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Abstract

The cells of Voronoi diagrams generated by epicentral locations of Southern California

earthquakes are inspected. The tapered Pareto distribution is shown to fit quite well

to the distribution of cell areas and perimeters. This same distribution, which has been

used to model the distribution of seismic moments, is also a close approximation to the

empirical distributions of times and distances between successive earthquakes for the

same catalog of Southern California events. Verification is performed using a variety

of different windows and sub-sampling procedures in order to confirm that the results

are not an artifact of the particular parameters of the selected earthquake catalog.

1 Introduction

Given a point pattern consisting of points p1, p2, ..., pn lying in some metric space S, a Voronoi

diagram is a division of S into n distinct cells C1, C2, ..., Cn, such that cell Ci consists of all

locations in S that are closer to point pi than to any other point of the point pattern. That

is,

Ci = {x : ||x− pi|| = min
j
||x− pj||}.

The collection of all such cells is called a Voronoi tessellation. Voronoi tessellations have

proven to be useful in a wide variety of disciplines including biology, astronomy, forestry,

geology, and ecology (see Okabe et al. 2000). In seismology, Voronoi tessellations and their

variants have been used in the description of seismic plates (Fohlmeister 1994), in the weight-

ing of instrumental recordings for source-parameter inversion or isoseismal construction for

a given earthquake (Pettenati and Sirovich 1993; Sirovich et al. 2002), and in the character-
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ization of the spatial variation in parameters in epidemic-type aftershock sequence (ETAS)

models (Ogata et al. 2003).

The primary focus of the present paper is on the properties of the cells in the Voronoi

tessellation generated by the epicentral locations of earthquakes in Southern California. Our

main finding is that the distributions of areas and perimeters of these cells are approximated

very closely by the tapered Pareto model. This same distribution has been used to describe

the distribution of seismic moments (Jackson and Kagan 1999; Vere-Jones et al. 2000; Kagan

and Schoenberg 2001) and is closely related to the Pareto distribution which has often been

used in modeling the distance in space or time between an earthquake and its aftershocks

(Ogata 1998).

The discovery that, as with seismic moments, Voronoi cell areas and perimeters seem

to have a distribution that is better approximated by the tapered Pareto law rather than

the pure Pareto suggests a comparison of the fit of the two models to the distributions of

temporal and spatial distances between earthquakes as well. We find that in fact the tapered

Pareto distribution fits remarkably well to the distribution of inter-event times and inter-

event distances for Southern California earthquakes, and the fit is far superior to that of the

pure Pareto distribution.

The paper continues as follows. Section 2 describes the Southern California earthquake

dataset considered here. Section 3 reviews certain models used to approximate the distribu-

tion of cell areas and cell perimeters, as well as inter-event times and distances, and the fit

of these models is presented in Section 4. The robustness of these findings is considered in

Section 5 and a discussion is given in Section 6.
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2 Data

The dataset explored here consists of all 7,567 shallow (less than 70km in depth) local and

regional earthquakes of local magnitude at least 3.0 recorded by the Southern California

Earthquake Center (SCEC) between 01/01/1984 and 04/01/2007, with latitudes and longi-

tudes ranging from 32o to 37o and from −112o to −114o, respectively. The spatial boundary

considered is identical to that in Veen and Schoenberg (2005). The data are thought to be

relatively complete down to a local magnitude of about 3.0 (Ouillon and Sornette 2005).

In addition to the possibility of missing events, there may be errors in the estimates of

epicentral locations, moment magnitudes, and origin times, and these errors are thought to

be especially substantial for the smallest events and those happening in a short space-time

window after a prior event (Kagan 2004). As a result, our focus is primarily on the estimation

of the upper 90% portions of the various distributions considered. That is, in analyzing the

distribution of cell perimeters, for instance, we consider the tessellation generated by all 7,567

epicenters and consider the fit of models for only the upper 90% of these cell perimeters, since

the smallest 10% of the cells have perimeters that are likely estimated with very substantial

noise.

3 Methods

Voronoi tessellations of planar point process data are readily constructed using the deldir

library (Turner, 2002) available within R (R Development Core Team, 2006). Cells inter-

secting with the boundary of the region considered are excluded from our analysis, since

their areas and perimeters are so heavily dependent on the choice of boundary.
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In addition to the distribution of areas and perimeters of Voronoi cells, the distributions of

the inter-event times and inter-event distances, defined here as the time and spatial distance,

respectively, between any two earthquakes occurring sequentially in time, are also inspected.

Rather than categorize earthquakes as mainshocks or aftershocks, we simply define the inter-

event times and distances for such a local catalog as the times and distances, respectively,

between any two successive earthquakes in the catalog.

A variety of models are fitted to the distribution of Voronoi cell areas, cell perimeters,

inter-event times, and inter-event distances. One such model is the Pareto distribution,

whose cumulative distribution function is given by:

F (x) = 1− (a/x)β, a ≤ x ≤ ∞ (1)

The parameter β in the Pareto model is the slope of the decrease in survivor function

1− F (x) with x, when plotted on log-scale. The lower truncation point a, sometimes called

the completeness threshold, represents a lower limit typically based on the sensitivity of the

records in question.

Many phenomena have relatively heavy-tailed distributions but not quite as heavy-tailed

as the Pareto, and such observations may be modeled using a tapered version of the Pareto

distribution. The tapered Pareto distribution was originally suggested by Vilfredo Pareto

himself (Pareto 1897), and has been used to describe the distribution of the sizes of earth-

quakes (Jackson and Kagan 1999; Vere-Jones et al. 2000) and wildfires (Schoenberg et al.

2003). The tapered Pareto has cumulative distribution function:

Ftap(x) = 1− (a/x)βexp(
a− x

θ
), a ≤ x ≤ ∞ (2)

Here θ is a threshold after which frequency begins to decay especially rapidly. Additional
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information concerning the density, characteristic function, moments, and other properties

of the tapered Pareto can be found in Kagan and Schoenberg (2001).

For comparison, some other commonly-used models are fitted to the empirical distri-

butions discussed in this paper, including the log-normal and exponential distributions,

for which the cumulative distribution functions are F (x) = Φ
(

log(x)−µ
σ

)
and F (x) = 1 −

exp(−λx), respectively, where Φ denotes he standard normal cumulative distribution func-

tion. Details on the moments, estimates and other properties of the log normal and expo-

nential distributions are given in Johnson et al. (1995).

Parameters are estimated by maximum likelihood using the Nelder-Mead optimization

algorithm with various starting values; in all cases considered here, the resulting parameter

estimates did not depend highly on the choice of starting value. The diagonal of the inverse of

the Hessian of the log-likelihood function is used to provide standard errors for the parameter

estimates, and Monte Carlo simulations are used to confirm these results.

Goodness-of-fit of the resulting models is evaluated by examining plots of survivor func-

tions and Q-Q plots. In addition, the Akaike Information Criterion (AIC) is useful for

comparing the relative fits of models to a given dataset. The AIC, defined as twice the neg-

ative log-likelihood plus twice the number of fitted parameters, rewards a model for fitting

well and thus have a higher log-likelihood, while including a penalty based on the number

of estimated parameters in order to avoid over-fitting (Akaike 1977).
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4 Results

Figure 1 shows the Voronoi tessellation generated by the epicenters of recorded earthquakes

of magnitude at least 3.5 occurring in the selected region from 1/1/1984 to 6/7/2007. The

vast majority of the cells are very small, with areas ranging from 0.1 to 1.0 km2, while

some are quite large, with areas of several hundred km2. This is a feature of heavy-tailed

distributions such as the Pareto distribution and its variants.

Figure 2 displays the empirical survivor functions for Voronoi cell area, Voronoi cell

perimeter, inter-event distance, and inter-event time, on a logarithmic scale. Overlaid within

each panel are the fitted survivor functions for the tapered Pareto, Pareto, log-normal, and

exponential distributions, with parameters fitted by maximum likelihood. The fitted pa-

rameter estimates, along with their accompanying standard errors, are reported in Table

1. From Figure 2 it is seen that the tapered Pareto distribution fits quite well to all four

empirical distributions. The pure Pareto distribution fits poorly in every case, grossly over-

estimating the frequency of very large values of each variable. By contrast, the exponential

distribution overestimates the frequency of very small values and, particularly in the case

of cell area and perimeter, grossly underestimates the frequency of very large values. The

log-normal distribution has a shape comparable to that of the tapered Pareto, but in each

case considered here the tapered Pareto distribution appears to fit more closely to the data.

The rows labeled ”Complete” in Table 2, which show relative values of the AIC for each

of the four models and each of the four variables considered, confirms the superior fit of

the tapered Pareto distribution relative to these various alternatives. Lower values of AIC

indicate superior fit, and in each case the AIC for the tapered Pareto was the lowest of the
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four models.

Q-Q plots for the various distribution are compared to the empirical distribution of inter-

event times in Figure 3. The quantiles of the empirical distribution all fall within or very

nearly within the 95% bounds for the tapered Pareto distribution. For the Pareto, log-

normal and exponential distributions, large discrepancies with the data are readily evident.

The results for cell area, cell perimeter, and inter-event distance are similar to those in Figure

3.

Figure 4 displays tapered Pareto Q-Q plots for cell area, cell perimeter, inter-event time,

and inter-event distance. The tapered Pareto distribution provides a close approximation to

the empirical distribution for all four variables. The agreement between the data and the

tapered Pareto distribution for the case of the perimeters of Voronoi cells is especially close.

In the case of inter-event distances, the best-fitting tapered Pareto distribution somewhat

overpredicts the frequency of very large values. The tapered Pareto distribution also appears

to slightly underpredict the frequency of the largest cell areas. Most other discrepancies

between the model and the data are rather negligible.

5 Robustness

One may question the extent to which the results above depend on the particularities of the

space-time window considered here. To investigate the robustness of these results with re-

spect to time, the dataset described in Section 2 was divided into three portions: 01/01/1984

to 12/31/1991; 01/01/1992 to 12/31/1999; and 01/01/2000 to 04/01/2007. The tapered

Pareto distribution is fit to each of the four variables considered (cell area, cell perimeter,
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inter-event distance, and inter-event time) within each of the three temporal sub-divisions.

In each case, the tapered Pareto again provides very close fit to the data. Figure 5 shows the

empirical and fitted (tapered Pareto) survivor functions for cell area; those for cell perimeter,

inter-event time, and inter-event distance were similar.

Further results on the sensitivity to choice of space-time window are presented in Table

2, which compares median difference in AIC for models fit to earthquakes from 50 different

spatial subsets of the SCEC dataset described in Section 2. Each subset consists of all

earthquakes within a randomly-chosen square sub-region, whose center is selected randomly

from a uniform distribution on the spatial domain of the entire dataset. The edge lengths of

the sub-regions are chosen uniformly between 20 and 150 kilometers, subject to the constraint

that each subset contain between 300 and 500 events, so that results of the subsets would be

comparable in terms of AIC, which depends critically on sample size. For each such subset,

inter-event times and inter-event distances, defined as the temporal or spatial distance to

the next event within the subset only, are computed, and the Voronoi tessellation of this

subset of events is constructed. The fit of various models to the distribution of cell areas,

cell perimeters, inter-event distances, and inter-event times is summarized in Table 2, which

reports the median difference in AIC between the tapered Pareto model and the other models,

for all 50 subsets. Another 50 iterations were performed using only earthquakes of magnitude

3.5 and greater, and the results are also reported in Table 2. The positive differences in AIC

indicate that the median AIC for the tapered Pareto distribution is smaller than the median

AIC for each of the other models, and in fact the differences between the tapered Pareto and

pure Pareto distribution are quite substantial.

Note that the empirical distribution of cell areas changes whenever more earthquakes are
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observed. Figure 6 shows how the maximum likelihood estimates of the parameters θ and

β in the tapered Pareto distribution vary as the size of the time window grows to include

an increasing number of events. In each case, the parameters are fitted to data spanning

from 01/01/1984 to T , where T varies from 01/01/1985 to 04/01/2007. As T increases, the

number of earthquakes within the same spatial region increases, so the mean area of the

Voronoi cells must decrease. The estimates of θ decrease rapidly until approximately 2000

earthquakes are included in the catalog, after which the estimated values of θ̂ appear to

decrease far more gradually. Estimates of the parameter β increase as the size of the dataset

increases and seem to stabilize in the range of 0.25− 0.28 once the catalog contains at least

4000 events.

6 Discussion

The degree to which the distribution of Voronoi cell areas and perimeters for Southern

California earthquakes is approximated by the tapered Pareto distribution is somewhat sur-

prising. The results suggest that the organization and spatial clustering of these shallow

earthquakes is sub-critical, as the decay in the frequency of the largest cells is much faster

than one would expect from the pure Pareto law. The results suggest that the large-scale

clustering patterns of these earthquakes are fundamentally distinct from those at small scales,

and that there appears to be a gradual transition from the very tight power-law clustering of

earthquakes in space-time over small times and distances to a regime that is better described

by the exponential distribution in the tails. These results do not appear to be an artifact of

the small sample size, since the parameters of the tapered Pareto seem to have approached
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Table 1: Parameter estimates (and SEs) for the dataset described in Section 2.

Variable Tapered Pareto Pareto Log Normal Exponential

Spatial Distance β̂ = 0.0881 β̂ = 0.265 µ̂ = 3.90 λ̂ = 0.00735
(0.00259) (0.00321) (0.0211) (8.74e-05)

θ = 202 σ = 1.74
(3.65) (0.0149)

Time Distance β̂ = 0.0947 β̂ = 0.193 µ̂ = -1.63 λ̂ = 0.803
(0.00197) (0.00234) (0.0301) (9.74e-03)

θ = 2.44 σ = 2.48
(0.0495) (0.0213)

Cell Area β̂ = 0.273 β̂ = 0.321 µ̂ = -1.40 λ̂ = 0.0223
(0.00398) (0.00393) (0.0260) (2.72e-04)

θ = 302 σ = 2.12
(14.2) (0.0184)

Cell Perimeter β̂ = 0.388 β̂ = 0.639 µ̂ = -2.17 λ̂ = 0.0604
(0.00963) (0.00783) (0.0130) (7.39e-04)

θ = 37.4 σ = 1.07
(1.32) (0.00922)

convergence for the dataset considered here, nor do they appear to depend critically on the

choice of observation window. However, further study is needed to determine whether similar

results are obtained with other catalogs and in other seismic zones.

The pure Pareto distribution is commonly used to describe a wide variety of seismo-

logical phenomena, including the distributions of seismic moments, earthquake inter-event

times and inter-event distances. The pure power-law form is used not only for the seismic

moment distribution but also the branching behavior in standard models used for earth-
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Table 2: Median difference in AIC between tapered Pareto and alternative models, for sub-

samples from the dataset decribed in Section 2, and for lower magnitude thresholds of 3.0

and 3.5. AIC differences are reported in terms of the AIC for the given distribution minus

the AIC for the tapered Pareto distribution, so that larger values indicate worse fit. Medians

over 50 randomly selected sub-samples are reported.

Variable Data Type Magnitude Pareto Log Normal Exponential

Spatial Distance Sample 3.0+ 347 105 84

Sample 3.5+ 531 78 45

Complete 3.0+ 7028 2156 2658

Time Difference Sample 3.0+ 220 62 1495

Sample 3.5+ 122 62 1733

Complete 3.0+ 6243 1945 9042

Cell Area Sample 3.0+ 61 111 755

Sample 3.5+ 85 56 356

Complete 3.0+ 975 1436 17903

Cell Perimeter Sample 3.0+ 71 123 249

Sample 3.5+ 104 83 252

Complete 3.0+ 1337 1811 3828
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quake hazard forecasting, such as the ETAS models of Ogata (1998) and Ogata et al. (2003)

or the branching models of Kagan and Knopoff (1987), Kagan (2004) and others. Recent

discussions have focused on a ”unified scaling law” involving the Pareto distribution in char-

acterizing the distribution of inter-event times as a function of the parameters governing the

size of the spatial-temporal observation window (Bak et al., 2002). Further, recent studies

have suggested that the pure Pareto distribution be used to describe the distributions of a

broad range of natural hazards, including not only earthquakes but also wildfires, asteroid

impacts, eruptions of volcanos, and landslides (Malamud et al. 2005).

However, the current results raise the question of whether the description of earthquake

catalogs as well as the forecasting of future seismicity may be improved by using the tapered

Pareto distribution in place of the pure Pareto. Indeed, the tapered Pareto distribution

not only offers improvement in approximating the distribution of seismic moments (Jackson

and Kagan 1999; Vere-Jones et al. 2000; Kagan and Schoenberg, 2001), but also is shown

here to offer superior fit to the distribution of earthquake inter-event times and inter-event

distances, as well as the distributions of Voronoi cell area and perimeter. Further, unlike the

pure Pareto, the tapered Pareto distribution has finite mean and variance may thus more

naturally agree with physical notions such as the finiteness of seismic moment flux and of

deformational energy (Sornette and Sornette 1999).
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Figure 1: Voronoi diagram for epicenters of local and regional shallow Southern California

Earthquake Center (SCEC) events of local magnitude 3.5 and greater, from 01/01/1984 to

04/01/2007.
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Figure 2: Estimated and empirical survivor functions for inter-event distance, inter-event

time, cell area, and cell perimeter.
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Figure 3: QQ plot for inter-event times of SCEC earthquakes.
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Figure 4: QQ plots for inter-event distance, inter-event time, cell area, and cell perimeter.

Dashes indicate 45o lines and dots indicate 95%-confidence bounds.
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Figure 5: Estimated and empirical survivor functions for cell areas in the Voronoi tessellation

of SCEC earthquake epicenters; 1984 - 1992 (top), 1993 - 2000 (middle), and 2001 - 2007

(bottom). 21
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Figure 6: Maximum likelihood estimates of parameters in the tapered Pareto distribution

fit to the cell areas of the Voronoi tessellation of subsets of earthquakes, as a function of

number of earthquakes in the subset of the dataset.
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