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Abstract 

A number of modern word learning theories posit statistical 
processes in which knowledge is accumulated across many 
exposures to a word and its potential referents. Accordingly, 
words do not go directly from unknown to known, but rather 
pass through intermediate stages of partial knowledge. This 
work presents empirical evidence for the existence of such 
partial knowledge, and further demonstrates its active driving 
role in cross-situational word learning. Subsequently, an 
incremental model which leverages its partial knowledge of 
word-object mappings from trial to trial is shown to account 
well for the data. In contrast, models which do not do so 
cannot explain the data. These results confirm crucial 
assumptions made by statistical word learning models and 
shed light on the representations underlying the acquisition of 
word meanings. 

Keywords: word learning; language acquisition; 
computational modeling; statistical learning 

Introduction 

We have a tendency to characterize word learning as an 

all-or-none process: either a child knows a given word, or 

she has not yet learned it. This is apparent in our 

methodology (e.g. forced-choice tests, preferential looking), 

and assessment of vocabulary size via MCDI (Fenson, Dale, 

Reznick, Bates, Thal, & Pethick, 1994), as well as some 

theoretical claims. But this implicit all-or-none 

characterization may stymie our thinking about potential 

word-meaning representations.  

 For almost a century we have known that human learning 

and memory are not binary phenomena (Ebbinghaus, 1913). 

In learning lists of paired associates, for instance, a failure 

to recall the correct pair for a prompt does not imply no 

knowledge of the mapping. Evidence of this knowledge can 

be recovered using a different test paradigm (e.g. 

recognition or savings). The knowledge is not absent, but 

rather partial or sub-threshold. The central idea motivating 

this work is that such sub-threshold knowledge may play a 

profound in the course of language acquisition.  

Several recent theoretical and computational approaches 

to word learning have made explicit use of partial 

knowledge. For instance, McMurray (2007) modeled the 

learning of a word’s meaning as the acquisition of partial 

meaning tokens. Yu and Smith (2007) argued that early 

word learning can be thought of as the accumulation of co-

occurrence statistics between words and objects across 

multiple situations. These theories suggest that a word can 

be learned in bits rather than in a single perfect moment. 

Other models make an even stronger claim: not only can 

one build lexical knowledge by accumulating parts; this 

partial knowledge is an active driver of the learning system 

(Blythe, Smith, & Smith, in press, McMurray, Horst, 

Toscano, & Samuelson, in press, Fazly, Alishahi, & 

Stevenson, in press, Yu, 2008). These models have been 

tested predominantly on large corpora, reproducing 

qualitative patterns found in children’s word learning. If 

they are correct about the presence and role of partial 

knowledge, however, then we should be able to find 

empirical evidence for the role of partial knowledge in 

human word learners.  

Yurovsky and Yu (2008) presented indirect evidence of 

the active role of partial knowledge in cross-situational 

learning. They exposed participants to a series of 

individually ambiguous learning trials consisting of multiple 

words and multiple objects. At the end of each trial, 

participants were asked to indicate how sure they were (1-

10) that they knew the correct label for each object. 

Yurovsky and Yu showed that a given object’s rating could 

be predicted from the ratings given to the other objects on 

the same trial, even after the object’s rating on its previous 

exposure was taken into account. Thus, participants seemed 

to be using partial knowledge of word-object mappings to 

reduce the set of candidates for other labels. 

This analysis, while promising, was performed on 

participants’ subjective knowledge ratings. In the present 

work, we propose to offer stronger and more direct evidence 

that partial knowledge plays an active role in word learning. 

To this end, we expose participants to two consecutive 

blocks of cross-situational learning. Crucially, half of the 

words and objects in the second block are those which 

participants failed to learn in the first block. Comparing the 

results of block 2 to those of several control conditions, we 

can determine the role of partial knowledge in cross-

situational learning. First, we can ask whether partial 

knowledge exists in the system, whether learners are really 

accumulating bits of sub-threshold knowledge.  

At a deeper level, we pursue a more interesting question: 

does partial knowledge of individual word-referent pairs – 

interacting in a system with partial knowledge of other 

word-referent pairs – facilitate the acquisition of new words. 

To answer this question, a set of computational models are 

fit to the data to understand the underlying learning 

mechanisms which give rise to the empirical results. We 

compare a simple associative model, a biased associative 

model which increments associations in proportion to their 

current strength, and a competitive associative model which 

adds within-trial competition. In the simple associative 

model, partial knowledge is not used in learning. In the 

biased associative model, partial knowledge of a word-
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referent pair drives learning of that individual pair. Finally, 

in the competitive associative model, partial-knowledge of 

multiple word-referent pairs interacts and, by so doing, 

facilitates the learning of other pairs and thus the whole 

system of words and referents. 

Experiment 1 

To demonstrate the role of partial knowledge in word 

learning, we used the cross-situational word learning 

paradigm (Yu & Smith, 2007). In this task, participants are 

exposed to a series of individually ambiguous learning 

trials, each of which contains multiple co-occurring words 

and potential referents. While each trial is individually 

unambiguous, words always co-occur with their correct 

referent, and thus participants who correctly track co-

occurrence between words and objects across trials can 

learn the correct pairings.  

In Experiment 1, participants were exposed to two 

consecutive blocks of cross-situational word learning. At the 

end of block 1, participants were asked to select the correct 

referent for each of the trained words. For participants in the 

unlearned condition, half of the stimuli in block 2 were 

word-object pairs from block 1 for which they selected 

incorrect referents. For participants in the new condition, all 

stimuli in the second block were new.  

If participants encoded nothing about words for which 

they selected incorrect referents in block 1, participants in 

the unlearned and new conditions should learn equally well 

in block 2. Alternatively, since no feedback is provided at 

test, if participants who selected incorrect referents did so as 

the result of binary hypotheses, and carried these wrong 

hypotheses to block 2, we might expect participants in the 

unlearned condition to underperform those in the new 

condition. However, if participants who selected incorrectly 

possess sub-threshold knowledge of the correct referent, we 

would expect participants in the unlearned condition to 

perform better than new participants in block 2. Most 

interesting would be if sub-threshold knowledge of one pair 

interacted with sub-threshold knowledge of other word-

referent pairs to facilitate learning new pairs in block 2.  

Method 

Participants. Ninety-two Indiana University 

undergraduates participated in exchange for course credit; 

50 in the unlearned condition and 42 in the new condition. 

However, to ensure a fair comparison across conditions, 

data from only a subset were analyzed (criteria explained in 

procedure). The final analysis was conducted on 23 

participants in the unlearned condition, and 10 participants 

in the new condition. 

 

Stimuli. Referents were represented by pictures of unusual 

objects which were easy to distinguish from each other, but 

difficult to name. Words were 1-2 syllable synthesized 

nonsense words constructed to be phonotactically probable 

in English. All words and objects have been used in 

previous cross-situational learning experiments (Yu & 

Smith, 2007, Yurovsky & Yu, 2008). Forty-two unique 

words and objects were used in total – 24 in block 1 and 18 

in block 2. 

Training slides for block 1 presented two pictures – one 

on each side of the screen – and played two labels, 

following Yu and Smith’s (2007) 2x2 condition. Training 

slides for block 2 presented four objects – one in each 

corner of the screen – and played four labels, following Yu 

and Smith’s (2007) 4x4 condition. Test slides for each block 

displayed all of the objects from that block (24 for block 1, 

18 for block 2) in random positions and played one label. 

 

Procedure. Each participant was exposed to two blocks of 

cross-situational learning – first a 2x2 block and then a 4x4 

block. Each block consisted of a training phase followed by 

a test phase. The training phases consisted of a series of 

trials each displaying a set of objects and playing an equal 

number of words. Screen position and word order were 

randomized, such that they provided no information about 

which word labeled which object.  

Following training, participants were given a series of 

alternative forced choice tests in which they were asked to 

select the correct referent for each label. Each word was 

tested once, and all objects from a block were presented on 

each test trial, so the content of test trials was uninformative 

as to correct mappings. 

Block 1 contained 24 novel words, each of which 

occurred 5 times with its correct referent and less often with 

other objects. This resulted in 60 2x2 trials in total. Block 2 

contained 18 words, each of which occurred with its correct 

referent 4 times and less often with other objects. This 

resulted in 18 4x4 trials. Word-object pairings and trial 

orders were selected randomly for each participant. 

Block 1 was identical for participants in both the new and 

unlearned groups. The stimuli for block 2 differed across 

conditions. In the new condition, block 2 consisted entirely 

of novel stimuli – 18 words and their associated objects. For 

participants in the unlearned condition, however, 9 of the 

words and objects in the second block were those for which 

they had selected the incorrect response at test in block 1 

(see Figure 1). Thus, for participants in the unlearned group, 

half of the stimuli in block 2 were words and objects for 

which they had not successfully learned correct 

associations. We will refer to the words and referents 

carried over from block 1 as old and those which are seen 

for the first time in block 2 as new. 

Since participants could complete block 2 of the 

unlearned condition only if they had selected incorrect 

referents for at least 9 words in block 1, we could analyze 

participants who learned at most 15 of the 24 possible 

mappings. However, this could produce a skewed measure 

of average learning performance in block 2 since we would 

be rejecting data from those who learned “too much” in 

block 1. To help compensate, we also excluded participants 

who learned less than 9 correct pairings. Thus, only 

participants who learned between 9 and 15 correct pairings 

in block 1 continued on to block 2 of either condition. 
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Figure 1: Selection of stimuli for block 2. In the unlearned 

condition, half of the items on each trial of block 2 were 

those for which the participant had given the incorrect 

response in block 1. The other half were new. In the new 

condition, all stimuli were new. 

Results and Discussion 

As described above, only a subset of the participants run in 

block 1 of either condition proceeded on to block 2.  

Importantly, the proportion of words learned in block 1 did 

not differ between the selected subset and the set of all 

participants in the unlearned condition (Ms = .51, Ma = .50,  

t = .234, n.s.) nor in the new condition (Ms = .47, Ma= .43, t 

= .470, n.s.). Neither was there a significant difference 

between the proportion of words learned in block 1 by the 

selected participants in the unlearned vs. the new condition 

(Mu = .51, Mn= .47, t = 1.62, n.s.). This is to be expected 

given that block 1 was identical across conditions. Thus, all 

further analysis will be performed on selected participants. 

In the second block, participants in both the unlearned 

and new conditions learned a significant proportion of word-

object pairings (Mu = .56, tu = 9.74, p < .001, Mn= .27, tn= 

6.62, p < .001, chance = .056). However, as shown in 

Figure 2, participants in the unlearned condition 

successfully mapped more than twice as many words to 

their correct referents as those in the new condition (t = 

3.63, p = .01). Further, this benefit was not only for the 9 

old pairings carried over from block 1 (Mu = .6, Mn = .26, t 

= 3.69, p < .001), but for the 9 new pairings as well (Mu = 

.51, Mn = .27, t = 2.48, p < .05).  

Thus, partial knowledge of word-object pairings in block 

1 allowed participants in the unlearned condition to learn 

significantly more mappings in block 2 than participants in 

the new condition. Further, the benefit was not just for the 

pairings for which participants had partial knowledge, but 

for novel pairings as well. This suggests that partial 

knowledge plays an active role in organizing cross-

situational learning. Even though knowledge of word-object 

pairings was below threshold in block 1, it was sufficient to 

drive learning of novel pairings in block 2. 

These findings provide initial support for the idea that 

sub-threshold knowledge of word-object mappings drives 

cross-situational learning. Partial knowledge of some pairs 

may influence the learning of other pairs on a trial-to-trial 

basis by constraining the pairs that are associated within a 

trial. An alternative explanation, however, is that 

participants in this experiment are benefitting from 

knowledge of which of the stimuli in block 2 had been seen 

previously in block 1. This could allow participants in block 

2 of the unlearned condition to actively reduce the 

ambiguity of each training trial by mapping old words to old 

objects and new words to new objects. Some evidence for 

this second hypothesis comes from the errors made by 

participants in block 2 of the unlearned condition. When 

participants made errors in selecting referents for new 

words, they selected new referents at a probability 

significantly different from chance (M = .70, t = 3.73, p < 

.01, chance = .44). To provide further insights into the 

nature of the partial knowledge and its role in learning novel 

items, we constructed a new condition that was designed to 

assess the influence of sub-threshold mappings over and 

above possible knowledge of old/new. 

Experiment 2 

In Experiment 1 we tested the role of partial knowledge in 

word-referent mapping by exposing participants to two 

consecutive trials of cross-situational learning. Crucially, 

half of the pairings in block 2 were pairings for which 

participants failed to learn correct mappings in block 1. 

Learning results in block 2 showed that partial knowledge of 

these word-object pairings allowed participants to perform 

more than twice as well as participants exposed to a second 

block consisting of all new pairings. One possibility is that 

this benefit is entirely due to participants preferentially 

mapping old words to old objects and new words to new 

objects because they categorized them into two groups by 

mere exposure.  

 
Figure 2: Proportion of word-referent pairings learned by 

participants in each condition across Blocks 1 and 2. Dotted 

lines indicate chance levels. 
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To establish a more stringent baseline for comparison, in 

Experiment 2 we constructed a control condition in which 

participants were exposed to the same word and object 

stimuli as participants in the unlearned condition, but 

without any opportunity to learn their associations. These 

same stimuli then appeared again in block 2. The control 

condition allows us to determine a second baseline – the 

effect of mere exposure to the stimuli of block 1. 

Method 

Participants. Ten Indiana University undergraduates 

participated in exchange for course credit. None had 

previously participated in Experiment 1. 

 

Stimuli. Stimuli for Experiment 2 were identical to those 

for Experiment 1. 

 

Procedure. The procedure for the control condition was 

similar to that used in the unlearned condition of 

Experiment 1. The crucial difference, however, was in the 

co-occurrence statistics of the words and objects of block 1. 

Whereas all words co-occurred with their correct referents 5 

times in Experiment 1, in Experiment 2 half of the words 

occurred at most one time with each possible referent. Thus, 

there was essentially no correct referent for these 12 words. 

These unlearnable words and objects were matched for 

frequency of occurrence with those in block 1 – only co-

occurrence statistics changed. 

After the test phase of block 1, participants were exposed 

to a second cross-situational learning task as before. This 

time, however, 9 of the words and objects in block 2 were 

drawn randomly from the set of 12 unlearnable words and 

objects of block 1. In the second block these words each 

occurred 4 times with a single correct referent just like the 9 

novel words. Thus, participants could distinguish the old 

words from the new words by their appearance in block 1, 

but they could not use potential partial knowledge of word-

referent mappings to bootstrap their learning in block 2. 

Results and Discussion 

Because half of the words in block 1 of the control 

condition were unlearnable, it is unsurprising that these 

participants learned less words in block 1 than those in 

Experiment 1 (M1 = .5, M2 = .28, tu = 7.21, p < .001).  

However, when only those words for which there was a 

correct answer in both Experiments are considered, 

participants performed equally well in both Experiment 1 

and 2 (M1 = .49, M2 = .48, t = 0.19, n.s.). It is thus 

reasonable to compare block 2 performance across 

conditions. 

  In Experiment 2, we test the hypothesis that the benefit 

experienced due to participants in the unlearned condition 

of Experiment 1 was due not to partial knowledge, but to the 

ability to partition stimuli into two sets: old and new. If this 

is the case, mere exposure to the stimuli of block 1 – 

without the underlying co-occurrence statistics – should 

have been sufficient to reproduce this benefit. This is  

 
Figure 3: Proportion of word-referent pairings learned by 

participants in each condition. Old words are those which 

have been carried over to block 2 from block 1. In the new 

condition there are no old words, so the old words are those 

which fill the same slots in the training trials as the old 

words in the unlearned and control conditions. Dotted lines 

indicate chance. 

 

precisely the condition experienced by participants in the 

control condition. However, counter to this hypothesis, 

participants in the control condition did not outperform 

those in the new condition (Mc = .27, Mn = .26, t = .16, n.s.). 

They did, however, significantly underperform those in the 

unlearned condition (Mc = .27, Mu = .56, t = -3.22, p < .01). 

This difference was separately significant for old (Mc = .2, 

Mu = .6, t = -4.06, p < .001) and trending in the right 

direction for new (Mc = .34, Mu = .51, t = -1.55, p = .13) 

words. Figure 3 shows these results. This weighs against the 

hypothesis of mere exposure and lends credence to the 

hypothesis that partial knowledge is an active driver of 

cross-situational learning. 

Computational Models 

To more fully analyze the role of partial knowledge of 

word-referent mappings in driving cross-situational 

learning, we implemented three incremental associative 

models that were exposed to simulated trials identical to 

those seen by experimental participants. The three models 

allow us to explicitly test hypotheses about how partial 

knowledge is used.  

The first model – the simple associative model – 

maintains a word x object co-occurrence matrix and simply 

increments the cell corresponding to a word-object 

association each time the pair appears on a trial. This model 

thus learns the pure frequency of each of the possible word-

object pairs. 

The second model – the biased associative model – 

similarly maintains a word x object co-occurrence matrix. 

However, instead of incrementing the association strength 
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between a word and object by one whenever they co-occur, 

it increments their association by the strength of the current 

association. Whereas the simple model produces linear 

growth, the biased model produces geometric growth. This 

rich-get-richer scheme capitalizes on partial knowledge of a 

pairing in order to learn that pairing. 

The final model – the normalized associative model – 

adds a competitive process to the biased model. On each 

trial, the increase in association between words and objects 

are computed as in the biased model, but the increment for a 

given word-object pair is normalized by the sum of all 

increments made for that object on that trial. This 

implements competition between all of the words in one 

trial. Intuitively, as one word accounts better for the 

presence of an object, the association between other words 

and that object are depressed. This mechanism is similar to 

the alignment mechanism used by Fazly et al.’s (in press) 

iterative version of the IBM Machine Translation Model 

(Brown, Pietra, Pietra, & Mercer, 1994).  

The models are each tested for their knowledge of word-

object associations in the same way as experimental 

participants. At the end of training, they are exposed to a 

series of alternative-forced choice tests and make their 

selections using the Shepard-Luce Choice Rule (Luce, 1959, 

Shepard, 1957). The simulated participant selects each 

alternative with a probability proportional to the exponential 

function of the strength of its association with the tested 

word.  

Each model has only one parameter: a sensitivity 

parameter (λ) which weights each of the exponentiated 

probabilities in the Shepard-Luce Choice rule. Higher 

values of λ indicate that participants are more sensitive to 

differences in associative strengths between alternatives. To 

simulate Experiments 1 and 2, we exposed simulated 

participants to exactly the same stimuli as real participants. 

For instance, simulated participants in the unlearned 

condition were exposed to all of the training trials of the 

first block one at a time. Then, each simulated participant 

made selections at test using the Shepard-Luce Choice Rule. 

Nine of the items for which the model gave the wrong 

answer were then carried over to block 2, which were once 

again presented to the participant one trial at a time. Finally, 

the same decision rule was used to select a referent for each 

tested word. One thousand simulated participants were run 

in each of the three conditions using each model. 

As can be seen in Figure 4, all of the models make 

essentially the same predictions for block 1. However, they 

make differing predictions for block 2 – the block during 

which partial knowledge may play a role. Figure 5 shows 

that the simple associative model is unable to produce the 

trend found in the data at even a qualitative level. It predicts 

that participants in the unlearned condition should 

underperform those in the control and new conditions. The 

other two models produce qualitatively similar trends. The 

competitive model, however, performs quantitatively better 

than the biased model (SSEc = .0071, SSEb = .0191, Bayes 

Factor = 2.69). As both have an equal number of  

 
Figure 4: Proportion of word-referent pairs learned in block 

1 by experimental participants and each of the three models 

across all experimental conditions. 

 
Figure 5: Proportion of word-referent pairs learned in Block 

2 by experimental participants and each of the three models 

across all experimental conditions. 

 

parameters, we can conclude that the competitive model is 

the better model for this empirical data. This supports the 

hypothesis that partial knowledge plays an active role in 

cross-situational learning, with partial-knowledge of 

multiple word-object associations interacting to support the 

acquisition of new word-object associations.  
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General Discussion 

Whereas many methods for measuring word learning treat it 

as if it were binary – either the correct referent of a word is 

known or it is not – recent theoretical and computational 

models have argued that it is a gradual, accumulative 

process. Rather than learning a word’s referent from a single 

perfect moment, learners may hone in on the correct referent 

through exposure to environmental statistics. 

Empirical work has demonstrated that co-occurrence 

statistics alone are sufficient for learning word-object 

pairings (Yu & Smith, 2007). Furthermore, Vouloumanos 

(2008) showed evidence that learners are not only sensitive 

to the most frequently associated object for a given word, 

but also show deep knowledge of the statistical structure. 

Still, these results probed statistically acquired word-object 

knowledge only in its final state – producing a binary 

learned/unlearned data point for each potential pairing. 

Empirical evidence of graded states of partial knowledge 

has been indirect at best (Yurovsky & Yu, 2008). 

 The present work provides direct empirical evidence of 

not only the presence of such partial knowledge, but also its 

active role in driving word learning from exposure to 

exposure. The compared incremental models of statistical 

word learning show that partial knowledge may be 

leveraged on a trial-to-trial basis to bootstrap learning. 

Crucially, the better quantitative fits of the competitive 

model suggest that partial knowledge of a word-object 

association does not merely facilitate learning of that one 

association, but also combines with partial knowledge of 

other word-referent pairs to bootstrap learning of the whole 

system of words and referents. When words are learned as 

an interacting system, partial knowledge of one component 

gives a learner a leg up on acquiring others (Landuaer & 

Dumais, 1997). 

While there is no denying the importance of word 

learning models at the computational level (Frank, 

Goodman, & Tenenbaum, 2009, Xu & Tenenbaum, 2007, 

Yu, 2008), this work again underscores our need to 

understand the continuous interaction of knowledge and 

learning on a moment-to-moment basis. Word learning is a 

constructive process, with initial successes cascading on 

themselves to empower even more successful learning 

(Smith, 1999). By digging deeper into word learning – 

understanding the latent representations that drive the 

system – we can hope to come to terms with its incredible 

complexity. 
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