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It is said that Biochemistry is a young
scientific discipline, making its “formal”
debut toward the end of the 1900th
century (Manchester, 2000), with semi-
nal works by Buchner (1897, Jaenicke,
2007), (Pasteur and Berthelot, 1906), Hill
(1898), Embden and Glaessner (1901),
Meyerhof (1911), Parnas (1911), Harden
(1911), and, of course, Michaelis and
Menten (Johnson, 2013; Michaelis and
Menten, 2013; Deichmann et al., 2014).
These early and important contributions
marked the road for future work in the
fields of (a) chemical and biochemical
structures and associated functions by
Sanger (1945), Perutz (1942), Franklin
(1950), Watson and Crick (1953), Pauling
et al. (1949, 1951), Pauling and Corey
(1951), Zuckerkandl and Pauling (1962),
Kornberg (1974, 1977), Boyer (1997),
Walker et al. (1982), Abrahams et al.
(1994); (b) metabolic pathways and reg-
ulation by Ochoa and Valdecasas (1929),
Krebs and Johnson (1937), Novelli and
Lipmann (1947), Fischer et al. (1959),
Cori and Cori (1923, 1925), Houssay
(1945, 1948), Lehninger (1942, 1945),
Caputto et al. (1949), Cardini et al.
(1950), Mitchell (1961), Benson and
Calvin (1947), Hershko et al. (1980),
Hershko and Ciechanover (1992), and (c)
contributing to innovative techniques or
approaches dedicated to advance basic
knowledge (and making our lives eas-
ier) with Smith (1982), Winter et al.
(1982), Mullis et al. (1986) (ante and
post-PCR era) and Shimomura (1979),
Chalfie et al. (1994), Heim et al. (1994)
(ante and post-green fluorescent protein),
Yalow et al. (1964), and Williams et al.
(1977), Springer et al. (1979); (d) signaling

molecules and signal transduction by Levi-
Montalcini and Amprino (1947), Cohen
et al. (1954), Sibley et al. (1986), Benovic
et al. (1987), Frielle et al. (1987), Fargin
et al. (1988).

Back in 1896, Buchner’s preparation of
a “juice” from yeast (Buchner, 1897) is
often regarded as the birth of modern bio-
chemistry. However, I tend to digress with
this strict view of biochemistry, reasoning
that we (as a species) were taking advan-
tage of biochemical principles without
having a deep understanding of the under-
lying molecular processes. For instance,
consider Buchner’s “juice” or actually wine
making. This method, that has at its core
the fermentation process one of the key
pathways in biochemistry, dating back to
around 6000 BC (Chambers and Pretorius,
2010). Refer to the complicated produc-
tion of fish sauces considered among the
most common flavor-enhancing condi-
ments produced and distributed across
ancient Roman Empire (Lowe, 2009).
Another example comes from the mixture
of organic preservatives (i.e., biochemical)
used for ancient Egyptian mummifica-
tion (Buckley and Evershed, 2001). Or
think about the effects of diet on health
as recognized by Hippocrates (460–377
BC; Caramia, 2006), the arab physician
Ibn al-Nafis (Al-Nafis, 13th century) and
Leonardo da Vinci (1452–1519; Caramia,
2006) as well as the experimentation
with animals and structure—function of
human body set by the Medieval Islamic
era as early as the 9th century (Abdel-
Halim, 2011). This early biochemistry was
empirical, done in settings other than lab-
oratories, serving immediate needs, and
some passed onto next generations by

oral traditions. Then we would reason, are
these contributions valuable to the gene-
sis of biochemistry? Should they be dis-
missed because the microorganisms were
not genotyped, the reactions were done in
dolia instead of microplates? Then, if we
accept these very early facts (and why not
experiments?) as part of the genesis of this
field, we will need to accept that biochem-
istry is a long, long (ancient?) journey that
has accompanied us since the dawn of
civilization.

The general field of Biochemistry
has grown since then to the point that
it has been expanded to various more
specific areas of research. For example,
Cellular Biochemistry is at the cross-
roads of Chemistry (Organic, Physical,
Analytical, Inorganic, Biological) and
Biology (Chemical, Molecular) includ-
ing studies on biomolecular structures
and the mechanism of biochemical reac-
tions, but also on the biological purposes
of biochemical phenomena, i.e., metabolic
pathways and their control, physiological
significance and clinical relevance of topics
presented. The regulation includes protein
and gene expression analyses as well as
protein post-translational modifications,
epigenetic controls, metabolite-control
systems, and gene-environment inter-
actions as well as cell-cell interactions.
This field covers areas from fundamental
biochemical principles (e.g., enzymology,
macromolecule structures) in cell-free sys-
tems to pathways, their regulation, and
integration in physiology, and how their
disturbance could lead to a number of
diseases.

While tremendous progress has been
achieved, here are some of the aspects that
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we think needs additional attention in the
next upcoming years.

ON PROTEINS: HIDING BEHIND A
POST-TRANSLATIONAL MODIFICATION
How many new post-translational modifi-
cations have been found after the relevant
discoveries on protein phosphorylation
and their impact on signal transduc-
tion pathways (Fischer, 2013)? Among
them, ubiquitination (Schmidt and Finley,
2014; Schreiber and Peter, 2014), methy-
lation (Afjehi-Sadat and Garcia, 2013;
Clarke, 2013), sumoylation (Yang and
Chiang, 2013), acylation (Storck et al.,
2013; Running, 2014), glycation (Nedic
et al., 2013; Sousa Silva et al., 2013),
nitrosylation (Gould et al., 2013; Michelet
et al., 2013), glutathionylation (Allen and
Mieyal, 2012; Zaffagnini et al., 2012),
tyrosine O-sulfation (Kim et al., 2005),
dityrosine crosslinks (Giulivi et al., 2003),
ADP-ribosylation (Dani et al., 2013), and
lysine acetylation (Bernal et al., 2014; Cain
et al., 2014; Dos Santos-Pinto et al., 2014;
Wang et al., 2014). It is clear that in
some of these examples the modifications
accompanied a biochemical or metabolic
process (e.g., fasting Yang et al., 2011).
But, so far limited cases have demonstrated
that a single protein modification on a
given target modulated a protein activ-
ity, and as a result, a pathway (e.g., Nie
et al., 2009), modified the protein subcel-
lular location (e.g., Moeller and Fenton,
2012), or the fate (e.g., Spasser and Brik,
2012). Then, how many of these mod-
ifications normally found in a cell are
truly relevant to a specific biological pro-
cess (Catherman et al., 2014; Dos Santos-
Pinto et al., 2014; Vaudel et al., 2014)? Are
they silent by-standers, surrogate markers
(Pimentel et al., 2012; Perluigi et al., 2014)?
Is there a hierarchical order or a cross-
talk among several protein modifications
within a single protein? What are the pur-
poses of these modifications (Moore and
Gozani, 2014)? What if the modified pro-
tein is not a rate-limiting step of a given
pathway and/or has a high turnover? In
what cellular compartments or organs are
these modifications found? To gain a better
understanding of protein modifications,
which enhance and extend the diversity of
proteins beyond that encoded by DNA and
the transcriptome, we need to clarify these
questions to truly understand the meaning

of regulation of pathways in biochemistry
and their relevance in disease.

ON RNA AND ITS LANDSCAPE: THE
MORE THE MERRIER
In the midst of enzyme isoforms,
metabolite controls, post-translational
modifications, compartmentalization,
gene transcription, protein-protein inter-
actions, microRNAs (miRNAs), or small
non-coding RNAs have emerged as new
post-transcriptional regulators of gene
expression (Feng et al., 2014). To date, a
myriad of diverse cellular events [cogni-
tion, synapsis, cell fate, plasticity, cancer
(Asrih and Steffens, 2013; Clifford et al.,
2013; Di Leva and Croce, 2013; O’Carroll
and Schaefer, 2013; Feng et al., 2014)] have
been claimed to be regulated by miRNA.
As indicated above for novel protein post-
translational modifications, we are just
starting to unveil the cause-effect for a
limited number of miRNAs. Thus, more
research is needed to address the links
between miRNA expression and miRNA-
targeted genes, the association between
miRNAs and messenger RNAs, how this
new regulation works in association (or
not) with others already present in the
cell, and what role miRNAs might have
played in phenotypic evolution (Akbari
Moqadam et al., 2013; Luo et al., 2013;
Marco et al., 2013). To complicate the
story further, next generation sequenc-
ing technologies targeting the miRNA
transcriptome revealed the occurrence
of RNA fragments different from miRNAs.
A growing evidence suggests that RNA
fragments derived from small nucleolar
RNA (snoRNA) and transfer RNA (tRNA)
are neither RNA turnover artifacts nor
random degradation products but rather
stable species, which may have functional
activity in the normal as well as in can-
cer cells (Falaleeva and Stamm, 2013; Lui
and Lowe, 2013; Martens-Uzunova et al.,
2013). But the story does not end here.
Long non-coding RNAs (lncRNA) have
been described to act as decoys of RNA-
binding proteins or microRNAs and can
compete for microRNA-mediated inhi-
bition leading to increased expression of
the mRNA (Louro et al., 2009; Whitehead
et al., 2009; Yoon et al., 2013; Diederichs,
2014; Fatica and Bozzoni, 2014; Johnsson
et al., 2014; Nakagawa and Kageyama,
2014). Future studies would need to

decipher how these different messages
(including circular RNA) are read by the
cell, their role in regulating pathways or
cellular processes, and their link to other
regulatory systems (Tay et al., 2014).

ON INTER-CELLULAR
COMMUNICATION: CELL-DERIVED
MEMBRANE VESICLES AS THE NEW
MOLECULAR MERCURY
The relatively recent discoveries on the
occurrence of cell-derived membrane
vesicles (CVMs) add another layer of
complexity to the field of cell-cell com-
munication. CMVs have a biological cargo
constituted by proteins, RNA or DNA,
with the potential to change the pheno-
type of the receiving cell (Quesenberry
and Aliotta, 2010; Rak, 2010; Lee et al.,
2011; Sadallah et al., 2011). These vesicles
are classified into exosomes, ectosomes,
microvesicles, microparticles, apoptotic
bodies, and are originated from dif-
ferent subcellular compartments. The
molecular mechanisms regulating their
formation, release and degradation are not
fully understood; however, several stud-
ies highlight their role in tumor growth,
microRNA delivery, atherosclerosis, pre-
eclampsia, as well as their potential use
as drug delivery (Aatonen et al., 2012;
Biancone et al., 2012; Lee et al., 2012;
Redman et al., 2012; Soleti and Martinez,
2012; van Dommelen et al., 2012; Vickers
and Remaley, 2012; Camussi et al., 2013;
Choi et al., 2013; Gonda et al., 2013; Inal
et al., 2013; Martins et al., 2013; Principe
et al., 2013; Loyer et al., 2014).

ON INTERDISCIPLINARY
APPROACHES: ARE WE LISTENING—
MORE THAN TALKING—TO EACH
OTHER?
Theories have a transient nature; they last
only until replaced by ones more con-
sistent with the accumulated facts. To
acquire “new information,” a great vari-
ety of methods must be used and their
optimization or discovery of new methods
will be an important area of research in the
coming years. Studying isolated organelles,
intact cells, tissues or organs may be seen
as unphysiological and thus, requiring a
considerable extrapolation of these results
to animals including humans. Although
these interpretations must always be made
with caution, studies in intact organisms
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have the advantage of observing processes
as a whole with the clear disadvantage that
few of these processes occurring within
it are accessible to study. In other words,
while a considerable fractionation of the
scientific problem may lead to the iden-
tification of key components, the way
in which they interact may not be as
in the intact organism. In this regard,
data obtained in vitro and/or with sim-
pler models have been used in dynamic
mathematical modeling to promote a
comprehensive understanding of in vivo
complex mechanisms (Tummler et al.,
2014). In addition to the advance of more
accurate mathematical models, effort
needs to be devoted at the development of
in vivo, non-invasive techniques and meth-
ods to bridge the gaps between in vitro
and in vivo systems (Zheng et al., 2011;
Nandakumar et al., 2012; Ramkumar
et al., 2013). The use of novel, non-invasive
imaging techniques to follow, for instance,
parasitemia (Maclean et al., 2013) or
muscle oxygenation (Hamaoka et al.,
2011) as well as fine-regulated molecu-
lar approaches such as optogenetics (Doll
and Broadie, 2014; Sidor and McClung,
2014) or even more sensitive mass spec-
trometry technologies will be leading
the future of Cellular Biochemistry. It
also means to develop models that accu-
rately mimic complex chemical systems
as pioneered by Karplus (1959, 1963),
Warshel and Levitt (1976), Chothia et al.
(1989) and Levitt and Warshel (1975).
Evidently, interdisciplinary approaches
(which means interacting with col-
leagues in other fields) are needed to
develop more sensitive and specific probes
(chemistry), instrumentation (analytical
instrumentation, computer engineering,
bioinformatics), validation of targets (bio-
chemistry) and delivery (nanomaterials,
pharmacology, medicinal chemistry) to be
applicable to medicine.

The interdisciplinary approach has a
strong influence on the transition into
“personalized medicine” which essen-
tially requires the integration of vari-
ous molecular approaches (proteomics,
metabolomics, genome sequencing, imag-
ing, to name a few) with the idea of provid-
ing the most effective therapy, minimizing
side effects, and shortening treatment
periods (Nandy et al., 2014; Stenson
et al., 2014). One of the next challenges

will be to integrate these interdisciplinary
approaches in the clinics and making them
affordable to all patients (Johnson et al.,
2012).

ON THE ORGANISM OF CHOICE:
WELCOME TO THE BATTLEGROUND
Studies on simpler organisms such as
worms, flies, yeast could be seen as some-
how irrelevant to those in higher organ-
isms, particularly with the wide use of
murine models (Russell, 2013). However,
if the question or problem resides within
a highly conserved pathway across these
species, the use of “relatively” simpler
systems gives a unique opportunity to
address a complex problem (Bednarova
et al., 2013; Dassati et al., 2014). Studying
these conserved or homologous processes
across species and their modifications in
front of environmental exposures will also
integrate the field of gene-environment
interactions (Napoli et al., 2013) and
their impact on human disorders such as
autism and obesity (Razquin et al., 2011;
Schmidt et al., 2012; Galbete et al., 2013;
Napoli et al., 2013; Lyall et al., 2014)
as well as the evolutionary pressure to
best suit the need (for example, Gnankine
et al., 2013). In this context, an area
that needs to be addressed is how we
are re-defining our choices when select-
ing a biological study model to answer
a particular question. For instance, the
relevance of selecting a murine genetic
background (even if inbred) that will
not interfere with the issue of inter-
est (e.g., Bourdi et al., 2011; Ulmasov
et al., 2013), and still be reasonable breed-
ers with relatively good health. Looking
beyond the traditional murine models to
uncover human-like diseases opens the
door to collaborations between veterinar-
ians and basic researchers (for example,
Vernau et al., 2013) and explore new ther-
apies (Patel et al., 2011; Nielsen et al.,
2014), including the use of stem cells (Volk
and Theoret, 2013) and “personalized
medicine” (Palotie et al., 2013). Across-
species studies fall under the umbrella
named “One Health” initiative, which
since 1984 combines human, animal, and
environmental components to address-
ing global health challenges (Bidaisee and
Macpherson, 2014). To this end, we will
need to look up from our laboratory bench
and try to understand the basis of diseases

within ecosystems, reaching out to global
health (Gutierrez et al., 2012; Conrad et al.,
2013; Miller and Olea-Popelka, 2013).

CONCLUDING REMARKS
Progress in science is made either from dis-
covering new facts or from re-interpreting
well-established ones. In line with this
concept, we should provide a balanced
account of controversial areas and con-
sider that the presentation of different
views is important to reinforce the point
that theories or hypotheses must always be
open to reinterpretation with the advance-
ment of knowledge [e.g., the use of
vitamin D on osteoporosis (Reid et al.,
2014)]. Indications of doubt raised by
published studies provide impetus for fur-
ther research by students, researchers, and
clinicians. As processes evolve once they
exist, it is our goal to shape the vision of
Cellular Biochemistry adapting and evolv-
ing to the fast pace of scientific discoveries,
trying to make this area the most suit-
able bridge between molecular biochem-
istry and medicine, placing it at the heart
of translational medicine.
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