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RESEARCH ARTICLE Open Access

A mathematical model of
mechanotransduction reveals how
mechanical memory regulates
mesenchymal stem cell fate decisions
Tao Peng1†, Linan Liu2†, Adam L MacLean1, Chi Wut Wong2, Weian Zhao2 and Qing Nie1*

Abstract

Background: Mechanical and biophysical properties of the cellular microenvironment regulate cell fate decisions.
Mesenchymal stem cell (MSC) fate is influenced by past mechanical dosing (memory), but the mechanisms
underlying this process have not yet been well defined. We have yet to understand how memory affects specific
cell fate decisions, such as the differentiation of MSCs into neurons, adipocytes, myocytes, and osteoblasts.

Results: We study a minimal gene regulatory network permissive of multi-lineage MSC differentiation into four cell
fates. We present a continuous model that is able to describe the cell fate transitions that occur during differentiation,
and analyze its dynamics with tools from multistability, bifurcation, and cell fate landscape analysis, and via stochastic
simulation. Whereas experimentally, memory has only been observed during osteogenic differentiation, this model
predicts that memory regions can exist for each of the four MSC-derived cell lineages. We can predict the substrate
stiffness ranges over which memory drives differentiation; these are directly testable in an experimental setting.
Furthermore, we quantitatively predict how substrate stiffness and culture duration co-regulate the fate of a stem cell,
and we find that the feedbacks from the differentiating MSC onto its substrate are critical to preserve mechanical
memory. Strikingly, we show that re-seeding MSCs onto a sufficiently soft substrate increases the number of cell fates
accessible.

Conclusions: Control of MSC differentiation is crucial for the success of much-lauded regenerative therapies based on
MSCs. We have predicted new memory regions that will directly impact this control, and have quantified the size of
the memory region for osteoblasts, as well as the co-regulatory effects on cell fates of substrate stiffness and culture
duration. Taken together, these results can be used to develop novel strategies to better control the fates of MSCs in
vitro and following transplantation.

Keywords: Mesenchymal stem cell, ECM, YAP/TAZ, Cell fate decision, Stiffness sensing, Memory, Bistability, Nonlinear
dynamics, Mathematical modeling

Background
Changes in cellular state can be regulated by mechanical
signals from the cellular microenvironment, such as the
local extracellular matrix (ECM) stiffness [1–4]. Recent
studies into mechanotransduction have demonstrated

that cells sense and integrate mechanical cues from the
ECM, causing transcriptional changes to occur and in-
fluencing cell fate decisions [1–3, 5]. Mesenchymal stem
cells (MSCs) are controlled by signals from the ECM
and exhibit a wide range of differential gene expression
patterns [1, 6]. The mechanisms governing how MSCs
sense the surrounding ECM, and the myriad other fac-
tors affecting MSC fate, including interactions with pro-
teins and ligands, tethering, and porosity, remain
incompletely defined [3, 7]. Further understanding of
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how differentiation cues are mediated by mechanical
stimuli will help to facilitate new biomaterial design,
cell-based therapeutics, and engineered tissue constructs
for use in regenerative medicine.
The signals arising at the stem cell/substrate interface

are complex and dynamic [7], however it has been shown
that stiffness alone is enough to direct MSC differentiation
[3, 4]. MSCs undergo neurogenic or adipogenic differenti-
ation on soft substrates (<1 kPa), and myogenic or osteo-
genic differentiation on stiff substrates (>10 kPa) [1, 5]
(Fig. 1). Upon further study, more complex differentiation
patterns emerge. For example, it has been observed that
cells cultured for a period of time on stiff substrates, such
as standard tissue culture polystyrene (TCPS) plates, dif-
ferentiate into osteogenic lineage cells even after being
transferred from the stiff to a softer substrate [8]. Seeding
MSCs on a phototunable substrate demonstrates that
osteogenic patterns of gene expression persist even after

decreasing the stiffness of the substrate [8]. This
“mechanical memory”: the ability of MSCs to remember
previous physical stimuli depends on both culture time
and substrate stiffness (depicted in Fig. 1).
Due to mechanical memory, MSC differentiation in

vitro can yield unpredictable (and undesirable) results.
Mechanical memory also makes it very difficult to per-
form certain in vitro assays reliably, for example on ex-
tremely soft or stiff substrates, or assays with very long
or short incubation periods. Such extreme culture condi-
tions are nonetheless important to assess in order to
fully elucidate the relationship between MSC fate and
substrate stiffness [9]. In addition to the impracticality of
performing short (i.e. seconds) or long (i.e. months) in-
cubation experiments, experimental knock-downs of key
genes involved in mechanotransduction, such as Yes-
associated protein (YAP), can be lethal or highly toxic in
vitro and in vivo [10, 11]. There is thus a need for in
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Fig. 1 Mesenchymal stem cells (MSCs) exhibit mechanical memory. a, b, c, d: MSCs differentiate into distinct lineages under different substrate
stiffness conditions by upregulating lineage marker genes TUBB3 (<1 kPa stiffness, the neurogenic fate), PPARG (~1 kPa stiffness, the adipogenic
fate), MYOD1 (~10 kPa stiffness, the myogenic fate), or RUNX2 (~40 kPa stiffness, the osteogenic fate). When re-seeded onto a soft substrate (~1
kPa), MSCs are expected to undergo adipogenic differentiation [1, 6, 64]. e, f: However, for higher first seeding stiffness values (>10 kPa), or for long first
seeding durations (>10 days), mechanical memory leads to heterogeneous osteogenic differentiation [8]. g, h: The model predicts that for high first seed-
ing stiffness values (~10 kPa), or for long first seeding durations, mechanical memory leads to heterogeneous myogenic differentiation
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silico studies to simulate culture conditions and to map
the MSC fate predictions to experimental results de-
scribing mechanically induced cell differentiation.
Several mathematical models of mechanotransduction

have been built to describe cell differentiation directed
by external mechanical stimuli [12, 13]. These include,
for example, analysis of the role of YAP/TAZ, the tran-
scriptional factors YAP and transcriptional co-activator
with PDZ-binding motif (TAZ), in mechanosensing [14],
and models that aim to predict cell differentiation during
bone healing [12, 15, 16]. Mousavi et al. developed a 3D
mechanosensing computational model to illustrate that
matrix stiffness can regulate MSC fates. Their simulation
results of MSC differentiation in response to substrate
stiffness are in agreement with published experimental
observations [13]. Burke et al. built a computational
model to test whether substrate stiffness and oxygen
tension regulate stem cell differentiation during fracture
healing [12]. Their model predicted the presence of
major processes involved with fracture healing, including
cartilaginous bridging, endosteal and periosteal bony
bridging, and bone remodeling, using parameters related
to cell proliferation, oxygen tension, and substrate stiff-
ness. However, these models are limited in that the ef-
fects of regulatory factors were not considered [12–16].
Furthermore, these studies used different models to rep-
resent different experimental observations. Hence it is
difficult to describe the overall cell state space and to
study the transitions between cell fates [12–16]. Thus,
there is a need for a dynamic mathematical model,
which can stimulate a continuous range of stiffness
values and their associated cell fates.
Here we present a mathematical model of MSC differen-

tiation controlled by the following set of core mechanisms

(Fig. 2 and Table 1) [1, 6, 9]. The MSCs sense the stiffness
of their environment directly via their adhesion to the sub-
strate. The transcriptional factors YAP and TAZ mediate
the signal via their interaction with downstream genes in-
volved in cell differentiation. TUBB3, a gene encoding
Tubulin beta-3 chain tightly correlated with a neurogenic
cell fate is expressed when MSCs receive stimuli from a soft
stiffness environment (<1 kPa) [1]. PPARG, peroxisome
proliferator-activated receptor gamma, encodes an adipo-
genic marker and has been shown to be turned on in soft
stiffness environments (~1 kPa) [6]. MYOD1, myogenic dif-
ferentiation 1, a myogenic gene turned on in medium-stiff
environments (~10 kPa), encodes key factors regulating
muscle differentiation [1]. RUNX2, runt-related transcrip-
tion factor 2, an osteogenic gene which is upregulated in
high stiffness environments (~40 kPa), is a key transcrip-
tional factor involved in osteoblast differentiation [1] (Fig. 1).
We use this set of four lineage-specific genes in our model
to minimally describe the transcriptional changes observed
during MSC differentiation into four distinct cell fates
under the influence of mechanical stimuli mediated by
YAP/TAZ signaling.
Based on the proposed regulatory network structure

(Fig. 2), we simulate gene expression dynamics under
different mechanical dosings. Each in silico experiment
describes MSCs cultured in two passages: a first seeding
and a second seeding. The substrate stiffness for the first
seeding and the duration of the first seeding are particu-
larly important in cell fate determination of MSCs. We
also discover an important role for the second seeding
stiffness through our simulation studies. Crucially, this
two-seeding setup permits mechanical memory to be ob-
served and studied. We assess when cell fates are deter-
mined not only by the current substrate stiffness but

Fig. 2 Regulatory network used to construct the mathematical model. The boxes represent genes or factors involved in MSC differentiation and
the lines with arrows and with bars denote gene activation and inhibition respectively. External stiffness affects the substrate adhesion area. The
pink line with an arrow denotes regulations by all species within the pink box. The circled indices refer to experimental evidence for each
interaction, details of which are given in Table 1
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also by past exposure and find that a memory region ex-
ists for each of the four MSC-derived cell lineages stud-
ied. Our model demonstrates that stiffness-based MSC
differentiation results from non-cooperative regulation
of representative genes. Moreover, we show that lower-
ing the second seeding stiffness of MSCs leads to a more
diverse palette of MSC fates.

Results
A mathematical model based on a mechanotransduction
network
The following set of biological assumptions has been used
to develop the mathematical model. MSCs differentiate
according to their surrounding mechanical environment
[2–4, 6, 17]. Directed differentiation towards a particular
lineage can be guided if the cells are cultured in a micro-
environment that mimics the tissue elasticity of the envir-
onment in vivo [2, 3, 17]. Stiff substrates promote cell-
ECM adhesion interactions via integrins [6]. These adhe-
sive interactions control the localization of downstream
transcriptional factors YAP and TAZ, which have been
identified as mechanical sensors and mediators of such
signals [6, 18]. YAP/TAZ localizes in the cytoplasm on soft
substrates (~1 kPa) and can re-localize to the nucleus on
stiff substrates (~40 kPa), thus functioning as a mechano-
sensitive transcription factor [6, 18].
Additionally, YAP/TAZ has been reported to be an

upstream factor of a number of genes associated with cell
differentiation cues [6, 18, 19]. For example, the inhibition
of TUBB3 can be attenuated by YAP depletion, whereas
that the factor PPARG binding to TAZ results in in-
hibition of transcription from the aP2 promoter [20, 21].
TAZ functions as an enhancer of MYOD-mediated myo-
genic differentiation. RUNX2 can also bind to TAZ and
cause osteocalcin to be expressed, thus promoting
osteogenic differentiation [20, 21]. To describe these

interactions, we model YAP/TAZ as both a down-
stream factor of the mechanical stimulus from the
ECM and an upstream factor of the selected cell
lineage genes [1, 22] (Fig. 2 and Table 1). Previous
references show an intriguing relationship between
morphological changes to MSCs and their lineage dif-
ferentiation potential, whereby morphological changes
have been shown to be instrumental to the process of
MSC differentiation [1, 17, 18, 23–25]. In particular,
it was shown that MSC osteogenic differentiation is
enhanced by the morphological change of MSCs and
MYOD1 induced the myogenic differentiation effi-
ciency via the morphological change of MSCs [26,
27]. Other factors regulating cell spreading such as
NKX2.5 were integrated in the model implicitly [28].
Therefore, we model a feedback loop between the
lineage-specific target genes and the cellular sensing
of substrate stiffness.
In order to predict how mechanical dosing influences

MSC differentiation, we use ordinary differential equa-
tions to model the MSC lineage regulatory network [29–
32] (Fig. 2 and Table 1). We assume that changes in the
stiffness of the substrate act as stimulus to the cell (me-
diated by stiffness receptors) [12, 33]. We use Hill func-
tions to model the chemical activation/inhibition [31, 32,
34]. We model the feedback loop that controls mechan-
ical memory via a non-cooperative regulation, i.e., any of
the lineage-specific genes (TUBB3, PPARG, MYOD1,
RUNX2) can increase the effective stiffness adhesion
area (we use “OR-GATE” logic). The feedback loop con-
trols the expression of YAP/TAZ and its downstream
genes via the stimulus (i.e., the change in stiffness [8]).
We also test a feedback model of cooperative regulations
(where TUBB3, PPARG, MYOD1 and RUNX2 must act
together to increase the effective stiffness adhesion area,
i.e. “AND-GATE” logic) but find that it does not satisfy

Table 1 The references of regulatory interactions in the network

Index of Arrows Interactions References

1 YAP/TAZ is identified as mechanical sensors and mediators. Halder, G et al, 2012; Dupont S. et al. 2011. [6, 18]

3 The inhibition of TUBB3 can be attenuated by YAP depletion. Alarcon, C et al. 2009 [65]

5 PPARG can be bound to TAZ, which results in
transcription inhibitions from the aP2 promoter.

Hong, J.H. et al, 2006.[21]

7 TAZ functions as an enhancer of MYOD-mediated myogenic
differentiation.

Jeong, H. et al, 2010. [66]

9 RUNX2 has binding domain to TAZ for osteocalcin expression. Hong, J.H. et al, 2006. Hong, J.H. et al, 2005 [20, 21]

10,11,12,13 Increased cell spreading results in higher stiffness sensitivity
via increased binding of integrins to the ECM.

Halder G et al, 2012. Sun Y et al, 2012.
Bernabe B P et al, 2016. [6, 17, 67]

2,4,6,8 These arrows are necessary for the dynamics of TUBB3, PPARG,
MYOD1, and RUNX2 on all possible stiffness environment since
TUBB3, PPARG, MYOD1, and RUNX2 are expressed only on the
super soft stiffness (< 1 kPa), the soft stiffness (~1 kPa), the
medium stiffness (~10 kPa), and the high stiffness (~40 kPa)
environment respectively.

Engler, A.J. et al,2006; Halder G et al, 2012 [1, 6]
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the dynamical requirements of the MSC differentiation
system (see Methods for full details).

Model simulations predict mechanical memory regions
for each lineage-specific gene
The non-cooperative regulation model displays multiple
steady states over the behavioral regions that we have in-
vestigated (with first seeding stiffness values ranging
from 0.1 kPa to greater than 100 kPa; Fig. 3). This range
is sufficient to encompass all known in vitro studies [1,
6, 8]. In Fig. 3a and b the multiple steady states of YAP/
TAZ expression over the stiffness range studied are
shown, and changes in the YAP/TAZ state can be visual-
ized as the stiffness increases (blue lines) or decreases
(red lines). The nonlinear relationship between YAP/
TAZ and the stiffness of the substrate along the blue
lines is consistent with previous observations [9, 19].

Figure 3c demonstrates bistability in the relative gene
expression of TUBB3 (driver of neurogenic differentiation)
downstream of YAP/TAZ. TUBB3 is “OFF” when the stiff-
ness is lower than 0.2 kPa. It will be turned “ON” as the
stiffness increases to 0.25 kPa. It turns “OFF” again as the
stiffness increases further. Meanwhile, TUBB3 stays “ON”
when the stiffness decreases below 0.2 kPa, thus highlight-
ing the mechanical memory observed during neurogenic
differentiation. Notably, TUBB3 stays “OFF” as the stiff-
ness decreases from 0.6 kPa. We define the region of stiff-
ness from 0.25 to 0.55 kPa as a “differentiation memory
region” for TUBB3. This means that if the first seeding
stiffness is within this range, the cell will “remember” the
stiffness of this first seeding substrate, and will differenti-
ate according (towards a neurogenic fate) upon re-
seeding. Our model also predicts novel differentiation
memory regions for PPARG (0.6 to 3 kPa; Fig. 3d) and
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Fig. 3 Multistability in the MSC differentiation network. The relative expression level of YAP/TAZ in a stiffness range from 0.1 kPa to 60 kPa is
shown (b), with inset (a). The relative expression levels of lineage-specific genes are shown in (c-f). On each plot the x-axis is the stiffness of the
substrate and the y-axis is the relative gene expression level. Blue lines illustrate changes in the relative expression level as the stiffness increases;
red lines illustrate changes in the relative expression level as the stiffness decreases. (g). The robustness of the parameters in the mathematical model.
The x-axis is the parameter index, corresponding to the notation of Table 2. The y-axis is the robustness of the parameters (defined in Methods)
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MYOD1 (10 to 15 kPa; Fig. 3e). RUNX2 displays the lar-
gest differential memory region of the four lineage-
specific marker genes studied.
Figure 3c-f collectively demonstrate a bistable region

for each of the four lineage-specific genes studied. This
is a startling prediction: that a region of mechanical
memory exists for each of the cell fates, not just for
osteogenic differentiation, as has been previously re-
ported [8]. For neurogenic and adipogenic differenti-
ation, the memory regions are smaller than that of
osteoblasts yet may still be of great importance for stem
cell fate regulation. The true contribution of each will
require further study to elucidate, as a host of interact-
ing factors contribute to the neurogenic and adipogenic
cell fate decisions, including those which are not cur-
rently included in our model, such as the role of
substrate-induced stemness and of epithelial to mesen-
chymal transition [35–37].
To test the robustness of the mathematical model we

calculate the values of the robustness of each parameter
in Eqs. (1,2,3,4,5 and 6) with respect to the memory and
multistability of the system (full details of our method-
ology are in Methods). Out of the 41 parameters tested,
37 are robust to small changes for the majority of per-
turbations tested (and many of these 37 were robust

more than 80% of the time) (Fig. 3g). Four parameters
are found to be sensitive to small perturbations. All of
these four parameters are involved in myogenic or
osteogenic differentiation. Both these processes involve
relatively large memory regions, thus it is possible that fol-
lowing these perturbations memory is maintained over
parts of – but not the entire – original memory regions.
Overall, we find that the system displays robustness using
the parameters given in Table 2, with regard to the mem-
ory effects and the multistability of the states.

A lower second seeding stiffness permits a greater
number of MSC lineages
Potential energy landscape analysis is an appealing
method with which we can investigate the system and
study the MSC differentiation propensities under different
conditions [38–40]. Since it is not possible to write down
a complete expression for the potential energy of the sys-
tem, we use an approximate method derived from mean
field theory in order to calculate quasi-potential in terms
of the six system variables [40, 41]. Explicitly, we calculate
the potential of the system as U(X) = − ln(Pss(X)), where
Pss(X) is the total probability of the state vector X, and X
describes all the states of the system [40, 41].

Table 2 Parameter values of the mathematical model

Index Parameter Value Estimated from references Index Parameter Value Estimated
from references

1 k1 0.2 [1,6] 2 k2 2.2 [1,6]

3 k3 5 [1,6] 4 k4 9 [1,6,8]

5 k5 4 [1,6] 6 k6 2.9 [1,6]

7 k7 3 [1,6] 8 k8 5 [1,6,8]

9 k9 2 [1,6,8] 10 K1 600 [1,6]

11 n1 4 [1,6] 12 K2 1.1 [1,6]

13 n2 2 [1,6] 14 K3 1300 [1,6]

15 n3 6 [1,6] 16 K4 0.8 [1,6,8]

17 n4 2 [1,6,8] 18 K5 20,000 [1,6]

19 n5 4 [1,6] 20 K6 1 [1,6]

21 n6 20 [1,6] 22 K7 60,000 [1,6]

23 n7 6 [1,6] 24 K8 1.1 [1,6]

25 n8 20 [1,6] 26 K9 0.1 [1,6]

27 n9 2 [1,6] 28 K10 0.5 [1,6]

29 n10 8 [1,6] 30 K11 0.89 [1,6]

31 n11 2 [1,6] 32 K12 4 [1,6]

33 n12 8 [1,6] 34 K13 12 [1,6]

35 n13 20 [1,6] 36 K14 3 [1,6]

37 n14 60 [1,6] 38 K15 16 [1,6,8]

39 n15 45 [1,6,8] 40 K16 4.5 [1,6,8]

41 n16 55 [1,6,8] di (i = 1,2,⋯6) 1 Unconstrained
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In order to visualize this potential function we project
it onto a two-dimensional plane, defined by the species
in our model: YAP/TAZ, and the effective stiffness adhe-
sion area (SAA). In doing so we integrate out the four
remaining system variables (TUBB3, PPARG, MYOD1,
and RUNX2) [40, 41]. We are thus able to study how the
potential depends on these variables for different stiff-
ness values. In Fig. 4 we show the potential functions for
four different conditions (we change the second-seeding
stiffness values). Overall, we find that by reducing the
second seeding stiffness, a greater number of steady
states is permitted.
We simulate more than 10,000 initial conditions in

order to avoid becoming trapped in local minima [40, 41].
We observe that across the entire landscape there are four
stable states (or basins of attractions), representing neuro-
genic, adipogenic, myogenic, and osteogenic cell lineages.
At a final stiffness of ~0.4 kPa, MSCs can differentiate into
each of the four possible lineages (Fig. 4a). Only at such
sufficiently small values for the second stiffness can MSCs
differentiate into neurons: the basin of attraction for the
neurogenic fate (i.e. the probability of differentiating into a
neuron) is the smallest of the four fates. This means that
mechanical memory is observed only over a small range
of space. In comparison, a much greater mechanical mem-
ory effect is seen for the osteogenic lineage, corresponding
to a larger basin of attraction. Figure 4b and c show the
potential landscapes at second seeding stiffness values of
~0.8 kPa and ~12 kPa, respectively. The number of basins

decreases to three, and then two, as the second seeding
stiffness increases. When the second seeding stiffness in-
creases further to ~20 kPa, we have only one remaining
basin of attraction, thus only one possible cell fate: in this
region the largest mechanical memory effect is seen, and
osteogenic differentiation dominates. These data intri-
guingly suggest that simply by controlling the substrate
stiffness upon re-seeding we can control the number of
cell fates that are accessible to MSCs.

The duration of the initial seeding determines the fate of
an MSC
In addition to studying the effect of the second seeding
stiffness on the fate of MSCs, we perform tests to assess
the agreement between our model and in vitro observa-
tions regarding MSC differentiation [1, 18]. Specifically,
we manipulate the stiffness of the second seeding sub-
strate and the duration of the first seeding, and find, con-
sistent with previous studies [5, 42], that both of these
variables play an important role in the fate determination
of an MSC upon differentiation. In addition these simula-
tion results highlight several new phenomena.
In order to examine how the first seeding duration af-

fects MSC fates, we use a non-dimensionalized version
of the model, that is, we express time in relative units.
In Fig. 5a, the first and second seeding stiffness values
are 30 kPa and 0.4 kPa, respectively. When the duration
of the first seeding time is 50 (blue line), MSCs differen-
tiate into osteoblasts (consistent with [5]): RUNX2 is the

Fig. 4 Potential landscapes of the regulatory network under different stiffness conditions. In each figure the relative stiffness level (input to the
system) is plotted on the x-axis, the relative expression level of YAP/TAZ is plotted on the y-axis, the energy potential function U is plotted on the
z-axis. Potential energy landscapes are shown with stiffness values of ~0.4 kPa (a), ~0.8 kPa (b), ~12 kPa (c) and ~20 kPa (d)
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only gene that is highly expressed under this condition.
When the first seeding duration is 15 (red line), MSCs
differentiate into skeletal muscle cells (MYOD1 high);
when the first seeding duration is five (brown line),
MSCs differentiate into adipocytes (PPARG high). Finally
when the first seeding duration is 0.5 or 0 (pink and
black lines), MSCs differentiate into neurogenic cells
(TUBB3 high). These results are consistent with previ-
ous studies and highlight the breadth of control that
mechanical memory enables: MSCs can be directed to
four different fates by changing only the duration of the

first seeding, keeping both of the first and the second
substrate stiffness values constant. Although mechanical
memory is not observed when the first seeding duration
is less than 0.5, for the first seeding durations greater
than five, we predict that mechanical memory will influ-
ence MSC fates, directing MSCs towards myogenic or
adipogenic lineages.
Mechanical memory persists when the second seeding

stiffness increases, but the number of fates accessible to
an MSC decreases, as described in previous sections. In
Fig. 5b the second seeding stiffness is 0.9 kPa. When the
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Fig. 5 The duration of the first seeding regulates MSC fates via mechanical memory. The first seeding stiffness in this figure is 30 kPa. The second seeding
stiffness is 0.4 kPa (a), 0.9 kPa (b) or 12 kPa (c). When the duration of the first seeding is 50 (blue lines), MSCs undergo osteogenic differentiation according to
memory. When the duration of the first seeding is 15 (red lines), MSCs undergo myogenic differentiation. When the duration of the first seeding is 5 (brown
lines in columns A and B), MSCs differentiate into adipocytes or myogenic cells. When the duration of the first seeding is 0.5 (pink lines in column A), MSCs
are able to undergo adipogenic, myogenic, or neurogenic differentiation. Finally, when the duration of the first seeding is 0 (black lines), MSCs are able to
undergo adipogenic, myogenic, or neurogenic differentiation
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relative duration of the first seeding is 50 (blue line),
MSCs differentiate into osteoblasts according to mech-
anical memory. When the relative duration of the first
seeding is 15 (red line), MSCs differentiate into myocytes
(again, influenced by memory). When the relative dur-
ation of the first seeding is 5, 0.5 or 0, however (brown,
pink or black lines), MSCs differentiate into adipocytes:
mechanical memory is not present when the second
seeding duration is less than 15.
Figure 5c shows the dynamics of the system when the

second seeding stiffness is 12 kPa. For the longest first
seeding duration (blue line), MSCs differentiate into os-
teoblasts, as above, but when the duration is 15 or lower
(red, brown, pink or black lines), MSCs differentiate into
myocytes. These data illustrate that as the second seed-
ing stiffness increases, the range of first seeding dura-
tions over which mechanical memory is observed
decreases, which is consistent with the observation from
Yang et al [8]. At a second seeding stiffness of 12 kPa,
the memory effect is observed only for osteogenic differ-
entiation, and not for any other lineages. Intriguingly,
higher first seeding stiffness values for shorter periods of
time might accelerate an MSC towards lineage commit-
ment. TUBB3 expression approaches the steady state
quickly following stimulation on a 30 kPa substrate for a
relative time of 0.5 (Fig. 5a, pink line). Compare this to
the differentiation characteristics of an MSC seeded only

on a 0.3 kPa substrate (Fig. 5a, black line); the latter
takes a longer time to differentiate.

Feedback signaling onto the effective substrate adhesion
area
Mechanotransduction pathways may contain positive
feedback loops in which integrin engagement activates
actomyosin cytoskeleton contractility, resulting in mor-
phological changes affecting the adhesion area of the
substrate [1, 17, 18, 23–27]. Here we assess the import-
ance of such feedback. Figure 6 shows the relative expres-
sion levels of the lineage-specific genes at steady states for
a range of substrate stiffness values. In Fig. 6a, we block
the feedback from TUBB3 onto the effective substrate ad-
hesion area. We see that the bistability that was observed
in Fig. 3 is no longer present: no hysteresis effect can be
seen when the substrate stiffness is increased or decreased
(illustrated by the blue and red lines). Thus, no mechan-
ical memory effect remains for TUBB3 during MSCs dif-
ferentiation. Similar results are obtained for PPARG
(Fig. 6b), MYOD1 (Fig. 6c) and RUNX2 (Fig. 6d) when the
final seeding stiffness is 0.9 kPa, 10 kPa and 16 kPa, re-
spectively. The mechanical memory of the genes disap-
peares when the feedback loops are removed. Collectively
our simulation results illustrate that the feedback loops
downstream of the stiffness of substrates are necessary for
the mechanical memory.

a c

b d

Fig. 6 The MSC network precludes multistability when feedback loops are blocked. Shown are the steady states of TUBB3 (a), PPARG (b), MYOD1
(c), and RUNX2 (d) under different stiffness values. In each figure the x-axis denotes the stiffness and the y-axis denotes the relative expression
levels of specific lineage genes at steady states (black lines). The blue lines illustrate how the relative gene expression at the steady state changes
as the stiffness increases. The red lines illustrate how the relative gene expression level at the steady state changes as the stiffness decreases
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Noise can induce fate switching during MSC
differentiation
There is inherent noise in gene expression dynamics
[43, 44]. We employ a stochastic differential equation
(SDE) model (described in Methods) to study the effects
of gene expression noise on MSC differentiation [45, 46].
We find that SDE simulations broadly recapitulate the re-
sults obtained in the deterministic case, however under
certain conditions fate switching is observed. In Fig. 7 we
simulate a system of SDEs based on the deterministic
model with multiplicative noise added to the expression
level of each gene; blue and dark green lines describe the
relative gene expression under the deterministic model,
while pink and black lines describe analogous results
under the SDE model. We vary the initial seeding stiffness
while keeping the second seeding stiffness constant at 12
kPa. In the deterministic case, we see that MYOD1 is
expressed when the value of the initial stiffness is 12 kPa,
and not when the value is 34 kPa. Conversely, RUNX2 is
not expressed at an initial stiffness of 12 kPa, but is
expressed when the initial stiffness is 34 kPa: here stem
cells are differentiating according to mechanical memory.
In the stochastic case, a different picture emerges. First

we note that the memory effect observed for osteogenic
differentiation in the deterministic case (driven by
RUNX2 expression) is preserved under the stochastic
model (Fig. 7 black line). However, in the stochastic case,
at 12 kPa, MYOD1 is expressed transiently: as its expres-
sion declines to zero, RUNX2 is turned on. Thus noise
has induced a fate transition between myogenic and
osteogenic lineages. At 34 kPa no such transitions are
observed: RUNX2 is expressed constitutively.

Discussion
Mesenchymal stem cell fate can be controlled by mech-
anical dosing [1]. Mechanical memory (past mechanical
dosing) also affects stem cell fate, particularly when the
initial substrate is stiff [8], it is difficult however to ex-
perimentally test the effects of mechanical memory over
a wide range of culture conditions. Here we have pre-
sented a mathematical model that allows such tests to
be performed, producing several striking predictions.
We first assessed whether the model is able to recapitu-
late experimental studies, and find that it does agree
with evidence showing MSC differentiation into neurons
or adipocytes on softer substrates, and myocytes or oste-
oblasts on stiffer substrates. We then analyzed model be-
havior over longer timescales, and found that a
mechanical memory region exists for each of these
MSC-derived cell lineages, with substantial variation in
the memory stiffness range for each cell fate. Previously,
a memory region has only been observed during osteo-
genic differentiation, and even then, only qualitative as-
sessment of its behavior was made. We are able to
provide bounds on the substrate stiffness ranges permis-
sive of memory effects for all four lineages.
Upon re-seeding MSCs onto a second substrate, the

stem cells differentiate according to mechanical memory
under certain conditions. We predict that (in addition to
the stiffness of the first substrate) the duration of the
first seeding also directly influences stem cell memory.
By changing only the duration of the initial seeding we
can directly influence cell fate. The number of fates ac-
cessible to the MSC can also be controlled by the final
seeding stiffness. Landscape analysis demonstrates that,

Fig. 7 Stochastic gene expression dynamics under different stiffness conditions. The green and blue lines depict the relative expression levels of
genes from the deterministic model. The magenta and black lines depict the relative expression levels of genes from the stochastic differential
equation model with noise term ~ N(0,0.05). Blue and magenta lines represent a first-seeding stiffness of 12 kPa, green and black lines represent a
first-seeding stiffness of 34 kPa. The final seeding stiffness is 12 kPa in all cases
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for a constant first seeding stiffness and duration, a
higher second seeding stiffness limits the number of
MSC fates accessible, and that a sufficiently low final
seeding stiffness is permissive of differentiation into all
four cell fates. We also found that the feedback loop
connecting lineage-specific genes to the effective surface
adhesion area is critical for the mechanical memory of
MSC differentiation. This might be due to integri-
n—substrate binding, or morphological changes that
occur upon differentiation [1, 3, 7, 17].
As well as their direct relevance for in vitro studies,

our model predictions also have important implications
for the design of regenerative therapeutics. A major
challenge here is lack of precision in cell fate control fol-
lowing transplantation. A better understanding of the re-
lationship between mechanical conditions, culture
duration, and stem cell fates is needed. By defining the
substrate stiffness limits that regulate MSC fates, this
study provides means to design experimental protocols
that constrain cells to be confined within fate boundar-
ies, thus avoiding differentiation towards an undesirable
fate [47–50]. Mechanical memory could be employed
advantageously here, e.g. by preconditioning MSCs via
mechanical dosing. An improved understanding of the
MSC mechanotransduction pathway will also affect our
ability to control multipotency, and should enable us to
better culture undifferentiated MSCs in vitro.
In order to study additional effects of the mechanotrans-

duction pathway on stem cell fate, a model that describes a
larger regulatory network is needed. Cell-cell interactions
have not yet been incorporated into our model, although
there is a large body of work detailing the importance of
the microenvironment (i.e. the effects of cell-cell interac-
tions and of the niche) on stem cell differentiation [30, 51].
In addition, we have chosen a small set of four lineage-
specific genes in order to minimize the size of the model’s
parameter space. Clearly a greater number of genes are in-
volved in the regulation of MSC fate; without a description
of this larger transcriptional network we will not be able to
describe nuances of mechanically-induced MSC fate dy-
namics. However, we believe that the dynamics – and the
attractors corresponding to differentiated cell states ob-
served here constitute core pathway mechanisms that
would still underlie cell fate decisions in a larger network.

Conclusions
In this study we sought to investigate the mechanisms of
control exerted via mechanical forces upon mesenchymal
stem cells during culture and differentiation. Simulations of
the gene expression dynamics under different mechanical
dosing conditions have led to several predictions. We found
that non-cooperative gene regulation is the most plausible
mechanism to describe MSC differentiation and we predict
that mechanical memory is a general mechanism affecting

all of the MSC-derived lineages in this model. We found
that the duration of the initial culture and the substrate
stiffness during this initial culture are particularly crucial in
determining the MSC fates. In addition, we were able to
show that a lower final-seeding substrate stiffness permitted
a greater number of MSC fates.
Through careful analysis, the ever-expanding body of

high-throughput transcriptomic data will enable the
study of ever-more complex gene networks. Both the
MSC fate transcriptional network structure and the dy-
namics of the network need to be inferred from data.
Spatial interactions, e.g. arising from niche-mediated
effects on MSCs, may necessitate a move towards a suit-
able model framework such as partial differential equa-
tions or cell-based (e.g. Cellular Potts) models. Once a
clearer picture emerges, it will be possible to extend our
model with the incorporation of relevant new signaling
interactions. In doing so, we hope to provide further
insight into the complex networks of regulation under-
pinning mesenchymal stem cell fate.

Methods
A dynamical model of mesenchymal stem cell fate
We model a simplified gene regulatory network that un-
derpins MSC fate with ordinary differential equations
(ODEs) [31, 32].

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ TUBB3½ �=K2ð Þn2

1þ S=K1ð Þn1 þ TUBB3½ �=K 2ð Þn2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
10

þ k2
S=K 3ð Þn3 þ PPARG½ �=K 4ð Þn4

1þ S=K3ð Þn3 þ PPARG½ �=K4ð Þn4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
11

þ k3
S=K 5ð Þn5 þ MYOD1½ �=K6ð Þn6

1þ S=K5ð Þn5 þ MYOD1½ �=K 6ð Þn6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
12

þ k4
S=K7ð Þn7 þ RUNX2½ �=K 8ð Þn8

1þ S=K 7ð Þn7 þ RUNX2½ �=K8ð Þn8|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
13

−d1 SAA½ �

ð1Þ

d YAPTAZ½ �
dt

¼ k5 SAA½ �|fflfflfflffl{zfflfflfflffl}
1

−d2 YAPTAZ½ � ð2Þ

d TUBB3½ �
dt

¼ k6
SAA½ �=K9ð Þn9

1þ SAA½ �=K9ð Þn9 þ YAPTAZ½ �=K10ð Þn10|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2;3

−d3 TUBB3½ �

ð3Þ
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d PPARG½ �
dt

¼ k7
SAA½ �=K11ð Þn11

1þ SAA½ �=K 11ð Þn11 þ YAPTAZ½ �=K 12ð Þn12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4;5

−d4 PPARG½ �

ð4Þ
d MYOD1½ �

dt
¼ k8

YAPTAZ½ �=K13ð Þn13
1þ SAA½ �=K14ð Þn14 þ YAPTAZ½ �=K13ð Þn13|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

6;7

−d5 MYOD1½ �

ð5Þ
d RUNX2½ �

dt
¼ k9

YAPTAZ½ �=K15ð Þn15
1þ SAA½ �=K 16ð Þn16 þ YAPTAZ½ �=K15ð Þn15|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

8;9

−d6 RUNX2½ �

ð6Þ
Where S and [SAA], are the relative levels of the

stiffness (input to the system) and of the effective stiff-
ness adhesion area, respectively. [YAPTAZ], [TUBB3],
[PPARG], [MYOD1], and [RUNX2] denote the relative
concentrations of YAP/TAZ, TUBB3, PPARG, MYOD1,
and RUNX2. Since concentration and time in the model
are given in relative units, i.e. are dimensionless, then all
parameters in the above equations are also dimensionless.
di (i = 1, 2,…, 6) in Eqs. (1,2,3,4,5 and 6) are the degrad-
ation rates of the corresponding genes/factors. The terms
denoted by the label (1, 2, …, 9) under the brackets in
Eqs. (1,2,3,4,5 and 6) are the active/inhibitive regula-
tions acting on [SAA], [YAPTAZ], [TUBB3], [PPARG],
[MYOD1], and [RUNX2], where the numbers in rect-
angle boxes are consistent with the circled indices
shown in Fig. 2 [52]. All values of parameters in Eqs.
(1,2,3,4,5 and 6) shown in Table 2 are estimated or
approximated according to the behaviours that we
sought to describe. Parameters values are fit to quali-
tative features of the biological system [1, 6, 8, 9, 19]
(See Additional file 1). The data required performing
full inference of the parameters are as-yet unavailable,
however the results of our sensitivity analysis show
that the models results do not depend crucially on
specific values of parameters of the model.

Cooperative regulation model
The terms (10, 11, 12, 13) in Eq. (1) are based on the non-
cooperative regulations of MSCs stiffness sensing. Mean-
while, we model the regulations as the cooperative one and
Eq. (1) is rewritten below [53].
Rehfeldt et al showed the “switch-like” nonlinear rela-

tionship between S and SAA expanding from 0.5 kPa to

much large stiffness (>60 kPa) and TUBB3, PPARG,
MYOD1, and RUNX2 are turned on in their specific
ranges of stiffness, which are relatively disjoint [52, 53].
In particular, the stiffness range for the myogenic differ-
entiation is far away from the one for adipogenic differ-
entiation. Based the properties of the system, we can
rewrite our model into four different submodels under
the corresponding stiffness ranges. They are shown as
follows.

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ TUBB3½ �=K2ð Þn2

1þ S=K1ð Þn1 þ TUBB3½ �=K2ð Þn2 −d1 SAA½ �

ð8Þ

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ PPARG½ �=K3ð Þn3

1þ S=K1ð Þn1 þ PPARG½ �=K3ð Þn3 −d1 SAA½ �

ð9Þ

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ MYOD1½ �=K4ð Þn4

1þ S=K1ð Þn1 þ MYOD1½ �=K4ð Þn4 −d1 SAA½ �

ð10Þ

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ RUNX2½ �=K5ð Þn5

1þ S=K1ð Þn1 þ RUNX2½ �=K5ð Þn5 −d1 SAA½ �

ð11Þ

The difficulty is to determine the values of K1. If K1 is
less than 1000, the hill function in Equation (7) is satu-
rated for high stiffness levels (> 10,000) and it means
that the models cannot distinguish the myogenic differ-
entiation and osteogenic differentiation since Eqs. (10

and 11) both approach the limit d SAA½ �
dt ¼ k1−d1 SAA½ � . If

K1 is greater than 10,000, then the model cannot de-
scribe the system for low stiffness levels (< 1000) with
that TUBB3 and PPARG cannot express under the low
stiffness levels since Eqs. (8 and 9) will respectively ap-
proach the limit:

d SAA½ �
dt

¼ k1
TUBB3½ �=K 2ð Þn2

1þ TUBB3½ �=K2ð Þn2 −d1 SAA½ �

d SAA½ �
dt

¼ k1
PPARG½ �=K 3ð Þn3

1þ PPARG½ �=K3ð Þn3 −d1 SAA½ �

Thus the cooperative regulation model is unable to ac-
curately describe the MSC differentiation system over
the range of stiffness values considered.

d SAA½ �
dt

¼ k1
S=K1ð Þn1 þ TUBB3½ �=K2ð Þn2 þ PPARG½ �=K3ð Þn3 þ MYOD1½ �=K4ð Þn4 þ RUNX2½ �=K5ð Þn5

1þ S=K1ð Þn1 þ TUBB3½ �=K2ð Þn2 þ PPARG½ �=K3ð Þn3 þ MYOD1½ �=K4ð Þn4 þ RUNX2½ �=K5ð Þn5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
10;11;12;13

−d1 SAA½ � ð7Þ
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Sensitivity analysis
In order to calculate the sensitivities of the parameters
shown in Table 2 with respect to the memory and multi-
stability of the system, we sample 1000 values between
0.2 kPa and 42 kPa; they are taken as the stiffness of the
system and they are vectorized as the stiffness vector Sb.
We then calculate the steady states, Qb

Upper and Qb
Lower,

corresponding to the steady states on the lower bifur-
cation branch (indicated by blue arrowhead lines in
Fig. 3c-f, and to the steady states on the upper bifur-
cation branch (indicated by red arrowhead lines in
Fig. 3c-f) for each of the genes: TUBB3, PPARG,
MYOD1, and RUNX2, using the parameters in Table 2.
In order to calculate the sensitivity of each parameter,
we perturbe it 1000 times under the constraint of CV
(coefficient of variance) = 0.05, and calculate the steady
states QP

Upper (with the same initial conditions as Qb
Upper),

and Qp
Lower (with the same initial conditions as Qb

Lower).
We perform such comparisons – for each of the four
genes – for a total of 41 parameters and 1000 pertur-
bations, thus for the parameter vector Pi

j (i = 1, 2,…,
41; j = 1, 2,…, 1000), i.e. the j-th perturbation of the i-
th parameter. We count the number (Ni) of Pi

j that
satisfies ||QP

Upper −Qb
Upper||2 + ||QP

Lower −Qb
Lower||2 <

TOL.The tolerance, TOL, is set such the perturbed
parameter vector gave rise to the same number of
steady states as for the unperturbed case (i.e. multi-
stability and the memory effect is maintained; we set
TOL = 4). The robustness Ri of the i-th parameter is
defined as Ni

10% and the sensitivity Si of the i-th par-

ameter is 1− Ni
10% . The robustness values for each of

the 41 parameters are shown in the bar graph (See
Fig. 3g) and the index of the parameters in the graph
is consistent with the one in Table 2. Four of them
are sensitive than the rest and they are marked by
yellow arrows in the following bar graph.

Steady state analysis
We compute the steady states of the dynamical system
under different S in Eqs. (1, 2, 3, 4, 5 and 6). Here we
use the continuation method to compute the steady
states and their branches [54, 55].

Landscape potential using a mean field self-consistent ap-
proximation and Gaussian approximation
Here we derive an approximation for the potential
energy of the system. Starting from the Fokker-Planck
equation, we calculate the steady state probability dis-
tributions using a self-consistent mean field method
[56–58]. The probability function P(X,t) satisfies the
following diffusion equation:

∂P X; tð Þ
∂t

¼ −
∂
∂X

F X; Sð ÞP X; tð Þ½ �

þ D
∂2

∂X2 d Xð ÞP X; tð Þ½ � ð12Þ

where F(X,S) and d(X) are the drift and diffusion part
respectively and the noise is weak, i.e. D<< 1. Note that
X is a vector of species ([SAA],[YAPTAZ],[TUBB3],[P-
PARG],[MYOD1],[RUNX2]) but we have dropped the
arrow notation for convenience below. We factor the
original probability function using the self-consistent

mean field approach [59], P X; tð Þ ¼
Yn
i¼1

P Xi; tð Þ to re-

duce the computational complexity of solving the ori-
ginal equation on the probability, similar to a previous
study [57]. We use the Gaussian distribution to approxi-
mate the true distribution [57], leading to a description
for the mean and variance of the gene expression:

X
′
tð Þ ¼ F X tð Þ; S� � ð13Þ

σ′ tð Þ ¼ σ tð ÞAT tð Þ þ A tð Þσ tð Þ þ 2D X tð Þ� � ð14Þ

where X is the mean value of X(t), σ(t) is the variance

matrix, the matrix element αij (t) of A(t) is
∂Fi X tð Þð Þ
∂X j tð Þ , i.e. A

is the Jacobian matrix.
Since we consider the steady states, then we need to

compute X
jð Þ
∞ð Þ and σ(j)(∞) from X

′
tð Þ ¼ 0 and σ′(t) =

0, for j = 1,2,…,m respectively, where m is the number of
basins of attraction. We consider only diagonal elements
of σ(j)(∞) from mean field splitting approximation. For

each variable Xi
jð Þ
∞ð Þ, the probability distribution can be

estimated using the mean and variance and based on
Gaussian approximation [57, 60].

P jð Þ Xj;∞
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2πσ jð Þ
p

∞ð Þ
exp −

XiX
jð Þ
i ∞ð Þ

h i2
2σ jð Þ ∞ð Þ

2
64

3
75 ð15Þ

If m = 1, we can use Eq. (6) to compute the probability
distribution of the single basin of attraction. If m > 1, then
the system permits multistability, and for each basin of at-
traction we compute its probability distribution. The
probability function thus becomes a weighted sum of the
probabilities given for each basin of attraction,

P Xi;∞ð Þ ¼
Xm
j¼1

ωjP
jð Þ Xi;∞ð Þ

where ωj is the weighting coefficient of the j-th basin.
Assume m attractors, then the number of simulations
that end up in each attractor is N1, N2, …, Nm. The
weighting coefficient for the j-th basin is then calculated
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as ωj ¼ Nj=
Xm
i¼1

Ni . Finally, we calculate the potential

landscapes based onU(X) = − ln P(X,∞) [61, 62].

A stochastic differential equation model
A stochastic differential equation (SDE) model for the
regulatory network can be constructed via the addition
of a noise term [43, 45, 46, 63]:

dX tð Þ ¼ F X tð Þ; Sð Þdt þ ηX tð ÞdW tð Þ ð16Þ

where W(t) denotes the scalar white noise (or Wiener
process), and η is the noise coefficient.
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