k-space signal model is incorporat-

ed within the likelihood model part of the K-Bayes
procedure. The raw k-space data are modeled as
consisting of the true signal plus complex Gaussian
noise (the errors are modeled as having independent
Gaussian distributions with zero mean and constant
variance in each of the real and imaginary parts). This
independent Gaussian assumption implies a uniform-
ly random phase for the noise. The k-space signal
process is modeled as a continuous Fourier transfor-
mation of the true perfusion map being imaged. The
true perfusion map is modeled as a piece-wise
constant (uniform within each voxel) process at the
(high) resolution of the structural MRI.
The 2D k-space perfusion signal model for K-

Bayes is

d kx; ky
� � ¼ s kx; ky

� �þ " kx; ky
� � ð1Þ

where d kx; ky
� �

is the complex k-space data at k-space
position (kx, ky), kx ¼ � Kx

2 ; . . . ;
Kx
2 � 1, ky ¼

� Ky

2 ; . . . ;
Ky

2 � 1. The error/noise component
is modeled as isotropic complex Gaussian noise:
" kx; ky
� � � CN 0; �2I2ð Þ, where CN(μ, V) is used to
denote a bivariate Gaussian distribution with the first
component representing the real and the second the
imaginary part of a complex random variable with

vector mean μ and covariance matrix V. The
independence imposed by the covariance matrix σ2I2
provides for an isotropic noise distribution in the
complex plane. The term s[kx, ky] denotes the ‘true’
(noise-free) k-space complex signal, modeled as

s kx; ky
� � ¼XP�1

p¼0

XQ�1

q¼0

Z y p½ �þ1=2

y p½ ��1=2

Z x p½ �þ1=2

x p½ ��1=2

� A x; y½ � exp �2pi kxx
�
P þ kyy

�
Q

� �� �
dxdy

ð2Þ
where p ¼ 0; . . . ; P � 1 and q ¼ 0; . . . ;Q � 1 are
the co-ordinate values (p, q) of the high-resolution
structural MRI voxel locations. A[x, y] is the signal
amplitude at point (x, y) in image space, i.e.,
unknown perfusion intensity map.
Making the assumption that the signal is

constant within each voxel in image space (at the
higher resolution of the structural MRI), the
analytic solution to the integral of Eq. (2) is:

s kx; ky
� �¼ sinc �kx=Pð Þ sinc �ky=Q

� �XP�1

p¼0

XQ�1

q¼0

A p;q½ �

� exp �2�i kxp
�
P þ kyq

�
Q

� �� � ð3Þ
where sinc(x)=sin(x)/x. The likelihood is propor-
tional to the distribution of the data d (the set of
d[kx,ky] at all k-space points) given the true signal
s (s[kx,ky] at all k-space points). The complex
Gaussian noise process combined with the true
signal model leads to the following likelihood:

� djAð Þ / exp � 1

2�2
X
kx;kyð Þ

d kx; ky
� �� s kx; ky

� �		 		2
8><
>:

9>=
>;

¼ exp � 1

2�2

X
kx;kyð Þ

d kx; ky
� �� sinc �kx=Pð Þ sinc �ky=Q

� ��		
8><
>:

XP�1

p¼0

XQ�1

q¼0

A p; q½ � exp �2�i kxp
�
P þ kyq

�
Q

� �� �		2g
ð4Þ

where π (•) is used throughout this document to
denote a generic probability density function. Notice
that the likelihood is conditional on the true image
A¼ A p; q½ � : p ¼ 0; . . . ; P �1; q ¼ 0; . . . ;Q �1f g
through the s[kx, ky] terms. That is, the likelihood
describes the data generation process given the true
underlying physiologic process via the true k-space
signal process.
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Incorporating Anatomical Information
from Structural MRI (The Prior Distribution)

To optimally incorporate the anatomical prior
information, a prior distribution is adopted for K-
Bayes that is an adaptation of Markov random field
(MRF) models.2,6–9 MRF models are a commonly
used mechanism to impose smoothness constraints
on an image or map. The smoothing is probabilistic
since it is incorporated via a prior probability
distribution. The approach is to model neighboring
voxels with higher probability of having more
similar values than voxels farther apart. When used
as priors for image reconstruction, MRFs yield
smoother and less noisy results than reconstructions
based on the data alone. The Bayesian paradigm
essentially multiplies the prior and the likelihood,
and the resulting posterior distribution is a compro-
mise of the two. Therefore, a reconstruction based
on Bayesian models with MRF priors is capable of
compromising between real image characteristics in

the data and the desired property of having
generally smooth neighborhoods in the image.
The prior model for K-Bayes extends the standard

MRF prior model by incorporating tissue segmented
anatomical information from structural MRI. Unlike a
standard MRF model, the K-Bayes prior does not
define the level of probabilistic smoothing between
neighboring voxels to be constant across the recon-
structed perfusion map. The K-Bayes prior is
designed so that the level of probabilistic smoothing
of the perfusion map is only constant within
homogeneous regions of tissue. Sharper changes in
levels have higher probability of occurring at
identified boundaries of gray and white matter and
at edges of the brain or ventricles. Regions outside
the brain or areas of CSF should not have a
detectable perfusion signal, and the prior defines
these areas to have zero signal. The K-Bayes prior is
mathematically represented as an adaptation of
standard MRF models and is defined at the spatial
resolution of structural MRI as follows:

� Að Þ / exp � 1

2

X
p;qð Þ; p0;q0ð Þh i

1

�2B
IB p; qð Þ; p0; q0ð Þ½ � þ 1

�2G
IG p; qð Þ; p0; q0ð Þ½ � þ 1

�2W
IW p; qð Þ; p0; q0ð Þ½ �


 �
A p; q½ � � A p0; q0½ �ð Þ2

� 
2
4

3
5

8<
:

9=
;

ð5Þ

with the added constraint that A is assumed zero
everywhere both outside the brain and within
regions consisting of CSF. The sum in Eq. (5)
over G(p,q), (p′,q′)9 is over all pairs of ‘neigh-
boring’ voxels (p,q), (p′,q′) and is only over first-
order neighbors, i.e., where only horizontally
and vertically adjacent pairs are considered to be
neighbors, though this can be generalized to
higher orders (and in the language of the MRF
literature, “arbitrary cliques”) in a straightfor-
ward manner. The functions IG p;qð Þ; p0;q 0ð Þ½ �,
IW p;qð Þ; p0;q 0ð Þ½ � and IB p;qð Þ; p0;q 0ð Þ½ � are indica-
tor functions of matching pairs of gray matter,
white matter and brain tissue (gray or white)
voxels, respectively. For example, IG p; qð Þ;½
p0; q 0ð Þ� ¼ 1 if both (p, q) and (p′, q′)ðp0; q 0Þ are
gray matter voxels and 0 otherwise. The param-
eters �2B , �2G , and �2W control the level of
probabilistic smoothing between neighbors
(probabilistic because it is determined by a
probability model describing the similarity of

neighboring values); �2B defines the a priori expected
level of smoothness of non-matching tissue type
neighbors and �2G , �

2
W describe the extra components

of smoothness for gray matter and white matter
neighboring pairs, respectively (lower values pro-
vide increased smoothness). This prior distribution
model can be considered as an extension of the
intrinsic pairwise Gaussian difference prior,8,9

extended such that the parameter(s) for the pairwise
smoothness level depends on the tissue types of
neighboring voxels.
This prior model allows for different levels of

Markov smoothing within different types of tissue
and also across tissue boundaries. A decisive benefit
of this prior model is its great flexibility to
accommodate the differing prior expectations of the
constraints in different tissues. For example, perfu-
sion has been observed to bleed across tissue
boundaries of gray and white matter. The parameter
�2B controls the smoothness of transitions across gray/
white boundaries such that the cross-boundary
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bleeding can be appropriately incorporated. This
model can be interpreted as an ‘adaptive MRF’ prior
where the relative levels of desired smoothness
within each tissue type and across boundaries are
chosen to reflect the way that they constrain the
underlying perfusion process being imaged.
The values used for σ2, �2B , �

2
G , and �2W in the

2D simulation of Paper I were σ2=1.0, �2B ¼ 40:0,
�2G ¼ 1:0, and �2W ¼ 5:0. These parameter values
were obtained via manual calibration, though it
was found that the resulting reconstructions were
reasonably robust to their specification. The
increased strength of a priori smoothness in gray
over white matter was necessary because there
are many gray matter voxels that are not
surrounded by other gray matter voxels (due to
the thin “ribbon-like” nature of the cortex).
Therefore, to ensure similar smoothness levels
in gray and white tissue, the gray matter
smoothness parameter needs to be smaller than
that for white.

Posterior Optimization

In order to provide a function from which a
reconstruction of the perfusion map can be
obtained, the likelihood (4) and prior (5) compo-
nents are combined via Bayes’ Theorem to
produce the posterior distribution:

� Ajdð Þ / � djAð Þ� Að Þ ð6Þ
To obtain an estimate (reconstruction) of the

true physiologic map, the posterior distribution is
maximized with respect to the set of perfusion
MRI voxel intensities, A. This maximum a
posteriori (MAP) estimator is only one of many
possible estimators of the true physiologic spatial
map that can be obtained from the posterior
distribution. However, it is a common choice for
Bayesian image analysis because (a) it is easy to
understand and (b) there is known methodology
for obtaining it.2 An implementation of the
Expectation-Maximization (EM) algorithm3 is here
formulated to compute the K-Bayes MAP esti-
mate. The implementation is similar in approach to
those in Green4 and Miller et al.,10 where a set of
unobservable (latent) variables is defined that can

be considered as missing data. For the K-Bayes
EM reconstruction, the latent variables are defined
to be the component of the data at k-space location
(kx, ky), i.e., d[kx, ky], relative to the physiologic
signal at voxel (p, q). These terms are:

z kx; ky; p; q
� � ¼ sinc �kx=Pð Þsinc �ky

�
Q

� �
A p; q½ �

� exp �2�i kxp=P þ kyq
�
Q

� �� �
þ "0 kx; ky; p; q

� �

where "0 � CN 0; �2
�
nI2

� �
and n is the total

number of voxels. The implicit assumption here
is that the error contribution from each voxel (p, q)
to d[kx, ky] (i.e., ε′[kx, ky, p, q]) is independently
and identically distributed (i.i.d.) for all (p, q) and
(kx, ky).
The individual z-variables are not defined in a

rigorous sense because of the uncertainty principle,
i.e., it is impossible to specify a point precisely in
both spatial frequency and image space. However,
because only linear combinations of the z-variables
are utilized (which are well defined) within the maxi-
mization step of the EM algorithm, the methodology
remains valid at all times.
The EM procedure for K-Bayes takes the

following steps:

1. A set of start values is determined for the
perfusion MRI map based on zero-filled DFT
(zDFT) reconstruction. Zero-filling involves
extrapolating k-space with zeros in each dimen-
sion. This corresponds to sinc interpolation
in standard space. The zero-filling is per-
formed to a level such that the resolution of
the zDFT’d data matches that of the structural
MRI dataset.

Steps 2 through 4 are then iteratively performed.

2. The expectation of each z-variable is evalu-
ated given the current values of the perfu-
sion MRI amplitudes A (the expectation or
E-step).

3. The conditional posterior distribution for each
A[p,q] is maximized given the current estimates
for the set z-variables (the maximization or M-
step) to give new values for A.
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4. The algorithm is tested for convergence and
stopped if the total change in the perfusion
reconstruction, A, between iterations is less than
some pre-specified tolerance.

5. Once convergence has been achieved, the
current values for the image, A, form the
reconstructed image.

Derivation of K-Bayes E and M steps

For the purpose of clarity, the EM algorithm
derivation is presented only for 2D K-Bayes. The
adaptation to 3D is relatively straightforward.

Proposition: The j-th step of the K-Bayes EM
algorithm (based on Eqs. (4), (5), and (6)) has E-step:

z½kx; ky; p; q�j ¼ 1

n
d½kx; ky� � sincð�kx=PÞsincð�ky=QÞ

X
p0;q0ð Þ6¼ p;qð Þ

A½p0; q0�j�1 exp �2�i kxp
0=P þ kyq

0=Q
� �� �2

4
3
5

þ n� 1

n
z½kx; ky; p; q�j�1

where n=PQ is the number of voxels in the image,
and M-step:

A½ p; q�j ¼

1
�2

P
kx;ky

sincð�kx=PÞsincð�ky=QÞ Re z½kx; ky; p; q�j
� �

cos 2� kxp=P þ kyq=Q
� �� ��

Im z½kx; ky; p; q�j
� �

sin 2� kxp=P þ kyq=Q
� �� �

 !
þP

ðp0;q0Þ2�ðp;qÞ
� � 1

�2B
IB½ðp; qÞ; ðp0; q0Þ� þ 1

�2G
IG½ðp; qÞ; ðp0; q0Þ� þ 1

�2W
IW ½ðp; qÞ; ðp0; q0Þ�

� �
A½p0; q0� j�

1
�2

P
kx;ky

sincð�kx=PÞsincð�ky=QÞð Þ2 þ
P

ðp0;q0Þ2�ðp;qÞ
� � 1

�2B
IB½ðp; qÞ; ðp0; q0Þ� þ 1

�2G
IG½ðp; qÞ; ðp0; q0Þ� þ 1

�2W
IW ½ðp; qÞ; ðp0; q0Þ�

� �

where j* can be taken as j−1, or for potentially
improved performance, the latest available update
(either j−1 or j).

Proof E-step
The E-step update for each missing data point

z[kx, ky, p, q] is determined by its expectation given
the observed data, d, and the perfusion map, i.e.,
E z½kx; ky; p; q�jd;A
� � ¼ E z½kx; ky; p; q�j

�
d½kx; ky�;A�.

Bayes’ Theorem gives

� z kx; ky; p; q
� �		d kx; ky

� �
;A

� �

¼ � d kx; ky
� �		z kx; ky; p; q

� �
;A

� �
� z kx; ky; p; q
� �		A� �

� d kx; ky
� �		A� � :

Furthermore,

d kx; ky
� �		z kx; ky; p; q

� �
;A �

CN sinc �kx=Pð Þsinc �ky
�
Q

� � X
p0;q0ð Þ6¼ p;qð Þ

A p0; q0½ � exp �2�i kxp
0=P þ kyq

0�Q� �� �þ z kx; ky; p; q
� �

;
�2 n� 1ð Þ

n
I2

0
@

1
A
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Therefore,

� z kx; ky; p; q
� �		d kx; ky

� �
;A

� � ¼ n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� n� 1ð Þp

exp � n

2�2 n� 1ð Þ
z kx; ky; p; q
� �� d kx; ky

� �þ sinc �kx=Pð Þsinc �ky
�
Q

� �
P

p0;q0ð Þ6¼ p;qð Þ
A p0; q0½ � exp �2�i kxp0=P þ kyq0

�
Q

� �� �
						

						
28<

:
9=
;

exp � n

2�2
z kx; ky; p; q
� �� sinc �kx=Pð Þsinc �ky

�
Q

� �
A p; q½ � exp �2�i kxp=P þ kyq
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Completing the square, this leads to
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and the j-th E-step update for z[kx, ky, p, q] is,

z½kx; ky; p; q�j ¼ 1
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M-step

To generate the M-step, the posterior distri-
bution, or equivalently the log-posterior distri-
bution log � A p; q½ �jd; zð Þð Þ, is maximized with
respect to each A[p,q]. Note that the posterior

distribution is conditional on knowing the full
set of latent (or missing) variables, i.e., z.
Differentiating the log-posterior distribution with
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where δ(p,q) is the set of neighboring voxels to
location (p,q). Rearranging Eq. (7) in terms of
A[p,q], leads to
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Differentiating Eq. (7) again we get that the
second differential of the log-posterior is
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Because the second differential is positive, this
confirms that the solution given by Eq. (8) is a
local maximum and therefore the j-th M-step
update for A[p,q] is:

A½p; q�j ¼
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2D versus 3D Reconstruction

One can use K-Bayes as either a 2D or 3D
reconstruction approach. The choice depends on a
number of factors. MRI data are commonly recorded
as a set of 2D slices rather than encoded in 3D k-
space. Moreover, the between-slice thickness of
perfusion MRI is typically larger than the within-slice
resolution. When the difference between within- and
between-slice resolution is large, 2D reconstruction
may be preferred, particularly if reconstruction speed
is important. However, when the resolution is closer

to isotropic (equal in all dimensions) or the data are
recorded in 3D k-space, then a 3D reconstruction
procedure is likely to produce improved results over
2D. The improvement is acquired from the utilization
of cross-slice structural information.

3D K-Bayes

The extension to 3D requires different formula-
tions depending on whether the 3D data are

local maximum and therefore the j-th M-step
update for A[p,q] is:

ð10Þ
□
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acquired as a set of slices (multi-slice) or as a
single 3D k-space acquisition. For multi-slice data,
the model of Eq. (3) is extended to:

s½kx; ky;w� ¼ sin �kx=Pð Þ
�kx=P

sin �ky
�
Q

� �
�ky
�
Q

Xwþ1ð Þc�1
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XP�1

p¼0

XQ�1

q¼0

A p; q; r½ � exp �2�i kxp=P þ kyq
�
Q

� �� �
:

ð11Þ

where w 2 0; . . . ;W � 1f g is the slice index of
the perfusion MRI (W slices total); r 2 0; . . . ;f
R � 1g is the slice index of the higher resolution
structural MRI (R slices); and c is the number of
high-resolution structural MRI slices corres-

ponding to each low-resolution perfusion MRI
slice (c=4 for the 3D simulations in Paper 1).
When 3D acquisition sequences are used, i.e.,

when data are acquired in 3D k-space, the model of
Eq. (3) extends to:

s kx; ky; kz
� � ¼ sin �kx=Pð Þ

�kx=P

sin �ky
�
Q

� �
�ky
�
Q

sin �kz=Rð Þ
�kz=RXR�1

r¼0

XP�1

p¼0

XQ�1

q¼0

A p; q; r½ �

exp �2�i kxp=P þ kyq
�
Qþ kzr=R

� �� �
:

ð12Þ
In both cases the prior distribution is extended

to the third dimension as:

� Að Þ / exp � 1
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ð13Þ

This is essentially the same form as in the 2D
reconstruction except that the Markov property is
applied equivalently in the third dimension, i.e.,
the neighborhood is defined for (p,q,r) and not
just (p,q). Note that adjustment of the prior
parameters is required to accommodate the differ-
ent structure of the neighborhoods. The values
used for σ2, �2B , �

2
G , and �2W in the 3D simulation

study of Paper I were changed to σ2=1.0,
�2B ¼ 100:0, �2G ¼ 4:0, and �2W ¼ 15:0.
Moreover, the model needs to be modified when

the structural MRI is non-isotropic, i.e., when the
between-slice resolution is different to the within-
slice resolution. The values of the smoothing
parameters �2B , �

2
G , and �2W need to be adjusted for

neighboring pairs of voxels in the between-slice
direction to ensure isotropic behavior of the prior
distribution, i.e., such that the auto-correlation func-
tion is the same in all spatial directions. Theory for
how to adjust these parameters is not resolved.
Therefore, we recommend that, in the case of non-
isotropic voxels, the structural MRI be re-sliced to
have matching resolution in all dimensions prior to
segmentation. Alternatively, if re-slicing is undesir-
able, 2D reconstruction might be used for each slice.

DISCUSSION

The K-Bayes formulation developed in this report
overcomes some of the inherent limitations of con-
ventional DFT reconstruction procedures for perfu-
sion MRI. K-Bayes improves on DFT by combining
raw k-space data modeling with high-resolution
anatomical information from structural MRI. The K-
Bayes method developed here and applied in Paper I
demonstrates improved spatial resolution, accuracy,
and precision over DFT that should boost diagnostic
sensitivity and specificity. The increased information
on affected areas of the brain afforded by K-Bayes
reconstruction should provide extra power for the
study and clinical management of neurodegenerative
(and other brain) diseases.
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