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Systems/Circuits

Vascular Endothelial Cells Mediate Mechanical Stimulation-
Induced Enhancement of Endothelin Hyperalgesia via
Activation of P2X2/3 Receptors on Nociceptors

Elizabeth K. Joseph, Paul G. Green, Oliver Bogen, Pedro Alvarez, and Jon D. Levine
Departments of Medicine and Oral Surgery and Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143-0440

Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly
enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ETA and ETB , attenuated
both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oli-
godeoxynucleotide to attenuate ETA receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, sug-
gesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ETA and ETB

receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with
octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase C� (PKC�),
a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKC� did not
inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKC�; however, administration of a PKC� inhibitor at the site of
testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X2/3

receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models
(eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on
vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X2/3

receptor.

Introduction
Endothelins (ETs), a family of polypeptides produced in large
part by vascular endothelial cells (Butt et al., 2010; Rodríguez-
Pascual et al., 2011), act as potent vasoconstrictors (Uchida et al.,
1988; Inoue et al., 1989). Endothelin receptors (i.e., ETA and ETB)
are located on nociceptors (Plant et al., 2007; Werner et al., 2010;
Laziz et al., 2011), in which endothelin acts to sensitize and acti-
vate them (Khodorova et al., 2009b), as well as on vascular endo-
thelial cells to produce their vasoconstrictor effect (Sánchez et al.,
2010).

We recently described a pronociceptive effect of endothelin-1
(ET-1), whereby a marked enhancement of endothelin hyperal-
gesia is produced by repeated testing with threshold noxious me-
chanical stimulation at the site of administration (Joseph et al.,
2011). In the present study, we tested the hypothesis that these
two distinct pronociceptive effects of ET-1, primary hyperalgesia
and stimulus induced-enhancement of endothelin hyperalgesia
(SIEH), are mediated by action on different cells: ET-1 induced
primary hyperalgesia by its action on the peripheral terminal of

nociceptors and SIEH by its action on vascular endothelial cells,
sensitizing them for mechanical stimulus-induced release of a
pronociceptive mediator. Given the importance of vasculature in
some pain syndromes [e.g., vibration white finger (Stoyneva et
al., 2003), intense exercise (Pritchard et al., 1999), and endome-
triosis (Van Langendonckt et al., 2008)] and that vascular endo-
thelial cells are able to release pronociceptive mediators, such as
ATP, in response to mechanical stimulation (Burnstock, 1999),
the mechanism proposed here could provide insight into a poorly
understood and difficult to treat set of common pain conditions.

Materials and Methods
Animals
Experiments were performed on male Sprague Dawley rats and, for the
endometriosis model, female rats (both 200 –250 g; Charles River). Ani-
mals were housed three per cage, under a 12 h light/dark cycle, in a
temperature- and humidity-controlled environment. Food and water
were available ad libitum. All behavioral nociceptive testing was per-
formed between 10:00 A.M. and 4:00 P.M. Rats were acclimatized to the
experimental area and behavioral procedures before the test. To acclima-
tize rats to the testing environment, they were brought to the experimen-
tal area in their home cages and left in them for 15–30 min, after which
they were placed in a restrainer (cylindrical transparent acrylic tubes that
have side openings to allow extension of the hindlimbs from the re-
strainer, for nociceptive testing). Rats were left undisturbed in the re-
strainer for another 15–30 min before nociceptive testing was started.
Nociceptive threshold was defined as the mean of three readings taken at
5 min intervals. All experimental protocols were approved by the Uni-
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versity of California, San Francisco Committee on Animal Research and
conformed to National Institutes of Health Guidelines for the Care and
Use of Laboratory Animals. All efforts were made to minimize the number
of animals used and their suffering.

Nociceptive testing
Cutaneous nociception
The nociceptive flexion reflex was quantified with an Ugo Basile Analge-
symeter (Stoelting), which applies a linearly increasing mechanical force
to the dorsum of the rat’s hindpaw. Nociceptive threshold was defined as
the force, in grams, at which the rat withdrew its hindpaw. Hyperalgesia
was defined as a decrease in mechanical nociceptive threshold, here pre-
sented in grams, from baseline paw-withdrawal threshold. Each paw was
treated as an independent measure; both paws of the same rat received
the same treatment. Each experiment was performed on separate groups
of rats. These animals acted as their own controls, with inhibitor injected
intradermally into both hindpaws 15 min before the administration of
ET-1 and paw-withdrawal thresholds compared before and after drug
treatment.

Muscle nociception
Mechanical nociceptive threshold in the gastrocnemius muscle was
quantified after hindlimb vibration, eccentric exercise, or implantation
and establishment of endometriosis cyst (see below) using a Chatillon
digital force transducer (model DFI2; Ametek) (Dina et al., 2008; Khasar
et al., 2008; Alvarez et al., 2010). In lightly restrained rats (as described
above), a 6-mm-diameter probe, attached to the force transducer, was
applied to the skin overlying gastrocnemius muscle to deliver an increas-
ing compression force. This width of probe allows for selective evaluation
of muscle pain (vis-à-vis overlying skin pain) (Murase et al., 2010). The
nociceptive threshold was defined as the force at which the rat withdrew
its hindlimb; results are presented force (in millinewtons) withdrawal
thresholds. Each hindlimb (gastrocnemius muscle) is treated as an inde-
pendent measure, and each experiment is performed on a separate group
of rats.

Drugs
The drugs used in this study included the following: ET-1 (100 ng),
BQ-123 (2-[(6R,9S,12R,15S)-6-(1H-indol-3-ylmethyl)-9-(2-methylpro-
pyl)-2,5,8,11,14-pentaoxo-12-propan-2-yl-1,4,7,10,13-pentazabicyclo
[13.3.0]octadecan-3-yl]acetic acid) (1 �g; ETA receptor antagonist), BQ-788
[(2 R)-2-[[(2 R)-2-amino-3-(1-methoxycarbonylindol-3-yl)propanoyl]-
[(2S)-2-[[(2R,6S)-2,6-dimethylpiperidine-1-carbonyl]amino]-4,4-dime-
thylpentanoyl]amino]hexanoate] (1 �g; ETB receptor antagonist), TMB-8
[8-(diethylamino)octyl 3,4,5-trimethoxybenzoate] (1 �g; calcium seques-
trator), Quin-2 (2-[2-[[8-[bis(carboxymethyl)amino]-6-methoxyquinolin-
2-yl]methoxy]-N-(carboxymethyl)-4-methylanilino]acetic acid] (1 �g;
calcium chelator), oligomycin and �-lipoic acid [reactive oxygen species
(ROS) inhibitors], rotenone (1 �g), and antimycin (1 �g; inhibitors of
mitochondrial electron transport chain complexes I and III, respec-
tively), A-317491 (5-[(3-phenoxyphenyl)methyl-[(1S)-1,2,3,4-tetrahydro-
naphthalen-1-yl]carbamoyl]benzene-1,2,4-tricarboxylic acid) (1 �g; P2X2/3

inhibitor), AF-353 (5-[5-iodo-4-methoxy-2-(1-methylethyl)phenoxy]-
2,4-pyrimidinediamine hydrochloride; 1 �g; P2X2/3 receptor antago-
nist), octoxynol-9 (which functionally impairs vasculature endothelial
cell lining (Connor and Feniuk, 1989; Jamal et al., 1992; Sun et al., 1997),
oxotremorine and platelet activating factor (all from Sigma-Aldrich),
bisindolylmaleimide [BIMM; a nonselective protein kinase C (PKC) in-
hibitor], and PKC�V1–2 peptide (PKC�I, a selective PKC�-translocation
inhibitor; both from Calbiochem, EMD Biosciences). Drug doses used in
this study were based on dose–response curves generated in our previous
studies (Aley and Levine, 1999; Joseph and Levine, 2006, 2010) or the
dose–response curves performed as part of the present study.

ET-1, BQ-123, BQ788, TMB-8, Quin-2, oligomycin, �-lipoic acid,
rotenone, antimycin, BIMM, and PKC�I were administered intrader-
mally in a volume of 5 �l using a 30 gauge hypodermic needle attached to
a microsyringe (Hamilton) by PE-10 polyethylene tubing. Oxotremorine
(0.5 ng in 0.9% sodium chloride vehicle) was injected subcutaneously in
a volume of 50 �l. Octoxynol-9 (0.5%, 1 ml/kg) was administered intra-

venously. All drugs used in this study, except BIMM, were dissolved in
saline. BIMM was dissolved in 10% DMSO. All inhibitors were admin-
istered 15 min before ET-1 and nociceptive thresholds measured at 15,
20, 25, and 30 min after ET-1 administration. Per se effect of all the
inhibitors, including octoxynol-9 and solvents (saline and 10% DMSO),
were evaluated separately, and none had significant effect on the basal
threshold of the naive rats (data not shown).

Antisense and mismatch oligodeoxynucleotides
PKC�. The antisense oligodeoxynucleotide sequence for PKC�, 5�-
GCCAGCTCGATCTTGCGCCC-3� (Invitrogen), was directed against a
unique sequence of rat PKC� mRNA. The corresponding GenBank ac-
cession number and oligodeoxynucleotide position within the cDNA
sequence are NM_017171 and 419 – 438, respectively. We showed previ-
ously that intrathecal administration of antisense oligodeoxynucleotide
with this sequence decreases PKC� protein in dorsal root ganglia (Parada
et al., 2003b). The mismatch oligodeoxynucleotide sequence, 5�-
GCCAGCGCGATCTTTCGCCC-3�, corresponds to the PKC� antisense
oligodeoxynucleotide sequence with 2 bases mismatched (denoted by
bold).

ETA. The antisense oligodeoxynucleotide sequence for the ETA recep-
tor, 5�-CGTCCTGTTATGTTGGTCTC-3� (Invitrogen), was directed
against a unique region of the rat ETA mRNA sequence. The correspond-
ing GenBank accession number and oligodeoxynucleotide position
within the cDNA sequences are NM_012550 and 252–271, respectively.
The mismatch oligodeoxynucleotide sequence, 5�-CTTGCTGTTGTGT
TGGTCTG-3�, corresponds to the ETA receptor antisense oligodeoxy-
nucleotide sequence with 7 bases mismatched (denoted by bold).

Oligodeoxynucleotides were reconstituted in nuclease-free 0.9% NaCl
to a concentration of 10 �g/�l and stored at �20°C until use. Before
administration of the oligodeoxynucleotides, rats were anesthetized with
3% isoflurane. An insulin syringe with a 29 gauge needle (Becton Dick-
inson) was used to deliver the oligodeoxynucleotides. The needle of the
syringe was inserted intrathecally on the midline between the fourth and
fifth lumbar vertebrae, and its intrathecal location was confirmed by a
flicking of the rat’s tail (Papir-Kricheli et al., 1987). A dose of 40 �g (20 �l
injection volume) of the antisense or mismatch oligodeoxynucleotide
was administered, once daily for 3 consecutive days. Figure 1 shows the
timing of antisense administration and nociceptive testing.

Protein extraction and Western blot
To confirm that the change in the nociceptive response associated with
antisense treatment for ETA is attributable to a decrease in the peripheral
protein expression level of ETA, a Western blot analysis was performed.
Saphenous nerves from anesthetized rats were ligated with silk surgical
suture (4-0) 1 cm above the knee-level bifurcation of the nerves. A 5 mm
section of the saphenous nerve proximal to the ligation was harvested
24 h after the last oligodeoxynucleotide injection and stored at �80°C
until additional processing. Protein extraction and protein determina-
tion, SDS-PAGE, and Western blot analysis were performed as described
previously (Bogen et al., 2008; Summer et al., 2008). ETA immunoreac-
tivity was detected with an affinity-purified rabbit anti-ETA antibody
(1:500 dilution, ab85163; Abcam), followed by incubation with an HRP-
conjugated donkey anti-rabbit antibody (1:5000 dilution, NA934; GE
Healthcare). PKC� immunoreactivity was detected with an affinity-
purified rabbit anti-PKC� antibody (1:500 dilution, sc-214; Santa Cruz
Biotechnology), followed by incubation with an HRP-conjugated don-

Figure 1. Timing of antisense administration and nociceptive testing. Antisense or mis-
match oligodeoxynucleotides were administered intrathecally daily for 3 d. On the fourth day,
ET-1 was injected intradermally into the hindpaw (time 0), and nociceptive threshold was
evaluated at that injection site every 5 min, beginning 15 min after ET-1 administration for 30
min.
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key anti-rabbit antibody (GE Healthcare). Immunoreactivity was visual-
ized with enhanced chemiluminescence reagents (Thermo Fisher
Scientific), and images were acquired with ChemiImager imaging system
and analyzed by computer-assisted densitometry using AlphaEaseFC
software (Genetic Technologies). ETA protein levels were normalized
with respect to the PKC� level in each sample, and the percentage de-
crease in ETA expression levels was calculated using the following for-
mula: (normalized density for antisense � normalized density for
mismatch)/normalized density for mismatch � 100.

Lesion of vascular endothelium
In the cardiovascular and renal literature, a role of endothelial cells in
vascular function has been evaluated, in vivo and in situ, by functionally
compromising the endothelial lining, using brief exposure to
octoxynol-9. As shown by functional tests and light and electron micros-
copy, the intravenous or intra-arterial administration of octoxynol-9
functionally impairs the endothelial lining of the vasculature (Randall et
al., 1991; McLeod and Piper, 1992; Bourreau et al., 1993; Sun et al., 1997).
To evaluate the role of the endothelial cell in SIEH, and preclinical mod-
els of pain syndromes, rats received an intravenous injection, through a
tail vein, of a 0.5% solution of octoxynol-9 at a volume of 1 ml/kg body
weight. In ET-1 experiments, it was injected 15 min later, and the animals
were evaluated for ET-1 hyperalgesia and stimulus-induced enhance-
ment of this hyperalgesia. Injection of saline (vehicle for octoxynol-9)
served as the control. Rats showed no indication of distress throughout
the period of the experiment after administration of octoxynol-9.

Laser Doppler 2D blood flow measurements
To evaluate endothelial cell function at the site of nociceptive testing, we
evaluated the response to the muscarinic cholinergic agonist oxotremo-
rine using laser Doppler 2D blood flow measurement; muscarinic ago-
nists cause endothelium-dependent vasodilation by enhancing release of
nitric oxide (Baron, 1999), a standard method for determining impair-
ment of endothelial cell function (Clavier et al., 1994; Harukuni et al.,
2000). Blood flow was assessed using a Moor LDI2 Laser Doppler Imager
(Moor Instruments) equipped with a near-infrared (780 nm) laser,
which has the advantage over standard laser Doppler methods in that
blood flow in deeper-lying vasculature is also measured. The Doppler
imager laser beam was set to scan in a raster pattern over the dorsal
surface of the hindpaw; moving blood in the microvasculature causes a
Doppler shift that is processed by the integrated software to build up a
color-coded image of blood flow. The measurement is noncontact and
records perfusion every 90 s, with perfusion at each image position re-
corded at resolutions of 0.2 mm/pixel; additional analysis was performed
using integrated computer software. Rats were anesthetized with isoflu-
rane (3% in oxygen) and placed in a supine position on a heating pad to
maintain body temperature at 37°C. Activation of muscarinic cholin-
ergic receptors produces an endothelium-dependent dilation of vascular
beds (Furchgott and Zawadzki, 1980). Therefore, to evaluate the func-
tional status of the endothelium, after three baseline scans, oxotremorine
(0.5 ng in a volume of 50 �l) was injected subcutaneously into the dorsal
surface of the hindpaw in naive controls or 24 h after octoxynol-9 admin-
istration. Scanning was resumed to assess changes in blood flow in re-
sponse to muscarinic stimulation over the next 12 scans (18 min).

Plasma extravasation
As a second measure of impairment of endothelial cell function, we
evaluated the effect of octoxynol-9 on endothelium-dependent plasma
protein extravasation. Plasma extravasation was evaluated as described
previously (Green and Levine, 2005). Rats were anesthetized with so-
dium pentobarbital (65 mg/kg, i.p.) and were then given a tail vein injec-
tion of Evans blue dye (50 mg/kg), which binds stoichiometrically to
serum albumin. Vehicle (0.9% saline) was perfused through the knee
joint at a constant rate (250 �l/min), and perfusate samples were col-
lected every 5 min. After establishing vehicle baseline levels of plasma
extravasation, platelet-activating factor (PAF; 100 nm, which stimulates
plasma extravasation in a endothelium-dependent manner) was added
to this perfusing fluid (0.9% saline, 1% bovine serum albumin) and

remained present in the fluid for the duration of the experiment. We used
PAF to evaluate endothelial cell functional integrity in mediating plasma
protein extravasation, because we extensively used this compound to
evaluate plasma protein extravasation (Green et al., 1993a,b,c,d, 1994,
1995, 1997, 1998; Lo et al., 1999), whereas ET-1 itself has not been vali-
dated in this system. Using spectrophotometric measurement (absor-
bance at 620 nm), samples were then evaluated for Evans blue dye
concentration, which is linearly related to protein albumin concentra-
tion (Carr and Wilhelm, 1964).

Vibration-induced hyperalgesia
It has been suggested that musculoskeletal pain induced by exposure to
vibrating devices used in various occupations may have a vascular com-
ponent (Ogasawara et al., 1997; Dowd et al., 1998; Mirbod et al., 1999).
We demonstrated previously that exposure to vibration produces
chronic muscle pain (Chen et al., 2010; Dina et al., 2010). The rat’s
hindlimb was vibrated with a Digital Vortex Genie II laboratory Vortex
mixer (Thermo Fisher Scientific) that has a variable-speed motor with a
real-time digital readout of the vibration speed of the head. Rats were
anesthetized with 3% isoflurane in oxygen and one hindlimb affixed to
the platform with Micropore surgical tape so that the knee and ankle
joint angles were both 90°, without rotational torque on the leg. The leg
was vibrated at a frequency of 60 – 80 Hz, with a 5-mm peak-to-peak
displacement amplitude. These vibration frequencies are within the
ranges that are produced by hand-held power tools (35–150 Hz) (Radwin
et al., 1990). In previous studies in the rat, more intense hindlimb vibra-
tion at 80 Hz for 5 h daily for 2 d did not cause muscle necrosis (Lundborg
et al., 1990; Gudas et al., 1995). In the present experiments, hindlimbs
were vibrated once for 15 min.

Eccentric exercise
The method used to eccentrically exercise the rat hindlimb (Alvarez et al.,
2010) was similar to that described by Kano et al. (2004) and Taguchi et
al. (2005). Briefly, isoflurane-anesthetized rats were placed in the supine
position, on a heating pad (to maintain body temperature at 37°C), and
the right hindpaw was affixed to the foot bracket of the exercise apparatus
(model RU-72; NEC Medical Systems) with 3M Micropore surgical pa-
per tape, such that the angle of the knee and ankle joints was �90° (with
the paw 30° from vertical). The gastrocnemius muscle was stimulated via
subcutaneous needle-type electrodes attached to a model DPS-07 stim-
ulator (Dia Medical System) that delivered trains of rectangular pulses
(100 Hz, 700 ms, 3 V) every 3 s to give a total of 300 contractions. During
these stimulus-induced contractions of the gastrocnemius muscle, the
electromotor system rotated the foot to produce extension of the gastroc-
nemius muscle.

Surgical induction of muscle endometriosis
Our model of surgically induced muscle endometriosis (Alvarez et al.,
2012) was adapted from that used to induce peritoneal endometriosis in
the rat (Vernon and Wilson, 1985). Rats were anesthetized with a mix-
ture of ketamine hydrochloride and xylazine (80 and 6 mg/kg, s.c., re-
spectively) and maintained with isoflurane (1.5% in 98.5% oxygen).
After a midline abdominal anesthetic block performed by injecting
0.25% bupivacaine (0.2 ml, s.c.), under aseptic conditions, a midline
incision �4 cm in length was performed. After laparotomy, the abdom-
inal cavity was examined and the right uterine horn was identified, ex-
posed, and isolated using a sterilized cotton roll. With the aid of a surgical
microscope, the right uterine artery and vein and the uterine vessels from
the ovarian artery were ligated at the level of the transition of the uterine
horn to the oviduct, with a 5-0 nylon suture. This procedure was repeated
1 cm distally. The uterine horn bounded by these ligatures was sectioned
perpendicularly to its axis, and a 1 cm segment was removed and imme-
diately placed in a Petri dish containing 0.9% NaCl. The distal stump of
the uterine horn was then tied with 5-0 nylon suture. After confirming
hemostasis, the musculature of the abdominal wall was closed with single
cross stitches, and the skin incision was closed with horizontal mattress
stitches using 5-0 nylon. The excised uterine tissue was measured with a
millimeter scale and opened longitudinally; a full-thickness 3 � 3 mm
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square of uterine tissue was then removed and kept in physiologic saline.
To perform the implant, the biceps femoris muscle was exposed by
means of a 2 cm skin incision perpendicular to the long axis of the calf.
Then, a 1 cm incision was performed in the biceps femoris, allowing
exposure of the underlying gastrocnemius muscle. With the aid of a
surgical microscope, the square of uterine tissue was sutured to the sur-
face of the gastrocnemius muscle by applying three to four single stitches
using 5-0 nylon with the endometrial portion of the uterine tissue con-
tacting the gastrocnemius muscle. After checking for hemostasis, the
biceps femoris muscle was closed with single stitches and the skin with
single cross stitches using 5-0 nylon. The sham surgical procedure was
similar, but the implant sutured to the surface of the gastrocnemius
muscle consisted of a 3 � 3 mm square of peritoneal fat instead of uterine
tissue. Postoperative recovery was assessed daily. Return of normal estrus
cyclicity was found within 1 week of the procedure.

Statistical analyses
The dependent variable in experiments evaluating cutaneous and muscle
nociceptive threshold was change in withdrawal threshold in the paw and
hindlimb, respectively, from the pretreatment baseline threshold or from
that of corresponding controls. Group data are represented as mean �
SEM. Statistical significance was determined by one- or two-way
repeated-measures ANOVA, followed by Tukey’s or Bonferroni’s post
hoc test, respectively, or by Student’s t test (appropriately mentioned in
Results). For nonparametric analysis, Mann–Whitney U test was used.
p � 0.05 was considered statistically significant.

Results
ET-1 hyperalgesia and its mechanical stimulus-induced
enhancement
Receptors
Intradermal administration of ET-1 (100 ng) in the dorsum of
the rat hindpaw produced mechanical hyperalgesia, which in-
creased on additional mechanical threshold stimulation at 5 min
intervals (SIEH) (Joseph et al., 2011). We studied the effect of
endothelin receptor antagonists BQ-123 (ETA antagonist) and
BQ-788 (ETB antagonist) on ET-1 induced hyperalgesia and
SIEH. Previous (15 min before ET-1) administration of BQ-123
(1 �g) or BQ-788 (1 �g) each alone partially attenuated ET-1-
induced mechanical hyperalgesia, whereas coadministration of
both antagonists completely eliminated ET-1 hyperalgesia (Fig.
2; p � 0.0001, two-way repeated-measures ANOVA, followed by
Bonferroni’s post hoc test for both antagonists effect and time
points, n � 8). BQ-123 completely attenuated the SIEH (Fig. 2;
P � NS, 15 vs 30 min, paired Student’s t test, n � 8), whereas
BQ-788 administration significantly inhibited SIEH (p � 0.0001,
two-way repeated-measures ANOVA, time � treatment interac-
tion), although it was still present (Fig. 2; p � 0.01, 15 vs 30 min,
paired Student’s t test, n � 8). Of note, neither BQ-123 nor BQ-
788, administered alone or in combination, affected baseline no-
ciceptive threshold (data not shown).

Second messengers
We studied the effect of second-messenger inhibitors on ET-1-
induced hyperalgesia and SIEH. The intradermal administration
of inhibitors of intracellular calcium signaling [Fig. 3A, TMB-8 (1
�g) and Quin-2 (1 �g)], ROS generation [Fig. 3B, �-lipoic acid (1
�g) and oligomycin (1 �g)], and PKC [Fig. 3C, BIMM (1 �g)]
attenuated both ET-1-induced mechanical hyperalgesia and
SIEH (p � 0.0001, for all inhibitors and time points, two-way
repeated-measures ANOVA, followed by Bonferroni’s post hoc
test, n � 6).

However, intradermal administration of a selective inhibitor
of PKC� [Fig. 3C, PKC�I (1 �g)] and inhibitors of mitochondrial
electron transport chain complexes I and III [Fig. 3D, rotenone (1

�g) and antimycin (1 �g)] did not attenuate ET-1-induced me-
chanical hyperalgesia, but each alone did inhibit SIEH (Fig. 3C,
PKC�I, p � 0.001; D, rotenone, p � 0.01 and antimycin, p � 0.01;
two-way repeated-measures ANOVA, followed by Bonferroni’s
post hoc test, n � 8 for each treatment group).

We next administered antisense oligodeoxynucleotide intra-
thecally to attenuate PKC� levels in sensory neurons (Parada et
al., 2003a,b). Unlike intradermal injection of the PKC� inhibitor,
which selectively prevented SIEH, intrathecal administration of
the oligodeoxynucleotide antisense to PKC� affected neither ET-
1-induced hyperalgesia nor SIEH. The effect of PKC� antisense
(n � 8) was not different from the control (PKC� mismatch, n �
6; Fig. 4A).

Site of action of ET-1 to induce SIEH
To test the hypothesis that SIEH is produced by an action of ET-1
on ET receptors on the primary afferent nociceptor, we adminis-
tered antisense oligodeoxynucleotide intrathecally to attenuate
the ETA receptor level in sensory neurons. Importantly, when
antisense is administered intrathecally, sensory neurons are the
only cell in the skin exposed to it. Intrathecal administration of
oligodeoxynucleotide antisense sequence to mRNA for the ETA

receptor attenuated ET-1-induced hyperalgesia without affecting
the SIEH. ETA receptor mismatch oligodeoxynucleotide treat-
ment had no effect on ET-1 hyperalgesia (Fig. 4B, p � 0.0001,
two-way repeated-measures ANOVA, followed by Bonferroni’s
post hoc test, n � 8).

To confirm attenuation of ETA receptor in dorsal root gan-
glion neurons, we performed Western blot analysis on peripheral
nerves of rats treated with oligodeoxynucleotide antisense to ETA

mRNA and a mismatch oligodeoxynucleotide control. Antisense
oligodeoxynucleotide to ETA mRNA significantly attenuated the
level of ETA protein in the peripheral nerve when compared with
mismatch treated controls (Fig. 5, p � 0.05, Mann–Whitney U
test).

Role of vascular endothelial cells
To test the hypothesis that the cell at which ET-1 acts to induce
SIEH is the vascular endothelial cell, we functionally impaired

Figure 2. Effect of ETA and ETB receptor antagonists on ET-1-induced mechanical hyperal-
gesia and stimulus-induced enhancement of ET-1 hyperalgesia. ET-1 (100 ng, i.d., in dorsum of
the hindpaw) induced primary mechanical hyperalgesia (15 min time point) that was enhanced
by repeated stimulation with a threshold stimulus at the site of nociceptive testing (i.e., SIEH).
Local administration of antagonists of the ETA (BQ-123, 1 �g, i.d.) or ETB (BQ-788, 1 �g, i.d.)
receptor into the hindpaw 15 min before ET-1 partially attenuated the ET-1 hyperalgesia. BQ-
123 completely eliminated SIEH, whereas BQ-788 markedly but not completely inhibited SIEH.
Coadministration of both antagonists (BQ-123 � BQ-788 into the hindpaw 15 min before ET-1)
completely eliminated both ET-1-induced primary hyperalgesia as well as SIEH (p � 0.0001, for
the effect of each inhibitor alone as well as when combined, two-way repeated-measures
ANOVA, followed by Bonferroni’s post hoc test, n � 6; *p � 0.05 for individual time points).
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the vascular endothelium by intravenous administration of
octoxynol-9 (1 ml/kg of a 0.5% solution in saline), a procedure
that rapidly impairs endothelial cell function but leaves the cells
in the blood vessel that underlie them intact and functional
(Connor and Feniuk, 1989; Jamal et al., 1992). This procedure
abolished SIEH (Fig. 6, p � 0.0001, two-way ANOVA, followed
by Bonferroni’s post hoc test, n � 8) without affecting ET-1-
induced mechanical hyperalgesia, supporting the hypothesis of a
role for the endothelium.

Effect of octoxynol-9 on oxotremorine-induced increase in
blood flow
To confirm that octoxynol-9 had impaired endothelial function,
we evaluated oxotremorine-induced vasodilation, a standard
measure of endothelial function (Clavier et al., 1994; Harukuni et
al., 2000). After subcutaneous injection of the muscarinic agonist
oxotremorine (0.5 ng/50 �l), there was an increase in cutaneous
blood flow. However, in rats that had been pretreated with
octoxynol-9 (1 ml/kg of a 0.5% solution in saline, i.v.),
oxotremorine-induced increased cutaneous blood flow was
markedly attenuated [Fig. 7, p � 0.0001; F � 17.29, DFn � 1,
DFd � 570, two-way repeated-measures ANOVA, n � 23 (con-
trol) and n � 17 (octoxynol-9)].

Effect of octoxynol-9 on PAF-induced
plasma extravasation
As a second measure of loss of an endo-
thelial function, we evaluated the effect
of octoxynol-9 on the endothelium-
dependent (Braquet et al., 1987) plasma
protein extravasation induced by PAF
(Mulder and Colditz, 1993; Miao et al.,
1996; Cheng et al., 2009). We used PAF to
evaluate endothelial cell functional integ-
rity in mediating plasma protein extrava-
sation, because we extensively used this
compound to evaluate plasma protein ex-
travasation (Green et al., 1993a,b,c,d,
1994, 1995, 1997, 1998; Lo et al., 1999),
whereas ET-1 itself has not been studied
with respect to this function. The knee
joint of the anesthetized rat was cross-
perfused with saline, to which PAF was
then added. When PAF-induced plasma
extravasation was established, octoxynol-9
was administered intravenously (0.5%, 1
ml/kg).Theadministrationofoctoxynol-9at-
tenuated PAF-induced plasma extravasa-
tion (Fig. 8, p � 0.05 unpaired Student’s t
test, n � 10). Of note, although the mag-
nitude of attenuation of plasma extravasa-
tion appears less than the attenuation of
SIEH, the increased plasma extravasation
(attributable to action of PAF on PAF re-
ceptors) is via a different mechanism than
that of SIEH (action of endothelin or an
endothelin-derived hyperalgesic media-
tor on the nociceptor). Thus, there is no a
priori reason to predict same sensitivity to
the effects of octoxynol-9.

Role of endothelial cells in models of
vascular pain syndrome
Because tonic release of mediators from

endothelial cells has been implicated in vascular diseases (Pate et
al., 2010; Mironidou-Tzouveleki et al., 2011; Triggle et al., 2012),
we evaluated their role in a model of a pain syndrome associated
with vascular dysfunction, induced by exposure to ergonomic
vibration (Palmer and Collin, 1993; Gemne, 1997; Dowd et al.,
1998; Mirbod et al., 1999). We also evaluated the contribution of
the endothelium to two other disease models in which a vascular
pathology has been suggested to contribute to pain: eccentric
exercise and endometriosis, in which a profusion of fine blood
vessels issuing from the surrounding epimysium is evident on the
surface of the endometrial cyst (Alvarez et al., 2012). In the two
ergonomic pain models, hindlimb vibration and hindlimb eccen-
tric exercise, administration of octoxynol-9 significantly attenu-
ated the mechanical hyperalgesia [percentage reduction in
nociceptive threshold: 40 � 2.9% (vibration, n � 9) vs 3 � 1.9%
(vibration � octoxynol-9, n � 9); 35 � 2.5% (eccentric exercise,
n � 7) vs 8.4 � 1.7% (eccentric exercise � octoxynol-9, n � 10),
both p � 0.0001, unpaired Student’s t test]. In the endometriosis
model, administration of octoxynol-9 also markedly attenuated
the hyperalgesia [1235 � 83 mN (endometriosis model, n � 7) vs
2154 � 93 mN (endometriosis � octoxynol-9, n � 7), p �
0.0001, paired Student’s t test].

Figure 3. Effect of second-messenger inhibitors on ET-1-induced mechanical hyperalgesia and stimulus-induced enhancement
of ET-1 hyperalgesia. ET-1-induced hyperalgesia and SIEH were both significantly attenuated by local pretreatment with inhibitors
of intracellular calcium (A, TMB-8 and Quin-2, both 1 �g, i.d.), ROS generation (B, �-lipoic acid and oligomycin, both 1 �g, i.d.),
and PKC (C, BIMM, 1 �g, i.d.) ( p � 0.0001 for all, 2-way repeated-measures ANOVA, followed by Bonferroni’s post hoc test, n �
6). In contrast, neither the selective PKC� inhibitor (C, PKC�I, 1 �g, i.d.) nor inhibitors of mitochondrial electron transport chain
complexes I (D, rotenone, 1 �g, i.d.) and III (antimycin, 1 �g, i.d.) attenuated ET-1-induced mechanical hyperalgesia (C, D, n �
6), whereas each inhibited SIEH (C, PKC�, p � 0.001; D, rotenone, p � 0.01 and antimycin, p � 0.01, two-way repeated-
measures ANOVA, followed by Bonferroni’s post hoc test, n � 6; *p � 0.05 for individual time points). Administration of inhibitors
alone did not affect nociceptive threshold (data not shown).
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Role of purinergic agonists and the P2X2/3 receptor in
stimulus-induced enhancement of endothelin hyperalgesia
Treatment with ETA receptor antisense attenuated ET-1-induced
hyperalgesia, without affecting SIEH. Because endothelial cells
contain endothelin receptors and release ATP in response to me-
chanical stimulation (Milner et al., 1990), which can act on
P2X2/3 receptors on nociceptors to sensitize them (Hester et al.,
1995; Ford, 2012), we tested the effect of a P2X2/3 inhibitor (A-
317491) on SIEH. When ET-1 was administered 15 min after the
administration of A-317491 (1 �g, i.d.), stimulus-induced hyper-
algesia was abolished (Fig. 9, p � 0.0001, two-way ANOVA, fol-
lowed by Bonferroni’s post hoc test, n � 6). A second inhibitor at
P2X2/3 receptors, AF-353 (Gever et al., 2010), also inhibited SIEH
(Fig. 9B, p � 0.0001, two-way ANOVA, followed by Bonferroni’s
post hoc test, n � 8).

Discussion
The intradermal administration of ET-1 produces mechanical
hyperalgesia, which is further enhanced by repeated testing with a
threshold nociceptive intensity mechanical stimulus, which we
referred to as SIEH, a phenomenon not produced by multiple
other pronociceptive mediators (Joseph et al., 2011). In the ex-
perimental protocol used to study ET-1 hyperalgesia, SIEH is

produced by a mechanical stimulus of the intensity of the me-
chanical nociceptive threshold (Joseph et al., 2011), an intensity
that decreases with each subsequent stimulus application. How
such a mild intensity noxious stimulus produces progressive en-
hancement of hyperalgesia has not been elucidated. The mark-
edly different time course of ET-1 hyperalgesia and SIEH (Joseph
et al., 2011) led us to test the hypothesis that these two pronoci-
ceptive effects of ET-1 are mediated by different mechanisms,
present on different cells in the skin; ET-1-induced hyperalgesia
is mediated by its action on ETA receptors on some type of the
primary afferent nociceptors (Werner et al., 2010; Laziz et al.,
2011) as well as on ETB receptors, on nociceptors or a non-
neuronal cell, whereas SIEH is mediated via ET receptors on a
non-nociceptor cell at the site of injection in the skin.

ETA and ETB receptor antagonists each, alone, only partially
inhibited ET-1 hyperalgesia, coadministration of both antago-
nists was required to completely eliminate ET-1 hyperalgesia, and
dual block of both receptor subtypes is needed to eliminate ET-1
actions, as has been observed in other tissues (Fukuroda et al.,
1996). The ETA antagonist eliminated SIEH, whereas the ETB

receptor antagonist markedly but not completely attenuated
SIEH.

The cells that contain the ETA and ETB receptors and the
downstream signaling pathways mediating the sensitization of
the nociceptor underlying the mechanical hyperalgesia induced
by activation of each ET receptor remain to be established. Atten-

Figure 5. Western blot analysis for the effect of antisense on ETA receptor. Western blot
analysis demonstrated downregulation of the expression of peripheral ETA receptor by intra-
thecal antisense for ETA mRNA. Protein extracts derived from the saphenous nerve of rats
treated with intrathecal antisense oligodeoxynucleotide for ETA mRNA for 3 consecutive days
demonstrate a 47 � 8% decrease in the ETA immunoreactivity compared with those rats
treated with mismatch oligodeoxynucleotide ( p � 0.05, Mann–Whitney U test, n � 6 for
antisense- and mismatch-treated rats). PKC�, used as a housekeeping gene in this analysis, has
the calculated molecular weight of �84 kDa (according to UniProtKB/Swiss-Prot database
entry P09216), whereas the calculated molecular weight of ETA is �48 kDa (according to
UniProtKB/Swiss-Prot database entry P26684).

Figure 6. Effect of octoxynol-9 on ET-1-induced mechanical hyperalgesia and SIEH. Intrave-
nous administration of octoxynol-9 abolished SIEH ( p � 0.0001, two-way ANOVA, followed by
Bonferroni’s post hoc test; *p � 0.05 for individual time points) without affecting ET-1-induced
mechanical hyperalgesia in the skin (n � 8).

Figure 4. Effect of intrathecal PKC� and endothelin ETA receptor antisense on ET-1-induced
mechanical hyperalgesia and stimulus-induced enhancement of ET-1 hyperalgesia. Intrathecal
PKC� antisense (40 �g/20 �l) administered once daily for 3 consecutive days did not affect
ET-1-induced hyperalgesia or SIEH (A, n � 6). Intrathecal administration of antisense to the ETA

receptor attenuated ET-1-induced hyperalgesia without affecting the SIEH (B, p � 0.0001 for
all, two-way repeated-measures ANOVA, followed by Bonferroni’s post hoc test, n � 8; *p �
0.05 for individual time points).
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uation of ETA receptor on nociceptors markedly inhibited pri-
mary ET-1 hyperalgesia but had no effect on SIEH, whereas the
ETA receptor antagonist alone completely prevented SIEH, lead-
ing to the suggestion that primary hyperalgesia is mediated via
ETA receptors on nociceptors but SIEH is mediated via endothe-
lin receptors on the endothelial cell. Of note, although we de-
tected a decrease in ETA receptor expression in peripheral nerve
after administration of antisense oligodeoxynucleotide to ETA

mRNA (Fig. 5), we were unable to detect a change in ETB protein
in the peripheral nerve after administration of antisense oligode-
oxynucleotide to ETB mRNA (data not shown). It is also possible
that endothelin may have action on other cell types in the periph-
ery that contribute to nociception. For example, gene products of
glial cells, such as Schwann cells, have been hypothesized to play
a role in nerve injury and sensory nerve function (Campana,

2007; Gosselin et al., 2010), whereas a role
for immune cells (e.g., neutrophils, mac-
rophages, T cells) in acute and chronic in-
flammatory and neuropathic pain is well
established (Scholz and Woolf, 2007;
Chiu et al., 2012; Guillot et al., 2012).
Other cell types, such as keratinocytes
(Khodorova et al., 2003; Gopinath et al.,
2005) and mast cells (Parada et al., 2001;
Jankowski and Koerber, 2010), are also
implicated in peripheral nociceptive
mechanisms. It is likely that actions of me-
diators, released from these cell types, on
nociceptors in the periphery contribute to
regulating nociceptor function in chronic
pain. Of note, although ETB receptors are
present on many cell types at the site of
nociceptive testing, we cannot exclude the
possibility that BQ-788 might also have
some antagonistic actions on ETA recep-
tors because we do not know BQ-788 con-
centration at the receptor level; BQ-788
has �300-fold selectivity for ETB (porcine
coronary artery smooth muscle cells, IC50

of 288 nM at ETA receptors vs 0.9 nM at
ETB receptors) (Okada and Nishikibe,
2002). This contrasts with 20,000-fold se-

lectivity of BQ-123 for ETA receptors (Russell and Davenport,
1996).

Because the signaling pathways activated by ET-1 are com-
plex, involving action at two receptors (i.e., ETA and ETB), both
of which have been implicated in nociceptor function
(Khodorova et al., 2009a), and signal via several second messen-
gers (Fellner and Arendshorst, 2007; Khodorova et al., 2009b), to
distinguish the pronociceptive mechanisms mediating ET-1 hy-
peralgesia and SIEH, we used inhibitors of a panel of second
messengers, albeit far from covering all second messengers impli-
cated in nociceptor sensitization. Using this approach, we iden-
tified two general classes of inhibitors, namely those that inhibit
both ET-1 hyperalgesia and stimulus-induced enhancement of
ET-1 hyperalgesia (i.e., ETA and ETB receptor antagonists and
inhibitors of intracellular calcium, ATP synthase, ROS genera-
tion, and nonselective PKC) and those that only inhibited SIEH
(i.e., inhibitors of PKC� and mitochondrial electron transport
chain complexes I and III). Although this evidence is indirect,
these studies provide support for the hypothesis that ET-1-
induced hyperalgesia and its enhancement by mechanical stimu-
lation are mediated by action of ET-1 at two different cell types in
the skin.

Of all the second-messenger inhibitors tested, only those that
inhibited PKC� and mitochondrial electron transport chain
complexes I and III selectively inhibited SIEH. Of note in this
regard, PKC� can affect activity in the mitochondrial electron
transport chain (Nowak et al., 2004; Costa and Garlid, 2008), and
it has been shown, in other cells, that PKC� can translocate to
mitochondria (Joseph and Levine, 2006; Ferrari and Levine,
2010) in which it can phosphorylate proteins, including members
of the mitochondrial electron transport chain complex (Costa
and Garlid, 2008). Because endothelial cells can be activated by
mechanical stimuli, such as shear stress (Binti et al., 2011; Hennig
et al., 2011), signaling via the mitochondrial electron transport
chain in endothelial cells (Ali et al., 2004; Zhang et al., 2005) can
lead to the release of a number of pronociceptive mediators (e.g.,

Figure 7. Oxotremorine induced an increase in blood flow attenuated by treatment with octoxynol-9. Time course for changes
in hindpaw blood flow produced by oxotremorine. Increased cutaneous blood flow after subcutaneous administration of ox-
otremorine (0.5 ng) into the hindpaw was significantly attenuated in rats that had been treated with octoxynol-9 (intravenously)
24 h before blood flow assessment (F � 17.29, DFn � 1, DFd � 570; p � 0.0001, repeated-measures ANOVA). The Moor Laser
Doppler Imager data analysis software processed time series data images during experiments via an analog-to-digital converter in
the imaging system. Inset, Scans immediately before and 15 min after oxotremorine administration in one representative rat
showing increased blood flow on the dorsal surface of a rat hindpaw. Blood flow is quantified by a Moor Laser Doppler Imager as
flux, which is a measure proportional to the product of the average speed of the blood cells and their concentration. Hindpaws were
scanned (15 scans over 23.5 min), and the flux for the whole hindpaw was measured.

Figure 8. Effect of octoxynol-9 on platelet activating factor-induced plasma protein extrav-
asation. Perfusion of PAF through the knee joint induces an increase in plasma protein extrav-
asation. Intravenous administration of octoxynol-9 significantly attenuated PAF-induced
plasma extravasation ( p � 0.05, unpaired Student’s t test, both groups n � 10).
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prostaglandins, ATP, nitric oxide, ET-1, platelet-derived growth
factor, interleukin-1, interleukin-6, and ROS) (Corl et al., 2008;
Iwata et al., 2010; Laskin et al., 2010), and mechanical stimulation
of the endothelial cell releases ATP (Milner et al., 1990), the en-
dothelial cell is a compelling candidate for mediating SIEH.

To address the role of the vascular endothelial cell in SIEH, we
used an approach that has been used in the cardiovascular and
renal literature to study endothelial cell-dependent mechanisms,
functionally impairing the vascular endothelium by brief expo-
sure to octoxynol-9, leaving underlying cells intact but function-
ally impaired (Connor and Feniuk, 1989; Jamal et al., 1992). In
the present experiments, octoxynol-9 treatment completely elim-
inated SIEH but had no effect on ET-1-induced hyperalgesia. To
confirm loss of endothelial cell function at the site of nociceptive
testing, we evaluated its function in the skin of the hindpaw by
evaluating a key signature endothelial cell function, muscarinic
cholinergic agonist-induced vasodilatation (Furchgott and
Zawadzki, 1980; Komori and Suzuki, 1987; Medhora et al., 2001),
which is lost in the setting of endothelial cell dysfunction. This
experiment provides direct support for the hypothesis that ET-1
acts on endothelial cells lining cutaneous blood vessels to pro-
duce SIEH. As a second test of the loss of endothelial function, we
evaluated the effect of octoxynol-9 on PAF-induced plasma pro-
tein extravasation. Octoxynol-9 reversed PAF-induced plasma
protein extravasation. We have not excluded the possibility that
octoxynol-9 can also have action at cell types other than endothe-
lial cells. However, our observations regarding the ability of
octoxynol-9 to attenuate stimulation of plasma protein extrava-
sation and blood flow, vibration- and eccentric exercise-induced
hyperalgesia, as well as SIEH are consistent with the ability of
octonoxyl-9 to disrupt endothelial cell function.

Because endothelial cells contain ETA and ETB receptors
(Abraham and Dashwood, 2008; Piechota et al., 2010; Bkaily et
al., 2011) and stimulation of endothelial cells by mechanical
stress stimulates the release of ATP (Milner et al., 1990), we tested
the hypothesis that ATP functions as a mediator of SIEH. In
support of this hypothesis, we found that SIEH was markedly
inhibited by two selective P2X2/3 inhibitors. Based on the results
of these studies, we suggest that SIEH is mediated by release of
ATP from endothelial cells in cutaneous blood vessels (P2X re-
ceptor is expressed in rat vascular primary afferents, e.g., inner-

vating mesenteric arteries; Kirkup et al., 1999) and that ongoing
hyperalgesia is not necessary for ET-1 to induce hyperalgesia
(i.e., ET-1 can “directly” produce mechanical hyperalgesia by
this mechanism). It is also possible that endothelial cells could
release a substance that enhances P2X3 signaling in nocicep-
tors indirectly.

Mechanical-stretch induces release of ATP from endothelial
cells (Bodin and Burnstock, 2001), and although it has not been
established that endothelin increases the amount of ATP released
from endothelial cells by mechanical stimulation, mechanosen-
sitive ATP release is closely correlated with calcium levels (Bou-
dreault and Grygorczyk, 2004) and ET-1 dose dependently
increases intracellular free calcium levels in endothelial cells
(Avedanian et al., 2010). Furthermore, activation of endothelin
receptors has been shown to enhance stimulated (but not basal)
release of ATP from some cell types (Mutafova-Yambolieva and
Westfall, 1995). Thus, we believe the proposed mechanism to be
well supported by the literature. Furthermore, although a
straightforward interpretation of our observations is that ATP is
released from endothelial cells, it is also possible that endothelial
cells could release a substance that enhances P2X3 signaling in
nociceptors indirectly.

It was somewhat unexpected that inhibition of PKC� did not
affect ET-1 hyperalgesia while BIMM completely eliminated it,
especially because ET receptors can signal via PKC� in the heart
and arterial smooth muscle cells (Nelson et al., 2008; Cheng et al.,
2009; Rainbow et al., 2009) and PKC� is present in nociceptors in
which its activation can produce sensitization (Parada et al.,
2003a; Parada et al., 2003b) as well as contribute to the nociceptor
sensitization produced by activation of some of their G-protein-
coupled receptors (Khasar et al., 1999, 2008), whereas other
pronociceptive mediators sensitize nociceptors by PKC�-
independent second-messenger signaling pathways (Pate et al.,

Figure 10. Schematic figure showing hypothesized mechanism of endothelin hyperalgesia
and SIEH. This figure demonstrates the proposed mechanisms by which ET-1 produces primary
mechanical hyperalgesia and SIEH. ET-1-induced hyperalgesia is mediated by its action on ETA

receptors on primary afferent nociceptors (Laziz et al., 2010; Werner et al., 2010) as well as on
ETB receptors on nociceptors or a non-neuronal cell in the skin, whereas SIEH is mediated via ET
receptors on a non-nociceptor cell in the skin, the endothelial cell. Based on these studies, we
propose that stimulus-induced enhancement of ET-1 hyperalgesia is produced by its action on
vascular endothelial cells, sensitizing release of ATP by mechanical stimulation; thus ATP, in
turn, acts at P2X2/3 receptors on nociceptors.

Figure 9. Effect of P2X2/3 inhibitors on ET-1-induced mechanical hyperalgesia and SIEH. At
15 min before intradermal ET-1, rats received vehicle or one of two P2X2/3 inhibitors (A-317491
or AF-353) intradermally. Both A-317491 and AF-353 significantly inhibited ET-1-induced hy-
peralgesia and SIEH compared with vehicle-treated controls ( p � 0.001, two-way ANOVA, n �
6 for A-317491, n � 8 for AF-353; *p � 0.05 for individual time points).

2856 • J. Neurosci., February 13, 2013 • 33(7):2849 –2859 Joseph et al. • Vascular Mechanisms Mediating Endothelin Pain



2010; Toya and Malik, 2012; Triggle et al., 2012). That BIMM, a
nonselective PKC inhibitor (Jang et al., 2008), did attenuate ET-
1-induced hyperalgesia does suggest that a non-� isoform of PKC
contributes to ET-1-induced nociceptor sensitization and me-
chanical hyperalgesia. Finally, because tonic release of endothe-
lial cell mediators has been implicated in several diseases (Pate et
al., 2010; Toya and Malik, 2012; Triggle et al., 2012), we tested the
hypothesis that these cells contributed to ongoing pain in a model
of a vascular pain syndrome, vibration-induced muscle hyperal-
gesia, as well as two other models, eccentric exercise and endo-
metriosis, in which the vasculature may play a role. In support of
this endothelium hypothesis, the hyperalgesia produced by vibra-
tion or eccentric exercise of the hindlimb, or the establishment of
an endometriosis-like lesion, could each be reversed by intrave-
nous octoxynol-9. How important endothelial cell function is in
other pain syndromes that are associated with vascular dysfunc-
tion remains to be evaluated.

In summary, to distinguish the mechanisms underlying ET-
1-induced mechanical hyperalgesia from those mediating SIEH,
we evaluated the differential effect of peripherally administered
ET receptor antagonists and inhibitors of second messengers im-
plicated in peripheral pain mechanisms on these two ET-1-
induced pronociceptive phenomena. Based on these studies, we
propose that stimulus-induced enhancement of ET-1 hyperalge-
sia is produced by its action on vascular endothelial cells, sensi-
tizing them to mechanical stimulation-induced release of ATP;
thus ATP, in turn, acts at P2X2/3 receptors on nociceptors (Fig.
10). More generally, the importance of endothelial cells in other
pain syndromes remains to be evaluated.
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