UC Irvine
ICS Technical Reports

Title
Collaborative Refinery : a collaborative information workspace for the World Wide Web

Permalink
https://escholarship.org/uc/item/7699b2sm|

Authors

McDonald, David W.
Ackerman, Mark S.

Publication Date
1997-01-27

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/7699b2sm
https://escholarship.org
http://www.cdlib.org/

c3
Collaborative Refinery: A Collaborative Information e 77~ %2
Workspace for the World Wide Web

Technical Report 97-03 Notice: This Material

may be pr
David W. McDonald y De protected

Mark S. Ackerman by Copy I ' th LaW

Department of Information and Computer Science (Tlﬂe 17 USC)
University of California, Irvine '

The conceptual framework of a new system, Collaborative Refinery, is motivated
by a scenario involving the creation of an FAQ. The scenario introduces the con-
cepts of collecting, culling, organizing and distilling. Distilling is a specialized
form of collaborative authoring with support for content selection and genre. The
Web-based user interface supporting access to the four conceptual functions is
presened in detail. As well, the system architecture and a current implementation
are described in detail. Several research directions are discussed with respect to
Collaborative Refinery. Collaborative Refinery is related to prior research in per-
sonal information management, collaborative authoring, and shared workspaces.

A common problem with large information sources, like the World Wide Web (WWW),
Usenet news, or even a group memory system, is the difficulty of find useful informa-
tion. The sheer volume of information prevents a novice from differentiating between
the genuinely useful or interesting items and other less useful information. Summaries,
abstracts and hot lists provide a novice instant entry points in a new topic area. The nov-
ice information seeker simply looks for these specific entry points like a Frequently
Asked Questions (FAQ), a discussion list digest, or a Web hot list.

FAQs, digests and hot lists ease the burden on the information seeker. The burden is
shifted to the FAQ or hot list creator. The burden of collecting information sources, orga-
nizing items from those sources into coherent topics, and creating a digest often falls on
one interested individual or some local expert.

The Collaborative Refinery attempts to leverage the collaborative and incremental effort
of many participants to create shareable information repositories. The creation of digests,
abstracts, indexes, and FAQs represent a significantly different type of collaborative
writing that should be studied.

The Collaborative Refinery relies on the World Wide Web and the user’s local Web
browser to present a shared workspace. The workspace allows collaborative browsing,
searching, and modification by each user. Other systems attempt to support effective
information sharing through automatic text processing techniques or artificially intelli-
gent agents. Collaborative Refinery is an alternative approach that relies on existing
human behaviors in collaboration.

Collaborative Refinery January 27, 1997 1

The following discussion of Collaborative Refinery is motivated by a stylized collabora-
tion scenario. The creation of an FAQ by a group of geographically distributed collabora-
tors is the scenario. We consider FAQ creation to be a sophisticated set of independent,
interrelated, iterative behaviors. These behaviors are too complex to capture in any static
process description. The stylized scenario is a blatantly linearized process of FAQ cre-
ation to simplify the discussion. The Collaborative Refinery does not enforce nor require
any static process model.

1. Collaborative Refinery Concepts

The Collaborative Refinery supports four generalized behaviors to effectively aid infor-
mation pointing and seeking. The behaviors supported are collecting, culling, organiz-
ing, and distilling.

Consider the following scenario: You wish to create an FAQ of a news group along with
some collaborators. The process of FAQ creation requires iterative modifications and
refinement of approximate solutions to several related problems. For the sake of simplic-
ity consider a stylized, linear process in which you and your collaborators solve the fol-
lowing:)

 How do you gather and share the large quantity of information from which you will
derive the FAQ?

» How do you categorize and organize all of the information in a way that is useful for
creators and to later, subsequent, users of the FAQ?

» How do you decide what information belong “in” the FAQ and what will be left out?

» How do you abstract or digest the original sources to effectively present the FAQ con-
tents?

The first problem in this scenario is the creation of an archive that the collaborators can
share. This archive may consist of articles extracted from some existing archive as well as
current, up-to-the-minute postings to the news group.

In Collaborative Refinery the creation of a shared archive is called collecting. Collecting
gathers information to form an underlying repository. The process of collecting can vary
based on the source and type of information as well as the intended use.

Collaborative Refinery supports several methods of collecting. Automated collecting is
useful for certain information streams, like Usenet news or distribution lists. These
streams can be selectively sampled through simple filtering techniques or they can be
completely archived. Manual collecting strategies allow individual items to be submit-
ted on a case-by-case basis. Manual collection happens through the system directly or
through electronic mail. In this paper we call the result of collecting a collection or an
archive.

Collecting an archive is an important part of the FAQ creation process. The next problem
is organizing the content into manageable and coherent themes. You and your collabora-

Collaborative Refinery January 27, 1997 2

tors would use the archive to identify recurring themes. Identifying key themes is one
behavior that organizes the collaborators as well as the archive content and the resultant
FAQ. Often some organizing effort is spent finding equitable workloads for each of the
collaborators.

Identifying important themes and dividing the workload is not enough. Each item in the
archive is evaluated in at least two ways. First, an item is evaluated to identify what
theme or themes it contains. This evaluation groups relevant items together. An item that
expresses two distinct themes might belong in two different groups. Second, the item is
evaluated based on the significance of its content. The second evaluation is a judgement
of the item relative to the other items with the same theme. The most significant items
are included in the emerging FAQ. You and your collaborators might try to efficiently
combine these two activities. You might try to identify themes and the significant exam-
ples of those themes in one fell swoop.

The Collaborative Refinery supports these two closely tied behaviors, organizing and
culling. Culling identifies the most significant exemplars in an emerging collection, for
example, a question, a clear set of instructions, portions of a discussion, or an answer.
Another common example of culling takes the form of a best-of or alternatively worst-of
list. Culling, therefore, is a selection mechanism in which people identify or highlight
items contained in a broad-based collection. Items can be loosely culled to group them in
a general classification scheme or tightly culled to represent well focused themes.

Identifying recurrent themes in a repository and linking items from the repository to
these themes is organizing. There are many possible ways of organizing the content of
any repository. For example, libraries commonly present organized projections of their
content around subject, author, and title. Other common organizing schemes exist, such
as organizing by date, frequency of use, or by priority. Organizing enhances the retriev-
ability of sets of items in the repository by allowing information seekers to retrieve items
using some established criteria. The combination of organizing and culling serves to
enhance the retrievability of particularly interesting contents from the repository.

The last general problem in FAQ creation requires abstracting or digesting the culled and
organized contents. You and your collaborators create synopses of the subtopics or
threads from the news group. In the FAQ scenario, you would identify questions which
are asked most often, pairing each question with a clearly worded answer. Often the
question and answer is contained in a collection of posts. These posts must be carefully
edited to form a fluid and coherent question and answer pair. The resulting question and
answer pair will become part of the emerging FAQ.

In Collaborative Refinery editing or creating a summary, synopsis, or a set of pointers
that are specific to a small portion of an organization (culled and saved subset), is known
as distilling. The result of distilling is called a distillate. The terms distilling and distillate
were chosen to convey the idea that the new document contains a more concentrated or
concise form of the original information. These synopses are strongly related to the orig-
inal information from which they are derived, often using excerpts, citing the original
contributor and in some cases identifying the original source.

Collaborative Refinery January 27, 1997 3

The FAQ creation scenario suggests support for four behaviors; collecting, culling, orga-
nizing, and distilling. The identification of distilling as a unique behavior represents an
interesting conceptual contribution. Distilling can be considered from several points of
view. The following section considers some distilling issues in depth.

2. Distilling: Types, Scope and Behavior

Distilling and the resulting distillates are interesting concepts that raise a number of
questions.

* How does distilling compare to other forms of authoring?
» What is the range of distillate genres?
» How to identify the contenits of a distillate?

» What are some important social components of distilling?

Each of these questions provides a different perspective from which to consider distilling
and distillates. The following sections consider distillate authoring, distillate types, dis-
tilling scope, and social perspectives of distilling.

2.1 Distilling as Authoring

The previous sections describe distilling it in terms of editing, abstracting and digesting.
As these descriptions imply distilling is a form of authoring. Distilling is a form of edit-
ing and the need to add, modify, and manipulate texts make it similar to many prior
authoring systems. These prior systems often focus on supporting collaboration
designed to generate original and unique texts.

Distilling recognizes the many types of editing that result in derivative works, such as
digests, abstracts, or synopses. The requirements for supporting distilling are different
than those for general collaborative writing. Commonly, derivative works identify their
sources and recognize prior authorship more directly. Supporting the collaborative cre-
ation of derivative works focuses effort on the effective management of the original
sources. Additionally, distilling may have more clearly defined types. The next section
considers distillate types and how they may be supported by an authoring system.

2.2 Distillate Types

Distilling, like other writing forms, has distinct genres. We call these distillate genres
types or distillate types. A general purpose collaborative authoring system may have diffi-
culty supporting distinct genres. In contrast, distilling and distillate types may lend
themselves to automated or assisted processing of the raw content.

Part of this work explores distinct distillate types and how those types can be supported.
The types are loosely classified in two broad categories, computer assisted and semi-auto-
mated types. The computer assisted category encompasses types that require a large

Collaborative Refinery January 27, 1997 4

amount of user editing and attention. Computer assisted types require a user to maintain
the consistency and coherence of the distillate relative to changes in the sources from
which the distillate was derived. The semi-automated types also require human inter-
vention on their initial creation, but are maintained by the system for a period of time.
The next sections consider specific examples of computer assisted and semi-automated
distillate types.

2.2.1 Computer Assisted Types

Certain distillate types are tightly tied to the context in which they are distilled. Shifting

context require subsequent changes in the distillate. Computing systems have difficulty

detecting subtle shifts in context. One solution is to support distillate types that assist the
user in the maintenance task, but that ultimately leave the user in control of the informa-
tion content. Some distillate types that fall in this category include:

» Synopsis - Synopses are extended outlines of a discussion. A synopsis tries to effec-
tively present, in a very short space, the essence of a point and counter-point discus-
sion that may have no fixed resolution. Users who want more information than the
distillate provides can always refer to the original messages from which the distillate
was derived. :

* Q&A - This type pairs specific questions with succinct answers. This type is most sim-
ilar to many of the FAQs currently available.

» Tutorial - Tutorials have an instructional characteristic. In many cases tutorials will
include a list of instructions or steps for a user to try. Tutorials often require merging a
nearly correct prior tutorial with modifications or subtle changes to those steps.

» Narrative — Narratives tell a particular story relative to some set of distilled sources.
The content of the narrative may not be based on any one of the original content
items. This type may be more similar to an annotation that applies to the whole group
of content items, rather than to individual items.

This is not a complete list of all computer assisted types. Ongoing research with Collabo-
rative Refinery may identify types that are distinct from these and that have potential for
computer assistance.

2.2.2 Semi-Automated Types

The semi-automated types differ from computer assisted types in the amount of process-
ing that can be easily done to create a distillate. The semi-automated types allow for
more of the work to be done by the distilling method. Users are still involved and they
will still need to edit and maintain the content, but semi-automated types provide more
specific assistance in the creation and maintenance of the distillate. The semi-automated
types have been broken into two general categories called pre-processed and temporally
processed. The categories are distinguished based on when the majority of the automated
processing occurs.

Collaborative Refinery January 27, 1997 5

Pre-processed types perform the majority of their processing before the user sees the
rough distillate. These types have very specific forms which could be maintained by the
system over some short period of time and over some reasonable number of additions.
Examples of the pre-processed types include:

« Table Of Contents — A table of contents lists major topical ideas and concepts ordered
in some meaningful way with references to specific groups of sources. An example of
a table of contents distillate is one that simply points to other topically organized dis-
tillates.

* Glossary — A glossary presents key terms paired with their definitions in a succinct
form with direct references to the source texts from which the definition was taken.
This type is relative to a specific set of sources from which the distillate was derived.

* Index — An index is a list of key terms with references to the places where the term is
used. This is relative to the specific sources from which this distillate was derived.

These examples are motivated by specific forms of automated text processing, but there
may be other types that fit into this category. In these examples, the initial processing of
the distillate could be extensive. The subsequent addition of source material requires an
incremental update to the distillate that could be automatic. This update might not fit the
exact intentions of the user, but is close enough that several additions do not destroy the
coherence of the distillate. Eventually, after some number of additions the distillate
needs some attention from a user for editing and maintenance.

On the other hand, temporally processed distillates only make sense in the context of
system activity and the passage of time. That is, a temporally processed distillate must
be processed and maintained in the context of the passage of time. Two examples of tem-
porally processed distillate types include:

* Short Term Interest — There are many kinds of information that are only interesting for
a short period of time. For example, most event announcements are only interesting
for some small period of time before the event actually happens. Alternatively, an item
that is listed ‘for sale’ is of interest for some short period of time, when either the item
is sold or the seller ceases his attempt to sell it. A temporally based distillate could be
set to watch for simple key words or dates, and if given the chance to execute at vari-
ous intervals, maintained. Short term interest distillates have the characteristic that
the source content, the announcement or the “for sale’ posting, could be removed from
the archive once their time had passed.

* Frequently Accessed Questions — These types of distillates stem from the recognition
that parts of a collection may be very active and other parts less active at any one time.
It may be desirable to highlight either the least active or most active items. This type
of distillate requires the system keep general purpose statistics over time. A user
would set up the type of access behavior he wants to highlight and the system then
maintains the distillate on the users behalf. One watching a distillate like this over
time would see references to other distillates and other parts of a collection added and
then removed as the activity changed. In contrast to short term interest type distil-

lates, the source content behind frequently accessed questions would never be
deleted.

Collaborative Refinery January 27, 1997 6

2.3 Distilling Scope

Distillate creation includes two related problems. The first problem is that of determin-
ing the sources from which the distillate will be derived. This is a problem that the distil-
late author must resolve. In a hierarchy that is a mixture of potential sources of many
different kinds, including other distillates, the distillate author needs an effective way to
identify several sources from the many in the current hierarchy.

After the distillate has been created a similar problem exists from the reader’s point of
view. How does the reader of a distillate distinguish the sources from the many items in
the distilled hierarchy? When a distillate is confusing, readers may require the sources to
reconstruct necessary context surrounding that distillate. Additionally, readers need
sources and authorship information to make quality judgements about the information
contained in a distillate. ~—

In Collaborative Refinery, culling and organizing are used to group a subset of items
from a collection. Distillates are derived from a specific subset which is known at the
time of distilling. Through this method, the distillate and the specific sources of the dis-
tillate are linked. This method requires the distillate author to select sources prior to dis-
tilling and allows the reader to know which sources contributed to a given distillate. This
solution is limited; however a general solution for distillate scope remains a difficult and
open problem.

In summary, this paper has suggested four conceptual features of Collaborative Refinery,
collecting, culling, organizing, and distilling. Additionally, we have considered distilling
and distillates in detail. Before describing how the architecture and detailed implementa-
tion supports these features, let us first consider how users see and access these features.

3. Using Collaborative Refinery

Collaborative Refinery was built to test our ideas about information refining and shar-
ing. This implementation supports each of the four activities, collecting, organizing, cull-
ing and distilling with a shared workspace. Collaborative Refinery allows users to
browse various representations of an information space, create new organizations, per-
form searches, and generate distillates. The user interface consists of a series of views or
pages presented by a Web browser. Each view consists of a persistent button bar and a
main view. The button bar displays functions which are available to the user at any time,
while the main view presents forms, views, and controls that are specific to the current
user activity.

HTML and the Web are far from an ideal interface for Collaborative Refinery. This appli-
cation, like others which rely on the Web, can seem cumbersome and awkward. This
awkwardness is a function of trying to implement the user interface as close to the basic
Web standards as possible. We have storyboarded alternative interface options that may
be utilized in subsequent versions of Collaborative Refinery, but that were not possible
with the Web and HTML at the time of implementation.

Collaborative Refinery January 27, 1997 7

The following sections briefly describe each of the main views and the functionality that
is accessed through each view. Each view addresses some aspect of the FAQ creation sce-
nario described above. Briefly, in the FAQ creation scenario you and a small group of
friends are trying to create a FAQ based on a news group. The scenario suggests four
basic activities necessary to create the FAQ.

1. Collecting - generating an archive of the news group that can be used as the raw mate-
rial for the FAQ.

2. Organizing - determining the key themes present in the news group and grouping the
items in the archive according to the themes.

3. Culling - identifying the most significant items from a given theme as most represen-
tative.

4. Distilling - creating a concise document based on the culled items for each topic.

The sections below describe how Collaborative Refinery supports these activities. For
simplicity, the descriptions assume that a single user is attempting to access the specific
functionality. The following sections contain figures which are screens from the working
prototype. The content present in these figures is from a departmental bulletin board.

3.1 Browse View

Consider the basic problem of our user attempting to read some portion of the develop-
ing FAQ or some article from the news collection. The browse view supports the most
basic functions of browsing collections, reading collection contents, and reading distil-
lates.

When first entering Collaborative Refinery, the user starts in the browse view. Browse
presents a hierarchical outline view based on the topics created by the various collabora-
tors and items that have been added to the topics. Browse presents organized subsets of
the collection. Browse facilitates collection management, distillate creation, and mainte-
nance.

Figure 3-1 provides a sample browse view of a local bulletin board archive. In the figure,
browse presents the user an outline of a hierarchical set of topics, contents and distillates.
Topics that have either sub-topics or content below them are indicated with an expan-
sion triangle preceding the node label. Clicking the expansion triangle expands the dis-
play to show all the existing items below the topic. If a topic has been previously
expanded, clicking the expansion triangle will contract the display to hide all items
below that topic.

Distillates are represented by a small document icon to the left of a topic item. Clicking
on the distillate icon fetches the distillate and presents the text of the distillate in the
browser.

Collaborative Refinery January 27, 1997 8

Text labels represent either topics or content items in the current collection. Content
items are indicated by underlining the text; topic labels are not underlined. Clicking on a
content item text label fetches the item from the collection and displays it in the browser.

The browse view provides access to individual distillates and the contents of the collec-
tion. However, simple browsing is often not sufficient for a user to find any single item.
Hierarchies with many topics and deep subclassifications can bewilder users and result
in items that are lost in the classification scheme. The desire to provide information to
help a user stay oriented in the organizational scheme results in the collection overview.

 CORPS Chronologically
W Shared Workspace
W Dave's View
3 CORPg Debates
W Interviewing Tidbits
Job Interviews
Re: Job Interviews
1w New Building Rumors

-

P Apple Computer Rumors And Musings

D Calls for Pepers

Figure 3-1 Browse view

3.2 Collection Overview

Hierarchically organized views can result in several problems when used collabora-
tively. One specific problem is knowing where in the hierarchy an item is located. Collab-
orators may attribute different meanings or different intent for the same portion of the
hierarchy. The basic solution is to clearly communicate the intent of a given hierarchy to
each collaborator. Formal organization schemes clearly communicate intent at the
expense of flexibility.

Collaborative Refinery attempts to support flexible hierarchical views by providing a

mechanism for communicating the intent of a given part of the hierarchy. The collection
overview assists users by displaying the overall hierarchical organization along with the
stated intent of the creator. With this view a user can quickly see the potential location of

Collaborative Refinery January 27, 1997 9

an item. Additionally, this view provides clues for a user who desires to add to the grow-
ing hierarchical scheme. An example of the collection overview is provided in Figure 3-2.

The collection overview is accessed through the overview button in the button bar. This
view displays a hierarchically organized list of the topics and descriptions of those top-
ics. The topics, their hierarchical location, and descriptions are supplied by the users
when creating a new topic, as described below.

CORPS Chronologically

November 1995
December 1995
January 1996
February 1996

Shared Workspace
This is the shared workspace where anyone can make changes, add node, collect or
distill children. Have atit
Dave's View
This is the view that Dave McDonald maintains. You might want to browse and
see how some things are arranged.
CORPS Debates
This is a collecton of some debates that show up on the bboard
Internet Connections
This collects all of the discussion about the number of Internet
connections... How fast is this thing really growing?
Interviewing Tidbits
Suggestions and tdbits that have appeared on the board thanks to
current/prior grad students.
New Building Rumors
This is a collecton of topics related to the *New Building” Some of these

Figure 3-2 Collection overview

3.3 New Hierarchy Topics

In the FAQ creation scenario the collaborators identify recurrent themes or topics in the
archive. These topics are used to organize the individual messages as well as the result-
ant FAQ content. Collaborative Refinery provides a means for users to create new hierar-
chically organized topics.

The new topic button allows users to create new organizing topics. The user is presented
a form that has space for the new topic label and space for a description of the topic area.
Users pick the location of the new topic in the current hierarchy through a choice hierar-
chy. Figure 3-3 is a sample of the new topic form.

The choice hierarchy presents the user a hierarchically organized list of current topics
with a radio style button immediately to the left of each item. An example of a choice
hierarchy is provided in Figure 3-4. The choice hierarchy represents an awkward, but

Collaborative Refinery January 27, 1997 10

workable, solution to the problem of specifying item placement using HTML forms. The
current choice hierarchy is a complete hierarchical layout of all of the topics in the cur-
rent collection.

When the form is submitted the new topic is created. The new topic and the description
supplied in the form will show up in the collection overview described above. Addition-
ally, the new topic will show up in the browse view as an empty topic, with no content
below it.

After identifying recurrent themes in the content, the collaborators in the FAQ scenario
decide which of the content items are significant and should therefore be included in the
FAQ. In Collaborative Refinery, as in the scenario, users must specify which items from
the collection belong in any given topic area. Adding content items to previously created
topic is called culling and is discussed below.

Select where in the current hierarchy this new topic should be added. If no area is
selected from this list the new topic will be added at the top level.
4 test_dbs/corps. months
< CORPS Chronologically
€ November 1995
€ December 1995

Figure 3-3 New topic view

Collaborative Refinery January 27, 1997 11

s Shared Workspace
v Dave's View
+ CORPS Debates
« Intemet Connections
v Interviewing Tidbits
& New Building Rumors
+ Apple Computer Rumors And Musings
< Calls for Papers
< Jokes That CORPS Debates

v Netscape Trivia

Figure 3-4 Choice hierarchy extracted from a dialog

3.4 Indexed Term Searching

Consider this simple problem: a user wants to find a specific item which is part of the
collection, but which is not part of any browse view. In Collaborative Refinery the
browse view displays a hierarchy of topics that includes distillates as well as culled and
organized content items. The problem here is to provide users access to collection items
which have not yet been culled and organized. A solution to this problem is to provide
an alternative to the browse view, term searching.

Searching provides access to all of the items in a collection. Searching allows the user to
enter between one and three terms with and /or conjunctions. The system then performs
a term search through a system maintained term index. A sample of the indexed term
search form is provided in Figure 3-5. The term index includes all of the content items in
the collection, whether or not they are displayed in the browse view.

Items matching the supplied criteria are returned in an unordered list. Ordering the
results through relevance measures and feedback is possible. Successful searches pro-
vide the user a list of content items as underlined text and topic nodes as plain text. Con-
tent items can be viewed by clicking the underlined text, like viewing content when
browsing. Figure 3-6 shows an example of a successful term search with content items
underlined.

A term search that provides access to all of the items of a collection leads to a simple
solution to another problem. In the FAQ scenario, the collaborators must decide which
items are significant enough to add to the current topics. The term search feature allows
a Collaborative Refinery user to identify items with similar content and subsequently
cull those items.

Collaborative Refinery January 27, 1997 12

3.5 Culling and Categorizing

Culling is the identification of significant exemplars of a topic in the collection. Culling
separates content items which should be included in the emergent organization from
those that will be excluded. Users cull the archive contents through the search capabili-
ties of the system. In Figure 3-6 the items that were returned by the search include check-
boxes. The user marks an item as culled by clicking on the checkbox and then clicking
the group button near the bottom of the page. This creates a culled subset of the current
archive.

The culled subset is added to the topic hierarchy as children of some previously created
topic node. The user is given a form that includes a choice hierarchy, like Figure 3-4, to
indicate where the culled subset should be placed. Figure 3-7 provides an example of
adding children using a chotee hierarchy very similar to that used to add new topics.

Query Subject Index
. ics.corps

Enter a list of one or more keywords for the search:

Click | to view the results.

Please be patient. A query can take some time fo complete.
L BT TR T R T ¢ -

Figure 3-5 Term searching

Collaborative Refinery January 27, 1997 13

Results
Database: test_dbs/corps.months !

M CORES email in CACM ,
M Re: CORPS email in CACM |

To collect checked children [Collect] i

The following nodes have been marked for keeping:

Select where in the current hierarchy these children should be added. [f no area is
selected from this list the child nodes will be added at the top level.

4 test_dbs/corps. months
< CORPS Chronologically
< November 1995
£ December 1995
© January 1996
& February 1996
<) Shared Workspace
© Deave's View
) CORPS Debates

Figure 3-7 Placing a group

Collaborative Refinery January 27, 1997

3.6 Distilling

The last major feature shown by the FAQ scenario is the creation or modification of a dis-
tillate. Collaborative Refinery currently supports a straight-forward version of distilling.
The user creates a distillate by specifying both the content and resulting type of the new
distillate. The content of a distillate is based on the content of a user selected topic node.

A user creates a distillate by clicking the distill button in the button bar. The user is pre-
sented a choice hierarchy and selects a node. The contents of the new distillate will be
taken from the content immediately below this node and the resulting distillate will be
attached to this node. Figure 3-8 is an example of the distill topic page.

With a selected topic node, there are several ways in which the content may be handled.
Consider the general problem of maintaining an existing distillate. An author may
update a distillate in different ways. The author may want to simply edit the distillate.
Alternatively, the distillate author may want to add content based on recently archived
and culled items. Another possibility is that the author may want to ignore the current
distillate and start with all of the culled items in the selected topic node.

Accordingly, Collaborative Refinery supports four ways of selecting the culled content
when distilling a topic node.

1. Use only new items - This option allows the distillate author to select items which are
new to this topic node. In this context “new” means all of the culled content in the
selected topic that was added after the last distilling.

2. Use both new and old items - This option specifies that all of the culled items under
the currently selected topic be used for this distilling.

3. Use only the old items - This option allows the distillate author to include only the
items that were available at the time of the last distilling. In this case the culled content
items that were added since the last distilling are ignored.

4. Use none of the items - This provides a mechanism for simply ignoring all of the
culled content. This is useful when the distillate author wants to edit the current distil-
late without adding any of the culled items.

These four options provide a simple mechanism for creating and maintaining distillates
based on a specific topic node. In Collaborative Refinery, the mechanism for creating and
updating a distillate are the same. First, the user must specify one of four options for the
content under the selected topic node. The user must also specify wether the old distil-
late should be used as a basis for the new distillate. Lastly, the user selects a distillate
type for the new rough distillate.

Distillate types are specified by picking a catalyst that will generate a specific rough dis-
tillate type. A catalyst is a Tcl script which produces a rough distillate that fits the combi-
nation of criteria supplied by the user. Catalysts are a simple mechanism that can extend
the range of distillate types currently supported by Collaborative Refinery. Catalysts are
covered in more detail below.

Collaborative Refinery January 27, 1997 15

After a catalyst has run, Collaborative Refinery generates a form based on the rough dis-
tillate that the user will edit. An example rough distillate is provided in Figure 3-9. When
the user is finished editing the distillate he submits the result and the system adds the

new distillate to the proper node.

% None of the ftems

I7 Include current distillate

| .
Which topic area which you would like to distil:
£ CORPS Chronclogically

& November 1995
« December 1995

Figure 3-8 Distill a topic

Collaborative Refinery January 27, 1997 16

Figure 3-9 Rough distillate

3.7 Summary

A Collaborative Refinery user interacts with the system using five views — Browse,
Overview, New Topic, Search, and Distill Topic. The Browse view allows the user to nav-
igate the topic hierarchy, read distillates, and read culled content. The Overview allows
the user to see the complete hierarchy as well as the topic information for each topic
node. The New Topic view allows a user to create a topic node and place it in the hierar-
chy. The Search view allows a user to find content items that have not been placed into a
hierarchy. Additionally, the Search view supports the selection of items and their place-
ment into the hierarchy. The Distill Topic view allows the user to create or update a dis-
tillate with respect to a topic node. Through these five views Collaborative Refinery
supports the refining process; collecting, organizing, culling and distilling.

The next section describes the system architecture and the implementation details that
support each of the user views.

4. System Implementation

Collaborative Refinery is composed of three process components and four data compo-
nents. The process components include:

Collaborative Refinery January 27, 1997 17

CGI Entry & Action Interpretation — This translates user actions into system activity.
This component receives mouse clicks and form submissions from the local HTTP
server and calls the database and presentation backend to generate a response.

Database Operations — This process reads and writes nodes to a database, handles
database queries, and manipulates the archive.

Presentation Backend — This generates output for a browser by incorporating presen-
tation specific markup into database query results.

The data components consist of:

Archive — These are the items that will comprise a collection, stored as individual
items in the file system. These could include email, news, topic descriptions, distillates
or any other type of content item representable by the database and presentation back-
end.

Database — A data store of abstracted information about each of the content items in
the archive and the relations among the archive items.

Intermediary Representation — A temporary representation of query results that the
Presentation Backend can translate and markup in a single pass.

Integrated Markup & Data — A temporary file which can be sent directly to the target
viewer.

Figure 4-1 provides an overview of the system architecture and how the components
interact. In the figure process components are denoted by circles and data components
by rectangles. Arrows from one process to another represent a calling relation. Arrows
between data components and processes represent a read or write relation. The grayed
portions of the diagram represent items external to the system upon which the system
relies.

Collaborative Refinery January 27, 1997 18

Browser Archive in the file system
-_—

— 5 L
T Presentation) /system/news
Backend s > /distillates
/descriptions
—ﬂ (/catalysts
A /templates
Integrated Intermediary /extensions
x| | Markup & Data Representation
o
£
=
Database Abstraction
p System User
User e -
Action II II

Figure 3-1 System architectural diagram

The archive, database and temporary components are stored in the file system of the
server. A Common Gateway Interface (CGI) entry routine handles all of the user actions
for the system. Depending upon the user action a database query is passed to the data-
base process which generates an intermediary result. The entry routine then calls the
presentation backend process to generate an appropriate response to the user. The user
interface, as currently generated by the presentation backend, uses HTML 3.0 and
browser extensions supported by Netscape Navigator 2.0 and several other browsers.

The sections that follow cover the architecture in detail. The first section discusses how
the architecture supports a separation of concerns. The following sections cover the indi-
vidual architectural components in turn.

4.1 A Separation of Concerns

The underlying system was designed to solve two issues while maintaining a shared
workspace. First, the architecture separates the logical and physical structuring of the
collections from their presentation. This separation allows simpler maintenance of com-
plex relationships with the option of presenting subsets or slices of those structures as
separate, presentable views.

By separating the presentation from the storage, Collaborative Refinery gains speed in
manipulation of the data as well as flexibility in generating views of the data. This sepa-
ration is maintained by combining an archive with a database abstraction. The database
stores complex relationships as well as abstract presentation data to facilitate queries
resulting in a low cost view. The archive allows queries requiring detail not maintained
in the logical database abstraction. Users can satisfy detailed queries at higher cost by

Collaborative Refinery January 27, 1997 19

e N s

following references to the archive items. Likewise, users can manipulate structural rela-
tions among collection items through database queries and modifications of database
references rather than relying on manipulation of the archive items themselves.

Second, the architecture separates the presentation from the interaction model. The cur-
rent version of the system provides a Web-based presentation with a Web-based interac-
tion model. However, the system is not tied to the Web or its interaction model.
(Presentation is how the results of a query are viewed by the user. The interaction model
combines the way a remote browser displays the marked-up data and communicates the
user interaction back to the system.) Currently, the implementation relies on HTML
markup for presentation and it attempts to structure the presentation as specifically as
possible. Collaborative Refinery’s interaction model assumes a browser that supports
form transactions and ‘single click’ actions? that are returned to Collaborative Refinery
as HTTP requests. Community Refinery’s architecture allows the presentation backend
to be modified to support other presentation schemes such as text only or a system spe-
cific markup. The action interpretation routines that are part of the CGI Entry module
could be easily replaced to present a command driven interface or a more sophisticated
direct manipulation interface.

4.2 The Archive

The archive consists of semi-structured text messages such as news, email, or HTML
pages. Items in the archive are stored as individual files in the file system. Additions to
the archive happen either automatically, as in the case of the current Usenet news
archiver, through direct user action (they run the programs that add items), or through
interaction with the system interface. Currently, Collaborative Refinery includes a sam-
ple Usenet news archiver that automatically archives news groups and creates appropri-
ate database changes.

Simply adding a file is not enough for the system to recognize a new content item. A rep-
resentation of the new item must be added to a system database. The database, described
below, must contain additional information for each item that will be represented by the
system.

There are no logical restrictions on the types of items that can be placed in the archive.
However, some types might require additional meta data to be effectively manipulated
(e.g. audio, video). Additionally, some new types will require more sophisticated cata-

1. Current browsers have a very limited interaction model. Every user intention is encapsulated into some
all encompassing ‘click’ of a mouse. This results from the original HTTP protocol and the way servers
are extended through CGL HTTP was intended to be a very simple protocol implementing a basic
“GET” and “PUT"” activity on some server. The implementation of this type of protocol in a user client
only requires that the user indicate a single intention. Users only need to indicate that they want to get
some remote item. The CGI extension mechanism is a hack on the “GET” HTTP request that allows
some specified code to be executed. The result is that many user activities are forced into the single click

paradigm.

Collaborative Refinery January 27, 1997 20

lysts in order to create effective distillates. Adding new types requires modifying both
the database and presentation backend code to recognize and present the new type.

The archive simply and effectively stores all of the content for Collaborative Refinery.
However, as the previous section discussed, a means of separating the content data from
the content structural relations must be provided. This separation is facilitated by a data-
base which maintains the structural relationships. The next section covers the database
content and the operations that are allowed on that content.

4.3 The Database

The database or several databases provide the logical connection between the objects in
the archive and their presentation by the system. The database abstracts every archive
object into a node. Every Collaborative Refinery node has type and relationship informa-
tion that allow different queries to generate various projections. These projections are
displayed to the user after the presentation backend reads and inserts markup into the
query results.

4.3.1 The Database Structure .

A database is central to presenting and retrieving items in the archive. As described
above, each item added to the archive must also have a representation node added to
some system or user database. A database node stores a number of attributes about the
item that it represents. Some of the attributes stored for each node include:

» Creator — The creator of the node, which may be different from the creator of the item
which the node abstracts.

« Creation and modification dates — The date which the node was created and the most
recent date at which the node was modified.

* Text label — A label that can be used to represent the item. This might be the subject
line of a mail message or the title of a report.

» Type — The system specific node type. Some node types are system specific represent-
ing logical relations among other nodes, aliases to other nodes and other maintenance
types. Other node types represent the types of items in the archive such as news, mail,
url, or distillates.

* Action — This is a key to describe how the system should retrieve the item when the
user requests it.

* Physical location — This is the physical location of the item in the host file system.

 Tagnode references — These are references to nodes in the current database which are
attached in some permanent way to this node. Items like topic descriptions and distil-
lates are tag references.

e Number of children — The number of child node references that this node has col-
lected.

Collaborative Refinery January 27, 1997 21

« List of child node references — This is a list of nodes that have been collected under
the current node. These references point to specific nodes in specific databases. These
are different than tag references above, in that these allow node references from data-
bases other than the current one.

These attributes provide enough information to construct, or reconstruct, any of the
views supported by the system. Collaborative Refinery generates a view by tracing
appropriate node references and making node relationships explicit for the presentation
backend. The presentation backend can then generate a view given the display and inter-
action constraints. The presentation backend is discussed below in more detail.

Reference attributes provide the means of representing and modifying the organiza-
tional scheme. Tag and child references point to other nodes in the same or in other data-
bases. References, like aliases, are small compared to the overall node data. This
reference structure provides a highly flexible means of linking and structuring the vari-
ous nodes in an organizational scheme.

The structuring and representation of the database are important, but the data must also
be manipulated and modified for any useful application. The next section covers the
access and modification operations that are supported by this database.

4.3.2 The Database Operations

The database is accessed through CGI helper applications. Currently, these applications
provide two classes of operations on the database, query and modify. There are four
types of queries that these applications can perform:

* query list - Given the current user state, the action just performed by the user, and the
item on which that action was performed, this query returns a list of all types of nodes
and their display relationships.

* query display - Given a user action and an action item, this query retrieves the item
from the archive and displays it for the user.

* query topic - Given a user action, this returns a list of just topic nodes and their dis-
play relationships. This is very similar to the query list, however that query does not
differentiate between topic nodes and other nodes.

* query term_index - Given a list of terms and a set of conjunctive or disjunctive rela-
tionships among them, this query returns a list of nodes that contain terms that satisfy
the term list and its relationships. The results of this query are scheme independent,
because a node may exist in zero or many organizations at the same time.

Queries are performed in the context of a single database, but the relationships built by
the organization scheme may require access to other databases and archives that the sys-
tem maintains.

Collaborative Refinery January 27, 1997 22

The CGI helper applications also support two general modification operations. Modifi-
cation is used here in the most general sense of adding or modifying a database or nodes
in a database. The two basic modifications are:

« add topic - Given a new topic name, description, and location in the current organiza-
tional scheme, this operation adds a new node to the database. If the new node is at
the root level of an organization scheme then the node is simply added to the data-
base. However, if the node is added somewhere within a hierarchy the node is added
and the appropriate parent node is updated.

* add child - Given a list of new child node references, and a parent node location, this
operation modifies the parent node adding the specified list of children.

Like the query operations, these modifications are performed in the context of the cur-
rent database and organization. Some modifications may result in access to other data-
bases in the system and potential modification to those other databases.

The completion of a database operation results in an intermediary representation that is
used to generate a subsequent user presentation. The next section covers the intermedi-
ary representation in more detail.

-

4.4 The Intermediary Representation

Each user action generates a database query that returns an intermediary representation
of the query results. The intermediary representation supports a quick single pass
markup for presentation.

The simplest example of an intermediary representation is one that retrieves an archive
item for display. In this case, a prior view would have presented an icon or a title as a
hypertext reference. A click on this representation causes a database query. The query
generates an intermediary representation that is a reference to the item in the file system.
The presentation backend can use the reference to read the archive item and generate a
new view.

A more complex example occurs when a portion of the hierarchy is expanded or con-
tracted. In this case a query is constructed from several items. These items include the
node that is to be expanded, a list of currently expanded nodes, and information about
the current view context. The query generates an intermediary representation that is a
linear list of nodes. For each node the intermediary representation contains:

» Node level — The depth of this node in the display hierarchy.
 Tag Label — A textual label of a node item tag.
» Tag Type — The type of the node item tag.

» Tag Reference — A reference to the location of the tag contents in the file system in
case the item must be retrieved. .

Collaborative Refinery January 27, 1997 23

* Node Expansion state — This is the current display state of this nodes expansion indi-
cator. This can be the obvious ‘expanded’ or ‘contracted’ states. Less obvious is the
‘none’ state which indicates that this node has no expansion indicator.

* Node Label — A textual label used to represent the node item in the outline view.

* Node Reference — A reference to the location of the node item in the file system used
when the item must be retrieved and displayed.

This subset of node attributes is sufficient to create a hierarchical outline view that can be
used for browsing and viewing items in the archive. An instance of this type of interme-
diary representation results in a browse view much like the one in Figure 3-1.

The intermediary representation includes only a subset of many node relationships. A
query will select node relationships that project a single node hierarchy. Since node rela-
tionships can cross databases, multiple databases may be searched during a query. A
node that satisfies the query is written to the intermediary representation. When writing
the node, the relation that caused the node to be selected is made explicit by removing
indirect references. For example, Figure 4-2 shows a stylized representation of two data-
bases in the first two frames. This figure highlights a tree structure of node relations over
the other possible structures. If a query were performed on the first database, the inter-
mediary representation would be written as if it had been generated from the merged
representation in the third frame. Writing node information and collapsing indirect node
references simplifies the generation of a user view from the intermediary representation.

Database 1

Database 2

User view of Database 1
from root with node
merge includes part of
Database 2

(O DB Node
(DB Node Alias
— Node Reference

Figure 4-2 Merging views through intermediary representation

The intermediary representation can be used to represent just the structuring informa-
tion (i.e. hierarchical structure) without the associated archive data. Alternatively, this
representation can be used to just present a list of items that are in the archive. That is,
the intermediary representation can present structure without data or data without

Collaborative Refinery January 27, 1997 24

structure. One example of structure without data is the choice hierarchy used to note
placement of new topic nodes. An example choice hierarchy was Figure 3-4 in an earlier
section.

The intermediary representation partially bridges the gap between a user’s view of the
node data and the representation maintained by the system. The intermediary represen-
tation includes explicit node data and explicit node relationships, but is not designed for
users to view. The presentation backend fills the remainder of this gap by converting the
intermediary representation to a user view. The following section describes the presenta-
tion backend.

4.5 The Presentation Backend

One fundamental aspect of Collaborative Refinery is the ability to generate different
views of the same data which can be edited by any collaborator. Supporting multiple
views means that the presentation characteristics for any one view of the data needs to
be independent of the data itself. Storing presentation information separate from the
data breaks a fundamental assumption of HTML on the Web. The presentation backend
attempts to separate the visual and interaction characteristics of the system from the
data.

The system hands off the intermediary representation to the presentation backend along
with information about the desired type of presentation. The backend uses some or all of
the intermediary representation to generate a view based on the users’ preferences and
the type of application which they are using.

4.5.1 Translating the Intermediary Representation

The backend translates the intermediary representation integrating the intermediary
data, markup, and appropriate state information. The intermediary representation is
stored and manipulated as complete nodes. The backend processes the intermediary
nodes one at a time, reading the node data, merging markup, state and action informa-
tion, and then dumping the results. This is a very simple streaming translation, in which
there is no rewinding or revisiting previously translated nodes. This means that if a node
is present twice in a presentation then it must show up twice in the intermediary repre-
sentation.

The presentation backend has detailed knowledge of the presentation medium. The cur-
rent system translates the intermediary representation into HTML web pages, integrat-
ing the markup and the CGI actions that must be made for each user action.

4.6 Supporting Distillates and Distilling — Catalysts

The prior sections have discussed the major architectural components of Collaborative
Refinery. One less obvious component is the extension mechanism that supports the cre-
ation and maintenance of distillates. The extension mechanism is known as a catalyst. A

Collaborative Refinery January 27, 1997 25

catalyst is code which is executed by Collaborative Refinery. A catalyst reads items from
the archive and writes a rough distillate. A rough distillate is a distillate which will be sent
to the user for editing before it is saved by the system.

There are two basic problems in supporting distillates and distilling. The first problem
involves how to directly support the creation of a rough distillate from some specified
archive contents. The second problem is much deeper. Since there are many potential
distillate types, how can the system be designed and implemented to support arbitrary
distillate types and new distilling mechanisms? These two questions are answered in the
following sections.

4.6.1 Creating Rough Distillates

Currently, Collaborative Refinery supports two rudimentary distillate types. The first is
a synopsis type. The synopsis catalyst concatenates message or news items and inserts
some markup to emphasize the message contributor, the subject and the message date.
The second catalyst type is a table-of-contents type. The table-of-contents catalyst gener-
ates a list of hypertext references, one reference to each item being distilled.

The process of creating a rough distillate is the same for all distillate types. The user sup-
plies Collaborative Refinery information through a form. The user indicates the desired
distillate type and the child nodes that will serve as the initial content. The distillate type
is chosen by selecting a specific catalyst. The initial content is indicated by selecting
groups of child nodes that meet some specific criteria. For example, the initial content of
a rough distillate may include the contents of several child nodes. One of the child nodes
may be an older distillate in need of revision. Additional content may come from child
nodes that were recently added to the current node. The system performs a special query
which returns a file system pathname and a Collaborative Refinery specific reference.
The pathname is used to read the content of a child node and the Collaborative Refinery
specific reference is used to create a hypertext link. When the catalyst is run, both the
pathname and the system specific reference are provided to the chosen catalyst. The cat-
alyst uses the pathname and the system specific reference to read the node items and
write a rough distillate. This rough distillate is then given to the user for editing.

The distillate types supported by Collaborative Refinery can be extended by writing Tcl
scripts. Tcl scripts and a Tcl interpreter comprise the catalyst extension mechanism. The
Tecl scripts have a specific form for receiving information from Collaborative Refinery
and for writing distillates. The implementation of catalysts is covered in the next section.

4.6.2 Extending Distilling — Catalysts

New distillate types can be added to Collaborative Refinery through the use of catalysts.
A catalyst is a Tcl script that follows some conventions when interacting with Collabora-
tive Refinery.

These conventions are straight-forward. The catalyst is called with two command line
parameters. The first parameter is the name of a Tcl variable file which the system has

Collaborative Refinery January 27, 1997 26

composed for the catalyst. The catalyst should source the variable file to have access to
query results and various user supplied preferences. The second parameter is the name
of a file in which the rough distillate should be stored. This allows Collaborative Refin-
ery to find the rough distillate when the catalyst has completed. Lastly, the standard cat-
alyst convention is for the first three lines of the rough distillate to be the parent node of
the new distillate, the file reference of any current distillate attached to that node, and the
text title of that distillate. These three lines are important for Collaborative Refinery to
reconstruct state both when the catalyst has finished with the rough distillate and when
the user has finished editing the rough distillate.

The key problem for someone writing a new distillate is obtaining enough information
from Collaborative Refinery to generate a useful rough distillate. One potential solution
was to duplicate some of the query mechanism in the catalyst environment. This would
allow catalysts to obtain full access to the underlying database. This solution would
force a catalyst writer to know more system details, thus requiring a more sophisticated
catalyst writer.

Collaborative Refinery’s alternative is to perform a larger query in anticipation of many
types of access that a catalyst might want to the underlying archive content. The query
results are then formatted as a large list of Tcl set commands. The Tcl variables provide a
catalyst access to the raw content of each item, access to older distillates, a means of
inserting system references into a rough distillate, and access to the user preferences that
were active when the particular catalyst was selected. These Tcl variables can be found in
Appendix A.

Any Tcl script that uses these variables and standard conventions can be considered a
catalyst. There are no restrictions on how the catalyst processes the content items nor on
what the catalyst produces as a rough distillate. Naturally, since the rough distillate will
be sent to a user for editing, the output should have some meaning to a user.

5. Related Literature and Systems

The Collaborative Refinery brings together and borrows from three research streams.
The system relates work on organizing and information management, collaborative
authoring, and shared collaborative workspaces. The following sections cover each of
these areas in more detail.

5.1 Organizing and Information Management

Categorization and organizing research chronicles the various strategies that individuals
use in the day to day use of their personal work space and how the physical location and
organizing type (file, folder, pile, stack, event, priority, date, etc.) interact. The stated and
implicit goal present in many of these types of studies is to inform the design and imple-
mentation of personal digital workspaces, or digital desktops.

Collaborative Refinery January 27, 1997 27

/

Collaborative Refinery’s extensive use of references and aliasing derive from Malone’s
work on individual organizing [9] and Furnas et. al.’s work on differential term usage
[5]. Both studies point out the benefits of extensive aliasing. The organizational overview
presentation was a specific attempt at dealing with the difference between the organizers
intended use of the keywords presented in the browsing view and the seekers under-
standing of the term.

Berlin, et. al [2] greatly influenced the design space considered for Collaborative Refin-
ery. The four dimensions? discussed by Berlin, et. al. are problematic for any system
designed to support collaborative classification. Collaborative Refinery attempts to
address two of the four dimensions: Purists to Proliferators and Semanticists to Syntacti-
cists. Careful manipulation of a user’s view might mitigate some problems with the third
dimension, Scruffies to Neatniks. Finally, there is no current way to address style con-
flicts in the fourth dimensior;-Savers to Deleters. This fourth dimension points to a fun-
damental problem that engages issues of organizational policy relative to personal
preferences.

5.2 Collaborative Authoring

The range of systems and research that cover collaborative authoring is quite broad. The
Computer Supported Cooperative Work (CSCW) and the Hypertext communities have
both built systems, studied systems in use, and researched collaborative writing in gen-
eral. However, Collaborative Refinery implements a different form of collaborative
authoring than what has been previously studied.

Collaborative Refinery implements as style of authoring that is much more like abstract-
ing or digesting where the management of sources and collections as well as the creation
of text are important. Writing studies like Posner and Baecker [14] are exemplary studies
in their attempt to elucidate requirements that support collaborative writing behavior.
However the majority of the requirements focus on the creation of new, original material
instead of the iterative refinement of text more closely based on specific sources.

2. Our view is that the four dimensions are defined by descriptive terms representing opposing behaviors
along a continuum. The four dimensions (from Berlin [2]):

* Purists to Proliferators - This dimension concerns where things go in some set of categories. The
fundamental trade-off is between the desire to put everything in a specific well defined place and
the recognition that some items may fit into more than one category.

* Semanticists to Syntacticists - This dimension represents the trade-offs in how people look at cat-
egories when doing retrieval. Semanticists strategy is to derive meaning from the category names
or titles. Alternatively, syntacticists attempt to develop category titles that contain structural and
episodic cues.

* Scruffies to Neatniks - This dimension represents the trade-offs between having a few broad cat-
egories and having many hierarchically organized specific categories.

* Savers to Deleters - This dimension represents a trade-off between the desire to save everything
and the desire to keep only the most relevant items.

Collaborative Refinery January 27, 1997 28

Many of the collaborative authoring tools and systems focus on the creation of new text
rather than text abstracting and digesting. Systems like GROVE [3], Prep [11], Quilt [8],
and ShrEdit [13] are highly effective for geographically close, synchronous collabora-
tions. Collaborative Refinery could incorporate more of the general synchronous editing
features for closer collaborations. Collaborative Refinery’s focus on providing Web based
support results in an implementation closer to the more asynchronous systems like
MESSIE [15], Moljner [10] and to some degree PrepNet [12]. Web-based authoring sys-
tems, such as Contact [7] and BSCW [1], differ from Collaborative Refinery in that they
focus on the coordination and versioning issues more than on the collection manage-
ment and distilling issues.

Collaborative Refinery might not appear to have a strong tie to hypertext, but the browse
view is a general cover for a hypertext system that is presented through the World Wide
Web. Research on collaborative hypertext, such as NoteCards [16], SEPIA [6], and Virtual
Notebook System (VNS) [4], covers a wide range of issues. Collaborative Refinery inher-
its the general viewing and editing issues in the above systems. The permission control
and collaboration aspects of VNS are not present in Collaborative Refinery. The current
assumption in Collaborative Refinery is that everyone is allowed to edit and modify any
portion of the hierarchy. SEPIA’s emphasis on smooth transitions between loosely cou-
pled asynchronous editing and tightly coupled synchronous editing would be a great
asset for the editing of distillates.

The shared editing studies are informative and provide useful design suggestions. How-
ever, the primary focus of these studies is collaboration designed to generate new and
unique text, a research paper, a newspaper or magazine article, or a book. Studies of col-
laboration though hypertext provide a slightly different view of a similar set of issues
with awareness, coordination, editing and presentation. None of the existing systems
have considered hypertext, collections, and editing in the form which the Collaborative
Refinery supports. The creation of a distillate is similar to creating a digest, indexing, or
abstracting. Likewise, to our knowledge there are no systems to support this behavior or
qualitative descriptions of people who perform this behavior.

5.3 Shared Workspaces

Broadly, a shared workspace is any system which supports a view of a collaborative
object which can be seen and modified by more than one collaborator. The research liter-
ature includes many shared workspaces. The recent development and explosive popu-
larity of the World Wide Web make it a tantalizing target for shared workspaces. The
Collaborative Refinery is one of a small number of shared workspaces that are presented
through the Web.

Collaborative applications that rely on the World Wide Web use HTTP as the underlying
transmission protocol and HTML as a generalized interface. Web based applications
present loosely coupled, asynchronous interaction. Asynchronous shared workspaces
have difficult problems with simultaneous data access and modification. Therefore many
of the Web based workspaces support coarse grained locking of the shared artifacts and

Collaborative Refinery January 27, 1997 29

serve to coordinate activity around those artifacts. BSCW [1], GAB [17] and Contact [7]
all claim to be examples of shared workspaces that rely on the Web.

Collaborative Refinery is not closely related to any of these workspaces. BSCW and Con-
tact are both heavily oriented around maintaining form-based meta-data about the sta-
tus of a collaborative artifact. In the case of Contact the artifact is specifically a writing
project; with BSCW the artifact is more generalized. GAB projects a browsable hierarchy;
however, the way in which individuals modify the workspace is more complex. Collabo-
rative Refinery is unique among these workspaces. In Collaborative Refinery everything
is modifiable through the shared workspace; this includes the meta-data, or content
structuring, and the content itself.

6. Future Development

Collaborative Refinery addresses several important issues. One interesting issue is the
distinctive notion of authoring fostered by Collaborative Refinery. This style of author-
ing, distilling, is much like creating a digest, an abstract, or indexing. Current research
literature considers authoring as a text generation problem in which several people col-
laborate to generate a new, unique product. The distilling process may generate a unique
product, but that product is more clearly based on source material that can be readily
identified. As discussed above, there are distinct genres of distillates but the range of dif-
ferent genres is open.

Another issue is that of control over distillates and distilling. Some systems resolve
issues of control by specifying roles and allowing users to assume specific roles. It is not
clear that there is a strong dichotomy between distillate authors and readers that would
allow a role-based solution. The skills and expertise of people vary and likewise their
needs to alternately read and author distillates will vary.

Control over distillate readership presents another, more subtle set of access issues. It is
conceivable that two or more distillates could be derived from exactly the same contents.
In this case, which distillate should be presented to which users? One distillate may con-
tain extremely sensitive information that requires certain system based or socially based
privilege for access. Alternatively, different distillates from the same sources may be tar-
geted for users of different skill levels (e.g. novices or experts). Resolving these subtle
access issues for different distillates is an open problem.

Other distilling issues to be addressed concern how to identify distilling scope, how to
effectively identify stale distillates, and how to effectively assist the social aspects to each
user’s satisfaction. One major research focus must be support for distilling and distil-
lates.

The Collaborative Refinery presents an integration of collaborative information manage-
ment with collaborative authoring. Collections and collection management have been
missing from the collaborative writing literature. Collaborative Refinery supports collec-
tion management by multiple collaborators with multiple hierarchical views, and topic

Collaborative Refinery January 27, 1997 30

aliasing. This strategy mitigates, but does not solve, several of the conflicts discussed in
[2]. One area of potential work will be to provide better support for the resolution or
mutual cohabitation among conflicting organizational styles.

7. Summary

The Collaborative Refinery represents an alternative method of identifying interesting
and useful items in an exploding morass of information. The basic approach is to lever-
age the collaborative work of interested, motivated individuals, and experts. Collabora-
tive Refinery supports basic behaviors, collecting, culling, organizing, and distilling, in a
shared workspace which enable this potential solution. Supporting these four general
behaviors integrates work in information and collection management with collaborative
authoring. o

8. References

1. Bentley, R., Horstmann, K. Sikkel and J. Trevor. Supporting Collaborative Informa-
tion Sharing with the World Wide Web: The BSCW Shared Workspace System. Pro-
ceedings of WWW’94, 1994:

2. Berlin, L. M., R. Jeffries, V. O'Day, A. Paepcke and C. Wharton. Where Did You Put It?
Issues in the Design and Use of a Group Memory. Proceedings of InterCHI'93, 1993: 23
- 30.

3. Ellis, C. A, S.]. Gibbs and G. L. Rein. Groupware: Some Issues and Experiences.
1991, 34(1):

4. Fowler, J., D. G. Baker, R. Dargahi, V. Kouramajian, H. Gilson, K. B. Long, C. Peter-
mann and G. A. Gorry. Experience with the Virtual Notebook System: Abstraction in
Hypertext. Proceedings of CSCW '94, 1994: 133 - 143.

5. Furnas, G. W, T. K. Landauer, L. M. Gomez and S. T. Dumais. The Vocabulary Prob-
lem in Human-System Communication. 1987, 30(11): 964 - 971.

6. Haake,]J. M. and B. Wilson. Supporting Collaborative Writing of Hyperdocuments in
SEPIA. Proceedings of CSCW “92,1992: 138 - 146.

7. Kirby, A. and T. Rodden. Contact: Support for Distributed Cooperative Writing. Pro-
ceedings of ECSCW’95, 1995: 101 - 116.

8. Leland, M. D. P, R. S. Fish and R. E. Kraut. Collaborative Document Production
Using Quilt. Proceedings of CSCW'88, 1988: 206 - 215.

9. Malone, T. W. How Do People Organize Their Desks? Implications for the Design of
Office Information Systems. 1983, 1(1): 99 - 112.

Collaborative Refinery January 27, 1997 31

10. Minor, S. and B. Magnusson. A Model for Semi-(a)Synchronous Collaborative Edit-
ing. Proceedings of ECSCW "93, 1993: 219 - 231.

11. Neuwirth, C. M., D. S. Kaufer, R. Chandhok and]. H. Morris. Issues in the Design of
Computer Support fo Co-authoring and Commenting. Proceedings of CSCW 90, 1990:

12. Neuwirth, C. M., D. S. Kaufer, R. Chandhok and J. H. Morris. Computer Support for
Distributed Collaborative Writing: Defining Parameters of Interaction. Proceedings of
CSCW "94, 1994: 145 - 152.

13. Olson, J. S., G. M. Olson, L. A. Mack and P. Wellner. Concurrent Editing: The Group's
Interface. Proceedings of IFIP 3rd International Conference on Human-Computer Interac-
tion (INTERACT90), 1990: 835 - 840.

14. Posner, I. R. and R. M. Baecker. How People Write Together. Proceedings of Twenty-
fifth International Conference on the System Sciences, 1992:

15. Sasse, M. A., M.]. Handley and S. C. Chuang. Support for Collaborative Authoring
via Electronic Mail: The MESSIE Environment. Proceedings of ECSCW 93, 1993: 249 -
264. .

16. Trigg, R. H., L. A. Suchman and F. G. Halasz. Supporting Collaboration in Note-
Cards. Proceedings of CSCW'86, 1986: 153 - 162.

17. Wittenburg, K., D. Das, W. Hill and L. Stead. Group Asynchronous Browsing on the
World Wide Web. Proceedings of WWW'95, 1995:

Collaborative Refinery January 27, 1997 32

Appendix A — Catalyst Variables

This is a list of exported Tcl variables that are supplied to a Collaborative Refinery cata-
lyst. The variables are exported to the catalyst through a variable file which Collabora-
tive Refinery creates just before the catalyst is executed.

» DBRootPath - The file system path to the current active database.

» CurrentDB - The current active database in the root path.

» DistRootPath — The file system path to the distillates.

 ItemRootPath - The file system path to the individual archive items.

» DisplayURLPrefix - A URL prefix used by the system to retrieve an item.

» ParentNode - The system specific parent node for the new, prospective, distillate.

» DistFileRef - The file system reference of the old distillate stored at the ParentNode
node, if any. This should be used in conjunction with DistRootPath for access to the
actual distillate file.

+ DistDBRef — The database reference to the old distillate stored at the ParentNode, if
any.
« DistTitle - The title of the old distillate at ParentNode, if any.

» NewltemFileRef — An array of file names. A catalyst can use these along with Item-
RootPath to read each of the content items that should be distilled.

» NewltemDBRef — An array of database references, used by the system in conjunction
with the DisplayURLPrefix to retrieve and display the indicated item.

» NewltemTitle - An array of titles, one for each item that should be distilled.
* NewltemCount — The number of items in the NewItem arrays.

» Useltems — This indicates the users preference for which items, ‘new’, ‘old’, ‘all’, or
‘none’ should be used in the creation of the new rough distillate. The ‘new’ value is
the only one which currently makes sense here, because the system does not keep
track of the times when content items are added to nodes.

» UseDistillate — This flag indicates the users preference to include the old distillate, if
any, in the generation of the new rough distillate or not. If the value of UseDistillate is
1 then the old distillate should be used.

Collaborative Refinery January 27, 1997 33

