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Abstract

Electroencephalography (EEG) plays a pivotal role in the di-
agnosis of various neurological conditions, most notably ma-
jor depressive disorder (MDD). However, deep learning-based
methods currently employed for MDD detection tasks ex-
hibit inadequate generalization capabilities, particularly across
different EEG electrode channels, and demonstrate limited
feature representation capacity. In this paper, we present a
novel approach referred to as adaptive feature learning (AFL),
which leverages kernel embedding to facilitate the learning of
domain-invariant features across subjects within a reproduc-
ing kernel Hilbert space. This method aims to enhance the
model’s ability to generalize across multiple subjects’ EEG
signals. Furthermore, our research revealed that batch nor-
malization (BN) layers within the existing MDD detection
network frequently result in feature channel suppression, po-
tentially compromising the representation power of the fea-
tures. To address this issue, we propose channel activation
(CA), which employs decorrelation to reactivate suppressed
feature maps, thereby enhancing the model’s feature represen-
tation capability, particularly for subtle EEG changes. The
effectiveness of the proposed methods is evaluated using the
leave-one-subject-out protocol on MODMA and PRED+CT
datasets, yielding detection accuracies of 90.56% (MODMA)
and 96.51% (PRED+CT). Our experimental findings exhibit
the superior performance of our method compared to state-of-
the-art (SOTA) methods in terms of MDD recognition.
Keywords: Major Depressive Disorder (MDD); Deep Learn-
ing; Adaptive Feature Learning (AFL); Channel Activation
(CA);

Introduction
MDD is a common neurological illness that causes symptoms
such as insomnia, anxiety, and irritability, with severe cases
leading to suicidal behavior. EEG is a non-invasive and cost-
effective diagnostic tool for neurological disorders such as
depression, seizures, Alzheimer’s, Parkinson’s, and emotion
analysis (Saeidi et al., 2021).

Recently, numerous scholars conducted studies on depres-
sion using EEG data collected during resting states (Cai et
al., 2020; Yang et al., 2018). With the growing popularity of
artificial intelligence technology, machine learning (ML) and
deep learning (DL)-based approaches to EEG signal recogni-
tion are gaining traction.

Recognizing the limitations of traditional machine learn-
ing algorithms and their reliance on expert feature engineer-
ing and selection, the widespread adoption of deep learn-
ing methods has revolutionized the field of MDD recogni-
tion using EEG signals. Through the application of deep
learning, MDD recognition models are now capable of ex-
tracting more complex semantic features and identifying sub-

(a) Subject 06 (b) Subject 15

Figure 1: Brain topography of EEG value distribution (Sub-
ject 06 and Subject 15 are both patients with MDD, MODMA
dataset)

tle changes in the EEG signals. Deep learning research in
the domain of MDD recognition encompasses various ap-
proaches, including convolutional neural networks (CNN)
(B. Liu, Chang, Peng, & Wang, 2022), graph convolutional
networks (GCN) (H.-G. Wang, Meng, Jin, Wang, & Hou,
2023), recurrent neural networks (RNN) (H.-G. Wang, Meng,
Jin, & Hou, 2023), Transformer (Qayyum, Razzak, Tan-
veer, Mazher, & Alhaqbani, 2023), and hybrid architectures
that integrate these networks (Sam, Boostani, Hashempour,
Taghavi, & Sanei, 2023).

The significant variation observed in the EEG signals of
depression patients, resulting in distinct data distributions as
depicted in Figure 1, poses a challenge for traditional DL
methods in addressing these differences. While existing do-
main adaptation (DA) based methods aim to bridge the dis-
tribution gap between the source and target domains (Jiang et
al., 2023), they fail to account for the significant inter-subject
divergence within the same domain for the MDD detection
task. On the other hand, domain generalization (DG) based
methods are applicable to a similar problem setting by treat-
ing different subjects as different domains (Ma et al., 2023),
but they require manual assignment of domain labels.

Additionally, previous EEG-based MDD detection net-
works required the BN layer to learn additional independent
features. However, as demonstrated in Eq. (1), previous re-
search indicates γc (re-scale factor of BN layer) can be ex-
tremely small, which may suppress the EEG feature map
x̃wci j (Huang, Yang, Lang, & Deng, 2018). Since MDD pa-
tients’ EEG signal changes are inherently weak, suppressing
the EEG feature maps can lead to poorer model representa-
tion capability. Existing methods for feature suppression in-
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volve adding attention mechanisms to enable the network to
learn and reweight different feature channels (Q. Wang et al.,
2020), but the suppressed feature values continue to play a
role in downstream classification tasks, which degrades the
model’s performance (Shao et al., 2020).

x̄wci j = (xwci j −µ)/σ,

x̃wci j = γcx̄wci j +βc
(1)

Where x̄wci j denotes the standardized feature, x̃wci j represents
the normalized feature. σ and µ respectively denotes the stan-
dard deviation and mean, respectively, as well as βc and γc are
the re-shifting and re-scaling factors for the cth EEG feature
channel, respectively.

In this work, firstly, we propose the AFL, which em-
ploys kernel embedding to map EEG features into a high-
dimensional reproducing kernel Hilbert space (RKHS) to
extract high-order moment domain-invariant features. The
AFL enhances model generalization by extracting domain-
invariant features from the EEG signals of different individ-
uals, thus addressing the challenge of subpar generalization
across various subjects. Secondly, we introduce the CA,
which activates suppressed EEG feature channels through a
decorrelation operation (Huang et al., 2018) following the BN
layer. This activation increases the re-scale factor of EEG fea-
ture maps, thereby improving their representational ability for
downstream MDD detection tasks. Our contributions can be
summarized as follows:

• We propose the AFL to solve the varying EEG signal dis-
tributions among multiple subjects in the area of MDD de-
tection. The AFL forces the network to learn domain in-
variant EEG features from multiple subjects, increasing the
model’s generalization.

• We propose the CA to overcome the suppressive effect on
feature maps within BN, which reduces the model’s rep-
resentation ability. The CA utilizes the decorrelation op-
eration to activate all feature maps, enhancing the model’s
classification performance in MDD detection.

• We experimented with two MDD datasets, comparing them
to various SOTA methods. The findings show that our
method outperforms SOTA methods in MDD detection
performance.

Methodology
This paper proposes an MDD detection model incorporat-
ing the AFL and CA. It first processes multi-electrode EEG
signals by extracting differential entropy (DE) features, then
converting them into signal images, and inputting these into
the model for precise MDD detection. The AFL is responsi-
ble for increasing the model’s generalization, and the CA is
responsible for increasing the model’s detection performance.
The unified architecture is depicted in Figure 2, and compre-
hensive details are provided in the following sections.

EEG Signals Preprocess
Multi-electrode EEG signals are represented as S =
{s1,s2, . . . ,sn}, where n is the subject number, S ∈ Rl×e, l
is the time series duration, and e is the EEG number of the
electrode channels. Following the instructions of existing
studies (Jia et al., 2020), we first extract the DE features in
five frequency bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Al-
pha (8-12 Hz), Beta (12-35 Hz), and Gamma (35-100 Hz)
(Abhang, Gawali, & Mehrotra, 2016). Second, to extract
EEG features from multiple electrode channels, we convert
those one-dimensional time-series signals into multiple sig-
nal images using a fixed window(C. Xu, Shen, Fan, Qiu,
& Mao, 2023). Finally, the features of the five frequency
bands are combined as the input. The preprocessed signal is
X = {x1,x2, . . . ,xn}, where X ∈ Rn× f×e×l , f is the frequency
band. We create an adjacent matrix to represent the topo-
logical relationship between multiple electrode channels as
indicated by (Z.-Y. Zhang, Meng, Jin, Wang, & Hou, 2024).

Adaptive Feature Learning
We propose the AFL to capture high-order, domain-invariant
features within EEG data in a high-dimensional RKHS,
which can comprehensively incorporate electrode and fre-
quency correlations, temporal dependencies, and subtle sig-
nal variations. The AFL first learns multiple subjects’ EEG
signal distribution features. Then, we employ the MMD loss
function to represent the differences between the learned fea-
tures and the actual EEG signals.

According to kernel embedding technology (Long, Wang,
Sun, & Philip, 2014), we can map the low-dimensional EEG
DE feature to high-dimension RKHS. In RKHS, we can ex-
tract the multiple subjects’ domain-invariant features to en-
hance the model’s generalization. The universal approxi-
mation theorem (Hornik, Stinchcombe, & White, 1989) al-
lows us to build a network which can extract the domain-
invariant features in RKHS. However, our EEG signal image
X is a matrix (in this section, we transform the EEG signal to
X ∈ Rb×e×l , where b is the batch of the EEG signal image);
thus, we can write the φk(·) function as follows.

f (Xi) = max
k∈K

1
l

l

∑
q=1

φk (xeq) (2)

Where f (·) is a neural network that can automatically select
the best kernel from the several distinctive kernels k ∈ K , and
Xi is an EEG signal image.

The kernel embedding idea suggests that the feature map-
ping function f (·) should be injective. To make the neural
network injective, another function (neural network) f−1(·)
should make f−1 ( f (Xi)) = Xi be applicable to all potential
Xi. Therefore, we can use an autoencoder to ensure injectivity
in the feature mapping. An autoencoder consists of two com-
ponents: an encoder f (·) and a decoder f−1(·). The encoder
maps the input EEG signal image to a vector representing the
high-order moments EEG feature in RHKS. The decoder re-
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Figure 2: Overview of GCN-CNN Network Based on The AFL And CA (i.e., the AFL-CA model).

constructs this vector into an output of the same size as the
input signal image.

We use the MMD loss function to compare the DE feature
of the EEG signal to the reconstructed feature. The MMD
function’s general form is shown in Eq. (3), where Xm and Xn
are two EEG signal images, and l is the time windows of two
EEG signals.

MMD(Xm,Xn) =

∥∥∥∥∥1
l

l

∑
i=1

(φk (xei))−
1
l

l

∑
j=1

(φk (xe j))

∥∥∥∥∥
2

(3)
The MMD function instructs the autoencoder to learn high-
order domain invariant feature representations of the EEG
signal in RKHS. The MMD function can be described as Eq.
(4) in our task.

LossMMD
(
Xm, f−1 ( f (Xm))

)
=

1
l

∥∥∥∥∥ l

∑
j=1

xe j −
(

f−1 ( f (xe j))
)∥∥∥∥∥

2
(4)

Based on the operations above, we can compel the net-
work to learn domain invariant features of multiple subjects
in RKHS, thereby enlarging the feature space. Consequently,
the AFL enhances the model’s generalize ability and im-
proves the performance of cross-subject MDD detection.

Channel Activation
We find that BN reduces the re-scale factor, which results in
the suppression of EEG feature maps. Drawing inspiration
from the decorrelation technique described in (Huang et al.,
2018; Shao et al., 2020), which indicates decorrelation can in-
crease the re-scale factor magnitude using the inverse square
root of the covariance matrix Σ (i.e., Σ

− 1
2 ), based on this, we

propose a method to reinvigorate suppressed feature maps,
thereby enhancing their utility for MDD classification. Fol-
lowing the BN layer, our CA method reactivates feature maps
by executing channel decorrelation, as delineated in Eq. (5).

pwi j = D
− 1

2
w (Diag(γ)x̄wi j +β) (5)

Here, pwi j is the cth EEG feature channel output of the CA,
w is the batch of the EEG feature map, and i and j are the

pixels in the EEG signal image. To generate a column vector
x̄wi j, we stack the items across all x̄wci j channels. Similarly,
stacking βc and γc yields β and γ. Diag(γ) denotes a diagonal

matrix. The decorrelation operation, D
− 1

2
w , requires all EEG

feature maps to contribute more or less to signal representa-
tion.

The CA needs to not only activate a batch of feature maps
but also consider the channel dependency statistics within
each feature map. We can decorrelate the EEG feature chan-
nel dependency statistics for the batch feature maps and em-

bed each signal image in the matrix D
− 1

2
w . Dw can be written

as follows.

Dw = λΣ+(1−λ)Diag
(
g
(
σ̃

2
w
))

(6)

Where the covariance matrix Σ is generated after normaliza-
tion over an entire batch of feature maps {x̄w}W

w=1. σ̃2
w is a

variance vector measured across all channels. g is responsi-
ble for modeling feature channel dependencies and returns an
adaptive instance variance. The Jensen inequality (Pečarić,

1996) allows us to relax D
− 1

2
w as Eq. (7).

D
− 1

2
w =

[
λΣ+(1−λ)Diag

(
Diag

(
f
(
σ̃

2
w
)))]− 1

2

⪯ λ Σ
− 1

2︸︷︷︸
Batch Decorrelation (BD)

+(1−λ)
[
Diag

(
g
(
σ̃

2
w
))]− 1

2︸ ︷︷ ︸
Instance Reweighting (IR)

(7)
Where ⪯ stands for matrix comparison symbols.

Figure 2 and Eq. (7) illustrate that Dw consists of two parts:
Σ
− 1

2 for the covariance matrix across the batch of EEG fea-
ture maps, which can activate the batch of feature channels

(BD), and
[
Diag

(
f
(
σ̃2

w
))]− 1

2 can adjust the correlation be-
tween EEG feature channels of each signal image (IR). λ is a
learnable ratio balancing BD and IR.

Batch Decorrelation The BD computes the covariance ma-
trix Σ from a batch of EEG feature maps to activate the batch
of EEG feature channels. We assume that X̄ ∈ RW×Z repre-
sents the EEG feature maps following the BN layer, where
Z =C×E ×L, W is the batch size, C is the feature channels,
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E and L are the height and width of the signal image. The BD
can be computed as follows:

Σ = γγ
T ⊙ 1

Z
X̄X̄T (8)

where Σ stands for the EEG feature channel correlation ma-
trix. For example, Σi j is the dependency between the ith and
jth EEG feature channels, scaled by γiγ j after normalization.
⊙ indicates an elementwise multiplication.

In addition, we utilize Newton’s iterative method to com-
pute the inverse square root, avoiding the computationally
intensive decorrelation operation (Bini, Higham, & Meini,
2005).

Instance Reweighting The IR can estabilsh channel depen-
dencies within each feature map (Shao et al., 2020). We can
calculate the IR part input σ̃2

w by Eq. (9).

σ̃
2
w = diag

(
γγ

T )⊙ (
σ2

p
)

w
σ2

q
(9)

Where the diagonal of a given matrix is extracted using
diag

(
γγT

)
. The variances estimated by σ2

q and
(
σ2

p
)

w are
shown by BN and each feature map normalization, respec-
tively. The vector division is done element-wise in Eq. (9).
The IR input is scaled using γ2

c for the cth channel.

[
Diag

(
g
(
σ̃

2
w
))]− 1

2 = Diag
(

s̃
(
σ̃

2
w;θ

))
· 1
WC

W,C

∑
w,c

(
σ̃

2
w
)− 1

2
c︸ ︷︷ ︸

Part A
(10)

In the IR, as depicted in Eq. (10),
[
Diag

(
g
(
σ̃2

w
))]− 1

2 ad-
justs the correlations between EEG feature maps. Part A in
Eq. (10) denotes the inverse square root of variances com-
puted across the batch feature channels and each feature map.
According to (Hu, Shen, & Sun, 2018), channel dependencies
can be established using a sub-network parameterized by θ.
The s̃ represents the sigmoid function that generates weights,
which control the strength of the inverse square root of vari-
ance for each EEG feature map, ensuring the output maintains
the same magnitude as the BD.

Loss Function and Baseline Network
The proposed AFL-CA model’s loss function consists of
bi-classification cross-entropy (CE) and MMD loss. The
model’s overall loss function can be expressed in the follow-
ing way:

Loss ALL = Loss CE +α Loss MMD (11)

where α is the coefficient of Loss MMD.
The baseline network includes 1 layer GCN and 2 layers

CNN, as shown in Figure 2. The design of GCN network and
adjacency matrix follows the settings of (Z.-Y. Zhang et al.,
2024).

Experiments
The benchmark datasets, experimental platform, experimen-
tal settings and evaluation metrics are each presented in this
section.

Datasets Description
We evaluate our model’s efficacy with two widely used
MDD datasets (MODMA (Cai et al., 2020) and PRED+CT
(Cavanagh, Bismark, Frank, & Allen, 2019)). The MODMA
dataset includes 24 subjects with MDD and 29 HC sub-
jects. We used resting state data containing 128 channels in
MODMA dataset. The PRED+CT dataset includes 75 HC
subjects and 46 MDD subjects, and we chose 43 HC and 43
MDD patients for the experimental data.

Platform, Hyperparameters and Evaluation Metrics
Table 1: Hyperparameters Setting.
Hyperparameters MODMA PRED+CT

Fully Connected Layer of Encoder 4 4

Fully Connected Layer of Decoder 4 4

GCN Number 1 1

CNN Number 2 2

Learning Rate 0.001 0.001

Batch Size 5 × 150 10 × 150

GCN Dropout 0.3 0.3

CNN-1 Dropout 0.5 0.3

CNN-2 Dropout 0.5 0.5

Optimizer Adam Adam

L2 Regularization Coefficient 0.2 0.2

Epoch 50 70

All the models were trained/tested on one NVIDIA RTX 4090
24 GB GPU, Intel E5-2686 CPU, and 64 GB memory. The
deep learning framework Pytorch was used to implement the
experiments. The hyperparameters settings are shown in Ta-
ble 1. The proposed method was evaluated using four metrics:
accuracy (Acc), F1-Score (F1), polygon area metric (PAM)
(Aydemir, 2021) and Kappa coefficient (Cohen, 1960).

Comparison with Other Methods
We compared some results from other literature. Moreover,
the PRED+CT dataset is less used; we reproduced some clas-
sical networks on the PRED+CT dataset. The classical net-
works including ResNet-3 (3 layers ResNet) (C. Xu et al.,
2023, 2022), ShuffleNet (X. Zhang, Zhou, Lin, & Sun, 2018),
Vision Transformer (ViT) (Dosovitskiy et al., 2020), Time-
Series DCN (S. Xu, Zhang, Huang, Wu, & Song, 2022) and
Swin Transformer (Z. Liu et al., 2021). The experimental
results are summarized in Table 2 (MODMA) and Table 3
(PRED+CT). For the MODMA dataset, our method outper-
forms SOTA methods on the accuracy, F1-Score, Kappa, and
PAM metrics by 0.93%, 1.29%, 8.09%, and 7.26%, respec-
tively. For the PRED+CT dataset, our method outperforms
SOTA methods on the accuracy, F1-Score, Kappa, and PAM
metrics by 0.51%, 7.04%, 13.92%, and 18.06%, respectively.
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Table 2: Model Results on The MODMA Dataset (%).
Method Acc F1 Kappa PAM

(Y. Wang, Liu, & Yang, 2021) 86.67 90.51 - -
(Chen, Guo, Hao, & Hong, 2022) 84.91 84.00 - -

(Chen, Hong, Guo, Hao, & Hu, 2022) 86.49 84.85 - -
(Su, Zhang, Cai, Zhang, & Li, 2023) 82.27 - - -

(Tasci et al., 2023) 83.96 81.10 - -
(W. Liu, Jia, Wang, & Ma, 2022) 89.63 90.19 - -

EEG Transformer (Qayyum et al., 2023) 72.03 62.30 - -
EEGNet (B. Liu et al., 2022) 78.46 77.91 56.00 -
SENet (Qayyum et al., 2023) 82.15 78.58 - -

DANN (Jiang et al., 2023) 85.08 84.09 - -
DAN (Wu, Ma, Lian, Cai, & Zhao, 2022) 87.40 - - -

DCANN (Jiang et al., 2023) 86.85 85.97 - -
ViT* 66.04 75.67 27.28 40.80

Swin-Transformer* 58.49 71.05 10.44 31.56
Time Series DCN* 86.79 89.23 72.66 72.82

ShuffleNet* 84.90 87.87 68.63 69.44
ResNet-3* 75.47 79.36 49.59 54.56

Ours 90.56 91.80 80.75 80.08
∆SOTA 0.93↑ 1.29↑ 8.09↑ 7.26↑

Table 3: Model Results on The PRED+CT Dataset (%).
Method Acc F1 Kappa PAM

(Z.-Y. Zhang et al., 2024) 83.17 82.93 - 65.69
(Sam et al., 2023) 96.00 - - -

(H.-G. Wang, Meng, Jin, & Hou, 2023) 90.38 89.51 79.10 74.07
ViT* 80.23 75.36 60.46 56.64

Swin-Transformer* 63.95 45.61 27.90 26.87
Time Series DCN* 68.60 63.01 37.20 39.87

ShuffleNet* 74.41 70.27 48.83 48.67
ResNet-3* 63.95 56.33 27.90 33.09

Ours 96.51 96.55 90.02 92.13
∆SOTA 0.51↑ 7.04↑ 13.92↑ 18.06↑

Ablation Study
Table 4: Ablation Study Analysis. (Black: MODMA, Blue:
PRED+CT)

Method Acc F1 Kappa PAM

Baseline 81.13&86.04 85.18&86.67 62.19&72.09 63.09&71.49
+AFL 88.67&95.34 90.32&95.23 76.82&90.69 76.48&73.11
+CA 86.79&88.37 87.71&88.89 73.44&76.74 73.11&75.80
Ours 90.56&96.51 91.80&96.55 80.75&93.02 80.08&92.13

According to existing research (Zeng, Chen, Xu, & Zhang,
2023) indicated, we conducted ablation study on the AFL-
CA model. Table 4 presents the results of ablation stud-
ies, demonstrating enhancements in the performance of MDD
detection. Integrating the AFL and CA results in the
highest performance improvements compared to the base-
line: 7.54% (MODMA, accuracy), 9.3% (PRED+CT, accu-
racy), 13.39% (MODMA, PAM), and 17.95% (PRED+CT,
PAM). Adding only the AFL improves accuracy by 7.54%
(MODMA) and 9.3% (PRED+CT), while PAM metrics rise
by 13.39% (MODMA) and 17.95% (PRED+CT) compared to
the baseline. Integrating the CA alone improves accuracy by
5.66% (MODMA) and 2.33% (PRED+CT), while increasing
PAM metrics by 10.02% (MODMA) and 4.31% (PRED+CT).
Overall, the AFL-CA model achieves a remarkable accuracy
improvement of 9.43% (MODMA) and 10.47% (PRED+CT),

along with a significant increase in PAM metrics by 19.99%
(MODMA) and 20.64% (PRED+CT).

Visualization Analysis
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Figure 3: Confusion Matrices.

Figure 3 compares the confusion matrices of the baseline
and proposed models for MODMA and PRED+CT datasets,
providing a quantitative evaluation. In MODMA, the er-
ror rate decreases from 20.83% to 16.67% in HC and from
13.39% to 3.45% in MDD. In PRED+CT, the error rate de-
creases from 18.60% to 4.65% in HC and from 9.30% to
2.33% in MDD. Notably, the PRED+CT dataset exhibits a
more significant improvement, benefiting from its larger EEG
data size. The AFL improves the model’s generalization
by learning various EEG data distributions measured using
MMD, forcing the network to learn in the direction of the
actual data. We attribute the AFL-CA model’s success to
extracting diverse EEG signal characteristics and activating
suppressed feature maps, significantly improving MDD de-
tection performance.

Different Weighting λ Coefficients Analysis for the
BD and IR
Eq. (7) shows that λ adjusts the strength of the two parts in
the CA. We establish an ablation study on the CA to assess
their impact on the final performance, as shown in Figure 4.
The results show that BD and IR on the MODMA dataset can
improve accuracy by 1.88% and 1.89%, respectively, com-
pared to the baseline networks. These findings show that the
CA performs best in the two scenarios. In this case, the CA
must train a learnable λ to acquire a tunable ratio; from this,
we can attain the best performance.
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90.56 91.8

80.75 80.08

60

70

80

90

Accuracy F1-Score Kappa PAM

Baseline +BD +IR Ours

Figure 4: The BD Part and IR Part Analysis.

EEG Single Frequency Band Analysis
Following the existing method (Qi, Xu, & Li, 2023), we con-
ducted a single-band analysis experiment, as shown in Table
5, revealing a significant impact of the Alpha and Beta fre-
quency bands on MDD detection. Using only the Beta band
on the MODMA dataset yields 88.67% accuracy and 76.59%
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Table 5: Single Frequency Band Analytical Experiment Re-
sults.

Method Acc F1 Kappa PAM

Delta 77.36&88.37 80.00&89.36 54.00&76.74 57.30&76.11
Gamma 77.35&90.69 79.99&91.30 53.97&81.39 57.34&80.41

Beta 88.67&94.18 90.00&91.30 76.98&88.37 76.59&87.01
Alpha 83.01&93.03 86.56&93.33 64.58&86.05 66.17&84.91
Theta 81.13&93.02 84.37&92.85 61.08&86.04 63.34&84.47
Ours 90.56&96.51 91.80&96.55 80.75&93.02 80.08&92.13

PAM metrics, with a slight decrease of 1.89% in accuracy and
3.49% in PAM compared to all five bands. Similarly, using
only the Beta band on the PRED+CT dataset yields 94.18%
accuracy and 87.01% PAM metrics, with a slight decrease of
2.33% in accuracy and 5.12% in PAM compared to all bands.
While acceptable, simultaneous use of all five bands is prefer-
able, emphasizing the multi-frequency band significance of
depression EEG signals.

Parameter Sensitivity Analysis
We also look into the weights of the additional loss func-
tion MMD used in the AFL. We experimented with differ-
ent weights for the loss function in Eq. (11). Table 6 shows
that the best performance occurs when α = 0.005, resulting
in 90.56% (MODMA) and 96.51% (PRED+CT). However,
performance drops sharply as the coefficient weight values α

increase. The accuracy metrics are worst when α = 50, re-
sulting in 84.9% (MODMA) and 86.04% (PRED+CT). The
observed phenomenon could be attributed to an increase in
α, in which network training forces the model to learn fea-
tures that closely resemble the data distribution of the origi-
nal signal. While the AFL can effectively capture more data
distribution features, the AFL’s encoder features and certain
original signals may be too similar, resulting in overfitting.
Table 6: Performance variation when the loss function is
weighted α differently in Eq. (11).

α Acc F1 Kappa PAM

α = 50 84.90&86.04 86.20&86.04 69.54&72.09 69.75&71.01
α = 5 86.80&83.72 88.13&83.72 73.25&67.44 73.15&66.82

α = 0.5 86.79&88.37 89.23&88.63 72.66&76.74 72.82&75.60
α = 0.05 88.67&91.86 90.00&91.56 76.98&83.72 76.59&81.96
α = 0.005 90.56&96.51 91.80&96.55 80.75&93.02 80.08&92.13

Discussion
What is the Difference among the AFL, DA, and DG
Methods?
Compared to the AFL approach, DA and DG have disadvan-
tages. The DA-based method needs source domain data to
pretrain the model. Then, the pretrained model transfers to
the target domain using the target domain data to guide the
finetune model. However, we cannot obtain patients’ EEG
data (target domain data) in actual application. Although DG-
based methods do not require target domain data, they require
the manual creation of many domain labels for each subject,
which increases the manual workload. In contrast, the AFL
improves cross-subject classification accuracy by converting

EEG signals’ data to RKHS, learning the multiple subjects’
domain invariant feature. The AFL eliminates the need for
manual domain label creation and target domain data. The re-
sults in Table 2 and Table 3 demonstrate our method’s signif-
icant improvement over DG-based approaches (Z.-Y. Zhang
et al., 2024) and DA-based approaches (Jiang et al., 2023),
emphasizing the advantage of the AFL.

Why the CA Outperforms Attentional Mechanisms
in MDD Detection Area?
Table 4 shows that the MODMA dataset, including the CA,
achieves 86.79% accuracy, surpassing the SENet and EEG
Transformer model (Qayyum et al., 2023). In SENet, accu-
racy decline is caused by the SE attention mechanism com-
pressing spatiotemporal features, resulting in a loss of tem-
poral dependence and interdependence among EEG chan-
nels. In contrast to image data, the Transformer model’s self-
attention focuses on local-global signal correlations. EEG
signals involve multiple channels and temporal points, with
changes in MDD patients occurring over contextual signal
segments rather than isolated points (C. Xu et al., 2022).
The self-attention mechanism frequently ignores significant
temporal and multi-channel correlations, resulting in lower
classification accuracy. Unlike attention mechanisms, the CA
activates feature maps via decorrelation, resulting in diverse
contributions to the MDD classification task and improved
overall network performance.

Why Can the CA Activate the Feature Channel?
The CA activates EEG feature channels through BD and IR.
Eq. (1) links suppressed channels to γc with small values. As
previous work indicates (Huang et al., 2018), decorrelation
operation boosts the re-scale factor. Hence, BD can utilize
decorrelation to activate suppressed EEG feature maps, ex-
pressed as pBD

wi j = Diag
(

Σ
− 1

2 γ

)
x̄wi j +Σ

− 1
2 β. Compared with

Eq. (1), an equivalent γ for the BD part can be defined as
γ̂ = Σ

− 1
2 γ. Due to the covariance of re-scale, it can increase

the re-scale factor magnitude (Shao et al., 2020). BD acti-
vates suppressed channels by increasing the re-scale factor
magnitude. We match the IR’s output magnitude to BD’s, en-
suring activation of every EEG signal image and establishing
channel dependencies. The combined BD and IR enhance
EEG feature maps’ representation ability, thereby increasing
MDD detection in the downstream network.

Conclusions
This paper proposes the AFL-CA model for MDD detection,
which combines the AFL and CA. The AFL employs ker-
nel embedding to learn domain-invariant features in RKHS,
which solves the MDD detection model’s poor generalization
ability problem. The CA reactivates suppressed EEG fea-
ture maps to ensure that they all contribute to representation,
which increases the MDD detection model’s representation
ability. Ablation studies on two MDD datasets demonstrate
the effectiveness of the AFL and CA. Comparison experi-
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ments confirm the AFL-CA model’s superiority. These ad-
vantages address poor MDD detection model generalization
and classification performance, which bodes well for future
research.
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