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ScienceDirect
Most cancers arise in epithelia, the tissue type that lines all

body cavities. The organization of epithelia enables them to act

as a barrier and perform vectorial transport of molecules

between body compartments. Crucial for their organization and

function is a highly specialized network of cell adhesion and

polarity proteins aligned along the apical–basal axis.

Comparing breast and intestinal tissue as examples of

common cancer sites, reveals an important contribution of

polarity proteins to the initiation and progression of cancer.

Defects in polarity are induced directly by mutations in polarity

proteins, but also indirectly by changes in the expression of

specific microRNAs and altered transcriptional programs that

drive cellular differentiation from epithelial to more

mesenchymal characteristics. The latter is particularly

important in the metastatic process.
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Introduction/background
Epithelial tissues act as boundaries between the body and

the outside world. They form the external surface of the

body and line the cavities of most internal organs. Epithe-

lia also constitute much of the tissue in glands where

epithelial cells have evolved a specialized capacity for

polarized secretion of fluids. Epithelial tissue is also the

most common site for the development cancers. Carci-

nomas arise from epithelial tissue and account for as many

as 90 percent of all human cancers. Two of the most

common cancers in humans occur in breast and colonic

epithelium. Carcinomas are characterized by changes in

normal cell and tissue organization of epithelia and their

progression is usually accompanied by increasing disor-

ganization.
www.sciencedirect.com 
In this review we will compare and contrast the general

features of the normal organization of the epithelium in

the breast (or mammary gland) and intestinal tract and

describe recent studies that have furthered our under-

standing of how this organization changes in cancer.

Normal epithelial organization

The organization of the breast and the intestinal tract is

exquisitely well suited to perform the functions of these

tissues. The main function of the breast is production and

secretion of milk during lactation whereas, in contrast, the

intestine absorbs nutrients and packages waste products

for excretion (Figures 1 and 2). In both tissues, these roles

require polarized epithelia and both the inner luminal

epithelial layer of the breast and the epithelial layer of the

intestinal tract are composed of tightly connected cells,

held together by specialized adherens junctions formed

by cadherins, which connect cells via homotypic inter-

actions between their extracellular domains (Figures 1

and 2) [1]. Tight junctions form above adherens junctions

towards the luminal surface and physically separate the

apical membrane of cells, facing the lumen, from the

basolateral membrane that interfaces with the interior of

the body. This polarity of cellular organization allows

vectorial transport across the epithelial layer, secretion to

the outside surface of the body in breast and absorption

into the body in the intestine. Integrins and other trans-

membrane proteins on the basal surface physically anchor

epithelial cells to the underlying basement membrane, an

organizing scaffold comprised of specific extracellular

matrix (ECM) molecules that are produced by the epi-

thelium itself and surrounding fibroblasts. The selective

distribution of ion channels to either the apical or the

basolateral domain is an integral part of this polarity and

ensures correct ion transport and the associated flow of

water.

Cancer in epithelia

In breast tissue, cancer arises predominantly from the

luminal epithelial cells that line both the ducts and milk-

producing lobules, and less frequently from the outer

layer of basal cells. In the intestine and colon, cancers

arise in the epithelium of the crypt [2,3]. The prevalence

of epithelial cancers in general may be due to the fre-

quency with which the cells in these tissues divide. For

example, over a woman’s lifetime the breast undergoes

many (�450) cycles of growth and involution in response

to hormonal cues during each menstrual cycle in addition

to the dramatic changes that occur with pregnancy. In the

intestine, epithelial cells are also continually turned over.
Current Opinion in Cell Biology 2014, 26:87–95
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Figure 1
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Schematized view of the tissue organization in breast with the features described in the introduction. Breast tissue overlies the ribs and chest muscles.

The milk producing glandular epithelia of a woman’s breast is contained within adipocyte tissue. A breast consists of 15–20 epithelial lobes, each

develops numerous milk-producing lobules upon pregnancy (green inset). Each lobule and lobe is connected to the nipple via ducts (blue inset) that

transport milk. The lobules and ducts consist of a bilayered epithelium comprising an inner layer of milk-producing luminal epithelial cells and an outer

layer of myoepithelium that contracts to generate milk flow. Luminal epithelial cells are polarized containing apical domains that face the lumen and

basolateral domains that interface with the interior of the body (red inset). Junctional proteins mediate adhesion between cells and are regulated by

three sets of polarity regulators: Scribble (Scrib)/lethal giant larvae (Lgl)/discs large (Dlg) proteins; Crumbs/PALS/PATJ proteins; and the partitioning

defective 3 (Par3)/Par6/atypical protein kinase C (aPKC) proteins. Fibroblasts and immune cells infiltrate the adipocyte tissue and assemble around the

epithelium, which is surrounded by basal lamina (not shown).
The estimated 1.1 million crypts in the mouse intestine

produce about 10 million cells per hour (about 5 billion in

humans) and this is balanced by the loss of cells from the

tissue [4]. Given these staggering numbers it is not

surprising that, even with exceedingly low endogenous

rates of mutations, tumorigenesis in both the breast and

the intestine increases with age.

Abnormal, uncontrolled proliferation is one of the first

signs of cancer, and is the consequence of genetic changes

that confer on cells the ability to divide and survive in the

absence of appropriate matrix anchorage. This allows

rapid, unconstrained cellular expansion. In the breast

epithelium this produces unpolarized cells no longer
Current Opinion in Cell Biology 2014, 26:87–95 
confined by their intercellular interactions. These cells

have the capacity to invade the underlying stroma by

either undergoing an epithelial to mesenchymal tran-

sition (EMT) and migrating individually, or staying

bound in small clusters and migrating collectively through

the basement membrane and connective tissue, even-

tually breaching blood and lymphatic vessels for metas-

tasis to secondary sites (Figure 3).

In the intestine, increased proliferation and decreased

differentiation are common features of early tumor stages.

However, initially cells remain relatively well polarized

and continue to form glandular structures similar to

normal tissue. Only at later stages, when tissue organiz-
www.sciencedirect.com
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Figure 2
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Schematized view of the tissue organization in intestine with the features described in the introduction. The intestine resides in the abdominal cavity

and is essentially a long tube that connects the stomach to the rectum. It is divided into small and large intestine (colon). Both regions contain a

number of different tissue layers (red inset). The outermost layer, the serosa, covers the intestine and is followed by two muscle layers that are

perpendicular to each other. The outer longitudinal muscle layers run parallel to the intestinal axis and the inner, circumferential muscle layer

circumnavigates the intestinal wall. The next layer is the sub-mucosa, which consists mostly ECM, contains blood and lymphatic vessels. The

muscularis mucosa consists of myo-fibroblasts that reside directly underneath the basement membrane that underlies the epithelium lining the

intestinal lumen (blue inset). The epithelium in the small intestine is folded into villi and adjacent crypts (purple inset) shown in a 200 mm thick vibratome

section of human small intestine, stained with phalloidin and DAPI to reveal F-actin and nuclei respectively. In colon only crypts are present. Crypts

contain proliferative stem cells at their base that produce the different cell types normally present in the epithelium including secretory and absorptive

epithelial cells. The epithelium in each crypt is surrounded by myo-fibroblasts.
ation is more aberrant is cellular polarity lost and cells

invade the surrounding stroma (Figures 2 and 4). Import-

ant for the spread of all cancers is the microenvironment,

which evolves with the growing tumor and plays a crucial

role in promoting this invasion by supplying growth

factors, chemokines and even migratory cues to newly

forming blood vessels.

This review focuses on recent developments in our un-

derstanding of four key changes in cell and tissue archi-

tecture during epithelial tumorigenesis: firstly, loss of cell

polarity; secondly, collective cell migration; thirdly,

EMT; fourthly, cell/stromal interactions and extracellular

matrix (ECD) remodeling. Because most tumors originate
www.sciencedirect.com 
in epithelial cells, we focus on these cells and do not

include discussions about immune cells, which infiltrate

most tumors and play an important part by contributing

significantly to the microenvironment [5,6]. Our increas-

ingly sophisticated knowledge of the complex changes

that accompany tumor initiation and growth are ushering

in exciting times and we are currently witnessing the

tangible benefits basic research has brought to society as

this knowledge is translated into molecule-based diag-

nostics and therapies.

Changes in polarity in cancer

Loss of apical–basal polarity is one of the hallmarks of

epithelial cancers and it occurs in the early stages of tumor
Current Opinion in Cell Biology 2014, 26:87–95
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Figure 3
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Relationship between cellular and tissue changes in breast cancer. Invasive lobular carcinoma (ILC) (green inset) originates in the luminal cells of milk-

producing lobules. These cells will proliferate uncontrollably (tan cells) and eventually penetrate through the myoepithelial cells (blue cells) and basal

lamina to gain access to blood vessels, allowing tumor cells to metastasize to other parts of the body singly and in clumps. Infiltrating ductal carcinoma

(IDC) (blue inset) originates in the luminal epithelial cells of the milk ducts and has the same capacity as ILC to spread to other parts of the body.

Cancer cells undergo numerous changes, eventually losing their polarized orientation and their contact with other cells to metastasize (red box).

Recent studies show that two key changes are the loss of PAR3 and GATA3, leading to changes in the microenvironment surrounding the tumor,

including increased angiogenesis.
progression in breast tissue, but later in colorectal cancer

where it correlates with the appearance of invasive

migratory cells at the tumor margin and the appearance

of tumor cell islands [7]. Polarity is established in mam-

malian epithelia by the coordinated actions of three sets

of proteins referred to as polarity regulators: the Scribble

(Scrib)/lethal giant larvae (Lgl)/discs large (Dlg) proteins

that establish and maintain the basolateral membranes;

the Crumbs/PALS/PATJ proteins that regulate apical

membrane biogenesis and maintenance; and the parti-

tioning defective 3 (Par3)/Par6/atypical protein kinase C

(aPKC) protein complexes that mediate tight junction

formation and regulate their function at the apical-basal

border (Figure 1) [8]. The key role these protein com-

plexes play in creating and maintaining proper cell
Current Opinion in Cell Biology 2014, 26:87–95 
polarity suggest that the reverse may also be true, and

that their disruption could play similarly pivotal roles in

the loss of cell polarity observed during tumor pro-

gression. Yet, how these protein complexes participate

in cell transformation and whether loss of cell polarity is

causal to human cancer are questions that are still under

active investigation.

In the past year, for example, two papers using breast as a

model system have demonstrated a tumor suppressive

function for the polarity regulator, Par3. Loss of Par3 in

the context of oncogene activation resulted in decreased

cell adhesion and increased tumor cell invasion and

metastasis. Overexpression of three different oncogenic

stimuli was used to drive transformation: the Notch
www.sciencedirect.com



Cell and tissue organization in breast and colon cancer Hinck and Näthke 91

Figure 4
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Relationship between cellular and tissue changes in colon cancer.

Intestinal tumors maintain many aspects of the normal glandular

organization with polarized epithelia. At the invasive tumor margin, cells

lose their normal polarized organization and become migratory (orange).

Although individual cells can be observed migrating from tumors, islands

of dissociated tumor cells are frequently observed near tumor margins,

as is increased infiltration by lymphocytes (not shown) [7,44].
intracellular domain (ICD); an activated form of Ras, H-

Ras61L; and a mutant form of Neu/ErbB2 (NDL) that

promotes constitutive receptor dimerization [9��,10��].
Overexpression of the Notch ICD and mutant NDL,

alone, only increased cell proliferation and caused hyper-

plasia, but was insufficient to generate tumor cell dis-

semination. Similarly, on its own, the loss of Par-3 only

disrupted cell polarity and caused dysplastic cell growth.

It was only when Par3 was silenced in the context of

oncogene activation that increased cell invasion and

tumor metastasis was observed. However, two different

downstream mechanisms were identified. In the context

of Notch ICD and Ras61L, knock-down of Par3 activated

aPKC, which in turn signaled through the JAK/STAT

pathway to induce the expression of matrix metallopro-

teinase 9 (MMP9) and destruction of the ECM (Figure 3)

[9��]. In the context of excessive Neu/ErbB2 activation,

loss of Par-3 resulted in the inappropriate activation of

Rac, which in turn promoted aberrant actin remodeling

that led to a breakdown of adherens junctions, allowing

cells to break free [10��]. Yet, even with these genetic

changes, epithelial morphology was maintained by both

the primary tumor and its metastases, and there was no

evidence that the transformed cells underwent an epi-

thelial to mesenchymal transition (EMT) commonly

associated with metastasizing cells [9��]. Together, these

studies show that the combined deregulation of both
www.sciencedirect.com 
polarity and proliferation pathways significantly acceler-

ates tumor growth and enables metastasis, demonstrating

the importance of polarity in maintaining tissue homeo-

stasis and governing its integrity. Loss of Par-3 frequently

occurs in human breast cancer and is associated with a

modest but statistically significant reduction in survival

probability [9��].

In the intestine, mutations in the adenomatous polyposis

coli (APC) gene are common to most tumors and they

occur extremely early in tumorigenesis. Loss of both APC

alleles is sufficient for tumorigenesis in this tissue [11].

Despite the extensive direct and indirect links between

the APC protein and cell polarity proteins [12], cells in

intestinal tissue or tissue explants that lack APC remain

polarized [13]. The functional consequence of the inter-

action of APC with polarity proteins including Dlg and

Scrib in tissue is not clear. In cultured cells, APC can

modify adhesion and polarity by scaffolding polarity

protein complexes and contributing to their assembly

at correct locations in the cells [14,15]. However, the

situation in tissue seems more robust and the relatively

normal cellular polarization in APC mutant tissue and

organoid cultures suggests that APC is not required to

maintain cellular polarity and tissue barrier function. It is

nonetheless possible that subtle changes in polarity com-

plexes are already present in APC mutant tissue at early

stages of tumorigenesis, but that they are not sufficient to

cause physiologically measurable defects in cell polarity.

The necessity to maintain cell and tissue polarity is

particularly important in intestinal epithelium. The intes-

tinal lumen with its high bacterial content together with

the chemical byproducts of nutrient breakdown is a

challenging environment. Exposing these contents to

the body would create serious systemic infection and

be detrimental to the organism. Thus, the threshold that

has to be reached to lose cell polarity may be particularly

high in intestinal tissue and it is likely to require a number

of different mutations to produce loss of cellular polarity

and loss of barrier function in this tissue. Consistent with

this idea, tumors in mice harboring only an APC mutation

are rarely invasive; however, they become invasive when

other oncogenic mutations, for example in Ras or p53, are

also present [16��].

Dissemination of cancer cells

Invasion of tumor cells into surrounding tissue and their

dissemination to distant sites produces metastases and

this represents the most challenging problem clinically. A

great deal of recent attention has focused on the role of

EMT in epithelial cell metastasis [17,18]. However, the

studies on Par-3 discussed above highlight the fact that

breast tumor cells may not undergo a complete EMT in

order to disperse. Instead, clusters of epithelial cells are

commonly observed by pathologists, moving through

tissue and the blood stream as physically and functionally

connected group of cells in a process termed collective
Current Opinion in Cell Biology 2014, 26:87–95



92 Cell architecture
cell migration [19]. These cells display some of the

characteristics of EMT including alterations in apico-

basal polarity, the ability to modify the extracellular

matrix and the capacity to invade, but nevertheless they

remain in aggregates. The significance of such clusters

was demonstrated over 40 years ago in studies showing

more efficient formation of lung metastases after inject-

ing aggregates of mammary tumor cells into animals

compared to a similar number of dissociated cells [20].

This early work in animals has been reproduced over the

years, including recent studies using high definition,

automated microscopy on patient tissue [21,22] or micro-

fluidic capture and analysis of circulating tumor cells

from blood samples [23,24��]. The latter study revealed

that the clustered cells are not necessarily epithelial, but

can be groups of mesenchymal cells that had either

proliferated from a single cell, which had undergone

an EMT, or had been transformed en masse from epi-

thelial clusters during the process of metastasis [24��].
Thus, to successfully achieve the inherently difficult and

inefficient process of dissemination, current data indicate

that tumor cells use multiple strategies and consequently

invade both as single cells and in clusters, with and

without having undergone EMT. The similarities be-

tween collective migration and EMT suggest that epi-

thelial and mesenchymal cell states may not always be

uniquely represented. Instead, cells may express a range

of epithelial and mesenchymal characteristics, driven by

regulatory programs such as alternative splicing and

epigenetic changes [25,26��], resulting in flexible func-

tionality and form that enables cells to adapt to a wide

variety of environments in a dynamic manner as they

propagate and spread. The idea that partial EMT within

a tumor tissue provides cells with the flexibility required

to respond to different environments and permits their

dissociation from the tumor is also supported by findings

in the intestine, where a subset of EMT markers can be

detected even in early adenoma in the intestine despite

their epithelial appearance [27]. The partial transition to

a more mesenchymal state in early APC mutant tumors

may be a consequence of transcriptional changes induced

by APC mutations to alter differentiation [27], and may

also be responsible for the changes in the number and

distribution of different cell types within the epithelium

when APC is mutated [13]. The invading margins of

intestinal tumors carry many of the hallmarks of EMT

suggesting that more complete EMT is associated

particularly with invading margins of tumors.

Co-opting the microenvironment

Invading tumor cells migrate into an abnormal environ-

ment that has been profoundly remodeled by the devel-

oping carcinoma. In the breast, these extracellular

changes can be observed as early as the ductal carcinoma

in situ (DCIS) stage when hyperactive mitogenic sig-

naling in epithelial cells results in secretion of chemo-

kines that attract leukocytes, fibroblasts, endothelial and
Current Opinion in Cell Biology 2014, 26:87–95 
other cells. These marauding cells accumulate in the

stroma surrounding the ducts and lobules where they

remodel the ECM and promote tumor growth by parti-

cipating in reciprocal signaling loops [5]. Many paracrine

signaling loops that regulate the microenvironment are

well described, and recent research has focused on iden-

tifying master regulators that control multiple aspects of

the invasive  phenotype by regulating microRNAs (miR-

NAs). While numerous miRNAs have been shown to

control EMT during breast tumor progression [28],

recently miRNAs have been identified that govern

multiple aspects of metastasis, including microenviron-

mental remodeling, in addition to epithelial plasticity.

For example, transcription factor, GATA3, specifies and

maintains luminal epithelial cell differentiation in the

breast and its loss during tumor progression is associated

with poor prognosis [29]. GATA3 promotes luminal

differentiation through miR-29b that suppresses the

expression of a suite of genes encoding proteins such

as vascular endothelial growth factor A (VEGFA), lysyl

oxidase (LOX) and MMP9, all of which promote the

metastasis of breast tumors to the lung by stimulating

angiogenesis, ECM signaling and proteolysis, respect-

ively [30]. The loss of GATA3, which occurs as tumor

progress, releases the inhibition provided by miR-29b,

leading to the expression of this suite of pro-metastatic

proteins (Figure 3). Similarly, miR-148b is down-

regulated in aggressive breast tumors and has been found

to be a major coordinator of malignancy by regulating

over 130 genes involved in epithelial cell motility and

stromal cell proliferation [31]. Taken together, these

studies show that the process of tumor metastasis, pre-

viously considered a series of individually regulated

events, may actually be under the master regulation of

miRNAs that govern many aspects of tumor progression.

Coopting the micro-environment for their oncogenic

purposes is also part of the invasive process in intestinal

tumors. Changes in the expression of metalloproteases are

at least partially mediated by alterations in transcription

that result from loss of APC and consequent increase in b-

catenin, and so contribute to the ability to tumor cells at

the tumor margin to modulate their environment and

facilitate their dissemination [32�,33]. In addition,

changes in a host of miRNAs have been detected in

human tumors and many of them promote EMT [34].

For example, downregulation of the miRNA-200 family,

particularly at the invasive front of colorectal cancers,

correlates with the breakdown of basement membranes

[35]. The epigenetic silencing that causes reduction in

miRNA-200 is not a static process and depends on the

cellular micro-environment [36]. Similarly, loss of

miRNA-212 via hypermethylation or loss of heterozyg-

osity may be able to stimulate migration and invasion by

inducing EMT markers [37��]. The likely target for

miRNA-212 is manganese superoxide dismutase

(MnSOD), and in its absence, MnSOD levels rise to
www.sciencedirect.com
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increase the influx of H2O2. This, in turn, causes increases

in hypoxia inducible factor 1-a (HIF-1a) and stimulates

EMT leading to metastasis [37��]. A rise in HIF-1a is also

predicted to suppress the expression of APC reinforcing

transformation further [38�].

The contribution of mechanics to cancer cell spread

Once tumor cells dissociate from the tumor they have to

employ a host of different tools to navigate through the

extracellular matrix, enter and exit blood or lymphatic

vessels and reach distant sites. In addition to the bio-

chemical modifications that facilitate processes involved

in these steps as described above, the mechanical proper-

ties of both the tumor cell and its environment also play a

role. For instance, migration of cells through their sur-

rounding matrix is limited by the pore size of the matrix

[39��]. Below a certain pore size, cells have to remodel the

matrix before they can migrate efficiently. The mechan-

ical properties of the cell and importantly its nucleus

dictate the threshold for the pore size that prevents cell

movement without ECM remodeling such that cells with

more pliable nuclei can migrate through smaller pores.

The finding that cells become softer (more easily deform-

able) as they become more metastatic is consistent with

the idea that metastatic cells migrate more easily through

dense ECM [40�]. Conversely, the mechanical properties

of the ECM have a profound effect on the ability of cells

to migrate through it. Cells with mesenchymal charac-

teristics are more responsive to this effect and they

migrate more efficiently through stiffer ECM material

than cells with epithelial characteristics, particularly in

three-dimensional matrices [41�,42��].

Understanding the relationship between biochemical and

mechanical changes that accompany tumor initiation and

progression holds great promise as diagnostic tools. This

will be greatly aided by the development of new technical

and computational tools to measure and understand the

mechanical properties of cells and tissues and their

dynamics. Diagnostic tools that measure mechanical

properties of tissue are already in use to detect and

classify breast tumors [43]. The ability to link such

measurements with more detailed information about cell

and tissue architecture and the underlying molecular

changes holds great promise not only for diagnostic pur-

poses but will also aid greatly in revealing how results

obtained in cultured cells relate to situations in vivo.

Concluding remarks

Our understanding of cancer, particularly the cellular

changes that accompany cancer progression, has

increased phenomenally over the last 50 years. Together

with immense technological advances this has enabled

much improved detection and treatment of some cancers

for instance breast cancer. In this case, early detection

and molecular markers that allow predictions about

therapeutic response have improved patient outcome
www.sciencedirect.com 
enormously. Nonetheless, for other cancers, like color-

ectal cancers, despite a vast amount of molecular and

genetic insights gained, our ability to stratify patients to

provide treatments that are most likely to be successful or

identify patients that are most likely to have recurring

tumors remains limited. Having available organ-specific

tissue models that are amenable to genetic and bio-

chemical manipulation provides means to integrate

results from existing cell biological research with more

physiologically complex systems. This may reveal new

approaches for how best to capitalize on the detailed

insights available about the mechanisms that govern cell

polarity.

Acknowledgements
We gratefully acknowledge funding support from NIH (L.H.) and Cancer
Research UK (I.N.) We thank Dr. Paul Appleton for providing the image of
small intestine shown in Figure 2.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Nelson WJ, Dickinson DJ, Weis WI: Roles of cadherins and
catenins in cell-cell adhesion and epithelial cell polarity. Prog
Mol Biol Transl Sci 2013, 116:3-23.

2. Preston SL, Wong WM, Chan AO, Poulsom R, Jeffery R,
Goodlad RA, Mandir N, Elia G, Novelli M, Bodmer WF et al.:
Bottom-up histogenesis of colorectal adenomas: origin in the
monocryptal adenoma and initial expansion by crypt fission.
Cancer Res 2003, 63:3819-3825.

3. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H,
van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H:
Crypt stem cells as the cells-of-origin of intestinal cancer.
Nature 2009, 457:608-611.

4. Potten CS, Loeffler M: Stem cells: attributes, cycles, spirals,
pitfalls and uncertainties. Lessons for and from the crypt.
Development 1990, 110:1001-1020.

5. Coussens LM, Zitvogel L, Palucka AK: Neutralizing tumor-
promoting chronic inflammation: a magic bullet? Science
2013, 339:286-291.

6. Jochems C, Schlom J: Tumor-infiltrating immune cells and
prognosis: the potential link between conventional cancer
therapy and immunity. Exp Biol Med (Maywood) 2011, 236:567-
579.

7. Fleming M, Ravula S, Tatishchev SF, Wang HL: Colorectal
carcinoma: pathologic aspects. J Gastrointest Oncol 2012,
3:153-173.

8. Ellenbroek SI, Iden S, Collard JG: Cell polarity proteins and
cancer. Semin Cancer Biol 2012, 22:208-215.

9.
��

McCaffrey LM, Montalbano J, Mihai C, Macara IG: Loss of the
par3 polarity protein promotes breast tumorigenesis and
metastasis. Cancer Cell 2012, 22:601-614.

This paper, along with the one by Xue and colleagues, explores the
consequences of losing cell polarity protein, Par3, in the context of onco-
genic stimuli, which is achieved in this study by the overexpression of either
the Notch intracellular doramin or activated Ras. Together, these papers
reveal the tumor suppressive function of cell polarity and the important role
that Par3 plays in maintaining tissue structure and normal function.

10.
��

Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK: Loss of
par3 promotes breast cancer metastasis by compromising
cell–cell cohesion. Nat Cell Biol 2013, 15:189-200.

This paper, along with the one by McCaffrey and colleagues, explores the
consequences of losing cell polarity protein, Par3, in the context of an
Current Opinion in Cell Biology 2014, 26:87–95

http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0005
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0005
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0005
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0010
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0010
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0010
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0010
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0010
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0015
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0015
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0015
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0015
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0020
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0020
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0020
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0025
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0025
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0025
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0030
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0030
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0030
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0030
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0035
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0035
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0035
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0040
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0040
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0045
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0045
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0045
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0050
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0050
http://refhub.elsevier.com/S0955-0674(13)00179-8/sbref0050


94 Cell architecture
oncogenic stimulus generated by ErbB2 overexpression. Together, these
papers reveal the tumor suppressive function of cell polarity and the
important role that Par3 plays in maintaining tissue structure and normal
function.

11. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H,
Newton IP, Batlle E, Simon-Assmann P, Clevers H, Näthke IS et al.:
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dysregulation of MnSOD. Gastroenterology 2013, 145:426-436
e426.

In this paper, MnSOD is identified as a target of miRNA-212 to provide a
potential mechanistic link between loss of miRNA-212, commonly
observed in metastatic tumours, and EMT. The elevated MnSOD that
results from loss of miRNA-212 increases expression of hypoxia inducible
factor 1-b, which is known to promote EMT (and also directly represses
APC, see next paper).
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tion in response to changes in the mechanical properties of their envir-
onment.
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supports tumor cell migration.
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