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Abstract: Intensity of human use (IHU) is a conceptual geographic characteristic that describes an area’s rank on 
the continuum from high use (e.g., urban area or active strip mine) to low use (roadless wilderness).  Customary 
measures of IHU, such as human population density or road density, lose their utility at the low-use end of the 
spectrum — and it is here that human activities may have their greatest ecological effect on some ecological 
resources, such as wildlife habitat.  Conceptually, we suggest that IHU is determined by four factors: 

 , 

where A is human accessibility, P is the population of potential visitors, D is attraction to a destination, and C is the 
dilution effect of alternate destinations.  

In our vehicle-centric culture, roads are essential determinants of human accessibility.  Each time a road is built 
or opened, some area surrounding the opened road becomes more accessible, and each time a road is closed or 
reclaimed some area becomes less accessible.

Our modeling efforts have focused on small enough areas that factors P, D, and C are essentially constant.  Our 
geographic information system (GIS) model of A expresses inaccessibility (roughly the reciprocal of A) as minimum 
travel time T(x, y) from a paved road.  The model depends on three digital geographic descriptors:  elevation, land 
cover, and transportation.  Calculations derive from estimates of vehicular speed on unpaved roads and walking 
speeds off-road.  At present, our model ignores alternate off-road transportation modes, such as horse, motorized dirt 
bike, or all-terrain vehicle (ATV), although these can be easily incorporated under the basic model structure.

Introduction
Human Presence and Ecological Effects in the Backcountry
The last entry in Forman and others’ (2003) figure of the lateral extent of road effects (their figure 11.6) is 
“human access, resulting in impacts on species and ecosystems,” with an indication that these effects extend 
laterally more than one kilometer.  How far do these human-generated, off road effects extend?  Are some 
parts of the landscape matrix particularly prone to human presence and disturbance while other parts are 
relatively immune?  How might the spatial pattern of human presence and disturbance change if a new road 
is built, or an old road closed?  Is it possible to provide protection for sensitive ecological resources (e.g., 
threatened and endangered species) through seasonal closures that are synchronized with the resource’s 
seasonal spatial distribution?

A distant goal is to answer the following three questions:  (1) what is the probability or frequency of human 
presence in the neighborhood of any point on the backcountry landscape (by season, time of day, and day 
of week, for example); (2) what is the probability of various human behaviors and activities if a human is 
present (e.g., gunfire from practice shooting primarily near roads prior to hunting season, then gunfire farther 
from roads during hunting season); and (3) what is the ecological footprint of the activity?  The composite of 
the probabilities, activities, and footprints expresses the density or likelihood of human disturbance.  When 
each of these questions can be answered in the form of a model, then we will be able to estimate the specific 
backcountry ecological influence of a new road, or of the closure or removal of an old road.

Human presence and disturbance are spatially and temporally intermittent in the backcountry, so answers to 
the foregoing questions may be stated most appropriately as probabilities.  For example, a wildlife species may 
respond behaviorally to campfire smoke, and it may be useful to know the probability by day, week, or season 
of camper presence in a valley that contains that species’ habitat.

Is there evidence of a connection between human presence and wildlife response?  It is our working hypothesis 
that the evidence has been published, but has been interpreted tangentially.  An example occurs in models 
of grizzly bear habitat preference.  Mace and others (1999), for example, documented negative correlations 
of grizzly bear locations in Montana with low-, moderate-, and high-use road densities during all seasons.  Our 
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hypothesis is that bears avoid human activities that associate with roads, and not roads and on-road activities 
themselves.  Testing of this hypothesis requires that estimates of human activities associated with roads be 
brought together with animal location data to see whether human-activity estimators are better predictors than 
factors derived solely from the spatial arrangement of roads.

Different human activities in the backcountry have different spatial extents or footprints.  The most extensive 
effect is likely to be accidental ignition of wildfire, but other activities also have potential large footprints — for 
example, the introduction of exotic species seeds from livestock feed or from hikers’ clothing.  Gunshots, or 
smoke from a campfire or from a remote cabin, may invoke behavioral responses in some wildlife species; 
these responses may extend roughly to the scale of small valleys (soundsheds or windsheds).  In short, there 
are many mechanisms of ecological effect in the backcountry, and the footprints of various mechanisms 
are neither well documented nor readily estimated a priori; indeed, they may vary according to independent 
conditions, such as weather.  Nevertheless, the most fundamental of footprints is simply the presence of 
humans, and it is here that we begin.

Relationship to Earlier Work
Watson and others (2000) reviewed methods for estimating wilderness recreation use.  They emphasized 
counting of wilderness users for management purposes, rather than predicting the likelihood of visitation at 
any particular place on the landscape.  Their work is an important reference point for our models, however, 
because nearly all backcountry users arrive at access points using motor vehicles.  If sufficient monitoring 
information were available—along access roads, in parking lots, or on trails just beyond trailheads—then our 
intensity of human use model might be built directly on this observational foundation.  Unfortunately, such a 
foundation is rarely obtainable; we have, therefore, based our model directly on populations that contribute 
to traffic at the trailhead (or other point of departure from the road network).  Population and trailhead 
accessibility information are, at least in principle, readily available.

Lesslie and Maslen (1995) utilized a suite of four indicators to make a composite wilderness metric.  The four 
indicators are:  remoteness from settlements, remoteness from access, freedom from human construction, and 
biophysical naturalness (Fritz and Carver 2000).  The Lesslie and Maslen analysis did not, however, consider 
the difficulty of off-road human transit.  Fritz and Carver (2000) did the first GIS-based estimates of access 
times, which reflected quite directly the difficulty of human travel.

In this paper we extend earlier work in two ways:  (1) we simplify the Fritz and Carver (2000) accessibility 
model, and (2) we treat accessibility as one component of a larger model of intensity of human use.

Summary of this Paper
Frequency of human use can and should be expressed quantitatively.  We are not currently able to make 
numerical estimates, so we use the term intensity of human use (IHU) to express the general notion of relative 
spatial and temporal variation of human presence.  We introduce a conceptual model for IHU, then focus 
on the factor in the model that relates directly to roads:  human accessibility.  We develop one quantitative 
measure of accessibility—the travel time to reach any point on the landscape—and illustrate a preliminary 
model for its calculation.  We demonstrate changes in accessibility with simulated closure of roads, treating 
closed roads as trails.

Modeling Intensity of Human Use
We postulate that four factors determine the intensity of human use (IHU) of any area of the backcountry:  (1) a 
source population of humans (factor P); (2) a desire among some of the human population to be in a particular 
place (factor D); accessibility (factor A); and competition with other places (factor C).  Conceptually, therefore, 

.

There are salient geographic examples that illustrate the appropriateness of this conceptual model.  Yosemite 
Valley, for example, is a few hours drive from the densely populated San Francisco Bay Area (high factors A 
and P), and it has spectacular scenery unmatched in the region (high factor D and low factor C).  There are, 
of course, many layers of additional complexity; high IHU itself deters those among the population who seek 
simultaneous scenery and solitude, effectively reducing factor P and increasing factor C.  Such secondary and 
feedback effects are beyond the scope of our preliminary work, but should be kept in mind when interpreting 
results from simple models.

Our work has not progressed to a point where we are able to calculate and present an actual IHU model.  We 
present the discussion of this section to provide strategic context for our initial work on factor A.
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Factor P:  Human Population
Two places may be comparable in accessibility and desirability, but if one is close to a large population center 
and the other close to a small population center, then the former is more likely to receive frequent visitation.  
Among the residents—either permanent or itinerant—of any population center, however, there are those who 
are both equipped and inclined to visit the backcountry, and the remainder have little effect on IHU.  Thus, 
factor P should count only the fraction of the population that is interested and equipped.  While estimates 
of total population are readily available from censuses, it is considerably more difficult to estimate fractional 
populations.  Surrogate measures (counts of bicycle shops or snowmobile sales, for example) may be useful, 
but evaluations of surrogate measures are beyond the scope of our work.

An interesting example of seasonal variation of factor P occurs in the Taylor Fork study area that we describe 
below.  Temporary hunting camps are established to serve scores of hunters.  Some of the camps are located 
at the very ends of roads accessible to full-size vehicles.  The temporary populations served by these camps 
have significantly reduced access times.

Factor D:  Desirability of Destination
Two major categories of human activity elevate factor D:  resource extraction and recreation.  Economically 
valuable extraction sites over time promote the enhancement of accessibility through additional road (or 
railroad) building.  If this positive feedback process continues long enough, then an area becomes more 
industrial than backcountry in character, and our conceptual model is inappropriate.  

The purpose of our investigation is to evaluate off-road ecological effects, and only a tiny fraction of mining, 
logging, and other resource extraction is done without direct road access.  Thus, the primary desirability factors 
that should be considered in our conceptual model of IHU relate to recreation, not to extractive industry.  Roads 
in the area of interest, however, may have been built in support of extractive activities—this is probably the 
case for the majority of backcountry roads— and consequences of the nature and timing of those activities 
(the stage of forest regrowth in a clear-cut area, for example) may influence factors D and A.  Thus, resource 
extraction is relevant to the IHU model in many indirect ways.

Factor D encapsulates temporal information in two ways.  First, the popularity of an activity varies by 
season, day of week, and time of day.  D can be made a time-dependent variable proportional to these 
temporal changes.

Factor A:  Accessibility
We evaluate accessibility every day; the measure we most often use is time.  Strictly speaking, time of access 
is a measure of inaccessibility, so at least as a concept, we can think of accessibility as the reciprocal of access 
time, or A = 1 / T.  Much of the work presented in this paper relates to the estimation of T, spatial patterns of T, 
and influences of the road network over spatial patterns of T.

Travel time T does not express all dimensions of the influence of accessibility on IHU.  For example, experience 
suggests that a place that requires an hour of automobile travel over dirt roads is considered by most people 
to be more accessible than a place that requires an hour of hiking on good trail.  Fortunately, some of these 
differences can be captured in factor P; here, the discrimination is between people “interested and equipped 
to hike” versus those “interested and equipped to drive.”  Thus, in a full numerical calculation of IHU—a level 
of model integration that we have not yet undertaken—judicious summation of activities by populations of 
“interested and equipped” people would resolve the ambiguities in factor T.  Unfortunately, the populations 
do not separate cleanly into “drivers” and “hikers,” suggesting that population characterization itself deserves 
conceptual modeling and quantitative research.  Also, the astute reader will note that this commentary on 
populations occurs within a discussion of accessibility—an indication of how tightly these aspects of human 
presence on the landscape are interwoven.

Factor C:  Competition with Alternate Destinations
Within the area of a single model, factor C can be eliminated (set to 1).  The purpose of C is normalization 
between or among somewhat independent areas, particularly when one population uses multiple areas.

Integration of the IHU model
The integrated analysis of intensity of human use must take into account the following factors:

• Multiple activities, both extractive and recreational
• Traffic that the activities generate, both on- and off-road
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Here we express some of the notions in a more mathematical way in order to clarify the proper construction of 
an IHU model.  Non-modelers can safely skip over this section.

The total intensity of human use is the sum of intensities for different activities.  We use the summation index 
i to indicate one activity.  As discussed above, there are different populations—although probably overlapping 
populations—that are interested and equipped to participate in each activity.  The population for activity i is 
Pi.  Similarly, the competition with other opportunities for this activity outside of the area of the model, which 
in effect splits Pi, is Ci.  In a first-order treatment factors Pi and Ci are constant over the modeled area, i.e., they 
are not functions of position (x,y).

Factors A and D, on the other hand, are both position dependent.  The desirability of a location depends on 
both location and activity, so D = Di(x,y).  If different activities imply different modes of travel, then accessibility 
A depends on activity and location, so A = Ai(x,y); in a simpler situation, when all activities involve the same 
mode of travel, then A = A(x,y).

In a fully constructed IHU model, we need to consider visitation-in-transit at points along efficient routes to 
visitors’ ultimate destinations.  We will call this the traffic factor T, and it depends on activity and is spatially 
explicit; thus, T = Ti(x,y).  We will show below that T is a derived factor dependent on D and A.

It is helpful both conceptually and computationally to think of T in analogy to surface water flow in a watershed.  
In a cell-based watershed model, any cell that is not on a ridge or a summit has an associated assemblage of 
cells that are upstream, which drain through the cell in question.  In the IHU model, “upstream” cells are the 
ones whose most efficient route of access traverses the cell in question.  If a geographic information system 
(GIS) is used to calculate optimum travel times (optimum accessibilities A), then the GIS typically will generate 
simultaneously a travel-direction grid.  Hydrologic functions can be used to weight and sum values from every 
upstream cell in the routing network—traffic routing rather than water routing in our case—and assign the 
result to the route cell in question.  We are interested in the sum of upstream use that is generated by our 
enumerated activities on the landscape.  Thus,

,
where T0 is a scaling constant, U(x,y) is the area upstream of (x,y), and (x′,y′) is a point within U(x,y).
The full spatial model for IHU is

.

The first term inside the square brackets, the DA product, represents human presence for activities at location 
(x,y); the second term, T, is human presence caused by travel to other “upstream” sites. Each factor in the 
model can vary with time.  If an analysis requires averaging or totaling over time, then the appropriate way to 
handle the averaging is to calculate IHU for the shortest possible time interval and then to average or total the 
IHU.  It is not appropriate to calculate IHU based on temporal averages or sums of its terms.

Modeling Accessibility
In a small area, factors P and C of the IHU model do not vary.  Factor D consists of three parts:  (1) intended 
backcountry activities, which are difficult to inventory without extensive interaction with users; (2) quantification 
of the number of participants in each activity; and (3) locations of intended participation.  Lacking this 
information, we defer consideration of D and begin the exploration of the IHU model by calculating only the 
accessibility factor A.  We refer to this sub-model as the human accessibility/remoteness model, or hARM.

Importance of the Transportation Network
If access time is a determinant of levels of human use, then the features of the landscape that most 
significantly influence access time also significantly influence use levels. Because roads offer rapid mechanized 
access, they are a core feature of an accessibility model.

Consider that an average walking speed on a level trail is about 3.2km/h (van Wagtendonk and Benedict 
1980).  A paved road makes speeds possible that are about 30 times greater, and a graded dirt road from 5 to 
15 times greater.  In an accessibility model, this has the effect of propagating a zone of near-zero access times 
along the parts of the road network that are accessible from the starting point (or starting zone).
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Low accessibility, or high remoteness, occurs under two circumstances:  (1) when the remote place is physically 
far from a road, or (2) when a difficult feature must be crossed.  Although we do not illustrate such situations 
in this paper, the reader can imagine a road in the bottom of a deep canyon.  Such a canyon road offers rapid 
access only to the bottomlands, while the canyon rim and lands beyond are shielded from access by the near-
zero travel speed involved in scaling vertical walls.  Similarly, a road on a canyon rim reduces accessibility 
on that rim but not on the canyon bottom or on the rim opposite.  These spatial considerations illustrate the 
importance of basing model calculations on accurately located roads and topography.

Changes in the transportation network, including such changes as gate openings and closings, make far-
reaching changes in accessibility.  We imagine that a key application of hARM is the quantitative analysis of 
the area affected by these road-management adjustments.  For wildlife species that are sensitive either to 
vehicular traffic or disseminated human presence, the opening and closing of a gate can alter habitat quality 
over a large area.

Off-Road Travel-Time Calculations
Fritz and Carver (2000) introduced GIS-based off-road accessibility modeling with an application of a walking-
speed model known as “Naismith’s rule.”  The original rule was developed in Scotland in the 19th century; Fritz 
and Carver used a modification attributed to Langmuir (1995).  It specifies a walking speed of 5km/h for level 
ground, with a time addition of 1 hour per 600m of climbing, a time subtraction of 20 minutes per 600m of 
descent for slopes between 5 and 12 degrees (grades of 9% to 21%), and a time addition of 20 minutes per 
600m of descent for steeper slopes.  Shortcomings of this model are apparent, such as its insensitivity to 
altitude and land cover.

Van Wagtendonk and Benedict (1980) timed trail hikers in Yosemite National Park and from their observations 
developed two equations of identical form for uphill and downhill travel.  These are , with k = 4.6 for 
uphill travel, k = 1.5 for downhill travel, v0 = 3.2km/h = 0.89m/min, and slope s expressed as a gradient in m/
m.  We used van Wagtendonk and Benedict’s rule with a further simplification; we used a single, mean value 
of k = 3.0.  As explained below, our computational method was not sensitive to direction of travel and was thus 
unable to differentiate between uphill, downhill, or cross-slope travel.  Our travel-time estimates are, therefore, 
biased downward for places reached with mostly uphill travel, upward for places reached with mostly downhill 
travel, and more strongly upward for places reached with mostly cross-slope travel.  Roads and trails in hilly 
and mountainous landscapes—which are preferentially selected as elements of all time-efficient routes—occur 
mostly in valley bottoms.  Most off-road travel is uphill, making the bias of downhill and cross-slope travel 
secondary in importance when assessing landscapes; these biases may, however, be quite important for 
specific, ill-conditioned routes.

Several approaches are available for doing the computations.  The simplest of these breaks the modeled 
area into square or rectangular cells, then assigns travel times to the links that connect cells.  Links can be in 
cardinal or diagonal directions; it is the job of the solution algorithm to select the most efficient link everywhere 
in the grid.

Fritz and Carver (2000) used an iterative method that assigned different crossing times to links depending 
on the direction of travel.  Theirs is the more accurate way to do the calculations, but it involves iterative 
examination of travel direction and selection of corresponding link times.  The iteration demands careful 
programming and considerably increases computation time.  We chose a simpler approach that assigns 
a single time “cost” to traversing a cell, with no differentiation between crossing directions—except for 
appropriate distance weighting of diagonal versus cardinal links.  This approach is computable in a single 
minimum-cost-distance GIS operation, although internally the GIS function also performs iterative analysis as 
it finds the optimum path.  We speculate, but have not demonstrated, that the errors introduced by our 
direction-insensitive method are no greater than the errors inherent in estimating walking speeds from 
available data.  Working out of the error budget of these models requires detailed hiking-speed data in various 
terrain and land-cover conditions, which can now be obtained without difficulty using global positioning system 
(GPS) receivers.

Study Area
Our study area is the valley of Taylor Fork of the Gallatin River in Gallatin County, Montana.  Elevations in the 
valley range from 1350 to 3436m.  A shaded relief image (fig. 1) demonstrates that the floors of the Gallatin 
River and Taylor Fork valleys (the former is in the northeast corner of figure 1, the latter branches west through 
the center of the image) are relatively flat; all other parts of the mountainous landscape have considerable 
slopes, which significantly influence access.
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Calculating Celocity
We begin with a flat-ground (trail) walking speed of 3.2 km/h and then apply a series of adjustments, as 
described and illustrated below.  Throughout this process our objective is to assign a speed to each cell in our 
grid, with the speed depending on local slope, land cover, and presence or absence of a road or a trail.

Slope-Dependent Walking Speed
We described our simplified approach to making speed adjustments for slope in the preceding section.  Figure 
2 shows bare-ground, no-land-cover walking speed calculated from slopes alone.

Land Cover and Trails
We used the National Land Cover Dataset (NLCD) (Vogelman et al. 
2001) to apply speed penalties (dividing factors) to various land 
cover types, as indicated in table 1.  Cells that contained portions 
of trails were converted to the bare rock/soil class and thus had no 
speed penalty except for the slope penalty previously applied.  Trail-
imprinted land cover is shown in figure 3.

Our estimates of speed penalties are based on personal field 
experience; we have not assembled and rigorously analyzed walking-
speed data in the various land-cover types.  Our efforts to find 
cover-dependent walking-speed models in the research literature 
were fruitless.  The speed penalties that we have specified are 
inappropriate during winter, when snow depth is the dominant factor.  
Speed factors in summer and fall may actually be time dependent, 
even though we have specified them as static.  For example, stream 
crossings may be virtually impossible on foot during snowmelt 
season, but in late summer and fall may be little different from 
walking on bare ground.

Figure 1.  Shaded-relief image of the valley of Taylor 
Fork of the Gallatin River in Gallatin County, Montana. 

Land cover and trails Table 1. 
Speed penalty factors 

by land-cover type 
Bare rock/soil 1
Coniferous forest 2
Deciduous forest 1.5
Emergent wetland 3
Grass/herbaceous 1
Ice/snow 2
Mixed forest 2
Pasture 1
Shrubland 2.5
Transitional 1.5
Water 2
Woody wetland 3

We used the National Land Cover Dataset (NLCD) 
(Vogelman et al. 2001) to apply speed penalties (dividing 
factors) to various land cover types, as indicated in Table 1.
Cells that contained portions of trails were converted to the 
bare rock/soil class and thus had no speed penalty except for 
the slope penalty previously applied.  Trail-imprinted land 
cover is shown in Figure 3. 

Our estimates of speed penalties are based on personal field 
experience; we have not assembled and rigorously analyzed 
walking-speed data in the various land-cover types.  Our 
efforts to find cover-dependent walking-speed models in the 
research literature were fruitless.  The speed penalties that we 

Fig. 1. Shaded-relief image of the valley of Taylor Fork 
of the Gallatin River in Gallatin County, Montana

Table 1.
Speed penalty factors by land-
cover type
Bare rock/soil 1
Coniferous forest 2
Deciduous forest 1.5
Emergent wetland 3
Grass/herbaceous 1
Ice/snow 2
Mixed forest 2
Pasture 1
Shrubland 2.5
Transitional 1.5
Water 2
Woody wetland 3
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Fig. 2.  Slope-dependent walking speed under bare-ground conditions.

Thus, the land-cover penalty portion of our model is uncalibrated but generally reflects comparative ease or 
difficulty of moving across the landscape.  The lack of calibration means that travel-time numbers in the model 
are unreliable, but spatial patterns of relative travel times are generally reliable.  It is likely that slope and land 
cover interact in determining walking speeds.  Development of a multi-parameter, possibly nonlinear model 
is possible with time-stamped global positioning system (GPS) tracks obtained by hikers crossing a variety of 
terrains, but such a model is also likely to vary from region to region.

Gross-categorical data sets, such as NLCD, because they do not reliably reflect understory vegetation may be 
insufficient for development of reliable models in some regions.  One important shortcoming of NLCD-based 
speed penalization in the Yellowstone area is NLCD’s lack of discrimination between virgin and post-logging 
regrowth forest.  Virgin forest often has numerous fallen logs in various states of decomposition, making 
walking speeds much slower than in regrowth forest.

Fig. 3.  National Land Cover Dataset (NLCD) categories, with trails superimposed.

Roads
We commented in an earlier section about the importance of the roads because of their high associated 
speeds.  In the study area depicted in this paper, we mapped roads first by interpretation from air photos 
and later by field checking.  Thus, we have reliable estimates of road speeds, although these inevitably vary 
according to antecedent and current weather conditions.  We also documented where gates may be opened or 
closed and the state that we found them in during our fieldwork.

Roads are handled in the hARM model by assigning the driving speed on a road to each cell that the road 
crosses.  In effect, the road speeds are “stamped” over all earlier speed estimates and adjustments; they 
therefore override speeds determined by slope and land cover.  Figure 4 shows the complete speed model that 
accounts for slope, land cover, trails (as barren ground), and roads.

Figure 2.  Slope-dependent walking speed under bare-ground conditions. 

have specified are inappropriate during winter, when snow depth is the dominant factor.  Speed 
factors in summer and fall may actually be time dependent, even though we have specified them
as static.  For example, stream crossings may be virtually impossible on foot during snowmelt
season, but in late summer and fall may be little different from walking on bare ground. 

Thus, the land-cover penalty portion of our model is uncalibrated but generally reflects
comparative ease or difficulty of moving across the landscape.  The lack of calibration means
that travel-time numbers in the model are unreliable, but spatial patterns of relative travel times
are generally reliable.  It is likely that slope and land cover interact in determining walking 
speeds.  Development of a multi-parameter, possibly nonlinear model is possible with time-
stamped global positioning system (GPS) tracks obtained by hikers crossing a variety of terrains, 
but such a model is also likely to vary from region to region. 

Gross-categorical data sets such as NLCD, because they do not reliably reflect understory 
vegetation may be insufficient for development of reliable models in some regions.  One
important shortcoming of NLCD-based speed penalization in the Yellowstone area is NLCD�s 
lack of discrimination between virgin and post-logging regrowth forest.  Virgin forest often has 
numerous fallen logs in various states of decomposition, making walking speeds much slower 
than in regrowth forest.

Figure 3.  National Land Cover Dataset (NLCD) categories, with trails superimposed.

Roads

We commented in an earlier section about the importance of the roads because of their high 
associated speeds.  In the study area depicted in this paper, we mapped roads first by 
interpretation from air photos and later by field checking.  Thus, we have reliable estimates of 
road speeds, although these inevitably vary according to antecedent and current weather
conditions.  We also documented where gates may be opened or closed and the state that we 
found them in during our fieldwork. 

Roads are handled in the hARM model by assigning the driving speed on a road to each cell that 
the road crosses.  In effect, the road speeds are �stamped� over all earlier speed estimates and 
adjustments; they therefore override speeds determined by slope and land cover.  Figure 4 shows 
the complete speed model that accounts for slope, land cover, trails (as barren ground), and 
roads.
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Fig. 4.  Composite speed model taking into account slope, 
land cover, trails (treated as bare ground), and dirt roads.

The Locus of Zero Time
The modeler must decide where times are to be measured from.  Many GIS implementations allow least-cost-
distance modeling to establish a zero-time (zero-cost) origin over an arbitrary set of cells.  This can be a single 
cell—at an intersection, for example— or a set of cells that represents one paved road, all paved roads, or a 
town.  Speeds within the origin features are irrelevant; all points in the origin set are reached in zero time.  
For our illustrated model, paved roads were time zero.  Paved roads occur only along the Gallatin River in the 
northeast quadrant of the model area, and are readily identified by their zero travel-time values in the results 
of the hARM model.  At the scale of the model illustrated here, a different zero-time specification on the paved 
road—at a single point, for example, rather than along the entire paved road length—makes little difference 
because travel times along the high-speed paved road are so small.  

hARM Model Results
Figure 5 shows the results of the minimum-cost (minimum travel-time) calculation.  

Fig. 5.  Results of hARM model: travel time 
from paved road in the Taylor Fork valley.

Discussion

Interpretation of hARM Accessibility Maps
The Taylor Fork valley can be penetrated significantly—roughly 10km—in less than 20 minutes, but the area 
that is accessible in such a short time is quite small, a result of the generally steep-sided valley walls.  A 
more complete picture of the accessibility of the whole landscape is obtained by plotting the fraction of the 
landscape that can be reached within a given travel time (fig. 6).

Figure 4.  Composite speed model taking into account slope, land 
cover, trails (treated as bare ground), and dirt roads. 

The locus of zero time 

The modeler must decide where times are to be measured from.  Many GIS implementations
allow least-cost-distance modeling to establish a zero-time (zero-cost) origin over an arbitrary set 
of cells.  This can be a single cell�at an intersection, for example�, or a set of cells that 
represents one paved road, all paved roads, or a town.  Speeds within the origin features are 
irrelevant; all points in the origin set are reached in zero time. For our illustrated model, paved 
roads were time zero.  Paved roads occur only along the Gallatin River in the northeast quadrant 
of the model area, and are readily identified by their zero travel-time values in the results of the 
hARM model.  At the scale of the model illustrated here, a different zero-time specification on 
the paved road�at a single point, for example, rather than along the entire paved road length�
makes little difference because travel times along the high-speed paved road are so small.

hARM model results

Figure 5 shows the results of the minimum-cost (minimum travel-time) calculation.

Figure 5.  Results of hARM model:  travel time from paved road in the Taylor Fork valley

DISCUSSION

Interpretation of hARM accessibility maps 

The Taylor Fork valley can be penetrated significantly�roughly 10 km�in less than 20 
minutes, but the area that is accessible in such a short time is quite small, a result of the generally 
steep-sided valley walls.  A more complete picture of the accessibility of the whole landscape is 
obtained by plotting the fraction of the landscape that can be reached within a given travel time
(Fig. 6). 

Figures 5 and 6 illustrate that travel on the highest-speed backcountry roads provides direct
access to a small fraction of the landscape.  This preliminary access, however, leads to rapidly
expanding access with additional time investment on the part of the backcountry user.  If t is 
travel time from pavement and a is the fraction of the landscape accessible with travel time � t,
then ln( 1 � a ) is well approximated by the linear expression ��t with � = 0.00654; the R2 of this
fit is 0.98.  Solving this formula for a gives � �ta ���� exp1 , which is plotted in Figure 6 
together with the accessible-area versus time curve derived directly from Figure 5.  This result is 



ICOET 2003 Proceedings                                                           543                                                                 Making Connections

Fig. 6.  Cumulative fraction of landscape that can be 
reached as a function of travel time from a paved road.

Figures 5 and 6 illustrate that travel on the highest-speed backcountry roads provides direct access to a small 
fraction of the landscape.  This preliminary access, however, leads to rapidly expanding access with additional 
time investment on the part of the backcountry user.  If t is travel time from pavement and a is the fraction 
of the landscape accessible with travel time ≤ t, then ln( 1 – a ) is well approximated by the linear expression 
–αt with α = 0.00654; the R2 of this fit is 0.98.  Solving this formula for a gives , which is plotted 
in figure 6 together with the accessible-area versus time curve derived directly from figure 5.  This result is 
specific to the roads, topography, and land-cover of the Taylor Fork valley as well as to the input assumptions 
of this run of the hARM model.  The additional fraction of landscape that is accessible per minute of travel is 
given by , an apparent exponentially diminishing return on time investment.  One person can, 
however, go to only one place at a time, so what these formulas reveal is that—at least for this landscape—the 
longer the duration of a trip that one desires to make into the backcountry, the fewer the potential destinations.

More important than the specific quantitative results are the analysis possibilities.  For example, any point 
that takes longer than four hours (240 minutes) to reach is almost certain to require either backpacking or 
livestock packing because of the duration—greater than eight hours—of the round trip.  One can readily see that 
about 20 percent of the landscape lies at travel times greater than four hours, so in effect this 20 percent is 
managed exclusively for backpacking or other multi-day access.

Spatial pattern and relationship among spatial variables 
may matter as much as summary statistics.  Figure 
7 shows access time and elevation together.  Both 
variables were transformed to percentile ranks (an 
equal-area classification).  Access time is rendered 
from green (accessible) to blue (remote); elevation 
is rendered from black (low) to red (high).  These 
representations are then superimposed in a red-green-
blue (RGB) display.  Resulting color combinations 

are shown in table 2.  Figure 7 illustrates that high and remote (magenta) conditions are significantly more 
prevalent than low and remote (blue).  If a wildlife species requires both low-elevation resources and isolation 
from people (i.e., blue areas), then there is little space available.  Two inaccessible low-elevation areas occur 
near the top of figure 7, one just right of center and the other in the northwest corner.  A yellow-green band of 
intermediate-elevation accessible land separates the two blue areas.  

specific to the roads, 
topography, and land-
cover of the Taylor 
Fork valley as well as 
to the input 
assumptions of this 
run of the hARM
model.  The additional 
fraction of landscape 
that is accessible per
minute of travel is 
given by 

� �ta �� ��� exp , an 
apparent exponentially 
diminishing return on 
time investment.  One 
person can, however, 
go to only one place at 
a time, so what these 
formulas reveal is 
that�at least for this landscape�the longer the duration of a trip that one desires to make into 
the backcountry, the fewer the potential destinations.

More important than the specific quantitative results are the analysis possibilities.  For example,
any point that takes longer than 4 hours (240 minutes) to reach is almost certain to require either 
backpacking or livestock packing because of the duration�greater than 8 hours�of the round 
trip.  One can readily see that about 20% of the landscape lies at travel times greater than 4 
hours, so in effect this 20% is managed exclusively for backpacking or other multi-day access.

Spatial pattern and relationship among spatial variables may matter as much as summary
statistics.  Figure 7 shows access time and elevation together.  Both variables were transformed
to percentile ranks (an equal-area classification).  Access time is rendered from green 
(accessible) to blue (remote); elevation is rendered from black (low) to red (high).  These
representations are then superimposed in a red-green-blue (RGB) display.  Resulting color
combinations are shown in Table 2.  Figure 7 illustrates that high and remote (magenta)
conditions are significantly more prevalent than low and remote (blue).  If a wildlife species 
requires both low-elevation resources and isolation from people (i.e., blue areas), then there is 
little space available.  Two inaccessible low-elevation areas occur near the top of Figure 7, one 
just right of center and the other in the northwest corner.  A yellow-green band of intermediate-
elevation accessible land separates the two blue areas.  Thus, there is a management option of 
improving landscape connectivity for our 
hypothetical species by closing the roads that make
the land between the two blue patches accessible.
The hARM model can be used to evaluate such 
options.  Figure 8 illustrates the changes in 
accessibility that would occur if gates were closed

Table 2.  Color interpretations for Figure 7
Green Low and accessible 
Blue Low and remote 
Yellow High and accessible
Magenta High and remote 
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Figure 6.  Cumulative fraction of landscape that can be 
reached as a function of travel time from a paved road. 

Table 2  
Color interpretations for Figure 7

Green Low and accessible
Blue Low and remote
Yellow High and accessible
Magenta High and remote
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Thus, there is a management option of improving landscape connectivity for our hypothetical species by closing 
the roads that make the land between the two blue patches accessible.  The hARM model can be used to 
evaluate such options.  Figure 8 illustrates the changes in accessibility that would occur if gates were closed 
on several roads that branch from the main Taylor Fork road (roads inaccessible to motor vehicles are treated 
as trails).  One result of this road closure is that the two blue patches along the top of the figure are now 
separated by a ridge that is inaccessible to humans rather than by an accessible ridge.  Another effect is that 
the overall area of remote, low-elevation (blue) habitat is substantially increased, which would be advantageous 
to our hypothetical species.

Factors Affecting Model Accuracy

Transportation Mode
The great increase in thenumber of ATVs significantly blurs the distinction between road and trail, and the 
speeds achievable on these vehicles produce significant changes in estimates of access time.  Recalling 
our earlier discussion about stratifying the IHU model by activity and by the population of those “able and 
equipped,” we recommend that distinct models be used according to conveyance type.  

Fig. 8.  Access times and elevation color-coded as in 
figure 7, with simulated closures of side roads.

Figure 7.  Color composite of elevation and travel time 
from pavement.  See Table 2 for interpretation of colors. 

on several roads that branch from the main Taylor Fork road (roads inaccessible to motor
vehicles are treated as trails).  One result of this road closure is that the two blue patches along 
the top of the figure are now separated by a ridge that is inaccessible to humans rather than by an 
accessible ridge.  Another effect is that the overall area of remote, low-elevation (blue) habitat is 
substantially increased, which would be advantageous to our hypothetical species. 

Factors affecting model accuracy 

Transportation mode 

The great increase in number of ATVs significantly blurs the distinction between road and trail,
and the speeds achievable on these vehicles produce significant changes in estimates of access 
time.  Recalling our earlier discussion about stratifying the IHU model by activity and by the 
population of those �able and equipped,� we recommend that distinct models be used according 

Fig. 7.  Color composite of elevation and travel time from 
pavement.  See Table 2 for interpretation of colors.

Figure 8.  Access times and elevation color-coded as in 
Figure 7, with simulated closures of side roads. 

to conveyance type.  Documentation of routes and travel speeds for ATVs, mountain bikes, 
motorized dirt bikes, horses, or llamas, is a non-trivial undertaking.

Some transportation modes are disallowed in some areas.  Part of our study is in a formal
Wilderness Area, where motorized travel is excluded.  Other parts of our study area are on 
private land, where general access may be barred but where landowners can use any means of 
transportation that they desire. These are difficult issues to resolve in a systematic way without 
extensive, site-specific investigation.

Road and trail maps (GIS data)

The differences between Figures 7 and 8 illustrate the importance of accurate representation of 
the road network.  The opening and closing of roads has a substantial impact on the spatial and 
statistical patterns of accessibility.  To misrepresent road status in the model generates significant 
errors in interpretation of landscape accessibility.
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Documentation of routes and travel speeds for ATVs, mountain bikes, motorized dirt bikes, horses, or llamas, is 
a non-trivial undertaking. 

Some transportation modes are disallowed in some areas.  Part of our study is in a formal wilderness area, 
where motorized travel is excluded.  Other parts of our study area are on private land, where general access 
may be barred but where landowners can use any means of transportation that they desire.  These are difficult 
issues to resolve in a systematic way without extensive, site-specific investigation.

Road and Trail Maps (GIS Data)
The differences between figures 7 and 8 illustrate the importance of accurate representation of the road 
network.  The opening and closing of roads has a substantial impact on the spatial and statistical patterns 
of accessibility.  To misrepresent road status in the model generates significant errors in interpretation of 
landscape accessibility.

We warn potential modelers about the risks inherent in using readily available GIS data and maps.  These 
oftentimes are out of date; they omit accessible routes, show routes that are closed, and generally wreak 
modeling havoc.  Our field studies have found areas where less than 50 percent of accessible roads are 
represented in available data sets.  By the same token, we have found our own photo interpretations in some 
areas to over-represent open roads by as much as 100 percent because gates, berms, and other closure 
structures cannot be discerned in the photos.  Apart from those areas where the transportation network is 
quite stable—in the United States this is likely limited to Wilderness Areas, National Parks, and some private 
land—validation of transportation data seems essential.

Speed Estimation and Travel-Time Calculation
We estimated speed penalties for various land cover types without robust data.  Multiple regression formulas 
are needed that estimate travel speed based on slope, direction of travel, land cover, and elevation.  Land 
cover characterization is particularly important and particularly difficult because it determines trafficability 
and speed for all transport modes—foot, horse, llama, ATV, and dirt bike.  Important land-cover characteristics 
in this context are tree density, downed timber density, understory vegetation type and density, and ground 
roughness.  The last of these, ground roughness, is also an important speed determinant on trails.

We used an algorithm that assigns speed without regard to direction of travel.  The best algorithms that 
account for direction of travel appear to be fast marching algorithms (Sethian 1999); their application would 
allow for analysis of optimized travel in any direction, not limiting travel to a cardinal-and-diagonal, eight-
direction set of node links.

Conclusions
Backcountry roads, including ATV and dirt bike trails, are the outposts of mechanized civilization.  Wilderness—
however one chooses to define it—does not occur when one steps off the road.  Rather, this is the first step into 
a diffuse zone that leads to the most remote places.  Our efforts are aimed at developing metrics to describe 
the degree of remoteness or wildness.

The multitude of customary pattern metrics used in landscape ecology (e.g., McGarigal and Marks 1995) do 
not discriminate the important ecological differences between a forest patch reachable by a short walk from a 
maintained road and a similar forest patch reachable only after a two-day hike.  Some of these differences may 
be sufficiently described in terms of accessibility (hARM results) alone; others may require estimation of the 
frequency of human visitation and human activities (IHU results, when such a model is implemented).  These 
landscape metrics may support improved models of ecological conditions, including improved measures of the 
quality of wildlife habitat.
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