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Abstract

Time‐lapse seismic amplitude differences and travel time shifts, obtained 
while monitoring enhanced oil recovery at Cranfield, Mississippi, reveal 
coherent changes that are associated with the injection of carbon dioxide. 
Rock physics modeling highlights the importance of the oil, brine, and gas 
content of pore fluids prior to the injection of carbon dioxide. For example, 
compressional velocity changes due to the injection of carbon dioxide can 
drop from 300 m/s to less than 100 m/s as the percentage of oil increases 
from 1% to 50%. Predictions based upon a new technique for modeling wave
propagation in a poroelastic medium containing an arbitrary number of 
fluids, coupled with multicomponent numerical reservoir modeling at 
Cranfield, reproduce the general pattern of observed seismic amplitude 
changes and travel time shifts. In particular, time‐lapse amplitude changes 
suggest a significant and widespread lowering of compressional velocities 
due to the injection of CO2 into an aquifer bounding the oil rim of the 
reservoir. It appears that the large‐scale variations in preexisting pore fluid 
content have a major influence on seismic velocity changes, even in the 
highly heterogeneous reservoir at Cranfield.

1 Introduction

The geological storage of carbon dioxide has been proposed as a means to 
slow human‐induced climate change. Several sites have been devoted to the
underground sequestration of carbon dioxide at a variety of scales, from 
smaller volumes for research purposes as at Ketzin in Germany (Ivanova et 
al., 2012) and Otway in Australia (Pevzner et al., 2017) to large industrial 
scale commercial enterprises storing millions of tonnes, such as at Sleipner 
in Norway (Chadwick et al., 2014; Eiken, 2019) and In Salah in Algeria 
(Ringrose et al., 2013; Vasco et al., 2018). Currently, economic 
considerations favor geological storage that is associated with enhanced oil 
recovery (EOR), involving the injection of carbon dioxide into existing oil and 
gas reservoirs, such as at the Weyburn CO2 flood in Canada (White et al., 
2011). This approach to carbon capture and storage is likely to increase with 



the passage of substantial tax credits linked to the secure geological storage 
of this greenhouse gas (Edwards & Celia, 2018).

Due to its physical properties and chemical reactivity, the behavior of carbon
dioxide can be very different from commonly injected fluids such as water. 
Thus, the evolution of stored carbon dixoide is an active area of research. 
Monitoring the movement of injected CO2 and its impact on subsurface 
properties contributes to our understanding of its fate upon leaving the well. 
To date, there have been relatively few published examples of 
comprehensive seismic monitoring of injected carbon dioxide for either 
storage or EOR, as compared to other processes such as waterflooding. The 
most complete and effective seismic monitoring has occurred at the Sleipner
field, a carbon storage project in the North Sea (Arts et al., 2008; Boait et al.,
2012; Eiken, 2019). Time‐lapse seismic monitoring has also proven useful at 
other sites, such as the In Salah storage project (Gibson‐Poole & Raikes, 
2010; Zhang et al., 2015) and the EOR project at Weyburn (White et al., 
2011; White, 2013a, 2013b), as well as at the Aquistore field site (White et 
al., 2015). The studies span a diversity of injection strategies and geological 
environments, from single well injection of a small volume of carbon dioxide, 
to large‐scale projects involving many wells. Most sites consist of 
sedimentary sequences of sandstones and shales that vary in the degree of 
lateral heterogeneity and reservoir thickness. However, carbon dixoide EOR 
is also practiced in carbonate settings, and there have been some 
comprehensive seismic monitoring programs to determine the effectiveness 
of the process (Hoversten et al., 2003; Wang et al., 1998) and laboratory 
experiments to estimate the changes in seismic wave speed as carbon 
dioxide is introduced (Njiekak et al., 2013).

Heterogeneity is a confounding issue at most sites, and characterization is 
often inadequate for determining the detailed changes in carbon dioxide 
saturation both spatially and temporally. At Cranfield, heterogeneity largely 
takes the form of sand channels and incised conglomerates that are not 
resolved by seismic, wireline log, or core interpretations (Kordi, 2013). 
Finally, the entire suite of factors controlling the seismic response to the 
injection of carbon dioxide in the complicated settings associated with EOR 
are not always well understood. For example, there are geochemical effects 
introduced by the carbon dioxide reacting with bonding cements that depend
upon the chemical composition and distribution of the cement (Gaus, 2010).

In this paper we reexamine seismic time‐lapse monitoring data associated 
with the injection of large amounts of carbon dioxide at the Cranfield site in 
Mississippi (Carter et al., 2014; Carter & Spikes, 2013; Ditkof, 2013; Zhang et
al., 2013a, 2014), in light of a large‐scale multicomponent reservoir 
simulation (Alfi & Hosseini, 2016; Alfi et al., 2019). This combination of 
seismic analysis and fluid flow modeling is a follow‐on effort to the previous 
studies by Zhang et al., 2013a (2013a, 2014), (Ditkof, 2013), and Carter 
(Carter & Spikes, 2013; Carter et al., 2014) to see if we can better 
understand the primary mechanisms responsible for time‐lapse changes and 



improve our predictions of the location of such changes, possibly reducing 
discrepancies between modeling results and observations. We extract simple
and direct measures from the seismic data, the seismic amplitude changes 
for reflections from the top of the reservoir and time shifts incurred by 
seismic waves propagating through the reservoir, and compare them with 
predictions from the reservoir simulation. Due to the complexities noted 
above, our main goal is to establish the important factors determining the 
seismic response. To account for the variability associated with imperfect 
knowledge of the fluid distribution, we consider simple end‐member rock 
physics models, as well as a more sophisticated multicomponent extension 
of Biot theory (Biot, 1956a, 1956b), and compare their predictions to the 
observed changes.

2 Field Geology

2.1 Geologic Setting

The Cranfield reservoir is characterized by a largely circular anticline situated
in southwestern Mississippi, the result of underlying salt tectonics. The D‐E 
sandstone unit of the lower Tuscaloosa Formation represents the producing 
horizon and is the target for the injection of carbon dioxide. The unit consists
of incised conglomeratic and sandy channel facies with variable cementation
(Kordi, 2013; Lu et al., 2012a). As such, the formation is composed of a fairly 
heterogeneous distribution of conglomerates, sandstones, and muddy 
sandstones generated by meandering channels (Lu et al., 2012a), with a 
thickness that varies between 14 and 26 m. As a result of the anticlinal 
structure, the top of the reservoir varies in depth between 3,060 and 3,193 
m below the ground surface with dips of up to 3°. From well logs it appears 
that thin mudstone layers separate the conglomerates and sandstones into 
two to four subunits (Hosseini et al., 2013). However, the lateral extent of 
the mudstones is unknown, and they do not appear to be field wide. Broadly,
the Lower Tuscaloosa is subdivided into a somewhat homogeneous Basal 
Massive sandstone member that is conformably overlain by the more 
heterogeneous Stringer sandstone member. The formation is bounded below
by a regional unconformity and overlies shales and sandstones of the 
Washita‐Frederickburg Group (Kordi, 2013). It is overlain by the Middle 
Tuscaloosa, some 60 m of mudstone that forms a pervasive cap over the 
reservoir.

2.2 Field Structure and Development

The field was discovered in 1943, and the first producing well was completed
in 1944 (Alfi & Hosseini, 2016; Alfi et al., 2019). The oil forms a ring around 
the anticline, below an extensive gas cap. Pressure is maintained by a 
surrounding aquifer, providing a constant pressure boundary downdip of the 
hydrocarbons. Over the period of primary production, some 93 wells were 
active in the field. The reinjection of produced gas from the Tuscaloosa and 
surrounding formations was used to maintain reservoir pressure (Weaver & 
Anderson, 1966). However, the reservoir pressure did gradually decline, and 



the aquifer encroached upon the oil rim. With increasing water cut the field 
became too costly to operate, and the gas cap was drawn down and sold, 
starting in 1960. By 1966 production from the field ended, the wells were 
plugged, and the field abandoned. Over the intervening decades the aquifer 
drive from the edges of the field returned the pressure to preproduction 
levels.

Starting in 2008 Denbury Onshore LLC began an EOR program involving the 
injection of carbon dioxide from the nearby Jackson Dome (Lu et al., 2012a). 
Between 2008 and 2015 more than 5 million metric tonnes of newly 
purchased CO2 was pumped into the D‐E sandstone unit of the lower 
Tuscaloosa Formation. Injection started with two wells in mid‐2008 and 
increased to 24 wells by 2011 in semi‐five‐spot patterns with the continuous 
injection of carbon dioxide. The production wells were designed on a self‐lift 
principle to take advantage of the reservoir pressure increase due to the 
injection of carbon dioxide (Hosseini et al., 2013). Initial development began 
at the northern end of the field and proceeded clockwise around the oil ring.

2.3 Reservoir Monitoring

The carbon dioxide EOR project at Cranfield was notable for the 
comprehensive monitoring effort conducted by over 25 organizations as part 
of the Department of Energy's Regional Carbon Sequestration Partnerships 
program (Hovorka et al., 2013). The multiyear program involved linked field 
measurements and modeling to develop best practices for assessment and 
monitoring that could be used by future surveillance efforts. Hovorka et al. 
(2013) describe the extensive hydrological, geophysical, and geochemical 
techniques that were employed to characterize the behavior and fate of the 
injected carbon dioxide. Our focus will be on the surface seismic data used to
estimate time‐lapse changes in the reservoir and on compositional numerical
reservoir modeling used to calculate changes in fluid saturations due to 
production and injection.

2.4 Surface Seismic Observations

Prior to the injection of carbon dioxide, Denbury Onshore contracted a field‐
wide seismic survey to aid in the subsequent field development. This survey 
was not designed with time‐lapse monitoring in mind. With Department of 
Energy funding, an initial survey of the northeastern corner of the field was 
concluded in 2007. A follow‐on survey was conducted 3 years later in 2010 
over the same portion of the field, a reshoot of the baseline, in an effort to 
extract time‐lapse changes. Both surveys utilized an explosive source with a 
frequency content from around 5 Hz to over 100 Hz with an amplitude peak 
in the 25‐ to 30‐Hz range (Ditkof, 2013, p. 48). The baseline survey consisted
of a grid of 222 in‐lines and 243 cross‐lines, for a total of 40,278 traces. The 
repeat or monitor survey was shot using 222 in‐lines and 233 cross‐lines. 
Both surveys had bin spacings of roughly 25 m by 25 m. The shot points 
were colocated as accurately as possible, using magnetic tags to facilitate 
reoccupation of the same site. In the interim, between the two surveys, over 



two million tons of supercritical carbon dixoide was pumped into the Lower 
Tuscaloosa Formation.

The two surveys were processed commercially by the contractor GeoTrace 
using identical workflows and correcting the 2007 survey for static errors in 
order to match the data from 2010 (Ditkof, 2013; Ditkof et al., 2013). The 
processing workflow, listed in Ditkof et al. (2013), included refraction and 
residuals statics, velocity analysis and prestack time migration, and stacking.
A matched filter was derived from the baseline data and applied to the 
monitor survey to enhance the repeatability, resulting in similar average 
spectral content (Zhang et al., 2013a). Measures of correlation between the 
2007 and 2010 surveys, discussed in Ditkof et al. (2013) and Zhang et al. 
(2013a), indicate high correlations between 0.9 and 1.0 in the central area of
the surveys and good repeatability, suggesting useful information on time‐
lapse changes. The outer edges of the overlapping survey region have much 
lower correlations and poor repeatability, due to low fold and poor residual 
statics, and should not be included in any time‐lapse analysis (Ditkof, 2013, 
p. 58).

The reservoir is characterized by a significant decrease in velocity leading to 
a large negative trough in the seismic traces (Zhang et al., 2013a). Because 
the reservoir is thin, the top and bottom reflections interfere to some degree.
However, it is possible to image spatial variations in the thickness of 
sandstone bodies that represent channel sands and stacked point bars (Lu et
al., 2012a). An analysis of spectral content of the seismic data was used to 
better define the sandstone accumulations in the reservoir (Kordi, 2013), but
the bodies are generally too thin to be resolved uniquely (Lu et al., 2012a). It
is possible to identify the top and bottom reflections from the reservoir and 
to estimate the depth variations of these interfaces with their evident 
anticlinal structure (Figure 1). Ditkof (2013) compared the estimates of the 
boundary locations for the 2007 and 2010 surveys and found no significant 
differences between the two surveys except at a bounding fault where a 
mismatch may have occurred.



2.5 Reservoir Modeling and Characterization

Reservoir simulation has been an important component of the Department of
Energy's Cranfield project. For example, a recent full field simulation and 
characterization study utilized past production data, including average 
reservoir pressure and monthly oil and gas production rates and water cut, 
to develop an initial reservoir model (Alfi & Hosseini, 2016; Alfi et al., 2019). 
The approach is an extension of the more localized study of Hosseini et al. 
(2013). That work adopted a facies‐based stochastic methodology in order to
match the available historical production data. Four sandstone and four shale
operational facies were derived, each with a constant porosity, permeability, 
and geobody shape [Hosseini et al. (2013). Commercial software was used to
generate multiple, equally likely, geostatistical realizations featuring 
channels and barriers. Initially, the facies were conditioned to hard data at 
the wells and calibrated to match monthly oil and gas production rates, 
water cut, and average reservoir pressure for the early life of the field from 
1944 until 1966 (Alfi & Hosseini, 2016). A second step involved matching oil, 
water, and gas production from June 2008 until August 2010 by changing 
parameters in the model that will not affect the initial history match. Thus, 
properties such as the minimum miscibility pressure, density, and viscosity 
of carbon dioxide in the reservoir were varied to fit the observations. The 
resulting model fit the EOR production data reasonably well. In addition, the 
model was able to produce an acceptable match to the CO2 breakthrough 
times (Alfi & Hosseini, 2016).

3 Methodology



In this section we outline the techniques underlying our seismic data 
analysis. For the most part, the methods that we shall employ are 
conventional seismic data analysis with modifications for our application to 
the Cranfield site. Our time shift estimates follow from the correlated leakage
method (CLM) of Whitcombe et al. (2010). They represent the changes in 
two‐way travel time between baseline and monitor traces, for a time window 
located just below the reservoir interval. The time shifts are calculated after 
first aligning the traces using reflections from a time interval just above the 
reservoir. For our modeling of the seismic response to fluid injection and 
production, we extend conventional Biot theory to allow for an arbitrary 
number of fluid components. In the next section we provide additional details
related to our application to the Cranfield field observations.

3.1 Estimating Seismic Amplitude Changes

At the Cranfield site the seismic data are provided as a pair of three‐
dimensional cubes with two spatial dimensions, the cross‐line and in‐line 
directions, and one time dimension representing two‐way travel time. The 
baseline cube contains seismic traces from a survey prior to the injection of 
carbon dioxide while the monitor cube was obtained from seismic data 
gathered roughly 2 years after the start of injection. The injection, though it 
started in July 2008, was staged so that areas in the northeastern part of the 
field had experienced less than a year of injection by the time of the follow‐
on survey in 2010. The two data sets were processed independently, which 
limited the precision of the estimated time‐lapse changes. Estimates of 
seismic amplitude changes follow from direct differencing of the baseline 
and monitoring traces of the seismic cubes. However, before this step, one 
must correct for differences that are unrelated to changes in the reservoir. 
Most seismic surveys rely on temporary arrays of receivers, rather than on 
permanent stations, and thus the exact geometry of the initial survey is not 
replicated, leading to differences that are not related to the injection of 
carbon dioxide. Differences in instrumentation are also possible, and seismic 
source repeatability is an issue. Furthermore, due to seasonal and climatic 
factors, the near surface conditions can also differ and produce differences 
between the baseline and monitor traces. In order to mitigate these effects, 
the baseline and monitor surveys are processed in such a manner that the 
differences due to nonreservoir factors are minimized. Such cross‐
equalization attempts to correct for differences in frequency content, 
amplitudes, and variable time shifts that are not related to reservoir 
processes.

The next step is to determine the seismic amplitudes that are associated 
with reflections from the reservoir itself. Such reflections are typically 
determined from wells logs and then picked from a continuous set of peaks 
or troughs defining the boundary. In the case of the Cranfield data we 
consider the reflection from the top of the reservoir. The amplitude change is
assumed to be due to changes in the velocity of the reservoir induced by 
fluid injection and production. This assumption is supported by both 



crosswell seismic imaging and by vertical seismic profile monitoring (Ajo‐
Franklin et al., 2013; Daley et al., 2014). For a thin reservoir, such as the D‐E 
sandstone unit of the lower Tuscaloosa Formation at Cranfield, there may be 
interference between the top and bottom reflection of the reservoir (Zhang 
et al., 2014).

3.2 Travel Time Shifts

Velocity changes within the reservoir will also change the propagation time 
for seismic waves traveling through the reservoir, producing time shifts for 
reflections from interfaces beneath the reservoir (Zhang et al., 2013b). Such 
time shifts have been observed and utilized at other fields, such as Sleipner 
(Furre et al., 2015) and Weyburn (White et al., 2011; White, 2013a). Note 
that the factors cited above, changes in sensor location, near surface 
velocity variations, and geomechanical effects can also lead to time shifts 
throughout the seismic section. Several of these factors are dealt with at the 
cross‐equalization stage, where global and distinct trace time shifts may be 
introduced to account for near surface and geomechanical processes. As an 
additional step, we align a segment of the traces, for a window that extends 
from just above the reservoir to several reflectors above this boundary. We 
estimate and apply the time shift necessary to align the traces for this 
segment. We then apply that shift to the portion of the trace that is below 
the reservoir. The resulting time shift between the two traces for the window 
below the reservoir is assumed to be due to velocity changes within the 
reservoir at the location of the trace. Recall that the processing involved in 
stacking the seismic traces and generating the seismic cubes will introduce 
errors and artifacts in the travel time shifts, so the estimate is approximate 
(Kanu et al., 2016).

The CLM provides estimates of travel time shifts (Whitcombe et al., 2010) for
the time intervals above and below the reservoir. The technique was 
motivated by the observation that many images of seismic time‐lapse 
changes appear to contain a coherent pattern that leaks into the difference. 
The leakage can be attributed to two main sources, amplitude scaling 
differences and small time shifts that may vary over the image. The 
correlation leakage method seeks to estimate the time shifts by plotting the 
difference between the baseline and the monitor survey, against the 
difference between the average of the two surveys and a time shifted 
version of this average. The slope of a line fit to this plot provides an 
estimate of the time shift between the baseline and monitor surveys. The 
technique yields accurate estimates if the time shift between the traces is 
small, and there are no large amplitude variations or waveform changes 
between the two seismic surveys. One can normalize the traces within the 
window of interest in order to account for amplitude variations.

Though the description given above may sound complicated, the derivation 
is relatively simple. We present a slight modification of the derivation 
provided by Whitcombe et al. (2010). The primary assumption is that, within 



a time window of interest, a trace from the monitor survey M(t) is a time 
shifted version of the trace from the baseline survey B(t). Thus, if the 
baseline trace is B(t)=S(t), then the monitor survey is M(t)=S(t+τ), where τ 
is the shift within the time window. If we consider the difference between the
respective baseline and monitor surveys for an identical location, and within 
the time window of interest, then

(1)

Using a Taylor series expansion to approximate S(t+τ) gives

(2)

where the dots signify derivatives with respect to time. Now consider the 
average of the baseline and monitor surveys

(3)

and the average of these traces shifted by a time increment δt

(4)

Expanding both terms on the right‐hand side of equation 4 in a Taylor series,
to first order in δt, gives

(5)

Subtracting the average in equation 3 from that of equation 5 produces the 
reduced expression

(6)

A Taylor series expansion of the term  in equation 6 results in the 
representation of this difference as

(7)

Thus, if we form the ratio , the quantities in square 
bracket in equations 2 and 7 cancel and we are left with

(8)

Equation 8 describes a linear function in terms of the shift increment δt with 
the slope given by the inverse of the time shift τ between the two traces. 
Thus, we can fit a line to a set of points with components σ(t+δt)−σ(t) and 
M(t)−B(t) as a function of δt and use the slope of this line to determine τ 
(Whitcombe et al., 2010). This technique has been applied to both synthetic 
and field data and compared to several other methods, including standard 
cross‐correlation, a nonlinear inversion method (Rickett et al., 2007), 



dynamic warping (Hale, 2013), and multiscale and iterative refinement 
optical flow (Zhang & Du, 2016) for both prestack zero‐offset time‐lapse 
traces and poststack migrated time‐lapse traces (Kanu et al., 2016). The CLM
approach was found to work better then standard cross‐correlation and 
nonlinear inversion (Kanu et al., 2016; Whitcombe et al., 2010; Zhang et al., 
2013b)

3.3 Rock Physics Estimates

The saturation changes within the reservoir due to production and injection 
typically introduce changes in its elastic properties. For example, the 
injection of carbon dioxide into a brine saturated porous medium will lower 
the velocity of compressional waves that propagate across it. Such velocity 
variations also lead to changes in the reflective character of the reservoir 
over time. These time‐lapse variations may be used to monitor saturation 
changes, a common practice in oil and gas fields (Calvert, 2005). 
Fortunately, there are long‐standing theoretical approaches for estimating 
the changes in the elastic properties of a porous rock subject to changes in 
fluid content, based upon the work of Gassmann (1951) and Biot, (1956a, 
1956b). The approach gives acceptable results at the seismic frequencies 
that we will consider, roughly around 30 Hz.

There are other factors besides fluid saturation changes that can influence 
seismic properties within and around a producing reservoir. For example, 
geomechanical effects have been noted at the Cranfield site (Kim & Hosseini,
2013), but the observed seismic velocity changes associated with fluid 
pressure variations are small (Marchesini et al., 2017). Geochemical effects 
are also possible and can influence the moduli of reactive formations, but we
will not consider such processes at this time because they are thought to 
play a minor role at Cranfield (Lu et al., 2012b). Finally, we do not consider 
the amplitude changes that injected supercritical carbon dioxide can 
generate by increasing the seismic intrinsic attenuation.

3.3.1 Gassmann's Equations

The original formulation of Gassmann's theory, for a rock consisting of mono‐
mineralic spherical grains, provides a formula relating the bulk modulus of 
the unsaturated material, Ku, to the bulk modulus of the rock saturated with 
a fluid with bulk modulus Kfluid

(9)

where φ is the porosity and Kgrain is the bulk modulus of the grains (Smith et 
al., 2003). According to Gassmann's approach, the shear modulus of the 
saturated rock, Gsat, is not influenced by the presence of the pore fluid and 
thus Gsat=Gu, where Gu is the shear modulus of the unsaturated rock. The 
density of the rock is a simple weighted average of the solid and fluid 
densities



(10)

The compressional velocity for the saturated rock is given by standard 
expression (Aki & Richards, 1980)

(11)

The seismic velocity changes will influence the propagation time of elastic 
waves traveling through the reservoir. In addition, the saturations changes 
will alter the reflection coefficient of the layer by modifying its acoustic 
impedance

(12)

Gassmann's approach was originally developed for a single saturating fluid, 
and so the bulk modulus Kfluid and density ρfluid are simply identified with 
those of the fluid. If we wish to extend the approach to fluid mixtures, then 
we must adopt a strategy for averaging the bulk moduli of the fluid 
constituents. This is a subject of considerable depth (Mavko et al., 1998), and
we can only mention a few important points that relate to our analysis of the 
Cranfield data. The density of the composite fluid, ρfluid, is given by the 
saturation‐weighted sum of the component densities

(13)

where g, o, and w signify the gas, oil, and water phases, respectively. The 
bulk modulus for the composite fluid is more complicated because it depends
upon the distribution of the fluids at scales that are less than a seismic 
wavelength. Intuitively, one can understand how the strength of a composite
material can depend upon how the constituents are arranged with respect to
the direction of compression or extension. For example, assuming no flow 
between the fluids, if the components are a stack of layers perpendicular to 
the direction of propagation, then the strength of the composite is controlled 
by the weakest material and the effective modulus is given by

(14)

the Reuss average of the fluid moduli. This average is also appropriate for 
fluids that are well mixed within a representative elementary volume, such 
as a core. The Reuss average provides a lower bound on the composite fluid 
modulus. Alternatively, if the component fluids are distributed in layers 
aligned with the direction of propagation, then the effective modulus is 
controlled by the strongest material. The modulus for such a composite 
material is the weighted sum

(15)



an upper limit on the effective bulk modulus known as the Voigt bound. 
Similar considerations also apply to other directional processes such as heat 
flow in a composite material (Wiener, 1910). In addition to these upper and 
lower bounds, the Hill estimate given by the average of the two extreme 
models,

(16)

is often used as a representative model (Mavko et al., 1998). The variations 
in compressional velocity that result from the use of these three composite 
moduli are shown in Figure 2 for parameters that are appropriate for the 
Cranfield area. Note that the variation between models is almost as large as 
the total change in compressional velocity due to the introduction of carbon 
dioxide.

For a sedimentary geologic environment one would expect that fine‐scale 
layering would provide the most common setting for distributing fluids in a 
heterogeneous fashion, perhaps augmented by density and gravitational 
effects. Thus, for horizontal layers and vertically propagating waves the 
Reuss average 14 would appear to be the most appropriate. However, a 
poststack seismic cube is a combination of waves propagating in a variety of 
directions with respect to the layering. Furthermore, there are factors such 
as dipping layers, oriented fracture sets, and other forms of heterogeneity 
that will further complicate the situation. The important point is that it can be
difficult to determine how to average the fluid moduli in order to estimate 
Kfluid accurately.



3.3.2 An Extension of Biot Theory

The next level of sophistication incorporates the dynamics of fluid movement
into estimates of the composite modulus and seismic velocities. Thus, the 
seismic velocities will depend upon the flow properties of the medium, such 
as permeability, and the properties of the fluids. The case of a single fluid in 
an elastic porous medium was treated in the pioneering work of Biot, (1956a,
1956b). This work has been extended to two well mixed fluids by Berryman 
et al. (1988). A recent derivation that allows for smoothly varying properties 
and three fluid phases (Vasco, 2013) was formulated in a manner that is 
easily extended to a medium containing additional fluids. Thus, as 
demonstrated in the appendix, one can generalize the formulation to allow 
for Nf fluid phases, making it applicable to the situation at Cranfield where 
we have brine, oil, methane, and carbon dioxide as the primary fluids. The 
poroelastic medium is characterized by the porosity φ, and the fraction of 
solid per unit volume is

(17)

while the fraction of the volume occupied by the nth fluid is

(18)

In the case of Nf fluid phases one can produce Nf+1 equations governing the 
solid and fluid displacements in the frequency domain U(x,ω) and Wn(x,ω), 
n=1,2,…,Nf. Note that the first expression actually represents Nf equations as
we cycle through n from 1 to Nf,

(19)

The deviatoric stress tensor, τ, is given by linear elasticity (Wang, 2000)

(20)

for a solid matrix with shear modulus G. The poroelastic parameters are 
analogous to those found in the study of a single fluid phase in a poroelastic 
medium (Pride, 2005; Wang, 2000): Ku (undrainded bulk modulus), Cns and Csj

(Biot coupling moduli), and Mnj (fluid storage coefficients). Their relationship 
to the properties of the medium, specifically the relative permeability 
functions, the capillary pressure curves, the fluid, and rock properties, are 
given in Vasco (2013) for three fluid phases and are easily generalized to the
case of Nf fluids. The other constants are related to the frequency, the solid 
and fluid fractions, and the solid and fluid properties,

(21)

(22)



(23)

(24)

ρs is the solid density, ρn is the density of the nth fluid, μn is the viscosity of 
the nth fluid, and kn(ω) is the dynamic permeability discussed in the 
appendix (see equation A10). As shown in the appendix, for a reservoir with 
lateral deviations in properties that vary smoothly in comparison to the 
seismic wavelengths, it is possible to construct an explicit expression for the 
squared slowness s=p2 associated with the propagation of longitudinal 
modes. Specifically, s satisfies the polynomial equation that results from the 
vanishing of the determinant

(25)

where H=Ku+4/3G. The roots of the polynomial determine the squared 
slownesses and the phase velocities of the fast and slow compressional 
waves in the poroelastic medium follow from the expression

(26)

The poroelastic properties of the reservoir, the properties of the fluids, the 
frequency, and the fluid saturations are necessary in order to calculate all of 
the parameters in equation 25. As noted in Vasco (2013), there are 12 
fundamental classes of parameters that are needed in order to define the 
coefficients.

As in the work of Gassmann (1951), complications ensue due to 
inhomogeneous distributions of two or more fluids, as in the patchy 
saturation of White (1975) and others (Dutta & Ode, 1979; Johnson, 2001; 
Norris, 1993). A comprehensive treatment was provided by Pride et al. 
(2004) in terms of mesoscopic spatial variations in properties, that is, 
variations at length scales between the microscopic grain scale and the 
macroscopic length scale of the seismic waves. Such heterogeneity can 
account for the actual level of seismic attenuation observed within porous 
sediments (Pride, 2005). The patchy saturation approach has been applied to
crosswell seismic data at Cranfield (Ajo‐Franklin et al., 2013). As indicated in 
Figure 10 of Ajo‐Franklin et al. (2013), the surface seismic data examined in 
this study are in the low‐frequency limit for patches of reasonable sizes. This 
results in variations that corresponds to the Reuss curves shown here and 
the phase velocity given by equations 25 and 26,

4 Data Analysis and Results



In this section we present an analysis of the Cranfield time‐lapse seismic 
amplitude changes and travel time shifts. We use the rock physics 
techniques described earlier, in tandum with reservoir simulation results, to 
calculate expected changes in amplitudes and time shifts, and compare 
those changes with observed values. We begin with a discussion of available 
wells logs and the construction of a model of elastic properties for the 
overburden.

4.1 Well Logs and Seismic Velocity Variations

Spontaneous potential logs were run for all of the original 93 wells in the 
field and used for correlation and mapping the net sandstone in the field 
(Kordi, 2013). Other selected wells have more comprehensive suites of logs, 
including shallow and deep resistivity and gamma ray observations. 
However, the set of wells containing sonic logs measuring seismic velocities, 
particularly in the overburden, is rather limited. In fact, the only reliable 
sonic log data were from the three widely distributed wells indicated in 
Figure 1. Two additional sonic logs were gathered at Wells CFU 31‐F2 and 
CFU 31‐F3, shown as unmarked circles adjacent to well CFU 31‐F1 in Figure 
1, but issues with the drilled holes and casing‐deployed instrumentation 
made their interpretation difficult (Butsch et al., 2013). In order to determine
those features of the vertical velocity variation that are robust, we did a 
pairwise correlation between the well logs, as shown in Figure 3. The 
nonlinear inversion method of Rickett et al. (2007) was used to find the 
depth‐varying shift that produces an optimal correlation between the well 
logs. In this approach one finds the depth shift function that minimizes the 
misfit between two traces, subject to a spatial penalty term that enforces a 
smoothness requirement on the solution. The three compressional sonic 
logs, with the optimal depth shifts are plotted together in Figure 4. In 
general, the large‐scale depth variations are shared by the well logs, even 
though the wells are many kilometers apart. The average of the three shifted
traces is also shown in Figure 4. Though there can be biases when comparing
surface seismic velocities to sonic logs (De et al., 1994), there is rough 
agreement between the average of the well logs and the average velocities 
used to form the seismic cubes, also plotted in Figure 4. In particular, there is
no significant offset between the two velocity trends, as can sometimes 
occur due to the very different sources of velocity information. This average 
velocity variation in the overburden will be used to generate synthetic 
seismograms and to calculate the reflection amplitude changes and time 
shifts due to the injection and production activities.





4.2 Time‐Lapse Changes

4.2.1 Amplitudes

The time‐lapse cubes provided by GeoTrace have been processed to correct 
for static errors that could cause differences between the two surveys and to
account for variations in the spectral content of the traces that result from 



inconsistencies in the sources and near surface velocities (Ditkof, 2013; 
Zhang et al., 2013a). Our interest lies in the changes in reflections from the 
reservoir boundaries and how these might be related to changes in reservoir 
fluid content. In Figure 5 we plot amplitudes corresponding to the reflections 
from the top boundary of the reservoir. The large negative values are 
indicative of the velocity decreases associated with the D‐E sandstone unit of
the lower Tuscaloosa Formation comprising the reservoir. The large‐scale 
pattern of amplitudes is similar for both the baseline (2007) and monitor 
(2010) surveys. However, there are some obvious differences in amplitude 
between the two surveys. For example, a swath of positive amplitude values 
to the north and east of well CFU 44‐2 in the 2007 survey turns to mostly 
negative amplitudes in 2010.

The time‐lapse changes, shown in Figure 6, are obtained by subtracting the 
preinjection baseline trace values from the monitor survey values. There is 
considerable spatial variation in the seismic amplitude changes, though 
there is a systematic negative amplitude change where there is good 
repeatability, away from the edges of the survey volume (Ditkof et al., 2013; 
Zhang et al., 2013a). Because the injected carbon dioxide lowers the seismic
velocity, we would expect that the monitor survey would be larger in 
magnitude but negative in sign, leading to a large negative time‐lapse 
difference. The locations of wells in the northeast quadrant of the reservoir 
that injected carbon dioxide during the 3‐year interval between 2007 and 
2010 are plotted in Figure 6 as open circles. There is some correspondence 
between the location of the injected carbon dioxide and the time‐lapse 
changes, but there are also changes some distance away from the injection 
wells. We will interpret the changes in the northeast section of the field in 
greater detail below. Again there are notable spatial variations in the 



reflection amplitudes, suggesting significant heterogeneity in reservoir 
properties and fluid saturations.

4.2.2 Time Shifts

The velocity changes due to the injected carbon dioxide will lead to time 
shifts for waves propagating through the reservoir. Using the CLM, described 
in the methodology section, we quantify and image these time shifts. In 
order to isolate the time shifts due to velocity changes within the reservoir 
from those that are due to changes within the overburden and near surface 
variations, we first line up the baseline and monitor traces for a time window 
just above the reservoir. The idea can be illustrated using the traces in 
Figure 7. Based upon the surfaces in Figure 1, defining the top and bottom of
the reservoir, we designate a 0.2‐s time window, extending from 2.05 to 2.25
s. The window length was chosen to contain a sufficient number of 
reflections for an accurate measurement of the time shift, yet not extend too
far from the reservoir boundaries. We use those portions of the baseline and 
monitor traces within this window to define the initial overburden time shift 
using the CLM approach.



Next, the entire trace is corrected by the overburden shift, and a second 
window is defined, comprising reflections from layers just below the 
reservoir. We are interested in the time shift between the two traces that 
occurs within this window, as it should be more closely tied to velocity 
changes within the reservoir itself. The CLM is used to calculate the time 
shift within the 0.2‐s time window. We have adopted a sign convention such 
that a positive time shift is associated with a delay in the monitor trace, as 
would be induced by a lowering of the velocity within the reservoir interval. 
With this convention a positive time shift corresponds to a pull‐down of the 
layers below the reservoir. The time shifts for the entire area covered by the 
two seismic surveys are shown in Figure 8. As with the amplitude changes, 
there is considerable spatial variation and significant changes at large 
distances from the wells. Generally, there are notable time shifts beneath 
the injection wells that we have plotted in the northeastern part of the field.



4.3 Multicomponent Reservoir Modeling

There are many factors controlling the seismic velocity changes due to the 
injection of a volume of carbon dioxide. Without some guidance from 
reservoir modeling, it can be difficult to understand the complicated patterns
of amplitude changes and time shifts observed in Figures 6 and 8, 
respectively. Fortunately, a significant part of the monitoring program at 
Cranfield involved reservoir modeling (Alfi & Hosseini, 2016; Delshad et al., 
2013; Hosseini et al., 2013), and this work can aid in our interpretation of the
seismic observations. Recently, we used the computer modeling group's 
compositional simulator CMG‐GEM to develop an improved reservoir model 
of the northeastern corner of the field. The model consists of seven different 
chemical components, including carbon dioxide, and incorporates fine‐tuned 
properties that were appropriate for the Cranfield site, as published by 
Weaver and Anderson (1966). A cartesian grid, containing 82,559 cells, 
provides a numerical representation of the reservoir. The grid extends from a
sealing fault, at its western edge, to deep within the aquifer at the northern 
and eastern boundaries. Vertically, the reservoir is partitioned into 12 layers,



with each layer 1.2 m thick. The starting porosity and permeability models 
were those of Hosseini et al. (2013), and these values were adjusted to 
match over 4 years of reservoir data, from July 2008 to October 2012. The 
observations, monthly oil, brine, and gas production data and CO2 
breakthrough times were fit by modifying the relative permeability data and 
by adjusting the location and flow properties of high‐permeability channels 
within the model.

The best fitting reservoir model was then used to simulate the evolution of 
oil, brine, and total gas at the Cranfield site, from the start of production in 
2008 until the follow‐on seismic monitor survey in 2010. The average fluid 
pressure distributions within the reservoir in 2008 and 2010 are shown in 
Figure 9. Three phases are present at the start of injection: brine, oil, and a 
gas composed primarily of methane. Since the methane can dissolve into the
oil, it is also distributed within the oil phase as a chemical component. In 
Figure 10 we plot the distribution of these three phases and the fraction of 
methane in the oil phase at the time of the baseline survey, averaged over 
the depth interval of the reservoir. At this point in the reservoir's history it 
has reached pressure equilibrium, some four decades after primary 
production. Methane gas has migrated updip and abuts the sealing fault to 
the west. Similarly, the remnants of the oil ring form a coherent 
accumulation bounded to the west by the sealing fault and the gas 
accumulation and bounded to the east by the aquifer. Saline pore water is 
distributed throughout the reservoir, but the highest saturation naturally 
occurs within the aquifer.



After 3 years of oil and gas production, and the injection of over two million 
tons of carbon dioxide, the calculated fluid saturations have changed 
significantly (Figure 11). The total gas now consists largely of carbon dioxide,
which is in a supercritical state and is distributed throughout the reservoir, 
both around the injection wells and at some distance from any injectors. 
Methane may also be present in a gaseous phase and often forms a bank 
ahead of the CO2 fronts. The distribution of oil is broadly the same as it was 
in 2008, but there are pockets where there have been notable saturation 



changes. The brine saturation is lower in much of the oil ring and generally in
areas around the injectors, including within the aquifer. The methane 
fraction within the oil is more heterogeneous, as it has been redistributed by 
the injection and production in the area.

It should be noted that while the overall outlines of the fluid saturation 
distribution are robust, the detailed features are not well resolved. That is, 
the stochastic realization of the reservoir model is only constrained by widely
spaced well data, field‐wide production data, and carbon dioxide 



breakthrough times. None of these observations provide fine‐scale spatial 
resolution of the reservoir flow properties. Still, as we shall see in the next 
section, the larger‐scale features do provide some insight into the factors 
that control the time‐lapse seismic response.

4.4 Rock Physics Estimates of Time‐Lapse Changes

Given the depth‐averaged saturation distributions from the reservoir 
simulation, we can use the rock physics techniques from section 3 to 
estimate time‐lapse seismic amplitude changes and time shifts. In order to 
do this, we need to specify the appropriate parameters in equations 9 and 
10, as well as those in equation 25. As a simplifying assumption we ignore 
poroelastic effects outside of the reservoir where we have no information 
regarding fluid saturations. We use the average compressional velocities and
densities from the shifted sonic and density logs from wells CFU 44‐2, CFU 
31‐F1, and CFU 28‐1 as an elastic model for the overburden. Only well CFU 
44‐2 had an accessible shear wave sonic log that covered the overburden, so
it was necessary to use the shifts associated with the compressional velocity 
log to align it with the average velocities shown in Figure 4.

For the reservoir interval we make use of a comprehensive suite of logs in 
well CFU 28‐1, as described in Ditkof (2013). The porosity log indicates a 
relatively constant value of 23% over most of the 16‐m reservoir interval. 
The mineral composition logs detail the volume fraction of quartz, clay, and 
calcium, roughly 0.60%, 0.17%, and 0.00%, respectively. Fluid logging 
estimates of the saturations agree with the analysis of cores from the well, 
indicating a saline water saturation of around 75%, an oil saturation of 25%, 
and negligible gas prior to starting the EOR operation. In Table 1 we give the 
properties of the four main fluids, brine, oil, methane, and carbon dioxide, at 
reservoir conditions, a temperature of 13 ° C and a pressure of 32 MPa 
(Ditkof et al., 2013). The hydrocarbon phase within the D‐E sandstone unit of
the Lower Tuscaloosa is an oil with an API number of 39° (Ditkof, 2013, p. 
24). As indicated in Figures 10 and 11, the oil contains dissolved methane, 
which will alter its density, bulk modulus, and viscosity. We use the 
relationships in Batzle and Wang (1992) to account for the effect of the gas 
in solution, using an average value for the fraction of methane, and the 
average reservoir pressure and temperature. The values in Table 1 were 
used to compute the upper and lower bounds on the velocity changes 
provided by the Voigt and Reuss averages of the fluid moduli. Similarly, 
using the mineral composition log data, we can form a volume weighted 
average to estimate the grain density ρgrain of the reservoir material using

(27)

where Vquartz and Vclay are the volume fractions of the quartz and clay and 
ρquartz and ρclay are the respective densities. Thus, we can estimate ρsat using 
equation 10. There were both compressional and shear sonic logs within the 
reservoir interval in well CFU 28‐1, though the shear sonic log did not extend 



up into the overburden. These sonic logs provide , the compressional 
velocity of the saturated rock, and  the shear velocity of the saturated 
rock. Using equation 11 and the fact that the shear velocity  is given by

(28)

we can estimate both Gsat and Ksat. Recall that the presence of the fluids does
not change the shear modulus and we have Gu=Gsat. With the remaining log 
information we can use equation 9 to solve for Ku. The values of Gu and Ku 
that we determined in this way are given in Table 1. Using the fluid 
saturations, and the properties of the fluids, we calculate the composite fluid 
density ρfluid, using equation 13.



For the compositional estimate for the four fluid components, brine, oil, 
carbon dioxide, and methane, given by equation 25, the fluid pressure 
variations in Figure 9 were used to compute spatially varying moduli for the 
fluids. The pressure‐dependent properties, in particular the densities, bulk 
moduli, and viscosities for water, carbon dioxide, and methane were 
obtained from the National Institute of Standards tables provided by 
Lemmon et al. (2005). The dissolved solid content of the brine was based 
upon two fluid samples from well CFU 29‐12 measuring an average of 
143,000 mg/L, primarily NaCl. The effects of the salinity on the density and 
bulk modulus, as functions of reservoir pressure and temperature, were 
modeled using the cubic regressions of Batzle and Wang (1992). The oil 
phase was characterized by an API value of 39° (Ditkof, 2013), and the 
pressure, temperature, and gas content dependent properties were 
estimated using the relationships presented by Batzle and Wang (1992). The 
relative permeability curves of Weaver and Anderson (1966), with 
modifications made in order to match the monthly production data and CO2 
breakthrough times (Alfi & Hosseini, 2016), were used in the computation of 
the dynamic permeability, as described in Vasco (2013).

Having determined the values of all the necessary parameters, we use 
equations 9 and 25 to estimate the impact of the saturation distributions at 
the time of the baseline and monitor seismic surveys, shown in Figures 10 
and 11, on the seismic velocities. This is necessarily a crude estimate that 
ignores the heterogeneity within the reservoir and is forced upon us because
we cannot resolve the detailed structure from the data at hand. However, 
the estimates allow us to map the pressure variations in Figure 9, along with 
the saturation changes in Figures 10 and 11, into rough estimates of the 
velocity changes and ultimately into seismic amplitude changes and time 
shifts. We can then compare the calculated time‐lapse changes to the 
observations and attempt to find correspondences between the two sets of 
values. The unmodeled heterogeneity will show up as additional spatial 
variations within the data.

As a prelude to the presentation of our results, we consider the variations in 
compressional velocity as functions of water, total gas, and oil saturations. 
This will facilitate our interpretation of the calculated time‐lapse changes 
presented below. Figure 12 is an example of the variation in compressional 
velocity as a function of the saturations of the fluid phases. The calculation is
based upon equations 9, 10, 11, and 13, where we have used the reservoir 
parameters obtained from well CFU 28‐1. For the composite fluid bulk 
modulus we employ the Reuss average, given by equation 14, as this is 
appropriate for well mixed fluids or fluids that are distributed in layers 
perpendicular to the direction of the propagating seismic wave. For seismic 
frequencies and layers that are nearly horizontal, this is an acceptable 
approximation. For this illustration, we consider the gas to be composed 
entirely of carbon dioxide. Note how the velocity decreases precipitously as 
the gas saturation increases to just a few percent.



Another important feature of Figure 12 is the decrease in velocity change 
with increasing oil saturation. This aspect is hard to discern because it is 
concentrated at the lower edge of the saturation triangle, where the gas 
saturation is nearly zero. In order to see this effect more clearly, consider the
slices parallel to the diagonal of the saturation triangle, but intersecting 
different locations on the horizontal axis denoting water saturation (Figures 
12 and 13). We only plot an increase of up to 5% in carbon dioxide 
saturation, with varying oil saturations of 1%, 30%, and 50%. We observe 
large variations in the magnitude of the velocity decrease with increasing 
carbon dioxide, depending upon how much oil is present within the pores 
(Figure 13). In particular, in the presence of 1% oil there is a velocity 
decrease of about 275 m/s as the fraction of carbon dioxide increases from 0
to 5%. If the oil within the pores increases to 30%, then the decrease in 
velocity with carbon dioxide fraction is reduced to about half of that value. At
an oil saturation of 50% the decrease in velocity is reduced to around 70 
m/s. Thus, the presence of oil in the pores can have a significant impact on 
how much the velocity changes with the introduction of carbon dioxide. In a 



similar fashion, concentrations of methane can also reduce the velocity 
reductions that would be expected due to the injection of CO2 into a water‐
saturated medium.

Using the average fluid pressure and the saturations from the 
multicomponent reservoir simulation (Figures 9-11), and the rock physics 
techniques described above, we can estimate the seismic velocities at the 
times of the seismic baseline and monitor surveys as well as the seismic 
velocity changes. In order to account for the possible variations in fluid 
distributions, we shall use both the Reuss and Voigt approaches, given by 
equations 14 and 15, to compute composite fluid moduli, denoted by KReuss 
and KVoigt, respectively. Mapping the fluid saturations into a composite 
modulus (Kfluid) and density (ρfluid), and then using equations 9-11 to calculate 
the compressional velocity for each location in the reservoir model, we can 
difference the velocity estimates at the times of the baseline and monitor 
surveys to calculate the velocity changes, shown in Figure 14. In addition, we
calculated the velocity changes using the more comprehensive extension of 
Biot theory, given by equation 25. This estimate accounts for the variations 
in the four main fluid components, water, oil, carbon dioxide, and methane, 
and the changes in the fluid properties as a function of the spatially varying 
reservoir fluid pressure. These values are plotted in the central panel of 



Figure 14, under the label “Four Fluids.” As expected, these values are 
bounded above and below by the Voigt and Reuss estimates.

In general, the velocity decreases occur in the areas that saw increases in 
total gas content from 2008 to 2010, primarily due to the injection of carbon 
dioxide. There are two main regions where carbon dioxide increased 
substantially. One area is defined by a line of wells that roughly parallels the 
bounding fault that constitutes the western edge of the reservoir model. The 
other larger area follows a subparallel track of wells extending down into the 
aquifer, to the east of the remaining oil rim. Note how the relative 
magnitudes of the velocity changes in the two regions depends upon the 
technique used to average the fluid moduli into a composite modulus. 
Specifically, if the Reuss average is used, then the largest changes are 
observed in the aquifer, while if the Voigt average is the basis for calculating 
Kfluid, then the largest changes are near the bounding fault. Also note that the
magnitude of the velocity changes associated with the Voigt average are 
much smaller, around 50 m/s, than the other two estimates. The four fluid 
estimates of the velocity changes, resulting from the solution of equation 25,
are between the two end‐member models; however, the largest changes are 
in the aquifer, similar to the distribution associated with the Reuss average. 
Even with these differences, there are common features in all of the 
estimates. All of the velocity changes produce two subparallel regions of 
velocity change that appear to converge at their northern edge.

The computation of the synthetic seismograms associated with the baseline 
and monitor velocity models is based upon a partial expansion of 
reverberation operators derived by Kennett, (1974, 1983, p. 217). The 
approach allows for reflections at nonzero offsets, internal multiples, and 



tuning effects within the reservoir interval. In calculating the reflection 
amplitudes, we are invoking a locally plane layered approximation and 
vertically propagating plane waves. The approach has been used for time‐
lapse imaging of saturation changes and the estimation of flow properties 
(Vasco et al., 2004). Here we use the saturation changes to calculate the 
velocities in the reservoir and then include them in our average elastic model
(see Figure 4).

We calculate the amplitudes of the reflected waves at the top of the 
reservoir for the saturation distributions at the time of the baseline and 
monitor surveys. Differencing these amplitudes produces a prediction of the 
time‐lapse changes due to the EOR processes that may be compared to the 
observed changes plotted in Figure 6. However, before this comparison we 
need to account for differences due to the variations in source size, receiver 
sensitivity, near surface velocity variations, and other factors that are 
difficult to determine and model accurately. To minimize the influence of 
these factors and facilitate a comparison, we normalize the differences by 
the average amplitude of the baseline and monitor surveys, for the ith trace 
we have

(29)

where Bi(t) and Mi(t) are the amplitude estimates of ith traces of the baseline
and monitor surveys.

In Figure 15 we plot the normalized time‐lapse amplitude changes for 
reflections from the top of the reservoir as a percentage change. Both the 
Voigt and Reuss estimates are shown, as are the amplitude changes 
predicted by the extension of Biot theory to a medium containing four fluids. 
The two areas noted previously are evident as amplitude decreases: one 
near the bounding fault and the other surrounding the wells injecting CO2 
into the aquifer. In the Reuss and compositional estimates, the region near 
the bounding fault has a weaker amplitude change in comparison to the 
aquifer area. However, this is reversed in the Voigt model, where the aquifer 
has a slightly weaker response. We can compare the predicted seismic 
amplitude changes with those extracted from the field data. For example, in 
Figure 16 we plot the normalized amplitude changes for the reflection off of 
the top of the reservoir, using the same color scale as in Figure 15. In Figure 
16 we mask out changes to the west of the bounding fault as this region was 
not included in the reservoir model. We see considerable spatial variation in 
the amplitude changes, and there are significant changes far from the wells. 
There is an area of amplitude change adjacent to the bounding fault. 
Furthermore, the largest amplitude changes coincide with the location of the 
aquifer surrounding the easternmost line of injection wells. A region of low 
amplitude change lies between two areas, though they to appear to merge 
to the north.





We can also use the synthetic seismograms for the baseline and monitor 
surveys to calculate travel time shifts associated with reflections from just 
below the reservoir. Applying the CLM procedure, based upon equation 8, to 
the synthetic seismograms we compute the times shifts predicted by the 
compositional reservoir model. In Figure 17 we plot the estimated lower and 
upper bounds, based upon the Voigt and Reuss averages, along with values 
calculated using the extension of Biot theory to four fluids. The largest time 
shifts in Figure 17 are associated with the two lines of CO2 injection wells, 
separated by area where the changes are small or negative. Note that the 
magnitude of the time shifts based upon the Voigt average is much smaller 
than both the Reuss‐based and Biot‐based estimates.

In Figure 18 the observed time shifts, estimated by the CLM, are shown. 
Though there is considerable scatter in the observed time shifts, the main 
features noted in the predictions from the compositional simulation are 
visible. For example, there are positive time shifts, associated with a 
lowering of the velocity, adjacent to the bounding fault. There are also 
positive time shifts in the region surrounding the wells that are injecting 
carbon dioxide into the aquifer. The trough between the two areas of positive
time shifts is visible, and it shrinks to the north as the two features merge 
The magnitude of the observed time shifts is of the same order as the time 
shifts predicted using Reuss averaging and the four component 
compositional model, and much larger than those calculated using Voigt 
averaging.



5 Discussion

Using the time‐lapse seismic observations gathered over the oil field at 
Cranfield, Mississippi, we have extracted amplitude changes for reflections 
from the top of the reservoir and time shifts for waves passing through the 
reservoir. Both of these sets of observations contain considerable spatial 
variability, most likely due to the significant reservoir heterogeneity and 
inherent noise in the data. Reservoir heterogeneity is to be expected as the 
D‐E sandstone unit of the lower Tuscaloosa Formation is composed of 
numerous sandstone bodies representing point bars and meandering stream 
channels along with variable conglomerates and stringer sands. The detailed 
reservoir model contains some elements of this heterogeneity due the 
stochastic algorithm used to generate the model for history matching. 
However, it is difficult or impossible to fully characterize the spatial 
variations in reservoir properties with surface seismic observations, given 
the frequency content and the spatial averaging of such data.

Upon conducting a full simulation of the history of the field some regularity 
becomes evident, due to the large‐scale fluid distribution within the 
reservoir. In particular, we note sizable amplitude changes and time shifts 
associated with wells adjacent to the fault defining the western edge of the 
reservoir model. An additional region of notable amplitude changes and time
shifts lies to the east where a line of wells are injecting carbon dioxide 
directly into the aquifer, adjacent to the remains of the oil ring within the 



anticline. Rock physics modeling, based upon Gassmann's equation and an 
extension of Biot theory to four fluids, indicates that injecting carbon dioxide 
into fully water saturated sediments can produce a large seismic response 
and that response is significantly reduced in the presence of oil (Figures 12 
and 13). This would explain why the amplitude changes and time shifts 
within the aquifer are large and extend far from the injection wells, into 
regions with moderate or even small concentrations of CO2.

The time‐lapse observations share the general characteristics of the 
predictions made by the simulation models. However, there are differences 
between the patterns of observed and predicted changes, and differences 
between the changes in reflection amplitudes and time shifts. For example, 
the observed amplitude changes in the aquifer do not fully extend to 
southern edge of the grid, as they do in the predicted changes and in the 
observed time shifts. Furthermore, there is considerable scatter in the 
estimated time shifts in Figure 18. There are several factors that could 
contribute to these differences. First, the reservoir model is based upon field‐
wide data and is likely to differ from the actual structure of the reservoir, 
particularly at scales smaller then the spacing of the wells. Second, the 
elastic model is very simple, and the vertical and lateral heterogeneity of the
reservoir is not known or accounted for. Third, the top reflection amplitude is
sensitive to properties of the formation just above the reservoir and more 
sensitive to the upper portion of the reservoir. Therefore, changes at the 
base of the reservoir may not result in a significant change in the amplitude. 
In contrast, the time shifts for reflections from layers below the reservoir are 
equally sensitive to changes throughout the reservoir interval. Fourth, the 
analysis assumes vertically propagating waves and a locally layered 
structure. The stacking process will introduce contributions from larger 
offsets and at wider reflection angles. It has been shown that techniques for 
estimating time shifts work best on zero‐offset prestack data and that 
migration and stacking introduce considerable noise (Kanu et al., 2016). 
Finally, there are different approaches for defining the seismic amplitude 
changes, depending on parameters such as the window length used in 
calculating the root mean square amplitude, and the estimated amplitude 
changes can and do vary between studies (Alfi et al., 2019; Carter, 2014; 
Ditkof, 2013; Zhang et al., 2014).

The results of this study reflect some of the limitations that are common in 
the setting of an operating petroleum reservoir. There are few wells that 
contain sonic logs in the overburden, only three wells had compressional 
wave data and just one had shear information gathered for some distance 
above the reservoir. The lack of well data precluded the construction of a 
detailed elastic model for the overburden and the reservoir. Such a model 
would be useful in accounting for some of the reservoir heterogeneity. 
Aspects of the time‐lapse surveys also impacted our efforts to image the 
changes associated with the injection of carbon dioxide. Our analysis of 
seismic amplitudes and time shifts was based upon poststack seismic data, 



and the results might improve significantly through the direct use of pre‐
stack, near‐offset observations. The edge of the survey was close to the 
study area, leading to low fold and greater noise in the seismic data.

Due to the limitations noted above, several simplifying assumptions were 
adopted in this study. Because it was not possible to characterize the 
heterogeneity in sufficient detail, it was necessary to consider saturations 
and pressures averaged over the roughly 20‐m thickness of the reservoir. 
Furthermore, the overburden velocity model was essentially one 
dimensional. Any deviations from these assumptions will appear as 
unmodeled variations in the amplitude changes and time shifts in Figures 16 
and 18. Though we allowed for spatial variations in pore pressure when 
calculating the fluid properties, pressure‐induced geomechanical effects 
were neglected. While there is some evidence of geomechanical effects at 
the Cranfield site (Kim & Hosseini, 2013), the observed velocity changes due 
to pressure variations are relatively small (Marchesini et al., 2017), less than 
1%, leading to a roughly 0.1‐ms change in the two‐way travel time through 
the reservoir. Finally, chemical reactions due to the introduction of carbon 
dioxide into the reservoir were not accounted for. However, such reactions 
are thought to play a minor role at the Cranfield site (Lu et al., 2012b).

6 Conclusions

Observed seismic time‐lapse amplitude changes and time shifts are 
compatible with predictions based upon a multicomponent reservoir 
simulation. In particular, velocity changes due to the injection of carbon 
dioxide into the aquifer leg of the reservoir lead to large and widespread 
changes in seismic amplitudes and substantial time shifts for waves that 
propagate across the reservoir. Rock physics modeling points to the 
influence of the in situ oil content on the sensitivity of seismic velocity to 
changes in the saturation of carbon dioxide. This result agrees with previous 
suggestions that the presence of oil can depress seismic velocity changes 
due to the injection of carbon dioxide (Ditkof, 2013).

The results imply that onshore seismic time‐lapse data can be used to image
large‐scale velocity changes due to the geological storage of carbon dioxide. 
However, without adequate constraints on reservoir properties it can be 
difficult to make quantitative estimates of stored volumes. The difficulties 
are exacerbated during enhanced oil production where the pore fluid 
distribution can be quite complex, and it is not clear how to average fluid 
moduli when calculating seismic velocities. At Cranfield, it seems that the 
Reuss average and the extension of Biot theory to four fluid components 
appear to match the magnitudes of the observed time‐lapse amplitude and 
travel time changes while the Voigt average does not.
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Appendix A: Elastic Velocities for a Porelastic Medium Containing Nf Fluids

In this appendix we generalize the three‐phase work of Vasco (2013) to allow
for Nf fluid components. We begin with an extended set of equations, given 
in the frequency domain, governing the evolution of the solid U(x,ω) and 
fluid Wi(x,ω), i=1,2,…,Nf displacements. As in the case of a single phase, the 
presence of the fluids will influence the response of a porous body to 
imposed stresses. The porous elastic solid is characterized by the porosity φ. 
However, the pores may be filled with some combination of Nf fluids, and we 
will denote the saturation (fraction) of the nth fluid by Sn. Because the pore is
taken to be fluid filled, the saturations sum to unity

(A1)

It will be convenient to denote the fraction of a given unit volume of material
for the solid

(A2)

and for the Nf fluids

(A3)

The presence of multiple fluids introduces several complications. The chief 
difficulty is that it renders the problem nonlinear, because the evolution of 
the saturation is severely impacted by the current saturated state. That is, 
due to the ability of one fluid to block the flow of another, the fractional flow 
of the fluid will depend upon the existing saturations. For the case 
considered here, the passage of an elastic wave, we linearize the problem by
assuming that the saturation changes induced by the wave are small. 
Following the approach taken in Vasco (2013) and Vasco and Datta‐Gupta 
(2016), suitably generalized for the case of Nf fluids, one can produce Nf+1 
governing equations, where the first equation is indexed by n=1,2,…,Nf and 
actually represents Nf equations:



(A4)

where τ is the deviatoric stress, given by

(A5)

for a solid matrix with shear modulus G. The poroelastic parameters Ku 
(undrainded bulk modulus), Cns and Csj (Biot coupling moduli), and Mnj (fluid 
storage coefficients) are the multicomponent fluid equivalents to the single‐
phase constants, as given in Wang (2000) and Pride (2005). To keep the 
equations in a compact form, we have defined the additional coefficients

(A6)

(A7)

(A8)

(A9)

where ρs is the solid density, ρn is the density of the nth fluid, μn is the 
viscosity of the nth fluid, and kn(ω) is the dynamic permeability discussed in 
Johnson (1987), Pride (2005), and Vasco and Datta‐Gupta, (2016, p. 82), 
associated with the nth fluid. As derived in Johnson (1987), and explained in 
Vasco and Datta‐Gupta (2016, p. 82), one can develop an expression for 
kn(ω) of the form

(A10)

where

(A11)

is a pore geometry term containing the tortuosity in the limit of high 
frequency v∞, the static permeability ko used in fluid flow modeling, and Λ, 
which is twice the ratio of the weighted pore volume to the weighted surface 
area. The parameter ωn is the crossover frequency for the nth fluid

(A12)

signifying the transition from viscous dominated flow to that dominated by 
inertial forces.



As shown in Vasco (2013) and Vasco and Datta‐Gupta (2016, p. 291), for a 
reservoir with smoothly varying properties, we may derive an asymptotic 
solution in terms of the ratio of the seismic wavelength to the length scale of
the spatial variations in material and fluid properties, ε, in the form of a 
propagating wave

(A13)

where θ(x,ω) is the phase and Ul is successive higher‐order amplitude 
corrections. Similar expansions also hold for the fluid displacements Wn(x,ω).
Substituting the series representations into the governing equations A4, and 
restricting our attention to the lowest, zeroth‐order terms in l, transforms 
them into the linear system

(A14)

where Vo is a vector of the zeroth‐order amplitudes. The matrix 𝛀 is given by 
the 3(Nf+1) × 3(Nf+1) coefficient array

(A15)

The vector p is the gradient of the phase, ∇θ. For brevity, we have defined 
the coefficients

(A16)

(A17)

in equation A15. The linear system of equations A14 will have a nontrivial 
solution Vo if the determinant of the coefficient matrix Ω vanishes (Noble & 
Daniel, 1977, p. 203). The requirement that the determinant of Ω vanishes 
leads to a polynomial equation in the components of the phase gradient 
vector p, also known as the slowness vector. Because p=∇θ, the resulting 
polynomial equation is a differential equation for the function θ(x,ω), an 
extension of the eikonal equation to a poroelastic medium contain Nf fluids. 
Computing the determinant of the full matrix Ω directly leads to some very 
complicated algebra, something that we will work to avoid.

Because the determinant of a matrix is equal to the product of the matrix 
eigenvalues, the require that  is equivalent to the vanishing of one of 
the eigenvalues, λ,

(A18)

where e is the corresponding eigenvector. In and of itself, equation A18 does
not reduce the algebraic burden, as it is equivalent to equation A14. 
However, we can invoke some mathematical and physical arguments for a 



particular form for the eigenvector e that leads to the determinant of a 
reduced system of equations. In particular, note that the matrix Ω is 
composed of (Nf+1)×(Nf+1) block matrices, each of which is in the form of a 
linear combination of the identity matrix I and the dyadic matrix ppT. 
Therefore, we might suspect that candidate eigenvectors might be 
composed of vectors parallel to p

(A19)

where y and yi are scalar coefficients, or of vectors perpendicular to p

(A20)

because the multiplication of the vectors p or p⊥ by linear combinations of I 
and ppT returns the same vector, scaled by some factor.

Physical considerations also suggest eigenvectors in the form of el and e⊥. 
For example, Pride (2005) has shown that in a homogeneous medium, 
nontrival solutions to the equations of poroelasticity only exist when the 
vectors U and W are in the same direction. Furthermore, using potentials, 
one can show that in a homogeneous poroelastic medium, propagating 
waves decouple into longitudinal modes parallel to p, and transverse modes 
in the direction of p⊥. Thus, the candidate eigenvector (A19) represents 
particle motion in the direction of propagation and a compressional mode. 
The vector (A20), on the other hand, produces particle motion transverse to 
the direction of motion and a shear wave. Because p⊥ lies in the plane 
perpendicular to p, there is some freedom in defining this direction.

In the application to the Cranfield time‐lapse data we shall be interested in 
the longitudinal mode of propagation. Therefore, we consider the eigenvalue 
problem

(A21)

which, as shown in Vasco (2013) and Vasco and Datta‐Gupta (2016), is 
equivalent to the highly structured form

(A22)

where M⊗I signifies the tensor product of the two matrices M and I



(A23)

and mij is the coefficients of the coefficient matrix M

(A24)

where s=p2 and H=Ku+4/3G. The exact form of the matrix M follows from the
coefficient matrix in A15. For matrices in the form of a tensor product we 
may use the result of Silvester (2000) to write its determinant as

(A25)

The determinant of M is a polynomial of degree Nf+1 in s=p2

(A26)

that has Nf+1 complex roots in general. Vasco (2013) has shown how to use 
the multilinearity of the determinant to derive explicit expressions for the 
coefficients  in terms of the elements of the array M. The roots
provide estimates of the magnitude of the slowness vector and thus the 
phase velocity of the propagating fast and slow waves in the poroelastic 
medium, given by

(A27)

The smallest root provides an estimate of the highest velocity longitudinal 
wave, corresponding to the elastic compressional wave in the porous 
medium. The lower velocity waves are associated with the various slow 
waves that propagate within the medium and are due to capillary pressure 
differences between the fluids (Tuncay & Corapcioglu, 1997).
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