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Review of four major distinct types of human phospholipase A2

Alexis M. Vasquez, Varnavas D. Mouchlis, and Edward A. Dennis*

Department of Chemistry and Biochemistry and Department of Pharmacology, School of 
Medicine, University of California, San Diego, La Jolla, California 92093-0601

Abstract

The phospholipase A2 superfamily of enzymes plays a significant role in the development and 

progression of numerous inflammatory diseases. Through their catalytic action on membrane 

phospholipids, phospholipases are the upstream regulators of the eicosanoid pathway releasing 

free fatty acids for cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes which 

produce various well-known inflammatory mediators including leukotrienes, thromboxanes and 

prostaglandins. Elucidating the association of phospholipases A2 with the membrane, the 

extraction and binding of phospholipid substrates, and their interaction with small-molecule 

inhibitors is crucial for the development of new anti-inflammatory therapeutics. Studying 

phospholipases has been challenging because they act on the surface of cellular membranes and 

micelles. Multidisciplinary approaches including hydrogen/deuterium exchange mass 

spectrometry, molecular dynamics simulations, and other computer-aided drug design techniques 

have been successfully employed by our laboratory to study interactions of phospholipases with 

membranes, phospholipid substrates and inhibitors. This review summarizes the application of 

these techniques to study four human recombinant phospholipases A2 in vitro.

1. Introduction to phospholipase A2 superfamily

Phospholipases A2 were initially purified from the venom of poisonous snakes. As the 

ability to sequence and purify new proteins became more technologically advanced in the 

1970s, it became apparent that these enzymes were abundant with cysteines that formed 

disulfide bonds (Davidson and Dennis, 1990a, b). At the same time, a separate novel human 

mammalian enzyme that also maintained this pattern of disulfide bonds and hydrolyzed 

phospholipid substrates in the body was discovered (Kramer et al., 1989; Seilhamer et al., 

1989). Later as intracellular non-disulfide containing PLA2s were discovered, it was 

necessary to create a group numbering system that could categorize the rapidly expanding 

number of PLA2 enzymes together in a logical manner and make it easy to accurately 

identify which phospholipase A2 was being studied (Dennis, 1994). Over the last 50 years, 

six major types of phospholipase A2 enzymes have been identified: sPLA2, cPLA2, iPLA2, 

Lp-PLA2 (also known as PAF-AH), LPLA2, and AdPLA2 (Table 1.1).
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PLA2 enzymes utilize either a catalytic dyad or triad to catalyze the hydrolysis of the ester 

bond at the sn-2 position of phospholipid substrates. Hydrolysis of substrates releases free 

fatty acids and lysophospholipids that can be acted upon in a variety of manners including, 

when it is arachidonic acid, being converted further to lipid signaling mediators (Figure 1). 

While features such as structure and the specific activity toward various substrates reveal 

commonality among the several types of PLA2s, localization of them varies. Lp-PLA2 and 

sPLA2 are both secreted enzymes and act on membrane lipids extracellularly, while cPLA2 

and iPLA2, hydrolyze intracellular lipids of bilayer membranes including various sub-

cellular organelles, less is understood about the localization of LPLA2 and AdPLA2.

It is a particular challenge to study these water-soluble enzymes because they act on 

phospholipids which typically aggregate in an aqueous environment forming micelles, 

vesicles, liposomes, and other large structural aggregates (Dennis, 2016). Carrying out 

kinetics in a mixed micelle system with the non-ionic detergent Triton X-100 using “surface-

dilution kinetics” has been a particularly informative model system to study PLA2 activity 

since the hydrolysis of the phospholipid substrates occurs at the lipid-water interface (Deems 

et al., 1975). Studies on phospholipase A2 enzymes must consider how experimental 

techniques will operate in this type of cellular environment (substrate aggregation, 

membrane association, etc.); and since no one technique offers full characterization of 

PLA2s, we have had to utilize a wide array of approaches.

Whether it be enzymatic assays or molecular dynamics, each unique method offers 

advantages and disadvantages to studying PLA2 enzymes. It has been necessary to utilize a 

multidisciplinary approach to understand the mechanism of action of these enzymes. 

Learning about their interactions with membranes (Bucher et al., 2013), phospholipid 

substrates (Mouchlis et al., 2015) and inhibitors (Mouchlis et al., 2011a) was achieved using 

a combination of enzyme assays, deuterium exchange mass spectrometry and molecular 

dynamics (Mouchlis and Dennis, 2016). In this review, results of studies on four human 

PLA2s including their structure, function and activity are discussed in detail.

2. Lipoprotein-associated Phospholipase A2

Platelet activating factor (PAF) is a potent phospholipid mediator that plays a major role in 

clotting and inflammatory pathways (Prescott et al., 2000). Two groups of phospholipases, 

Group VII and Group VIII, catalyze the hydrolysis of the sn-2 fatty acyl bond in PAF and 

other lipid substrates (Dennis et al., 2011). Therefore, these enzymes were initially called 

PAF acetylhydrolases (PAF-AH) (Schaloske and Dennis, 2006). Further studies of the Group 

VIA enzyme revealed that it associates with both low-density lipoprotein (LDL) and high-

density lipoprotein (HDL) leading to the name lipoprotein-associated phospholipase A2 (Lp-

PLA2).

Lp-PLA2 is calcium independent, secreted extracellularly and has been proposed to play a 

significant role in the development of atherosclerosis (Dennis et al., 2011; Tjoelker et al., 

1995b). Group VIIA Lp-PLA2 is a 45 kDa, secreted protein that contains an alpha/beta 

hydrolase fold and a GXSXG motif that is characteristic of esterases and lipases (Samanta 

and Bahnson, 2008). The active site contains a catalytic triad composed of Ser/Asp/His 
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(Tjoelker et al., 1995a) (Figure 2). Group VIIB Lp-PLA2 is about 40 kDa long and contains 

the same catalytic triad as GVIIA Lp-PLA2. Group VIII Lp-PLA2 consists of two 26 kDa 

catalytic subunits and one 45 kDa non-catalyitc regulatory subunit. GVII and GVIII Lp-

PLA2 do not show much amino acid sequence identity but both are related to each other 

since these enzymes are in principle capable of retrieving substrates from the aqueous phase 

or through direct extraction from membranes (Cao et al., 2011; Min et al., 1999).

Some of the most common substrates for Lp-PLA2 include PAF, short fatty acyl chain 

phosphatidylcholines, oxidized phospholipids, and F2-isoprostanes (Stafforini et al., 1997; 

Stafforini et al., 2006; Stremler et al., 1991; Stremler et al., 1989). GVIII Lp-PLA2 utilizes 

similar substrates but are more restricted in their activity towards the sn-2 position by having 

specificity towards acetyl groups (Manya et al., 1999). Catalytic hydrolysis of these 

substrates is believed to be stabilized by an oxyanion hole formed by the backbone amides 

of residues Leu153 and Phe274 (Samanta et al., 2009). H/D exchange studies suggested that 

residues 360–368 and 113–120 might serve as anchors for the association of the enzyme to 

the surface of the membrane (Cao, Jian et al., 2013; Cao, J. et al., 2013).

Since Lp-PLA2 has been found to associate with both HDL and LDL from which it 

presumably retrieves its oxidized phospholipid substrate, abnormal distribution of this 

enzyme has been suggested to be linked to cardiovascular diseases (Tellis and Tselepis, 

2009). Because the hydrolysis of substrates by Lp-PLA2 has major upstream implications 

for inflammatory diseases (such as atherosclerosis and neonatal necrotizing enterocolitis), 

development of inhibitors and therapeutic interventions has been of great interest for many 

years. Azetidinones and pyrimidones have demonstrated inhibitory activity for Lp-PLA2. 

GlaxoSmithKline has also developed the potent and selective inhibitor Darapladib that 

reached clinical trials (phase III) (Blackie et al., 2002; Blackie et al., 2003). Since then 

further investigation has been underway to learn more about the biological relevance of Lp-

PLA2 and its inhibitors.

3. Calcium-independent Phospholipase A2

Group VIA calcium-independent phospholipase A2 (iPLA2), also known as PNPLA9 or 

iPLA2β, is a calcium independent phospholipase A2 and plays a key role in membrane 

remodeling (Ackermann et al., 1994; Balsinde et al., 1997). The many isoforms of iPLA2 

differentiate themselves from the many other phospholipase A2 enzymes that are calcium 

dependent and they have been thought to be less specific as to the fatty acid at the sn-2 

position (Lio and Dennis, 1998). These enzymes are the most widespread PLA2s throughout 

human tissues. Although the crystal structure of iPLA2 has not been solved, homology 

models and sequence alignments revealed that the longest splice variant (806 amino acid 

residues and 89 kDa) utilizes a catalytic dyad of Ser/Asp and is comprised of seven ankyrin 

repeats, a linker region, and a patatin-like α/β hydrolase catalytic domain (Larsson Forsell et 

al., 1999; Ma et al., 1999) (Figure 3). Despite studies demonstrating that iPLA2 activity is 

regulated by many different mechanisms, it is still unclear how this enzyme is activated to 

bind and hydrolyze a specific substrate.
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Inference of the structure of iPLA2 from homology models and sequence alignments to 

previously crystallized structures of patatin lipase and human ankyrin-R d34 repeats has 

been fundamental to establishing the mechanism of action of iPLA2 (Kienesberger et al., 

2009; Michaely et al., 2002; Wilson et al., 2006). Regions of iPLA2 that show the most 

similarity to patatin are proposed to be the catalytic domain (α/β hydrolase domain) while 

the rest of the enzyme is considered a regulatory unit (Mouchlis et al., 2015). The ankyrin 

repeats have been shown by hydrogen/deuterium exchange data to be highly flexible and 

may be key in regulation of iPLA2 activity.

It has been demonstrated that iPLA2 activity is regulated by ATP binding, caspase cleavage 

of the ankyrin repeats that results in a hyperactive form of the enzyme, calmodulin 

inhibition, oligomerization of the enzyme due to aggregation of ankyrin repeats, and 

membrane allosteric regulation (Mouchlis et al., 2015). ATP activation has been repeatedly 

demonstrated to be a major regulator of iPLA2 activity. This enzyme is often found to 

localize in mitochondria, where ATP levels are critical for cellular regulation. iPLA2 is the 

only PLA2 believed to be regulated by ATP. ATP does not act as a substrate or cofactor, but 

rather activates the enzyme, presumably through allosteric regulation (Lio and Dennis, 1998; 

Ma et al., 1999). It is important to develop iPLA2 inhibitors because the enzyme plays a 

significant role in many diseases including Barth syndrome and diabetes. Current known 

inhibitors include trifluoromethyl ketones, tricarbonyls, lactones and polyfluoroketones 

(Mouchlis, V. D. et al., 2016; Mouchlis, Varnavas D. et al., 2016).

4. Cytosolic Phospholipase A2

Multiple subgroups of cytosolic phospholipase A2 (cPLA2) have been discovered in 

different cell types (Dennis et al., 2011). The first cPLA2 purified and sequenced was Group 

IVA cPLA2, an 85kDa protein that is regulated by intracellular calcium levels (Clark et al., 

1991; Dessen et al., 1999; Kramer et al., 1991). This enzyme is widely distributed in cells 

throughout most types of human tissue and consists of a C2 domain, linker, and α/β 
hydrolase domain as determined by x-ray chrystalography (Dessen et al., 1999). Calcium 

binding to the C2 domain in the N-terminal causes localization of the protein to a 

phospholipid membrane (Channon and Leslie, 1990). cPLA2 also utilizes a catalytic dyad of 

Ser/Asp within the C-terminal α/β hydrolase domain (Pickard et al., 1996) as illustrated in 

Figure 4).

cPLA2 acts on many lipid substrates including but not limited to phosphatidylcholines, 

phosphatidylethanolamines, and phosphatidylinositols (Leslie et al., 1988). Hydrolysis of 

phospholipid substrates has shown high specificity towards arachidonic acid at the sn-2 fatty 

acyl bond (Clark et al., 1991). In addition to this activity, cPLA2 also displays 

lysophospholipase and trans-acylase activity (Reynolds et al., 1991). It has been 

demonstrated that the lipid mediator phosphatidylinositol 4,5-bisphosphate (PIP2) further 

increases cPLA2 activity(Mosior et al., 1998; Tamiya-Koizumi et al., 1989) as well as 

ceramide-1-phosphate (C1P) (Nakamura et al., 2006). Besides calcium, PIP2, and C1P 

activation, cPLA2 is regulated by phosphorylation and membrane interactions (Mouchlis et 

al., 2015). Although no specific disease is associated with regulation of this enzyme, it is 

known to play a role in inflammation through downstream regulation of COX genes. 
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Multiple types of inhibitors have been developed including 2-oxoamides and 2-oxoesters 

(Kokotou et al., 2017; Mouchlis et al., 2012).

5. Secreted Phospholipase A2

The secreted phospholipase A2 (sPLA2) was the first phospholipase A2 enzyme identified 

and studied in detail from snake venom, mammalian pancreas and mammalian cells (Dennis 

et al., 2011). sPLA2 is a group of small enzymes (14–18kDa) that use a His/Asp dyad and 

also required calcium for catalytic activity (Schaloske and Dennis, 2006) (Figure 4). 

Mechanistic insights were developed from the crystal structure of the cobra venom (Naja 

naja naja) which was reported (Fremont et al., 1993) by our laboratory as well as crystal 

structures of other venom and pancreatic PLA2s by many groups over the years (Seilhamer 

et al., 1989; Kramer et al., 1989; Guy et al., 2009; Matoba et al., 2002). For mammalian 

sPLA2s, sequence alignments have been used to interpret the structure of some of these 

enzymes, such as the Group V sPLA2 based on the crystal structure of the Group IIA sPLA2 

(Edwards et al., 2002). Multiple calcium binding sites have been reported according to 

DXMS studies (Burke et al., 2008). Mechanisms of activation and inhibition of this enzyme 

have been studied, and it has been shown that the sPLA2 s enzyme do not hydrolyze the sn-1 

position of the lysophospholipid products while some of the intracellular enzymes do. 

Surprisingly, sPLA2 does display an increase in activity when substrate forms aggregates 

rather than monomers, known as “interfacial activation” (Carman et al., 1995).

Major functions of sPLA2 include antibacterial and antiviral properties, regulating HDL and 

LDL levels and playing a role in inflammatory diseases such as atherosclerosis. Numerous 

inhibitors have been developed for sPLA2 including dicarboxylic acids, sulfonamides, 

amides, indoles, and oxadiazolones, many of which were helped and better understood by in 
silico studies (Mouchlis et al., 2011b; Mouchlis et al., 2010a, b).

6. Conclusion

Understanding the cellular function of phospholipases is a very challenging task. PLA2 

(Dennis and Norris, 2015) and other related enzymes (Grkovich and Dennis, 2009) play a 

significant role in the development of inflammatory diseases and thus understanding how to 

regulate their activity is necessary for the advancement of interventional therapeutics and 

inhibitors. Computational techniques combined with hydrogen-deuterium exchange mass 

spectrometry experiments have been successfully employed to understand the mechanism of 

action of phospholipases as well as the structural and physicochemical properties of their 

active sites (Mouchlis and Dennis, 2016). In conjunction with these approaches, enzymatic 

assays have also been used to further investigate PLA2 enzymatic activity. This review 

summarizes the application of these techniques to study four human phospholipases A2
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Figure 1. Phospholipases A2 function as degradative enzymes when they produce 
lysophospholipids and free fatty acids as products, as biosynthetic enzymes when the 
lysophospholipid product is reacylated with a PUFA to produce important phospholipids, and as 
signaling enzymes when the products are converted to agonists of GPCRs
(adapted from (Dennis, 2016)).
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Figure 2. A model of GVIIA Lp-PLA2 binding to the surface of a DMPC membrane
The proposed membrane binding region of Lp-PLA2 is shown in blue (amides 113–120). 

The proposed region for liposome association (amides 115 and 116) as well as the catalytic 

triad (Ser273, Asp296, and His351) are shown in red (adapted from (Cao et al., 2011)).
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Figure 3. Three-dimensional structure of calcium-independent phospholipase A2
A homology model of GVIA iPLA2 is shown (adapted from (Mouchlis et al., 2015)).
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Figure 4. Three-dimensional structure of cytosolic phospholipase A2
The X-ray crystal structure of GIVA cPLA2 (PDB ID 1CJY) (adapted from (Mouchlis et al., 

2015)).
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Figure 5. Hypothetical model of GIA sPLA2 before (left) binding to the surface of a DMPC 
membrane and after (right)
Areas with decreases in deuterium exchange are colored in blue and turquoise (adapted from 

(Burke et al., 2008)).
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Table 1
Phospholipase A2 superfamily

(adapted from Dennis et al, 2011).

type group subgroup molecular mass (kPa) catalytic residues

sPLA2

GI A, B 13–15

His/Asp

GII A, B, C, D, E, F 13–17

GIII 15–18

GV 14

GIX 14

GX 14

GXI 13

GXII A, B 19

GXIII A, B <10

GXIV 13–19

cPLA2 GIV A(α), B(β), C(γ), D(δ), E(ε), F(ζ) 60–114 Ser/Asp

iPLA2 GVI A(β), B(γ), C(δ), D(ε), E(ζ), F(η) 84–90 Ser/Asp

PAF-AH GVII A (Lp-PLA2), B(PAF-AH II) 40–45 Ser/Asp/His

GVIII A(α1), B(α2), β 26–40

LPLA2 GXV 45 Ser/Asp/His

AdPLA2 GXVI 18 His/Cys
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